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Abstract
In this paper, an algorithm based on a new modification, developed by Duan and Rach, for the Adomian decomposition
method (ADM) is generalized to find positive solutions for boundary value problems involving nonlinear fractional
ordinary differential equations. In the proposed algorithm the boundary conditions are used to convert the nonlinear
fractional differential equations to an equivalent integral equation and then a recursion scheme is used to obtain the
analytical solution components without the use of undetermined coefficients. Hence, there is no requirement to solve
a nonlinear equation or a system of nonlinear equations of undetermined coefficients at each stage of approximation
solution as per in the standard ADM. The fractional derivative is described in the Caputo sense. Numerical examples
are provided to demonstrate the feasibility of the proposed algorithm.
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1 Introduction

Fractional order differential equations (FDEs) have been the subject of considerable interest during the last two
decades. It is found to be effective in describing certain applications in the area of engineering, physics [10, 21],
fluid-dynamics based traffic models [9], electromagnetism [8], continuum and statistical mechanics [17] and dynam-
ics of viscoelastic materials [14]. Several methods have been presented to solve fractional nonlinear BVPs-Adomian
decomposition method (ADM) [12], a shifted Legendre spectral method [20], homotopy analysis method [7], gener-
alized differential transform method [18], a Chebyshev spectral method [4], Haar wavelet method [23], sinc-Galerkin
method [25] and so on .
Some studies have been conducted on the positive solution of fractional nonlinear BVPs. The existence and multiplic-
ity results of a positive solution with different types of boundary conditions for fractional differential equations can
be found in the works of Xiaojie Xu [29], Sihualiang [15], De-Xiangma [16], Yige Zhao [31], Chengbo Zhai [30],
Weihua Jiang [13], Muhammed Syam [26]. Jafary and Daftardar [12] used the standard ADM to find the positive
solutions for a fractional nonlinear (Bratu-type) problem involving ordinary differential equations. Jafari and Baghe-
rian [11] made a comparison between homotopy perturbation method (HPM) and the standard ADM method.They
have shown that the standard ADM method is essentially the HPM method for the fractional nonlinear two point
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BVP with 1 < α ≤ 2. The standard ADM approach can be improved by utilizing the approach of Duan and Rach [6]
for solving BVPs. This approach allows the derivation of a modified recursion scheme for the approximate solution
without any undetermined coefficients and avoids the need to solve a nonlinear sequence of algebraic equations for
the undetermined coefficients. Dib and Haiahem [3] used the Duan and Rach approach to solve the governing partial
differential equation of MHD Jeffery-Hamel flow problem and they showed this approach gives good agreement with
the 4th-order Runge-Kutta algorithm and homotopy analysis method.

The purpose of this paper is to generalize the modification proposed by Duan and Rach [6] for the ADM to find
a positive solution for the boundary value problems involving nonlinear fractional ordinary differential equations. As
will be shown in the next sections, the generalized method is simpler to implement and easy to automate by computer
programs. In particular the final solution does not contain any undetermined coefficient at each stage of approximation
solution and hence we do not need to use numerical methods to evaluate the values of the undetermined coefficient as
in the standard ADM.

There are various definitions of a fractional derivative of order α (α > 0), but the two definitions that are most exten-
sively used in applications of fractional calculus are the Riemann-Liouville and Caputo definition [22]. The Caputo
fractional derivative which will be used in this study first computes an ordinary derivative followed by a fractional
integral to achieve the desired order of fractional derivative while Riemann-Liouville fractional derivative is computed
in the reverse order. Hence, the Caputo fractional derivative allows traditional initial and boundary conditions to be
included in the formulation of the problem [19].
To provide the setting for this work, we list below some definitions and basic results of others. More details can be
found in [22, 24].

Definition 1.1. A real function f (x), x > 0, is said to be in the space Cα , α ∈ R if there exists a real number p > α ,
such that f (x) = xp f1(x) is continuous in [0,∞) and it is said to be in the space Cn

α iff f (n) ∈Cα , n ∈ N0

Definition 1.2. The Riemann-Liouville fractional integral operator of order α > 0, of the function f ∈ Cµ , µ > −1
is defined as:

Jα
a f (t) =

1
Γ(α)

∫ t

a
(t − x)α−1 f (x) dx, α > 0, t > a, a ≥ 0.

