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(Representing the Rector of the Universidade da Madeira)

Members of the Committee (in alphabetical order):

Doctor Andreas Herzig
Directeur de Recherches CNRS, IRIT, Université Paul Sabatier,
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Abstract

The main goal underlying the research area of belief change consists in finding ap-
propriate ways of modelling the belief state of a rational agent and, additionally,
the changes which occur in such a state when the agent receives new information.
The most important model of belief change is the so-called AGM model, proposed
in [AGM85]. In this model, the belief state of an agent is represented by a belief
set—a deductively closed set of sentences. A change consists in adding or removing
a specific sentence from a belief set to obtain a new belief set.
Two of the main shortcomings pointed out to the AGM model of belief change are
the use of belief sets to represent belief states and the (unrealistic) acceptance of
any new piece of information. In this thesis we address both those issues.
We present axiomatic characterizations for ensconcement-based contractions and for
brutal contractions, two kinds of belief bases contraction operators introduced in
[Wil94b] that are based on the concept of ensconcement, which is a generalization
to the case of belief bases of the concept of epistemic entrenchment introduced in
[Gär88, GM88]. We compare the axiomatic characterizations of these operators with
those of other well-known base contraction operators and study the interrelations
among the former and the contraction operators based on epistemic entrenchments.
We study non-prioritized base change operators, namely shielded base contractions
and credibility-limited base revisions. We propose several different classes of shielded
base contractions and obtain axiomatic characterizations for each one of them. Addi-
tionally we thoroughly investigate the interrelations (in the sense of inclusion) among
all those classes. Afterwards we perform a similar study for credibility-limited base
revisions. Finally, we study the interrelation between the different proposed classes
of operators of credibility-limited base revision and of shielded contraction by means
of the consistency-preserving Levi identity and the Harper identity.

Keywords:

Belief Change; Belief Bases; Ensconcement; Ensconcement-based Contractions; Shielded
Contraction; Credibility-limited Revision.
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Resumo

O objetivo principal da área de revisão de crenças é encontrar modelos que permi-
tam modelar o estado de crenças de um agente racional, bem como as mudanças
que ocorrem nesse estado de crenças quando o agente recebe novas informações. O
modelo mais influente desta área é o chamado modelo AGM proposto em [AGM85].
Neste modelo, o estado de crenças de um agente é representado por um conjunto
de crenças—conjunto de fórmulas dedutivamente fechado. Uma mudança consiste
em adicionar ou remover uma fórmula espećıfica de um conjunto de crenças para
obter um novo conjunto de crenças. Dois dos principais problemas apontados ao
modelo AGM são o uso de conjuntos de crenças para representar estados de crença
e a aceitação (irrealista) de qualquer nova informação. Nesta tese abordamos ambas
as questões.
Apresentamos caracterizações axiomáticas para contrações baseadas em ensconce-
ments e para contrações brutais, dois tipos de operadores de contração em bases de
crenças introduzidos em [Wil94b] e que se baseiam no conceito de ensconcement—
generalização em bases de crenças, do conceito de epistemic entrenchment intro-
duzido em [Gär88, GM88]. Comparamos as caracterizações axiomáticas destes op-
eradores com as de outros operadores de contração em bases bem conhecidos e
estudamos as inter-relações entre os primeiros e os operadores de contração basea-
dos em epistemic entrenchments.
Estudamos operadores de mudanças de crenças não-priorizados em bases, nomeada-
mente contrações protegidas e revisões com limite de credibilidade. Propomos várias
classes de operadores de contrações protegidas e obtemos teoremas de representação
para cada uma dessas classes. Investigamos, igualmente, as inter-relações (no sen-
tido de inclusão) entre todas essas classes. Posteriormente, realizamos um estudo
semelhante para revisões com limite de credibilidade. Finalmente, estudamos a
inter-relação entre as diferentes classes propostas de operadores (definidos em bases
de crenças) de revisão com limite de credibilidade e de contrações protegidas através
da identidade de Levi conservadora-da-consistência e da identidade de Harper.

Palavras-chave:

Mudanças de Crenças; Bases de Crenças; Ensconcement; Contrações Baseadas em
Ensconcements; Contração Protegida; Revisão com Limite de Credibilidade.
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Chapter 1

Introduction

“The world around us changes all the time, and in order
to cope with it we must constantly change our beliefs:

acquire new ones and revise or give up old ones.”
Hansson in [Han99b]

The research area that studies the dynamics of knowledge is known as belief
change (also known as belief revision or belief dynamics). A rational agent is some-
times forced to adapt his/her beliefs when confronted with new information. This is
the most general formulation of the main problem of belief change. This is a prob-
lem with applications to several areas. In the following we provide some examples
of the situations where belief revision occurs:

Daily life: One day I woke up and heard in the weather forecast that it would
rain on that day. Based on this information I decided that I should take my umbrella
when I left home, since I was going out for a long time. As I was getting ready to
leave home, I looked at the sky and I noticed that it was clear. Should I take my
umbrella with me or should I give up my belief that it would rain on that day and
leave my umbrella at home?

Robotics: [Was00] A mobile robot has a map of the environment that surrounds
it. On that map, there is nothing in front of it. So it can move. Suppose now that
its sensors detect a large object in front of it. How should the robot react? Should
it doubt his sensors and continue moving straight ahead? Or, should it belief in its
sensor and doubt the map?

Databases: [GR95] Suppose that a database contains the following informa-
tion:
All European swans are white.
The bird caught in the trap is a swan.
The bird caught in the trap comes from Sweden.
Sweden is part of Europe.
From this set of propositions it can be deduced that the bird caught in the trap is
white.
Now suppose that, the bird caught is black. If we simply add the new information to

1



2 CHAPTER 1. INTRODUCTION

the database it will become inconsistent. If it is intended that the database remains
consistent how should it behave? Should it keep the old data, ignoring the new
information? Should it add the new information to the database, removing some of
the beliefs contained in the original database? In this case should all the beliefs be
retracted, or just some of then? Which ones?

The main goal of belief revision is to model how a rational agent updates his/her
set of beliefs/knowledge when confronted with new information. When facing new
information an agent can change his/her set of beliefs: he/she can acquire some
new ones and revise or give up some old ones. The main objective of most of the
works in this area is to investigate and model how these changes occur. To do
so operators of change are defined. Two approaches are usually followed: On the
one hand these operators can be characterized by identifying properties—commonly
designated by postulates—that they are naturally expected to satisfy. On the other
hand, explicit constructive definitions can be presented for these operators. These
two approaches can be considered to be complementary of each other. In fact, the
studies of belief change tend to conciliate these two approaches by providing a con-
structive method for defining operators and, at the same time, a set of postulates
that exactly characterizes the class of such operators. The results of the univocal
identification of a given class of change operators with a set of postulates are called
representations theorems. Representation theorems are also called axiomatic char-
acterizations, since they characterize an operator in terms of axioms (or postulates).

One of the main contributions to the study of belief change is the so-called AGM
model for belief change—named after the initial of its authors: Alchourrón, Gärden-
fors and Makinson. This model was proposed in 1985 in [AGM85] and gained the
status of standard model of belief change. Since then, this subject has been exten-
sively studied and has developed rapidly and in many different directions influenced
by different areas, in particular by computer science and philosophy.

As for potential applications for belief change, Hansson in [Han99b] stated that
“There is no lack of potential applications for belief dynamics”. In that reference
Hansson mentioned the following examples:

� It may be useful in the development of models of learning and other mental
processes;

� It may be useful in the development of economic models by providing a formal
representation of the changing beliefs of economic agents;

� It may help legal theorists in the development of models of changes in legal
systems;

� It may provide tools that allow to revise databases in a rational and efficient
way.



1.1. ORGANIZATION OF THE THESIS 3

1.1 Organization of the thesis

In the next chapter, we briefly present the main concepts of the Epistemological
Theories and the rational criteria that govern the epistemic dynamics.

In Chapter 3 we present the AGM model for belief change. We start this chap-
ter by recalling the postulates that characterize the AGM operators of belief change,
namely expansions, contractions and revisions. Afterwards, we present some explicit
methods for the construction of contraction and revision operators on belief sets (by
a single sentence) as well as axiomatic characterizations for each one of the classes of
operators obtained through those methods. At the end of this chapter we present the
logical relationships between the classes of contraction operators mentioned along
this chapter.

In Chapter 4 we discuss some criticisms to the AGM model that appear in
the belief change literature as well as some of the proposals developed to overcome
some of the identified problems of this model. In this chapter we present some ex-
amples where the use of the recovery postulate seems implausible, discuss the use
of belief bases instead of belief sets to represent an agent’s belief state, briefly men-
tion some models for iterated revision and multiple contraction and mention several
models of non-prioritized belief revision and contraction operators (i.e. operators
that do not satisfy the success postulate). Regarding non-prioritized belief change
operators we give special emphasis to the credibility-limited revision and shielded
contraction. Credibility-limited revision was introduced in [HFCF01] and is based
on the assumption that some inputs are accepted, others not. Those that are po-
tentially accepted constitute the set C of credible sentences. If α is credible, then
α is accepted in the revision process, otherwise no change is made to the belief set.
Shielded contraction was defined in [FH01] and is based on the assumption that not
every (non-tautological) belief is removed when contracting a given belief set by it.
Those beliefs that can be removed when a contraction is perform constitute the set
R of retractable sentences. If α is retractable, then α is always removed when con-
tracting a belief set by it, otherwise no change is made to the belief set. We extend
the work presented in [HFCF01, FH01], by axiomatically characterizing another
classes of credibility-limited operators and by establishing the interrelation between
different classes of credibility-limited revision operators and of shielded contraction
operators by means of the consistency-preserving Levi identity (an adaptation of the
Levi identity to the non-prioritized belief change context) and the Harper identity.

Chapter 5 is dedicated to belief base change. In this chapter we recall some
construction methods for contraction and revision operators in the belief base con-
text. For contraction we recall the following constructive methods: partial meet
contraction, kernel and smooth kernel contraction, basic AGM-generated base con-
traction, as well as the axiomatic characterization for each one of these operators.
We also present two operators proposed by Williams in [Wil94b], namely brutal and
ensconcement-based contractions. These two operators are based on the notion of
ensconcement that can be seen as an adaptation to the belief base context of the
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notion of epistemic entrenchment. In this chapter we also recall the definition of
partial meet and kernel revision functions as well as the axiomatic characterization
of each one of these revision functions. We also define and axiomatically char-
acterize two new kinds of base revision functions, namely the smooth kernel base
revisions and the basic AGM-generated base revisions. At the end of this chapter we
briefly recall some operators of non-prioritized belief change on belief bases, namely:
semi-revision (and consolidation), credibility-limited base revision and shielded base
contraction.

The main contributions of the present thesis are exposed in Chapters 6 to 8.

In Chapter 6 we present representation theorems for the brutal contractions
and the ensconcement-based contractions. We compare the axiomatic characteriza-
tion for these two contraction operators in the sense of identifying which postulates
of each one of the mentioned axiomatic characterizations are (and which are not)
satisfied by the other kind of operator. We also compare the axiomatic character-
izations of brutal and ensconcement-based contractions with the axiomatic charac-
terizations of other base contractions operators, namely with basic AGM-generated
base contractions, kernel contractions and partial meet contractions. We present
some results that clarify the interrelation among epistemic entrenchment-based con-
tractions and ensconcement-based contractions, and the interrelation among sever
withdrawals and brutal contractions.

In Chapter 7 we start by thoroughly studying the interrelations among the pos-
tulates satisfied by a shielded contraction and the postulates and properties satisfied,
respectively, by the (standard) contraction and by the set of retractable sentences
that induce it. After that, we obtain representation theorems for several classes of
shielded base contractions induced by some well-known kinds of base contractions
and by sets of retractable sentences satisfying different sets of properties. Addi-
tionally, we thoroughly investigate the interrelations among all those classes. More
precisely, we analyse whether each of those classes is or is not (strictly) contained
in each of the remaining ones.

In Chapter 8, we conduct a study similar to the one made in Chapter 7, con-
cerning credibility-limited base revision operators. Thus we start by studying the
interrelations among the postulates satisfied by a credibility-limited revision and the
postulates and properties satisfied, respectively, by the (standard) revision and by
the set of credible sentences that induce it. Afterwards, we obtain axiomatic charac-
terizations for classes of credibility-limited base revisions induced by different base
revision functions and by sets of credible sentences satisfying different sets of prop-
erties. Additionally, we thoroughly investigate the interrelations among all those
classes. We finish this chapter by establishing the interrelation between different
classes of credibility-limited base revision operators and of shielded base contrac-
tion operators by means of the consistency-preserving Levi identity and the Harper
identity.
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In Chapter 9 we present a brief overview of the main contributions of this thesis
and point toward topics for future research.

In the Appendix we provide the proofs for the original results presented through-
out this thesis.

Some of the original results presented in this thesis have already been pub-
lished or submitted for publication. Parts of Chapter 6 were published as [GFR16],
[GFR17b] and [FGR17]. Most of Chapter 7 is included in [GFR17a].

1.2 Formal preliminaries

We will assume a language L that is closed under truth-functional connectives:
negation (¬), conjunction (∧), disjunction (∨), implication (→) and equivalence (↔).
By abuse of notation we shall use L to denote the language and the set of the well
formed sentences that can be expressed in it. We say that a language L is finite if
it is built from a finite set of propositional symbols (and the Boolean connectives¬,∧,∨,→ and↔). ⊥ denotes an arbitrary contradiction and ⊺ an arbitrary tautology.
The letters α,αi, β, . . . will be used to denote sentences of L. Lowercase Latin letters
such as p, pi, q, qi, . . . will be used to denote atomic sentences of L. A,A′,B, . . .
denote sets of sentences of L. Cn denotes a consequence operation that satisfies the
standard Tarskian properties [Tar56]:

� inclusion: A ⊆ Cn(A).
� monotony: if A ⊆ B, then Cn(A) ⊆ Cn(B).
� iteration: Cn(A) = Cn(Cn(A)).

We will also assume that Cn satisfies:

� Supraclassicality: if α can be deduced from A by classical truth-functional
logic, then α ∈ Cn(A).

� Compactness: if α ∈ Cn(A), then α ∈ Cn(A′) for some finite subset A′ of A.

� Deduction: if β ∈ Cn(A ∪ {α}), then (α → β) ∈ Cn(A).
The following properties of Cn follow from the ones above:

� Modus ponens: if α → β ∈ Cn(A) and α ∈ Cn(A), then β ∈ Cn(A).
� Contraposition: if α → β ∈ Cn(A), then ¬β → ¬α ∈ Cn(A).

We will sometimes use A ⊢ α as an alternative notation for α ∈ Cn(A), ⊢ α for
α ∈ Cn(∅), α ⊢ β for {α} ⊢ β and Cn(α) for Cn({α}). Given a set of sentences A
we say that A is logically closed or closed under logical consequence whenever A =
Cn(A). Such a set is called a belief set or theory. We will use bold uppercase letters
such as K,H, . . . to denote belief sets. We will use K⊥ to denote the inconsistent
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belief set (containing all the sentences of L). We shall denote the set of all theories
of L by TL.
We say that a set X ⊆ L is closed under double negation or that X satisfies closure
under double negation if it holds that α ∈X if and only if ¬¬α ∈X.
Given A ⊆ L, a total relation on A is a binary relation ⪯ such that for all α,β ∈ A
it holds that either α ⪯ β or β ⪯ α. A total pre-order ≤ is a binary relation that is
reflexive, transitive and total. Given a binary relation ≤ on a set A and S ⊆ A, we
denote by ≤ ∣S the binary relation on S such that for all α,β ∈ S, α ≤ ∣Sβ if and only
if α ≤ β. Given a binary relation ≤ on a set A we shall write α < β to denote α ≤ β
and β /≤ α, and α =≤ β to denote α ≤ β and β ≤ α. Given a set A we will denote the
power set of A by P(A).



Chapter 2

Belief Change

“There is nothing permanent except change.”
Heraclitus

In this chapter, which is essentially based on [Gär88], we present a brief intro-
duction to the main epistemic factors1 that form the core of the epistemological
theories. One of the main goals of an epistemological theory is to provide a concep-
tual framework for investigating problems about changes of knowledge and beliefs.
Such a theory must provide a representation of the epistemic elements (namely epis-
temic states, attitudes, inputs and changes) and the rational criteria that govern the
epistemic dynamics.

2.1 Epistemic states, attitudes, inputs and changes

Epistemic states or belief states are representations of actual or possible cognitive
states of an agent in a certain moment. There are several ways of modelling the
epistemic state of an agent. Among them we mention the following ones:

(a) Sentential Models: In this kind of models an epistemic state is represented
as a set of sentences of a given language. We can impose that this set of
sentence is logically closed or not (necessarily logically closed). In the first
case, the epistemic state is modelled by belief sets or theories and in the second
by belief bases. In these models the beliefs of an agent are represented by the
sentences of the language. In general, these sets are required to be consistent,
since a rational agent is not expected to have contradictory beliefs.

(b) Bayesian Models: In these models an epistemic state is represented by a
probabilistic measure defined over some object language or over some space of
events.

(c) Possible Worlds Models: In these models an epistemic state is represented
by a set of possible worlds. A possible world is a maximal consistent sub-
set of the language under consideration. Sets of possible worlds are called

1Epistemic means related to knowledge.

7
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propositions. As stated by Hansson: “A belief state can be represented by
the propositions (set of possible worlds) that contains exactly those possible
worlds that are compatible with the agents’ beliefs. In this way, propositions
can represent belief states, just as belief sets” [Han99b].

The epistemic attitudes describe the state of several pieces of belief in an epistemic
state. In formal systems, it is generally preferable to consider a small number of
epistemic attitudes. This is due to the fact that, although the existence of more
epistemic attitudes increases the expressiveness of the systems, it also increases
its complexity making its theoretical study more difficult or even impossible. The
epistemic attitudes depend on the model chosen to represent the epistemic state.
For instance, in a probabilistic model, an agent may accept or reject a belief with a
certain degree of probability. On the other hand, in a sentential model, where the
epistemic states are represented as belief sets there are three epistemic attitudes to
be considered regarding a given belief, represented by a sentence α, namely:

� Acceptance: When α belongs to the set representing the belief state;

� Rejection: When ¬α belongs to the set representing the belief state;

� Indetermination: When neither α nor ¬α belong to the set representing the
belief state.

Epistemic inputs are pieces of information that may produce changes in the epistemic
state. These inputs may trigger changes in the beliefs transforming the original
epistemic state of an agent into a new epistemic state.

Original
epistemic state

New
epistemic state

Epistemic
input

Figure 2.1: Epistemic change triggered by an epistemic input.

An epistemic input can lead to different kinds of epistemic change. If we consider
the case where belief states are modelled by logically closed set of sentences, and the
three epistemic attitudes mentioned above (acceptance, rejection and indetermina-
tion) that can be considered in such sentential model, there are six possible changes
of epistemic attitudes towards a sentence, namely:

(a) From indetermined to accepted;

(b) From indetermined to reject;

(c) From accepted to rejected;

(d) From rejected to accepted;
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(e) From accepted to indetermined;

(f) From reject to indetermined.

It is convenient to notice that, in general, a change of epistemic attitude to-
wards a given sentence also implies a change in the epistemic attitude towards other
sentences. To clarify this consider an epistemic input that causes a change in the
epistemic attitude towards a sentence α, that is neither a tautology nor a contra-
diction, from accepted to rejected. Thus, assuming that the original belief set is
consistent, we have that α belongs to that belief set but ¬α does not. On the other
hand the new belief set contains ¬α but not α (assuming that we wish to preserve
consistency). Hence while the epistemic attitude towards α changed from accepted
to rejected, the opposite change occurred in the epistemic attitude towards ¬α.

These six possible changes of epistemic attitudes towards a sentence can be
identified with three types of belief change (operations), namely:

Expansion: An expansion occurs when new information is simply added
to the set of the beliefs of an agent. Changes of the kinds (a) and (b) are
expansions.

Revision: A revision occurs when new information is added to the set of the
beliefs of an agent in a consistent matter. Changes of the kinds (c) and (d)
are revisions.

Contraction: A contraction occurs when information is removed from the
set of beliefs of an agent. Changes of the kinds (e) and (f) are contractions.

Figure 2.2 identifies the changes of epistemic attitudes towards a sentence by
means of a belief change operator.

Undetermined

Accepted Rejected

E
xp
an
si
on

C
on
tr
ac
ti
on

C
ontraction

E
xpansion

Revision

Figure 2.2: Schematic representation of belief change operations.

2.2 Criteria of rationality

The rationality criteria or criteria of rationality are basic principles which stand on
the metalevel of an epistemological theory and that govern the other factors of the
theory. Next we present a list of some of the most usual criteria of rationality (see
[Dal88, Gär88, GR95]):
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Principle of categorical matching or Adequacy of representation:
After a change the new epistemic state should have the same type of repre-
sentation as the previous one.

Irrelevance of syntax: The outcome of a change should not depend on the
syntax/representation of either the previous beliefs or the new information
that triggers that change.

Primacy (of the new information): The new information should always
be accepted.

Consistency: If possible, the new epistemic state should be consistent.

Logical omniscience: The logical consequences of the beliefs that are ac-
cepted in a epistemic state should also be accepted by it.

Minimal change: The new epistemic state should retain as much as possible
of the previous state.

Fairness: If there are several (valid) epistemic states that can be the outcome
of a change, then none of them should be arbitrarily chosen.

Preference: Beliefs that are considered more important or entrenched should
be kept in favour of less important ones.

It is important to notice that not all belief change process should obey the
principles listed above. In fact, not all of the above criteria are desirable at all
times and some of these principles contradict others in certain cases. However it is
important that any given epistemological theory provides a clear indication of the
order of priorities among the rational criteria that are assumed, in that context, to
rule the dynamics of epistemic change.

2.3 Summary

In this chapter we presented the notions of epistemic state, epistemic attitude, epis-
temic input and epistemic change. We focused our attention in the sentential model,
a model where epistemic states (a representation of actual or possible cognitive state
of an agent in a certain moment) are represented as a set of sentences of a given
language. We gave special emphasis to the analyses of the case where this set of
sentences is a subset of L that is closed under logical consequences (a belief set). In
this model there are three epistemic attitudes regarding a belief (represented by a
sentence), namely acceptance, rejection and indetermination depending on whether
the agent believes in a sentence, on its negation or in none of them. An epistemic
input (new information) can provoke changes in the agents attitude toward a given
belief and consequently on its set of beliefs. We identified three types of belief change
operations: expansion (when new information is added to the set of beliefs of an
agent), contraction (when beliefs are removed from the set of beliefs of an agent)
and revision (where new information is added to the set of beliefs of an agent, but
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some beliefs may be removed in order to maintain consistence). We also presented
some criteria of rationality namely: principle of categorical matching, irrelevance of
syntax, primacy (of the new information), consistency, logical omniscience, minimal
change, fairness and preference.





Chapter 3

The AGM Model of Theory
Change

“The models and results of the AGM paradigm are so neat,
that one almost feels reluctant to change anything at all.”

Peppas in [Pep08]

One of the main contributions to the study of belief change is the so-called
AGM model for belief change proposed by Alchourrón, Gärdenfors and Makin-
son. It was developed in a number of papers written in the 1970s and 1980s
([Gär78, Gär81, Gär82, Gär84, AM81, AM82, AM85, AGM85]). In this chapter
we are going to present the AGM model for belief change. This model was pro-
posed in [AGM85] and gained the status of standard model of belief change. As
mentioned by Wassermann: “The original AGM framework is a theory about how
highly idealized rational agents should revise their beliefs when receiving new infor-
mation. The agents are idealized in that they have unlimited memory and ability
of inference” [Was00]. In this framework, beliefs are represented by sentences of a
propositional language, belief sets are used to model epistemic states, and epistemic
inputs are represented by single sentences. There is only one inconsistent belief
set, that we will represent by K⊥ and coincides with L, the set of all formulae of
the language. The AGM model considers three kinds of belief change operators,
namely expansion, contraction and revision. In this chapter we will present a list
of postulates that characterize each one of these operators. Of the three AGM op-
erators of change, expansion is the only one that can be defined in a unique way.
For the contraction and revision operators we will present some explicit methods
for their construction, as well as the axiomatic characterizations for each one of the
classes of operators obtained through those methods. At the end of this chapter we
will present the interrelationships between the different classes of contraction oper-
ators obtained through the constructive methods presented throughout this chapter.

In the AGM model three kinds of belief change operators are considered:

Expansion: An expansion occurs when new information is simply added to
the set of the beliefs of an agent. As a result of an expansion, the belief set

13
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of an agent can become inconsistent. The outcome of an expansion of a belief
set K by a sentence α will be denoted by K + α.

Contraction: A contraction occurs when information is removed from the
set of beliefs of an agent. The result of a contraction of a belief set K by a
sentence α will be denoted by K ÷ α.

Revision: A revision occurs when new information is added to the set of the
beliefs of an agent. When performing a revision some beliefs can be removed
in order to ensure consistency. Contrary to expansion, revision preserves con-
sistency (unless the new information is itself inconsistent). The result of a
revision of a belief set K by a sentence α will be denoted by K⋆α.

In the AGM framework a belief change operator is essentially a function taking
a belief set K and a sentence α to a new belief set. Throughout this thesis, when-
ever considering the context of belief sets, we shall use the expression “contraction
function” (or simply “contraction”) to refer to a function

÷: TL ×L→ TL(K, α)↦K ÷ α
Given a fixed belief set K, we shall use the expression “contraction function on

K” (or simply “contraction on K”) to refer to a function

÷: L→ TL
α ↦K ÷ α

Analogous notation and terminology will be used for expansions and revisions.

3.1 Postulates

In this section we will present each one of the AGM belief change functions through
a set of postulates that determine the behaviour of each one of these functions,
establishing conditions or constrains that they must satisfy. We will also present
two identities, the Levi and Harper identities, that allows us to define revisions in
terms of contractions and vice-versa.

3.1.1 Expansion

Expansion is the simplest of the AGM operators. It simply adds new information to
the belief set. An AGM expansion operator satisfies the following set of postulates:

(+1) K + α = Cn(K + α) (i.e., K + α is a belief set). (Closure)
(+2) α ∈ K + α. (Success)
(+3) K ⊆ K + α. (Inclusion)
(+4) If α ∈ K, then K + α = K. (Vacuity)
(+5) If K ⊆ K′, then K + α ⊆ K′ + α. (Monotony)
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(+6) For all beliefs sets K and all sentences α ∈ L, K + α is the smallest belief set
that satisfies (+1) to (+5). (Minimality)

(+1) states that the outcome of an expansion is a belief set. This postulate is
an expression of the principle of categorical matching. (+2) states that a sentence is
always incorporated in the outcome of an expansion by it. (+2) is a formalization
of the primacy (of the new information) criteria. (+3) says that the expanded belief
set contains all the sentences of the original belief set, and thus that no information
is removed when performing an expansion. (+4) says that if we expand a belief set
by a sentence that already belongs to it, then the expansion should leave the original
set unchanged.1 (+5) states that if a belief set contains at least the same sentences
as another, then its expansion by a given sentence should contain at least the same
sentences of the expansion of the other belief set by the same sentence. (+6) insures
that the outcome of an expansion does not contain more sentences than those that
are needed to fulfill postulates (+1) to (+5). The postulates (+3), (+4) and (+6)
can be considered as expressions of minimal change.

The following observation illustrates that, on a given a belief set, postulates (+1)
to (+6) define an unique operator.

Observation 3.1.1 [Gär88] An operator + on a belief set K satisfies postulates(+1) to (+6) if and only if (for all α ∈ L):

K + α = Cn(K ∪ {α}).
Based in this result we can define an AGM expansion as follows:

Definition 3.1.2 [Lev77] Let K be a belief set and α be a sentence. K + α, the
expansion of K by α, is defined as follows:

K + α = Cn(K ∪ {α}).
From the exposed we can conclude that the expansion of a belief set by a sentence

is a two steps procedure: first that sentence is added to the belief set and, afterwards,
the resulting set is closed by logical consequence.

3.1.2 Contraction

Contrary to expansions, the operators of contraction and revision are not defined
in an unique way, but are constrained by a set of postulates. As stated by Meyer:
“The idea is that these are the rational choices to be made” [Mey99].

A contraction of a belief set occurs when some beliefs are removed from it (and no
new beliefs are added to that set). The following postulates, which were presented
in [AGM85] (following [Gär78, Gär82]), are commonly known as basic Gärdenfors

1Note that the expansion of a belief set K by a sentence α that is not in K produces other
changes to the belief set other than the simple addition of α. In order to satisfy (+1) all the
consequences of K + α, that are not in K must be added too.
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postulates for contraction or basic AGM postulates for contraction:

(÷1) K ÷ α = Cn(K ÷ α) (i.e. K ÷ α is a belief set). (Closure)
(÷2) K ÷ α ⊆ K. (Inclusion)
(÷3) If α /∈ K, then K ⊆ K ÷ α. (Vacuity)
(÷4) If /⊢ α, then α /∈ K ÷ α. (Success)
(÷5) K ⊆ (K ÷ α) + α. (Recovery)
(÷6) If ⊢ α↔ β, then K ÷ α = K ÷ β. (Extensionality)

(÷1) assures that the outcome of a contraction is always a belief set. (÷1) is
a formalization of the principle of categorical matching. (÷2) states that no new
sentences are added to the original set as a result of a contraction. (÷3) ensures
that nothing is removed when contracting a belief set by a sentence that is not an
element of that belief set. (÷4), also known as success, states that if a sentence is
not a tautology, then it is not an element of the outcome of the contraction of the
belief set by it. (÷6) states that the contraction of a belief set by logical equivalent
sentences produces the same output. (÷6) is a formalization of the irrelevance of
syntax criteria. (÷5), also known as recovery, states that if the result of contracting
a belief set by a certain sentence is (subsequently) expanded by that same sentence
then all the initial sentences are recovered. Recovery is an expression of the principle
of minimal change. This is one of the most controversial postulates and its desir-
ability is not consensual, since there are examples of contractions where recovery
seems implausible (see Section 4.1).

The operators that satisfy postulates (÷1) to (÷6) are known as basic AGM
contractions.

Definition 3.1.3 An operator ÷ for a belief set K is a basic AGM contraction if
and only if it satisfies postulates (÷1) to (÷6).

Next we present an example to illustrate the possible outcomes of a contraction
by a basic AGM contraction function. This example and the diagram that follows
it is adapted from [Rib10, Example 3.2, Figure 3.1].

Example 3.1.4 Consider a language L that is built from the finite set of propo-
sitional symbols {p, q} and the boolean connectives ¬,∧,∨,→ and ↔. Let K =
Cn(¬p ∧ ¬q). Assume that we wish to perform a basic AGM contraction in or-
der to contract K by ¬p.
In Figure 3.1 we represent all the possible belief sets of L. Each node of the diagram
represents a belief set and the arrows between nodes represent that the set at the
beginning of the arrow contains the set that the arrow links it to.

Let ÷ be a basic AGM contraction. Postulate (÷1) ensures that K÷¬p is a belief
set. Thus it should be one of the belief sets presented in the diagram. (÷4) assures
that K ÷ ¬p does not contain Cn(¬p). Thus K ÷ ¬p cannot be Cn(¬p),Cn(¬p ∧
q),Cn(¬p ∧ ¬q) or L. On the other hand (÷2) assures that K ÷ ¬p ⊆ K. This nar-
rows the possible outcomes of K ÷ ¬p to Cn(p ↔ q),Cn(¬q),Cn(¬p ∨ q),Cn(¬p ∨¬q),Cn(p ∨ ¬q) and Cn(∅). (÷5) ensures that K ÷ ¬p ∪ {¬p} ⊢ ¬p ∧ ¬q. Hence, by
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L

Cn(¬p ∧ q) Cn(¬p ∧ ¬q) Cn(p ∧ q) Cn(p ∧ ¬q)

Cn(¬p) Cn(q) Cn(p ↔ q) Cn(¬(p↔ q)) Cn(¬q) Cn(p)

Cn(¬p ∨ q) Cn(p ∨ q) Cn(¬p ∨ ¬q) Cn(p ∨ ¬q)

Cn(∅)

Figure 3.1: Diagram of Example 3.1.4.

deduction it must be the case that K ÷ ¬p ⊢ ¬p → (¬p ∧ ¬q). I.e., K ÷ ¬p ⊢ ¬q ∨ p.
Therefore K ÷ ¬p must be one of the following: Cn(p↔ q),Cn(¬q) or Cn(p ∨ ¬q).

Due to the problematic character of the recovery postulate, Makinson proposed
a wider class of contraction operators, that he designated by withdrawals. Makinson
defined a withdrawal as an operator that satisfies the basic AGM postulates for
contraction with the exception of recovery.

Definition 3.1.5 [Mak87] An operator ÷ for a belief set K is a withdrawal if and
only if it satisfies postulates (÷1) to (÷4) and (÷6).

In addition to the six basic AGM postulates for contraction, Alchourrón, Gärden-
fors and Makinson presented in [AGM85] the following postulates for contraction
by a conjunction:

(÷7) (K ÷ α) ∩ (K ÷ β) ⊆ K ÷ (α ∧ β). (Conjunctive overlap)
(÷8) K ÷ (α ∧ β) ⊆ K ÷ α whenever α /∈ K ÷ (α ∧ β). (Conjunctive inclusion)

These are known as the supplementary AGM postulates. (÷7) states that all the
sentences that are in K÷α and in K÷β must be in K÷(α ∧ β). (÷8) ensures that if
α is removed in the process of contraction a belief set by α∧β, then everything that
is removed when contracting that belief set by α is also removed when contracting
it by α ∧ β.

Definition 3.1.6 An operator ÷ for a belief set K is an AGM contraction if and
only if it satisfies postulates (÷1) to (÷8).

The following postulate presented in [AGM85], known as ventilation or conjunc-
tive factoring, is another postulate for contraction by a conjunction. It states that
the outcome of a contraction by a conjunction is identical to either the contraction
by one of the conjuncts or to the intersection of the outcomes of the contractions by
each one of the conjuncts.
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(÷V ) K ÷ (α ∧ β) = K ÷ α or K ÷ (α ∧ β) = K ÷ β or K ÷ (α ∧ β) = K ÷ α ∩K ÷ β.
(Conjunctive factoring)

The following postulate, known as conjunctive trisection [Han93a, Rot92b], is
another postulate for contraction by a conjunction. It states that if a belief α is
not removed when contracting a belief set by α ∧ β, then α should be kept when
contracting that belief set by α∧β ∧ δ. Intuitively, if α is not removed when a belief
set is contracted by α∧β, then α is (in some sense) better than β.2 Hence, α should
also be kept when contracting that belief set by α ∧ β ∧ δ.
(Conjunctive trisection) If α ∈ K ÷ (α ∧ β), then α ∈ K ÷ (α ∧ β ∧ δ).

In the presence of the six basic AGM postulates for contraction, (÷7) and (÷8)
are equivalent to (÷V ). In this case it also holds that (÷7) is equivalent to conjunctive
trisection.

Observation 3.1.7 Let K be a belief set and ÷ an operator on K that satisfies (÷1)
to (÷6). Then:

(a) [AGM85] ÷ satisfies (÷7) and (÷8) if and only if ÷ satisfies (÷V ).
(b) [Rot92b] ÷ satisfies (÷7) if and only if ÷ satisfies conjunctive trisection.

3.1.3 Revision

The operation of revision of a belief set consists of the incorporation of new beliefs
in that set. In a revision process, some previous beliefs may be retracted in order
to preserve the consistency of the resulting belief set. The postulates for revision
follow the same pattern as for contraction. The following six postulates, which were
presented in [Gär88], are commonly known as basic AGM postulates for revision:3

(⋆1) K⋆α = Cn(K⋆α) (i.e. K⋆α is a belief set). (Closure)
(⋆2) α ∈ K⋆α. (Success)
(⋆3) K⋆α ⊆ K + α. (Inclusion)
(⋆4) If ¬α /∈ K, then K + α ⊆ K⋆α. (Vacuity)
(⋆5) If α is consistent, then K⋆α is consistent. (Consistency)
(⋆6) If ⊢ α↔ β, then K⋆α = K⋆β. (Extensionality)

(⋆1) assures that the outcome of a revision is always a belief set. This is a
formalization of the principle of categorical matching. (⋆2) states that the sentence
by which the belief set is revised is an element of the revised belief set. This pos-
tulate formalizes the principle of primacy (of the new information). According to(⋆3) what is added to the revision of a belief set K by a sentence α is at most
the consequences of K ∪ {α} that are not in K. (⋆4) states that if a negation of a
sentence is not in the belief set K, then the revision of K by that sentence contains

2Except on the limiting case that ⊢ α ∧ β.
3The postulates were already presented in [AGM85] but with slightly different formulations.
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the expansion K by that sentence. (⋆5) assures that the revision of a belief set by a
consistent sentence is itself consistent. (⋆5) expresses the consistency criteria. (⋆6)
is a formalization of the irrelevance of syntax criteria. It states that the revision of
a belief set by logical equivalent sentences produces the same output.

The operators that satisfy postulates (⋆1) to (⋆6) are known as basic AGM
revisions.

Definition 3.1.8 An operator ⋆ for a belief set K is a basic AGM revision if and
only if it satisfies postulates (⋆1) to (⋆6).

In the following example we revisit Example 3.1.4 to determine the possibles
outcomes of performing a revision by a basic AGM revision function.

Example 3.1.9 Consider a language L that is built from the finite set of propo-
sitional symbols {p, q} and the boolean connectives ¬,∧,∨,→ and ↔. Let K =
Cn(¬p ∧ ¬q). Assume that we wish to perform a basic AGM revision in order to
revise K by p.
We recall that in Figure 3.1 we represent all the possible belief sets of L. Each node
of the diagram represents a belief set and the arrows between nodes represent that
the set at the beginning of the arrow contains the set that the arrow links it to.
Let ⋆ be a basic AGM revision operator. Postulate (⋆1) ensures that K⋆p is a belief
set. Thus it should be one of the belief sets presented in the diagram. (⋆2) assures
that p ∈ K⋆p. Thus K⋆p must contain Cn(p). (⋆5) states that K⋆p /= L. This
narrows the possible outcomes of K⋆p to Cn(p),Cn(p ∧ q) and Cn(p ∧ ¬q). (⋆3),(⋆4) and (⋆6) do not (in this case) narrow the possibles outcomes of K⋆p.4

As it was the case for contractions two other postulates were proposed to deal
with the revision by conjunctions [Gär78, Gär82]:

(⋆7) K⋆(α ∧ β) ⊆ (K⋆α) + β. (Superexpansion)
(⋆8) If ¬β /∈ K⋆α, then (K⋆α) + β ⊆ K⋆(α ∧ β). (Subexpansion)

(⋆7) states that the outcome of the revision of a belief set by a conjunction is
contained in the (belief) set that results of the expansion by one of the conjuncts
of the outcome of revising the original belief set by the other conjunct. (⋆8) states
that if the outcome of the revision of a belief set by a conjunction does not contain
the expansion by one of the conjuncts of the outcome of the revision by the other
conjunct, then the revision by this (latter) conjunct contains the negation of the
other one.5

Definition 3.1.10 An operator ⋆ for a belief set K is an AGM revision if and only
if it satisfies postulates (⋆1) to (⋆8).

4For example, from (⋆3) it follows that K⋆p must be a subset of Cn(Cn(¬p ∧ ¬q) ∪ {p}) = L.
5Note that if ¬β ∈ K⋆α and (K⋆α) + β ⊆ K⋆(α ∧ β), then (assuming that ⋆ satisfies success)

K⋆(α ∧ β) would be inconsistent.
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The following postulates were proposed by Gärdenfors [Gär88] to deal with the
revision by disjunctions:

(Disjunctive overlap) (K⋆α) ∩ (K⋆β) ⊆ K⋆(α ∨ β).
(Disjunctive inclusion) If ¬β /∈ K⋆(α ∨ β), then K⋆(α ∨ β) ⊆ K⋆β.

Disjunctive overlap states that if an element is in the outcome of the revision of
K by α and in the outcome of the revision of K by β, then it should also be in the
outcome of the revision of K by α ∨ β.
Disjunctive inclusion ensures that if ¬β does not belong to the revision of a belief
set K by α∨β, then everything in the revision of K by α∨β must be in the revision
of K by β.

The following observation illustrates that in the presence of the basic AGM
postulates for revision, disjunctive overlap and disjunctive inclusion are equivalent
to (⋆7) and (⋆8), respectively.

Observation 3.1.11 [Gär88] Let K be a logically closed set and ⋆ an operator on
K that satisfies the basic AGM postulates for revision.6 Then:

(a) ⋆ satisfies (⋆7) if and only if ⋆ satisfies disjunctive overlap.

(b) ⋆ satisfies (⋆8) if and only if ⋆ satisfies disjunctive inclusion.

The following postulate, proposed by Alchourrón, Gärdenfors and Makinson in
[AGM85], introduces a factoring condition on the revision by disjunctions.

(⋆V ) K⋆(α ∨ β) = K⋆α or K⋆(α ∨ β) = K⋆β or K⋆(α ∨ β) = K⋆α ∩K⋆β. (Dis-
junctive factoring)

(⋆V ) states that the outcome of a revision by a disjunction is identical to either
the revision by one of the disjuncts or to the intersection of the outcomes of the
revisions by each one of the disjuncts.

The following observation illustrates that in the presence of the six basic AGM
postulates for revision (⋆7) and (⋆8) are equivalent to disjunctive factoring.

Observation 3.1.12 [Gär88] Let K be a logically closed set and ⋆ an operation for
K that satisfies the basic AGM postulates for revision. Then ⋆ satisfies (⋆V ) if and
only if it satisfies both (⋆7) and (⋆8).7

6In fact, according to [Han99b, Observations 3.49 and 3.50] (and their proofs), statements (a)
and (b) of this result hold as long as ⋆ satisfies (⋆1), (⋆2) and (⋆6).

7In fact, according to [Han99b, Observation 3.51] (and its proof), this statement holds as long
as ⋆ satisfies (⋆1), (⋆2), (⋆5) and (⋆6).
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3.1.4 Relations between contraction and revision

When revising a belief set by a sentence α one should incorporate α in that belief set,
while removing some sentences during the process in order to ensure the consistency
of the resulting belief set (whenever that is possible). This can be accomplished, if
we first contract the belief set by ¬α and then expand its outcome by α.8 Thus, it
seems natural to define a revision operator through the following equality originally
proposed in [Lev77]:

Levi identity: K⋆α = (K ÷ ¬α) + α.

According to Definition 3.1.2, this identity can be rewritten as follows:

Levi identity: K⋆α = Cn((K ÷ ¬α) ∪ {α}).
The Levi identity defines a revision in terms of a contraction. The following

equality, which was originally presented in [Har76], defines a contraction operator
in terms of a revision:9

Harper identity: K ÷ α = (K⋆¬α) ∩K.

The Harper identity states that the outcome of contracting a belief set K by a
sentence α consists of those beliefs that are kept from K when revising it by ¬α.
This follows from the fact that the revision of K by ¬α represents a minimal change
of K required to incorporate ¬α in a consistent way. Thus it should contain as much
as possible of the beliefs in K that fails to imply α.

The Levi and Harper identities make contraction and revision interchangeable.
These identities allow us to define the revision and the contraction operators in
terms of each other. The Levi (respectively Harper) identity enable the use of con-
traction (resp. revision) as primitive function and treat revision (resp. contraction)
as defined in terms of contraction (resp. revision).

The following observation states that if an operator ÷ satisfies postulates (÷2)
to (÷4) and (÷6), then the operator obtained from ÷ by means of the Levi identity
is a basic AGM revision operator.

Observation 3.1.13 [Gär78, Gär82]10 Let K be a belief set and ÷ be an operator
on K. Let ⋆ be the operator defined from ÷ by means of the Levi identity. If ÷
satisfies (÷2), (÷3), (÷4) and (÷6), then ⋆ is a basic AGM revision operator on K.

8We note that if we exchange the order of the two operations, then after performing the expan-
sion we may get an inconsistent belief set. Thus the outcome of such expansion can be L. In this
case we lose track of the original belief set.

9We note that the intersection of two belief sets is a belief set.
10The references here presented are the ones provided for this result in the proof of [AGM85,

Observation 2.3] as well in [Mak87]. A proof for this observation is also provided in [Gär88] and
in [GM88].
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According to the last observation, it is not necessary that the operator ÷ satisfies
the postulates (÷1) and (÷5) in order to assure that the operator ⋆, obtained from÷ by means of the Levi identity, is a basic AGM revision operator. Hence if ÷ is a
withdrawal, then ⋆ is a basic AGM revision.

The following observation, when combined with Observation 3.1.13, illustrates
that if ÷ is an AGM contraction operator, then the operator obtained from it by
means of the Levi identity is an AGM revision operator (in the sense of Definitions
3.1.6 and 3.1.10).

Observation 3.1.14 [AGM85] Let K be a belief set and ÷ be a withdrawal operator
on K. Let ⋆ be the operator defined from ÷ by means of the Levi identity. Then the
following statements hold:

(a) If ÷ also satisfies (÷5) and (÷7), then ⋆ satisfies (⋆7).11

(b) If ÷ also satisfies (÷8), then ⋆ satisfies (⋆8).
The following two observations provide similar results to the ones presented in

the last two observations. From the following observation we can conclude that if ⋆
is a basic AGM revision, then the operator obtained from it by means of the Harper
identity is a basic AGM contraction.

Observation 3.1.15 [Gär78, Gär82]12 Let K be a belief set and ⋆ be an operator
on K. Let ÷ be the operator defined from ⋆ by means of the Harper identity. If⋆ satisfies (⋆1), (⋆2), (⋆4), (⋆5) and (⋆6), then ÷ is a basic AGM contraction
operator on K.

By combining the following observation with Observation 3.1.15 we can conclude
that if ⋆ is an AGM revision operator, then the operator obtained from ⋆ by means
of the Harper identity is an AGM contraction operator.

Observation 3.1.16 [AGM85] Let K be a belief set and ⋆ be a basic AGM revision
operator on K. Let ÷ be the operator defined from ⋆ by means of the Harper identity.
Then the following statements hold:

(a) If ⋆ also satisfies (⋆7), then ÷ satisfies (÷7).
(b) If ⋆ also satisfies (⋆8), then ÷ satisfies (÷8).

