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An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when
both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by
recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function.
Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the
stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and
demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS)
algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system
identification under noisy inputs.

1. Introduction

Ordinary least squares methods are extensively used in
many signal processing applications to extract the system
parameters from input/output data [1, 2]. These methods
yield an unbiased solution of adaptive least squares problem
having no interference in both inputs and outputs or having
interference only in the outputs of the unknown system and
clean inputs. However, if interference exists in both input and
output of the unknown system or adaptive filtering problem,
the ordinary least squares solution gets biased [3].

Total least squares (TLS) method [4] is an efficient
technique to achieve an unbiased estimate of the system
parameters when both input and output are contaminated by
noise. Golub and Van Loan [5] provided an analytical proce-
dure to get an unbiased solution of the TLS problem using
singular value decomposition (SVD) of data matrices. This
technique is extensively used in data processing and control
applications [4, 6, 7]. However, application of TLSmethods in
signal processing is still limited because computation of SVD
requires a high complexity of 𝑂(𝑁

3
) for an𝑁 × 𝑁matrix.

TLS solutions of adaptive filtering problem gained impor-
tance after the pioneer work done by Pisarenko [8]. He

presented an efficient solution of adaptive TLS problem
by adaptively computing the eigenvector corresponding
to smallest eigenvalue of augmented input/output signal’s
autocorrelation matrix. Since then, several algorithms have
been proposed based on the adaptive implementations of
Pisarenko. The adaptive TLS algorithms proposed in [9–11]
are able to achieve an unbiased TLS solution of adaptive
filtering problem with a complexity of 𝑂(𝑁). However they
are sensitive to the correlation properties of input signals and
have a drawback of bad performance under correlated inputs.

In this paper, an iterative algorithm is presented to find
an optimal TLS solution of adaptive FIR filtering prob-
lem. A stochastic technique similar to that of least mean
squares (LMS) algorithm of adaptive least squares filtering
is employed to develop a total least mean squares (TLMS)
algorithm for adaptive total least squares problem. Instead
of basing the approach on the minimum mean squares error
as the LMS algorithm does, the proposed (TLMS) algorithm
is based on the total mean squares, obtained by minimizing
the weighted cost function for the TLS solution of adaptive
filtering problem. The proposed algorithm has maintained
the 𝑂(𝑁) complexity of adaptive TLS algorithms with an
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additional quality of having steady state convergence under
correlated inputs. Convergence analysis is presented to show
the global convergence of the proposed algorithm under all
kinds of inputs provided the stepsize parameter is suitably
chosen.

This paper is outlined as follows: we start with a math-
ematical formulation of adaptive least squares problem in
Section 2 and derivation of the TLMS algorithm is given in
Section 3, including its convergence analysis in Section 3.1.
After that efficiency of the proposed algorithm is tested in
Section 4 by applying it for an unknown system identifica-
tion problem and comparing the results with conventional
LMS and normalized LMS (NLMS) algorithms. Concluding
remarks are given in Section 5.

2. Mathematical Formulation of Adaptive
Total Least Squares Problem

Consider an unknown system to be identified by adaptive FIR
filter of length 𝑁 and response vector w

𝑛
, at time 𝑛, with an

assumption that both input and output are corrupted by an
additive white Gaussian noise (AWGN). The noise free input
vector a

𝑛
∈ R𝑁 is formed from the input signals 𝑢(𝑛), such

that

a
𝑛
= [𝑢 (𝑛) , 𝑢 (𝑛 − 1) , . . . , 𝑢 (𝑛 − 𝑁 + 1)]

𝑇
∈ R
𝑁
. (1)

The desired output of the unknown system is then given by

𝑠 (𝑛) = 𝑠 (𝑛) + Δ𝑠 (𝑛) , (2)

where 𝑠(𝑛) = w𝑇
𝑛
a
𝑛
is system’s output and Δ𝑠(𝑛) an added

white Gaussian noise of zero mean and variance 𝜎2
Δ𝑠
.

The primary assumption of an adaptive least squares
(ALS) problem is that perturbations occur in the output
signals only and that the input signals are exactly known.This
assumption is not practical enough, because perturbations
due to sampling or modeling or measurement errors affect
the input signals too. A sensible choice to overcome such
situations is to introduce perturbations in input signals in
addition to perturbations of output signals. A schematic
diagram of an adaptive filter with perturbed input is depicted
in Figure 1.