1. if α = 0, Jα
0 f (t) = f (t) is the identity operator.

2. for f ∈Cµ , α,β > 0, we have(Jα
a Jβ

a )(t) = (Jα+β
a )(t)

3. if f (t) = (t −a)β for some β >−1 and α > 0, then

Jα
a f (t) =

Γ(β +1)
Γ(n+β +1)

(t −a)n+β .

Definition 1.3. The Caputo fractional derivative of f (t) of order α with a > 0 is defined as:

(Dα
∗a f )(t) = (Jn−α

a f (n))(t) =
1

Γ(n−α)

∫ t

a
(t − x)n−α−1 f(n)(x) dx, n ∈ N,n−1 < α ≤ n,

t > a, f (x) ∈Cn
−1. For this definition we have the following properties:

1. (Jα
a Dα

∗a f )(t) = f (t)−
n−1
∑

k=0

(t −a)k

k!
f k(a), n−1 < α ≤ n, n ∈ N.

2. If f is continuous and α ≥ 0 then, Dα
a Jα

a f = f .

3. If f (t) = (t −a)β for some β ≥ 0,m = ⌈α⌉ then,
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Dα
∗a f (t) =


0 if β ∈ {0,1,2, ...,m−1}

Γ(β +1)
Γ(β −n+1)

(t −a)β−α if β ∈ N0 and β ≥ m

orβ /∈ Nand β > m−1

2 The proposed method

We first describe modification method of Duan and Rach [6] for the second-order nonlinear ordinary differential
equations by using ADM. After that we will generalize this modification for the fractional differential equations case.

Consider the following two-point boundary value problem of the second-order ordinary differential equation

Lu+Nu = f (t), a ≤ t ≤ b, (2.1)

u(a) = c1, u(b) = c2,

where L(.) = d2

dt2 is the linear differential operator, Nu is analytic nonlinear term and f (t) known given function.
Take the inverse linear operator L−1(.) to both sides of Eq.(2.1), where L−1(.) is defined as

L−1(.) =
∫ t

a

∫ t

ζ
(.)dtdt, ζ ∈ [a,b] is a prescribed value, yields

u(t)−u(a)−u′(ζ )(t −a) =−L−1Nu+L−1 f (t). (2.2)

Let t = b in Eq.(2.2). Then solve for u′(ζ ), yields

u′(ζ ) =
u(b)−u(a)

b−a
+

1
b−a

([
L−1Nu

]
t=b −

[
L−1 f (t)

]
t=b

)
, (2.3)

where
[
L−1(.)

]
t=b =

∫ b

a

∫ t

ζ
(.)dtdt.

Substituting Eq.(2.3) in to Eq.(2.2) yields

u(t) =u(a)+
u(a)−u(b)

b−a
(t −a)+L−1 f (t)− t −a

b−a

[
L−1 f (t)

]
t=b −L−1Nu+

t −a
b−a

[
L−1Nu

]
t=b . (2.4)

Thus the approximation solution components by using Duan and Rach modification for the Adomian decomposition
method is given by

u0(t) =u(a)+
u(a)−u(b)

b−a
(t −a)+L−1 f (t)− t −a

b−a

[
L−1 f (t)

]
t=b (2.5)

un+1(t) =−
∫ t

a

∫ t

ζ
(An)dtdt +

t −a
b−a

[∫ t

a

∫ t

ζ
(An)dtdt

]
t=b

, n ≥ 0 (2.6)

where An are the Adomian polynomials as will be discussed later in this section.

Now to generalize this modification, we consider the following nonlinear differential equation of fractional order:

Dα
∗ u(t)+Nu = f (t), m−1 < α ≤ m, m ∈ N, a ≤ t ≤ b (2.7)
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subject to the boundary conditions u(qk)(tk) = ck, tk ∈ [a,b], k = 0,1,2, ...,m−1.
The tk are not all equal and 0 ≤ q0 ≤ q1 ≤ ...≤ qm−1 such that qi ̸= q j if ti = t j.