In the following two definitions we present functions that allow us to go from
contractions to revisions and vice versa.

11In [Fer01] it was shown that if ÷ satisfies postulates (÷1) to (÷4), (÷6) and (÷7), but does not
satisfy (÷5), then in general, ⋆ does not satisfy (⋆7).

12The references here presented are the ones provided for this result in the proof of [Mak87]. A
proof for this observation is also provided in [Gär88] and in [GM88].
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Definition 3.1.17 [Mak87] Let K be a belief set. Then R is the function such that
for every operator ÷ for K, R(÷) is the operator for K such that for all α:

K(R(÷))α = Cn((K ÷ ¬α) ∪ {α}).
Definition 3.1.18 [Mak87] Let K be a belief set. Then C is the function such that
for every operator ⋆ for K, C(⋆) is the operator for K such that for all α:

K(C(⋆))α = K ∩ (K⋆¬α).
The following observation exposes that if we start with a basic AGM contraction

operator (respectively basic AGM revision operator) on a belief set, and apply the
Levi identity (resp. Harper identity), followed by the application of the Harper
identity (resp. Levi identity), then we will obtain the contraction operator (resp.
revision operator) that we started with.

Observation 3.1.19 [Mak87] Let K be a belief set, ÷ and ⋆ be operations on K
and R and C the functions introduced in Definitions 3.1.17 and 3.1.18. Then the
following statements hold:

(a) If ÷ is a basic AGM contraction operator, then C(R(÷)) = ÷.13

(b) If ⋆ is a basic AGM revision operator, then R(C(⋆)) = ⋆.14

3.2 Constructive models

The postulates that we presented in the last section, for contractions and revisions,
do not determine in a unique way contraction and revision operators for a belief set.
They only provide properties that these operators of change should satisfy. In this
section we will present some explicit methods for the construction of such operators
as well as the axiomatic characterization for each one of the classes of operators
obtained through those methods.

3.2.1 Partial meet contractions and revisions

The first kind of contraction operations that we will present in this section are
known as partial meet contractions and were originally presented in [AGM85]. This
construction is based in the concept of remainder set, that is a set of maximal subsets
(of a given set) that fails to imply a given sentence. Formally:

Definition 3.2.1 [AM81] Let A be a set of sentences and α a sentence. The set
A ⊥ α (A remainder α) is the set of sets such that B ∈ A ⊥ α if and only if:

(a) B ⊆ A.

13In fact, according to [Han99b, Observation 3.56], this statement holds as long as ÷ satisfies(÷1), (÷2), (÷3), (÷5) and (÷6).
14In fact, according to [Han99b, Observation 3.57], this statement holds as long as ⋆ satisfies(⋆1), (⋆2), (⋆3) and (⋆6).
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(b) B /⊢ α.

(c) For all B′ such that B ⊂ B′ ⊆ A,B′ ⊢ α.

A ⊥ α is called remainder set of A by α and its elements are the remainders of
A by α. From the definition of A ⊥ α if follows that:

� A ⊥ α = {A} if and only if A /⊢ α.

� A ⊥ α = ∅ if and only if ⊢ α.

The following observation exposes that if A is a logically closed set, then so are
the elements of A ⊥ α.

Observation 3.2.2 [AGM85] If K is a belief set, then so are the elements of K ⊥ α.

The partial meet contractions are obtained by intersecting some elements of the
(associated) remainder set. The choice of those elements is performed by a selection
function:

Definition 3.2.3 [AGM85] Let A be a set of sentences. A selection function for A
is a function γ such that, for all sentences α:

(a) If A ⊥ α /= ∅, then γ(A ⊥ α) is a non-empty subset of A ⊥ α.

(b) If A ⊥ α = ∅, then γ(A ⊥ α) = {A}.
A partial meet contraction is obtained by intersecting the elements chosen by

the selection function:

Definition 3.2.4 [AGM85] Let A be a set of sentences and γ a selection function
for A. The partial meet contraction on A that is generated by γ is the operation ÷γ
such that for all sentences α:

A ÷γ α =⋂γ(A ⊥ α).
An operator ÷ on A is a partial meet contraction if and only if there is a selection
function γ for A such that for all sentences α: A ÷ α = A ÷γ α.

There are two limiting cases of partial meet contractions:

Definition 3.2.5 [AGM85] Let ÷ be an operator on a set A. Then:

(a) ÷ is an operator of maxichoice contraction if and only if it coincides with a
partial meet contraction ÷γ such that for all sentences α, γ(A ⊥ α) has exactly
one element.

(b) ÷ is an operator of full meet contraction if and only if it coincides with a partial
meet contraction ÷γ such that for all sentences α, if A ⊥ α is non-empty, then
γ(A ⊥ α) = A ⊥ α.
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From the previous definition it follows immediately that, when performing a
contraction of a set A by a sentence α, there is only one operation of full meet
contraction, whereas several maxichoice contractions can be defined.

These limiting cases of partial meet contractions were considered unsatisfactory.
The following example illustrates why maxichoice contractions were found to be
unsatisfactory contraction functions.

Example 3.2.6 [Han99b] I believed that John has a cat (α) and that he has a dog
(β). Then I heard John saying that he would never have a dog and a cat at the same
time. A cautious reasoner who does not know which of α and β should be withdrawn
may choose to remove both of them. Maxichoice contractions does not allow such
a cautious contraction. Note also that maxichoice contractions violate the fairness
criteria.

Full meet contraction, on the other hand, has the disadvantage of removing be-
liefs that are unrelated to the belief to be contracted. The following observation
illustrates that the only sentences that remain after performing a full meet contrac-
tion of a belief set by a sentence α in that belief set, are the sentences of the belief
set that are consequences of ¬α.

Observation 3.2.7 [AM82] Let K be a belief set and ÷ the operator of full meet
contraction on K. Then for all α ∈ K

K ÷ α = K ∩Cn(¬α).
To see how implausible full meet contractions are, consider an agent that believes

that there is milk in the fridge (α) and that Paris is the capital of France (β). After
a full meet contraction of the agent’s belief set by α, the sentence β is also removed
(since it is not a logical consequence of ¬α).

Partial meet contraction is an intermediate procedure “between the extreme cau-
tion of full meet contraction and the extreme incautiousness of maxichoice contrac-
tion” [Han99b].

Once again we revisit the Example 3.1.4, this time to illustrate the possible
outcomes of a contraction by a partial meet contraction operator.

Example 3.2.8 Consider a language L that is built from the finite set of propo-
sitional symbols {p, q} and the boolean connectives ¬,∧,∨,→ and ↔. Let K =
Cn(¬p ∧ ¬q). Let ÷ be a partial meet contraction operator on K. We intend to
determine the possible outcomes of K ÷ ¬p. K ⊥ ¬p = {Cn(p ↔ q),Cn(¬q)}.15 It
follows that K÷¬p = Cn(p↔ q), K÷¬p = Cn(¬q) or K÷¬p = Cn(p↔ q)∩Cn(¬q)
(in the first two cases ÷ is maxichoice contraction and in the last case it is a full
meet contraction). It follows that in the last case K ÷ ¬p = Cn(p ∨ ¬q).

15We note that by Observation 3.2.2 all the elements of K ⊥ ¬p must be belief sets.
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Looking at Examples 3.1.4 and 3.2.8, it is possible to notice that the sets of
possible outcomes of contracting K by ¬p by a partial meet contraction and by a
basic AGM contraction coincide. This is no coincidence. The following observation
exposes that partial meet contractions on a belief set K satisfy all the basic AGM
postulates for contraction. Furthermore it illustrates that if an operator ÷ on a belief
set satisfies all the basic AGM postulates for contraction then it is a partial meet
contraction. Thus it elucidates that the class of partial meet contraction functions
coincides exactly with the class of basic AGM contractions.

Observation 3.2.9 [AGM85] Let K be a belief set and ÷ be a contraction function
on K. Then ÷ is a partial meet contraction on K if and only if it satisfies the basic
AGM postulates for contraction.

A selection function is expected to pick up the best elements (in some sense) of
the remainder set. If we consider a relation ⊑ on subsets of A such that A1 ⊑ A2

holds if and only if A2 is at least as much worth retaining as A1, then we can define a
selection function, based on ⊑, that chooses the “best” elements of A ⊥ α, according
to ⊑. A selection function that is based on a relation in this way is called relational:

Definition 3.2.10 [AGM85] A selection function γ for a set A is relational if and
only if there is a relation ⊑ over ⋃{A ⊥ α ∶ α ∈ L} such that for all sentences α, if
A ⊥ α is non-empty, then:

γ(A ⊥ α) = {B ∈ A ⊥ α ∶ C ⊑ B for all C ∈ A ⊥ α}.
γ is transitively relational if and only if this holds for some transitive relation ⊑.
A partial meet contraction function is relational (respectively transitively relational)
if and only if it is determined by some relational (resp. transitively relational) se-
lection function.

In the following example we revisit the Example 3.1.4. It illustrates that not
every partial meet contraction is a transitively relational partial meet contraction.

Example 3.2.11 Consider a language L that is built from the finite set of propo-
sitional symbols {p, q} and the boolean connectives ¬,∧,∨,→ and ↔. Let K =
Cn(¬p ∧ ¬q). It holds that:
(1) K ⊥ ¬p = {Cn(p ↔ q),Cn(¬q)}, (2) K ⊥ ¬q = {Cn(p ↔ q),Cn(¬p)} and (3)
K ⊥ (¬p∧¬q) = {Cn(p↔ q),Cn(¬p),Cn(¬q)} . Let ÷1 be a partial meet contraction
such that:
(4) K ÷1 ¬p = K ÷1 ¬q = Cn(p↔ q) and (5) K ÷1 (¬p ∧ ¬q) = Cn(¬p). Note that ÷1

cannot be a transitively relational partial meet contraction, since this would imply
that there exists a transitive relation ⊑ over ⋃{K ⊥ α ∶ α ∈ L} such that (from (3)
and (5)) Cn(p ↔ q) ⊑ Cn(¬p) and (from (2) and (4)) that Cn(¬p) ⊏ Cn(p ↔ q),
i.e. that Cn(¬p) ⊑ Cn(p ↔ q) and Cn(p ↔ q) /⊑ Cn(¬p). Which leads to a con-
tradiction. Hence ÷1 is a partial meet contraction but not a transitively relational
partial meet contraction. Note also that ÷1 is a basic AGM contraction but is not
an AGM contraction since it violates the supplementary postulates for contraction.
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From the above we can conclude that if ÷2 is a transitively relational partial meet
contraction such that (6) K ÷2 ¬p = K ÷2 ¬q = Cn(p↔ q), then ÷2 is determined by
some transitively relational selection function γ based on a transitive relation ⊑2 over⋃{K ⊥ α ∶ α ∈ L} such that Cn(¬p) ⊏2 Cn(p↔ q) and Cn(¬q) ⊏2 Cn(p↔ q) (from
(1), (2) and (6)).16 Therefore it must hold, having in mind (3), that K÷2(¬p∧¬q) =
Cn(p↔ q).

The following observation provides an axiomatic characterization for the class
of transitively relational partial meet contractions. It illustrates that such a class
coincides exactly with the class of AGM contractions.

Observation 3.2.12 [AGM85] Let K be a belief set and ÷ be an operator on K.
Then ÷ is a transitively relational partial meet contraction if and only if it satisfies
both the basic and the supplementary AGM postulates for contraction.

Partial meet revisions are obtained from partial meet contractions by means of
the Levi identity:

Definition 3.2.13 Let K be a belief set and γ a selection function for K. For any
sentence α, the partial meet revision operator over K determined by γ is defined as
follows:

K⋆γα = Cn(⋂γ(K ⊥ ¬α) ∪ {α}).17

An operator ⋆ on K is a partial meet revision if and only if there is a selection
function γ for K such that for all sentences α: K⋆α = K⋆γα.
A partial meet revision function is relational (respectively transitively relational) over
K if and only if it is determined by some relational (resp. transitively relational)
selection function.

In the next observation we present the axiomatic characterizations of partial
meet revision functions and of transitively relational partial meet revision functions.
It illustrates that the class of partial meet revision functions coincides with the
class of basic AGM revision functions. It also exposes that the class of transitively
relational partial meet revision functions coincides with the class of AGM revision
functions.

Observation 3.2.14 [AGM85] Let K be a belief set. An operator on K is a partial
meet revision function if and only if it satisfies postulates (⋆1) to (⋆6). It is a
transitively relational partial meet revision function if and only if it also satisfies(⋆7) and (⋆8).

16Note also that Cn(p↔ q) ⊑2 Cn(p↔ q) must hold.
17The partial meet revision operator over a belief base A determined by a selection function γ

for A is defined as follows:

A⋆γα =⋂γ(A ⊥ ¬α) ∪ {α}.
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3.2.2 Kernel/Safe contractions

The partial meet contraction operators on a set A are based on a selection among
the maximal subsets of A that do not imply α. Another different proposal consists of
constructing a contraction operator based on a selection of elements of A that imply
α and then discarding them when contracting A by α. Following this approach,
Hansson in [Han94] introduced a new contraction operator, the kernel contraction,
which can be seen as a generalization of the safe contraction defined by Alchourrón
and Makinson in [AM85].18 We will start by presenting kernel contractions (the
more general construction) and afterwards we will present safe contractions (which
were chronologically presented first) as a special case of kernel contractions.

A kernel contraction is based on a selection among the sentences of a set A that
contribute effectively to imply α; and on how to use this selection in contracting by
α. Formally:

Definition 3.2.15 [Han94] Let A ⊆ L and α a sentence. Then A⊥⊥α is the set such
that B ∈ A⊥⊥α if and only if:

(a) B ⊆ A.

(b) B ⊢ α.

(c) If B′ ⊂ B, then B′ /⊢ α.

A⊥⊥α is called the kernel set of A with respect to α and its elements are the
α-kernels of A.

To contract a belief α from a set A one must give up sentences in each α-kernel,
otherwise α would continue being implied by A. The so-called incision functions
selects the beliefs to be discarded.

Definition 3.2.16 [Han94] Let A be a set of sentences. An incision function σ for
A is a function such that for all sentences α:

(a) σ(A⊥⊥α) ⊆ ⋃(A⊥⊥α).
(b) If ∅ /= B ∈ A⊥⊥α, then B ∩ σ(A⊥⊥α) /= ∅.

Definition 3.2.17 [Han94] Let A be a set of sentences and σ an incision function
for A. The kernel contraction ÷σ for A is defined as:

A ÷σ α = A ∖ σ(A⊥⊥α).
An operator ÷ for A is a kernel contraction if and only if there is an incision

function σ for A such that A ÷ α = A ÷σ α for all sentences α.

18For a deep study of this kind of functions see [RH14].
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Example 3.2.18 19 Let A = {p, p ∨ q, p↔ q, r}. Suppose that we intend to contract
A by p∧ q. The elements of the kernel set of A with respect to p∧ q are the minimal
subsets of A that imply p ∧ q. Hence A⊥⊥(p ∧ q) = {{p, p ↔ q},{p ∨ q, p ↔ q}}. An
incision function must choose at least one sentence from each element of A⊥⊥(p∧q).
An example of an incision function is σ(A⊥⊥(p ∧ q)) = {p ∨ q, p ↔ q}. In this case
A −σ (p ∧ q) = A ∖ {p ∨ q, p↔ q} = {p, r}.

Kernel contractions on belief sets satisfy all the basic AGM postulates with the
exception of (÷1). In order to achieve the satisfaction of this postulate we need to
impose a condition on the incision function.

Definition 3.2.19 [Han94] An incision function σ for a set A is smooth if and only
if it holds for all subsets A′ of A that if A′ ⊢ β and β ∈ σ(A⊥⊥α) then A′∩σ(A⊥⊥α) ≠ ∅.
A kernel contraction is smooth if and only if it is based on a smooth incision function.

We note that the incision function presented in Example 3.2.18 is not smooth.
To see this notice that in that example σ(A⊥⊥(p ∧ q)) = {p ∨ q, p↔ q}. Thus p ∨ q ∈
σ(A⊥⊥(p∧q)). On the other hand it holds that {p} ⊢ p∨q, but {p}∩σ(A⊥⊥(p∧q)) = ∅.
This also allows us to conclude that not every kernel contraction is smooth.

Hansson in [Han94] proposed an alternative way of constructing smooth kernel
contractions. More precisely, Hansson introduced a new contraction operator — the
so called saturated kernel contraction, a particular kind of kernel contraction, and
established that the class of smooth kernel contractions coincides with the class of
saturated kernel contractions.

Definition 3.2.20 [Han94] Let σ be an incision function for a set of sentences A.
The saturated kernel contraction ÷sσ for A that is associated with σ is defined, for
any sentence α, as follows:

A ÷sσ α = A ∩Cn(A ÷σ α),
where ÷σ is the kernel contraction for A based on σ.20 An operator ÷ for A is a
saturated kernel contraction if and only if there is some incision function σ for A
such that A ÷ α = A ÷sσ α for all sentences α.

Observation 3.2.21 [Han94] An operator ÷ for a set of sentences A is a saturated
kernel contraction if and only if it is a smooth kernel contraction.

The following observation asserts that, in belief sets, there is no distinction
between smooth kernel contractions and partial meet contractions.

Observation 3.2.22 [Han94] Let K be a belief set. Then ÷ is a smooth kernel
contraction on K if and only if it is a partial meet contraction on K.

19Example adapted from [FKR08].
20We note that, according to Definition 3.2.17, A ÷sσ α = A ∩Cn(A ∖ σ(A⊥⊥α)).
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An operator of smooth kernel revision can be defined from an operator of smooth
kernel contraction by means of the Levi identity. It follows from Observation 3.2.22
and Definition 3.2.13 that ⋆ is a smooth kernel revision if and only if it is a partial
meet revision operator and consequently (by Observation 3.2.14) a basic AGM re-
vision operator.

An incision function selects the sentences to remove, when a contraction is per-
formed. This task can also be done by a selection function that selects at least one
element of each kernel. In the following definition we formalize such a function:

Definition 3.2.23 [Han99b] Let A be a set of sentences. A kernel selection function
for A is a function s such that for all X ∈ {X ∶X ∈ A⊥⊥α for some α}:

(a) s(X) ⊆X;

(b) If X /= ∅, then s(X) /= ∅.

According to Definition 3.2.16, given a kernel selection function s, the union of
all s(X) such that X ∈ A⊥⊥α is an incision function. This incision function is called
cumulative.

Definition 3.2.24 [Han99b] Let s be a kernel selection function for a set A. Then
an incision function σ is the cumulation of s if and only if for all sentences α:

σ(A⊥⊥α) =⋃{s(X) ∶X ∈ A⊥⊥α}.
A kernel selection function s can be seen as a function that selects the sentences of

each kernel that should be removed when performing a contraction. It seems natural
that these sentences should be the least valuable elements of each kernel. Thus it
seems natural that s should be based on a binary relation that orders sentences
according to its epistemic value.

Definition 3.2.25 [Han99b] A kernel selection function s for a set A is based on a
relation ≺ if and only if for all X ∈ A⊥⊥α:

β ∈ s(X) if and only if β ∈X and there is no δ ∈X such that δ ≺ β.
An incision function is based on a relation ≺ if and only if it is the cumulation of
some kernel selection function that is based on ≺.

As shown by Hansson in [Han99b] not every binary relation can be used to
construct a kernel selection function.21 The following definition provides a sufficient
condition for a relation ≺ to be adequate for defining a kernel selection function.

Definition 3.2.26 [Han99b] Let A be a set of sentences and ≺ a relation on A.
Then ≺ satisfies acyclicity if and only if for all positive integers n, if {α1, ..., αn} ⊆ A,
then it is not the case that α1 ≺ α2 ≺ ... ≺ αn ≺ α1.

21Hansson provided a counter-example that illustrates that a reflexive binary relation ≺ can not
be used to construct a kernel selection function.
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We will consider that ≺ treats logical equivalents sentences alike. An acyclic rela-
tion over a set A that satisfies this condition is called a hierarchy over A. Formally:

Definition 3.2.27 [AM85] A relation ≺ over a set A is a hierarchy over A if and
only if:

(a) it is acyclic.

(b) if ⊢ α↔ α′ and ⊢ β ↔ β′, then α ≺ β holds if and only if α′ ≺ β′ holds.

In the following definition we present the notion of safe contraction.

Definition 3.2.28 [AM85] Let ≺ be a hierarchy over a set of sentences A. Let σ be
the incision function that is based on ≺ and ÷σ the kernel contraction based on σ.
The operation of safe contraction ÷s based on ≺ is defined as follows:

A ÷s α = A ∩Cn(A ÷σ α).
We note that, according to Definitions 3.2.20 and 3.2.28, it holds that every safe

contraction is a saturated kernel contraction.

We now recall from [AM85] the original construction of safe contraction proposed
by Alchourrón and Makinson. This construction is based on the notion of safe
elements, whose definition we present next.

Definition 3.2.29 [AM85] Let A be a set of sentences and ≺ be a hierarchy over
A. An element β ∈ A is safe with respect to α (modulo ≺) if and only if β is not
a minimal element (under ≺) of any minimal subset (under inclusion) B of A such
that B ⊢ α. Equivalently, if and only if for all B ∈ A⊥⊥α, either β /∈ B or there is
some δ ∈ B such that δ ≺ β. We write A/α for the set of all elements of A that are
safe with respect to α.

We now present the original definition of safe contraction.

Definition 3.2.30 [AM85] The operation of safe contraction ÷s over a set A (mod-
ulo a hierarchy ≺) is defined as follows:

A ÷s α = A ∩Cn(A/α).
We note that if the safe contraction operator is defined on a belief set K, then the

last equality can be simplified. In fact, it follows from K/α ⊆ K, that Cn(K/α) ⊆
Cn(K) = K. Hence

K ÷s α = Cn(K/α).
The following observation exposes the equivalence between the approaches for

the construction of safe contractions presented in Definitions 3.2.28 and 3.2.30.
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Observation 3.2.31 [Rei11] Let A ⊆ L and ≺ be a hierarchy over A. If σ is the
incision function based on ≺, then:

σ(A⊥⊥α) = A ∖A/α.
Hence

A ÷σ α = A/α.
The following observation states that every safe contraction on a belief set K

satisfies the basic AGM contraction postulates.

Observation 3.2.32 [AM85] If ÷ is a safe contraction function on a belief set K,
then ÷ satisfies the basic AGM postulates for contraction.

It follows from Observations and 3.2.9 and 3.2.32 that, when considering con-
traction functions on belief sets every safe contraction function is a partial meet
contraction function. However, it was shown by Rott and Hansson in [RH14] that
the converse does not hold.

If we impose further constrains to the hierarchy ≺, we can obtain new properties
for the safe contraction operator constructed from ≺. Next we present some addi-
tional properties for ≺.

Transitivity: If α ≺ β and β ≺ δ, then α ≺ δ.
Strict Dominance: If Cn(β) ⊂ Cn(α), then α ≺ β.

It is natural to expect a hierarchy to satisfy transitivity: if we are more will-
ing to give up α than β and more willing to give up β than δ, then we should be
more willing to give up α than δ. On the other hand, if α ⊢ β but β /⊢ α, then in
order to give up β we must give up α but to give up α we do not have to give up
β. Thus is natural to expect that α ≺ β. The following two properties (presented
in [AM85]) are satisfied by hierarchies that satisfy transitivity and strict dominance.

Continuing-up: If α ≺ β and β ⊢ δ, then α ≺ δ.
Continuing-down: If α ⊢ β and β ≺ δ, then α ≺ δ.
Definition 3.2.33 [AM86] A relation ≺ over a set A is regular if and only if it
satisfies continuing-up and continuing-down.

The following observation asserts that if a hierarchy ≺ satisfies either continuing-
up or continuing-down, then the safe contraction based on ≺ satisfies (÷7).
Observation 3.2.34 [AM85] Let ≺ be a hierarchy over the belief set K, and let ÷
be the safe contraction on K that is based on ≺. Then:

(a) If ≺ satisfies continuing-up, then ÷ satisfies (÷7).
(b) If ≺ satisfies continuing-down, then ÷ satisfies (÷7).
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As stated in [AM85], for a safe contraction based on a hierarchy ≺ to satisfy (÷8)
it is enough that ≺ satisfies either continuing-up or continuing-down as well as the
following property:

Virtual connectivity: If α ≺ β, then either α ≺ δ or δ ≺ β.

Lemma 3.2.35 [AM85] If a hierarchy satisfies virtual connectivity, then it satisfies
continuing-up if and only if it satisfies continuing-down.

In the following observation we present an axiomatic characterization for safe
contractions operator functions on a belief set based on a regular and virtual con-
nected hierarchy.

Observation 3.2.36 [Rot92a]22 Let K be a belief set and ÷ be a contraction func-
tion on K. Then ÷ is a safe contraction, based on a regular and virtually connected
hierarchy, if and only if it satisfies both the basic and the supplementary AGM pos-
tulates for contraction.

3.2.3 Epistemic entrenchment-based operators of belief change

Epistemic entrenchment was introduced in [Gär88, GM88] and relies on the idea
that contractions on a belief set K should be based on an ordering of its sentences
according to their epistemic importance. When a belief set K is contracted it is
preferred to give up beliefs with lower entrenchment over others with a higher en-
trenchment.

“Certain pieces of knowledge and belief about the world are more important
than others when planning future actions, conducting scientific investigations or
reasoning in general. We will say that some sentences in a knowledge system have
a higher degree of epistemic entrenchment than other. The degree of entrenchment
will, intuitively, have a bearing on what is abandoned from a knowledge set and
what is retained, when a contraction or a revision is carried out” [GM88].

Gärdenfors proposed five postulates that an epistemic entrenchment order (with
respect to a belief set K) should satisfy.

Definition 3.2.37 [Gär88, GM88] An ordering of epistemic entrenchment with re-
spect to a belief set K is a binary relation ≤ on L which satisfies the following
properties:

(EE1) For all α,β, δ ∈ L, if α ≤ β and β ≤ δ then α ≤ δ. (Transitivity)
(EE2) For all α,β ∈ L, if α ⊢ β then α ≤ β. (Dominance)
(EE3) For all α,β ∈ L, α ≤ α ∧ β or β ≤ α ∧ β. (Conjunctiveness)
(EE4) When K /⊢ �, α /∈ K iff α ≤ β for all β ∈ L. (Minimality)
(EE5) If β ≤ α for all β ∈ L, then ⊢ α. (Maximality)

22For the case when the language is finite this result was proven in [AM86].
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(EE1) states that an epistemic entrenchment order is transitive. (EE2) states
that if α entails β, then α must be at most as entrenched as β. This must hold since
it is not possible to give up β without given up α. (EE3) relies on the fact that to
give up a conjunction we must give up (at least) one of the conjuncts. Thus the
conjunction should be at least as entrenched as one of its conjuncts. (EE4) states
that the less entrenched beliefs are the ones that are not in the belief set. (EE5)
states that logical truths are (exactly) the beliefs with higher degree of entrenchment.

In the following lemmas we present some further properties that are satisfied by
any epistemic entrenchment ordering. These properties will be useful further ahead.

Lemma 3.2.38 [GM88] If the relation ≤ satisfies (EE1), (EE2) and (EE3), then it
is a total relation i.e., for all α,β ∈ L either α ≤ β or β ≤ α.

Lemma 3.2.39 [Han99b] If K is a consistent belief set and ≤ is a total relation on
K that satisfies (EE1) and (EE4), then: If α /∈ K and β ∈ K, then α < β.

Lemma 3.2.40 [Foo90] Let ≤ be a relation that satisfies (EE1), (EE2) and (EE5).
If α ∈ Cn(∅), then for all β ∈ L ∖Cn(∅), β < α.

Lemma 3.2.41 [GR95] Let ≤ be a relation that satisfies (EE1) and (EE2). Then
it also satisfies:
(Intersubstitutivity) If ⊢ α↔ α′ and ⊢ β ↔ β′, then α ≤ β if and only if α′ ≤ β′.
Lemma 3.2.42 [Foo90] Let ≤ be a relation that satisfies (EE1), (EE2) and (EE3).
Then it also satisfies:
(Conjunction up) If δ < α and δ < β, then δ < α ∧ β.

Lemma 3.2.43 (see e.g. [Han99b, Observation 2.75]) Let ≤ be a relation that sat-
isfies transitivity. Then ≤ also satisfies:

(a) If α ≤ β and β < δ, then α < δ.
(b) If α < β and β ≤ δ, then α < δ.
(c) If α < β and β < δ, then α < δ.

In [Gär88, GM88] it was presented a way to define a contraction operator from
an epistemic entrenchment with respect to a belief set K:

Definition 3.2.44 [Gär88, GM88] Let K be a belief set and ≤ be an epistemic
entrenchment relation with respect to K.

The ≤-based contraction on K is the contraction operation ÷≤ defined, for any
α ∈ L, by:

K ÷≤ α = { {β ∈ K ∶ α < α ∨ β} , if /⊢ α
K , if ⊢ α. (C÷≤)

An operation ÷ on K is an epistemic entrenchment-based contraction on K if
and only if there is an epistemic entrenchment relation with respect to K such that,
for all sentences α ∈ L, K ÷ α = K ÷≤ α.
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The following lemma establishes that the outcome of an epistemic entrenchment-
based contraction on a belief set is itself a belief set.

Lemma 3.2.45 [GM88] Let K be a belief set. Let ÷ be an epistemic entrenchment-
based contraction on K. Then for all α ∈ L it holds that Cn(K ÷ α) = K ÷ α.

In the following example we revisit Example 3.1.4, this time to determine the
possible outcomes of contracting by a given epistemic entrenchment-based contrac-
tion.

Example 3.2.46 Consider a language L that is built from the finite set of propo-
sitional symbols {p, q} and the boolean connectives ¬,∧,∨,→ and ↔. Let K =
Cn(¬p ∧ ¬q) and ÷ be an epistemic entrenchment-based contraction on K based
on an epistemic entrenchment relation ≤ with respect to K. We will determine the
possibles outcome of K ÷ ¬p. By Lemma 3.2.45 it follows that K ÷ ¬p must be one
of the belief sets presented in the diagram of Figure 3.1. On the other hand, it fol-
lows from (C÷≤), that K ÷ ¬p ⊆ K and ¬p /∈ K ÷ ¬p (since, it follows by (EE2) that¬p /< ¬p). It also holds that p ∨ ¬q ∈ K ÷ ¬p, since ⊢ ¬p ∨ (p ∨ ¬q), thus by Lemma
3.2.40, ¬p < ¬p ∨ (p ∨ ¬q). This reduces the possible outcomes of K ÷ ¬p to Cn(¬q)
(if ¬p < ¬p ∨ ¬q), Cn(p↔ q) (if ¬p < ¬p ∨ (p↔ q)) and Cn(p ∨ ¬q) (if ¬p /< ¬p ∨ ¬q
and ¬p /< ¬p ∨ (p ↔ q)).23 Assume now that ÷2 is an epistemic entrenchment-
based contraction on K such that K ÷2 ¬p = K ÷2 ¬q = Cn(p ↔ q). Then ÷2 is
based on an epistemic entrenchment relation ≤2 with respect to K. We will now
determine, for this case, the possible outcomes of K ÷2 (¬p ∧ ¬q). It follows from
K÷2 ¬p = K÷2 ¬q = Cn(p↔ q) that ¬p <2 ¬p∨ (p↔ q) and that ¬q <2 ¬q ∨ (p↔ q).
By (EE2) ¬p ∧ ¬q ≤2 ¬p and ¬p ∧ ¬q ≤2 ¬q. Thus by Lemma 3.2.43 it follows that¬p∧¬q <2 ¬p∨ (p↔ q) and ¬p∧¬q <2 ¬q ∨ (p↔ q). Therefore, by Lemma 3.2.42, it
holds that ¬p∧¬q <2 (¬p∨(p↔ q))∧(¬q∨(p↔ q)). From which it follows by (EE2)
and Lemma 3.2.43 that ¬p∧¬q <2 (¬p∧¬q)∨(p↔ q). Hence p↔ q ∈ K÷2 (¬p∧¬q).
Since K÷2 (¬p∧¬q) must be a belief set that does not contain ¬p∧¬q and is a subset
of K, it holds that K ÷2 (¬p ∧ ¬q) = Cn(p↔ q).

In the next observation we recall the axiomatic characterization for the epistemic
entrenchment-based contractions that was obtained by Gärdenfors and Makinsson
[GM88]. It illustrates that the class of epistemic entrenchment-based contraction
functions coincides with the class of AGM contraction functions.

Observation 3.2.47 [GM88] Let K be a belief set and ÷ be a contraction function
on K. Then ÷ is an epistemic entrenchment-based contraction if and only if it
satisfies both the basic and the supplementary AGM postulates for contraction.

We note here also that, apart from presenting a way of defining a contraction op-
eration based on an epistemic entrenchment relation (by means of condition (C÷≤)),
Gärdenfors and Makinson [Gär88, GM88] have also exposed a way of proceeding in
the converse direction. More precisely, in [GM88, Theorem 5], it is stated that if ÷

23Note that ¬p < ¬p∨¬q and ¬p < ¬p∨ (p↔ q) cannot hold, since this would imply, by Lemmas
3.2.42 and 3.2.43 and (EE2), that ¬p < ¬p.
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is a contraction function on K that satisfies both the basic and the supplementary
AGM postulates for belief set contraction, then the binary relation ≤ on L defined
by the following condition:

α ≤ β iff α /∈ K ÷ α ∧ β or ⊢ α ∧ β, (C≤)
is an epistemic entrenchment relation with respect to K and, furthermore, it holds
that K ÷ α = K−≤α.

Epistemic entrenchment-based revision is usually defined via epistemic entrenchment-
based contraction through the Levi identity. However it is also possible to define an
entrenchment-based revision directly from an epistemic ensconcement ordering, by
means of the following conditions [LR91, Rot91, HFCF01]:

(C≤⋆) α ≤ β if and only if: If α ∈ K⋆¬(α ∧ β), then β ∈ K⋆¬(α ∧ β).
(C⋆≤) β ∈ K⋆α if and only if either (α → ¬β) < (α → β) or α ⊢⊥.

Next we recall the definition of the severe withdrawals (also known as mild con-
tractions or Rott’s contractions) which was introduced by Rott in [Rot91] and con-
sists of an intuitively appealing simplification of the definition of epistemic entrench-
ment-based contractions.

Definition 3.2.48 [Rot91] Let K be a belief set and ≤ be an epistemic entrenchment
relation with respect to K. The ≤-based severe withdrawal on K is the operation ÷S≤
defined, for any α ∈ L, by:

K ÷S≤ α = { {β ∈ K ∶ α < β} if /⊢ α
K if ⊢ α. (R÷≤)

An operation ÷ on K is a severe withdrawal if and only if there is an epistemic
entrenchment relation ≤ with respect to K such that, for all sentences α ∈ L, K÷α =
K ÷S≤ α.

Severe withdrawals were axiomatically characterized independently by Rott and
Pagnucco in [RP99] and by Fermé and Rodriguez in [FR98a].

Observation 3.2.49 [RP99] Let K be a belief set and ÷ be a contraction function
on K. Then ÷ is a severe withdrawal if and only if it satisfies the following postu-
lates:24 (÷1), (÷2), (÷3), (÷4),

(÷3′) If ⊢ α, then K ÷ α = K. (Failure)
(÷9) If α /∈ K ÷ β, then K ÷ β ⊆ K ÷ α. (Strong Inclusion)

24We note that the axiomatization of severe withdrawals presented in [RP99] consists of the
postulates (÷1), (÷2), (÷4), (÷6), (÷9), and
(�3) If α /∈K or ⊢ α, then K ⊆K − α.
However, in the presence of (÷2), the postulate (�3) is equivalent to the postulates (÷3) and (÷3′)
(taken together). On the other hand, as stated in Observation 3.2.50, (÷6) follows from (÷1),
(÷3′), (÷4) and (÷9).
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The following observation exposes that severe withdrawals also satisfy (÷6).

Observation 3.2.50 Let K be a belief set and ÷ an operator that satisfies (÷1),(÷3′), (÷4) and (÷9). Then ÷ satisfies (÷6).
Proof: A proof for this observation can be found on page 173.

In the following observation we present some other properties that are satisfied
by severe withdrawals.

Observation 3.2.51 [RP99] Let K be a belief set and ÷ be a contraction function
on K. If ÷ is a severe withdrawal, then it satisfies:

(a) If /⊢ α, /⊢ β then α /∈ K ÷ β or β /∈ K ÷ α. (Expulsiveness)

(b) K ÷ α ⊆ K ÷ β or K ÷ β ⊆ K ÷ α. (Linearity)

The properties listed in the previous observation are, respectively, known as
expulsiveness and linearity. Expulsiveness was first presented in [Han99b] and, as
it is mentioned there and also in [RP99, Rot01], it is a highly implausible property
of belief contraction, since according to it two unrelated sentences influence the
result of the contraction by each other. Linearity, which was originally presented
in [FR98a, RP99], also suffers from this same excessive strength. Nevertheless,
Rott and Pagnucco [RP99, Rot01] argue that the concept of severe withdrawal is
still interesting and well-motivated. Lindström and Rabinowicz argued that severe
withdrawals and Gärdenfors’ entrenchment-based contractions should be taken as
“lower” and “upper” bounds and that any realistic entrenchment-based contraction
operator should be situated between them [LR91].

3.2.4 Possible worlds and spheres based operations of belief
change

Along the previous sections we presented different methods to characterize the AGM
operations of change, namely: through constructive methods, in which a series of
steps are defined in order to obtain the change operation and through axiomatic
characterizations, in which the change operators are defined by a set of properties
that they should satisfy. In this section we will present an alternative method
proposed by Adam Grove in [Gro88]. Grove developed a model for the change
functions, based on a system of spheres, inspired by the semantics for counterfactuals
proposed by Lewis in [Lew73]. As stated by Pagnucco:“Grove’s idea can be viewed as
a semantics insofar as it gives “a picture” for AGM belief change. Strictly speaking
however, it deals with syntactic objects” [Pag96].

Definition 3.2.52 A possible world is a maximal consistent subset of L. The set
of all possible worlds will be denoted by ML.25 Sets of possible worlds are called
propositions.

25Note that ML = L ⊥ ⊥.
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From the previous definition it follows that for all α ∈ L and for all M ∈ML it
holds that α ∈M if and only if ¬α /∈M .

Definition 3.2.53 [Gro88] Let R be a set of sentences of L. The set of possible
worlds that contain R is denoted by ∥R∥, i.e.,

∥R∥ = {M ∈ML ∶ R ⊆M}.
If R is inconsistent, then ∥R∥ = ∅. The elements of R are designated R−worlds.

For any sentence α, ∥α∥ is an abbreviation of ∥{α}∥ and its elements are designated
by α-worlds.

Remark 3.2.54 Let ⊺L be the set of all tautologies of L, then ∥⊺L∥ =ML. Thus if
α ∈ Cn(∅), then ∥α∥ =ML.

Observation 3.2.55 [Gro88, Han99b] Let K and H be belief sets and α and β
sentences. Then the following properties hold:

(a) If w ∈ L ⊥ ⊥, then w ∈ ∥α∥ if and only if w /∈ ∥¬α∥.
(b) ∥K ∪H∥ = ∥K∥ ∩ ∥H∥.
(c) ∥K∥ ∪ ∥H∥ ⊆ ∥K ∩H∥.
(d) ∥α∥ ⊆ ∥β∥ if and only if ⊢ α → β.

(e) ∥α ∧ β∥ = ∥α∥ ∩ ∥β∥.
(f) ∥α ∨ β∥ = ∥α∥ ∪ ∥β∥.

Definition 3.2.56 [Gro88] Let V ⊆ML. The theory associated to V is Th(V ) =⋂V . If V = ∅, then Th(V ) = L.

Observation 3.2.57 [Gro88] Let K, H be belief sets and U , V be sets of possible
worlds. Then:

(a) Th(∥K∥) = K (if the underlying logic is compact).

(b) Th(V ) is consistent if and only if V is non-empty.

(c) For any α ∈ L, Th(V ∩ ∥α∥) = Cn(Th(V ) ∪ {α}).
(d) If U ⊆ V , then Th(V ) ⊆ Th(U).
(e) If K ⊆ H, then ∥H∥ ⊆ ∥K∥.

The following remark follows from the previous observation (more precisely from
(a), (d) and (e)). It emphasizes an interesting relation between belief sets and
possible worlds, namely that to greater number of beliefs corresponds a smaller set
of possible worlds and vice-versa.
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Remark 3.2.58 Let K and H be belief sets. Then K ⊆ H if and only if ∥H∥ ⊆ ∥K∥.
It follows from the previous remark that if a sentence α is an element of a belief

set K, then all K-worlds are α-worlds. On the other hand, if {α,¬α}∩K = ∅, then∥K∥ /⊆ ∥α∥ and ∥K∥ /⊆ ∥¬α∥, hence ∥K∥ contains some α-worlds and some ¬α-worlds.

In what follows we will define the operations of expansion, contraction and revi-
sion on belief sets in terms of propositions. One of the main motivations for possible
world models is that they can be represented graphically in a very intuitive way.
Usually a rectangle is used to represent the set of all possible worlds (ML). Ev-
ery point on that rectangle represents a possible world. A region on the surface of
the rectangle represents a set of possible worlds (i.e., a proposition). As Hansson
claimed: “Propositions provide us with a more intuitively clear picture of some as-
pects of belief change” [Han99b].

We will start by the operation of expansion. Expansion of a belief set K by a
sentence α is defined in terms of possible worlds as the theory determined by the
intersection of ∥K∥ with ∥α∥:

K + α = Th(∥K∥ ∩ ∥α∥).
ML

‖α‖

‖K‖

Figure 3.2: The outcome of K + α is given by the intersection of all the worlds
included in the shaded region.

Notice that if ¬α ∈ K, then ∥K∥ ∩ ∥α∥ = ∅, from which it follows that K + α = L
(according to Definition 3.2.56).

The outcome of contracting a belief set K by a sentence α such that α ∈ K∖Cn(∅)
must be a subset of K that does not contain α. In terms of possible worlds, taking
in consideration Remark 3.2.58, this means that the set of possible worlds for the
contracted belief set should contain ∥K∥. In addition, it should also contain some¬α-worlds, in order to ensure the elimination of α. Hence, in possible world models,
the contraction of the belief set K by α takes the form of an addition of some ¬α-
worlds to ∥K∥. The selection of these ¬α-worlds can be performed by a propositional
selection function:
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Definition 3.2.59 [Han99b] Let M ⊆ML. A propositional selection function f for
M is a function such that for all sentences α:

(a) f(∥α∥) ⊆ ∥α∥.
(b) If ∥α∥ /= ∅, then f(∥α∥) /= ∅.

(c) If M ∩ ∥α∥ /= ∅, then f(∥α∥) =M ∩ ∥α∥.
Definition 3.2.60 [Gro88, Han99b] Let K be a belief set. An operation ÷ on K is a
possible worlds-based contraction if and only if there exists a propositional selection
function f for ∥K∥ such that for all α:

K ÷ α = Th(∥K∥ ∪ f(∥¬α∥)).
Figure 3.3 contains a possible graphical representation of ∥K∥ and f(∥¬α∥), from

which K ÷ α is defined (where f is a propositional selection function).

ML‖¬α‖

‖K‖

f(‖¬α‖)

Figure 3.3: The outcome of K÷α is given by the intersection of all worlds included
in the shaded region.

Once more we revisit the Example 3.1.4, this time to illustrate the possible
outcomes of a contraction by a possible worlds-based contraction operator.

Example 3.2.61 Consider a language L that is built from the finite set of proposi-
tional symbols {p, q} and the boolean connectives ¬,∧,∨,→ and ↔. Let K = Cn(¬p∧¬q). In this case it holds that ML = L ⊥ ⊥ = {Cn({p, q}),Cn({¬p, q}),Cn({p,¬q}),
Cn({¬p,¬q})}. Hence: ∥K∥ = {Cn({¬p,¬q})} and ∥p∥ = {Cn({p, q}),Cn({p,¬q})}.
If f is a propositional selection function for ∥K∥, then f(∥p∥) must be either:{Cn({p, q})},{Cn({p,¬q})} or {Cn({p, q}),Cn({p,¬q})}.
Let ÷ be a possible worlds-based contraction operator on K. We intend to determine
the possible outcomes of K ÷ ¬p. If follows, by Definition 3.2.60, that the outcome
of K ÷ ¬p must be one of the following:

� Th({Cn({¬p,¬q})} ∪ {Cn({p, q})}) = Th({Cn({¬p,¬q}),Cn({p, q})} =
Cn({¬p,¬q}) ∩Cn({p, q}) = Cn((¬p ∧ ¬q) ∨ (p ∧ q)) = Cn(p↔ q).26

26Note that: Cn({α,β}) = Cn(α ∧ β) and Cn(α ∨ β) = Cn(α) ∩Cn(β).
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� Th({Cn({¬p,¬q})}∪{Cn({p,¬q})}) = Cn({¬p,¬q})∩Cn({p,¬q}) = Cn(¬q).
� Th({Cn({¬p,¬q})}∪{Cn({p, q}),Cn({p,¬q})}) = Cn({¬p,¬q})∩Cn({p, q})∩
Cn({p,¬q}) = Cn(p ∨ ¬q).

Note that, in this example, the sets of possible outcomes of contraction K by ¬p
by a possible worlds-based contraction and by a partial meet contraction coincide
(as seen in Example 3.2.8). The relation between partial meet contractions and
possible worlds-based contractions is clarified in the following observation.

Observation 3.2.62 [Gro88, Han99b] Let K be a belief set and ÷ be an operation
on K. Then the following statements are equivalent:

(a) ÷ is a partial meet contraction.

(b) ÷ is a possible worlds-based contraction.

From the previous observation we can conclude that an operation ÷ on K is a
possible worlds-based contraction if and only if it satisfies the basic AGM-postulates
for contraction.

In the process of revising a belief set K by a sentence α, α should be incorporated
in the revised set. In terms of possible worlds this means that the set of possible
worlds for the revised belief set should be a subset of ∥α∥. The selection of these
α-worlds is performed by a propositional selection function:

Definition 3.2.63 [Gro88, Han99b] Let K be a belief set. An operation ⋆ on K is
a possible worlds-based revision if and only if there exists a propositional selection
function f for ∥K∥ such that for all α:

K⋆α = Th(f(∥α∥)).
Figure 3.4 contains a possible graphical representation of the set f(∥α∥), from

which K⋆α is defined (where f is propositional selection function).