If Δa
𝑛
= [Δ𝑢(𝑛), Δ𝑢(𝑛 − 1), . . . , Δ𝑢(𝑛 − 𝑁 + 1)]

𝑇
∈ R𝑁,

denote the perturbations in input vector a
𝑛
, whereΔ𝑢(𝑛) is an

additive white Gaussian noise (uncorrelated from the output
noise) of zeromean and variance 𝜎2

Δ𝑢
, then noisy input vector

is

ã
𝑛
= a
𝑛
+ Δa
𝑛
. (3)

It is clear from Figure 1 that for every input signal �̃�(𝑛) =

𝑢(𝑛) + Δ𝑢(𝑛), the filter produces an estimated output 𝑦(𝑛) =

w𝑇
𝑛
ã
𝑛
, which is compared with 𝑠(𝑛) to produce a least squares

error signal 𝑒(𝑛) = 𝑦(𝑛) − 𝑠(𝑛). Define the autocorrelation
matrix Rã

𝑛

of noisy input vector ã
𝑛
as Rã

𝑛

= 𝐸{ã
𝑛
ã𝑇
𝑛
} and

the cross-correlation vector of output signal with ã
𝑛
as pã

𝑛

=

𝐸{𝑠(𝑛)ã
𝑛
}.

At this stage the least squares solution, obtained by
minimizing the cost function 𝐽 = 𝐸{𝑒

2
(𝑛)}, gives a poor
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system

Adaptive
filter

u(n)

Δu(n) ũ(n)

+

+

s(n)

Δs(n)

y(n) e(n)

s̃(n)

−

Figure 1: An unknown system identification model for adaptive
filtering of noisy input signals.

estimation of the solution of adaptive filtering problem
because of the presence of noise in filter input. Casting
adaptive filtering problem as total least squares problem can,
however, restructure the poor estimation of solution under
noisy input [10, 11]. The following definition is made to adopt
a more general signal model for ATLS-based filtering.

Definition 1 (augmented data vector). Define an (𝑁 + 1) × 1

augmented data vector z̃
𝑛
as

z̃
𝑛
= [ã𝑇
𝑛
: 𝑠(𝑛)]

𝑇

= (
ã
𝑛

𝑠 (𝑛)
) . (4)

An alternate form of 𝑒(𝑛), in terms of augmented data
vector of Definition 1, is obtained as follows:

𝑒 (𝑛) = 𝑦 (𝑛) − 𝑠 (𝑛) = w𝑇
𝑛
ã
𝑛
− 𝑠 (𝑛)

= [w𝑇
𝑛
− 1] (

ã
𝑛

𝑠 (𝑛)
) = w̃𝑇

𝑛
z̃
𝑛
,

(5)

where w̃
𝑛

= [w𝑇
𝑛
− 1]
𝑇 denote the (𝑁 + 1) × 1 extended

parameter vector.
TheTLS solution of adaptive filtering problem is an eigen-

vector associated with the smallest eigenvalue of extended
autocorrelation matrix R̃

𝑛
:

R̃
𝑛
= 𝐸 {z̃

𝑛
z̃𝑇
𝑛
} = (

Rã
𝑛

pã
𝑛

p𝑇ã
𝑛

𝜎
2

𝑠(𝑛)

) , (6)

where 𝜎2
𝑠(𝑛)

= 𝐸{𝑠(𝑛)𝑠(𝑛)}.
Instead of minimizing the mean square error 𝐸{𝑒

2
(𝑛)},

adaptive total least squares problem is concerned with mini-
mizing the totalmean square error𝐸{𝜂2(𝑛)} and cost function
𝐽(w̃
𝑛
) = 𝐸{𝑒

2
(𝑛)}, where the total error 𝜂(𝑛) is given by

𝜂 (𝑛) =
𝑒 (𝑛)

√w̃𝑇
𝑛
w̃
𝑛

=
w̃𝑇
𝑛
z̃
𝑛

√w̃𝑇
𝑛
w̃
𝑛

=
z̃𝑇
𝑛
w̃
𝑛

√w̃𝑇
𝑛
w̃
𝑛

. (7)

The TLS cost function 𝐽(w̃
𝑛
) is then defined in terms of

total error as

𝐽 = 𝐸 {𝜂
2
(𝑛)} = 𝐸{

w̃𝑇
𝑛
z̃
𝑛
z̃𝑇
𝑛
w̃
𝑛

w̃𝑇
𝑛
w̃
𝑛

} =
w̃𝑇
𝑛
R̃
𝑛
w̃
𝑛

w̃𝑇
𝑛
w̃
𝑛

. (8)
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Figure 2: An unknown system identification model for adaptive
filtering of correlated noisy signals.