Also we assume that the positive solution of Eq.(2.7) exists and is unique in the specified interval [a,b].

Let Dα
∗ (.) represent the Caputo fractional derivative of order α , Nu The analytic nonlinear term, and f(t) is a known

given function.

Applying L−1(.) = Jα(.) to both sides of Eq.(2.7), where Jα is the Riemann-Liouville fractional integral yields

Jα Dα
∗ u(t) = Jα f (t)− Jα(Nu).

Using property(1)of definition (1.3)we have

u(t) =
m−1

∑
k=0

Dk f (0)
k!

tk + Jα( f (t))− Jα(Nu) (2.8)

= u(0)+u′(0)+u′′(0)
t2

2
+ ...+

u(m−1)

(m−1)!
tm−1 + Jα( f (t))− Jα(Nu).

The Adomian decomposition method introduces the solution by decomposing u(t) to an infinite series u(t) =
∞
∑

n=0
un

and the nonlinear term Nu by the infinite series Nu =
∞
∑

n=0
An where An are the Adomian polynomials defined by

An = An(u0,u1, .....,un) =
1
n!

[
dn

dλ n N

(
∞

∑
n=0

λ iui

)]
λ=0

The polynomials An are generated for each nonlinearity so that A0 depends only on u0, A1 depends only on u0 and
u1, A2 depends on u0, u1,u2 and so on. Many different algorithms to compute the Adomian polynomials have been
proposed. See, for example, Adomian and Rach [2], Sheng Duan [5], Wazwaz [28].

The first five Adomian polynomials for the one variable Nu = f (u(t)) are given by

A0 = f (u0),

A1 = u1 f ′(u0),

A2 = u2 f ′(u0)+
1
2!

u2
1 f ′′(u0), (2.9)

A3 = u3 f ′(u0)+u1u2 f ′′(u0)+
1
3!

u3
1 f (3)(u0),

A4 = u4 f ′(u0)+(u1u3 +
1
2!

u2
2) f ′′(u0)+

1
2!

u2
1u2 f (3)(u0)+

1
4!

u4
1 f (4)(u0).

There can also can be found from the formula

An =
n

∑
ν=1

C(ν ,n) f (ν)(u0)

where the c(ν,n) are products (or sums of products) of ν components of u whose subscripts sum to n divided by the
factorial of the number of repeated subscripts [1].
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To clarify the method, we take a special case of Eq.(2.7)

Dα
∗ u(t)+Nu = f (t), 1 < α ≤ 2, a ≤ t ≤ b,

subject to the boundary conditions, u(a) = c1, u(b) = c2.

According to Eq.(2.8) we have

u(t) = u(0)+u′(0)t +L−1( f (t))−L−1(Nu)

= u(0)+u′(0)t + Jα( f (t))− Jα(Nu). (2.10)

Let t = a and then t = b in Eq.(2.10) yields, respectively the two equations

u(a) = u(0)+u′(0)a+[Jα( f (t))]t=a − [Jα(Nu)]t=a (2.11)
u(b) = u(0)+u′(0)b+[Jα( f (t))]t=b − [Jα(Nu)]t=b . (2.12)

Equations (2.11)and(2.12) are two equations with two unknown coefficients u(0) and u′(0). Solving these two equa-
tions with respect to these unknown coefficients yields

u′(0) =
u(b)−u(a)

b−a
+

1
b−a

[Jα f (t)]t=a −
1

b−a
[Jα f (t)]t=b −

1
b−a

[Jα Nu]t=a +
1

b−a
[Jα Nu]t=b (2.13)

and

u(0) =u(a)− a
b−a

[u(b)−u(a)]+
a

b−a
[Jα f (t)]t=b −

a
b−a

[Jα f (t)]t=a −
a

b−a
[Jα Nu]t=b +

a
b−a

[Jα Nu]t=a−

[Jα f (t)]t=a +[Jα Nu]t=a .
(2.14)