ML‖α‖

f(‖α‖)

‖K‖

Figure 3.4: The outcome of K⋆α is given by the intersection of all worlds included
in the shaded region.

The following observation illustrates that an operation on a belief set is a possible
worlds-based revision if and only if it is a partial meet revision.
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Observation 3.2.64 [Gro88, Han99b] Let K be a belief set and ⋆ an operation on
K. Then the following statements are equivalent:

(a) ⋆ is a partial meet revision.

(b) ⋆ is a possible worlds-based revision.

In order to capture also the supplementary postulates, for contractions and re-
visions, and thus transitively relational partial meet contractions and revisions we
need to add more structure to the model. Grove in [Gro88] defined a sphere system
centred on ∥K∥ as an ordering over sets of possible worlds where ∥K∥ is the inner-
most sphere. Figuratively, the distance between a possible world and the innermost
sphere reflects its plausibility towards ∥K∥. The closer a possible world is to ∥K∥,
the more plausible it is.

Definition 3.2.65 Let χ be a subset of ML. A system of spheres, or spheres’
system, centred on χ is a collection S of subsets of ML, i.e., S ⊆ P(ML), that
satisfies the following conditions:

(S1) S is totally ordered with respect to set inclusion; that is, if U,V ∈ S, then U ⊆ V
or V ⊆ U .

(S2) χ ∈ S, and if U ∈ S, then χ ⊆ U (χ is the ⊆-minimum of S).
(S3) ML ∈ S (ML is the largest element of S).

(S4) For every α ∈ L, if there is any element in S intersecting ∥α∥ then there is also
a smallest element in S intersecting ∥α∥.

The elements of S are called spheres. For any consistent sentence α ∈ L, the smallest
sphere in S intersecting ∥α∥ is denoted by Sα.

(S1) states that spheres are totally ordered by set inclusion, i.e. that they are
concentric. (S2) states that χ is the minimal sphere. In this thesis whenever we
apply this definition we will assume that χ = ∥K∥, for some belief set K. (S3) says
that the set of all possible worlds, ML, is the maximal sphere. (S4), also known
as the limit assumption states that if a sentence α is consistent,27 then there is a
smallest sphere that intersects ∥α∥.

In Figure 3.5 we present a graphical representation of a system of spheres centred
on ∥K∥, as well as the sets ∥α∥ and Sα, for some α that is neither a tautology nor a
contradiction.

27If α is inconsistent then, by Definition 3.2.53, ∥α∥ = ∅.
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ML

‖α‖

Sα

‖K‖

Figure 3.5: Schematic representation of a system of spheres centred on ∥K∥ display-
ing the sets ∥α∥ and Sα, for some α that is neither a tautology nor a contradiction.

Definition 3.2.66 [Gro88] Let M ⊆ML. A propositional selection function f for
M is sphere-based if and only there is a system of spheres S centred on M such that
for all α:
If ∥α∥ /= ∅, then f(∥α∥) = Sα ∩ ∥α∥.

Intuitively given a system of spheres S centred on M , a sphere-based proposi-
tional selection function f for M selects those α-worlds that are closer to M .

Definition 3.2.67 [Gro88, Han99b] Let K be a belief set and ÷ a possible worlds-
based contraction on K. Then ÷ is an operator of sphere-based contraction if and
only if it is based on a sphere-based propositional selection function.

Example 3.2.68 Consider a language L that is built from the finite set of proposi-
tional symbols {p, q} and the boolean connectives ¬,∧,∨,→ and ↔. Let K = Cn(¬p∧¬q). In this case it holds that ML = L ⊥ ⊥ = {Cn({p, q}),Cn({¬p, q}),Cn({p,¬q}),
Cn({¬p,¬q})}. Hence: ∥K∥ = {Cn({¬p,¬q})}, ∥p∥ = {Cn({p, q}),Cn({p,¬q})},∥q∥ = {Cn({p, q}),Cn({¬p, q})} and ∥p ∨ q∥ = {Cn({p, q}),Cn({p,¬q}),Cn({¬p, q})}.
If f is a propositional selection function for ∥K∥, then f(∥p∥) must be either:{Cn({p, q})}, {Cn({p,¬q})} or {Cn({p, q}),Cn({p,¬q})}. f(∥q∥) must be either:{Cn({p, q})}, {Cn({¬p, q})} or {Cn({p, q}),Cn({¬p, q})}. Suppose now that f is
a sphere-based propositional selection function for ∥K∥ (determined by a system of
spheres S), such that f(∥p∥) = f(∥q∥) = {Cn({p, q})}. Note that, since ∥p ∨ q∥ =∥p∥ ∪ ∥q∥, Sp∨q is the innermost one of the spheres Sp and Sq, i.e. Sp∨q = Sp ∩ Sq.
Therefore Cn({p, q}) ∈ Sp∨q but Cn({p,¬q}) /∈ Sp∨q and Cn({¬p, q}) /∈ Sp∨q. Thus
f(∥p ∨ q∥) = {Cn({p, q})}. Let ÷ be the sphere-based contraction operator based on
f . Then, K ÷ ¬p = K ÷ ¬q = K ÷ (¬p ∧ ¬q) = Th({Cn({¬p,¬q})} ∪ {Cn({p, q})}) =
Cn(p↔ q).

The following observation asserts that the classes of transitively relational partial
meet contractions and of sphere-based contractions coincide.

Observation 3.2.69 [Gro88] Let K be a belief set and ÷ be an operation on K.
Then the following statements are equivalent:
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(a) ÷ is a transitively relational partial meet contraction.

(b) ÷ is a sphere-based contraction.

From the previous observation we can conclude that an operation ÷ on K is a
sphere-based contraction if and only if it satisfies both the basic and supplementary
AGM-postulates for contraction. It also asserts that the outcome of a transitively
relational partial meet contraction of a belief set K by a sentence α consists of the
theory determined by the set of possible worlds that results from the union of the
most plausible ¬α-worlds (with respect to some appropriate ordering) with the K-
worlds, i.e, K÷α consists of the intersection of all the worlds included in the shaded
regions of Figure 3.6.

ML

‖¬α‖
f(‖¬α‖)

‖K‖

Figure 3.6: Transitively relational partial meet contraction. The outcome of K ÷ α
is the intersection of all the worlds contained in the shaded region.

The outcome of a transitively relational partial meet revision of a belief set K by
a sentence α should consist of the theory determined by the set of the most plausible
α-worlds. This is stated in the following observation and illustrated in Figure 3.7.

Observation 3.2.70 [Gro88] Let K be a belief set. An operation ⋆ on K is a
transitively relational partial meet revision if and only if there is a sphere-based
proportional selection function f for ∥K∥ such that for all sentences α:

K⋆α = Th(f(∥α∥)).
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ML

‖α‖
f(‖α‖)

‖K‖

Figure 3.7: Transitively relational partial meet revision. The outcome of K⋆α is the
intersection of all the worlds contained in the shaded region.

3.3 Maps between different belief set contraction

functions

We finish this chapter by presenting in Figures 3.8 and 3.9 diagrams that summarize
the logical relationships between operations of contraction on belief sets analysed in
the previous sections. We note that the class of contraction functions represented in
Figure 3.8 are contained in the class of contraction functions represented in Figure
3.9.

Transitively relational

partial meet contraction

Safe contraction based

on a regular and virtu-

ally connected hierarchy

AGM

contraction

Epistemic entrenchment-

based contraction

Sphere-based

contraction

Figure 3.8: Equivalences between different operations of contraction on belief sets.
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Smooth kernel

contraction

Saturated kernel

contraction

Safe

contraction

Partial meet

contraction

Possible worlds-

based contraction

Basic AGM

contraction

Figure 3.9: Logical relationships between different operations of contraction on belief
sets.

3.4 Summary

In this chapter we presented postulates that characterize the AGM operations of
belief change: expansions, contractions and revisions. We saw that postulates (+1)
to (+6) uniquely characterize K+α in terms of K and α (K+α = Cn(K∪{α})). This
does not happen regarding the set of postulates (÷1) to (÷8) for contractions nor for
the set of postulates (⋆1) to (⋆8) for revisions. Afterwards we presented the Harper
and the Levi identities that allow us to define contractions in terms of revisions and
vice-versa. We saw that if an operator ÷ satisfies the contraction postulates (÷2) to
(÷4) and (÷6), then the operator ⋆ defined from ÷ by means of the Levi identity is
a basic AGM revision operator. And if ÷ is an AGM contraction, then the operator⋆ defined from ÷ by means of the Levi identity is an AGM revision operator. Con-
versely, if ⋆ satisfies the revision postulates (⋆1), (⋆2), (⋆4), (⋆5) and (⋆6), then the
operator ÷ defined from ⋆ by means of the Harper identity satisfies the basic AGM
contraction postulates. Furthermore, if ⋆ is an AGM revision operator, then ÷ is
an AGM contraction operator. Afterwards we presented some explicit definitions
of contraction and revision functions as well as the axiomatic characterization for
each of them. Finally we presented the logical relationships between the classes
of contraction functions mentioned along this chapter. In particular we saw that
the (five) classes of contractions functions formed by transitively relational partial
meet contractions, by safe contractions based on a regular and virtually connected
hierarchy, by sphere-based contractions, by epistemic entrenchment-based contrac-
tions and by AGM contractions, coincide. We also saw that the classes of contraction
functions formed by possible worlds-based contractions, by partial meet contractions
and by basic AGM contractions coincide, and that every safe contraction function
is a partial meet contraction function, but the converse does not hold.



Chapter 4

Some Extensions and Refinements
of the AGM Framework

“The obstacles of your past can become the
gateways that lead to new beginnings.”

Ralph H. Blum

Although the AGM model has quickly acquired the status of standard model of
theory change, several researchers (for an overview see [FH11]) have pointed out its
inadequateness in several contexts and proposed several extensions and generaliza-
tions to that framework. In this chapter we present some of the criticisms made to
the AGM model and some of the proposals developed to deal with its problems.

4.1 Contraction without recovery

One of the AGM postulates for contraction is recovery (or (÷5)). According to
Alchourrón, Gärdenfors and Makinson recovery characterizes the notion of “minimal
change” in the contraction process [Gär88, Mak85, Mak97a]. It is based in the
intuition that “it is reasonable that we get all of the beliefs (...) back again after
first contracting and then expanding with respect to the same belief” [Gär82]. This
is one of the most controversial contraction postulates, since there are examples of
contractions where recovery seems implausible:

Example 4.1.1 [Han91b, Mak97a, Han99b] I believe that ‘Cleopatra had a son’ (p)
and that ‘Cleopatra had a daughter’ (q), and thus also that ‘Cleopatra had a child’
(p∨ q, briefly r). Then I receive information that makes me give up my beliefs in r,
and contract my belief set accordingly, forming K ÷ r. Soon afterwards I learn from
a reliable source that Cleopatra had a child. It seems reasonable to add r to my set
of beliefs without also reintroducing either p or q.

Example 4.1.2 [Han96a, Han99b] I previously entertained the two beliefs ‘George
is a criminal’ (p) and ‘George is a mass murderer’ (q). When I received information
that induced me to give up the first of these beliefs (p), the second (q) had to go as
well (since p would otherwise follow from q). Then I received new information that

47
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made me accept the belief ‘George is a shoplifter’ (r). The new resulting belief set
is the expansion of K ÷ p by r. Since p follows from r, (K ÷ p) + p is a subset of(K ÷ p) + r. By recovery q ∈ (K ÷ p) + p, from which follows that q ∈ (K ÷ p) + r.
Thus, since I previously believed George to be a mass murderer, I cannot any longer
believe him to be a shoplifter without believing him to be a mass murderer.

A possible way to overcome the problematic nature of recovery is to try to replace
it by other postulates capable of capturing the principle of “minimal change”. Some
postulates like relevance [Han89, Han92a], core-retainment [Han91b] and disjunctive
elimination [FKR08] were proposed.1 However, in the context of contractions of
belief sets they are equivalent to recovery in the presence of the other basic AGM
postulates for contraction [Han91b, FH94, FKR08]. Another postulate that captures
the principle of “minimal change” is failure.2 Failure states that contracting by a
tautology leaves the set to be contracted unchanged. However, an operator ÷ defined
as follows:3

K ÷ α = { Cn(∅) if α ∈ K ∖Cn(∅)
K otherwise

satisfies failure and also the postulates (÷1) to (÷6) with the exception of (÷5).
According to this operation, whenever a belief is removed then all non-tautological

beliefs are also discarded. This is far from being a desirable contraction.

Contraction operations that satisfy the basic AGM postulates for contraction
with the exception of recovery are as known as withdrawals [Mak87]. Some al-
ternative classes of contractions on belief sets which do not satisfy the recovery
postulate are Levi contractions [Lev91], severe withdrawals (or mild contractions or
Rott contractions) [Rot91, RP99], semi-contractions [Fer98, FR98b] and systematic
withdrawal [MHLL02].

4.2 Non-prioritized belief change

Other ones of the AGM postulates that were criticized were the success postulates
(both for revision and contraction). In this section we present some of the models
that were proposed in the belief change literature in order to address this criticism.

4.2.1 Non-prioritized revision

The success postulate for revision (or (⋆2)) states that a belief is always incorporated
when revising a belief set by it. This postulate characterizes the principle of primacy
of the new information. Several authors have found this to be an implausible feature

1Disjunctive Elimination: If β ∈K and β ∉K ÷ α then K ÷ α /⊢ α ∨ β.
Relevance: If β ∈ K and β /∈ K ÷ α, then there is a set H such that K ÷ α ⊆ H ⊆ K and H /⊢ α
but H ∪ {β} ⊢ α.
Core-retainment: If β ∈K and β ∉K ÷ α then there is some set H such that H ⊆K and H /⊢ α
but H ∪ {β} ⊢ α.

2Failure: If ⊢ α, then K ÷ α =K.
3This operation was presented in [Han99b].
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of belief revision.
“The AGM model always accepts the new information. This feature appears, in
general, to be unrealistic, since rational agents, when confronted with information
that contradicts previous beliefs, often reject it altogether or accept only parts of
it” [FMT03].
This may happen for various reasons. For example, the new information may lack
on credibility or it may contradict previous highly entrenched beliefs. Belief revision
operators that do not satisfy the success postulate are called non-prioritized belief
revisions [Han99a].

Screened revision

Makinson proposed in [Mak97b] an operator of non-prioritized belief revision desig-
nated by screened revision. Makinson defined a set A of sentences that are immune
to revision. The belief set K should be revised by the input sentence if that sentence
is consistent with A ∩K, otherwise it should be left unchanged. Formally:

K#Aα = { K⋆α if α is consistent with A ∩K
K otherwise

where ⋆ is a basic AGM revision function and for all α, A ∩K ⊆ K⋆α.

A more general approach was proposed by Hansson in [Han97], by replacing A
by a function f that is applied to the sentence to be revised by. This proposal was
called generalized screened revision.

K#f(α)α = { K⋆α if α is consistent with f(α) ∩K
K otherwise

where f is a function such for each sentence α, f(α) is a set of sentences and ⋆ is a
(modified) basic AGM revision function such that for all α, f(α)∩K ⊆ K⋆α. Several
properties can be added to f . For example, the following property was proposed:
f(α) = {β ∶ α < β}, where < is a binary relation on L.

Credibility-limited revision

Credibility-limited revision [HFCF01] is another operator of non-prioritized revision.
When revising a belief set by a sentence, we need to analyse if this sentence is credible
or not. When revising by a credible sentence, the operator works as a basic AGM
revision operator, otherwise it leaves the original belief set unchanged. Formally:

Definition 4.2.1 [HFCF01] Let K be a belief set, ⋆ a basic AGM revision operator
on K and C a subset of L (the set of credible sentences). Then ⊙ is a credibility-
limited revision operator induced by ⋆ and C if and only if:

K⊙ α = { K⋆α if α ∈ C
K otherwise
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This construction can be further specified by adding constrains to the structure
of C (the set of credible sentences). In [HFCF01], the following properties for C
were proposed:

Closure Under Logical Equivalence: If ⊢ α↔ β, and α ∈ C, then β ∈ C.
Single Sentence Closure: If α ∈ C, then Cn(α) ⊆ C.
Disjunctive Completeness: If α ∨ β ∈ C, then either α ∈ C or β ∈ C.
Negation Completeness: α ∈ C or ¬α ∈ C.
Element Consistency: If α ∈ C, then α /⊢⊥.
Expansive Credibility: If K /⊢ α, then ¬α ∈ C.
Revision Credibility: If α ∈ C, then K⊙ α ⊆ C.

Latter, in [FMT03], the following property was presented:

Strong Revision Credibility: If α /∈ C, then K⊙ β ⊢ ¬α.

Closure under logical equivalence states that logically equivalent sentences should
be both elements of C or of L ∖C. Single sentence closure says that if a sentence is
credible then all its logical consequences are also credible. Single sentence closure
implies closure under logical equivalence. Disjunctive completeness states that if two
sentences are not credible, then their disjunction is not credible. Negation complete-
ness states that for any sentence it holds that either it is credible or its negation is
credible. Element consistency states that contradictions are not credible. Expansive
credibility informally states that sentences that are consistent with K are credible.
Revision credibility states that sentences in the outcome of a revision by a credible
sentence are credible. Strong revision credibility says that if a sentence is not credi-
ble, then its negation is implied by any revision outcome.

The following results highlight some interrelations among the above introduced
properties of the set C.

Observation 4.2.2 Let C ⊆ L.

(a) If C satisfies single sentence closure, then C also satisfies closure under logical
equivalence.

(b) If C satisfies negation completeness and element consistency, then Cn(∅) ⊆ C.

Proof: A proof for this observation can be found on page 175.

Observation 4.2.3 Let C be a subset of L that satisfies disjunctive completeness
and element consistency. Then C satisfies negation completeness if and only if
Cn(∅) ⊆ C.

Proof: A proof for this observation can be found on page 175.
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Observation 4.2.4 Let K be a consistent belief set and C ⊆ L. If C satisfies closure
under logical equivalence and expansive credibility, then K ⊆ C.

Proof: A proof for this observation can be found on page 175.

Hansson et al. proposed also a construction of a credibility-limited revision op-
erator adapting the construction suggested by Gärdenfors and Makinsson for an
operator of epistemic-entrenchment revision. To do so, Hansson et al. considered a
binary relation that satisfies (EE1) to (EE4) (but not necessarily (EE5)). Further-
more they use a variant of (C⋆≤).

Definition 4.2.5 [HFCF01] Let K be a belief set and ≤K a relation satisfying (EE1)
to (EE4) with respect to K. Then ⊙≤K is an entrenchment-based credibility-limited
revision operator based on ≤K if and only if:

(C⊙≤) β ∈ K ⊙≤K α if and only if either (α → ¬β) <K (α → β) or β ∈ K and ¬α is
maximally entrenched.

An operator ⊙ on K is an entrenchment-based credibility-limited revision if and
only if there is a relation ≤K that satisfies (EE1) to (EE4) with respect to K such
that for all sentences α:

K⊙ α = K⊙≤K α.
Hansson et al. in [HFCF01] presented also a construction of a credibility-limited
revision operator that consists on an adaptation of Grove’s system of spheres [Gro88].
This adaptation consists on relaxing the standard requirements of the system of
spheres, namely (S3), allowing the existence of (non-credible) worlds outside the
sphere system.

Definition 4.2.6 [HFCF01] Let χ be a subset of ML. An incomplete system of
spheres, or incomplete spheres’ system, centred on χ is a collection S of subsets ofML, i.e., S ⊆ P(ML), that satisfies the following conditions:

(S1) S is totally ordered with respect to set inclusion; that is, if U,V ∈ S, then
U ⊆ V or V ⊆ U .

(S2) χ ∈ S, and if U ∈ S, then χ ⊆ U (χ is the ⊆-minimum of S).
(S3) ⋃S ∈ S.

(S4) For every α ∈ L, if there is any element in S intersecting ∥α∥, then there is
also a smallest element in S intersecting ∥α∥.

The elements of S are called spheres. For any sentence α ∈ L such that ∥α∥∩(⋃S) /=∅, the smallest sphere in S intersecting ∥α∥ is denoted by Sα. If ∥α∥ ∩ (⋃S) = ∅,
then Sα denotes the empty set.
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Definition 4.2.7 [HFCF01] An operator ⊙ on K is a sphere-based credibility-limited
revision if and only if there is an incomplete system of spheres S centred on ∥K∥
such that for all sentences α:

K⊙ α = { Th(∥α∥ ∩ Sα) if ∥α∥ ∩ (⋃S) /= ∅
K otherwise

If α is credible, then the outcome of revising K by α consists of the theory de-
termined by the intersection of ∥α∥ with the narrowest sphere around ∥K∥ (Figure
4.1). If α is not credible, then the outcome of revising K by α is K (Figure 4.2).

ML

‖α‖

‖K‖

Figure 4.1: The outcome of the revision of K by a credible sentence α is the inter-
section of all worlds contained in the shaded region.

‖α‖

ML

‖K‖

Figure 4.2: A belief set K is left unchanged when revising it by a non-credible
sentence.

Representation theorems

In [HFCF01] the credibility-limited revision operators presented above were axiomat-
ically characterized. Before presenting those axiomatic characterizations, we recall
some postulates needed for that purpose.

When considering a credibility-limited revision the success postulate must be
discarded. It must be replaced by weaker properties. The following postulates were
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formulated in [HFCF01] and in [FH01]:

(Relative Success) α ∈ K⊙ α or K⊙ α = K.
(Disjunctive Success) Either α ∈ K⊙ α or ¬α ∈ K⊙ ¬α.
(Strict Improvement) If α ∈ K⊙ α and ⊢ α → β, then β ∈ K⊙ β.
(Regularity) If β ∈ K⊙ α, then β ∈ K⊙ β.
(Strong Regularity) If ¬β /∈ K⊙ α, then β ∈ K⊙ β.
(Disjunctive Distribution) If α ∨ β ∈ K⊙ (α ∨ β), then α ∈ K⊙ α or β ∈ K⊙ β.
(Disjunctive Constancy) If K⊙ α = K⊙ β = K, then K⊙ (α ∨ β) = K.

Relative success states that either a sentence is incorporated in the revision of a
belief set by it, or the original belief set is left unchanged. Disjunctive success states
that either a sentence belong to the revision of a belief set by it or the negation of
that sentence belongs to the revision of that belief set by it. Strict improvement
states that if a certain sentence is incorporated when revising a belief set by it,
then the same thing happens regarding every logical consequence of that sentence.
Regularity says that if a sentence does not belong to the revision of a belief set by
it, then that sentence does not belong to the revision of that belief set by any other
sentence. Strong regularity states that if a sentence does not belong to the revision
of a belief set by it, then its negation belongs to the revision of that belief set by
any given sentence. Disjunctive distribution states that if a disjunction belongs to
the revision of a belief set by it, then the same thing happens regarding at least
one of its disjuncts. Disjunctive constancy is, as disjunctive distribution, a postu-
late concerning revision by disjunctions. It states that a belief set is left unchanged
when revising it by a disjunction, whenever the same thing occurs when revising
that belief set by either one of the two disjuncts.

The following observation illustrates that in the presence of relative success, vacu-
ity and inclusion the postulates disjunctive distribution and disjunctive constancy
are equivalents.

Observation 4.2.8 Let K be a consistent belief set and ⊙ be an operator on K that
satisfies relative success, vacuity and inclusion, then ⊙ satisfies disjunctive distribu-
tion if and only if ⊙ satisfies disjunctive constancy.

Proof: A proof for this observation can be found on page 175.

The following postulates are related to consistency. They will also be used in
the axiomatic characterizations that we will present.

(Weak Consistency Preservation) [KM92] If both K and α are consistent, then
so is K⊙ α.
(Strong Consistency) [Han96b] K⊙ α is consistent.
(Consistency Preservation) [Mak97b] If K is consistent, then K⊙α is consistent.
(Consistent Expansion) [FH99] If K /⊆ K⊙ α, then K ∪ (K⊙ α) ⊢⊥.
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Additionally, in [HFCF01], the following postulate, that consists of an adapta-
tion of subexpansion to the context of non-prioritized revision, was proposed:

(Guarded Subexpansion) If α ∈ K ⊙ α and K ⊙ α /⊢ ¬β, then (K ⊙ α) + β ⊆
K⊙ (α ∧ β).

Guarded subexpansion and subexpansion are equivalent in the presence of success
and closure.

Now we present some relations between the postulates presented above.

Observation 4.2.9 [HFCF01] Let K be a belief set and ⊙ an operator on K. If ⊙
satisfies vacuity and relative success, then ⊙ satisfies consistent expansion.

Observation 4.2.10 [Fal99] Let K a belief set and ⊙ an operator on K. Then,

(a) If ⊙ satisfies strong consistency, then ⊙ satisfies consistency.

(b) If ⊙ satisfies consistency preservation, then ⊙ satisfies weak consistency preser-
vation.

(c) If K is consistent, then ⊙ satisfies consistency preservation if and only if ⊙
satisfies strong consistency.

Observation 4.2.11 [Fer99] Let K be a belief set and ⊙ an operator on K that
satisfies closure, vacuity, consistency, extensionality, strict improvement and rela-
tive success. Then ⊙ satisfies disjunctive factoring if and only if ⊙ satisfies both
superexpansion and guarded subexpansion.

Now we are in conditions to present the representations theorems for the credibility-
limited revision operators mentioned above. We will start by presenting a minimal
representation theorem. Then, we will add conditions on C, the set of credible
sentences, obtaining more specific representation theorems.

Observation 4.2.12 [HFCF01] Let K be a consistent belief set and ⊙ an operator
on K. Then the following three conditions are equivalent:

1. ⊙ satisfies closure, relative success, inclusion, weak consistency preservation,
consistent expansion and extensionality.

2. ⊙ is an operator of credibility-limited revision induced by a basic AGM revision
operator for K and a set C ⊆ L that is closed under logical equivalence.

3. ⊙ is an operator of credibility-limited revision induced by a basic AGM revision
operator for K and a set C ⊆ L that satisfies K ⊆ C and is closed under logical
equivalence.
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Observation 4.2.13 [HFCF01] Let K be a consistent belief set and ⊙ an operator
on K. Then:4

⊙ is an operator of

credibility-limited revision induced

by a basic AGM operator on K and

a set C ⊆ L that is closed under

logical equivalence and satisfies

if and only if ⊙ satisfies closure,

relative success, inclusion, weak

consistency preservation, consistent

expansion, extensionality and

single sentence closure strict improvement

disjunctive completeness disjunctive distribution

negation completeness disjunctive success

element consistency strong consistency

expansive credibility vacuity

By combining the results presented in the above observation (and in previous
ones) we obtain the following representation theorem.

Theorem 4.2.14 Let K be a consistent belief set and ⊙ an operator on K. Then
the following three conditions are equivalent:

1. ⊙ satisfies closure, relative success, inclusion, consistency preservation, exten-
sionality, vacuity, strict improvement and disjunctive distribution.

2. ⊙ is an operator of credibility-limited revision induced by a basic AGM revision
operator for K and a set C ⊆ L that satisfies single sentence closure, disjunctive
completeness, element consistency and expansive credibility.

3. ⊙ is an operator of credibility-limited revision induced by a basic AGM revision
operator for K and a set C ⊆ L that satisfies K ⊆ C, single sentence closure,
disjunctive completeness, element consistency and expansive credibility.

Proof: A proof for this theorem can be found on page 176.

The above theorem presents three alternative ways of characterizing the same
class of operators. This class is formally introduced in the following definition.

4The schema presented in this observation (and whenever a similar schema is used) should be
interpreted as follows:

1. ⊙ is an operator of credibility-limited revision induced by a basic AGM operator on K and
a set C ⊆ L that is closed under logical equivalence and satisfies single sentence closure
iff ⊙ satisfies closure, relative success, inclusion, weak consistency preservation, consistent
expansion, extensionality and strict improvement;

2. ⊙ is an operator of credibility-limited revision induced by a basic AGM operator on K and
a set C ⊆ L that is closed under logical equivalence and satisfies disjunctive completeness
iff ⊙ satisfies closure, relative success, inclusion, weak consistency preservation, consistent
expansion, extensionality and disjunctive distribution;

3. ...
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Definition 4.2.15 Let K be a consistent belief set. An operator ⊙ on K is a basic
credibility-limited revision operator if and only if ⊙ satisfies closure, relative success,
inclusion, consistency preservation, extensionality, vacuity, strict improvement and
disjunctive distribution.

The following theorem presents an axiomatic characterization for operators of
credibility-limited revision induced by an AGM revision operator (instead of by a
basic AGM revision as in Theorem 4.2.14) and a set C, of credible sentences, that
satisfies certain properties.

Theorem 4.2.16 Let K be a consistent belief set and ⊙ an operator on K. Then
the following three conditions are equivalent:

1. ⊙ satisfies closure, relative success, inclusion, consistency preservation, exten-
sionality, vacuity, strict improvement, disjunctive distribution, strong regular-
ity and disjunctive factoring.

2. ⊙ is an operator of credibility-limited revision induced by an AGM revision
operator for K and a set C ⊆ L that satisfies single sentence closure, disjunctive
completeness, element consistency, expansive credibility and strong revision
credibility.

3. ⊙ is an operator of credibility-limited revision induced by an AGM revision
operator for K and a set C ⊆ L that satisfies K ⊆ C, single sentence closure,
disjunctive completeness, element consistency, expansive credibility and strong
revision credibility.

Proof: A proof for this theorem can be found on page 176.

This theorem presents three alternative ways of characterizing the same class
of operators. This class is formally introduced in the following definition and is a
subclass of the class of operators introduced in Definition 4.2.15.

Definition 4.2.17 Let K be a consistent belief set. An operator ⊙ on K is a non-
basic credibility-limited revision operator if and only if ⊙ satisfies closure, relative
success, inclusion, consistency preservation, extensionality, vacuity, strict improve-
ment, disjunctive distribution, strong regularity and disjunctive factoring.

We note that, having in mind Observation 4.2.10 (c), in the axiomatic charac-
terization presented in Theorems 4.2.14 and 4.2.16, consistency preservation can be
replaced by strong consistency.

The following observation illustrates that the classes of entrenchment-based cred-
ibility-limited revision operators, of sphere-based credibility-limited revision opera-
tors and of non-basic credibility-limited revision operators coincide.

Observation 4.2.18 [HFCF01] Let K be a consistent belief set and ⊙ an operator
on K. Then the following three conditions are equivalent:
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1. ⊙ is a non-basic credibility-limited revision operator.

2. ⊙ is an entrenchment-based credibility-limited revision operator.

3. ⊙ is a sphere-based credibility-limited revision operator.

Selective revision

In a standard (basic) AGM revision the new information is always accepted. In
credibility-limited revisions, the new information is either fully accepted or com-
pletely rejected. In [FH99] Fermé and Hansson proposed a new operator that allows
the acceptance of only part of the new information and the rejection of the rest of
it. They called this operator selective revision. The following example, motivates
the proposal of this operator:

Example 4.2.19 [FH99] Suppose one day when I got home my youngest daughter
tells me that a dinosaur broke her grandmother’s vase in the living room. I will
probably accept part of the information, namely that the vase is broken and I will
certainly reject the part concerning the dinosaur.

An operator of selective revision is constructed from a basic AGM revision and
a transformation function f from L to L:

Definition 4.2.20 [FH99] Let K be a belief set, ⋆ a basic AGM revision operator
for K and f a function from L to L. The selective revision ⊚, based on ⋆ and f , is
the operation such that for all sentences α:

K⊚ α = K⋆f(α).
f is the transformation function on which ⊚ is based.

Intuitively, the transformation function f selects the credible part of every sen-
tence. A natural restriction is that f(α) should not contain more information that
the one that is contained in α (i.e., ⊢ α → f(α)). Some plausible properties that a
transformation function may be expected to satisfy are:5

Implication: ⊢ α → f(α).
Idempotence: ⊢ f(f(α))↔ f(α).
Monotony: If ⊢ α → β, then ⊢ f(α)→ f(β).
Extensionality: If ⊢ α↔ β, then ⊢ f(α)↔ f(β).
Consistency Preservation: If /⊢ ¬α, then /⊢ ¬f(α).
Consistency: /⊢ ¬f(α).
Weak Maximality: If K /⊢ ¬α, then ⊢ f(α)↔ α.

When adding properties to the transformation function f , several additional
properties are obtained for the selective revision operator on which f is based.
In [FH99] several representation theorems for operators of selective revision were
presented depending on the properties that the associated transformation function
f satisfies.

5Several other properties were proposed in [FH99].
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4.2.2 Non-prioritized contraction

The success postulate for contractions states that a non-tautological sentence is
always removed when contracting by it (i.e. all non-tautological sentences are re-
tractable). As pointed out by Rott in [Rot92b] this is not a fully realistic require-
ment. An agent can have several non-tautological beliefs that he/she is not willing,
for various reasons, to give up. In [FH01], Fermé and Hansson proposed an oper-
ator ⊖ on a belief set K, based on a basic AGM contraction operator ÷ and a set
R of retractable sentences. The operator ⊖ has the same behaviour of the basic
AGM contraction for the sentences in R, but is such that it leaves the set to be
contracted unchanged whenever the belief, that is to be contracted, is not included
in R. Formally:

Definition 4.2.21 [FH01] Let K be a belief set, ÷ be a basic AGM contraction on
K and R be a subset of L (the set of retractable sentences). Then ⊖ is the shielded
contraction operator induced by ÷ and R if and only if:

K⊖α = { K ÷ α if α ∈ R
K otherwise

This construction can be further specified by adding constrains to the structure
of R (the set of retractable sentences). In [FH01], the following rationality criteria
for R were proposed:

Conjunctive Completeness: If α ∧ β ∈ R, then α ∈ R or β ∈ R.
Non-retractability Propagation: If α ∉ R, then Cn(α) ∩R = ∅.
Non-retractability Preservation: L ∖R ⊆ K⊖α.

Conjunctive completeness states that if α and β are irretractable, then α ∧ β is
also irretractable.6 In fact, in order to remove a conjunction we must remove at least
one of its conjuncts. Therefore, a conjunction of two irretractable sentences must
itself be irretractable. Non-retractability propagation says that if a sentence α is irre-
tractable, then all its logical consequences are also irretractable. Non-retractability
preservation states that irretractable sentences cannot be removed, independently of
the (shielded) contraction performed, i.e. irrectractable sentences should be (kept)
in the outcome of the (shielded) contraction by any sentence.

Fermé and Hansson proposed also a construction of a shielded contraction op-
erator adapting the construction suggested by Gärdenfors and Makinsson for an
operator of epistemic-entrenchment contraction. To do so they considered a binary
relation that satisfies (EE1) to (EE4) (but not necessarily (EE5)). Condition (EE5)
was discarded since in shielded contractions (some) non-tautological sentences may
be also considered maximally entrenched. Furthermore they imposed a slight modi-
fication on condition (C−≤), by replacing ⊢ α by α /<K ⊺ (precisely because in shielded
contractions not only tautologies are maximally entrenched).

6The sentences included in R are called retractable and the remaining ones are designated by
irretractable.
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Definition 4.2.22 [FH01] Let K be a belief set and ≤K a relation satisfying (EE1)
to (EE4) with respect to K. Then ⊖≤K is the entrenchment-based shielded contrac-
tion based on ≤K if and only if:

K⊖≤Kα = { {β ∈ K ∶ α <K α ∨ β} if α <K ⊺
K otherwise .

An operator ⊖ on K is an entrenchment-based shielded contraction if and only if
there exists a relation ≤K that satisfies (EE1) to (EE4) with respect to K, such that
for all sentences α:

K⊖α = K⊖≤Kα
Fermé and Hansson presented also another construction based on Grove’s sys-

tems of spheres [Gro88].

Definition 4.2.23 [FH01] An operator ⊖ on K is a sphere-based shielded contrac-
tion if and only if there is an incomplete system of spheres S centred on ∥K∥ such
that for all sentences α:

K⊖α = Th(∥K∥ ∪ (S¬α ∩ ∥¬α∥)).
Representation theorems

In [FH01] the shielded contraction operators that we presented so far were axiomat-
ically characterized. Before we present these axiomatic characterizations we will
recall some postulates needed in those axiomatizations.

When considering shielded contractions (as opposed to standard contractions)
the success postulate is the one that has to be removed. It must be replaced by
weaker properties, that are capable of capturing the intuitions underlying shielded
contractions, as it is the case of the following postulates.

(Relative Success) [Rot92b] K⊖α = K or α /∈ K⊖α.
(Persistence) [FH01] If K⊖β ⊢ β, then K⊖α ⊢ β.
(Conjunctive Constancy) [FH01] If K⊖α = K⊖β = K, then K⊖(α ∧ β) = K.
(Success Propagation) [FH01] If K⊖β ⊢ β and ⊢ β → α, then K⊖α ⊢ α.

Relative success states that when contracting by any given sentence either that
sentence is effectively removed, or the belief set is left unchanged. Persistence in-
tuitively states that if a belief is kept when trying to contract a belief set K by it,
then it should also be kept when contracting K by any other belief. Conjunctive
constancy states that if the contraction by a given conjunction causes a change, then
the same thing happens when contracting by at least one of its conjuncts. Success
propagation states that if a certain sentence is not removed when trying to contract
a belief set by it, then the same thing happens regarding every logical consequence
of that sentence.

The following observation illustrates some relations between (shielded) contrac-
tion postulates.
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Observation 4.2.24 [FH01] Let K be a belief set and ⊖ an operator on K.

(a) If ⊖ satisfies persistence, then ⊖ satisfies success propagation.

(b) If ⊖ satisfies inclusion and conjunctive overlap, then ⊖ satisfies conjunctive
constancy.

We are now in conditions to present the axiomatic characterizations for the
shielded contraction operators that we mentioned above.

Observation 4.2.25 [FH01] Let K be a consistent belief set and ⊖ an operator on
K. Then the following conditions are equivalent:

1. ⊖ satisfies closure, inclusion, vacuity, extensionality, recovery, relative success,
success propagation and conjunctive constancy.

2. ⊖ is an operator of shielded contraction induced by a basic AGM operator for
K and a set R ⊆ L that satisfies non-retractability propagation and conjunctive
completeness.

3. ⊖ is an operator of shielded contraction induced by a basic AGM contraction
operator for K and a set R ⊆ L that satisfies L ∖K ⊆ R, non-retractability
propagation and conjunctive completeness.

The shielded contraction operators characterized in the above observation will
be called basic shielded contractions. We formalize this concept in the following
definition.

Definition 4.2.26 Let K be a consistent belief set. An operator ⊖ on K is a basic
shielded contraction operator if and only if ⊖ satisfies closure, inclusion, vacuity,
extensionality, recovery, relative success, success propagation and conjunctive con-
stancy.

In the following observation we present an axiomatic characterization for a sub-
class of the class of operators introduced in the previous definition. We highlight
that in this observation ⊖ is induced by an AGM contraction (instead of by a basic
AGM contraction as the shielded contraction operators characterized in Observation
4.2.25).

Observation 4.2.27 [FH01] Let K be a consistent belief set and ⊖ an operator on
K. Then the following conditions are equivalent:

1. ⊖ satisfies closure, inclusion, vacuity, extensionality, recovery, relative success,
persistence, conjunctive inclusion and conjunctive overlap.

2. ⊖ is an operator of shielded contraction induced by an AGM contraction (or
equivalently by a transitively relational partial meet contraction) operator for
K and a set R ⊆ L that satisfies non-retractability propagation, conjunctive
completeness and non-retractability preservation.
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3. ⊖ is an operator of shielded contraction induced by an AGM contraction op-
erator for K and a set R ⊆ L that satisfies L ∖K ⊆ R, non-retractability
propagation, conjunctive completeness and non-retractability preservation.

The above observation presents three alternative ways of characterizing a certain
class of operators. An operator in this class will be designated by non-basic shielded
contraction operator.

Definition 4.2.28 Let K be a consistent belief set. An operator ⊖ on K is a non-
basic shielded contraction operator if and only if ⊖ satisfies closure, inclusion, vacu-
ity, extensionality, recovery, relative success, persistence, conjunctive inclusion and
conjunctive overlap.

The following observation illustrates that the classes of entrenchment-based shielded
contraction operators, of sphere-based shielded contraction operators and of non-
basic shielded contraction operators coincide.

Observation 4.2.29 [FH01] Let K be a consistent belief set and ⊖ an operator on
K. Then the following conditions are equivalent:

1. ⊖ is a non-basic shielded contraction operator.

2. ⊖ is an entrenchment-based shielded contraction operator.

3. ⊖ is a sphere-based shielded contraction operator.

4.2.3 Generalized Levi and Harper identities

Revisions and contractions can be defined in terms of each other through the Levi
identity and the Harper identity [Gär88]. In [FH01], Fermé and Hansson provided
similar relationships between shielded contractions and credibility-limited revisions.
To do so they needed to reformulate the Levi identity since an operator of revision
defined in terms of the Levi identity always satisfies success. That is not the case
in credibility-limited revisions. In [FH01] the following condition was proposed for
defining an operator (of credibility-limited revision) ⊙ by means of an operator (of
shielded contraction) ⊖:

(Consistency-preserving Levi Identity) K⊙α = { (K⊖¬α) + α if K⊖¬α /⊢ ¬α
K otherwise

The following observation illustrates some interrelations between postulates of
shielded contraction and of credibility-limited revision whenever the credibility-
limited revision operator under consideration is obtained from the operator of shielded
contraction through the consistency-preserving Levi identity.

Observation 4.2.30 [FH01] Let K be a belief set and ⊖ be an operator on K. Let⊙ be defined from ⊖ via the consistency-preserving Levi identity. Then:
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If ⊖ satisfies then ⊙ satisfies

—
closure, consistency preservation

and relative success
inclusion inclusion

inclusion and vacuity vacuity

extensionality extensionality

inclusion and persistence strong regularity

relative success, vacuity,
extensionality and conjunctive

constancy
disjunctive constancy

inclusion and success propagation strict improvement

extensionality, relative success
conjunctive inclusion

guarded subexpansion

closure, inclusion, extensionality,
recovery, persistence, relative

success and conjunctive overlap
superexpansion

The following observation can be seen as the dual of the previous one. It
illustrates some interrelations between postulates of shielded contraction and of
credibility-limited revision whenever the shielded contraction operator under con-
sideration is obtained from the operator of credibility-limited revision through the
Harper identity:

K⊖α = K ∩K⊙ ¬α.
Observation 4.2.31 [FH01] Let K be a belief set and ⊙ be an operator on K. Let⊖ be defined from ⊙ via the Harper identity. Then:

(a) It holds that:

If ⊙ satisfies then ⊖ satisfies
— inclusion

closure closure

vacuity vacuity

extensionality extensionality

closure and relative success recovery

closure, consistency preservation
and relative success

relative success

vacuity, consistency preservation,
extensionality, relative success and

disjunctive constancy
conjunctive constancy

closure, extensionality, relative
success and superexpansion

conjunctive overlap

vacuity, strong regularity, strict
improvement and guarded

subexpansion
conjunctive inclusion
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(b) If K is a consistent belief set, then:

If ⊙ satisfies then ⊖ satisfies
closure, consistency preservation

and strong regularity
persistence

strict improvement, relative success
and consistency preservation

success propagation

The following result highlights the interrelations among the different classes
of credibility-limited revision operators and of shielded contraction operators con-
sidered, provided that the former are obtained from the latter by means of the
consistency-preserving Levi identity.

Theorem 4.2.32 Let K be a consistent belief set, ⊖ be an operator on K and ⊙ be
the operator defined from ⊖ via the consistency-preserving Levi identity. Then:

(a) If ⊖ is a basic shielded contraction operator, then ⊙ is a basic credibility-limited
revision operator on K.

(b) If ⊖ is a non-basic shielded contraction operator, then ⊙ is a non-basic credibility-
limited revision operator on K.

Proof: A proof for this theorem can be found on page 177.

The following result can be seen as the dual of the previous one. It highlights
the interrelations among the classes of shielded contraction operators and the classes
of credibility-limited revision operators considered, provided that the former are
obtained from the latter by means of the Harper identity.

Theorem 4.2.33 Let K be a consistent belief set, ⊙ be an operator on K and ⊖ be
an operator defined from ⊙ via the Harper identity. Then:

(a) If ⊙ is a basic credibility-limited revision operator, then ⊖ is a basic shielded
contraction operator on K.

(b) If ⊙ is a non-basic credibility-limited revision operator, then ⊖ is a non-basic
shielded contraction operator on K.

Proof: A proof for this theorem can be found on page 178.

Now we will illustrate that the operators of non-prioritized contraction and re-
vision are interdefinable through the Harper and the consistency-preserving Levi
identities. The following definition introduces functions that take us from contrac-
tions to revisions and vice-versa.

Definition 4.2.34 [Mak87, FH01] For every operator ⊖, R(⊖) is the operator gen-
erated from ⊖ through the consistency-preserving Levi identity. Furthermore, for
every operator ⊙, C(⊙) is the operator generated from ⊙ by the Harper identity.
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Theorem 4.2.35 [FH01] Let K be a belief set and ⊖ an operator for K that satisfies
the contraction postulates closure, inclusion, recovery, extensionality and relative
success. Then C(R(⊖)) = ⊖.7

Theorem 4.2.36 [FH01] Let K be a belief set and ⊙ an operator for K that sat-
isfies the revision postulates closure, vacuity, relative success, extensionality and
consistency preservation. Then R(C(⊙)) = ⊙.8

4.3 Belief bases

One criticism of the AGM framework is that it uses logically closed sets (or belief
sets) to model the belief state of an agent. This can be considered undesirable for a
number of reasons. Firstly, belief sets are very large entities, and its use is not ade-
quate for computational implementations. Any attempt to computably implement
the theory of belief change will have to be based on a finite representation. The
logical closure of belief sets raises other issues not related to computational imple-
mentations. Rott pointed out in [Rot00b] that the AGM theory is unrealistic in its
assumption that epistemic agents are “ideally competent regarding matters of logic.
They should accept all the consequences of the beliefs they hold (that is, their set
of beliefs should be logically closed), and they should rigorously see to it that their
beliefs are consistent”. In the AGM framework agents have unlimited memory and
ability of inference. Furthermore, as Gärdenfors and Root pointed out “when we
perform revisions or contractions, it seems that we never do it to the belief set itself
(. . . ) but rather on some typically finite base for the belief set” [GR95]. Formally,
a belief base is a subset of L that is not (necessarily) logically closed. A set A is a
base for a belief set K if and only if Cn(A) = K. A sentence α is believed if and
only if α ∈ Cn(A).