The adaptive total least squares problem is a minimization
problem of the form [10, 11]:

min
w̃
𝑛
∈R𝑁+1

𝐽 = min
w̃
𝑛
∈R𝑁+1

w̃𝑇
𝑛
R̃
𝑛
w̃
𝑛

w̃𝑇
𝑛
w̃
𝑛

. (9)

Note that an optimal solutionwopt of the TLS problem (9)
is an eigenvector corresponding to the smallest eigenvalue of
R̃
𝑛
. In practice SVD technique is used to solve TLS problems

since it offers lower sensitivity to the computational errors;
however, it is computationally expensive [5]. An alternate
choice to estimate eigenvector corresponding to smallest
eigenvalue is to use an adaptive algorithm [1, 2].

3. Derivation of Total LMS Algorithm for
Adaptive Filtering Problem

In adaptive least squares problem, conventional LMS algo-
rithm is a steepest descent method which uses an instanta-
neous cost function 𝐽 = 𝑒

2
(𝑛) for computation of gradient

vector [1]. Using a similar implementation in TLS problem,
the total LMS (TLMS) algorithm is obtained by having an
instantaneous estimate of the cost function (8) as 𝐽 = 𝜂

2
(𝑛).

The recursive update equation of TLMS algorithm is then
given as

w̃
𝑛+1

= w̃
𝑛
− 𝜇∇w̃

𝑛

𝐽, (10)

where 𝜇 is the stepsize parameter or convergence parameter.
Note that

∇w̃
𝑛

𝐽 =
𝜕

𝜕w̃
𝑛

(𝜂(𝑛)
2
)

= 2𝜂 (𝑛)
𝜕

𝜕w̃
𝑛

𝜂 (𝑛)

= 2𝜂 (𝑛)
𝜕

𝜕w̃
𝑛

(
w̃𝑇
𝑛
z̃
𝑛

√w̃𝑇
𝑛
w̃
𝑛

)

=
2𝜂 (𝑛)

w̃𝑇
𝑛
w̃
𝑛

{{

{{

{

z̃
𝑛
√w̃𝑇
𝑛
w̃
𝑛
− w̃𝑇
𝑛
z̃
𝑛

w̃
𝑛

√w̃𝑇
𝑛
w̃
𝑛

}}

}}

}

=
2𝜂 (𝑛)

(w̃𝑇
𝑛
w̃
𝑛
)
3/2

{z̃
𝑛
⋅ w̃𝑇
𝑛
w̃
𝑛
− w̃𝑇
𝑛
z̃
𝑛
⋅ w̃
𝑛
} .

(11)

Table 1: LMS-total (TLMS) algorithm for adaptive filtering.

Algorithm ×/÷ +/−

Initialization
w
𝑜
= 0 . . . . . .

w̃
𝑜
= [w𝑇
𝑜

− 1]
𝑇

. . . . . .

Update
for 𝑛 = 0, 1, 2, . . .

z̃
𝑛
= [ã𝑇
𝑛
: 𝑠 (𝑛)]

𝑇

. . . . . .

𝑒(𝑛) = w̃𝑇
𝑛
z̃
𝑛

𝑁 + 1 𝑁

normsq = w̃𝑇
𝑛
w̃
𝑛

𝑁 + 1 𝑁

w̃
𝑛+1

= w̃
𝑛
+

2𝜇 𝑒 (𝑛)

norm2
sq

{𝑒 (𝑛) ⋅ w̃
𝑛
− normsq ⋅ z̃𝑛} 3𝑁 + 7 2𝑁 + 2

w
𝑛+1

= −
w̃
𝑛+1

(1 : 𝑁)

w̃
𝑛+1

(𝑁 + 1)
𝑁 . . .