Substituting Eq.(2.13) and Eq.(2.14) in to Eq.(2.10) and simplifying we obtain

u(t) =u(a)+
t −a
b−a

[u(b)−u(a)]+
t −b
b−a

[Jα f (t)]t=a −
t −a
b−a

[Jα f (t)]t=b +
b− t
b−a

[Jα Nu]t=a +
t −a
b−a

[Jα Nu]t=b+

Jα( f (t))− Jα(Nu).
(2.15)

Next the nonlinear term Nu will be equated to
∞
∑

n=0
An where An are the Adomian polynomials and decomposing the

solution u(t) into
∞
∑

n=0
un(t). Then applying ADM to Eg.(2.15) yields

u0(t) =u(a)+
t −a
b−a

[u(b)−u(a)]+
t −b
b−a

[Jα f (t)]t=a −
t −a
b−a

[Jα f (t)]t=b + Jα( f (t)), (2.16)

un+1(t) =
b− t
b−a

[Jα An]t=a +
t −a
b−a

[Jα An]t=b − Jα(An), n ≥ 0. (2.17)

We note that the recursion scheme (2.16) and (2.17) is without any undetermined coefficients and thus we avoid the
complicated calculations to find the roots of matching nonlinear algebraic equation in each step of the approximation
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solutions as occurs in the undetermined coefficient method.

Finally the nth-term approximation solution for the Adomian decomposition method is given by

ϕn =
n−1

∑
k=0

uk, n ≥ 1 (2.18)

and the solution u(t) = lim
n→∞

ϕn

3 Illustrative examples

To demonstrate the effectiveness and the simplicity of the proposed method we give two examples with two and
three boundary values of nonlinear fractional ordinary differential equation and make a comparison between the results
obtained by the proposed method and the exact solution for some values of α .

3.1 Example [12]
Consider the following Bratu’s type boundary value problem in the form

Dα
∗ u(t)+ eu(t) = 0, 1 < α ≤ 2, 0 ≤ t ≤ 1, (3.19)

u(0) = 0, u(1) = 0.

The exact solution of this problem when α = 2 is given in [27] by

u(t) =−2ln

[
cosh

( θ t
2 − θ

4

)
cosh

( θ
4

) ]
, where θ satisfies the equation θ =

√
2cosh

( θ
4

)
.

To solve this equation by the proposed method, according to the equations (3.16) and (3.17), we obtain

u0(t) = 0, (3.20)
(3.21)

un+1(t) = t [Jα(An)]t=1 − [Jα(An)] , n ≥ 0

where An are the Adomian polynomials for the nonlinear term Nu = eu which are given by

A0 = eu0 , (3.22)
A1 = u1eu0 ,

A2 =

(
u2

1
2
+u2

)
eu0 ,

A3 =

(
u3

1
6
+u1u2 +u3

)
eu0 ,

.....

In view of (3.20), (3.21) and (3.22) we can write the components of the solution for Eq.(3.19) as follows

u0(t) = 0, (3.23)

u1(t) =
t − tα

αΓ(α)
,

u2(t) =
4−α (−4α t(−1+ tα)Γ(0.5+α)+

√
π(−t + t2α)Γ(2+α)

)
αΓ(α)Γ(0.5+α)Γ(2+α)

,

.....
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In view of (3.23) the approximate solutions of Eq.(3.19) when n = 5 for various value of α are as follows

For α = 1.2,

ϕ(t) =0.948641t −0.907604t1.2 −0.391384t2.2 +0.335435t2.4 −0.116044t3.2 +0.299552t3.4−
0.166492t3.6 −0.0259069t4.2 +0.154842t4.4 −0.224063t4.6 +0.0930731t4.8−
0.00400549t5.2 +0.0523022t5.4 −0.153367t5.6 +0.160541t5.8 −0.0555197t6.

(3.24)

For α = 1.6,

ϕ(t) =0.769751t −0.699484t1.6 −0.207002t2.6 +0.128921t3.2 −0.0439692t3.6 +0.0848449t4.2−
0.00697325t4.6 −0.0338418t4.8 +0.0313441t5.2 −0.000694494t5.6 −0.0334611t5.8+

0.00686103t6.2 +0.010058t6.4 −0.0154317t6.8 +0.0122721t7.4 −0.00319406t8.