There are two distinct points of view on the use of belief bases to represent the
belief state of an agent. In one of these approaches, supported by Dalal [Dal88], all
the beliefs of the belief set have equal status and belief bases are a merely expressive
resource. The fact that a sentence belongs to a belief base A does not distinguish

7We note that extensionality is not included in the list of postulates of the theorem presented
in [FH01]. However, in the proof for this theorem there presented it is stated that

K⊙ ¬α = { (K⊖α) + ¬α if K⊖α /⊢ α
K otherwise

and it seems that to justify this equality it is necessary to use ⊖ extensionality, since the equality
that is obtained from the Levi-consistency identity is the following:

K⊙ ¬α = { (K⊖¬¬α) + ¬α if K⊖¬¬α /⊢ α
K otherwise

8We note that extensionality is not included in the list of postulates of the theorem presented in
[FH01]. However, in the proof for this theorem there presented it is stated that K⊖¬α =K⊙α∩K
and it seems that to justify this equality it is necessary to use ⊙ extensionality, since the equality
that is obtained from the Harper identity is the following: K⊖¬α =K⊙ ¬¬α ∩K.
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it from the other sentences of the correspondent belief set Cn(A) that are not in
the belief base. Dalal, in [Dal88], formulated the principle of irrelevance of syntax,
according to which, the outcome of a belief change operation should not depend on
the syntax (or representation) of either the old or the new information.

In other (more common) approach the elements of a belief base represent those
beliefs of an agent that have independent standing. Beliefs that are not on the
belief base, but are in its closure, have a different status, being merely derived
beliefs. Merely derived beliefs are automatically removed when the beliefs of the
underlying belief base that support them are withdrawn.

Example 4.3.1 [Han91a, Han99b] I belief that Paris is the capital of France (α). I
also belief that there is milk in my fridge (β). Thus I belief that Paris is the capital
of France if and only if there is milk in my fridge (α ↔ β). I open the fridge and
noticed that there is no milk. Thus I have to replace my believe in β by ¬β. I cannot
retain both my beliefs in α and α ↔ β. In a belief set approach, α and α ↔ β are
both elements of the belief set. α↔ β is not removed immediately, it must be ensured
by a mechanism (such as a selection function) that chooses between removing α or
α ↔ β. In a belief base approach, the merely derived belief α ↔ β is automatically
removed when β is retracted.

This use of belief bases provides more expressive power than the one that is possi-
ble by means of belief sets. As claimed by Hansson in [Han99b], for every belief base
A there is only a belief set Cn(A) that represents the set of beliefs held according
to A. On the other hand, the same belief set can be represented by different belief
bases. For example, the belief bases A1 = {α,β} and A2 = {α,α↔ β} generate the
same belief set since Cn(A1) = Cn(A2). The sets A1 and A2 are statically equiva-
lent, in the sense that Cn(A1) = Cn(A2), but are not dynamically equivalent, since
they do not behave in the same way under operations of change [Han92a, Han99b].
The following example, presented in [Han99b], clarifies these concepts. Imagine that
A1 and A2 represent the belief state of the agents x and y, respectively. Suppose
now that these agents receive and accept the information that α is false. Then x
ends up with the basic beliefs ¬α and β, while the resulting basic beliefs of the agent
y are ¬α and α↔ β. Therefore, after receiving the new information agent x believes
in β while agent y believes in ¬β.

The following example illustrates the “cost” of performing changes on belief sets
rather than in belief bases.

Example 4.3.2 [Han91a, Han99b] Suppose that an agent believes in α. Then for
every sentence β in the language, it holds that α ∨ β and α ∨ ¬β are both in the
belief set. In a belief set approach, in order to remove α we must retract either α∨β
or α ∨ ¬β (or both). Thus we must give up at least as many beliefs as there are
sentences in the language. In a belief base approach if α is in the belief base and is
not implied by any subset of that belief base then α is the only sentence that has to
be removed.
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Another important feature of belief bases is that they allow to distinguish be-
tween different inconsistent belief states. This does not happen in the belief set ap-
proach since there is only one inconsistent belief set, namely L. Let A1 and A2 be the
following inconsistent belief bases: A1 = {p,¬p, q, r, s} and A2 = {p,¬p,¬q,¬r,¬s}.
The outcome of contracting these belief bases by ¬p gives rise to two different con-
sistent belief bases.

In general, contractions on belief bases do not satisfy recovery. This has been
pointed out as another one of their main appealing features.

From the aspects pointed out in this section it seems better to represent belief
states by belief bases instead of by belief sets. However, this may not be the case.
Gärdenfors in [Gär90] claimed that many of the conceptual breakthroughs of bases
for belief sets can be modelled by beliefs sets together with the notion of epistemic
entrenchment of beliefs. Gärdenfors and Rott in [GR95], pointed out that the choice
between belief bases and belief sets may depend on the particular application area.
“Within computer science applications, bases seems easier to handle since they are
mostly finite structures. (...) Changes of belief sets rather than bases represents
what an ideal reasoner would or should do when forced to reorganize his beliefs.
Belief set dynamics offers a competence model which helps us to understand what
people — and AI systems, for that matter — should do if they were not bounded
by limited logical reasoning capabilities” [GR95].

Chapter 5 is devoted to recalling some of the main models of belief base change
so far presented in the literature.

4.4 Iterated change

The problem of constructing models for iterated change is probably one of the most
studied problems in the context of belief change. An iterated (or repeated) change
consists of the repeated application of change operations. For example, ((K⋆α)⋆β)÷
δ. The AGM model has been criticized for not addressing the problem of iterated
(or repeated) change. This may be surprising at first sight. If the AGM framework
correctly formalizes one-step belief revision,9 when attempting to execute a sequence
of revisions, why not simply treat such a sequence as series of one-step revisions?
This is based on the fact that in doing so, we are assuming that each one-step revision
of the series is independent of the others. This fails to capture the fact that all such
one-step revisions are carried out by the same rational agent and therefore must be
related. Standard AGM operations of change take us from a complete belief state
to an incomplete belief state (belief set only). This is not enough when performing
iterated change. As stated by Darwiche and Pearl “The AGM theory is expressed
as a set of one-step postulates which tell us what properties the next state of belief
ought to have, given the current beliefs and the current evidence. However, the

9Since most of the literature on iterated change deals with revision (rather than contraction),
here we will focus our attention on iterated revision.
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language of one-step postulates is not rich enough to regulate sequential revisions
because such a language deals only with transformation of beliefs and not with
transformation of epistemic states. An agent’s epistemic state contains not merely
what the agent believes currently but also an encoding of how the agent would
modify his/her beliefs given any hypothetical evidence” [DP94]. These facts have
been discussed by the belief change community and several proposals were presented
that have in common the following characteristic: the AGM model is expanded in
such a way that the operation of change has to yield a complete representation of
a belief state as its outcome, not only the modified belief set. There are several
proposed ways to represent such an epistemic state. One of these approaches is an
adaptation of Grove’s system of spheres [Gro88].

Note that the AGM framework does not provide insight of how to perform it-
erated revision using systems of spheres. To see this, consider a belief set K and
a system of spheres S centred on ∥K∥. Suppose that we wish to revise K by α,
where α /∈ K. We will obtain a new belief set, K⋆α, which is fully determined by
K, α and S. Assume now that we wish to revise K⋆α by another sentence β such
that K⋆α ⊢ ¬β and /⊢ ¬β. Unfortunately, the AGM framework does not provide
a system of spheres to perform this revision. S cannot be used because of condi-
tion (S2). This condition states that the innermost sphere must be formed by the(K⋆α)-worlds and not by the K-worlds as it is the case in S. Thus a new system of
spheres S′, centred on ∥K⋆α∥, is needed to perform the revision of K⋆α by β. The
AGM postulates do not give insight of how to produce S′. The AGM paradigm is
focused only on one-step belief change, it does not address the problem of iterated
change.

What we need is a change operation that gives rise to a new system of spheres,
from which the new belief set can be inferred and which may itself be the subject
of further changes. The most influential formulation of this approach for iterated
revision is due to Darwiche and Pearl [DP97]. They formulated a revision operator
on belief states instead of an operation on belief sets.

Definition 4.4.1 [Han92b, DP97]
Let ξ be a set of objects called belief states. A function s ∶ ξ → P(L) is a support

function (from ξ to P(L)) if and only if for all Ψ ∈ ξ, s(Ψ) is a belief set.

Intuitively, given a belief state Ψ, s(Ψ) represents its associated belief set. If the
elements of ξ are finite-based, then s can be replaced by a function B from ξ to L,
such that B(Ψ) is a single sentence that is equivalent with the conjunction of s(Ψ).
In what follows we will consider a finitary propositional language L.

Darwiche and Pearl adapted, from [KM91], the Katsuno and Meldelzon postu-
lates (R1) to (R6) for revision to the context of epistemic states whose associated
belief sets are represented by a single sentence.10 The following are the postulates
proposed by Darwiche and Pearl in [DP97] for revision operators on belief states.

10In Katsuno and Meldelzon’s framework ([KM91]) the beliefs of an agent are represented by a
sentence ψ in a finitary propositional language L. The outcome of revising ψ by a sentence µ is
also a sentence, denoted by ψ⋆µ.
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In these postulates Ψ is a belief state.

(CR1) B(Ψ⋆µ) ⊢ µ.
(CR2) If B(Ψ) ∧ µ /⊢⊥, then ⊢ B(Ψ⋆µ)↔ B(Ψ) ∧ µ.
(CR3) If µ /⊢⊥, then B(Ψ⋆µ) /⊢⊥.
(CR4) If ⊢ µ1 ↔ µ2, then ⊢ B(Ψ⋆µ1)↔ B(Ψ⋆µ2).11

(CR5) If B(Ψ⋆µ) ∧ φ ⊢ B(Ψ⋆(µ ∧ φ)).
(CR6) If B(Ψ⋆µ) ∧ φ /⊢⊥, then B(Ψ⋆(µ ∧ φ)) ⊢ B(Ψ⋆µ) ∧ φ.

Darwiche and Pearl [DP97] presented a representation theorem for postulates
(CR1) to (CR6) with respect to a revision mechanism based on total pre-orders
over possible worlds:

Definition 4.4.2 [KM91, DP97, JT07] A function that maps each belief state Ψ to
a total pre-order ≤Ψ on ML is called a faithful assignment over belief states if and
only if:

(a) If w1 ⊢ B(Ψ) and w2 ⊢ B(Ψ), then w1 =Ψ w2.

(b) If w1 ⊢ B(Ψ) and w2 /⊢ B(Ψ), then w1 <Ψ w2.

where w1 =Ψ w2 is defined as w1 ≤Ψ w2 and w2 ≤Ψ w1; and w1 <Ψ w2 means that
w1 ≤Ψ w2 and w2 /≤Ψ w1.

The intuition meaning of w1 ≤Ψ w2 is that w1 is at least as plausible (or at least
as preferred) as w2 in Ψ.

Observation 4.4.3 [DP97] A revision operator ⋆ satisfies postulates (CR1) to (CR6)
if and only if there is a faithful assignment that maps a belief state Ψ to a total pre-
order ≤Ψ such that: ∥B(Ψ⋆α)∥ =min(∥α∥ ,≤Ψ).

Darwiche and Pearl showed that the Katsuno and Meldelzon postulates alone
are too weak to adequately characterize iterated belief revision. To overcome this,
Darwiche and Pearl proposed in [DP97] four additional postulates that are known
as the DP-postulates for iterated revision:

(DP1) If φ ⊢ µ, then ⊢ B((Ψ⋆µ)⋆φ)↔ B(Ψ⋆φ).
(DP2) If φ ⊢ ¬µ, then ⊢ B((Ψ⋆µ)⋆φ)↔ B(Ψ⋆φ).
(DP3) If B(Ψ⋆φ) ⊢ µ, then B((Ψ⋆µ)⋆φ) ⊢ µ.
(DP4) If B(Ψ⋆φ) /⊢ ¬µ, then B((Ψ⋆µ)⋆φ) /⊢ ¬µ.

(DP1) states that if an agent obtains two pieces of information being the second
more specific, then the first one should be ignored. (DP2) states that if an agent

11This postulate was originally formulated in [DP97] as: If Ψ1 = Ψ2 and ⊢ µ1 ↔ µ2, then⊢ B(Ψ1⋆µ1)↔ B(Ψ2⋆µ2). Here we are considering the modified version of this postulate presented
in [JT07].
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receives two contradictory pieces of information, then the last one prevails. (DP3)
states that if an agent acquires a piece of information µ but loses it after receiving
φ, then µ should never have been part of the belief of that agent if he had acquired
φ in the first place. (DP4) essentially states that a piece of information cannot
contribute to its own demise. If the information µ is not contradicted after receiving
φ, then it should remain that way when the information φ is preceded by µ.

Darwiche and Pearl showed that each one of the postulates (DP1) to (DP4) can
be represented semantically as the following observation illustrates.

Observation 4.4.4 [DP97] Suppose that a revision operator satisfies postulates
(CR1) to (CR6). The operator satisfies postulates (DP1) to (DP4) if and only
if the operator and its corresponding faithful assignment satisfy:
(DPR1) If w1 ⊢ µ and w2 ⊢ µ, then w1 ≤Ψ w2 if and only if w1 ≤Ψ⋆µ w2.
(DPR2) If w1 ⊢ ¬µ and w2 ⊢ ¬µ, then w1 ≤Ψ w2 if and only if w1 ≤Ψ⋆µ w2.
(DPR3) If w1 ⊢ µ, w2 ⊢ ¬µ and w1 <Ψ w2, then w1 <Ψ⋆µ w2.
(DPR4) If w1 ⊢ µ, w2 ⊢ ¬µ and w1 ≤Ψ w2, then w1 ≤Ψ⋆µ w2.

(DPR1) (respectively (DPR2)) states that the order among the µ−worlds (re-
spect. ¬µ−worlds) remains unchanged after a revision by µ. (DPR3) (respectively
(DPR4)) states that if a µ−world is strictly (respect. weakly) preferred to a ¬µ-world
then that strict (respect. weak) preference is kept after revising by µ.

Postulates (DP1) to (DP4) have become a reference for iterated revision, and all
other related proposals are almost invariably compared to this one. However Jin and
Thielscher have pointed out that these postulates are too permissive: “They support
operators by which all newly acquired information is cancelled as soon as an agent
learns a fact that contradicts some of its current beliefs” [JT07]. Jin and Thielscher
[JT07] and Booth and Meyer [BM06] have proposed independently the following
condition, known as the independence postulate, instead of (DP3) and (DP4):

(Ind) If B(Ψ⋆φ) /⊢ ¬µ, then B((Ψ⋆µ)⋆φ) ⊢ µ.

(Ind) essentially states that if a piece of information µ is not contradicted after
revising by φ, then it should be believed after revising first by µ and then by φ.

The following observation illustrates that in the presence of postulates (CR1) to
(CR6), postulate (Ind) implies (DP3) and (DP4).

Observation 4.4.5 [JT07] Suppose that a revision operator satisfies postulates (CR1)
to (CR6). If the operator satisfies postulate (Ind), then it also satisfies postulates
(DP3) and (DP4).

Semantically, postulate (Ind) corresponds to the following condition:
(R-Ind) If w1 ⊢ µ, w2 ⊢ ¬µ and w1 ≤Ψ w2, then w1 <Ψ⋆µ w2.
This stated in the next observation.

Observation 4.4.6 Suppose that a revision operator satisfies postulates (CR1) to
(CR6). The operator satisfies postulate (Ind) if and only if the operator and its
corresponding faithful assignment satisfy (R-Ind).
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(R-Ind) essentially states that if a µ−world w1 is weakly preferred to a ¬µ−world
w2, then after revising by µ, w1 should be strictly preferred to w2.

In another approach to the problem of iterated revision, Nayak in [Nay94] pro-
posed a model based on (a modified version of) the concept of epistemic entrench-
ment. In Nayak’s model not only the belief states but also the inputs are (modified)
epistemic entrenchments. In this model the initial epistemic entrenchment ≤ is re-
vised by another epistemic entrenchment ≤′ producing a new epistemic entrenchment
(≤ ∗ ≤′). The input ≤′ encodes the belief set K′ that it relates to. The ordering on
K′ is related to the relative strength of acceptance of the sentences in K′. The
resulting epistemic entrenchment encodes a new belief set as well as the preference
structure associated with it.
Other works on iterated change can be found in [BM06, HD05, DDL06, KP00,
Leh95, Wil95, Spo88, Bou93, Bou96, Bre91, FGKIS13, FR04, Rot03, Rot09, Seg97,
Bon09, KI08]. For an overview on this subject see [Pep14].

4.5 Multiple change

In the original AGM framework the input is a single sentence. This is a clear limita-
tion of the model since agents often receive at the same time more than one piece of
information. Multiple contraction is an operation that performs a simultaneous con-
traction of a (not necessarily singleton) set of sentences. Similarly, multiple revision
is a revision by a set of sentences instead of by a single sentence.

There are at least three possible ways to interpret multiple contraction. One is
to remove all elements of the input set, this operation is called package contraction
[FH94]. Another is to remove at least one of the sentences of the input set. This
operation is called choice contraction [FH94]. The third alternative is called set
contraction [ZF01, Zha96]. Instead of removing the input, set contraction consists
of obtaining an outcome that is consistent with it. In this brief description of
multiple change we will consider only the first of the mentioned generalizations of
contraction.

It is important to distinguish package contraction from other operations involv-
ing standard contractions by single sentences. In [FH94] Furhmann and Hansson
distinguish the package contraction by {α,β} from the following operations:

1. contracting by α ∨ β.

2. intersecting the results of contracting by α and of contracting by β.

3. first contracting by α and then by β, or vice versa.

4. contracting by α ∧ β.

The first of the above mentioned operation is unsuitable. It is true that when
contracting α ∨ β both α and β have to be removed, but the converse does not
hold. Contracting both α and β, does not require the removal α ∨ β. This becomes
clear if we think about the case when β = ¬α. In this case it holds that α ∨ β is
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a tautology. Thus it cannot be removed. But it is possible to contract by {α,β}.
The second operation may lead to an unnecessary loss of information. The third
operation would introduce asymmetry where there should be none. Contracting by
α and then by β may produce a different outcome of contracting first by β and then
by α. Hence as stated by Furhmann and Hansson, “sequential contraction cannot be
the same operation as multiple contraction. Multiple contraction is simultaneous: it
does not discriminate between items to be removed by some assignment of priority”
[FH94]. The fourth operation is also unsuitable since in order to remove α ∧ β it is
sufficient to remove one of its conjuncts.12

Most of the major classes of AGM-related contraction operators have been gen-
eralized to multiple package contraction. There is a wide variety of such operators
including partial meet multiple contraction [Han89, FH94, Li98] and kernel multiple
contraction [FSS03]. The possible worlds semantics for partial meet multiple con-
traction was presented in [Rei11, RF12]. Regarding the multiple contraction coun-
terpart of Grove’s system of spheres-based contraction several methods for defining
partial meet multiple contractions by means of systems of spheres were presented
in [Rei11, FR12, RFP16].13 One of these methods was translated to epistemic en-
trenchment and axiomatically characterized in [Rei11, FR13, RPF16]. In [Fuh97]
Fuhrmann presents a survey which compiles some constructions of multiple contrac-
tion functions.

Hansson in [Han91a, Han92a] proposed a generalization of the Levi identity to
the case of multiple change, i.e. Hansson proposed a way of defining a multiple
revision function in terms of any given (package) multiple contraction:

K⋆B = Cn((K ÷ ¬B) ∪B),
where α ∈ ¬B if and only if α is either a contradiction, a negation of some sentence
of B or a (finite) disjunction of sentences that are negations of elements of B.

For finite sets the latter equality can be simplified. Instead of contracting by ¬B
it is enough to contract by the sentential negation of B, whose concept is formalized
in the following definition:

Definition 4.5.1 [Han91a, Han92a, Han99b] Let B be any finite set. The senten-
tial negation of B, denoted n(B), is the set (of sentences) such that:

(a) If B = ∅, then n(B) = {⊥}.
(b) If B is a singleton set, B = {β}, then n(B) = {¬β}.
(c) If B = {β1, ..., βn} for some n > 1, then n(B) = {¬β1 ∨ ... ∨ ¬βn}.

Note that if B is finite then the multiple revision by B corresponds to perform
a standard single-sentence revision by the conjunctions of the elements of B.

12We note that if B is finite, then choice contraction by {p1, p2, ..., pn} can be treated as a
standard single-sentence contraction by p1 ∧ p2 ∧ ... ∧ pn.

13We notice, however, that in [RFP16] it was proven that any method for constructing multiple
contractions which is based on systems of spheres fails to generate the (whole) class of transitively
relational partial meet multiple contractions.
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4.6 Summary

In this chapter we pointed out and discussed some of the shortcomings of the AGM
model that have been identified by the belief change community, namely:

� the recovery postulate for contraction (some examples were presented where
this postulate seems implausible);

� the representation of an agent’s belief state by logically closed set of sentences
(belief sets);

� the inadequacy of the AGM framework for performing iterated changes such
as (((K⋆α) ÷ β)⋆δ);

� the fact that the input in the original AGM model is a single sentence and not
a set of sentences;

� the success postulates for both revision and contraction (it seems unrealistic
that the new information is always incorporated in the agent’s set of beliefs
and that a belief is always removed from the agent’s beliefs when contracting
by it).

We presented some of the proposals developed to address these problems:

� we referred some classes of contraction functions that satisfy the basic AGM
postulates for contraction with the exception of recovery – the so called with-
drawals;

� we discussed the use of belief bases instead of belief sets to represent an agent’s
belief state;

� we briefly mentioned some models for iterated revision;

� we briefly referred some models for multiple contraction and presented a gen-
eralization of the Levi identity to the case of multiple change, proposed by
Hansson in [Han91a, Han92a], that allows us to define multiple revision func-
tions in terms of (package) multiple contraction functions;

� we mentioned several models of non-prioritized belief revision and contraction
operators (revision and contraction operators that do not satisfy the success
postulate for revision and contraction respectively), namely screened revision,
selective revision, credibility-limited revision and shielded contraction.

Regarding non-prioritized belief change operations we gave special emphasis to
credibility-limited revisions and shielded contractions. In particular, we extended
the work presented in [HFCF01] and in [FH01] by axiomatically characterizing other
classes of credibility-limited operators induced, respectively, by a basic AGM revi-
sion and by an AGM revision operator, and sets of credible sentences satisfying a
given set of properties. We established that the class of credibility-limited revision
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operators induced by an AGM revision and a set C (of credible sentences) that satis-
fies single sentence closure, disjunctive completeness, element consistency, expansive
credibility and strong revision credibility coincides with the class of entrenchment-
based credibility-limited revision operators and the class of sphere-based credibility-
limited revision operators presented in [HFCF01]. We also established the interre-
lation between different kinds of credibility-limited revision operators and shielded
contraction operators by means of the consistency-preserving Levi identity and the
Harper identity.





Chapter 5

Belief Base Change

“But it is through such simple, idealized representation of belief sets that we have
begun to obtain the insights needed to tackle more complex ones without getting
lost in intricacies and overheads. Having acquired a fairly good understanding of

the former (. . . ) we can now profitably give more attention to the latter.”
Makinson in [Mak97a]

Several of the existing models of contraction for beliefs sets, mentioned in Chap-
ter 3, have been adapted to the case when belief states are represented by sets of sen-
tences not (necessarily) closed under logical consequence—the so-called belief bases:
the partial meet contractions for belief bases were presented in [Han92a, Han93b,
Han91a]; the kernel contractions—which can be seen as a generalization of safe
contractions—were introduced in [Han94]; and, in [Wil94a], Mary-Anne Williams
introduced the ensconcement-based contractions and the brutal contractions (of be-
lief bases), which can be seen as adaptations to the case of belief bases of the
epistemic entrenchment-based contractions and of the severe withdrawals, respec-
tively. In fact, the definitions of the two classes of contraction functions proposed in
[Wil94a] are based on the concept of ensconcement, which is a generalization to the
case of belief bases of the concept of epistemic entrenchment introduced by Gärden-
fors and Makinson in [Gär88, GM88]. In this chapter we recall, from the literature,
several types of base contraction functions and their axiomatic characterizations.
We also present explicit definitions for some base revision functions obtained by
means of the Levi identity from the namesake contractions functions. We recall the
representation theorems for partial meet and kernel revisions functions and present
axiomatic characterizations for the smooth kernel base revision and for the basic
AGM-generated base revision functions. We conclude this chapter by briefly pre-
senting some works on non-prioritized belief change in belief bases.

In the belief base context, the (non-closing) expansion of a set A by a sentence
α is defined as follows:

Definition 5.0.1 [Han99b] Let A be a belief base and α a sentence. A + α, the
(non-closing) expansion of A by α, is defined as follows:

A + α = A ∪ {α}.
75
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Throughout this thesis, for any not logically closed set of sentences A and any
sentence α the notation “A+α” will be used as a representation of the set “A∪{α}”.1

We shall use the symbols − and ∗ to denote the operators of base contraction and
of base revision respectively. In the context of belief base change, we will use the
expression “contraction function” (or simply “contraction”) to refer to a function:

−: P(L) ×L→ P(L)(A,α)↦ A − α
Given a fixed belief base A, we shall use the expression “contraction function on

A” (or simply “contraction on A”) to refer to a function

−: L→ P(L)
α ↦ A − α

Analogous terminology and notations will be used for base revision.

5.1 Postulates

In this section we present several postulates for belief base change (both for revision
and for contraction) as well as some results that highlight the interrelations among
some of those postulates.

5.1.1 Base contraction postulates

We start by recalling the definition of a contraction operator in terms of postulates
presented in [Han99b].

Definition 5.1.1 [Han99b] An operator − for a set A is an operator of contraction
if and only if − satisfies the following postulates:
(Success) If /⊢ α, then A − α /⊢ α.
(Inclusion) A − α ⊆ A.

We note that inclusion has the same formulation as (÷2), while the success pos-
tulate consists of an adaptation to belief bases of postulate (÷4) (these postulates,(÷2) and (÷4), were already introduced, in the belief set context, in Chapter 3).

We now recall four postulates, that have the same formulation, respectively, as
postulates (÷3′), (÷6), (÷7), (÷V ) (introduced in Chapter 3).

(Failure) If ⊢ α, then A − α = A.
(Extensionality) If ⊢ α↔ β, then A − α = A − β.
(Conjunctive overlap) A − α ∩A − β ⊆ A − (α ∧ β).

1We shall use the symbol + both for expansions on belief sets and for expansions on belief bases.
Its meaning will always be clear from the context.
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(Conjunctive factoring) A−(α∧β) = A−α or A−(α∧β) = A−β or A−(α∧β) =
A − α ∩A − β.

The following postulates, result of adapting, respectively, the statements of pos-
tulates (÷1), (÷3), (÷8) and (÷9) in order to obtain similar properties suitable for
belief base contractions (rather than only for belief set contractions).

(Relative Closure) A ∩Cn(A − α) ⊆ A − α.
(Vacuity) If A /⊢ α, then A ⊆ A − α.
(Conjunctive inclusion) If A − (α ∧ β) /⊢ α, then A − (α ∧ β) ⊆ A − α.
(Strong Inclusion) If A − β /⊢ α, then A − β ⊆ A − α.

Other classical base contraction postulates are:

(Disjunctive Elimination) If β ∈ A and β ∉ A − α then A − α /⊢ α ∨ β.

Disjunctive elimination was proposed in [FKR08] and states that if a sentence β
is removed in the process of contracting A by another sentence α then the disjunc-
tion of α and β is not deducible from the outcome of that contraction.

(Relevance) If β ∈ A and β /∈ A−α, then there is a set A′ such that A−α ⊆ A′ ⊆ A
and A′ /⊢ α but A′ ∪ {β} ⊢ α.

The relevance postulate [Han89, Han92a] ensures that nothing is removed for no
reason. It is an expression of the principle of minimal change. It states that if a
sentence β is removed from A when contracting it by α, then β must contribute to
deduce α from A.

(Logical Relevance) If β ∈ A and β /∈ A − α, then there is a set A′ such that
A − α ⊆ A′ ⊆ Cn(A) and A′ /⊢ α but A′ ∪ {β} ⊢ α.

This postulate, that was presented in [RW08], is a weaker version of the rele-
vance postulate. Instead of requiring the inclusion of A′ on A, it only requires logical
inclusion.

(Core-retainment) If β ∈ A and β ∉ A − α then there is some set A′ such that
A′ ⊆ A and A′ /⊢ α but A′ ∪ {β} ⊢ α.

Core-retainment [Han91b] is also a weaker version of relevance since it does not
require that A − α ⊆ A′.
(Uniformity) If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if
β ∈ Cn(A′) then A − α = A − β.

This postulate, which was presented in [Han92a], states that if α and β are two
sentences implied by exactly the same subsets of A, then the result of contracting
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A by α is identical to the outcome of contracting A by β.

(Linearity) A − α ⊆ A − β or A − β ⊆ A − α.

Linearity [FR98a, RP99] is an arguable property since it follows from it that the
outputs of the contraction of a set A by two unrelated beliefs are connected by means
of the set inclusion relation. For example, it requires that either {p, q}−p ⊆ {p, q}−q
or {p, q}−q ⊆ {p, q}−p. This is incompatible with Parikh’s splitting principle [Par99],
according to which {p, q} − p = {q} and {p, q} − q = {p}.
(Expulsiveness) If /⊢ α, /⊢ β then A − β /⊢ α or A − α /⊢ β.

This postulate states that for every non-tautological sentences α and β, either α
is not implied by the contraction of A by β or β is not implied by the contraction
of A by α. Expulsiveness was first presented in [Han99b, page 102] and, as it is
mentioned there and also in [RP99, Rot01], it is a highly implausible property of
belief contraction, since according to it two unrelated sentences influence the result
of the contraction by each other.

(Decomposition) A − (α ∧ β) = A − α or A − (α ∧ β) = A − β.

According to decomposition [AGM85] (which is also known as linear hierarchical
ordering) the output of contracting a set A by a conjunction of two beliefs is equal
to the contraction of A by one of those two beliefs.

In the following observations we present some relations among the postulates
presented above.

Observation 5.1.2 Let A be a belief base and − be an operator on A. Then:

(a) [Han99b] If − satisfies relevance, then it satisfies relative closure and core-
retainment.

(b) [Han99b] If − satisfies inclusion and core-retainment, then it satisfies failure
and vacuity.

(c) [Han99b] If − satisfies uniformity, then it satisfies extensionality.

(d) [FKR08] If − satisfies disjunctive elimination, then it satisfies relative closure.
If − also satisfies inclusion then it satisfies failure.

(e) [FKR08] If − satisfies relevance, then it satisfies disjunctive elimination.

In Figure 5.1 we present a diagram that summarizes all the interrelations among
postulates that were stated in the above observation.

Observation 5.1.3 Let A be a belief base and − be an operator on A. Then:

(a) If − satisfies logical relevance, then it satisfies disjunctive elimination.



5.1. POSTULATES 79

Relevance

Core-
retainment

Inclusion
Disjunctive
Elimination

FailureVacuity Relative closure

Uniformity

Extensionality

Figure 5.1: Diagram of the interrelations among postulates listed in Observation
5.1.2.

(b) If − satisfies inclusion, vacuity and disjunctive elimination, then it satisfies
logical relevance.

(c) [RP99] If − satisfies strong inclusion, then it satisfies conjunctive inclusion.

(d) If − satisfies inclusion, failure, success and strong inclusion, then it satisfies
extensionality, linearity, expulsiveness, conjunctive factoring, decomposition
and uniformity.

Proof: A proof for this observation can be found on page 180.

In Figure 5.2 we present a diagram that summarizes all the interrelations among
postulates that were stated in the above observation.

Logical
relevance

Disjunctive
elimination

Inclusion Vacuity

Failure

Success

Strong
inclusion

Conjunctive
inclusion

Extensionality
Linearity

Expulsiveness
Conjunctive factoring

Decomposition
Uniformity

Figure 5.2: Diagram of the interrelations among postulates stated in Observation
5.1.3.

5.1.2 Internal and external revision

We saw in Subsection 3.1.4 that, in the belief set context, the Levi identity can be
used to define revisions in terms of contractions (and expansions). This can also
be done in the context of belief bases. Revising a set by α can be done by first
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contracting that set by ¬α and subsequently expanding its outcome by α. This is
expressed by the Levi identity:

A ∗ α = (A − ¬α) + α.
An operator defined by the above equality is called an operator of internal revi-

sion.

It is also possible to define an operation of revision on belief bases by performing
the expansions and contractions in a reverse order. That is, to revise a set by α we
can first expand it by α and contract its outcome by ¬α. This can be expressed by
the reverse Levi identity [Han93b]:

A ∗ α = (A + α) − ¬α.
An operator defined by this last equality is called an operator of external revision.
Note that, according to Definition 5.0.1, given an operator of contraction − we can
define an internal revision operator ∗ and a external revision operator ∗′ as follows:

A ∗ α = (A − ¬α) ∪ {α} and A ∗′ α = (A ∪ {α}) − ¬α.
5.1.3 Base revision postulates

We start this subsection by introducing a definition of a revision operator in terms
of postulates. The following definition establishes the minimal set of postulates that
a revision operator must satisfy.

Definition 5.1.4 An operator ∗ for a set A is an operator of revision if and only
if ∗ satisfies the following postulates:
(Success) α ∈ A ∗ α.
(Inclusion) A ∗ α ⊆ A ∪ {α}.
(Consistency) If α /⊢⊥, then A ∗ α /⊢⊥.

We note that success and consistency have the same formulation as (⋆2) and
(⋆5), respectively, while the formulation of inclusion consists in an adaptation to
belief bases of postulate (⋆3) (postulates (⋆2), (⋆3) and (⋆5) were introduced, in the
belief set context, in Chapter 3).

The following postulates are well known postulates for belief base revision:

(Vacuity) If A /⊢ ¬α, then A ∪ {α} ⊆ A ∗ α.

The formulation of vacuity consists in an adaptation to belief bases of postulate
(⋆4).
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(Uniformity) If for all subsets A′ ⊆ A,A′ ∪ {α} ⊢⊥ if and only if A′ ∪ {β} ⊢⊥, then
A ∩ (A ∗ α) = A ∩ (A ∗ β).

Uniformity [Han93b] states that if two sentences are inconsistent with the same
subsets of A, then the outcomes of the revisions of A by each of them should keep
the same elements of A.

(Relevance) If β ∈ A and β /∈ A ∗ α, then there is some A′ such that A ∗ α ⊆ A′ ⊆
A ∪ {α},A′ /⊢⊥ but A′ ∪ {β} ⊢⊥.

Relevance [Han93b] ensures that when revising a set A by a sentence, nothing
is removed unless that removal contributes for keeping the outcome of the revision
consistent.

(Core-retainment) If β ∈ A and β /∈ A ∗ α, then there is some A′ ⊆ A such that
A′ /⊢ ¬α and A′ ∪ {β} ⊢ ¬α.

Core-retainment [Was00] is, as relevance, an expression of the principle of mini-
mal change. Core-retainment follows from relevance and success.

Additionally, we propose the following three postulates for belief base revision:2

(Disjunctive Elimination) If β ∈ A and β /∈ A ∗ α, then A ∗ α /⊢ ¬α ∨ β.

Disjunctive elimination states that if β is removed when revising a set A by α,
then from the revision of A by α we can not deduce that α implies β.

(Relative Closure) A ∩Cn(A ∩A ∗ α) ⊆ A ∗ α.

Relative closure states that the set formed by the elements of A that are included
in the outcome of revising A by α is logically closed relative to A.3 We note that the
intersection with the set A that appears in the argument of consequence operator
Cn is not irrelevant as one might think. To see this consider the following example:
Let A = {α → β, β, β → ¬α} and A ∗ α = {α → β,α}. Hence β ∈ A ∩Cn(A ∗ α) but
β /∈ A ∗ α. On the other hand, α → β is the only element of A that can be deduced
from A ∩A ∗ α. It holds that α → β ∈ A ∗ α. Thus, ∗ satisfies relative closure but
not the property A ∩Cn(A ∗ α) ⊆ A ∗ α.

(Weak Extensionality) If ⊢ α↔ β, then A ∩A ∗ α = A ∩A ∗ β.

Weak extensionality states that if α and β are two logically equivalent beliefs
then every element of A that is kept when revising by α is also kept when revising
by β. We note that weak extensionality is a weaker version of extensionality: If

2These three postulates are adaptations, for revision, of the contraction postulates: Disjunction
Elimination [FKR08], Relative Closure [Han94] and Extensionality [Gär82].

3A set A is logically closed relative to B if and only if Cn(A) ∩B ⊆ A ([Han91b]).
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⊢ α ↔ β, then A ∗ α = A ∗ β. We also note that, in general, extensionality is not
satisfied by belief base revisions. The following example illustrates this fact: Let α
and β be two distinct sentences such that ⊢ α ↔ β. Let A be a belief base such
that A ∩ {α,β} = ∅. Let ∗ be a revision operator on A, thus ∗ satisfies success and
inclusion. Then α ∈ A ∗ α but α /∈ A ∗ β, therefore A ∗ α /= A ∗ β.

5.2 Constructive models of base change operators

In this section we present some explicit definitions of base change functions and
their axiomatic characterizations.

5.2.1 Partial meet contractions and revisions

The definition of an operator of partial meet contraction for belief bases was already
presented in Definition 3.2.4.4 Hansson characterized partial meet base contractions
in terms of postulates:

Observation 5.2.1 [Han91a] Let A be a belief base. An operator − on A is a
partial meet contraction if and only if − satisfies success, inclusion, uniformity and
relevance.

Partial meet base revision is obtained from the partial meet base contraction by
means of the Levi identity. Thus it can be defined as follows:

Definition 5.2.2 [AGM85] Let A be a belief base. The partial meet revision opera-
tor on A based on a selection function γ is the operator ∗γ such that for all sentences
α ∶

A ∗γ α = (⋂γ(A ⊥ ¬α)) ∪ {α}.
An operator ∗ on A is a partial meet revision if and only if there is a selection

function γ for A such that for all sentences α: A ∗ α = A ∗γ α.

In the following observation we present an axiomatic characterization for partial
meet base revision funtions.

Observation 5.2.3 [Han91a] Let A be a belief base. An operator ∗ on A is a partial
meet revision if and only if ∗ satisfies success, consistency, inclusion, uniformity and
relevance.

4Sometimes, when considering belief bases, we will refer to a partial meet contraction (revision)
as partial meet base contraction (revision, respectively). The same will also occur regarding other
kinds of contraction and revision operators.
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5.2.2 Kernel contractions and revisions

The definition of an operator of kernel contraction for belief bases was already
presented in Definition 3.2.17. Hansson also provided an axiomatic characterization
for kernel base contractions.

Observation 5.2.4 [Han94] Let A be a belief base. An operator − on A is a ker-
nel contraction if and only if − satisfies success, inclusion, uniformity and core-
retainment.

In the following observation we recall an axiomatic characterization for a more
conservative type of kernel base contractions, namely smooth kernel base contrac-
tions (presented in Definition 3.2.19). Sometimes, when contracting a set by means
of a kernel contraction, some beliefs are removed without reason. For example if
β ∈ A and β ∈ Cn(A − α), then β should also be in A − α. This can be solved if
we ensure that an operator of kernel contraction satisfies relative closure. This is
precisely the postulate that we need to add to the list of postulates that characterize
kernel base contractions in order to obtain an axiomatic characterization for smooth
kernel base contractions.

Observation 5.2.5 [Han94] Let A be a belief base. An operator − on A is a smooth
kernel contraction if and only if it satisfies success, inclusion, uniformity, core-
retainment and relative closure.

Kernel base revision functions can be obtained from kernel base contraction
functions by means of the Levi identity:

Definition 5.2.6 Let A be a belief base. The kernel revision operator on A based
on an incision function σ is the operator ∗σ such that for all sentences α:

A ∗σ α = (A ∖ σ(A⊥⊥¬α)) ∪ {α}.
An operator ∗ on A is a kernel revision if and only if there is an incision function

σ for A such that for all sentences α: A ∗ α = A ∗σ α.

In the following observation we recall, from [Was00], an axiomatic characteriza-
tion for kernel base revision functions.

Observation 5.2.7 [Was00] Let A be a belief base. An operator ∗ on A is a kernel
revision if and only if it satisfies success, consistency, inclusion, uniformity and
core-retainment.5

The following definition introduces the concept of smooth kernel base revision
which is a kernel base revision based on a smooth incision function.

5To be precise, the axiomatic characterization for kernel base revisions presented in [Was00] is
similar to this one but with consistency replaced by non-contradiction: If /⊢ ¬α, then A ∗ α /⊢ ¬α.
However, it can be proven that, in the presence of success, the postulates of non-contradiction and
consistency are equivalent.
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Definition 5.2.8 Let A be a belief base. An operator ∗ on A is a smooth kernel
base revision if and only if it is a kernel base revision based on a smooth incision
function.

In the following observation we provide an axiomatic characterization for smooth
kernel base revisions.

Observation 5.2.9 Let A be a belief base. An operator ∗ on A is a smooth kernel
revision if and only if it satisfies success, consistency, inclusion, uniformity, core-
retainment and relative closure.

Proof: A proof for this observation can be found on page 181.

5.2.3 Basic AGM-generated base contractions and revisions

In the following definition we recall the concept of basic AGM-generated base con-
traction, an operator of base contraction defined from an operator of basic AGM
contraction (for belief sets).

Definition 5.2.10 [FKR08] Let A be a belief base. An operator − on A is a ba-
sic AGM-generated base contraction6 if and only if there exists some basic AGM
contraction ÷ for Cn(A),7 such that for all α ∈ L:

A − α = (Cn(A) ÷ α) ∩A.
In [FKR08], Fermé et. al. axiomatically characterized the basic AGM-generated

base contraction functions.

Observation 5.2.11 [FKR08] Let A be a belief base. An operator − on A is a basic
AGM-generated base contraction if and only if it satisfies success, inclusion, vacuity,
extensionality and disjunctive elimination.

We will now define and present an axiomatic characterization for basic AGM-
generated base revisions, which are operators of base revision defined from operators
of basic AGM revision (for belief sets).

Definition 5.2.12 Let A be a belief base. An operator ∗ for A is a basic AGM-
generated base revision if and only if there exists some basic AGM revision ⋆ for
Cn(A), such that for all α ∈ L:

A ∗ α = (Cn(A) ⋆ α) ∩ (A ∪ {α}).
Observation 5.2.13 Let A be a belief base. An operator ∗ on A is a basic AGM-
generated base revision if and only if it satisfies success, consistency, inclusion,
vacuity, weak extensionality and disjunctive elimination.

Proof: A proof for this observation can be found on page 182.

6In [FKR08] these operators were designated by basic related-AGM base contractions.
7I.e. an operator on Cn(A) that satisfies the basic AGM postulates for belief set contractions.



5.2. CONSTRUCTIVE MODELS OF BASE CHANGE OPERATORS 85

5.2.4 Ensconcements and contractions based on ensconce-
ments

We start this subsection by recalling the definition of ensconcement, which was
originally proposed by Mary-Anne Williams.

Definition 5.2.14 [Wil94a] An ensconcement is a pair (A,⪯) where A is a belief
base and ⪯ is a transitive and total relation on A that satisfies the following three
conditions:
(⪯1) If β ∈ A ∖Cn(∅), then {α ∈ A ∶ β ≺ α} /⊢ β
(⪯2) If /⊢ α and ⊢ β, then α ≺ β, for all α,β ∈ A
(⪯3) If ⊢ α and ⊢ β, then α ⪯ β, for all α,β ∈ A
Informally an ensconcement relation establishes an order over the beliefs of an
agent.8 (⪯1) says that, for any non-tautological β, the formulae that are strictly
more ensconced than β do not (even conjointly) imply β. Conditions (⪯2) and (⪯3)
say that tautologies are the most ensconced formulae.

The concept of ensconcement relation can be seen as a generalization of the
notion of epistemic entrenchment to the context of belief bases.

In what follows we expose more formally the interrelation between these two
kinds of binary relations.

The following result implies that the restriction of an epistemic entrenchment
relation to a belief set is an ensconcement relation.

Observation 5.2.15 Let K be a belief set and ≤ be a relation on L that satisfies
(EE1), (EE2), (EE3) and (EE5). Then (K,≤ ∣K) is an ensconcement.

Proof: A proof for this observation can be found on page 183.

Since on the one hand an epistemic entrenchment is defined over the set of allL-sentences while, on the other hand, an ensconcement relation is defined only over
a set of sentences (which does not even need to be closed under logical consequence),
we can immediately conclude that not every ensconcement relation is an epistemic
entrenchment. Nevertheless, in [Wil94a], Mary-Anne Williams proposed a method
for extending an ensconcement relation to the set of all L-sentences which is such
that the resulting relation is an epistemic entrenchment.

Let (A,⪯) be an ensconcement. In what follows we recall Williams’ definition of
an epistemic entrenchment ≤⪯ related to Cn(A) such that for all α,β ∈ A, it holds
that α ≤⪯ β if and only if α ⪯ β.

First we recall the notion of cut which was defined, in [Wil94a]. For any sentence
α ∈ Cn(A) the cut of α, denoted by cut⪯(α) is the following subset of A:

cut⪯(α) = {β ∈ A ∶ {γ ∈ A ∶ β ≺ γ} /⊢ α}.
8 When forced to give up some of his/her beliefs an agent is more willing to remove the less

ensconced ones.
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In the following observation we present the above mentioned definition of an
epistemic entrenchment ≤⪯ from the ensconcement relation ⪯.

Observation 5.2.16 [Wil94a] Let (A,⪯) be an ensconcement and let ≤⪯ be the bi-
nary relation on L defined by: α ≤⪯ β if and only if either

(i) α /∈ Cn(A), or

(ii) α,β ∈ Cn(A) and cut⪯(β) ⊆ cut⪯(α).
Then ≤⪯ is an epistemic entrenchment related to Cn(A).