Total 6𝑁 + 9 4𝑁 + 2

Using 𝑒(𝑛) = z̃𝑇
𝑛
w̃
𝑛
= w̃𝑇
𝑛
z̃
𝑛
and ‖w̃

𝑛
‖ = √w̃𝑇

𝑛
w̃
𝑛
, then above

equation becomes

∇w̃
𝑛

𝐽 =
2

w̃𝑛


4
{
w̃𝑛



2
𝑒 (𝑛) ⋅ z̃

𝑛
− 𝑒(𝑛)

2
⋅ w̃
𝑛
} . (12)

Substituting (12) in (10), the updated equation of TLMS
algorithm becomes

w̃
𝑛+1

= w̃
𝑛
+

2𝑒 (𝑛) ⋅ 𝜇

w̃𝑛


4
{𝑒 (𝑛) ⋅ w̃

𝑛
−
w̃𝑛



2z̃
𝑛
} . (13)

Once w̃
𝑛+1

is computed using (13), the TLS solution update
w
𝑛+1

is obtained by the following formula:

w
𝑛+1

= −
w̃
𝑛+1

(1 : 𝑁)

w̃
𝑛+1

(𝑁 + 1)
. (14)

The detailed TLMS algorithm is summarized in Table 1.
A complexity measure of the algorithms shows that it is a
computationally linear algorithm, requiring a total of 6𝑁 +

9 multiplications/divisions per iteration. This computational
simplicity of adaptive TLMS algorithm makes it a better
choice than computationally expensive SVD based TLS algo-
rithm, which requires 6𝑁3 computations per iteration [5].

3.1. Convergence Analysis. In (13), inner product with z̃
𝑛

yields,

w̃𝑇
𝑛+1

z̃
𝑛
= (w̃

𝑛
+

2𝑒 (𝑛) ⋅ 𝜇

w̃𝑛


4
{𝑒 (𝑛) ⋅ w̃𝑛 −

w̃𝑛


2z̃
𝑛
})

𝑇

z̃
𝑛

= w̃𝑇
𝑛
z̃
𝑛
+

2𝑒 (𝑛) ⋅ 𝜇

w̃𝑛


4
{𝑒 (𝑛) ⋅ w̃𝑇

𝑛
z̃
𝑛
−
w̃𝑛



2z̃𝑇
𝑛
z̃
𝑛
}

= 𝑒 (𝑛) +
2𝑒 (𝑛) ⋅ 𝜇

w̃𝑛


4
{|𝑒 (𝑛)|

2
−
w̃𝑛



2z̃𝑛


2
}

= 𝑒 (𝑛) +
2𝑒 (𝑛) ⋅ 𝜇

w̃𝑛


2
{
𝜂 (𝑛)



2
−
z̃𝑛



2
} .

(15)
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Figure 3: Learning curves of total misalignment of TLMS algorithm.

Since 𝑒(𝑛) = w̃𝑇
𝑛
z̃
𝑛
, Cauchy-Schwarz inequality [12] gives

|𝑒 (𝑛)|
2
≤
w̃𝑛



2z̃𝑛


2
; (16)

that is,



𝑒 (𝑛)

w̃𝑛




2

≤
z̃𝑛



2
,

𝜂 (𝑛)


2
≤
z̃𝑛



2
,

𝜂 (𝑛)


2
−
z̃𝑛



2
≤ 0.

(17)

Let 𝛿
𝑛
= ‖z̃
𝑛
‖
2
− |𝜂(𝑛)|

2
≥ 0 then (15) becomes:

w̃𝑇
𝑛+1

z̃
𝑛
= 𝑒 (𝑛) +

2𝑒 (𝑛) ⋅ 𝜇

w̃𝑛


2
{−𝛿
𝑛
}

= {1 −
2𝜇𝛿
𝑛

w̃𝑛


2
}𝑒 (𝑛)

(18)

or,

w̃𝑇
𝑛+1

z̃
𝑛
= {1 −

2𝜇𝛿
𝑛

w̃𝑛


2
} w̃𝑇
𝑛
z̃
𝑛
. (19)
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Since z̃
𝑛

̸= 0,

w̃
𝑛+1

= {1 −
2𝜇𝛿
𝑛

w̃𝑛


2
} w̃
𝑛 (20)

which shows that {w̃
𝑛
} is a geometric progression. It would

converge to an optimal solution if


1 −
2𝜇𝛿
𝑛

w̃𝑛


2



< 1 (21)

or

0 <
𝜇

w̃𝑛


2
<

1

𝛿
𝑛

. (22)

This shows that the proposed algorithm is a variable stepsize
algorithm, with 𝜇 = 𝜇/‖w̃

𝑛
‖
2. An appropriate way to choose 𝜇

is to initialize the algorithm such that ‖w
𝑜
−wopt‖ is less than

2‖wopt‖ [13]. According to this result forw𝑜 = 0, ‖w̃
𝑜
‖ = 1 and

𝜇 = 𝜇, while 𝛿
𝑜
= ‖z̃
𝑛
‖
2
− 𝑠(𝑛) > 0.