(3.25)

For α = 2,

ϕ(t) =0.549288t −0.5t2 −0.0915096t3 +0.0291811t4 +0.0169618t5 −0.00118634t6−
0.00300926t7 −0.000272817t8 +0.000683422t9 −0.000136684t10.

(3.26)

The main advantage of using the Duan-Rach modification for solving fractional nonlinear BVP is that evaluating the
inverse operator directly at the boundary conditions allows us to find the components of the solution without using
numerical methods to calculate the values of the undetermined coefficients as in the standard ADM. For example in
the given problem the matching algebraic equations for the approximate solutions by using the standard ADM when
α = 2 and n = 2,3 are respectively given in [12] by

ϕ2(t) = β t − eβ t −β t −1
β 2

ϕ3(t) = β t − eβ t −β t −1
β 2 − 2β t − eβ t(eβ t −4β t +4)+5

4β 4 .

some of these equations need using numerical methods or some of commands in mathematical programs as the com-
mand (Find Root) in mathematica programme to find the values of the undetermined coefficient β . This cost more
time and requires more complicated calculations. Furthermore the accuracy of the approximation solution depend in
the accuracy of the values of the undetermined coefficient β .

Figure.1 shows the curves of the exact solution and the approximation solutions by the proposed method when α = 2
and n = 2,3,4. We note that the curve of the exact solution is in a high agreement with the curve of approximation
solution when n = 4 and ϕn(t) converge to the exact solution u(t) when n increases in the interval [0,1]. Figure.2
shows the curves of the approximation solution when n = 6 and various values of α . Table.1 shows the values of the
maximum absolute error MEn(t) where
MEn(t) = ||ϕn(t)−uexact(t)||∞ when n = 3,4,5,6,7 in the interval [0,1].
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Figure 1: uexact(t) (solid line)and the approximation solution ϕn(t), ϕ2(t) (dot-side line), ϕ3(t) (dashed line), ϕ4(t)
(dot line).

Figure 2: ϕ6(t), α = 1.2 (dot line), α = 1.4 (dashed line), α = 1.6 (dot-side line), alpha = 1.8 (solid line).

Table 1: The maximum absolute error function MEn(t) for n = 3,4,5,6,7 and 0 ≤ t ≤ 1.
n 3 4 5 6 7

|MEn(t)| 2.51838×10−3 4.78451×10−4 9.92575×10−5 2.17805×10−5 4.9696×10−6

3.2 Example
Consider the three point BVP for inhomogeneous fractional differential equation with (u′)2 nonlinearity and

3 < α ≤ 4.

Dα
∗ u(t)− (u′(t))2 +g(t) = 0, 0 ≤ t ≤ 1, 3 < α ≤ 4. (3.27)

u(0) = 0, u′(0) = 0, u′′(0.5) = γ1, u′′′(1) = γ2

where g(t) = (α +1)2t2α − tΓ(α +2), γ1 =
( 1

2

)α−1 α(α +1), γ2 = α(α −1)(α +1).

The exact solution for this problem u(t) = tα+1. Applying L−1(.) = J(.) to both sides of Eq (3.27) and then us-
ing boundary values u(0) = 0 and u′(0) = 0 yields

u(t) = u′′(0)t +u′′′(0)
t2

2
− Jα(g(t))+ Jα((u′(t))2). (3.28)

Differentiating Eq.(3.28) two time and three time then using boundary value u′′(0.5) = γ1 and u′′′(1) = γ2, then solving
the obtained equations with respect to u′′(0) and u′′′(0) yields
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u′′(0) =γ1 −
1
2

γ2 −
1
2
[
Jα−3(g(t))

]
t=1 +

[
Jα−2(g(t))

]
t= 1

2
+

1
2
[
Jα−3(u′(t))2]

t=1 −
[
Jα−2(u′(t))2]

t= 1
2
. (3.29)

and

u′′′(0) =γ2 +
[
Jα−3(g(t))

]
t=1 −

[
Jα−3((u′)2)

]
t=1 . (3.30)

Substituting Eq.(3.29) and Eq.(3.30) in to the Eq.(3.28) we obtain

u(t) =
t2

4
(2γ1 − γ2)+

t3

6
γ2 +

(
t3

6
− t2

4

)[
Jα−3(g(t))

]
t=1 +

t2

2
[
Jα−2(g(t))

]
t= 1

2
+(

t2

4
− t3

6

)[
Jα−3(u′(t))2]

t=1 −
t2

2
[
Jα−2((u′(t))2)

]
t= 1

2
− Jα(g(t))+ Jα((u′(t))2).