In what follows we recall the two kinds of base contraction functions defined
by means of ensconcement relations that were proposed by Mary-Anne Williams in
[Wil94a].

Both of the mentioned definitions are based on the proper cut operator, which is
defined as follows:

Definition 5.2.17 Given an ensconcement (A,⪯), for any sentence α ∈ L the
proper cut of α, denoted cut≺(α) is the subset of A defined by:

cut≺(α) = {β ∈ A ∶ {γ ∈ A ∶ β ⪯ γ} /⊢ α}.
The following observation states that when α is an explicit belief, its proper cut

is the subset formed by the sentences of A which are strictly more ensconced than
α.

Observation 5.2.18 [Wil94a] If α ∈ A, cut≺(α) = {β ∈ A ∶ α ≺ β}.
In the following lemma we present some interesting and useful properties of the

proper cut.

Lemma 5.2.19 [FKR08]

(a) If ⊢ α, then cut≺(α) = ∅.

(b) If /⊢ α, cut≺(α) /⊢ α.

(c) If A /⊢ α, cut≺(α) = A.

(d) If β ⊢ α, then cut≺(α) ⊆ cut≺(β).
(e) If ⊢ α↔ β, then cut≺(α) = cut≺(β).
(f) If α ⪯ β, then cut≺(β) ⊆ cut≺(α).
(g) If α ≺ β, then cut≺(α) ⊢ β and cut≺(β) /⊢ α.

(h) If α ≺ β, then cut≺(α ∧ β) = cut≺(α).
(i) If β =⪯ α, then cut≺(α ∧ β) = cut≺(α) = cut≺(β).
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(j) If cut≺(α) ⊢ β, then cut≺(α ∧ β) = cut≺(α).
(k) If cut≺(α) /⊢ β, then cut≺(α ∧ β) = cut≺(β).

Next we recall the definition of the so-called ensconcement-based contractions.

Definition 5.2.20 [Wil94a] Let (A,⪯) be an ensconcement. The ⪯-based contrac-
tion on A is the operator −⪯ such that:

A −⪯ α = {β ∈ A ∶ cut≺(α) ⊢ α ∨ β}. (EBC)

An operator − on A is an ensconcement-based contraction if and only if there is
an ensconcement (A,⪯) such that for all sentences α: A − α = A −⪯ α.

Note that if α ∈ Cn(∅) and − is an ensconcement-based contraction, then A−α =
A.

The other kind of base contraction functions introduced in [Wil94a], results from
an intuitively appealing change in condition (EBC), used to define the ensconcement-
based contractions. In fact, according to this condition in order for β to be preserved
when contracting A by α it is necessary that cut≺(α) ⊢ α∨β. However, it seems more
intuitive to require only that β ∈ cut≺(α) instead. Below we recall the definition of
the class of contraction functions based on this simpler condition.

Definition 5.2.21 [Wil94a] Let (A,⪯) be an ensconcement. The ⪯-based brutal
contraction on A is the operator −B⪯ such that:

A −B⪯ α = { cut≺(α) if /⊢ α
A otherwise

(BC)

An operator − on A is a brutal contraction if and only if there is an ensconcement(A,⪯) such that for all sentences α: A − α = A −B⪯ α.

The contraction functions presented in Definitions 5.2.20 and 5.2.21 will be ax-
iomatically characterized in Chapter 6.

5.3 Non-prioritized change in belief bases

In this section we recall some non-prioritized change operators for belief bases. We
give special emphasis to the operators of shielded contractions and of credibility-
limited revisions that were presented in [FMT03]. These operators consist of the
adaptation to the belief base context of the namesake operators for belief sets pre-
sented in [HFCF01] and in [FH01] (that were recalled in Section 4.2).

5.3.1 Shielded base contraction

In this subsection we summarize the main concepts and results, so far presented in
the literature, concerning the adaptation to the case of belief bases of the operators
of shielded contraction (on belief sets) that were recalled in Subsection 4.2.2.
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Postulates for shielded contraction on belief bases

In [FMT03] the postulates proposed in [FH01] for shielded contractions on belief
sets (that we recalled in Subsection 4.2.2) were adapted to the belief base context:

(Relative Success) [Rot92b] A ∼ α = A or α /∈ Cn(A ∼ α).
(Persistence) [FH01] If β ∈ Cn(A ∼ β), then β ∈ Cn(A ∼ α).
(Success Propagation) [FH01] If A ∼ β ⊢ β and ⊢ β → α, then A ∼ α ⊢ α.
(Conjunctive Constancy) [FH01] If A ∼ α = A ∼ β = A, then A ∼ (α ∧ β) = A.

The following two observations illustrate some relations between postulates (of
contraction and) of shielded base contraction.

Observation 5.3.1 [FH01] Let ∼ be an operator on A. If ∼ satisfies persistence,
then it satisfies success propagation.

Observation 5.3.2 Let ∼ be an operator on A.

(a) If ∼ satisfies relative success, then it satisfies failure.

(b) If ∼ satisfies inclusion, vacuity, persistence and relative success, then it satisfies
conjunctive constancy.

Proof: A proof for this observation can be found on page 183.

Properties of the set of retractable sentences

In [FMT03] the properties that were considered as properties that may be desirable
from a set R of retractable sentences were the following:

Non-retractability Propagation: If α ∉ R, then Cn(α) ∩R = ∅.
Conjunctive Completeness: If α ∧ β ∈ R, then α ∈ R or β ∈ R.
Non-retractability Preservation: L/R ⊆ Cn(A ∼ α).
Non-retractability of Tautology: R ∩Cn(∅) = ∅.

The first three ones of the above properties were proposed in [FH01]. The first
two ones of the above properties were recalled in Subsection 4.2.2. Non-retractability
preservation is a direct adaptation to the case of belief bases of the property with
the same designation that was proposed in [FH01] for belief sets (and was recalled
in Subsection 4.2.2). Non-retractability of tautology states that tautologies are irre-
tractable sentences.

A constructive definition of shielded contractions on belief bases

In [FMT03], Fermé, Mikalef and Taboada adapted the definition of shielded con-
traction that we recalled in Definition 4.2.21 to the case of belief bases.
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Definition 5.3.3 [FMT03] Let A be a belief base. An operator ∼ on A is a shielded
partial meet base contraction9 if there exists a partial meet contraction − on A and
a set of (retractable) sentences R such that, for all α ∈ L:

A ∼ α = { A − α if α ∈ R
A otherwise

The set R is called the retractable set associated to ∼.

Finally, in that same paper, the following axiomatic characterization was ob-
tained for the class of shielded partial meet base contractions whose associated
retractable set satisfies non-retractability propagation and non-retractability preser-
vation.

Observation 5.3.4 [FMT03] Let A be a belief base and ∼ an operator on A.Then
the following conditions are equivalent:

(a) ∼ satisfies relative success, persistence, inclusion, relevance and uniformity.

(b) ∼ is an operator of shielded partial meet base contraction whose associated re-
tractable set R ⊆ L satisfies non-retractability propagation and non-retractability
preservation.

Actually, we must note that in the representation theorem presented in [FMT03]
the list of postulates consists of the postulates mentioned in (a) together with vacu-
ity and conjunctive constancy. However, according to Observations 5.1.2 and 5.3.2,
the latter two mentioned postulates follow from the remaining ones. Thus the ax-
iomatic characterization presented in the above observation can, in fact, be seen as
a refinement of the one presented in [FMT03].

In Subsection 7.3.2 we present axiomatic characterizations for classes of shielded
base contractions induced by partial meet base contractions and by sets of re-
tractable sentences that satisfy different sets of properties.

5.3.2 Credibility-limited base revision

In this subsection we recall, from [FMT03], some adaptations to the context of belief
bases of the postulates and operators of credibility-limited revision (on belief sets)
that were mentioned in Subsection 4.2.1.

Postulates for credibility-limited revision on belief bases

In [FMT03], the postulates pointed out in [HFCF01] as desirable properties that an
operator of credibility-limited revision on belief sets should satisfy were adapted to

9In [FMT03] these operators were designated simply by shielded base contraction but here it is
convenient to use this alternative designation, because in this thesis we shall use the expression
shielded base contraction to designate a wider class of functions.
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the belief base context:

(Relative Success) α ∈ A⊛ α or A⊛ α = A.
(Strict Improvement) If α ∈ A⊛ α and ⊢ α → β, then β ∈ A⊛ β.
(Regularity) If A⊛ α ⊢ β, then β ∈ A⊛ β.
(Strong Regularity) If A⊛ α /⊢ ¬β, then β ∈ A⊛ β.
(Disjunctive Distribution) If α ∨ β ∈ A⊛ (α ∨ β), then α ∈ A⊛ α or β ∈ A⊛ β.
(Consistency Preservation) If A /⊢⊥, then A⊛ α /⊢⊥.

Properties of the set of credible sentences

The following properties were pointed out as desirable properties for C, the set of
credible sentences, in [FMT03]:

Single Sentence Closure: If α ∈ C, then Cn(α) ⊆ C.
Disjunctive Completeness: If α ∨ β ∈ C, then either α ∈ C or β ∈ C.
Element Consistency: If α ∈ C, then α /⊢⊥.
Expansive Credibility: If A /⊢ α, then ¬α ∈ C.
Revision Credibility: If α ∈ C, then Cn(A⊛ α) ⊆ C.
Strong revision credibility: If α /∈ C, then A⊛ β ⊢ ¬α.

These properties were already recalled in the belief set context in Subsection
4.2.1.

A constructive definition of credibility-limited revision on belief bases

In Subsection 4.2.1 we recalled from [HFCF01] the construction of an operator
of credibility-limited revision operator induced by a basic AGM revision operator⋆ on a belief set K and a set C ⊆ L (the associated set of credible sentences).
In [FMT03], Fermé, Mikalef and Taboada adapted this construction, proposing a
model of credibility-limited revision for belief bases. They defined an operator ⊛ of
credibility-limited base revision on a belief base A as follows:

Definition 5.3.5 [FMT03] Let A be a belief base. An operator ⊛ on A is a credibility-
limited partial meet base revision10 if there exist a partial meet revision ∗ on A and
a set of (credible) sentences C such that, for all α ∈ L:

A⊛ α = { A ∗ α if α ∈ C
A otherwise

The set C is called the credible set associated to ⊛.

In Subsection 8.5.2 we present axiomatic characterizations for classes of credibility-
limited base revisions induced by partial meet base revisions and by sets of credible
sentences that satisfy different sets of properties.

10In [FMT03] these operators were designated simply by credibility-limited base revision but here
it is convenient to use this alternative designation, because in this thesis we shall use the expression
credibility-limited base revision to designate a wider class of functions.
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5.3.3 Semi-revision and consolidation

Consolidation was introduced in [Han91a] and consists of making an inconsistent
belief base consistent. It can be seen as a contraction by ⊥ (falsum). Consolidation
is an operator for belief bases and does not have a plausible counterpart for belief
sets. This is due to the fact that there is only an inconsistent belief set and once
it is obtained all distinctions are lost and consolidation can not restore them. The
consolidation of a belief base A is denoted by A!.

Hansson in [Han97] proposed a modification of external revision that he desig-
nated by semi-revision. Instead of contracting by the negation of a sentence, the
expanded set is contracted by ⊥ (falsum).

A?α = (A + α)− ⊥ .
Thus, the semi-revision can be seen as the result of the consolidation of an

expansion.

A?α = (A + α)!.
Note that in a semi-revision process the input sentence may be removed during

the consolidation. Thus semi-revision is a non-prioritized change operator.

In [Han91a, Han97], Hansson defined and axiomatically characterized operators
of kernel and partial-meet consolidation and of kernel and partial meet semi-revision,
based in the namesake operations for contractions and revisions.

5.4 Summary

In this chapter we presented postulates for contraction and for revision defined on
belief bases. We recalled some definitions of contraction and revision operators in
the belief base context. For contraction we recalled the following constructive meth-
ods: partial meet contraction, kernel and smooth kernel contraction, basic AGM-
generated base contraction, as well as the axiomatic characterization for each one of
these operators. We also presented two operators proposed by Williams in [Wil94a]
based on the notion of ensconcement, namely brutal and ensconcement-based con-
tractions. An ensconcement can be seen as an adaptation to the belief base context
of the notion of epistemic entrenchment. We will revisit these contraction functions
in Chapter 6, where we will present axiomatic characterizations for each one of these
operators.
We also recalled the definition of partial meet and kernel revision functions as well
as the axiomatic characterization of each one of these revision functions. We also
defined and axiomatically characterized two new kinds of base revision functions,
namely the smooth kernel base revisions and the basic AGM-generated base revi-
sions. These revision operators are based on their namesake contraction functions.
We ended this chapter by briefly recalling some operators of non-prioritized belief
change on belief bases, namely: semi-revision (and consolidation), credibility-limited
(partial meet) base revision and shielded (partial meet) base contraction. We also
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refined the axiomatic characterization of shielded (partial meet) base contraction op-
erators presented in [FMT03] by identifying a couple of postulates that follow from
the remaining ones in the mentioned axiomatic characterization. In Chapter 7 and
8 we will revisit the operators of shielded base contraction and of credibility-limited
base revision.



Chapter 6

On Ensconcement and Contraction

“Good order is the foundation of all things.”
Edmund Burke

In this chapter we study the interrelation among the two kinds of belief base
contraction operators introduced by Mary-Anne Williams in [Wil94a], namely brutal
contractions and ensconcement-based contractions. We start by presenting axiomatic
characterizations for the brutal and the ensconcement-based contractions. After that
we compare these two axiomatic characterizations (for brutal contractions and for
ensconcement-based contractions) in the sense of identifying which postulates of each
one of the mentioned axiomatic characterizations are (and which are not) satisfied
by the other kind of operators. This comparison allows us to determine which ones of
the postulates used in those representation theorems can be considered characteristic
properties of each one of those two kinds of contraction functions. We will also com-
pare the axiomatic characterizations of brutal and ensconcement-based contractions
with the axiomatic characterizations of other base contractions operators, namely
with basic AGM-generated base contractions, kernel contractions and partial meet
contractions. We also study the construction of ensconcement relations by means
of each one of the two kinds of operations, based on ensconcements, considered.
Furthermore, we will present some results which clarify the interrelation among
epistemic entrenchment-based contractions and ensconcement-based contractions,
as well as the interrelation among severe withdrawals and brutal contractions.

6.1 Some new postulates for belief base contrac-

tions

In this section we introduce some new postulates which will be useful afterwards in
the process of obtaining axiomatic characterizations for brutal and for ensconcement-
based contractions.

(Uniform Behaviour) If β ∈ A, A ⊢ α and A−α = A−β, then α ∈ Cn(A−β ∪{γ ∈
A ∶ A − β = A − γ}).

93
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Uniform Behaviour asserts that if a sentence α that is deducible from A is such
that the result of its contraction from A coincides with the result of contracting A
by a sentence which is (explicitly) present in A then α should be deducible from the
union of the set of all the sentences fulfilling that property with the set that results
of contracting A by α. We note that this postulate is trivial when α ∈ A.1

(Transitivity) If β ∈ A, α /∈ A − (α ∧ β) and β /∈ A − (β ∧ δ), then α /∈ A − (α ∧ δ).
The intuition behind this postulate (for the principal case) is the following: Pro-

vided that α,β ∈ A and /⊢ α ∧ β, at least one of the sentences α or β is removed
when contracting A by α ∧ β. Thus, α /∈ A − (α ∧ β) can be interpreted as meaning
that β is “at least as good as α”. Having this interpretation in mind, the postulate
of transitivity essentially states that if β is at least as good as α and δ is at least as
good as β, then δ is at least as good as α.

Still considering the above reasoning, we notice that α ∈ A− (α ∧ β) can be con-
sidered as meaning that “α is (strictly) better than β”. Taking this into account two
other postulates (similar to transitivity) which are natural to expect to be fulfilled
by a contraction function are the following:

(ST) If δ ∈ A, β ∈ A − (α ∧ β) and β /∈ A − (β ∧ δ), then δ ∈ A − (α ∧ δ).
(SST) If α ∈ A, β ∈ A − (α ∧ β) and δ ∈ A − (β ∧ δ), then δ ∈ A − (α ∧ δ).

The ST postulate can be interpreted as follows: if β is (strictly) better than α
and δ is at least as good as β, then δ is (strictly) better than α. While the SST
postulate can be interpreted as: if β is (strictly) better than α and δ is (strictly)
better than β, then δ is (strictly) better than α.

(EB1) If β ∈ A and {γ ∈ A ∶ β /∈ A − (β ∧ γ)} /⊢ α, then β ∈ A − α.

The condition β /∈ A−(β∧γ) when β, γ ∈ A can be seen as “it is at least as easy to
give up the belief β as it is to give up γ”. Therefore the set {γ ∈ A ∶ β /∈ A− (β ∧γ)},
for a non tautological β can be seen as the set of formulae that are at least as “good”
as β. Having this interpretation in mind, postulate EB1 essentially states that if
the subset of A formed by the sentences which are at least as “good” as β does not
imply α, then β is kept when contracting A by α.

(EB2) If β ∈ A − α then {γ ∈ A ∶ γ ∈ A − (γ ∧ α)} ⊢ α ∨ β.

We note that {γ ∈ A ∶ γ ∈ A−(γ∧α)} is the set of formulae of A that are retained
when a contraction by its conjunction with α occurs. In order to give up γ∧α, either
γ or α (or both) must be removed. If γ is kept, during the removal of γ ∧ α from
A this means that γ is in some sense “better” than α. Hence, EB2 can be read as
follows: if β is kept when contracting A by α, then the set formed by the formulae

1This is explained in the proof of Observation 6.5.1 (i).
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that are “better” than α implies α ∨ β.

The following observation clarifies that in the presence of extensionality, tran-
sitivity is equivalent to ST and, furthermore, that SST follows from transitivity
provided that some other postulates also hold.

Observation 6.1.1 Let A be a belief base and − be an operator on A. Then:

(a) If − satisfies extensionality, then − satisfies transitivity if and only if − satisfies
ST.

(b) If − satisfies success, inclusion, extensionality, relative closure and transitivity,
then it satisfies SST.

Proof: A proof for this observation can be found on page 187.

6.2 Representation theorems

In this section we present axiomatic characterizations for the operators of brutal
contraction (cf. Definition 5.2.21) and for the operators of ensconcement-based
contraction (cf. Definition 5.2.20).

6.2.1 Axiomatic characterization of brutal contraction func-
tions

In this subsection we present an axiomatic characterization for the class of brutal
contractions. We start by introducing the following condition which defines a binary
relation on A by means of a contraction function − on A:

α ⪯ β if and only if α /∈ A − β or ⊢ β. (CBR ⪯)

The following theorem exposes that, provided that the contraction − satisfies
some of the postulates presented above, it holds that the binary relation ⪯ defined
by condition (CBR ⪯) is an ensconcement relation on A and, furthermore, that
operation − satisfies condition (BC) presented in Definition 5.2.21.

Theorem 6.2.1 Let A be a belief base and − an operator on A. If − satisfies success,
inclusion, vacuity, failure, relative closure, strong inclusion and uniform behaviour,
then the binary relation ⪯ on A defined by (CBR ⪯) is an ensconcement relation and− satisfies (BC).

Proof: A proof for this theorem can be found on page 187.

The next result attests that a brutal contraction satisfies all the postulates men-
tioned in the previous theorem and that condition (CBR ⪯) holds whenever (A,⪯)
is an ensconcement and − is the ⪯-based brutal contraction.



96 CHAPTER 6. ON ENSCONCEMENT AND CONTRACTION

Theorem 6.2.2 Let (A,⪯) be an ensconcement and − be the ⪯-based brutal con-
traction on A. Then − satisfies success, inclusion, vacuity, failure, relative closure,
strong inclusion and uniform behaviour as well as the condition (CBR ⪯).

Proof: A proof for this theorem can be found on page 189.

It follows immediately from the two previous theorems that brutal contractions
are axiomatically characterized by the postulates of success, inclusion, vacuity, fail-
ure, relative closure, strong inclusion and uniform behaviour.

From Theorem 6.2.2 it also follows that all the properties listed in Observa-
tion 5.1.3 (d), namely extensionality, linearity, expulsiveness, conjunctive factoring,
decomposition and uniformity, are satisfied by brutal contractions.

6.2.2 Axiomatic characterization of ensconcement-based con-
traction functions

Our main goal in the present section is to obtain an axiomatic characterization
for the ensconcement-based contractions and our first step in that direction is to
introduce the following condition which defines a binary relation on A by means of
a contraction function − on A:

α ⪯ β if and only if α /∈ A − (α ∧ β) or ⊢ α ∧ β. (CEB ⪯)

We note that this construction is similar to condition (C≤) proposed by Gärden-
fors and Makinson [GM88] to define an epistemic entrenchment relation by means
of a given operator of belief set contraction.

The following theorem exposes that, provided that the contraction − satisfies
some of the postulates presented above, it holds that the binary relation ⪯ defined
by condition (CEB ⪯) is an ensconcement relation on A and, furthermore, that the
operation − is the ⪯-based contraction on A.

Theorem 6.2.3 Let A be a belief base and − an operator on A. If − satisfies inclu-
sion, vacuity, success, extensionality, conjunctive factoring, disjunctive elimination,
transitivity, EB1 and EB2, then the binary relation ⪯ on A defined by (CEB ⪯) is an
ensconcement relation and − satisfies the condition (EBC) presented in Definition
5.2.20.

Proof: A proof for this theorem can be found on page 190.

The next result attests that an ensconcement-based contraction satisfies all the
postulates mentioned in the previous theorem and that condition (CEB ⪯) holds
whenever (A,⪯) is an ensconcement and − is the ⪯-based contraction.

Theorem 6.2.4 Let (A,⪯) be an ensconcement and − be the ⪯-based contraction on
A. Then − satisfies inclusion, vacuity, success, extensionality, conjunctive factoring,
disjunctive elimination, transitivity, EB1 and EB2 as well as the condition (CEB ⪯).
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Proof: A proof for this theorem can be found on page 191.

We note that it follows immediately from the two previous theorems that en-
sconcement-based contractions are axiomatically characterized by the postulates of
inclusion, vacuity, success, extensionality, conjunctive factoring, disjunctive elimi-
nation, transitivity, EB1 and EB2.

We highlight that, since it follows from Observation 5.1.3 (a) and (b) that, in
the presence of inclusion and vacuity, disjunctive elimination is equivalent to logi-
cal relevance, we can conclude that if disjunctive elimination is replaced by logical
relevance in the axiomatization highlighted in the above paragraph, the resulting
list of postulates consists also of an (alternative) axiomatic characterization of the
ensconcement-based contraction. At this point we must remark that in [FKR08,
Theorem 14] an axiomatic characterization for the ensconcement-based contractions
was presented which consisted only of the postulates of success, inclusion, vacuity,
extensionality, conjunctive factoring and disjunctive elimination. However, in per-
sonal communications, Zhiqiang Zhuang pointed out two gaps in the From postulates
to Ensconcement-based contraction part of the proof of the mentioned theorem.

6.3 Ensconcement-based versus brutal contraction

In this section we will compare the two kinds of base contraction functions presented
in [Wil94a], namely brutal contractions and ensconcement-based contractions. More
precisely we will check which postulates of the axiomatic characterization of the
ensconcement-based contraction functions are satisfied by the brutal contraction
functions and which are not and vice-versa. We end this section by comparing the
two methods for constructing an ensconcement from a contraction operator pre-
sented in the previous section. On the one hand we will establish that the method
used in the previous section to define an ensconcement from an ensconcement-based
contraction (condition (CEB ⪯)) works also when the operation under consideration
is a brutal contraction. On the other hand we will show that condition (CBR ⪯)
works if the operation under consideration is a brutal contraction but does not work
if it is an ensconcement-based contraction.

We start by presenting an example that clarifies the difference between the def-
initions of brutal contraction and of ensconcement-based contraction.

Example 6.3.1 Let (A,⪯) be an ensconcement where A = {p ∨ q, q, q → p} and ⪯
is the three-level ensconcement relation on A defined by: q ≺ q → p ≺ p ∨ q. Let −
be the ⪯-based contraction and −B be the ⪯-based brutal contraction on A. Hence
cut≺(p) = {p ∨ q}. Therefore, A −B p = {p ∨ q} and A − p = {p ∨ q, q}.

It is clear that given an ensconcement (A,⪯), if − is the ⪯-based contraction and−B is the ⪯-based brutal contraction, then for all sentences α: A −B α ⊆ A − α.
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The following example illustrates that in general brutal contractions do not sat-
isfy disjunctive elimination.

Example 6.3.2 Let (A,⪯) be an ensconcement where A = {p, q, p ∨ q} and ⪯ is the
two-level ensconcement relation on A defined by: p =⪯ q ≺ p∨ q. Let − be the ⪯-based
brutal contraction on A. By Definition 5.2.21 it holds that A − p = {p ∨ q}. Hence
q ∈ A, q /∈ A − p and A − p ⊢ p ∨ q. Hence − does not satisfy disjunctive elimination.

The two following examples illustrate that ensconcement-based contractions, in
general, do not satisfy two of the postulates that axiomatically characterize brutal
contractions, namely strong inclusion and uniform behaviour.

Example 6.3.3 Let − be an ensconcement-based contraction on A = {p, q, r, q ∨ r}.
Let ⪯ be an ensconcement relation on A defined by: r ≺ p ≺ q ≺ q ∨ r. By Definition
5.2.20 it follows that A − p = {q, q ∨ r} and A − q = {r, q ∨ r}. Hence A − q /⊢ p but
A − q /⊆ A − p. Hence − does not satisfy strong inclusion.

Example 6.3.4 Let − be an ensconcement-based contraction on A = {q, r, r → p}
and let ⪯ be an ensconcement relation on A such that all the formulae of A are at
the same level. By Definition 5.2.20 it follows that A− q = A−p = ∅, A− r = {r → p}
and A − (r → p) = {r} (since ⊢ r ∨ (r → p)). Hence q ∈ A, A ⊢ p, A − p = A − q, but
p /∈ Cn(A − q ∪ {γ ∈ A ∶ A − q = A − γ}). Hence − does not satisfy uniform behaviour.

In the two following observations we expose which postulates of the axiomatic
characterization of the ensconcement-based contraction functions are satisfied by
brutal contractions functions and which are not and vice- versa.

Observation 6.3.5 Let A be a belief base. If − is a brutal contraction on A, then:

(a) − satisfies success, inclusion, vacuity, extensionality, conjunctive factoring, tran-
sitivity, EB1 and EB2;

(b) − in general does not satisfy disjunctive elimination.

Proof: A proof for this observation can be found on page 193.

Observation 6.3.6 Let A be a belief base. If − is an ensconcement-based contrac-
tion on A, then:

(a) − satisfies success, inclusion, vacuity, failure and relative closure;

(b) − in general does not satisfy strong inclusion nor uniform behaviour.

Proof: A proof for this observation can be found on page 194.

The following observation states that if − is a brutal contraction, then condition
(CEB ⪯) is equivalent to condition (CBR ⪯) and defines an ensconcement relation on
A whereas, if − is an ensconcement-based contraction on A, then in general condition
(CBR ⪯) does not define an ensconcement relation on A.
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Observation 6.3.7 Let A be a belief base. Then:

(a) If an operator − on A is a brutal contraction, then condition (CEB ⪯) is equiv-
alent to condition (CBR ⪯) and defines an ensconcement relation on A.

(b) If an operator − on A is an ensconcement-based contraction, then condition
(CBR ⪯) in general does not define an ensconcement relation on A.

Proof: A proof for this observation can be found on page 194.

To finish this section we briefly summarize the main results here presented.
Hence, according to Observations 6.3.5 and 6.3.6, the postulates of success, in-
clusion, vacuity, failure, relative closure, extensionality, conjunctive factoring, tran-
sitivity, EB1 and EB2 are satisfied by both ensconcement-based contractions and
brutal contractions. Furthermore, those two results allow us to conclude that the
properties that distinguish those two kinds of base contractions are disjunctive elim-
ination, strong inclusion and uniform behaviour. More precisely disjunctive elimi-
nation (or, equivalently, logical relevance) can be considered the main characteristic
property of ensconcement-based contractions since it is the only postulate included
in the axiomatic characterization that is not satisfied by the related operation of
brutal contraction. Analogously, the postulates that can be considered character-
istic properties of brutal contractions (in the sense that they are not satisfied by
ensconcement-based contractions) are strong inclusion and uniform behaviour. On
the other hand, the remaining results of the present section allow us to conclude that,
while the binary relation defined by condition (CEB ⪯) is an ensconcement relation
on A whether the belief contraction − there considered is an ensconcement-based
contraction or a brutal contraction, condition (CBR ⪯) gives rise to an ensconce-
ment relation on A when − is a brutal contraction, but in general do not define an
ensconcement relation if − is an ensconcement-based contraction.

6.4 Maps between different base contraction func-

tions

The following observation exposes interrelations among the different classes of con-
tractions recalled in Section 5.2. These interrelations follow trivially from the ax-
iomatic characterizations presented in Observations 5.2.1, 5.2.4, 5.2.5, 5.2.11 and in
Theorem 6.2.4 as well as the interrelations among postulates that we presented in
Observation 5.1.2 (and that are represented in the diagram of Figure 5.1).

Observation 6.4.1 Let A be a belief base and − be an operator on A. Then:

(a) If − is an operator of partial meet contraction, then it is an operator of smooth
kernel contraction.

(b) If − is an operator of smooth kernel contraction, then it is an operator of kernel
contraction.
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(c) If − is an operator of partial meet contraction, then it is a basic AGM-generated
base contraction.

(d) If − is an operator of ensconcement-based contraction, then it is a basic AGM-
generated base contraction.

We have already seen that not every operator of kernel base contraction is an op-
erator of smooth kernel base contraction (cf. Example 3.2.18). On the other hand, in
Observation 6.3.5 we saw that brutal contractions do not in general satisfy disjunc-
tive elimination, from which (together with Observation 5.2.11) it follows that not
all brutal contractions are basic AGM-generated base contractions. Furthermore,
in [FKR08], Fermé et. al. provided an example that shows that not every operator
of smooth kernel base contraction is an operator of partial meet base contraction.
These facts are stated in the following observation.

Observation 6.4.2

(a) There are kernel base contraction operators that are not smooth kernel base
contractions.

(b) There are smooth kernel base contraction operators that are not partial meet
base contractions.

(c) There are brutal contraction operators that are not basic AGM-generated base
contractions (nor partial meet contractions by Observation 6.4.1 (c)).

The following examples will be useful to clarify further interrelations between
the base contraction functions mentioned in Section 5.2.

Example 6.4.3 Consider a language that consists of p, q and r, and their truth-
functional combinations. Let A = {p, q, r} and ε = p ∧ q.
It holds that Cn(p ∧ (q ↔ r)) ∈ Cn(A)⊥ε. Let ÷ be a partial meet contraction
on Cn(A) such that Cn(A) ÷ ε = Cn(p ∧ (q ↔ r)) and let − be an operator on
A defined for all θ ∈ L by A − θ = (Cn(A) ÷ θ) ∩ A. Hence − is a basic AGM-
generated base contraction (since every partial meet contraction on belief sets is
a basic AGM contraction, by Observation 3.2.9). On the other hand, it holds that
A−ε = Cn(p∧(q↔ r))∩A = {p}. Therefore − does not satisfy core-retainment, since
r ∈ A ∖A − ε. Hence, according to Observation 5.2.4, − is not a kernel contraction.

Example 6.4.4 Let A = {p, p∨q, p→ q}. It holds that A⊥⊥q = {{p, p→ q},{p∨q, p→
q}}. Let −σ be the smooth kernel base contraction based on a smooth incision function
σ such that: σ(A⊥⊥q) = {p, p→ q}. Hence A −σ q = {p ∨ q}. Thus −σ does not satisfy
disjunctive elimination (since p ∈ A ∖ A −σ q and A −σ q ⊢ p ∨ q). Therefore, by
Observation 5.2.11, −σ is not a basic AGM-generated base contraction.

Example 6.4.5 Let A = {p, q, r}. It holds that A ⊥ (p ∧ q) = {{p, r},{q, r}},A ⊥(q ∧ r) = {{p, q},{p, r}} and A ⊥ (p ∧ r) = {{p, q},{q, r}}. Let −γ be the partial meet
contraction based on a selection function γ for A such that: γ(A ⊥ (p∧q)) = {{q, r}}
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and γ(A ⊥ (q ∧ r)) = {{p, r}} and γ(A ⊥ (p ∧ r)) = {{p, q}}. Hence A −γ (p ∧
q) = {q, r},A −γ (q ∧ r) = {p, r} and A −γ (p ∧ r) = {p, q}. Therefore −γ does not
satisfy transitivity since p /∈ A −γ (p ∧ q), q /∈ A −γ (q ∧ r) but p ∈ A −γ (p ∧ r).
Thus, according to Theorem 6.2.4, −γ is not an ensconcement-based contraction.
Furthermore, according to Observation 6.3.5 (a), −γ is not a brutal contraction
either.

Example 6.4.6 Let A = {p, q, q → r} and ⪯ be an ensconcement relation on A
defined by: q ≺ p ≺ q → r. If − is either the ⪯-based contraction or the ⪯-based brutal
contraction for A, then it holds that A − p = {q → r}. It follows that − does not
satisfy core-retainment since q ∈ A ∖A − p.

The statements of the following observation follow from the examples presented
above.

Observation 6.4.7

(a) There are operators of basic AGM-generated base contraction that are not ker-
nel base contractions (nor smooth kernel contractions nor partial meet con-
tractions)—Example 6.4.3.

(b) There are operators of smooth kernel base contraction that are not basic AGM-
generated base contractions—Example 6.4.4.

(c) There are operators of partial meet base contractions that are not ensconcement-
based contractions nor brutal contractions—Example 6.4.5.

(d) There are operators of ensconcement-based contractions and also of brutal con-
tractions that are not kernel base contractions (nor smooth kernel contractions
nor partial meet contractions)—Example 6.4.6.

It is worth to notice that Example 6.4.6 also illustrates, as pointed out by Rott in
[Rot00a], that ensconcement-based contractions may provoke a loss of independent
beliefs with a low priority in the belief base.

In Figure 6.1 we present a diagram that summarizes the logical relationships be-
tween the operators of base contraction analysed in this and in the previous section.
This diagram is inspired in the diagram presented in [FKR08, Figure 1]. In this
diagram an arrow between two kinds of contractions means that the class formed
by all the operators of the kind mentioned at the origin of the arrow is strictly con-
tained in the class formed by the operators of the kind mentioned at the end of the
arrow. The inexistence of an arrow between two kinds of contractions means that
the corresponding classes are not related by means of inclusion.
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Partial meet
contraction

Basic AGM-generated
base contraction

Smooth kernel
contraction

Kernel
contraction

Ensconcement-
based contraction

Brutal
contraction

Figure 6.1: Logical relationships between different operations of base contraction.

6.5 Connections between base contractions based

on ensconcements and belief set contractions

based on epistemic entrenchments

In this section we study the interrelations among ensconcement-based contractions
and epistemic entrenchment-based contractions and among brutal contractions and
severe withdrawals.

We start by highlighting, in the two following observations, some interrelations
among the postulates included in the axiomatizations of those four classes of con-
traction functions on logically closed sets. The first of these observations exposes
which of the belief set contraction postulates are enough to assure the fulfilment of
some of the belief base contraction postulates, while the second one highlights which
belief base contraction postulates are enough to imply certain belief set contraction
postulates.

Observation 6.5.1 Let K be a belief set and ÷ be an operator on K.

(a) If ÷ satisfies (÷1), then it satisfies relative closure.

(b) If ÷ satisfies (÷3), then it satisfies vacuity.

(c) If ÷ satisfies (÷1) and (÷4), then it satisfies success.

(d) If ÷ satisfies (÷1) and (÷9), then it satisfies strong inclusion.

(e) If ÷ satisfies (÷1), (÷2), (÷3) and (÷5), then it satisfies disjunctive elimina-
tion.

(f) If ÷ satisfies (÷1), (÷2), (÷3), (÷4), (÷5), (÷6), and (÷V ), then it satisfies
transitivity.

(g) If ÷ satisfies (÷1), (÷3), (÷4) and (÷V ), then it satisfies EB1.

(h) If ÷ satisfies (÷1), (÷2) and (÷6), then it satisfies EB2.

(i) ÷ satisfies uniform behaviour.
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Proof: A proof for this observation can be found on page 194.

Observation 6.5.2 Let A be a logically closed set and − be an operator on A.

(a) If − satisfies success, then it satisfies (÷4).2
(b) If − satisfies inclusion and vacuity, then it satisfies (÷3).
(c) If − satisfies inclusion and relative closure, then it satisfies (÷1).
(d) If − satisfies inclusion and disjunctive elimination, then it satisfies (÷1).
(e) If − satisfies inclusion, vacuity and disjunctive elimination, then it satisfies(÷5).
(f) If − satisfies inclusion, relative closure and strong inclusion, then it satisfies(÷9).

Proof: A proof for this observation can be found on page 195.

Using the results presented above, we can easily identify which postulates of
the axiomatic characterization of the ensconcement-based contraction functions are
satisfied by epistemic entrenchment-based contractions and which are not and vice-
versa, as we expose below.

The most significant conclusion that follows from the two previous observations
is that, in the context of belief set contraction, the class of epistemic entrenchment
contractions coincides with the class of ensconcement-based contractions. This fact
is formally stated in the following theorem, which highlights also some new ax-
iomatic characterizations for the epistemic entrenchment-based contractions and for
the ensconcement-based contractions on belief sets.

Theorem 6.5.3 Let K be a belief set and ÷ be a contraction on K. The following
statements are equivalent:

1. ÷ is an epistemic entrenchment-based contraction on K.

2. ÷ is an ensconcement-based contraction on K.

3. ÷ satisfies the postulates (÷1)–(÷6) and (÷V ).
4. ÷ satisfies the postulates of inclusion, vacuity, success, extensionality, conjunc-

tive factoring and disjunctive elimination.

Proof: A proof for this theorem can be found on page 195.

We notice that it follows from the above theorem that every epistemic entrench-
ment-based contraction satisfies all the postulates included in the axiomatic char-
acterization of ensconcement-based contractions obtained in Subsection 6.2 and,

2This statement holds even if A is a not logically closed.
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moreover, that the postulates of transitivity, EB1 and EB2 are redundant in that
axiomatic characterization if the set on which the contraction is defined is logi-
cally closed. Conversely, according to the above result it holds also that every
ensconcement-based contraction on a belief set satisfies the postulates (÷1)–(÷6)
and (÷V ). Nevertheless, this is not the case regarding ensconcement-based con-
traction on a belief base that is not logically closed, as we clarify in the following
observation.

Observation 6.5.4 Let A be a belief base and − be an ensconcement-based contrac-
tion on A. Then

(a) − satisfies postulates (÷2), (÷4), (÷6) and (÷V ).
(b) If A is not logically closed, then − in general does not satisfy (÷1) nor (÷3)

nor (÷5).
Proof: A proof for this observation can be found on page 196.

Above we have concluded that the class of epistemic entrenchment-based contrac-
tions and the class of ensconcement-based contractions on belief sets are identical,
by means of a comparison among axiomatic characterizations. However, this fact
can be proven directly as we expose in the two following observations.

From the following observation we can conclude in a direct way that every epis-
temic entrenchment-based contraction is an ensconcement-based contraction. We
notice that this result is essentially based on the fact that, according to Observa-
tion 5.2.15, the restriction of an epistemic entrenchment relation to a belief set is
an ensconcement relation. Therefore, any given epistemic entrenchment relation
can be used to define both an epistemic entrenchment-based contraction and an
ensconcement-based contraction.

Observation 6.5.5 Let K be a belief set. Let ≤ be an epistemic entrenchment
relation with respect to K and ÷ be the ≤-based contraction on K defined by condition
(C÷≤). Let − be the ensconcement-based contraction on K defined from ≤ ∣K by means
of condition (EBC). Then, for all α ∈ L, K ÷ α = K − α.

Proof: A proof for this observation can be found on page 196.

Conversely, the following observation allows us to conclude in a direct way that
every ensconcement-based contraction on a belief set is an epistemic entrenchment-
based contraction.3

Observation 6.5.6 Let K be a belief set. Let (K,⪯) be an ensconcement and − be
the ⪯-based contraction on K defined by condition (EBC). Let ≤⪯ be the epistemic
entrenchment related to K defined from ⪯ as exposed in Observation 5.2.16 and ÷
be the epistemic entrenchment-based contraction on K defined from ≤⪯ by means of
condition (C÷≤). Then, for all α ∈ L, K − α = K ÷ α.

3We notice that, however this result follows immediately from [Wil94a, Theorem 14], we provide
a direct proof for it in the Appendix.
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Proof: A proof for this observation can be found on page 197.

A comparison between brutal contractions and severe withdrawals analogous to
the one that was presented above regarding ensconcement-based contractions and
epistemic entrenchment-based contractions is in order.

The main conclusion, concerning the interrelation among brutal contractions and
severe withdrawals, that follows from Observations 6.5.1 and 6.5.2 is that the class
of severe withdrawals coincides with the class of brutal contractions on belief sets.
This fact as well as some axiomatic characterizations for the above mentioned class
of contractions are formally presented in the following theorem.

Theorem 6.5.7 Let K be a belief set and ÷ be a contraction on K. The following
statements are equivalent:

1. ÷ is a severe withdrawal on K.

2. ÷ is a brutal contraction on K.

3. ÷ satisfies the postulates (÷1), (÷2), (÷3), (÷3′), (÷4) and (÷9).

4. ÷ satisfies the postulates of relative closure, inclusion, vacuity, failure, success
and strong inclusion.

Proof: A proof for this theorem can be found on page 198.

It follows immediately from the above theorem (and also from Observation 6.5.1)
that severe withdrawals satisfy all the postulates included in the axiomatic charac-
terization of brutal contractions presented in Theorems 6.2.1 and 6.2.2 (including
the postulate of uniform behaviour, which is not necessary for the axiomatic charac-
terization of brutal contractions on belief sets). Conversely, every brutal contraction
on a belief set satisfies all the postulates included in the axiomatic characterization
of severe withdrawals presented in Observation 3.2.49. However, brutal contractions
on sets that are not logically closed, in general do not satisfy all those postulates,
as we clarify in the following observation.

Observation 6.5.8 Let A be a belief base and − be a brutal contraction on A.

(a) − satisfies postulates (÷2), (÷3′) and (÷4).

(b) If A is not logically closed, then − in general does not satisfy (÷1) nor (÷3)
nor (÷9).

Proof: A proof for this observation can be found on page 198.

The two following observations show in a direct way (rather than by means of a
comparison among axiomatizations) that every brutal contraction on a belief set is a
severe withdrawal and vice-versa, by means of a procedure analogous to the one that
was used above to prove explicitly that a contraction function on a belief set is an
epistemic entrenchment-based contraction if and only if it is an ensconcement-based
contraction.
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Observation 6.5.9 Let K be a belief set. Let ≤ be an epistemic entrenchment
relation with respect to K and ÷ be the ≤-based severe withdrawal on K defined by
condition (R÷≤). Let − be the brutal contraction on K defined from ≤ ∣K by means
of condition (BC). Then, for all α ∈ L, K ÷ α = K − α.

Proof: A proof for this observation can be found on page 198.

Observation 6.5.10 Let K be a belief set. Let (K,⪯) be an ensconcement and− be the ⪯-based brutal contraction on K defined by condition (BC). Let ≤⪯ be the
epistemic entrenchment related to K defined from ⪯ as exposed in Observation 5.2.16
and ÷ be the severe withdrawal on K defined from ≤⪯ by means of condition (R÷≤).
Then, for all α ∈ L, K − α = K ÷ α.

Proof: A proof for this observation can be found on page 199.

To close this section we remark that the main conclusion that raises from the re-
sults presented here is the fact that in the belief sets context the class of ensconcement-
based contractions coincides with the class of epistemic entrenchment-based con-
tractions as well as the class of brutal contractions is identical to the class of severe
withdrawals. These facts, together with the results of Subsection 5.2.4, contribute
to assert that Williams’ concept of ensconcement relation is an adequate generaliza-
tion to the context of belief bases of Gärdenfors and Makinson’s notion of epistemic
entrenchment relation (on a belief set).

6.6 Summary

We have presented, in Section 6.2 axiomatic characterizations for the brutal and for
the ensconcement-based contractions. The representation theorems obtained opened
up the possibility of comparing the ensconcement-based contractions and the brutal
contractions with each other as well as with some other well-know contraction oper-
ations through an axiomatic perspective. In particular, in Section 6.3, we have made
such a comparison among the ensconcement-based contractions and the brutal con-
tractions. That comparison allows us to conclude, in particular, that neither one of
those two classes of functions contains the other. We have also presented a method
for defining an ensconcement relation by means of either an ensconcement-based or
a brutal contraction operation and we have show that, given a contraction of either
one of those two types, the ensconcement thus obtained coincides exactly with the
ensconcement on which the operation under consideration is based. Furthermore,
we have also proven that, when considering only brutal contractions, the mentioned
construction of an ensconcement relation from a contraction operation can be sig-
nificantly simplified. In Section 6.4 we compare through an axiomatic perspective
the contraction base function presented in Section 5.2, obtaining a map that relates
the contraction functions there presented. Finally, in Section 6.5, we have presented
some results relating base contraction postulates and belief set contraction postu-
lates and we have investigated the connections between the ensconcement-based
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contractions and the epistemic entrenchment-based contractions as well as between
the brutal contractions and the severe withdrawals. The main conclusion that we
have achieved in this regard was that a contraction function on a belief set is an
ensconcement-based contraction (respectively, a brutal contraction) if and only if it
is an epistemic entrenchment-based contraction (respectively, a severe withdrawal).





Chapter 7

Shielded Contraction on Belief
Bases

“Old beliefs die hard even when demonstrably false.”
Edward O. Wilson

This chapter is dedicated to the study of shielded contraction on belief bases.
As mentioned before, two of the main shortcomings pointed out to the AGM model
of belief change are the (impractical) use of belief sets to represent belief states and
the (unrealistic) acceptance of any new piece of information. In this chapter we
study a kind of operators — known as shielded base contractions — which address
both those issues. Indeed, on the one hand, these operators are defined on belief
bases (rather than belief sets) and, on the other hand, they are constructed with
the underlying idea that not all new information are accepted.