4. Application of TLMS Algorithm in
System Identification

To examine the performance of proposed TLMS algorithm,
an unknown system identification model, shown in Figure 2,
is used.

Awhite Gaussian input signal of variance 𝜎2 = 1 is passed
through a coloring filter with frequency response [1]:

𝐻(𝑧) =
√1 − 𝛼2

1 − 𝛼𝑧−1
, (23)

where |𝛼| < 1, 𝛼 is a correlation parameter and controls the
eigenvalue spread of input signals. 𝛼 = 0 corresponds to the

case when eigenvalue spread of input signals is close to 1, and
eigenvalue spread increases with an increase in the value of 𝛼.

A white Gaussian noise of SNR = 30 dB is added in the
input signal 𝑢(𝑛) to get noisy signal �̃�(𝑛), and an output signal
𝑠(𝑛) is obtained by corrupting the output signal 𝑠(𝑛) with an
additive white Gaussian noise of SNR 30 dB. Proposed TLMS
algorithm is comparedwith LMS andNLMS algorithms of [1]
to get an FIR vector for a filter of length𝑁 = 10. Least squares
misalignment ‖w

𝑛
− wopt‖ is compared with the total least

squares misalignment ‖w
𝑛
− wopt‖/√w̃𝑇

𝑛
w̃
𝑛
, and simulations

results are recorded for 2000 iterations with an ensemble
average of 1000 independent runs.

4.1. Convergence Behavior Corresponding to Stepsize Param-
eter 𝜇. Although TLMS algorithm converges for all values
of 𝜇, satisfying (22), but steady state convergence TLMS
algorithm is observed when stepsize parameter 𝜇 is a power
of 2. In Figures 3(b)–3(d), four learning curves of total
misalignment of TLMS algorithm are shown, corresponding
to 𝜇 = 0.5, 0.25, 0.125, and 0.0625, and it is observed that
robustness increases uniformly with an increase in the value
of𝜇. On the other hand if𝜇 is chosen randomly, then a change
in the convergence behavior is random, though Figure 3(a)
shows that algorithm still converges.

4.2. Convergence Behavior Corresponding to Correlation
Parameter 𝛼. To check effect of changes in correlation
parameter 𝛼 on the steady state convergence behavior
of TLMS algorithm, different simulations are presented
in Figure 3, each showing four learning curves of total
misalignment of TLMS algorithm corresponding to 𝜇 =

0.5, 0.25, 0.125, and 0.0625. In the first two simulations
𝛼 = 0.3 in Figures 3(a) and 3(b), it is 0.6 in Figure 3(c),
and 0.9 in Figure 3(d). It is clear from the results of all
these simulation curves that increase in correlation of data
signals has not affected the steady state performance of the
algorithm. Although the convergence speed seems to slow
down, but all the curves converge to optimal solution.

4.3. Comparison. Figure 4 shows the comparison of mis-
alignment of three algorithms, that is, LMS, NLMS, and
TLMS algorithms. The first two compute a least squares
solution of adaptive total least squares problem, while the
third one computes TLS solution of adaptive total least
squares problem. Taking 𝛼 = 0.3, stepsize parameter for LMS
algorithm is chosen as 0.015, for NLMS algorithm as 0.3, and
for TLMS algorithm, it is 0.25. The results in this simulation
show that the convergence of TLMS algorithm increases with
an increase in the iteration, and it presents a better solution
of adaptive TLS problem.

5. Conclusion

In this paper, an efficient TLMS algorithm is presented for
the total least squares solution of adaptive filtering problem.
The proposed algorithm is derived by using cost function of
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weighted instantaneous error signals and an efficient compu-
tation of misalignment in terms of mean squares deviation.
TLMS algorithm has better ability to tackle with perturba-
tions of both input and output signals, because it is chiefly
derived for the purpose. Since in real life problems, both
input and output signals are contaminated by noise, therefore
TLMS algorithmhas great applicability. Convergence analysis
shows that the proposed algorithm has global convergence,
provided that the stepsize parameter is chosen appropriately.
Furthermore, it is computationally simple and requires only
𝑂(𝑁) complexity, while other algorithms for TLS problems
either require higher complexity or are sensitive to correlation
properties of data signals.
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