(3.31)

Applying the ADM in to the Eq.(3.31) we have

u0(t) =
t2

4
(2γ1 − γ2)+

t3

6
γ2 +

(
t3

6
− t2

4

)[
Jα−3(g(t))

]
t=1 +

t2

2
[
Jα−2(g(t))

]
t= 1

2
− Jα(g(t)) (3.32)

un+1(t) =
(

t2

4
− t3

6

)[
Jα−3(An)

]
t=1 −

t2

2
[
Jα−2(An)

]
t= 1

2
+ Jα(An), n ≥ 0 (3.33)

where An are the Adomian polynomials for the nonlinearity (u′(t))2 which given by

An =
n

∑
k=0

u′n−ku′k, n ≥ 0 (3.34)

Thus by using the equations (3.32), (3.33)and(3.34) we can calculate the solution components of equation (3.27) when
α = 3.9 as follows

u0(t) =−0.851877t2 +0.568059t3 + t4.9 −0.00280675t11.7,

u1(t) =0.754057t2 −0.504997t3 +0.00971651t5.9 −0.00845123t6.9 +0.00214008t7.9−
0.00729485t8.8 +0.00439289t9.8 +0.00280675t11.7 +3.68052×10−6t15.6−
2.81652×10−6t16.6 −5.09743×10−6t18.5 +4.59557×10−9t25.3,

......

Clearly in this example if we use the standard ADM then we need to solve a system of nonlinear algebraic equations
to find the undetermined coefficients β1 = u′′(0), β2 = u′′′(0) at each stage of the approximation solution. Some of
these equations may possess non-physical roots. Thus the Duan-Rach modification is an efficient alternative method
to the standard ADM for solving BVPs.

Figure.(3) shows the exact solution u(t) = t4.9 of equation (3.27) when α = 3.9 and the approximate solutions ϕn
when n = 4,6,8. Figure.(4) shows the approximation solutions ϕn(t) at n = 8 and different values of α . In table (2)
we computed the maximal absolute error for the error function MEn(t) = ∥ϕn(t)−uexact(t)∥∞ when n = 3,4,5,6,7,8
and α = 3.9. We note the maximal absolute error decreasing monotonically with the increases of the integer n.
In figure.(5) we plot the curves of absolute error function En(t) = |ϕn(t)−u(t)| at n = 8 for various values of α .
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Figure 3: uexact(t) (solid line), and ϕn(t), ϕ8(t) (dashed line), ϕ6(t) (dot line), ϕ4(t) (dot-side line).

Table 2: |MEn(t)|
n 3 4 5 6 7 8

|MEn(t)| 0.0108606 0.00310907 0.0009581 0.000311657 0.000104246 0.0000356986

Figure 4: ϕ8(t), α = 3.2 (dot-dot-side line), α = 3.4 (dot-side line), α = 3.6 (dot line), α = 3.8 (dashed line), α = 4
(solid line)

Figure 5: E8(t), α = 3.2 (solid line), α = 3.4 (dot line), α = 3.6 (dot-side line), α = 3.8 (dot-dot-side line), α = 4
(dashed line)

4 Conclusions

In this paper, we utilize the modification proposed by Duan and Rach for the Adomian decomposition method to
find positive solutions for ordinary nonlinear fractional differential equation with multi-point boundary value prob-
lems. This modification avoids the complicated calculations for the matching algebraic equations of undetermined
coefficient that obtained at each stage of approximation solution and gives an approximate solution with a high agree-
ment to the exact solution even for small values of n and with minimum number of calculation. The absolute error
approaches zero when n increases as we showed in the given examples. Thus, the method is very convenient and
efficient to solve boundary value problem of fractional order which gives it much wider applicability. Mathematica
software was used for the two given examples.