The motivation for the proposal of this kind of operators was the fact that, as
pointed out by Rott [Rot92b], the success postulate is not a fully realistic require-
ment since an agent can have several (non-tautological) beliefs that he/she is not
willing, for various reasons, to give up. Shielded contractions are operators that for
some inputs behave just as (standard) contractions and for other inputs just do not
have any effect at all — in the sense that simple return (as output) the belief state
received as input.

In [FH01], a shielded contraction is defined by means of an AGM contraction and
a set of sentences R satisfying certain properties, named set of retractable sentences,
which models the set of sentences that the agent is willing to give up (if needed).
Informally speaking, the shielded contraction is a function that receives (just as a
standard contraction does) a belief set and a sentence and returns:

� The received belief set (unchanged), if the received sentence is not included in
R;

� The output produced by the associated AGM contraction (when it receives
those two inputs), if the received sentence is in R.

In the present chapter we shall study shielded contractions defined for belief
bases (rather than for belief sets). Until now, only one class of such operators has

109
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been considered in the belief change literature, namely a class of shielded contrac-
tions on belief bases defined by means of a partial meet contraction and a set of
retractable sentences (satisfying certain properties), which was presented and ax-
iomatically characterized in [FMT03] (and which was recalled in Subsection 5.3.1).
In this chapter we consider classes of shielded base contraction induced by several
well-known kinds of standard contractions (not only partial meet contractions) and
several kinds of sets of retractable sentences (i.e. we consider several different, and
non-equivalent, sets of properties for characterizing a set of retractable sentences).
We axiomatically characterize all the classes of shielded base contractions consid-
ered and study the interrelations among them, namely by investigating if each of
those classes is or is not (strictly) contained in each one of the remaining classes
considered.

7.1 Shielded base contractions

The basic idea of shielded contractions is to define a function in two steps. In the
first step, one needs to define which sentences are retractable, i.e., the sentences
that an agent is willing to give up when performing a contraction. Afterwards the
function should:
- leave the set of beliefs unchanged when contracting it by an irretractable sentence;
- work as a “standard” contraction when contracting by a retractable sentence.
The following definition presents a class of shielded base contractions which gen-
eralizes the class mentioned in Definition 5.3.3 in the sense that the underlying
contraction does not need to be a partial meet contraction.

Definition 7.1.1 Let − be a contraction operator on a belief base A (i.e. an opera-
tor that satisfies success and inclusion). Let R be a set of sentences (the associated
set of retractable sentences). Then ∼ is the shielded base contraction induced by −
and R if and only if:

A ∼ α = { A − α if α ∈ R
A otherwise

7.1.1 Postulates for shielded base contractions

For convenience, we recall the postulates for (shielded) base contraction that we
have already mentioned in Subsections 5.1.1 and 5.3.1.

(Success) If /⊢ α then A ∼ α /⊢ α.
(Inclusion) A ∼ α ⊆ A.
(Failure) If ⊢ α then A ∼ α = A.
(Vacuity) If A /⊢ α, then A ⊆ A ∼ α.
(Uniformity) If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if
β ∈ Cn(A′), then A ∼ α = A ∼ β.
(Extensionality) If ⊢ α↔ β, then A ∼ α = A ∼ β.
(Relevance) If β ∈ A and β /∈ A ∼ α then there is some set A′ such that A ∼ α ⊆
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A′ ⊆ A and α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}).
(Core-retainment) If β ∈ A and β ∉ A ∼ α then there is some set A′ such that
A′ ⊆ A and α ∉ Cn(A′) but α ∈ Cn(A′ ∪ {β}).
(Disjunctive Elimination) If β ∈ A and β /∈ A ∼ α, then A ∼ α /⊢ α ∨ β.
(Relative Closure) A ∩Cn(A ∼ α) ⊆ A ∼ α.
(Relative Success) A ∼ α = A or α /∈ Cn(A ∼ α).
(Success Propagation) If A ∼ β ⊢ β and ⊢ β → α, then A ∼ α ⊢ α.
(Conjunctive Constancy) If A ∼ α = A ∼ β = A, then A ∼ α ∧ β = A.
(Persistence) If β ∈ Cn(A ∼ β), then β ∈ Cn(A ∼ α).

7.1.2 The set of retractable sentences

We start this subsection by recalling the properties proposed in [FH01, FMT03] for
a set of retractable sentences R (these properties were already mentioned in Sub-
section 5.3.1).

Non-retractability Propagation: If α ∉ R, then Cn(α) ∩R = ∅.
Conjunctive Completeness: If α ∧ β ∈ R, then α ∈ R or β ∈ R.
Non-retractability Preservation: L/R ⊆ Cn(A ∼ α).
Non-retractability of Tautology: R ∩Cn(∅) = ∅.

We now propose some new properties that may naturally be required from a set
of retractable sentences and, after that, we present some results exposing interrela-
tions among different properties associated to sets of retractable sentences.

The following property states that two logically equivalent sentences should be
both retractable or both irretractable.

Retractability of Logical Equivalents: If ⊢ α↔ β, then α ∈ R if and only if
β ∈ R.

Another property that is natural to expect is the following one, which attests
that a conjunction is retractable as long as one of its conjuncts is so.

Converse Conjunctive Completeness: If α ∈ R, then α ∧ β ∈ R.

Additionally, we propose some other properties interconnecting R and A that
are natural to expect.

The following property states that if two sentences α and β are implied by ex-
actly the same subsets of A, then they are both retractable or both irretractable.

Uniform Retractability: If it holds for all subsets A′ of A that α ∈ Cn(A′) if
and only if β ∈ Cn(A′), then α ∈ R if and only if β ∈ R.
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The following property states that all irretractable sentences are deducible from
the set to be contracted.

Non-retractability Upper Bounding: L/R ⊆ Cn(A).
We notice that non-retractability upper bounding is equivalent to L ∖Cn(A) ⊆ R

which is mentioned in the representation results of [FH01] that we have mentioned
in Subsection 4.2.2.1

At this point we propose the following condition that relates a set of retractable
sentences R and a contraction function −:

If α /∈ R and β ∈ R, then A − β ⊢ α. (R - −)

The intuition underlying this condition is the following:
Ideally the irretractable sentences should not be removed from the belief base when
a shielded contraction (by any sentence) is performed. Then, if a set (of retractable
sentences) R and a contraction − are intended to be used to define a shielded con-
traction it should hold that if a sentence is not in R (i.e., is considered irretractable),
then it should not be removed when using − to contract by a sentence included in R
(i.e., by a sentence that is considered retractable).2 The following example clarifies
this reasoning.

Example 7.1.2 Let A = {p, q} and R = L/Cn(p).3 Consider a contraction operator− such that A− (p∧ q) = {q}. If ∼ is the shielded contraction induced by − and R, it
holds that:

A ∼ (p ∧ q) = A − (p ∧ q) = {q} /⊢ p.
This contradicts one of the main goals underlying the concept of “irretractability”:
irretractable sentences should be kept (more precisely, should be implied) after per-
forming the related shielded contraction (by any sentence). We note that this happens
because R and − do not satisfy condition (R - −). Indeed, p /∈ R and p ∧ q ∈ R but
A − (p ∧ q) /⊢ p.

From a different perspective, we can say that condition (R - −) imposes that R
and − are such that the complement of R consists precisely of the sentences which
are more difficult to remove by means of −.

Throughout this thesis we shall often say, by abuse of language, that R satisfies
condition (R - −), instead of saying that R and − satisfy condition (R - −).

1We note that more rigorously the expression “with respect to A” should be added to the des-
ignation of the last two properties presented (namely, uniform retractability and non-retractability
upper bounding), since these relate R and A. However we will use the shorter designation of these
properties since there is no risk of ambiguity whenever these properties are mentioned along this
thesis.

2Note that if β /∈ R and ∼ is a shielded base contraction operator on a set A induced by a
contraction operator and R, then A ∼ β = A. Therefore if R satisfies non-retractability upper
bounding then A ∼ β ⊢ α for every irretractable sentence α.

3Note that the set R satisfies non-retractability of tautology, non-retractability propagation,
conjunctive completeness, uniform retractability and non-retractability upper bounding.
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Interrelations among properties for the set of retractable sentences

The following observation highlights that if a set R, of retractable sentences, satisfies
non-retractability of tautology, non-retractability propagation and conjunctive com-
pleteness, then its complement L ∖R, the set of irretractable sentences, is logically
closed.

Observation 7.1.3 Let R be a set that satisfies non-retractability of tautology, non-
retractability propagation and conjunctive completeness. Then:
α ∈ L ∖R if and only if L ∖R ⊢ α.

Proof: A proof for this observation can be found on page 202.

We note that, if R ≠ L satisfies non-retractability propagation, then it is not log-
ically closed i.e., the fact that R ⊢ α does not imply that α ∈ R. To see this it is
enough to note that if p ∈ R and q /∈ R, then R ⊢ p ∨ q. But, by non-retractability
propagation, p ∨ q /∈ R.

The following observation illustrates that retractability of logical equivalents fol-
lows from uniform retractability and also follows from non-retractability propaga-
tion. It also highlights that converse conjunctive completeness is implied by non-
retractability propagation.

Observation 7.1.4 Let R be a set of sentences. Then:

(a) If R satisfies uniform retractability, then R satisfies retractability of logical
equivalents.

(b) If R satisfies non-retractability propagation, then R satisfies retractability of
logical equivalents and converse conjunctive completeness.

Proof: A proof for this observation can be found on page 202.

The following theorem presents an explicit definition for the set of retractable
sentences R in terms of the shielded contraction operator ∼, which is induced by it,
provided that R satisfies non-retractability of tautology and non-retractability upper
bounding.

Theorem 7.1.5 Let A be a belief base and ∼ be a shielded base contraction induced
by a contraction operator on A and a set R ⊆ L. Then R satisfies non-retractability
of tautology and non-retractability upper bounding if and only if R = {α ∶ A ∼ α /⊢ α}.

Proof: A proof for this theorem can be found on page 203.

The following observation exposes that a shielded contraction ∼ is induced by a
contraction operator − and a set R that satisfies non-retractability upper bounding
and which are such that condition (R - −) holds, if and only if R satisfies non-
retractability preservation.
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Observation 7.1.6 Let A be a belief base and ∼ be a shielded base contraction
induced by a contraction operator − on A and a set R ⊆ L. Then, R satisfies non-
retractability preservation if and only if R satisfies non-retractability upper bounding
and − and R satisfy condition (R - −).

Proof: A proof for this observation can be found on page 203.

The following observation exposes some other relations among the properties of
a set of retractable sentences.

Observation 7.1.7 Let A be a belief base and ∼ be a shielded base contraction in-
duced by a contraction operator on A and a set R ⊆ L. If R satisfies non-retractability
preservation and non-retractability of tautology, then R satisfies conjunctive com-
pleteness, non-retractability propagation, uniform retractability and retractability of
logical equivalents.

Proof: A proof for this observation can be found on page 204.

7.2 Relations between base contractions and shielded

base contractions

The following theorem illustrates some properties that an operator of shielded base
contraction, induced by a contraction operator − and a set R, satisfies whenever −
and R satisfy some given properties.

Theorem 7.2.1 Let A be a belief base, − be a contraction on A, R ⊆ L, and ∼ be
the shielded base contraction induced by − and R. Then:4

(a) It holds that:

4The schema presented in this theorem (and whenever a similar schema is used) should be read
as follows: Let A be a belief base, ÷ be a contraction on A, R ⊆ L, and ∼ be the shielded base
contraction induced by ÷ and R. Then:

(a) It holds that:

1. ∼ satisfies inclusion.

2. If ÷ satisfies vacuity, then ∼ satisfies vacuity.

3. If ÷ satisfies failure, then ∼ satisfies relative success.
...

...
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If − satisfies then ∼ satisfies
— inclusion

vacuity vacuity

failure relative success

relative closure relative closure

relevance relevance

core-retainment core-retainment

disjunctive elimination disjunctive elimination

(b) If R and − satisfy condition (R - −), then:

If − satisfies then ∼ satisfies
— persistence

failure and extensionality extensionality

failure and uniformity uniformity

(c) If R satisfies non-retractability preservation, then:

If − satisfies then ∼ satisfies
— persistence

failure and extensionality extensionality

failure and uniformity uniformity

(d) If R satisfies non-retractability of tautology, then:

If − satisfies then ∼ satisfies
— relative success

(e) If R satisfies retractability of logical equivalents, then:

If − satisfies then ∼ satisfies
extensionality extensionality

(f) If R satisfies uniform retractability, then:

If − satisfies then ∼ satisfies
uniformity uniformity

(g) If R satisfies non-retractability propagation, then:

If − satisfies then ∼ satisfies
— success propagation

extensionality extensionality

(h) If R satisfies conjunctive completeness and retractability of logical equivalents
(or uniform retractability), then:

If − satisfies then ∼ satisfies
vacuity and failure conjunctive constancy

(i) If R satisfies non-retractability propagation and conjunctive completeness, then:
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If − satisfies then ∼ satisfies
vacuity and extensionality (or

uniformity)
conjunctive constancy

Proof: A proof for this theorem can be found on page 204.

At this point we note that, given a shielded contraction ∼, we can use it to define
a set R of sentences that may be considered retractable in that context. As Theorem
7.1.5 suggests, a natural way to define such a set is by R = {α ∶ A ∼ α /⊢ α}. The
next theorem illustrates some properties that this set R satisfies whenever ∼ satisfies
some of the postulates presented in Subsection 7.1.1.

Theorem 7.2.2 Let A be a belief base, ∼ be an operator on A and R = {α ∶ A ∼ α /⊢
α}. Then:

(a) It holds that:

If ∼ satisfies then R satisfies
— non-retractability of tautology

inclusion non-retractability upper bounding

extensionality retractability of logical equivalents

inclusion and uniformity uniform retractability

success propagation non-retractability propagation

relative success and conjunctive
constancy

conjunctive completeness

persistence

non-retractability preservation,
conjunctive completeness,

non-retractability propagation and
retractability of logical equivalents

persistence and inclusion uniform retractability

(b) If ∼ is a shielded base contraction induced by a contraction operator − and R,
then:

If ∼ satisfies then R satisfies

persistence
non-retractability upper bounding

and condition (R - −)

Proof: A proof for this theorem can be found on page 207.

We have already explored the properties that an operator of shielded base con-
traction induced by an operator − and a set R satisfies whenever − and R satisfy
some given properties. In the next theorem we see that it is possible to construct
an operator − in terms of ∼ and R = {α ∶ A ∼ α /⊢ α} and investigate the properties
that such an operator satisfies taking into account the properties satisfied by ∼.
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Theorem 7.2.3 Let A be a belief base, ∼ be an operator on A and R = {α ∶ A ∼ α /⊢
α}. Then there exists an operator − on A such that:

(a) If ∼ satisfies relative success and inclusion, then − is a contraction operator and∼ is the shielded base contraction induced by − and R.

(b) It holds that:

If ∼ satisfies then − satisfies
vacuity vacuity

extensionality extensionality

failure failure

relative closure relative closure

inclusion and uniformity uniformity

relevance relevance

core-retainment core-retainment

disjunctive elimination disjunctive elimination

(c) If ∼ satisfies persistence, then − and R satisfy condition (R - −).

Proof: A proof for this theorem can be found on page 208.

7.3 Axiomatic characterizations of different kinds

of shielded base contractions

In this section we propose and axiomatically characterize several classes of shielded
contraction functions. We start by presenting, in Subsection 7.3.1 a representation
theorem for the operators that satisfy relative success and inclusion, which consti-
tute the most general class of shielded contractions that we will consider. Afterwards
in Subsections 7.3.2 − 7.3.4 we consider some more specific classes of shielded con-
tractions. More precisely we consider the classes of shielded contractions induced by
different well-known kinds of contraction functions (namely, partial meet, (smooth)
kernel and basic AGM-generated base contractions) and by several alternative types
of sets of retractable sentences (i.e. considering different sets of properties associ-
ated to the related set of retractable sentences). We note that the proofs provided
in the Appendix for the representation theorems included here rely very strongly on
the results presented in the previous section.

All the Subsections 7.3.2−7.3.4 have a similar structure. In each one of these sub-
sections firstly a theorem is presented which provides axiomatic characterizations for
five classes of shielded contractions all induced by a same kind of contraction func-
tion but each of them with a different type of associated set of retractable sentences.
Afterwards, a definition is presented where a designation is proposed for each one
of the operators that were axiomatically characterized in the previously presented
theorem. The reason for providing a designation for each of the considered classes
of operators only after presenting the corresponding axiomatic characterization is
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the fact that the designation proposed for each class is based on the names of some
of the postulates that are included in that axiomatic characterization.

7.3.1 Basic shielded base contractions

In Definition 7.1.1 we have introduced, from a constructive perspective, the con-
cept of shielded base contraction induced by a contraction operator − and a set of
retractable sentences R. At this point we notice that if, alternatively, we wished
to define shielded base contractions in terms of postulates then, having in mind (i)
the definition for contraction recalled in Definition 5.1.1, and (ii) the postulates for
shielded contraction presented in Subsection 7.1.1, the most natural proposal would
be to define a shielded base contraction as an operator that satisfies the postulates
of relative success and inclusion.

It follows trivially from Definition 7.1.1 that any shielded contraction satisfies
inclusion. However, somehow surprisingly, a shielded contraction operator induced
by a (general) contraction operator − (i.e. an operator − that satisfies success and
inclusion) and a set of retractable sentences R ⊆ L (which is not required to satisfy
any properties at all) does not satisfy the postulate of relative success. Indeed, in
order to assure that a shielded base contraction ∼ induced by a contraction − and a
set R satisfies relative success, it is necessary to impose that − satisfies the postulate
of failure and/or that the set R satisfies non-retractability of tautology. This fact is
formally stated in the following theorem.

Theorem 7.3.1 Let A be a belief base and ∼ an operator on A. Then the following
conditions are equivalent:

1. ∼ satisfies relative success and inclusion.

2. ∼ is an operator of shielded base contraction induced by a contraction operator
and a set R ⊆ L that satisfies non-retractability of tautology.

3. ∼ is an operator of shielded base contraction induced by a contraction operator
that satisfies failure and a set R ⊆ L.

Proof: A proof for this theorem can be found on page 209.

Having in mind the above theorem and the discussion that proceeded it, we are
led to consider that the most general kind of shielded contractions that are worth
considering (in the sense that these are the most general operators that satisfy the
minimal set of properties that are intuitively associated to the notion of shielded
contraction) are the ones that we introduce in the following definition.

Definition 7.3.2 A shielded base contraction ∼ on a belief base A induced by a
contraction − and a set R ⊆ L is a basic shielded contraction if and only if −
satisfies failure or R satisfies non-retractability of tautology.

In the following result we present an axiomatic characterization for the basic
shielded contractions, which follows trivially from Theorem 7.3.1.
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Corollary 7.3.3 Let ∼ be an operator on A. Then ∼ is a basic shielded contraction
if and only if ∼ satisfies relative success and inclusion.

In the remainder of this section we will obtain axiomatic characterizations for
other less general classes of shielded contractions (which are strict subclasses of the
class of basic shielded contractions). More precisely, we will consider the shielded
contractions on belief bases induced by partial meet contractions, by (smooth) kernel
contractions and by basic AGM-generated base contractions and, additionally, we
will take into account different sets of properties regarding the associated set of
retractable sentences R.

7.3.2 Shielded partial meet base contractions

The following theorem presents axiomatic characterizations for five kinds of opera-
tors of shielded base contraction. All these operators are induced by partial meet
contractions but each one of them has a different type of associated set of retractable
sentences.

Theorem 7.3.4 Let A be a belief base and ∼ an operator on A. Then:

∼ is an operator of shielded base
contraction induced by a partial

meet contraction − and a set R ⊆ L
that satisfies

if and only if ∼ satisfies
relative success, inclusion,
uniformity, relevance and

uniform retractability —

uniform retractability and
non-retractability propagation

success propagation

uniform retractability and conjunctive
completeness

conjunctive constancy

uniform retractability, non-retractability
propagation and conjunctive completeness

success propagation and
conjunctive constancy

condition (R - −) persistence

Proof: A proof for this theorem can be found on page 210.

In the following definition we attribute designations to the different kinds of
shielded contractions that were axiomatically characterized in the above theorem.

Definition 7.3.5 A shielded base contraction ∼ on a belief base A induced by a
partial meet contraction − and a set R ⊆ L is a:

Designation if and only if R satisfies

Shielded partial meet contraction
(SPMC)

uniform retractability

Success propagant shielded
partial meet contraction

(SP-SPMC)

unif. retractability and
non-retractability

propagation

Continued on next page
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Continued from previous page

Conjunctive constant shielded
partial meet contraction

(CC-SPMC)

unif. retractability and
conjunctive completeness

Success propagant conjunctive
constant shielded partial meet contraction

(SP+CC-SPMC)

unif. retractability,
non-retr. propagation and

conj. completeness

Persistent shielded partial meet contraction
(P-SPMC)

condition (R - −)

Throughout this chapter we will sometimes use the acronyms introduced in the
first column of the table above, to designate the whole class of the corresponding
kind of operators (instead of only one of the elements of that class). It will always
be clear by the context whether the acronym is being used to denote a class of op-
erators or a single operator.

It is worth to mention here that, since in the proof of the right-to-left part of
Theorem 7.3.4 we used the set R = {α ∶ A ∼ α /⊢ α}, it follows from Observation 7.1.4
(a) and Theorem 7.2.2 that in each row of the tables presented in Theorem 7.3.4
and in Definition 7.3.5, to the list of properties of R (there presented) we can add
the following ones: non-retractability of tautology, non-retractability upper-bounding
and retractability of logical equivalents. Furthermore, in the case of the last row, be-
sides the three properties mentioned above, uniform retractability, non-retractability
propagation, conjunctive completeness and non-retractability preservation can also
be added to the list of properties of R (there presented). In fact, according to Obser-
vation 7.1.6, in the last row of the tables presented in Theorem 7.3.4 and in Defini-
tion 7.3.5, condition (R - −) can even be replaced by non-retractability preservation.

We note that it follows from the above remark that there are several alternative
(equivalent) definitions for the classes introduced in Definition 7.3.5, more precisely
several equivalent definitions, but each one with a different set of properties associ-
ated to the set R.

This same situation occurs regarding the classes of shielded contractions intro-
duced in Definitions 7.3.10, 7.3.14 and 7.3.18 (that will appear in the following
subsections).

The following corollary follows trivially from the above definition and Theorem
7.3.4.

Corollary 7.3.6 Let ∼ be an operator on A. Then:

∼ is a
if and only if ∼ satisfies relative success,

inclusion, uniformity, relevance and
SPMC —

SP-SPMC success propagation

CC-SPMC conjunctive constancy

SP+CC-SPMC success propagation and conjunctive constancy

P-SPMC persistence
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At this point it is worth to notice that the axiomatic characterization given in the
last row of the above table is identical to the axiomatic characterization presented
in [FMT03] (that we recalled in Observation 5.3.4). Therefore, the class formed
by the operators designated in Definition 7.3.5 by persistent shielded partial meet
contraction coincides with the class of shielded contractions that was axiomatically
characterized in [FMT03].

Next we present examples of shielded contraction operators that belong to some
of the classes introduced in Definition 7.3.5 but do not belong to others. These
examples allow us to conclude that the classes mentioned in Definition 7.3.5 are all
different from each other.

Example 7.3.7 Let A = {p, q} and − be a partial meet base contraction on A such
that A − (p ∧ q) = {p} and A − (p ∨ q) = ∅. Let ∼ be the operator of shielded base
contraction induced by − and a set R.

(a) If R = L ∖(Cn(p) ∪ Cn(q)), then R satisfies uniform retractability and non-
retractability propagation.5 Therefore, by Definition 7.3.5, ∼ is a SPMC and
a SP-SPMC. On the other hand it holds that p /∈ R, q /∈ R and p∧q ∈ R. Hence
A ∼ p = A ∼ q = A but A ∼ (p ∧ q) = A − (p ∧ q) = {p} /= A. Thus ∼ does not
satisfy conjunctive constancy. Therefore, according to Corollary 7.3.6, ∼ is
not a CC-SPMC nor a SP+CC-SPMC.

(b) If R = L ∖(Cn(∅)∪ (Cn(p)∖Cn(q))), then R satisfies uniform retractability
and conjunctive completeness.6

Therefore, according to Definition 7.3.5 ∼ is a SPMC and a CC-SPMC. On
the other hand it holds that p∨ q ∈ R and p /∈ R. From the latter it follows that
A ∼ p = A, thus A ∼ p ⊢ p. It holds that ⊢ p → (p ∨ q) and that A ∼ (p ∨ q) =
A − (p ∨ q) = ∅. Hence A ∼ (p ∨ q) /⊢ p ∨ q. Thus ∼ does not satisfy success
propagation. Therefore, according to Corollary 7.3.6, ∼ is not a SP-SPMC
nor a SP+CC-SPMC.

(c) If R = L ∖Cn(q), then R satisfies conjunctive completeness, non-retractability
propagation and uniform retractability.7

Therefore, according to Definition 7.3.5 ∼ is a SP+CC-SPMC (and also a SP-
SPMC, a CC-SPMC and a SPMC). On the other hand it holds that p ∧ q ∈ R
and q /∈ R. Hence A ∼ q = A ⊢ q and A ∼ (p ∧ q) = A − (p ∧ q) /⊢ q. Thus ∼
does not satisfy persistence. Therefore, according to Corollary 7.3.6, ∼ is not
a P-SPMC.

Next we establish the relations between the shielded base contractions introduced
in Definition 7.3.5. It is assumed that the classes of operators mentioned in each
item of the following observation are formed by operators defined on the same belief
base. The same also applies regarding Observations 7.3.12, 7.3.16 and 7.3.20.

5See Lemma E.3 in the Appendix.
6See Lemma E.4 in the Appendix.
7See Lemma E.5 in the Appendix.
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Observation 7.3.8

(a) P-SPMC ⊂ SP+CC-SPMC.

(b) SP+CC-SPMC ⊂ CC-SPMC.

(c) SP+CC-SPMC ⊂ SP-SPMC.

(d) CC-SPMC /⊆ SP-SPMC and SP-SPMC /⊆ CC-SPMC.

(e) CC-SPMC ⊂ SPMC.

(f) SP-SPMC ⊂ SPMC.

Proof: A proof for this observation can be found on page 211.

In Figure 7.1 we present a diagram that summarizes the results established in
the above observation. In that diagram an arrow between two boxes symbolizes that
the class of shielded contractions at the origin of the arrow is a strict subclass of the
class of shielded contractions at the end of that arrow.

P-SPMC

SP+CC-SPMC

SP-SPMC CC-SPMC

SPMC

Figure 7.1: Map among different classes of shielded base contraction functions in-
duced by partial meet contractions.

7.3.3 Shielded kernel base contractions

The following representation theorem axiomatically characterizes five kinds of op-
erators of shielded base contraction. All these operators are induced by kernel con-
tractions but each one of them has a different type of associated set of retractable
sentences.

Theorem 7.3.9 Let A be a belief base and ∼ an operator on A. Then:
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∼ is an operator of shielded base
contraction induced by a kernel

contraction − and a set R ⊆ L that
satisfies

if and only if ∼ satisfies
relative success, inclusion,

uniformity, core-retainment
and

uniform retractability —

uniform retractability and
non-retractability propagation

success propagation

uniform retractability and conjunctive
completeness

conjunctive constancy

uniform retractability, non-retractability
propagation and conjunctive completeness

success propagation and
conjunctive constancy

condition (R - −) persistence

Proof: A proof for this theorem can be found on page 210.

In the next definition we introduce designations for the different kinds of shielded
contractions that were axiomatically characterized in the above theorem.

Definition 7.3.10 A shielded base contraction ∼ on a belief base A induced by a
kernel contraction − and a set R ⊆ L is a:

Designation if and only if R satisfies

Shielded kernel contraction
(SKC)

uniform retractability

Success propagant shielded
kernel contraction

(SP-SKC)

unif. retractability and
non-retractability

propagation

Conjunctive constant shielded
kernel contraction

(CC-SKC)

unif. retractability and
conjunctive completeness

Success propagant conjunctive constant
shielded kernel contraction

(SP+CC-SKC)

unif. retractability,
non-retr. propagation and

conj. completeness

Persistent shielded kernel contraction
(P-SKC)

condition (R - −)

As expected the difference between the axiomatic characterizations of the classes
of shielded partial meet contractions, presented in the previous subsection, and the
axiomatic characterizations of the classes of shielded kernel contractions, presented
in Theorem 7.3.9, is the replacement of relevance by core-retainment, which also
means, by Observation 5.1.2, that every class of shielded partial meet contractions
is a subclass of the corresponding class of shielded kernel contractions, i.e. P-SPMC⊆ P-SKC, CC-SPMC ⊆ CC-SKC, SP-SPMC ⊆ SP-SKC, SP+CC-SPMC ⊆ SP+CC-
SKC and SPMC ⊆ SKC.
The following corollary follows trivially from Definition 7.3.10 and Theorem 7.3.9.

Corollary 7.3.11 Let ∼ be an operator on A. Then:
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∼ is a
if and only if ∼ satisfies relative success,
inclusion, uniformity, core-retainment

and
SKC —

SP-SKC success propagation

CC-SKC conjunctive constancy

SP+CC-SKC success propagation and conjunctive constancy

P-SKC persistence

In the following observation we establish the relations between the shielded base
contractions introduced in Definition 7.3.10.

Observation 7.3.12

(a) P-SKC ⊂ SP+CC-SKC.

(b) SP+CC-SKC ⊂ CC-SKC.

(c) SP+CC-SKC ⊂ SP-SKC.

(d) CC-SKC /⊆ SP-SKC and SP-SKC /⊆ CC-SKC.

(e) CC-SKC ⊂ SKC.

(f) SP-SKC ⊂ SKC.

Proof: A proof for this observation can be found on page 211.

In Figure 7.2 we present a diagram that summarizes the results established in
the above observation. We note that a similar diagram was presented in Figure 7.1
regarding the classes of shielded contractions functions induced by partial meet base
contractions.

P-SKC

SP+CC-SKC

SP-SKC CC-SKC

SKC

Figure 7.2: Map among different classes of shielded base contraction functions in-
duced by kernel contractions.
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Shielded smooth kernel base contractions

The following theorem presents axiomatic characterizations for five kinds of opera-
tors of shielded base contraction that are all induced by smooth kernel contractions
but each one of them has a different type of associated set of retractable sentences.

Theorem 7.3.13 Let A be a belief base and ∼ an operator on A. Then:

∼ is an operator of shielded base
contraction induced by a smooth

kernel contraction − and a set R ⊆ L
that satisfies

if and only if ∼ satisfies
relative success, inclusion,

uniformity, core-retainment,
relative closure and

uniform retractability —

uniform retractability and
non-retractability propagation

success propagation

uniform retractability and conjunctive
completeness

conjunctive constancy

uniform retractability, non-retractability
propagation and conjunctive completeness

success propagation and
conjunctive constancy

condition (R - −) persistence

Proof: A proof for this theorem can be found on page 210.

In the following definition we introduce designations for the different kinds of
shielded contractions that were axiomatically characterized in the above theorem.

Definition 7.3.14 A shielded base contraction ∼ on a belief base A induced by a
smooth kernel contraction − and a set R ⊆ L is a:

Designation if and only if R satisfies

Shielded smooth kernel contraction
(SSKC)

uniform retractability

Success propagant shielded
smooth kernel contraction

(SP-SSKC)

unif. retractability and
non-retractability

propagation

Conjunctive constant shielded
smooth kernel contraction

(CC-SSKC)

unif. retractability and
conjunctive completeness

Success propagant conjunctive
constant shielded smooth kernel contraction

(SP+CC-SSKC)

unif. retractability,
non-retr. propagation and

conj. completeness

Persistent shielded smooth kernel contraction
(P-SSKC)

condition (R - −)

The following corollary follows trivially from Definition 7.3.14 and Theorem
7.3.13.

Corollary 7.3.15 Let ∼ be an operator on A. Then:
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∼ is a
if and only if ∼ satisfies relative success,
inclusion, uniformity, core-retainment,

relative closure and
SSKC —

SP-SSKC success propagation

CC-SSKC conjunctive constancy

SP+CC-SSKC success propagation and conjunctive constancy

P-SSKC persistence

In the following observation we establish the relations between the classes of
shielded base contractions introduced in Definition 7.3.14.

Observation 7.3.16

(a) P-SSKC ⊂ SP+CC-SSKC.

(b) SP+CC-SSKC ⊂ CC-SSKC.

(c) SP+CC-SSKC ⊂ SP-SSKC.

(d) CC-SSKC /⊆ SP-SSKC and SP-SSKC /⊆ CC-SSKC.

(e) CC-SSKC ⊂ SSKC.

(f) SP-SSKC ⊂ SSKC.

Proof: A proof for this observation can be found on page 212.

In Figure 7.3 we present a diagram that summarizes the results established in the
above observation. Similar diagrams were presented in Figures 7.1 and 7.2 regarding,
respectively, the classes of shielded contractions functions induced by partial meet
base contractions and by kernel contractions.

P-SSKC

SP+CC-SSKC

SP-SSKC CC-SSKC

SSKC

Figure 7.3: Map among different classes of shielded base contraction functions in-
duced by smooth kernel contractions.
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7.3.4 Shielded basic AGM-generated base contractions

The following representation theorem axiomatically characterizes five kinds of op-
erators of shielded contraction. All these operators are induced by basic AGM-
generated base contractions but each one of them has a different type of associated
set of retractable sentences.

Theorem 7.3.17 Let A be a belief base and ∼ an operator on A. Then:

∼ is an operator of shielded base
contraction induced by a basic

AGM-generated base contraction −
and a set R ⊆ L that satisfies

if and only if ∼ satisfies
relative success, inclusion,

vacuity, extensionality,
disjunctive elimination and

retractability of logical equivalents —

non-retractability propagation success propagation

retr. of logical equivalents and
conjunctive completeness

conjunctive constancy

non-retractability propagation and
conjunctive completeness

success propagation and
conjunctive constancy

condition (R - −) persistence

Proof: A proof for this theorem can be found on page 212.

In the following definition we introduce designations for the different kinds of
shielded contractions that were axiomatically characterized in the above theorem.

Definition 7.3.18 A shielded base contraction ∼ on a belief base A induced by a
basic AGM-generated base contraction − and a set R ⊆ L is a:

Designation if and only if R satisfies

Shielded basic AGM-generated base
contraction
(SbAGMC)

retractability of logical
equivalents

Success propagant shielded basic
AGM-generated base contraction

(SP-SbAGMC)

non-retractability
propagation

Conjunctive constant shielded basic
AGM-generated base contraction

(CC-SbAGMC)

retractability of logical
equivalents and conjunctive

completeness

Success propagant conjunctive constant
shielded

basic AGM-generated base contraction
(SP+CC-SbAGMC)

non-retr. propagation and
conj. completeness

Persistent shielded basic
AGM-generated base contraction

(P-SbAGMC)
condition (R - −)
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It is worth to notice that in the proof of the right-to-left part of Theorem 7.3.17
it was used the set R = {α ∶ A ∼ α /⊢ α}. Therefore, from Theorem 7.2.2, it
follows that in each row of the tables presented in Theorem 7.3.17 and in Definition
7.3.18, to the list of properties of R (there presented) we can add: non-retractability
of tautology and non-retractability upper-bounding. We can also add retractability
of logical equivalents to the list of properties of R presented in rows 2, 4 and 5.
Furthermore, uniform retractability, non-retractability propagation and conjunctive
completeness can be also added to the list of properties of R presented in the last
row. In fact, according to Observation 7.1.6, in the last row condition (R - −) can
even be replaced by non-retractability preservation.

The following corollary follows trivially from Definition 7.3.18 and Theorem
7.3.17.

Corollary 7.3.19 Let ∼ be an operator on A. Then:

∼ is a
if and only if ∼ satisfies relative success,

inclusion, vacuity, extensionality,
disjunctive elimination and

SbAGMC —

SP-SbAGMC success propagation

CC-SbAGMC conjunctive constancy

SP+CC-SbAGMC success propagation and conjunctive constancy

P-SbAGMC persistence

In the following observation we establish the relations between the classes of
shielded base contractions introduced in Definition 7.3.18.

Observation 7.3.20

(a) P-SbAGMC ⊂ SP+CC-SbAGMC.

(b) SP+CC-SbAGMC ⊂ CC-SbAGMC.

(c) SP+CC-SbAGMC ⊂ SP-SbAGMC.

(d) CC-SbAGMC /⊆ SP-SbAGMC and SP-SbAGMC /⊆ CC-SbAGMC.

(e) CC-SbAGMC ⊂ SbAGMC.

(f) SP-SbAGMC ⊂ SbAGMC.

Proof: A proof for this observation can be found on page 213.

In Figure 7.4 we present a diagram that summarizes the results established in the
above observation. This diagram is similar to the ones presented in Figures 7.1, 7.2
and 7.3 regarding, respectively, the classes of shielded base contractions functions
induced by partial meet contractions, by kernel contractions and by smooth kernel
contractions.
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P-SbAGMC

SP+CC-SbAGMC

SP-SbAGMC CC-SbAGMC

SbAGMC

Figure 7.4: Map among different classes of shielded base contraction functions in-
duced by basic AGM-generated base contractions.

Table 7.1 summarizes the results obtained in the representation theorems pre-
sented in this section. Given a shielded contraction ∼ the white cells that are on
the top of the same column represent the properties that R (the associated set of
retractable sentences) satisfies. The white cells that are placed on the right of the
same row indicate the properties that ∼ satisfies. Considering, for example, the
class SP+CC-SSKC, by observing this table we can see that these operators sat-
isfy success propagation, conjunctive constancy, relative closure, uniformity, core-
retainment, relative success, inclusion, vacuity and extensionality. Furthermore, we
can also see that a SP+CC-SSKC is a shielded contraction induced by (a smooth
kernel contraction and) a set of retractable sentences that satisfies non-retractability
propagation, conjunctive completeness, uniform-retractability and retractability of
logical equivalents.
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7.4 More maps between classes of shielded base

contraction functions

In this section we study the interrelations among classes of shielded contractions
induced by different kinds of contractions. Throughout this section we assume all
classes of shielded contraction mentioned are formed by operators defined on the
same belief base.

We start by presenting an example that shows that P-SSKC /⊆ SPMC and that
P-SKC /⊆ SSKC.

Example 7.4.1 (Adapted from [FKR08, Example 22])
Let A = {p, p ∨ q, p ↔ q, r} and R = L/Cn(∅). It holds that A⊥⊥(p ∧ q) = {{p, p ↔
q},{p ∨ q, p↔ q}}.

(a) Let − be a smooth kernel contraction based on a smooth incision function σ1

such that σ1(A⊥⊥(p ∧ q)) = {p, p ↔ q}. Let ∼ be the shielded base contraction
induced by − and R. It holds that R and − satisfy condition (R - −). Thus,
by Definition 7.3.14, ∼ is a P-SSKC. On the other hand, p ∧ q ∈ R. Thus
A ∼ (p∧ q) = A− (p∧ q) = {p∨ q, r}. Therefore p /∈ A ∼ (p∧ q). Thus ∼ does not
satisfy relevance. Hence, according to Corollary 7.3.6, ∼ is not a SPMC.

(b) Let − be a kernel contraction based on an incision function σ2 such that
σ2(A⊥⊥(p ∧ q)) = {p ∨ q, p ↔ q}. Hence A − (p ∧ q) = {p, r}. Let ∼ be the
shielded base contraction induced by − and R. It holds that R and − satisfy
condition (R - −). Thus, by Definition 7.3.10, ∼ is a P-SKC.
On the other hand, p∧ q ∈ R. Thus A ∼ (p∧ q) = A− (p∧ q) = {p, r}. Therefore
p∨ q ∈ A∩Cn(A ∼ (p∧ q)) but p∨ q /∈ A ∼ (p∧ q). Therefore ∼ does not satisfy
relative closure. Thus, by Corollary 7.3.15, ∼ is not a SSKC.

The following result exposes that each one of the classes of SSKCs that we have
considered in the previous section, on the one hand, is subsumed by the corre-
sponding class of SKCs and, on the other hand, contains the corresponding class of
SPMCs.

Observation 7.4.2

(a) SPMC ⊂ SSKC ⊂ SKC.

(b) SP-SPMC ⊂ SP-SSKC ⊂ SP-SKC.

(c) CC-SPMC ⊂ CC-SSKC ⊂ CC-SKC.

(d) SP+CC-SPMC ⊂ SP+CC-SSKC ⊂ SP+CC-SKC.

(e) P-SPMC ⊂ P-SSKC ⊂ P-SKC.
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Proof: A proof for this observation can be found on page 213.

The following example provides a shielded contraction that is a P-SbAGMC but
not a SPMC nor a SKC. Therefore this example shows that P-SbAGMC /⊆ SPMC
and that P-SbAGMC /⊆ SKC.

Example 7.4.3 Let A = {p, q, r}. It holds that Cn(p∧(q↔ r)) ∈ Cn(A)⊥(p∧q). Let÷ be a partial meet contraction on Cn(A) such that Cn(A)÷(p∧q) = Cn(p∧(q↔ r))
and let − be an operator on A defined for all α ∈ L by A−α = (Cn(A)÷α)∩A. Hence− is a basic AGM-generated base contraction (since every partial meet contraction
on a belief set is a basic AGM contraction [AGM85]). On the other hand, it holds
that A − (p ∧ q) = Cn(p ∧ (q ↔ r)) ∩ A = {p}. Consider the set R = L/Cn(∅) and
let ∼ be the shielded base contraction induced by − and R. It holds that R and −
satisfy condition (R - −). Thus, by Definition 7.3.18, ∼ is a P-SbAGMC. On the
other hand p∧ q ∈ R. Thus r /∈ A ∼ (p∧ q) = A− (p∧ q). Therefore ∼ does not satisfy
core-retainment nor relevance. Hence, according to Corollaries 7.3.6 and 7.3.11, ∼
is not a SPMC nor a SKC.

The following observation highlights that each one of the classes of SPMCs that
we have considered above is contained in the corresponding class of SbAGMCs.

Observation 7.4.4

(a) SPMC ⊂ SbAGMC.

(b) SP-SPMC ⊂ SP-SbAGMC.

(c) CC-SPMC ⊂ CC-SbAGMC.

(d) SP+CC-SPMC ⊂ SP+CC-SbAGMC.

(e) P-SPMC ⊂ P-SbAGMC.

Proof: A proof for this observation can be found on page 213.

In the following example we present a shielded contraction that is a P-SSKC
(and consequently a P-SKC) but not a SbAGMC.

Example 7.4.5 Let A = {p, p∨q, p→ q}. It holds that A⊥⊥q = {{p, p→ q},{p∨q, p→
q}}. Let − be a smooth kernel contraction based on a smooth incision function σ such
that: σ(A⊥⊥q) = {p, p → q}. Hence A − q = {p ∨ q}. Consider the set R = L/Cn(∅)
and let ∼ be the shielded base contraction induced by − and R. It holds that R and− satisfy condition (R - −).
Thus, by Definition 7.3.14, ∼ is a P-SSKC. On the other hand, q ∈ R. Thus A ∼ q =
A − q = {p ∨ q}, from which it follows that ∼ does not satisfy disjunctive elimination
(since p ∈ A ∖A ∼ q and A ∼ q ⊢ p ∨ q). Therefore, by Corollary 7.3.19, ∼ is not a
SbAGMC.
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The last result of this section exposes that each one of the classes of SbAGMCs
is not related, in terms of inclusion, neither with the corresponding class of SSKCs
nor with the corresponding class of SKCs.

Observation 7.4.6

(a) SKC /⊆ SbAGMC, SbAGMC /⊆ SKC, SSKC /⊆ SbAGMC and SbAGMC /⊆ SSKC.

(b) SP-SKC /⊆ SP-SbAGMC, SP-SbAGMC /⊆ SP-SKC, SP-SSKC /⊆ SP-SbAGMC
and SP-SbAGMC /⊆ SP-SSKC.

(c) CC-SKC /⊆ CC-SbAGMC, CC-SbAGMC /⊆ CC-SKC, CC-SSKC /⊆ CC-SbAGMC
and CC-SbAGMC /⊆ CC-SSKC.

(d) SP+CC-SKC /⊆ SP+CC-SbAGMC, SP+CC-SbAGMC /⊆ SP+CC-SKC, SP+CC-
SSKC /⊆ SP+CC-SbAGMC and SP+CC-SbAGMC /⊆ SP+CC-SSKC.

(e) P-SKC /⊆ P-SbAGMC, P-SbAGMC /⊆ P-SKC, P-SSKC /⊆ P-SbAGMC and P-
SbAGMC /⊆ P-SSKC.

Proof: A proof for this observation can be found on page 213.

In Figure 7.5 we present a diagram that summarizes the results presented in this
section. The X in that diagram is either a blank space or an element of the following
set of strings: {SP-, CC-, SP+CC-, P-}.

XSPMC

XSbAGMC XSSKC

XSKC

Figure 7.5: Map among different kinds of shielded base contraction functions. The
X must be replaced either by a blank space or by one of the following strings: SP-,
CC-, SP+CC- or P-.

7.5 Summary

Standard contraction operators are always successful, i.e. they are such that the
result of contracting a (non-tautological) belief from a given belief base is a new
belief base which (is contained in the original one and) does not imply that belief.
However, as discussed before, this is not a realistic feature of belief contraction.
An agent may have a set of beliefs (not necessarily tautologies) that he/she is not
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willing to give up independently of the contraction to be performed. The basic idea
of shielded contraction is to define a function in two steps. The first step consists
of determining which beliefs are suitable to be contracted and which are not, i.e.
given a belief, first it is analysed if it belongs to the set of retractable sentences (set
of beliefs suitable to be contracted) or not. Afterwards the function should:
- leave the set of beliefs unchanged when the belief to be contracted is considered
irretractable;
- behave as a standard contraction when contracting by a retractable belief.

This kind of operators is useful for modelling the behaviour of a rational agent
when it receives some new information that forces the disbelief in one of its current
beliefs. In a context where the belief states of an agent are represented by belief
bases, a shielded base contraction can be used to obtain the new belief state of the
agent, after such information is received. We notice that by means of this kind
of operators it is possible to obtain more realistic models than those that can be
obtained using (only) standard contractions, since it is naturally expectable that a
rational agent will not always be willing to give up any of its present beliefs even if
some external new information compels it to do so.

The present chapter constitutes a thorough study of shielded contractions on
belief bases. In Section 7.2 we presented several results highlighting some direct
relations among the postulates satisfied by a shielded contraction function ∼ induced
by a standard contraction − and a set of retractable sentences R and the postulates
satisfied by − and the properties of the set R. From the conclusions that can
be drawn from those results we highlight the two following ones, concerning the
postulates of relative success and persistence:

(i) The shielded base contraction ∼ satisfies relative success if and only if − satisfies
failure or the set R satisfies non-retractability of tautology.

(ii) If R and − satisfy condition (R - −) then ∼ satisfies persistence. Furthermore
if R = {α ∶ A ∼ α /⊢ α} and ∼ satisfies persistence then R and − satisfy condition
(R - −).

We are giving special attention here to the postulates of relative success and per-
sistence since these two postulates can be considered to be the most characteristic
(and intuitive) properties of shielded contraction (together with inclusion). On the
one hand relative success can be thought of as the most natural weakened version of
the success postulate that complies with the idea underlying the notion of shielded
contraction. On the other hand, among the postulates here considered to charac-
terize shielded contractions, persistence can be seen as the one that more accurately
describes the behaviour that is expected from a shielded contraction.

In this chapter we have considered that a reasonable shielded contraction oper-
ator should satisfy at least the postulates of inclusion and relative success, and we
presented a representation theorem—which is essentially based on the result men-
tioned in (i) above—for the class of (shielded contraction) operators that satisfy
exactly those two postulates. In what concerns persistence, according to (ii) above,
in order to assure that the shielded contraction, that is built from a contraction −
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and a set R, satisfies that postulate, it is enough to impose that R and − satisfy
condition (R - −).

Sections 7.3 and 7.4 contain the other contributions of this chapter, namely the
proposal and axiomatic characterization of twenty kinds of shielded contractions and
the study of the interrelations among all those classes in terms of inclusion. All the
shielded contractions considered are defined by means of a base contraction function
(of some well known class of such operators) and a certain set R formed by the so-
called retractable sentences. Among these classes there are four which are formed
by shielded contraction operators that satisfy the above highlighted postulate of
persistence.

By means of the provided results it is possible to predict the behaviour of any of
the functions constructed as indicated in each of the definitions presented. On the
other hand, it is also possible to use these results in the converse direction, that is,
for certain sets of properties that are desirable from a shielded contraction function,
our results allow to identify an explicit construction of a function that will satisfy
all the properties included in that set.





Chapter 8

Credibility-limited Revision on
Belief Bases

“It is undesirable to believe a proposition when there
is no ground whatsoever for believing it true.”

Bertrand Russel

This chapter is devoted to the study of credibility-limited revision on belief bases.
Credibility-limited revision is based on the assumption that in a revision process
some inputs are accepted, others not. Those that are potentially accepted consti-
tute the set C of credible sentences. If α is credible, then α is potentially accepted
in the revision process, otherwise no change is made to the set of beliefs. This model
was proposed and characterized for a single revision step for belief sets in [HFCF01]
and extended to cover iterated revision in [BFKP12]. As we mentioned in Subsec-
tion 5.3.2, Fermé et al., in [FMT03], extended the work presented in [HFCF01] to
the belief base context. In this chapter we present axiomatic characterizations for
operators of credibility-limited base revision induced by several types of revision op-
erators (namely, by partial meet, kernel, smooth kernel and basic AGM-generated
revisions) and by sets of credible sentences satisfying different properties. We study
the interrelations between the classes formed by these operators. We also estab-
lish the relation between different kinds of operators of shielded contraction and of
credibility-limited revision by means of the consistency-preserving Levi identity and
the Harper identity.

8.1 Credibility-limited base revisions

The basic idea of credibility-limited base revision is to define a function in two steps.
In the first step, one needs to define which sentences are credible, i.e., the sentences
that an agent is willing to incorporate when performing a revision. Afterwards the
function should:
- leave the set of beliefs unchanged when revising it by a non-credible sentence;
- work as a base revision when revising by a credible sentence.
The following definition formalizes this concept:

137
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Definition 8.1.1 Let ∗ be a revision operator (i.e., an operator that satisfies suc-
cess, inclusion and consistency) on a belief base A. Let C be a set of sentences (the
associated set of credible sentences). Then ⊛ is the credibility-limited base revision
induced by ∗ and C if and only if:

A⊛ α = { A ∗ α if α ∈ C
A otherwise

The above definition is an extension of the one presented for credibility-limited
base revision in [FMT03] and reproduced in Definition 5.3.5, since it defines a
credibility-limited base revision induced by a generic revision operator (and a set
C) instead of by a partial meet revision as in Definition 5.3.5.

8.2 Postulates for credibility-limited base revisions

In this section we present postulates for (credibility-limited) base revision and some
relations among these postulates. For convenience, we start by recalling the pos-
tulates for (credibility-limited) base revision that we have already mentioned in
Subsections 5.1.3 and 5.3.2.

(Success) α ∈ A⊛ α.
(Inclusion) A⊛ α ⊆ A ∪ {α}.
(Consistency) If α /⊢⊥, then A⊛ α /⊢⊥.
(Vacuity) If A /⊢ ¬α, then A ∪ {α} ⊆ A⊛ α.
(Consistency Preservation) If A /⊢⊥, then A⊛ α /⊢⊥.
(Uniformity) If for all subsets A′ ⊆ A,A′ ∪ {α} ⊢⊥ if and only if A′ ∪ {β} ⊢⊥, then
A ∩ (A⊛ α) = A ∩ (A⊛ β).
(Weak Extensionality) If ⊢ α↔ β, then A ∩A⊛ α = A ∩A⊛ β.
(Relevance) If β ∈ A and β /∈ A⊛ α, then there is some A′ such that A⊛ α ⊆ A′ ⊆
A ∪ {α},A′ /⊢⊥ but A′ ∪ {β} ⊢⊥.
(Core-retainment) If β ∈ A and β /∈ A ⊛ α, then there is some A′ ⊆ A such that
A′ /⊢ ¬α and A′ ∪ {β} ⊢ ¬α.
(Disjunctive Elimination) If β ∈ A and β /∈ A⊛ α, then A⊛ α /⊢ ¬α ∨ β.
(Relative Closure) A ∩Cn(A ∩A⊛ α) ⊆ A⊛ α.
(Relative Success) α ∈ A⊛ α or A⊛ α = A.
(Strict Improvement) If α ∈ A⊛ α and ⊢ α → β, then β ∈ A⊛ β.
(Regularity) If A⊛ α ⊢ β, then β ∈ A⊛ β.
(Strong Regularity) If A⊛ α /⊢ ¬β, then β ∈ A⊛ β.
(Disjunctive Distribution) If α ∨ β ∈ A⊛ (α ∨ β), then α ∈ A⊛ α or β ∈ A⊛ β.
(Consistency Preservation) If A /⊢⊥, then A⊛ α /⊢⊥.

We note that some of the postulates mentioned above can be considered arguable.
For example, vacuity is a postulate that is natural to expect to be satisfied in the
context of standard revisions. From vacuity it follows that if α is consistent with a
given set A, then α is incorporated when revising A by it (even if success does not
hold). This argument seems to be more arguable in the context of credibility-limited
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revisions. We do not always incorporate information consistent with our own be-
liefs, since they may come from unreliable sources or lack of sufficient plausibility.
However there are some contexts where vacuity seems more plausible. For example,
in the context of databases, if C is considered to be the set of all propositions that
are consistent with the set of integrity constraints, then vacuity should be naturally
satisfied.

We propose also the following postulate:

(Persistence) If ¬β ∈ Cn(A ∩A⊛ β), then ¬β ∈ Cn(A ∩A⊛ α).
Persistence is based on the namesake postulate for shielded contraction. Roughly

speaking the pre-condition of this postulate, in terms of the Harper identity, means
that A ∼ ¬β ⊢ ¬β. This intuitively means that ¬β is irretractable. Thus, as the
persistence postulate for contraction states, ¬β should be kept independently of the
contraction performed. Hence ¬β should also be kept when revising by any sentence
α.

The following observations relate some of the postulates mentioned above.

Observation 8.2.1 Let A be a belief base and ⊛ be an operator on A.

(a) If ⊛ satisfies relevance and relative success, then ⊛ satisfies disjunctive elimi-
nation.

(b) If ⊛ satisfies uniformity, then ⊛ satisfies weak extensionality.

(c) If ⊛ satisfies persistence, relative success and vacuity, then ⊛ satisfies strong
regularity.

(d) If ⊛ satisfies relevance and relative success, then ⊛ satisfies core-retainment.

(e) If ⊛ satisfies success and core-retainment, then ⊛ satisfies vacuity.

(f) If ⊛ satisfies disjunctive elimination, then ⊛ satisfies relative closure.

(g) If ⊛ satisfies relevance and success, then ⊛ satisfies disjunctive elimination.

(h) If ⊛ satisfies core-retainment, relative success and strong regularity, then ⊛
satisfies vacuity.

Proof: A proof for this observation can be found on page 216.

Observation 8.2.2 Let A be a consistent belief base and ⊛ be an operator on A.

(a) If ⊛ satisfies consistency preservation, persistence, relative success and vacuity,
then ⊛ satisfies disjunctive distribution.
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(b) If ⊛ satisfies consistency preservation and strong regularity, then ⊛ satisfies
strict improvement and regularity.

Proof: A proof for this observation can be found on page 217.

8.3 The set of credible sentences

In the credibility-limited model the set of sentences that an agent is willing to ac-
cept when a revision is performed is called set of credible sentences. This set will be
denoted by C. In this section we propose some new properties that are natural to
expect to be satisfied by a set of credible sentences and present some interrelations
among these properties. We start by recalling, from [HFCF01] and [FMT03], some
of the proposed properties for C (the set of credible sentences). These properties
were already mentioned in Subsections 4.2.1 and 5.3.2.

Credibility of Logical Equivalents: If ⊢ α↔ β, then α ∈ C if and only if β ∈ C.1.
Single Sentence Closure: If α ∈ C, then Cn(α) ⊆ C.
Disjunctive Completeness: If α ∨ β ∈ C, then either α ∈ C or β ∈ C.
Negation Completeness: α ∈ C or ¬α ∈ C.
Element Consistency: If α ∈ C, then α /⊢⊥.
Expansive Credibility: If A /⊢ α, then ¬α ∈ C.
Revision Credibility: If α ∈ C, then Cn(A⊛ α) ⊆ C.
Strong Revision Credibility: If α /∈ C, then A⊛ β ⊢ ¬α.

We propose other additional properties for C:

Closure Under Double Negation: α ∈ C if and only if ¬¬α ∈ C.
Credibility Lower Bounding: If A /⊢⊥, then Cn(A) ⊆ C.
Uniform Credibility: If it holds for all subsets A′ of A that A′ ∪ {α} ⊢⊥ if and
only if A′ ∪ {β} ⊢⊥, then α ∈ C if and only if β ∈ C.

Closure under double negation states that a sentence α is credible if and only its
double negation, ¬¬α, is credible. Note that if a set satisfies credibility of logical
equivalents, then it satisfies closure under double negation. Credibility lower bound-
ing states that the logical consequences of the set of beliefs under consideration are
credible. Uniform Credibility states that if the negation of two sentences α and β
are implied by exactly the same subsets of A, then α and β are both credible or
both non-credible.2

1This property is equivalent to the one designated by closure under logical equivalence in
[HFCF01] (If ⊢ α↔ β, and α ∈ C, then β ∈ C).

2We note that more rigorously the expression “with respect to A” should be added to the
designation of the last two properties, since they relate C with A. This will be omitted since there
is no risk of ambiguity whenever these properties are mentioned along this thesis. The same also
applies to expansive credibility.
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We also propose the following condition that relates a set of credible sentences
C and a revision function ∗:

If α /∈ C and β ∈ C, then A ∩A ∗ β ⊢ ¬α. (C - ∗)

Condition (C - ∗) states that if a sentence α is not credible, then any possible
outcome of revising a set A by a credible sentence contains a subset of A that implies¬α.

The following observation illustrates some relations between the properties men-
tioned above.

Observation 8.3.1 Let C be a set of sentences.

(a) If C satisfies single sentence closure, then C satisfies credibility of logical equiv-
alents.

(b) If C satisfies uniform credibility, then C satisfies credibility of logical equiva-
lents.

(c) If C satisfies expansive credibility and credibility lower bounding with respect to
a consistent set A, then C satisfies negation completeness.

(d) If α ∈ Cn(∅) and C satisfies negation completeness and element consistency,
then α ∈ C.

(e) If C satisfies credibility of logical equivalents, then C is closed under double
negation.

Proof: A proof for this observation can be found on page 218.

In the following theorem we present an explicit definition for the set of credible
sentences C in terms of a credibility-limited revision operator ⊛, which is induced by
it, provided that C satisfies expansive credibility and closure under double negation.

Theorem 8.3.2 Let A be a consistent belief base and ⊛ be an operator of credibility-
limited revision induced by a revision operator for A and a set C ⊆ L. If C satisfies
expansive credibility and closure under double negation, then C = {α ∶ α ∈ A⊛ α}.

Proof: A proof for this observation can be found on page 218.

8.4 Relations between base revisions and credibility-

limited base revisions

The following theorem illustrates some properties that an operator of credibility-
limited base revision, induced by a revision operator ∗ and a set C, satisfies whenever∗ and C satisfy some given properties.
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Theorem 8.4.1 Let A be a belief base, C ⊆ L, and ⊛ be a credibility-base revision
induced by a revision operator ∗ and C. Then:

(a) It holds that:

If ∗ satisfies then ⊛ satisfies
— inclusion and relative success

relevance relevance

core-retainment core-retainment

disjunctive elimination disjunctive elimination

relative closure relative closure

(b) If C satisfies element consistency, then:

If ∗ satisfies then ⊛ satisfies
— consistency preservation

(c) If C satisfies uniform credibility, then:

If ∗ satisfies then ⊛ satisfies
uniformity uniformity

(d) If C satisfies credibility of logical equivalents (or single sentence closure), then:

If ∗ satisfies then ⊛ satisfies
weak extensionality weak extensionality

(e) If C satisfies expansive credibility and is closed under double negation (or sat-
isfies either credibility of logical equivalents or uniform credibility or single
sentence closure), then:

If ∗ satisfies then ⊛ satisfies
vacuity vacuity

(f) Let A /⊢⊥. If C satisfies expansive credibility and single sentence closure, then:

If ∗ satisfies then ⊛ satisfies
— strict improvement

(g) Let A /⊢⊥. If C satisfies expansive credibility, closure under double negation
(or credibility of logical equivalents or uniform credibility or single sentence
closure) and disjunctive completeness, then:

If ∗ satisfies then ⊛ satisfies
— disjunctive distribution

(h) If C and ∗ satisfy condition (C - ∗) and C satisfies element consistency, then:

If ∗ satisfies then ⊛ satisfies
— persistence

weak extensionality weak extensionality

uniformity uniformity
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(i) If C and ∗ satisfy condition (C - ∗) and C satisfies expansive credibility, then:

If ∗ satisfies then ⊛ satisfies
vacuity vacuity

Proof: A proof for this theorem can be found on page 218.

If α is credible, then it should be an element of the outcome of the revision of
a set A by it. Therefore, a natural way to define a set of credible sentences C is
by C = {α ∶ α ∈ A⊛ α}, where ⊛ is a credibility-limited revision. The next theorem
illustrates some properties that such a set satisfies whenever ⊛ satisfies some of the
postulates mentioned in the beginning of Section 8.2.

Theorem 8.4.2 Let A be a consistent belief base, ⊛ be an operator on A and C ={α ∶ α ∈ A⊛ α}. Then:

If ⊛ satisfies then C satisfies
consistency preservation element consistency

strict improvement single sentence closure

disjunctive distribution disjunctive completeness

vacuity
expansive credibility and credibility

lower bounding
relative success, consistency

preservation, vacuity and
uniformity

uniform credibility

relative success, consistency
preservation, vacuity and weak

extensionality
credibility of logical equivalents

consistency preservation,
persistence, relative success and

vacuity

single sentence closure, disjunctive
completeness, revision credibility

and uniform credibility
persistence, relative success and

vacuity
strong revision credibility

Proof: A proof for this theorem can be found on page 221.

In the next theorem we will see that it is possible to construct an operator ∗
in terms of ⊛ and C = {α ∶ α ∈ A ⊛ α} and investigate the properties that such an
operator satisfies taking into account the properties satisfied by ⊛.

Theorem 8.4.3 Let A be a consistent belief base, ⊛ be an operator on A and C ={α ∶ α ∈ A⊛ α}. Then there exists an operator ∗ on A such that:

(a) If ⊛ satisfies relative success, consistency preservation and inclusion, then ∗ is
a revision operator and ⊛ is the credibility-limited base revision induced by ∗
and C.

(b) It holds that:
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If ⊛ satisfies then ∗ satisfies
vacuity vacuity

relevance relevance

core-retainment core-retainment

disjunctive elimination disjunctive elimination

uniformity, relative success,
vacuity, consistency preservation

uniformity

weak extensionality, relative
success, vacuity, consistency

preservation
weak extensionality

relative closure relative closure

(c) If ⊛ satisfies persistence, relative success and vacuity, then ∗ and C satisfy
condition (C - ∗).

Proof: A proof for this theorem can be found on page 222.

8.5 Axiomatic characterizations of different kinds

of credibility-limited base revision

In this section we present axiomatic characterizations for several classes of credibility-
limited base revision functions. We start by presenting a representation theorem for
the most general class of credibility-limited base revision operators that we will con-
sider. Afterwards we will consider more specific classes of credibility-limited base
revision operators induced by different kinds of revision functions (namely, by partial
meet, (smooth) kernel, and basic AGM-generated base revisions) and by different
types of sets of credible sentences. The structure used in this section is similar to
the one adopted in Section 7.3. In each one of the Subsections 8.5.2 — 8.5.5 we
start by presenting a representation theorem for five classes of credibility-limited
base revisions all induced by the same kind of revision functions but each one of
then with a different type of associated set of credible sentences. Afterwards, we
present a definition where a designation is proposed for each one of the operators
mentioned in the previously presented representation theorem.

8.5.1 Basic credibility-limited base revision

In this subsection we present a representation theorem for the most general class
of credibility-limited base revision that we will consider. This class is characterized
by the following postulates: relative success, inclusion and consistency preservation.
The operators in this class will be designated by basic credibility-limited revisions.

Theorem 8.5.1 Let A be a consistent belief base and ⊛ be an operator on A. Then
the following pair of conditions are equivalent:

(a) ⊛ satisfies relative success, consistency preservation and inclusion.
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(b) ⊛ is an operator of credibility-limited base revision induced by a revision oper-
ator for A and a set C ⊆ L that satisfies element consistency.

Proof: A proof for this theorem can be found on page 224.

Definition 8.5.2 A credibility-limited base revision ⊛ on a consistent belief base
A induced by a revision operator ∗ and a set C ⊆ L is a basic credibility-limited
revision if and only if C satisfies element consistency.

In the remainder of this section we will obtain representation theorems for other
less general classes of credibility-limited revisions. More precisely, we will consider
the credibility-limited revision operators induced by partial meet base revisions, by
(smooth) kernel base revisions and by basic AGM-generated base revisions and,
additionally, we will take into account different sets of properties regarding the
associated set of credible sentences.

8.5.2 Credibility-limited partial meet base revisions

The following theorem presents axiomatic characterizations for five kinds of opera-
tors of credibility-limited base revision. All these operators are induced by partial
meet revisions but each one of them has a different type of associated set of credible
sentences.

Theorem 8.5.3 Let A be a consistent belief base and ⊛ an operator on A. Then:⊛ is an operator of
credibility-limited base revision

induced by a partial meet
revision operator ∗ and a set C

that satisfies element
consistency, expansive credibility

and

if and only if ⊛ satisfies
relative success, consistency

preservation, inclusion,
vacuity, uniformity,

relevance and

uniform credibility —

uniform credibility and single sentence
closure

strict improvement

uniform credibility and disjunctive
completeness

disjunctive distribution

uniform credibility, single sentence
closure and disjunctive completeness

strict improvement and
disjunctive distribution

condition (C - ∗) persistence

Proof: A proof for this theorem can be found on page 224.

In the following definition we attribute designations to the different kinds of
credibility-limited base revisions that were axiomatically characterized in the above
theorem.

Definition 8.5.4 A credibility-limited base revision ⊛ on a consistent belief base A
induced by a partial meet revision ∗ and a set C ⊆ L is a:
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Designation
if and only if C satisfies

element consistency,
expansive credibility and

Credibility-limited partial meet revision
(CLPMR)

uniform credibility

Strictly improving
credibility-limited partial meet revision

(SI-CLPMR)

uniform credibility and single
sentence closure

Disjunctive distributive
credibility-limited partial meet revision

(DD-CLPMR)

uniform credibility and
disjunctive completeness

Strictly improving disjunctive
distributive credibility-limited

partial meet revision
(SI+DD-CLPMR)

uniform credibility, single
sentence closure and

disjunctive completeness

Persistent credibility-limited
partial meet revision

(P-CLPMR)
condition (C - ∗)

Throughout this chapter we will sometimes use the acronyms presented in the
above definition (and whenever a similar definition is presented) to designate the
whole class of the corresponding operators (rather than only one of its elements).

Note that in the proof of the right-to-left part of Theorem 8.5.3 it was used the
set C = {α ∶ α ∈ A⊛ α}. Therefore, it follows immediately from Theorem 8.4.2 and
Observation 8.3.1 that, to the list of properties of C mentioned in each row of the
tables presented in Theorem 8.5.3 and in Definition 8.5.4, we can add the following
ones: credibility lower-bounding, credibility of logical equivalents, negation complete-
ness and closure under double negation. Furthermore, in the case of the last row,
besides the properties mentioned above we can also add (to the list of properties
of C there presented): single sentence closure, disjunctive completeness, revision
credibility, strong revision credibility and uniform credibility.

As discussed above there are several alternative (equivalent) definitions for the
classes introduced in Definition 8.5.4, more precisely several equivalent definitions,
but each one with a different set of properties associated to the set C. This same
situation occurs regarding the classes of credibility-limited revisions introduced in
Definitions 8.5.7, 8.5.10 and 8.5.13.

Note that in [FMT03, Theorem 4.3] it was presented an axiomatic characteriza-
tion of credibility-limited base revision operators induced by a partial meet revision
and a set C satisfying element consistency, single sentence closure, disjunctive com-
pleteness, expansive credibility, revision credibility, strong revision credibility and
uniform credibility.3 This axiomatic characterization is formed by the following set

3In fact, in the mentioned result, uniform credibility is not included among the properties that
the set C is assumed to satisfy. However there is a small gap in the proof of that theorem which can



8.5. AX. CHARACT. OF DIFFERENT CRED.-LIMITED BASE REV. 147

of postulates: relative success, consistency preservation, inclusion, vacuity, disjunc-
tive distribution, relevance, strong regularity and uniformity.

The following corollary follows trivially from the above definition and Theorem
8.5.3.

Corollary 8.5.5 Let A be a consistent belief base and ⊛ an operator on A. Then:

⊛ is a
if and only if ⊛ satisfies relative success,

consistency preservation, inclusion,
vacuity, uniformity, relevance and

CLPMR —

SI-CLPMR strict improvement

DD-CLPMR disjunctive distribution

SI+DD-CLPMR strict improvement and disjunctive distribution

P-CLPMR persistence

8.5.3 Credibility-limited kernel base revisions

In the following theorem we present axiomatic characterizations for five kinds of
operators of credibility-limited base revision that are all induced by kernel revisions
but each one of them has a different type of associated set of credible sentences.

Theorem 8.5.6 Let A be a consistent belief base and ⊛ an operator on A. Then:

⊛ is an operator of
credibility-limited base revision

induced by a kernel revision
operator and a set C that

satisfies element consistency,
expansive credibility and

if and only if ⊛ satisfies
relative success, consistency

preservation, inclusion,
vacuity, uniformity,
core-retainment and

uniform credibility —

uniform credibility and single sentence
closure

strict improvement

uniform credibility and disjunctive
completeness

disjunctive distribution

uniform credibility, single sentence
closure and disjunctive completeness

strict improvement and
disjunctive distribution

condition (C - ∗) persistence

Proof: A proof for this theorem can be found on page 224.

In the next definition we introduce designations for the different kinds of credibility-
limited revisions that were axiomatically characterized in the above theorem.

be easily corrected if we add uniform credibility to the list of properties that the set C is required
to satisfy.



148 CHAPTER 8. CREDIBILITY-LIMITED REVISION ON BELIEF BASES

Definition 8.5.7 A credibility-limited base revision ⊛ on a consistent belief base A
induced by a kernel revision ∗ and a set C ⊆ L is a:

Designation
if and only if C satisfies

element consistency,
expansive credibility and

Credibility-limited kernel revision
(CLKR)

uniform credibility

Strictly improving
credibility-limited kernel revision

(SI-CLKR)

uniform credibility and single
sentence closure

Disjunctive distributive
credibility-limited kernel revision

(DD-CLKR)

uniform credibility and
disjunctive completeness

Strictly improving disjunctive distributive
credibility-limited kernel revision

(SI+DD-CLKR)

uniform credibility, single
sentence closure and

disjunctive completeness
Persistent credibility-limited

kernel revision
(P-CLKR)

condition (C - ∗)

The difference between the axiomatic characterizations of the classes of credibility-
limited revision induced by partial meet revision operators, presented in the previ-
ous subsection, and the ones for the classes of credibility-limited induced by ker-
nel revision operators, presented in Theorem 8.5.6, is the replacement of relevance
by core-retainment, therefore, according to Observation 8.2.1 (d), every class of
credibility-limited revision induced by partial meet revision operators is a subclass
of the corresponding class of credibility-limited revision induced by kernel revision
operators, i.e., P-CLPMR ⊆ P-CLKR, DD-CLPMR ⊆ DD-CLKR, SI-CLPMR ⊆ SI-
CLKR, SI+DD-CLPMR ⊆ SI+DD-CLKR and CLPMR ⊆ CLKR.

The following corollary follows trivially from the above definition and Theorem
8.5.6.

Corollary 8.5.8 Let A be a consistent belief base and ⊛ an operator on A. Then:

⊛ is a
if and only if ⊛ satisfies relative success,

consistency preservation, inclusion,
vacuity, uniformity, core-retainment and

CLKR —

SI-CLKR strict improvement

DD-CLKR disjunctive distribution

SI+DD-CLKR strict improvement and disjunctive distribution

P-CLKR persistence
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8.5.4 Credibility-limited smooth kernel base revisions

The following representation theorem axiomatically characterizes five kinds of op-
erators of credibility-limited revisions. All these operators are induced by smooth
kernel revisions but each one of them has a different type of associated set of credible
sentences.

Theorem 8.5.9 Let A be a consistent belief base and ⊛ an operator on A. Then:

⊛ is an operator of
credibility-limited base revision

induced by a smooth kernel
revision operator and a set C

that satisfies element
consistency, expansive credibility

and

if and only if ⊛ satisfies
relative success, consistency

preservation, inclusion,
vacuity, uniformity,

core-retainment, relative
closure and

uniform credibility —

uniform credibility and single sentence
closure

strict improvement

uniform credibility and disjunctive
completeness

disjunctive distribution

uniform credibility, single sentence
closure and disjunctive completeness

strict improvement and
disjunctive distribution

condition (C - ∗) persistence

Proof: A proof for this theorem can be found on page 224.

In the following definition we introduce designations for the different kinds of
credibility-limited revisions that were axiomatically characterized in the above the-
orem.

Definition 8.5.10 A credibility-limited base revision ⊛ on a consistent belief base
A induced by a smooth kernel revision ∗ and a set C ⊆ L is a:

Designation
if and only if C satisfies

element consistency,
expansive credibility and

Credibility-limited smooth kernel revision
(CLSKR)

uniform credibility

Strictly improving credibility-limited
smooth kernel revision

(SI-CLSKR)

uniform credibility and single
sentence closure

Disjunctive distributive credibility-limited
smooth kernel revision

(DD-CLSKR)

uniform credibility and
disjunctive completeness

Continued on next page
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Continued from previous page
Strictly improving disjunctive
distributive credibility-limited

smooth kernel revision
(SI+DD-CLSKR)

uniform credibility, single
sentence closure and

disjunctive completeness

Persistent credibility-limited smooth
kernel revision

(P-CLSKR)
condition (C - ∗)

The following corollary follows trivially from the above definition and Theorem
8.5.9.

Corollary 8.5.11 Let A be a consistent belief base and ⊛ an operator on A. Then:

⊛ is a

⊛ satisfies relative success, consistency
preservation, inclusion, vacuity,

uniformity, core-retainment, relative
closure and

CLSKR —

SI-CLSKR strict improvement

DD-CLSKR disjunctive distribution

SI+DD-CLSKR strict improvement and disjunctive distribution

P-CLSKR persistence

It follows from Corollaries 8.5.5, 8.5.8 and 8.5.11 and Observation 8.2.1 that
CLPMR ⊆ CLSKR ⊆ CLKR, SI-CLPMR ⊆ SI-CLSKR ⊆ SI-CLKR, DD-CLPMR⊆ DD-CLSKR ⊆ DD-CLKR, SI+DD-CLPMR ⊆ SI+DD-CLSKR ⊆ SI+DD-CLKR
and P-CLPMR ⊆ P-CLSKR ⊆ P-CLKR. These results will be refined in Observation
8.6.2 where it is stated that (all of) these set inclusions are in fact strict.

8.5.5 Credibility-limited basic AGM-generated base revi-
sions

In the following representation theorem we axiomatically characterize five kinds of
operators of credibility-limited revisions, all induced by basic AGM-generated base
revisions but each of them with a different type of associated set of credible sentences.

Theorem 8.5.12 Let A be a consistent belief base and ⊛ an operator on A. Then:
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⊛ is an operator of
credibility-limited base revision

induced by a basic
AGM-generated base revision

operator and a set C that
satisfies element consistency,

expansive credibility and

if and only if ⊛ satisfies
relative success, consistency

preservation, inclusion,
vacuity, weak

extensionality, disjunctive
elimination and

credibility of logical equivalents —

single sentence closure strict improvement

credibility of logical equivalents and
disjunctive completeness

disjunctive distribution

single sentence closure and disjunctive
completeness

strict improvement and
disjunctive distribution

condition (C - ∗) persistence

Proof: A proof for this theorem can be found on page 225.

In the following definition we attribute designations to the different kinds of
credibility-limited base revisions that were axiomatically characterized in the above
theorem.

Definition 8.5.13 A credibility-limited base revision ⊛ on a consistent belief base
A induced by a basic AGM-generated revision ∗ and a set C ⊆ L is a:

Designation
if and only if C satisfies

element consistency,
expansive credibility and

Credibility-limited
basic AGM-generated revision

(CLbAGMR)

credibility of logical
equivalents

Strictly improving credibility-limited
basic AGM-generated revision

(SI-CLbAGMR)
single sentence closure

Disjunctive distributive credibility-limited
basic AGM-generated revision

(DD-CLbAGMR)

credibility of logical
equivalents and disjunctive

completeness
Strictly improving disjunctive
distributive credibility-limited
basic AGM-generated revision

(SI+DD-CLbAGMR)

single sentence closure and
disjunctive completeness

Persistent credibility-limited
basic AGM-generated revision

(P-CLbAGMR)
condition (C - ∗)

It is worth to notice that in the proof of the right-to-left part of Theorem 8.5.12 it
was used the set C = {α ∶ α ∈ A⊛α}. Therefore, from Theorem 8.4.2 and Observation
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8.3.1, it follows that in each row of the tables presented in Theorem 8.5.12 and in
Definition 8.5.13, we can also add credibility lower bounding, negation completeness
and closure under double negation to the list of properties of C (there presented). We
can also add credibility of logical equivalents to the list of properties of C presented in
rows 2, 4 and 5. Furthermore, according to Theorem 8.4.2, single sentence closure,
disjunctive completeness, revision credibility, strong revision credibility and uniform
credibility can be also added to the list of properties of C presented in the last row.

The following corollary follows trivially from the above definition and Theorem
8.5.12.

Corollary 8.5.14 Let A be a consistent belief base and ⊛ an operator on A. Then:

⊛ is a

if and only if ⊛ satisfies relative success,
consistency preservation, inclusion,

vacuity, weak extensionality, disjunctive
elimination and

CLbAGMR —

SI-CLbAGMR strict improvement

DD-CLbAGMR disjunctive distribution

SI+DD-CLbAGMR strict improvement and disjunctive distribution

P-CLbAGMR persistence

It follows from Corollaries 8.5.5 and 8.5.14 and Observation 8.2.1 that CLPMR ⊆
CLbAGMR, SI-CLPMR ⊆ SI-CLbAGMR, DD-CLPMR ⊆ DD-CLbAGMR, SI+DD-
CLPMR ⊆ SI+DD-CLbAGMR and P-CLPMR ⊆ P-CLbAGMR. In fact, as it will
be stated in Observation 8.6.3, the inclusions above are (all) strict.

Table 8.2 summarizes the results obtained in the representation theorems pre-
sented in this section. Given a credibility limited revision ⊛ the white cells that are
on the top of the same column represent the properties that C (the associated set
of credible sentences) satisfies. The white cells that are placed on the right of the
same row indicates the properties that ⊛ satisfies.
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8.6 Maps between credibility-limited base revi-

sion functions

We start this section by presenting an observation that illustrates the interrelations
among classes of credibility-limited base revisions induced by the same type of revi-
sion function, but each one of them with a different type of associated set of credible
sentences. Through this section we assume that the classes of credibility-limited re-
vision mentioned are formed by operators defined on the same belief base.

Observation 8.6.1 Let X be any one of the element that belong to following set of
strings: {CLPMR,CLSKR,CLKR,CLbAGMR}. Then:

(a) P-X ⊂ SI+DD-X.

(b) SI+DD-X ⊂ DD-X.

(c) SI+DD-X ⊂ SI-X.

(d) DD-X /⊆ SI-X and SI-X /⊆ DD-X.

(e) DD-X ⊂ X.

(f) SI-X ⊂ X.

Proof: A proof for this observation can be found on page 226.

In Figure 8.1 we present a diagram that summarizes the results presented in
Observation 8.6.1. The X in this diagram must be replaced by an element of the
following set of strings {CLPMR,CLSKR,CLKR,CLbAGMR}.

P-X

SI+DD-X

SI-X DD-X

X

Figure 8.1: Map among different classes of credibility-limited base revision functions
induced by the same kind of revisions. The X must be replaced by one of the
following strings CLPMR, CLSKR, CLKR, CLbAGMR.
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The following observation highlights that each one of the classes of CLSKRs that
we have considered in Definition 8.5.10 is subsumed by the corresponding class of
CLKRs and, on the other hand, contains the corresponding class of CLPMRs.

Observation 8.6.2

(a) CLPMR ⊂ CLSKR ⊂ CLKR.

(b) SI-CLPMR ⊂ SI-CLSKR ⊂ SI-CLKR.

(c) DD-CLPMR ⊂ DD-CLSKR ⊂ DD-CLKR.

(d) SI+DD-CLPMR ⊂ SI+DD-CLSKR ⊂ SI+DD-CLKR.

(e) P-CLPMR ⊂ P-CLSKR ⊂ P-CLKR.

Proof: A proof for this observation can be found on page 227.

The following observation highlights that each one of the classes of CLPMRs
that we have considered in Subsection 8.5.2 is contained in the corresponding class
of CLbAGMRs.

Observation 8.6.3

(a) CLPMR ⊂ CLbAGMR.

(b) SI-CLPMR ⊂ SI-CLbAGMR.

(c) DD-CLPMR ⊂ DD-CLbAGMR.

(d) SI+DD-CLPMR ⊂ SI+DD-CLbAGMR.

(e) P-CLPMR ⊂ P-CLbAGMR.

Proof: A proof for this observation can be found on page 227.

The following observation exposes that each one of the classes of CLbAGMRs is
not related, in terms of inclusion, neither with the corresponding class of CLSKRs
nor with the corresponding class of CLKRs.

Observation 8.6.4

(a) CLKR /⊆ CLbAGMR, CLbAGMR /⊆ CLKR, CLSKR /⊆ CLbAGMR and CLbAGMR/⊆ CLSKR.

(b) SI-CLKR /⊆ SI-CLbAGMR, SI-CLbAGMR /⊆ SI-CLKR, SI-CLSKR /⊆ SI-CLbAGMR
and SI-CLbAGMR /⊆ SI-CLSKR.

(c) DD-CLKR /⊆ DD-CLbAGMR, DD-CLbAGMR /⊆ DD-CLKR, DD-CLSKR /⊆ DD-
CLbAGMR and DD-CLbAGMR /⊆ DD-CLSKR.
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(d) SI+DD-SKC /⊆ SI+DD-CLbAGMR, SI+DD-CLbAGMR /⊆ SI+DD-SKC, SI+DD-
CLSKR /⊆ SI+DD-CLbAGMR and SI+DD-CLbAGMR /⊆ SI+DD-CLSKR.

(e) P-CLKR /⊆ P-CLbAGMR, P-CLbAGMR /⊆ P-SKC, P-CLSKR /⊆ P-CLbAGMR
and P-CLbAGMR /⊆ P-CLSKR.

Proof: A proof for this observation can be found on page 228.

In Figure 8.2 we present a diagram that summarizes the results presented in
Observations 8.6.2, 8.6.3 and 8.6.4. The X in this diagram is either a blank space
or one of the following strings: SI-, DD-, SI+DD- or P-.

XCLPMR

XCLbAGMR XCLSKR

XCLKR

Figure 8.2: Map among different classes of credibility-limited base revision operators.
The X in the diagram must be replaced by a blank space or by an element of the
following set of strings: {SI−,DD−, SI +DD−, P−}.

8.7 Relations between sets of credible and of re-

tractable sentences

In this section we study the relation between credible and retractable sentences of
an agent. If we want to ensure that our credibility-limited revision operators satisfy
consistency preservation, then we must assure that a sentence is credible only if its
negation can be removed during the revision process, otherwise the outcome of this
revision will be inconsistent. Hence we can relate the sets R and C by the following
condition: if α ∈ C, then ¬α ∈ R. In [FMT03], a stronger condition relating the set
of credible and of retractable sentences was presented:4

α ∈ C if and only if ¬α ∈ R. (C-R)

The following condition can be seen as the dual of the previous one:

α ∈ R if and only if ¬α ∈ C. (R-C)

The following observation illustrates that conditions (C-R) and (R-C) are equiv-
alent provided that R and C are closed under double negation.

4The left-to-right implication of the condition (C-R) may be considered a little more arguable,
namely if one considers that there are some cases in which an agent is willing to discard the
negation of a sentence without being the case that he/she considers that sentence to be credible.
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Observation 8.7.1 Let R and C be subsets of L. Then:
If R and C are closed under double negation, then condition (C-R) holds if and
only if condition (R-C) also holds.

Proof: A proof for this observation can be found on page 228.

Having in mind conditions (C-R) and (R-C), between credible and retractable
sentences, the following observations establish the relation between properties of sets
of retractable sentences and of credible sentences.

Observation 8.7.2 Let A be a belief base, R and C be set of sentences that satisfy
condition (C-R).

(a) If R is closed under double negation, then:
R satisfies if and only if C satisfies

retractability of logical equivalents credibility of logical equivalents

non-retractability of tautology element consistency

non-retractability propagation single sentence closure

uniform retractability
with respect to A

uniform credibility
with respect to A

non-retractability upper bounding
with respect to A

expansive credibility
with respect to A

(b) If R satisfies retractability of logical equivalents, then:
R satisfies if and only if C satisfies

conjunctive completeness disjunctive completeness

Proof: A proof for this observation can be found on page 228.

Observation 8.7.3 Let A be a belief base, R and C be set of sentences that satisfy
condition (R-C).

(a) If C is closed under double negation, then:
C satisfies if and only if R satisfies

credibility of logical equivalents retractability of logical equivalents

element consistency non-retractability of tautology

single sentence closure non-retractability propagation

uniform credibility
with respect to A

uniform retractability
with respect to A

expansive credibility
with respect to A

non-retractability upper bounding
with respect to A

(b) If C satisfies credibility of logical equivalents, then:
C satisfies if and only if R satisfies

disjunctive completeness conjunctive completeness
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Proof: A proof for this observation can be found on page 230.

The following observation relates conditions (R - −) and (C - ∗), when C and R
are related though condition (C-R) and the revision operator ∗ is defined by means
of the Levi identity from −.

Observation 8.7.4 Let A be a belief base, R and C be sets of sentences that satisfy
condition (C-R). Let ∗ be a revision operator defined from the contraction operator− on A by means of the Levi identity. If R and − satisfy condition (R - −), then C
and ∗ satisfy condition (C - ∗).

Proof: A proof for this observation can be found on page 230.

The following observation relates conditions (C - ∗) and (R - −), whenever the
contraction operator − is defined by means of the Harper identity from ∗ and, C
and R are related through condition (R-C):

Observation 8.7.5 Let A be a belief base, R and C be sets of sentences that satisfy
condition (R-C). Let − be a contraction operator defined from the revision operator∗ on A by means of the Harper identity. If C and ∗ satisfy condition (C - ∗), then
R and − satisfy condition (R - −).

Proof: A proof for this observation can be found on page 230.

8.8 Generalized Levi and Harper identities

In this section we establish several results that relate credibility-limited revisions
and shielded contractions through the consistency-preserving Levi and the Harper
identities:

A⊛ α = { (A ∼ ¬α) + α if A ∼ ¬α /⊢ ¬α
A otherwise

A ∼ α = (A⊛ ¬α) ∩A.
The following theorem illustrates that if a contraction operator − is defined from

a revision operator ∗ by means of the Harper identity, then the shielded contraction
induced by − and R can be obtained by means of the Harper identity from the
credibility-limited revision operator induced by ∗ and C, provided that the sets R
and C are related by through condition (R-C).

Theorem 8.8.1 Let A be a belief base and ∗ be a revision operator on A. Let −
be the contraction operator on A defined from ∗ by means of the Harper identity.
Let C ⊆ L and ⊛ be the credibility-limited revision induced by ∗ and C. Let R ⊆ L
be the set defined from C by means of condition (R-C). Let ∼ be the shielded base
contraction on A induced by − and R. Then ∼ can be defined from ⊛ by means of
the Harper identity.
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Proof: A proof for this theorem can be found on page 230.

In the following theorem it is presented a result that can be seen as the dual of
the previous one. The second item of this theorem states that if a revision operator∗ is defined from a contraction operator − by means of the Levi identity, then the
credibility-limited revision induced by ∗ and C can be obtained by means of the
consistency-preserving Levi identity from the shielded contraction operator induced
by − and R, provided that the sets R and C are related by the condition (C-R) and
R satisfies non-retractability of tautology and non-retractability upper bounding.

Theorem 8.8.2 Let A be a belief base and − be a contraction operator on A. Let∗ be the revision operator on A defined from − by means of the Levi identity. Let
R ⊆ L and ∼ be the shielded base contraction induced by − and R. Let C ⊆ L be
the set defined from R by means of condition (C-R). Let ⊛ be the credibility-limited
revision induced by ∗ and C. Then:

(a)

A⊛ α = { (A ∼ ¬α) ∪ {α} if α ∈ C
A otherwise

(b) If R satisfies non-retractability of tautology and non-retractability upper bound-
ing, then ⊛ can be defined from ∼ by means of the consistency-preserving Levi
identity.

Proof: A proof for this theorem can be found on page 230.

The following two observations illustrate some relations between postulates of
shielded contraction and of credibility-limited revision whenever one of these opera-
tors is obtained from the other by means of the Harper or the consistency-preserving
Levi identities. These two observations are adaptations to the belief base context
of Observations 4.2.30 and 4.2.31 (which concern operations on belief sets and were
originally presented in [FH01]).

Observation 8.8.3 Let A be a consistent belief base and ∼ be a shielded base con-
traction on A. Let ⊛ be defined from ∼ via the consistency-preserving Levi identity.
Then:

If ∼ satisfies then ⊛ satisfies

—
relative success and consistency

preservation
inclusion inclusion

inclusion and persistence
disjunctive distribution, persistence

and strong regularity
inclusion, vacuity and uniformity uniformity

relevance relevance

core-retainment core-retainment

Continued on next page
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Continued from previous page
conjunctive constancy, relative

success and extensionality
disjunctive distribution

inclusion and success propagation strict improvement

inclusion and vacuity vacuity

disjunctive elimination disjunctive elimination

extensionality, inclusion and
vacuity

weak extensionality

inclusion, vacuity and relative
closure

relative closure

Proof: A proof for this observation can be found on page 230.

Observation 8.8.4 Let A be a consistent belief base and ⊛ be a credibility-limited
base revision on A. Let ∼ be defined from ⊛ via the Harper identity. Then:

If ⊛ satisfies then ∼ satisfies
— inclusion

relative success and consistency
preservation

relative success

persistence persistence

relative success and relevance relevance

core-retainment core-retainment

uniformity uniformity

vacuity vacuity

vacuity, relative success,
consistency preservation,

disjunctive distribution and weak
extensionality

conjunctive constancy

disjunctive elimination disjunctive elimination

weak extensionality extensionality

consistency preservation, strict
improvement and relative success

success propagation

relative closure relative closure

Proof: A proof for this observation can be found on page 233.

The following two corollaries clarify that each element of one of the classes of
shielded contraction considered in Chapter 7 gives rise, by means of the consistency-
preserving Levi identity, to an element of one of the classes of credibility-limited base
revision operators considered in the present chapter.

Corollary 8.8.5 Let A be a consistent belief base. Let ∼ be a basic shielded base
contraction operator on A. Let ⊛ be defined from ∼ via the consistency-preserving
Levi identity. Then ⊛ is a basic credibility-limited base revision operator.
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Proof: A proof for this corollary can be found on page 235.