International Scientific Publications and Consulting Services



Journal of Interpolation and Approximation in Scientific Computing 2016 No.1 (2016) 25-37
http://www.ispacs.com/journals/jiasc/2016/jiasc-00090/ 35

References

[1] G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Mathe-
matical and Computer Modelling, 13 (7) (1990) 17-43.
http://dx.doi.org/10.1016/0895-7177(90)90125-7

[2] G. Adomian, R. Rach, Generalization of Adomian polynomials to functions of several variables, Computers &
mathematics with Applications, 24 (5) (1992) 11-24.
http://dx.doi.org/10.1016/0898-1221(92)90037-I

[3] A. Dib, A. Haiahem, B. Bou-Said, An analytical solution of the MHD JefferyHamel flow by the modified
Adomian decomposition method, Computers & Fluids, 102 (2014) 111-115.
http://dx.doi.org/10.1016/j.compfluid.2014.06.026

[4] E. Doha, A. Bhrawy, S. Ezz-Eldien, A chebyshev spectral method based on operational matrix for initial and
boundary value problems of fractional order, Computers & Mathematics with Applications, 62 (5) (2011) 2364-
2373.
http://dx.doi.org/10.1016/j.camwa.2011.07.024

[5] J.-S. Duan, New recurrence algorithms for the nonclassic adomian polynomials, Computers & Mathematics with
Applications, 62 (8) (2011) 2961-2977.
http://dx.doi.org/10.1016/j.camwa.2011.07.074

[6] J.-S. Duan, R. Rach, A new modification of the adomian decomposition method for solving boundary value
problems for higher order nonlinear differential equations, Applied Mathematics and Computation, 218 (8)
(2011) 4090-4118.
http://dx.doi.org/10.1016/j.amc.2011.09.037

[7] A. El-Ajou, O. A. Arqub, S. Momani, Solving fractional two-point boundary value problems using continuous
analytic method, Ain Shams Engineering Journal, 4 (3) (2013) 539-547.
http://dx.doi.org/10.1016/j.asej.2012.11.010

[8] N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, Antennas and Propagation,
IEEE Transactions on, 44 (4) (1996) 554-566.
http://dx.doi.org/10.1109/8.489308

[9] J. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Tech-
nol, 15 (2) (1999) 86-90.

[10] J. He, Nonlinear oscillation with fractional derivative and its applications, in: International conference on vibrat-
ing engineering, 98 (1998) 288-291.

[11] H. Jafari, K. Bagherian, S. P. Moshokoa, Homotopy perturbation method to obtain positive solutions of nonlinear
boundary value problems of fractional order, in: Abstract and Applied Analysis, Vol. 2014, Hindawi Publishing
Corporation, 2014.
http://dx.doi.org/10.1155/2014/919052

[12] H. Jafari, V. Daftardar-Gejji, Positive solutions of nonlinear fractional boundary value problems using adomian
decomposition method, Applied Mathematics and Computation, 180 (2) (2006) 700-706.
http://dx.doi.org/10.1016/j.amc.2006.01.007

[13] W. Jiang, B. Wang, Z. Wang, The existence of positive solutions for multipoint boundary value problems of
fractional differential equations, Physics Procedia, 25 (2012) 958-964.
http://dx.doi.org/10.1016/j.phpro.2012.03.184

International Scientific Publications and Consulting Services



Journal of Interpolation and Approximation in Scientific Computing 2016 No.1 (2016) 25-37
http://www.ispacs.com/journals/jiasc/2016/jiasc-00090/ 36

[14] C. Lederman, J.-M. Roquejoffre, N. Wolanski, Mathematical justification of a nonlinear integro-differential
equation for the propagation of spherical ames, Annali di Matematica Pura ed Applicata, 183 (2) (2004) 173-
239.
http://dx.doi.org/10.1007/s10231-003-0085-1

[15] S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation,
Nonlinear Analysis: Theory, Methods & Applications, 71 (11) (2009) 5545-5550.
http://dx.doi.org/10.1016/j.na.2009.04.045

[16] De-xiang Ma, Positive solutions of multi-point boundary value problem of fractional differential equation, Arab
Journal of Mathematical Sciences, 21 (2) (2015) 225236.
http://dx.doi.org/10.1016/j.ajmsc.2014.11.001

[17] F. Mainardi, Fractional calculus: some basic problems in countinuum and statistical mechanics, Fractals and
Fractional Calculus in Continuum Mechanics, 378 (1997) 291-348.

[18] A. D. Matteo, A. Pirrotta, Generalized differential transform method for nonlinear boundary value problem of
fractional order, Communications in Nonlinear Science and Numerical Simulation, 29 (13) (2015) 88101.
http://dx.doi.org/10.1016/j.cnsns.2015.04.017

[19] S. Momani, N. Shawagfeh, Decomposition method for solving fractional riccati differential equations, Applied
Mathematics and Computation, 182 (2) (2006) 1083-1092.
http://dx.doi.org/10.1016/j.amc.2006.05.008

[20] A. H. Bhrawy, M. M. Al-Shomrani, A shifted legendre spectral method for fractional-order multi-point boundary
value problems, Advances in Difference Equations, 2012 (1) (2012) 1-19.
http://dx.doi.org/10.1186/1687-1847-2012-8

[21] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, arXiv
preprint math/0110241, 5 (4) (2002) 367-386.

[22] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential
equations, to methods of their solution and some of their applications, Vol. 198, Academic press, 1998.

[23] U. Saeed, M. ur Rejman, M. A. Iqbal, Haar wavelet-picard technique for fractional order nonlinear initial and
boundary value problems, Scientific Research and Essays, 9 (12) (2014) 571-580.
http://dx.doi.org/10.5897/SRE2013.5777

[24] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, 1993,
Gordon and Breach, Yverdon.

[25] A. Secer, S. Alkan, M. A. Akinlar, M. Bayram, Sinc-galerkin method for approximate solutions of fractional
order boundary value problems, Boundary Value Problems, 2013 (1) (2013) 1-14.
http://dx.doi.org/10.1186/1687-2770-2013-281

[26] M. Syam, M. Al-Refai, Positive solutions and monotone iterative sequences for a class of higher order boundary
value problems of fractional order, Journal of Fractional Calculus and Applications, 4 (1) (2013) 147-159.

[27] A.-M. Wazwaz, Adomian decomposition method for a reliable treatment of the bratu-type equations, Applied
Mathematics and Computation, 166 (3) (2005) 652-663.
http://dx.doi.org/10.1016/j.amc.2004.06.059

[28] A.-M. Wazwaz, A new algorithm for calculating adomian polynomials for nonlinear operators, Applied Mathe-
matics and computation, 111 (1) (2000) 33-51.
http://dx.doi.org/10.1016/S0096-3003(99)00063-6

International Scientific Publications and Consulting Services



Journal of Interpolation and Approximation in Scientific Computing 2016 No.1 (2016) 25-37
http://www.ispacs.com/journals/jiasc/2016/jiasc-00090/ 37

[29] X. Xu, D. Jiang, C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional
differential equation, Nonlinear Analysis: Theory, Methods & Applications, 71 (10) (2009) 4676-4688.
http://dx.doi.org/10.1016/j.na.2009.03.030

[30] C. Zhai, L. Xu, Properties of positive solutions to a class of four-point boundary value problem of caputo frac-
tional differential equations with a parameter, Communications in Nonlinear Science and Numerical Simulation,
19 (8) (2014) 2820-2827.
http://dx.doi.org/10.1016/j.cnsns.2014.01.003

[31] Y. Zhao, S. Sun, Z. Han, Q. Li, The existence of multiple positive solutions for boundary value problems of
nonlinear fractional differential equations, Communications in Nonlinear Science and Numerical Simulation, 16
(4) (2011) 2086-2097.
http://dx.doi.org/10.1016/j.cnsns.2010.08.017

International Scientific Publications and Consulting Services