Corollary 8.8.6 Let A be a consistent belief base and ∼ be a shielded base contrac-
tion operator on A. Let ⊛ be defined from ∼ via the consistency-preserving Levi
identity. Then:

(a)
If ∼ is a then ⊛ is a

SPMC CLPMR

SP-SPMC SI-CLPMR

CC-SPMC DD-CLPMR

SP+CC-SPMC SI+DD-CLPMR

P-SPMC P-CLPMR

(b)
If ∼ is a then ⊛ is a

SKC CLKR

SP-SKC SI-CLKR

CC-SKC DD-CLKR

SP+CC-SKC SI+DD-CLKR

P-SKC P-CLKR

(c)
If ∼ is a then ⊛ is a

SSKC CLSKR

SP-SSKC SI-CLSKR

CC-SSKC DD-CLSKR

SP+CC-SSKC SI+DD-CLSKR

P-SSKC P-CLSKR

(d)
If ∼ is a then ⊛ is a
SbAGMC CLbAGMR

SP-SbAGMC SI-CLbAGMR

CC-SbAGMC DD-CLbAGMR

SP+CC-SbAGMC SI+DD-CLbAGMR

P-SbAGMC P-CLbAGMR

Proof: A proof for this corollary can be found on page 235.

The following two corollaries illustrate that each element of one of the classes of
credibility-limited base revision operators considered in this chapter gives rise, by
means of the Harper identity, to an element of the classes of shielded contractions
considered in Chapter 7.

Corollary 8.8.7 Let A be a consistent belief base. Let ⊛ be a basic credibility-
limited base revision operator on A. Let ∼ be defined from ⊛ via the Harper identity.
Then ∼ is a basic shielded base contraction operator.
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Proof: A proof for this corollary can be found on page 235.

Corollary 8.8.8 Let A be a consistent belief base and ⊛ be a credibility-limited base
revision operator on A. Let ∼ be defined from ⊛ via the Harper identity. Then:

(a)
If ⊛ is a then ∼ is a
CLPMR SPMC

SI-CLPMR SP-SPMC

DD-CLPMR CC-SPMC

SI+DD-CLPMR SP+CC-SPMC

P-CLPMR P-SPMC

(b)
If ⊛ is a then ∼ is a

CLKR SKC

SI-CLKR SP-SKC

DD-CLKR CC-SKC

SI+DD-CLKR SP+CC-SKC

P-CLKR P-SKC

(c)
If ⊛ is a then ∼ is a
CLSKR SSKC

SI-CLSKR SP-SSKC

DD-CLSKR CC-SSKC

SI+DD-CLSKR SP+CC-SSKC

P-CLSKR P-SSKC

(d)
If ⊛ is a then ∼ is a

CLbAGMR SbAGMC

SI-CLbAGMR SP-SbAGMC

DD-CLbAGMR CC-SbAGMC

SI+DD-CLbAGMR SP+CC-SbAGMC

P-CLbAGMR P-SbAGMC

Proof: A proof for this corollary can be found on page 235.

The following theorems illustrate that the operators of non-prioritized base con-
traction and revision are interdefinable through the Harper and the consistency-
preserving Levi identities. These theorems are adaptations to the belief base con-
text of Theorems 4.2.35 and 4.2.36 (which concern operations on belief sets and
were originally presented in [FH01]). The functions C and R mentioned in these
theorems, were presented in Definition 4.2.34.
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Theorem 8.8.9 Let A be a consistent belief base and ∼ be an operator for A that
satisfies the (shielded contraction) postulates of inclusion, vacuity, extensionality
and relative success. Then C(R(∼)) =∼.

Proof: A proof for this theorem can be found on page 236.

Theorem 8.8.10 Let A be a consistent belief base and ⊛ be an operator for A that
satisfies the (credibility-limited revision) postulates of relative success, consistency
preservation, inclusion, vacuity and weak extensionality. Then R(C(⊛)) = ⊛.

Proof: A proof for this theorem can be found on page 236.

8.9 Summary

Standard revision operators are always successful in the sense that the sentence by
which the original belief base is revised is always incorporated in the resulting re-
vised set. However this is not a realistic feature of a belief revision process. An
intelligent agent, when facing new information, should be able to rejected it, for
instance, if that information has insufficient plausibility or comes from an unreliable
source.

The basic idea of credibility-limited revision is to define a function in two steps.
The first step consists of determining if a given belief is credible or not. Then, the
credibility-limited revision operator should:
- leave the set of beliefs unchanged when the belief by which it is revised is consid-
ered non-credible;
- behave as a standard revision when revising by a credible belief.

In this chapter we performed a deep study of credibility-limited revisions on be-
lief bases. We presented several results highlighting some direct relations among the
postulates satisfied by a credibility-limited revision function ⊛ induced by a base
revision ∗ and a set of credible sentences C and the postulates satisfied by ∗ and
the properties of the set C.

We axiomatically characterized several kinds of credibility-limited base revisions
and studied the interrelations among all those classes in terms of inclusion.

We established the relation between properties of a set of retractable sentences
R and of a set of credible sentences C.

We investigated the relation between the postulates satisfied by an operator
of credibility-limited base revision and by an operator of shielded base contrac-
tion whenever one of these operators is obtained from the other by means of the
consistency-preserving Levi identity or of the Harper identity. Based on these rela-
tions, we established the interrelation between classes of non-prioritized contractions
and of non-prioritized revisions, whenever the operators of the latter (respectively,
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former) classes are obtained from the operators of the former (respectively, latter)
via the consistency-preserving Levi (respectively, Harper) identity.



Chapter 9

Conclusion and Future Work

“Every new beginning comes from
some other beginning’s end.”

Seneca

This final chapter is devoted to the presentation of a brief overview of the work
presented along this thesis, referring its main contributions and mentioning some
potential topics for future research.

9.1 Summary

One of the main goals underlying the research area of belief change consists in find-
ing appropriate ways to model the belief state of an agent and study the changes
that occur in that belief state when the agent receives some new information. In
Chapter 1 we presented a brief introduction to the research area of belief change,
presenting some of its main motivations and goals.

In Chapter 2 we presented the main concepts of epistemological theories, namely
epistemic state (or belief state), epistemic attitude, epistemic input and epistemic
change. We saw that there are several ways of modelling a belief state of an agent
and, from among those, we gave special emphasis to models where epistemic states
are represented by sets of sentences of a propositional language (sentential models)
and gave a first glimpse of the three operations of change that we addressed in the
following chapters:

� Expansion: when new information is simply added to the set of the beliefs
of an agent.

� Revision: when new information is added to the set of the beliefs of an agent
in a consistent matter.

� Contraction: when information is removed from the set of beliefs of an agent.

We ended Chapter 2 by recalling some of the rationality criteria proposed in the
literature: principle of categorical matching, irrelevance of syntax, primacy (of the

165
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new information), consistency, logical omniscience, minimal change, fairness and
preference.

In the third chapter we presented the one that is currently considered the stan-
dard model in the belief change literature, known as the AGM model — after the
initials of its three creators: Carlos Alchourrón, Peter Gärdenfors and David Makin-
son — that was originally presented in [AGM85]. In this framework, each belief of
an agent is represented by a sentence (of a propositional language L) and the be-
lief state of an agent is represented by a logically closed set of (belief-representing)
sentences — called belief sets. We presented the three change operators of this
model: expansions (+), contractions (÷) and revisions (⋆) and the postulates (prop-
erties) that characterize each one of these operators. Expansion is the simplest of
the three operations. The expansion of a belief set K by a sentence α consists
simply in adding α to K and then closing the resulting set by logical consequence,
i.e., K + α = Cn(K ∪ {α}). The rest of this chapter was dedicated to the study of
operators of contraction and revision. We presented the Levi identity and Harper
identity that allow the inter-definition between operators of contraction and revision
and afterwards we presented some explicit methods for constructing contraction and
revision operators as well as the axiomatic characterization for each of the classes of
operators obtained through these methods. We presented a model based on a system
of spheres that allows us to study the change operations from a semantic point of
view allowing a more intuitive understanding of the operations of change. We dedi-
cated the last part of Chapter 3 to study the logical relationships between the classes
of contraction operators mentioned along this chapter. We saw that transitively re-
lational partial meet contractions, safe contractions based on a regular and virtually
connected hierarchy, sphere-based contractions, epistemic entrenchment-based con-
tractions and AGM contractions can be seen as (five) alternative ways of defining
the same class of contraction functions and that the classes of contraction functions
formed by possible worlds-based contractions, partial meet contractions and basic
AGM contractions coincide, and that every safe contraction is a partial meet con-
traction, but that the converse does not hold.

In Chapter 4 we discussed some of the problems of the AGM model identified by
the belief change community as well as some proposals to deal with those problems:

� The inadequacy of representing an agent’s belief state by belief sets. We
discussed the disadvantages of such a representation as well as the use of
belief bases instead of belief sets for that purpose.

� The inadequacy of the AGM model to deal with iterated change and with
multiple change (the input in the original AGM model is a single sentence and
not a set of sentences). We briefly mentioned some of the models proposed in
the literature for iterated revision and for multiple contraction.

� Some of the proposed postulates can be considered inadequate to characterize
change operators, namely recovery and success (for both contraction and revi-
sion). In what concerns recovery we pointed out the existence of some classes
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of contraction functions that satisfy the basic AGM postulates for contraction
with the exception of recovery — the so-called withdrawals. For success we
mentioned several models of non-prioritized change operators.

Regarding non-prioritized belief change, we dedicated special attention to op-
erators of credibility-limited revision and of shielded contraction. We extended the
work presented in [HFCF01] and in [FH01] by axiomatically characterizing classes of
credibility-limited operators that were not characterized in [HFCF01] and by estab-
lishing the interrelation between different credibility-limited revision and shielded
contraction operators by means of the consistency-preserving Levi identity and the
Harper identity.

In Chapter 5 we presented postulates for contraction and for revision in the belief
base context. We recalled some constructive methods for contraction operators on
belief bases, namely, partial meet contractions, (smooth) kernel contractions, basic
AGM-generated base contractions as well as the axiomatic characterization for each
one of these operators. We also presented two operators proposed by Williams in
[Wil94a] based on the notion of ensconcement, namely brutal and ensconcement-
based contractions. We recalled some construction methods for revision operators
on belief bases, namely, partial meet revisions and kernel revisions as well as the
axiomatic characterization of each one of these revision functions. We also defined
and presented representation theorems for other two kinds of base revision functions,
namely smooth kernel revisions and basic AGM-generated base revisions. These re-
vision operators are based on their namesake contraction functions. At the end
of Chapter 5 we briefly recalled some operators of non-prioritized belief change on
belief bases, namely: semi-revision (and consolidation), credibility-limited base re-
vision and shielded base contraction. We also refined the representation theorem for
shielded base contraction operators presented in [FMT03] by identifying a couple of
redundant postulates in that representation theorem.

The main contributions of this thesis were presented in Chapters 6 to 8.

In Chapter 6 we presented representation theorems for ensconcement-based con-
tractions and for brutal contractions. For that purpose we proposed some new postu-
lates. Ensconcement-based contractions and brutal contractions were introduced by
Mary-Anne Williams in [Wil94a] and are based on the concept ensconcement. An en-
sconcement is an ordering of sentences and can be seen as an adaptation to the belief
base context of epistemic entrenchments (introduced in [Gär88, GM88]). We com-
pared the axiomatic characterizations of brutal contractions and of ensconcement-
based contractions in order to identify the postulates that can be considered char-
acteristic properties of each one of those two kinds of contraction functions, in the
sense that they are satisfied by only one of those two kinds of operators. We also
compared the representation theorems of the other base contraction operators pre-
sented in Section 5.2. This allowed us to build the map presented in Figure 6.1.
In particular we concluded that every ensconcement-based contraction is a basic
AGM-generated base contraction but in general is not a (smooth) kernel nor a
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partial meet contraction. Afterwards we studied the construction of an ensconce-
ment relation by means of brutal and ensconcement-based contractions. We finished
Chapter 6 by presenting some results that relate base contraction postulates and
belief set contraction postulates and by investigating the connections between the
ensconcement-based contractions (respectively, brutal contractions) and the epis-
temic entrenchment-based contractions (respectively, severe withdrawals). Regard-
ing this study, the main conclusion that we achieved was that a contraction function
on a belief set is an ensconcement-based contraction (respectively, a brutal contrac-
tion) if and only if it is an epistemic entrenchment-based contraction (respectively,
a severe withdrawal).

Chapter 7 was devoted to the study of shielded base contraction operators. The
definition of shielded contractions was motivated by the fact that an agent can
have several (non-tautological) beliefs that he/she is not willing to give up (even
when trying to contract by it). The set of retractable sentences R models the set of
sentences that the agent is willing to give up (if needed). Informally speaking, the
shielded contraction is a function that receives (just as a standard contraction does)
a set and a sentence and returns:

� The received set (unchanged), if the sentence is not included in R;

� The output produced by the associated contraction, if the sentence is in R.

The concept of shielded contraction for belief bases was introduced in [FMT03]
by adapting the original definition for shielded contractions on belief sets proposed
in [FH01]. In [FMT03] a shielded contraction was defined in terms of a partial
meet contraction and a set R of retractable sentences. Therefore, the outcome of
performing a shielded contraction of a belief base A by a sentence, returns:

� The belief base A (unchanged), if the sentence is not included in R;

� The output produced by the partial meet contraction that induces it, if the
sentence is in R.

In this chapter we extended the definition presented in [FMT03] by defining
shielded base contractions induced by any contraction function instead of only by
partial meet base contractions as in [FMT03]. We presented several results highlight-
ing some direct relations among the postulates satisfied by a shielded contraction
function ∼ induced by a base contraction − and a set of retractable sentences R and
the postulates satisfied by − and the properties of the set R. From the conclusions
obtained we highlight that:

(i) The shielded base contraction ∼ satisfies relative success if and only if − satisfies
failure or the set R satisfies non-retractability of tautology.

(ii) If R and − satisfy condition (R - −) then ∼ satisfies persistence. Furthermore
if R = {α ∶ A ∼ α /⊢ α} and ∼ satisfies persistence then R and − satisfy condition
(R - −).
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Afterwards we studied classes of shielded base contraction induced by several
well-known kinds of base contractions (not only by partial meet base contractions)
and several kinds of sets of retractable sentences (i.e. we consider several different,
and non-equivalent, sets of properties for characterizing a set of retractable sen-
tences). We axiomatically characterized all the classes of shielded base contractions
considered and investigated the interrelations among those classes in terms of strict
inclusion. I.e., we investigated whether each of those classes is or is not strictly
contained in each of the remaining ones. Four of the classes studied satisfy persis-
tence, one of the postulates that we believe best captures the underlying insights of
shielded contractions (and of irretractable sentences).

Chapter 8 was dedicated to the study of credibility-limited base revision oper-
ators. The definition of credibility-limited revision operators was motivated by the
existence of beliefs that a given agent is unwilling to incorporate when performing
a revision. The set of credible sentences C models the set of sentences that the
agent is willing to incorporate during a revision process. Informally speaking, the
credibility-limited revision is a function that receives (just as a standard revision
does) a set and a sentence and returns:

� The received set (unchanged), if the sentence is not included in C;

� The output produced by the associated revision, if the sentence is in C.

The concept of credibility-limited revision for belief bases was introduced in
[FMT03] by adapting the original definition for credibility-limited revisions on be-
lief sets proposed in [HFCF01]. Following the same structure as in Chapter 7 we
start this chapter by extending the definition of credibility-limited revisions opera-
tors presented in [FMT03] by defining credibility-limited revisions operators induced
by any revision function instead of only by partial meet base revision as in [FMT03].
We also proposed some new properties for the set of credible sentences and the per-
sistence postulate for credibility-limited revision based on the namesake postulate
for shielded contractions. We presented several results highlighting some direct re-
lations among the postulates satisfied by a credibility-limited base revision function⊛ induced by a base revision ∗ and a set of credible sentences C and the postulates
satisfied by ∗ and the properties of the set C. Based on the results obtained, we
thoroughly studied several classes of credibility-limited revision operators induced
by different kinds of base revisions (partial meet, (smooth) kernel, basic AGM-
generated base revisions) and several kinds of sets of credible sentences (i.e. we
consider several different, and non-equivalent, sets of properties for characterizing
such a set) and presented for each one of those classes of operators a representation
theorem. We then investigated the interrelations among those classes in terms of
strict inclusion. We finished this chapter by studying the interrelation between the
different classes of shielded base contraction and of credibility-limited base revision
operators, presented respectively in Chapters 7 and 8, by means of the consistency-
preserving Levi identity and the Harper identity. We ended Chapter 8 showing, that
shielded contractions and credibility-limited revisions can be interdefined by means
of the mentioned identities as long as the operators under consideration satisfy some
of the postulates of shielded contractions and of credibility-limited revisions.
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9.2 Future work

In this section, we present a list of potential future research topics that arise naturally
in the sequence of the investigation reported in this thesis.

1. To find more natural postulates than (EB1) and (EB2) to be used (instead of
these two postulates) in the axiomatic characterization of ensconcement-based
contractions.

2. To define and present a representation theorem for operators of revisions (on
belief bases) based on the concept of ensconcement.

3. To combine the work presented in Chapters 6 and 7 in order to define and ax-
iomatically characterize operators of non-prioritized contraction on belief bases
based in the notion of ensconcement. To do so we could adapt the concept of
ensconcement relation in order to allow the existence of non-tautological sen-
tences as ensconced as tautologies. An obvious way to do so is by weakening
the definition of ensconcement relation, namely property (⪯2) (a similar pro-
cess was followed in the definition of shielded entrenchment-based contractions
in [FH01]).

4. To extend the concepts of ensconcement-based contractions and shielded con-
tractions to the case of contractions by sets of sentences rather than only by
a single sentence, i.e., multiple contraction.

5. To define operators on belief bases that allow partial acceptance of the new
information. Operators mentioned along this thesis either accept a revision or
completely reject it, if the new information is insufficiently credible. However
an alternative natural behaviour would be to accept only (the credible) part of
the new information. This perspective is inspired in the operators of selective
revision for belief sets presented in [FH99].

6. To implement computationally the belief change operators proposed in this
thesis and analyse its computational complexity.
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Appendix A

Proofs of Chapter 3

Proof of Observation 3.2.50.
Let K be a belief set and ÷ an operator that satisfies (÷1), (÷3′), (÷4) and (÷9).
Assume that Cn(α) = Cn(β). We intent to prove that K ÷ α = K ÷ β. Assume
first that ⊢ α ∧ β. Hence ⊢ α and ⊢ β. Therefore, by (÷3′), it follows that K ÷ α =
K÷β = K. Assume now that /⊢ α∧β. From Cn(α) = Cn(β) it follows that /⊢ α and/⊢ β furthermore it follows that β ∈ Cn(α) and α ∈ Cn(β). From (÷4) and (÷1) it
follows that K ÷ α /⊢ α and K ÷ β /⊢ β. Therefore β /∈ K ÷ α and α /∈ K ÷ β. Hence,
by (÷9), it follows that K ÷ α = K ÷ β.
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Proofs of Chapter 4

Proof of Observation 4.2.2.

(a) Trivial.

(b) Let α ∈ L be such that ⊢ α. Hence ¬α ⊢⊥. Therefore, by element consistency,¬α /∈ C, from which it follows by negation completeness that α ∈ C. ∎
Proof of Observation 4.2.3.

Assume first that it holds that Cn(∅) ⊆ C. Hence (¬α ∨ α) ∈ C. Therefore, by
disjunctive completeness it follows that ¬α ∈ C or α ∈ C.
Assume now that C satisfies negation completeness. It follows by Observation 4.2.2
(b) that Cn(∅) ⊆ C.

Proof of Observation 4.2.4.
Let K be a consistent belief set and β ∈ K. Assume by reductio ad absurdum, that
β /∈ C. By closure under logical equivalence it follows that ¬¬β /∈ C. Hence by ex-
pansive credibility K ⊢ ¬β. Contradiction, since K /⊢⊥.

Proof of Observation 4.2.8.
Let K be a consistent belief set and ⊙ be an operator on K that satisfies relative suc-
cess, vacuity, inclusion and disjunctive distribution. Suppose that K⊙α = K⊙β = K.
If α∨β /∈ K⊙(α∨β), then by relative success K⊙(α∨β) = K. If α∨β ∈ K⊙(α∨β),
then by disjunctive distribution it holds that either α ∈ K⊙α or β ∈ K⊙ β. In both
cases it yields that α ∨ β ∈ K (since K ⊙ α = K ⊙ β = K and K is logically closed).
K is consistent, hence ¬(α ∨ β) /∈ K. Thus, by vacuity and inclusion, it follows that
K + (α ∨ β) = K⊙ (α ∨ β). Hence, since α ∨ β ∈ K it follows that K = K⊙ (α ∨ β).
Assume now that ⊙ is an operator on K that satisfies relative success, vacuity, in-
clusion and disjunctive constancy. Suppose that α /∈ K⊙α and β /∈ K⊙β. By relative
success it follows that K⊙α = K⊙ β = K. Thus, by disjunctive constancy it follows
that K⊙ (α ∨ β) = K. On the other hand, from α /∈ K⊙ α and β /∈ K⊙ β it follows
by vacuity that K ⊢ ¬α and K ⊢ ¬β. Thus K ⊢ ¬(α ∨ β). Since K is consistent it
holds that α ∨ β /∈ K. Therefore α ∨ β /∈ K⊙ (α ∨ β).
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Proof of Theorem 4.2.14.
Follows trivially by Observations 4.2.2, 4.2.4, 4.2.9, 4.2.10, 4.2.12 and 4.2.13.

Proof of Theorem 4.2.16.
(1 → 3) Let C = {α ∶ α ∈ K⊙ α} and let ⋆ be such that:

(i) if α ∈ K⊙ α, then K⋆α = K⊙ α;

(ii) if α /∈ K⊙ α, then K⋆α = K⋆′α, for some AGM revision operator ⋆′.
C and ⋆ are defined in the same way as in the corresponding parts of the proofs
of Observations 4.2.12 and 4.2.13, and (consequently) also of the proof of Theorem
4.2.14. Thus ⋆ is a basic AGM revision operator. By Theorem 4.2.14, ⊙ is the
operator of credibility-limited revision induced by ⋆ and a set C that satisfies K ⊆ C,
single sentence closure, disjunctive completeness, element consistency and expansive
credibility. We will now show that C satisfies strong revision credibility. Let α /∈ C
and β ∈ L. Hence α /∈ K⊙α. Thus, by strong regularity, ¬α ∈ K⊙β. Thus C satisfies
strong revision credibility.
It remains to prove that ⋆ satisfies disjunctive factoring (Observation 3.1.12).
If α ∨ β /∈ K ⊙ (α ∨ β), then by ⊙ strict improvement α /∈ K ⊙ α and β /∈ K ⊙ β.
Therefore K⋆(α ∨ β) = K⋆′(α ∨ β), K⋆α = K⋆′α and K⋆β = K⋆′β. The rest of the
proof for this case follows by ⋆′ disjunctive factoring.
Suppose now that α ∨ β ∈ K ⊙ (α ∨ β). Hence, by definition of ⋆ it follows that
K⋆(α ∨ β) = K ⊙ (α ∨ β). By ⊙ disjunctive factoring it follows that K⋆(α ∨ β) is
either K⊙ α, K⊙ β or K⊙ α ∩K⊙ β. On the other hand from α ∨ β ∈ K⊙ (α ∨ β)
it follows, by disjunctive distribution, that α ∈ K⊙ α or β ∈ K⊙ β. There are three
cases to consider:
Case 1) α ∈ K ⊙ α and β ∈ K ⊙ β. Therefore, by definition of ⋆, it follows that
K⋆α = K⊙α and K⋆β = K⊙β. Hence, K⋆(α∨β) is either K⋆α, K⋆β or K⋆α∩K⋆β.
Case 2) α ∈ K ⊙ α and β /∈ K ⊙ β. By ⊙ relative success it follows that K ⊙ β = K.
By definition of ⋆ it follows that K⋆α = K⊙ α. On the other hand, from β /∈ K⊙ β
it follows, by ⊙ vacuity, that ¬β ∈ K. By ⊙ disjunctive factoring it follows that
K⋆(α∨β) is either K⋆α, K or K⋆α∩K. Hence, there are two sub-cases to consider:
Case 2.1) K⋆(α ∨ β) = K. Therefore, by ⋆ success and since K is logically closed,
it follows that ¬β ∧ (α ∨ β) ∈ K. Hence α ∈ K. Thus ¬α /∈ K, since K is consistent.
Hence, by ⊙ vacuity and inclusion, it follows that K⊙ α = K + α = K. From which
it follows that K⋆α = K⊙ α = K. Therefore, K⋆(α ∨ β) = K⋆α.
Case 2.2) K⋆(α ∨ β) = K⋆α ∩ K. By ⋆ success it follows that α ∨ β ∈ K⋆(α ∨ β).
Therefore α ∨ β ∈ K. It follows as in the previous case that K⋆α = K. Thus
K⋆(α ∨ β) = K⋆α.
Case 3) α /∈ K⊙ α and β ∈ K⊙ β. Follows as in case 2) by symmetry.
(3 → 2) Trivial.
(2→ 1) Let K be a consistent belief set and ⋆ an AGM revision operator on K. Let C
be a set of sentences that satisfies single sentence closure, disjunctive completeness,
element consistency, expansive credibility and strong revision credibility. Let ⊙ be
an operator such that:

K⊙ α = { K⋆α if α ∈ C
K otherwise
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By Theorem 4.2.14, ⊙ satisfies closure, relative success, inclusion, consistency preser-
vation, extensionality, vacuity, strict improvement and disjunctive distribution. It
remains to show that ⊙ satisfies strong regularity and disjunctive factoring.
Strong regularity: Let α ∈ L. Suppose that β /∈ K⊙β. Thus by ⋆ success it follows
that K ⊙ β /= K⋆β. Therefore, by definition of ⊙, β /∈ C. Hence, by strong revision
credibility, it follows that K⊙ α ⊢ ¬β. Hence, by ⊙ closure, ¬β ∈ K⊙ α.
Disjunctive factoring: We will consider four cases:
Case 1) α /∈ C and β /∈ C. By disjunctive completeness it follows that α ∨ β /∈ C.
Thus, by definition of ⊙, K⊙ (α ∨ β) = K⊙ α = K⊙ β = K.
Case 2) α ∈ C and β ∈ C. Then, by single sentence closure, α∨β ∈ C. Therefore, by
definition of ⊙, K⊙ (α ∨ β) = K⋆(α ∨ β),K⊙ α = K⋆α and K⊙ β = K⋆β. The rest
of the proof for this case follows by ⋆ disjunctive factoring (Observation 3.1.12).
Case 3) α /∈ C and β ∈ C. By single sentence closure, it follows that α ∨ β ∈ C.
Hence, from the definition of ⊙, it follows that K ⊙ α = K, K ⊙ β = K⋆β and
K ⊙ (α ∨ β) = K⋆(α ∨ β). By ⋆ disjunctive factoring it follows that K ⊙ (α ∨ β) is
either K⋆α, K⊙ β or K⋆α ∩K⊙ β. If K⊙ (α ∨ β) = K⊙ β, then we are done.
On the other hand, from α /∈ C it follows by strong revision credibility that K⊙ (α∨
β) ⊢ ¬α. Thus, by ⊙ consistency preservation, it follows that α /∈ K⊙ (α∨β). Thus
by ⋆ success K⊙ (α ∨ β) /= K⋆α.
If K⊙ (α ∨ β) = K⋆α ∩K⊙ β, then ¬α ∈ K⋆α. Thus, by ⋆ success, K⋆α ⊢⊥. By ⋆
closure, it holds that K⋆α is a belief set, hence K⋆α = L, from which it follows that
K⊙ (α ∨ β) = L ∩K⊙ β = K⊙ β.
Case 4) α ∈ C and β /∈ C. Follows as in case 3) by symmetry.

Proof of Theorem 4.2.32.

(a) Let ⊖ be a basic shielded contraction operator on K. Then, by Definition
4.2.26, ⊖ satisfies closure, inclusion, vacuity, extensionality, recovery, relative
success, success propagation and conjunctive constancy. Hence, by Observa-
tion 4.2.30, the operator ⊙ defined from ⊖ via the consistency-preserving Levi
identity satisfies closure, relative success, inclusion, consistency preservation,
extensionality, vacuity, strict improvement and disjunctive constancy. It fol-
lows by Observation 4.2.8 that ⊙ also satisfies disjunctive distribution. Thus,
by Definition 4.2.15, ⊙ is a basic credibility-limited revision operator on K.

(b) Let ⊖ be a non-basic shielded contraction operator on K. Then, by Definition
4.2.28, ⊖ satisfies closure, inclusion, vacuity, extensionality, recovery, rela-
tive success, persistence, conjunctive inclusion and conjunctive overlap. By
Observation 4.2.24 ⊖ also satisfies success propagation and conjunctive con-
stancy. Hence, by Observation 4.2.30, the operator ⊙ defined from ⊖ via
the consistency-preserving Levi identity satisfies closure, relative success, in-
clusion, consistency preservation, extensionality, vacuity, strict improvement,
disjunctive constancy, strong regularity, guarded subexpansion and superex-
pansion. By Observation 4.2.10, ⊙ also satisfies consistency. It follows by
Observations 4.2.11 and 4.2.8 that ⊙ also satisfies disjunctive distribution and
disjunctive factoring. Thus, by Definition 4.2.17, ⊙ is a non-basic credibility-
limited revision operator on K. ∎
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Proof of Theorem 4.2.33.

(a) Let ⊙ be a basic credibility-limited revision operator. Then, by Definition
4.2.15, ⊙ satisfies closure, relative success, inclusion, consistency preservation,
extensionality, vacuity, strict improvement and disjunctive distribution. It
follows by Observation 4.2.8 that ⊙ also satisfies disjunctive constancy. Hence,
by Observation 4.2.31, the operator ⊖ defined from ⊙ via the Harper identity
satisfies closure, inclusion, vacuity, extensionality, recovery, relative success,
success propagation and conjunctive constancy. Hence, by Definition 4.2.26, ⊖
is a basic shielded contraction operator on K.

(b) Let ⊙ be a non-basic credibility-limited revision operator. Then, by Defini-
tion 4.2.17, ⊙ satisfies closure, relative success, inclusion, consistency preser-
vation, extensionality, vacuity, strict improvement, disjunctive distribution,
strong regularity and disjunctive factoring. By Observation 4.2.10, ⊙ satisfies
consistency. It follows by Observations 4.2.11 and 4.2.8 that ⊙ also satisfies
disjunctive constancy, superexpansion and guarded subexpansion. Hence, by
Observation 4.2.31, the operator ⊖ defined from ⊙ via the Harper identity
satisfies closure, inclusion, vacuity, extensionality, recovery, relative success,
persistence, conjunctive inclusion and conjunctive overlap. Thus, by Defini-
tion 4.2.28, ⊖ is a non-basic shielded contraction operator on K. ∎
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Proofs of Chapter 5

Lemma C.1 Let A be a belief base and − an operator on A that satisfies success
and strong inclusion. Then − satisfies: If /⊢ α, then A − α ⊆ A − (α ∧ β).

Proof.
Let /⊢ α. Hence, by success A − α /⊢ α, and so A − α /⊢ α ∧ β. Therefore, by strong
inclusion, A − α ⊆ A − (α ∧ β).
Lemma C.2 Let A be a belief base and − be an operator on A that satisfies success,
inclusion, failure and strong inclusion. Then − satisfies:

(a) If − also satisfies relative closure, then: if α ∈ A ∖A − β, then A − β ⊆ A − α.

(b) If /⊢ α, /⊢ β and A − α ⊢ β, then A − β ⊆ A − α.

(c) If /⊢ α and α ∈ A − β, then A − α ⊂ A − β.

(d) If A − α ⊂ A − β, then A − β ⊢ α.

Proof.

(a) Let α ∈ A ∖A − β, then it follows by relative closure that A − β /⊢ α and so, by
strong inclusion, A − β ⊆ A − α.

(b) It follows from /⊢ α and Lemma C.1 thatA−α ⊆ A−(α∧β). Hence, A−(α∧β) ⊢ β.
Therefore, since /⊢ α ∧ β, due to success, it follows that A − (α ∧ β) /⊢ α. From
strong inclusion it follows that A−(α∧β) ⊆ A−α, and so A−(α∧β) = A−α. On
the other hand, since /⊢ β it follows from Lemma C.1 that A−β ⊆ A−(α∧β) =
A − α.

(c) Let /⊢ α and α ∈ A−β, then A−α ≠ A−β, since from success α /∈ A−α. We will
prove by cases:
Case 1) A − α /⊢ β. By strong inclusion, A − α ⊆ A − β. Hence A − α ⊂ A − β.
Case 2) ⊢ β. It follows from failure that A − β = A and from inclusion that
A − α ⊆ A − β. Hence A − α ⊂ A − β.
Case 3) A − α ⊢ β and /⊢ β. It follows from /⊢ α and (b) that A − β ⊆ A − α.
Contradiction, since α ∈ A − β and /⊢ α.

179



180 APPENDIX C. PROOFS OF CHAPTER 5

(d) Follows by strong inclusion. ∎
Lemma C.3 Let A be a belief base and − an operator on A that satisfies success,
inclusion, vacuity, failure, relative closure and strong inclusion. Then − satisfies: If
α ∈ A − β and /⊢ β, then β /∈ A − α ∧ β.

Proof.
Let − be an operator on A that satisfies success, inclusion, vacuity, failure, relative
closure and strong inclusion. Then by Observation 5.1.3 (d) − satisfies extensionality,
expulsiveness and decomposition. Let α ∈ A−β and /⊢ β. If ⊢ α, then A−α∧β = A−β,
by extensionality. Hence, by success β /∈ A−α∧β. Consider now that /⊢ α and assume
by reductio ad absurdum that β ∈ A−α∧β. By decomposition and success, it follows
that A − α ∧ β = A − α. Thus β ∈ A − α. Contradiction, by expulsiveness.

Proof of Observation 5.1.3.

(a) Let β ∈ A and β /∈ A − α. Then, by logical relevance, there is some set A′ such
that A − α ⊆ A′ ⊆ Cn(A) and A′ /⊢ α but A′ ∪ {β} ⊢ α. From A′ ∪ {β} ⊢ α it
follows, by deduction, that A′ ⊢ β → α. Hence A′ ⊢ ¬β ∨ α. If it was the case
that A′ ⊢ α ∨ β it would follow that A′ ⊢ α. Hence A′ /⊢ α ∨ β. Therefore, by
monotony, A − α /⊢ α ∨ β.

(b) Let β ∈ A, β /∈ A − α and consider A′ = A − α ∪ {¬β ∨ α}. From β ∈ A and
β /∈ A − α it follows, by vacuity, that A ⊢ α. Hence ¬β ∨ α ∈ Cn(A). By
inclusion, A − α ⊆ A ⊆ Cn(A). Therefore A′ ⊆ Cn(A). On the other hand,
since ¬β ∨α ∈ A′, it follows that A′ ∪{β} ⊢ α. It remains to prove that A′ /⊢ α.
Assume by reductio ad absurdum that A′ ⊢ α. Hence, by deduction, it follows
that A−α ⊢ (¬β ∨α)→ α. Since (¬β ∨α)→ α is logically equivalent to α∨β,
it follows that A − α ⊢ α ∨ β which contradicts disjunctive elimination. Hence
A′ /⊢ α.

(d) Linearity: We will prove by cases:
Case 1) ⊢ α, it follows from failure that A − α = A and so (by inclusion)
A − β ⊆ A − α.
Case 2) ⊢ β, due to the symmetry of the case, it follows that A − α ⊆ A − β.
Case 3) A − α /⊢ β, then by strong inclusion A − α ⊆ A − β.
Case 4) /⊢ α, /⊢ β and A−α ⊢ β. It follows from Lemma C.2 (b) that A−β ⊆ A−α.
Expulsiveness: Follows by success and linearity.
Extensionality: If ⊢ α ∧ β it follows trivially from failure. Assume now that/⊢ α ∧ β. It follows from ⊢ α ↔ β that /⊢ α, /⊢ β, ⊢ α → β and ⊢ β → α.
Then, due to success, A − β /⊢ α and A − α /⊢ β. Hence, by strong inclusion,
A − α = A − β.
Decomposition: We will prove by cases:
Case 1) ⊢ α ∧ β. Follows trivially from failure.
Case 2) ⊢ α and /⊢ β. It follows from success that A − (α ∧ β) /⊢ β. Then, by
Lemma C.1 and conjunctive inclusion (Observation 5.1.3 (c)) it follows that
A − β = A − (α ∧ β).
Case 3) /⊢ α and ⊢ β. Due to the symmetry of the case, it follows that
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A − α = A − (α ∧ β).
Case 4) /⊢ α and /⊢ β. It follows from Lemma C.1 that A−α ⊆ A− (α∧ β) and
A−β ⊆ A−(α∧β). On the other hand, by success, it follows that A−(α∧β) /⊢ α
or A − (α ∧ β) /⊢ β. Then by conjunctive inclusion, A − (α ∧ β) ⊆ A − α or
A − (α ∧ β) ⊆ A − β. Hence, A − (α ∧ β) = A − α or A − (α ∧ β) = A − β.
Conjunctive factoring: Follows trivially by decomposition.
Uniformity: Let α and β be two sentences such that it holds for all subsets
A′ of A that A′ ⊢ α if and only if A′ ⊢ β.
Case 1) ⊢ α and ⊢ β. It follows trivially from failure that A − α = A − β.
Case 2) /⊢ α and /⊢ β. It follows from inclusion that A−α ⊆ A and A−β ⊆ A. By
success it follows that A−α /⊢ α. Then, by hypothesis, A−α /⊢ β. By symmetry
of the case it follows that A−β /⊢ α. Therefore from strong inclusion it follows
that A − α = A − β. ∎

Proof of Observation 5.2.9.
(Construction-to-postulates)
Let ∗ be an operator of smooth kernel revision on A. It follows from Observation
5.2.7 that ∗ satisfies consistency, success, inclusion, uniformity and core-retainment.
It remains to prove that ∗ satisfies relative closure. Since ∗ is a kernel revision
operator it follows that ∗ is based on a incision function σ such that for all sentences
α:

A ∗ α = (A ∖ σ(A⊥⊥¬α)) ∪ {α}
On the other hand, σ is smooth. Hence it holds for all subsets A′ of A that if A′ ⊢ β
and β ∈ σ(A⊥⊥α) then A′ ∩ σ(A⊥⊥α) ≠ ∅.

Assume that β /∈ A ∗ α. By ∗ success it follows that β /= α. We intend to
prove that β /∈ A ∩ Cn(A ∩A ∗ α). It follows trivially if β /∈ A. Consider now that
β ∈ A. Hence, by definition of ∗, β ∈ σ(A⊥⊥¬α). Assume by reductio ad absur-
dum that β ∈ A ∩ Cn(A ∩ A ∗ α). Then ((A ∖ σ(A⊥⊥¬α)) ∪ {α}) ∩ A ⊢ β. Thus((A ∖ σ(A⊥⊥¬α)) ∪ (A ∩ {α})) ⊢ β. We will consider two cases:
Case 1) α /∈ A. Hence A ∖ σ(A⊥⊥¬α) ⊢ β. Let X = A ∖ σ(A⊥⊥¬α). Hence X ⊆ A,
X ⊢ β, β ∈ σ(A⊥⊥¬α) and X ∩ σ(A⊥⊥¬α) = ∅. Which contradicts the fact that σ is
smooth.
Case 2) α ∈ A. Hence, by deduction, A ∖ σ(A⊥⊥¬α) ⊢ α → β. Suppose that
α ∈ σ(A⊥⊥¬α). Hence there exists Y ⊆ A⊥⊥¬α such that α ∈ Y . Let Y ′ = Y ∖ {α}.
Thus Y ′ /⊢ ¬α but Y ′ ∪ {α} ⊢ ¬α. Hence by deduction, Y ′ ⊢ α → ¬α. Contra-
diction, since ⊢ ¬α ↔ (α → ¬α). Thus α /∈ σ(A⊥⊥¬α), from which it follows that
α ∈ A ∖ σ(A⊥⊥¬α) and consequently that A ∖ σ(A⊥⊥¬α) ⊢ β. The rest of the proof
for this case follows as in the previous one.
(Postulates-to-construction)
Let ∗ be an operator that satisfies all the postulates listed in the observation. Let
σ(A⊥⊥¬α) = A ∖ (A ∩ (A ∗ α)). This is the same construction that is used in the
proof of Observation 5.2.7 (presented in [Was00, Proof of Theorem 5.2.14]). Hence
σ is an incision function for A and A∗α = (A∖σ(A⊥⊥¬α))∪{α}. It remains to show
that σ is smooth. Let A′ be a subset of A such that A′ ⊢ β and β ∈ σ(A⊥⊥¬α). We
intend to prove that A′ ∩ σ(A⊥⊥¬α) ≠ ∅.
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Assume by reductio ad absurdum that A ∩ A ∗ α ⊢ β. From β ∈ σ(A⊥⊥¬α) and
σ(A⊥⊥¬α) = A ∖ (A ∩ (A ∗ α)) it follows that β ∈ A. Thus by ∗ relative closure
it follows that β ∈ A ∗ α. Contradiction, since β ∈ σ(A⊥⊥¬α) = A ∖ (A ∩ (A ∗ α)).
Therefore A ∩A ∗ α /⊢ β. From A′ ⊢ β it follows that A′ /⊆ A ∩A ∗ α. Hence there is
some sentence δ ∈ A′∖ (A∩A∗α). Thus δ ∈ σ(A⊥⊥¬α). Therefore δ ∈ A′∩σ(A⊥⊥¬α),
from which it follows that A′ ∩ σ(A⊥⊥¬α) ≠ ∅.

Proof of Observation 5.2.13.
(Construction-to-postulates)
Let A ∗ α = (Cn(A) ⋆ α) ∩ (A ∪ {α}) and ⋆ be a basic AGM revision for Cn(A).
Hence ⋆ satisfies success, inclusion, vacuity, consistency, extensionality and closure.
We will now prove that ∗ satisfies consistency, success, inclusion, vacuity, weak
extensionality and disjunctive elimination.
Success: Follows trivially by ∗ definition and ⋆ success.
Inclusion: Follows trivially by ∗ definition.
Vacuity: Let A /⊢ ¬α and β ∈ A ∪ {α}. If β = α, then β ∈ A ∗ α by definition
of ∗ and ⋆ success. Assume now that β /= α. Then β ∈ A. Hence, by ⋆ vacuity
Cn(Cn(A)∪{α}) ⊆ Cn(A)⋆α. On the other hand,1 Cn(Cn(A)∪{α}) = Cn(A∪{α})
therefore A ∪ {α} = Cn(A ∪ {α}) ∩ (A ∪ {α}) ⊆ (Cn(A) ⋆ α) ∩ (A ∪ {α}) = A ∗ α.
Weak extensionality: Let ⊢ α↔ β. Then A∩A∗α = A∩((Cn(A)⋆α)∩(A∪{α})) =
A∩ (Cn(A)⋆α). Thus, by ⋆ extensionality, A∩A∗α = A∩ (Cn(A)⋆β). Hence, by
definition of ∗, it follows that A ∩A ∗ α = A ∩A ∗ β.
Disjunctive elimination: Let β ∈ A and β /∈ A ∗ α. Then, by definition of ∗,
β /∈ (Cn(A)⋆α)∩(A∪{α}). Hence β /∈ Cn(A)⋆α. On the other hand, by ⋆ success,
α ∈ Cn(A) ⋆ α. Thus, by ⋆ closure, Cn(A) ⋆ α /⊢ ¬α ∨ β. Therefore, by definition of∗ it follows that A ∗ α /⊢ ¬α ∨ β.
Consistency: Let α /⊢⊥. By ⋆ consistency it follows that Cn(A) ⋆ α /⊢⊥. Hence
A ∗ α /⊢⊥.
(Postulates-to-construction)
Let ∗ be an operator on A that satisfies consistency, success, inclusion, vacuity,
weak extensionality and disjunctive elimination. Let ⋆ be an operator on Cn(A)
defined, for all α ∈ L, as follows:

Cn(A) ⋆ α = Cn(A ∗ α)
We must prove that:
a) ⋆ satisfies success, consistency, extensionality, inclusion, vacuity and closure;
b) A ∗ α = (Cn(A) ⋆ α) ∩ (A ∪ {α}).
Proof of a) Closure follows trivially from ⋆ definition. Success, consistency and in-
clusion follow trivially from ⋆ definition and ∗ success, consistency and inclusion
respectively.
Vacuity: Let ¬α /∈ Cn(A). By ∗ vacuity it follows that A ∪ {α} ⊆ A ∗ α. Thus
Cn(Cn(A) ∪ {α}) = Cn(A ∪ {α}) ⊆ Cn(A ∗ α) = Cn(A) ⋆ α.
Extensionality: Let ⊢ α↔ β. It follows, by ∗ weak extensionality, that A∩A∗α =
A ∩A ∗ β. We will prove by double inclusion that Cn(A) ⋆ α = Cn(A) ⋆ β.

1Cn(A ∪B) = Cn(A ∪Cn(B)) [Han99b].
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We will start by proving that A ∗ α = (A ∩A ∗ α) ∪ {α}.(A ∩A ∗α) ∪ {α} = (A ∪ {α}) ∩ (A ∗α ∪ {α}) = A ∗α (the last equality follows from∗ success and inclusion).
Let δ ∈ Cn(A) ⋆ α. Then A ∗ α ⊢ δ. Thus (A ∩ A ∗ α) ∪ {α} ⊢ δ. Therefore, by
deduction (A ∩A ∗ α) ⊢ α → δ. It follows, from ⊢ α↔ β and ∗ weak extensionality,
that (A ∩A ∗ β) ⊢ β → δ. Hence (A ∩A ∗ β) ∪ {β} ⊢ δ. Therefore A ∗ β ⊢ δ. Hence
δ ∈ Cn(A)⋆β. Thus Cn(A)⋆α ⊆ Cn(A)⋆β. By symmetry of the case it holds that
Cn(A) ⋆ β ⊆ Cn(A) ⋆ α. Therefore Cn(A) ⋆ α = Cn(A) ⋆ β.
Proof of b) That A ∗ α ⊆ (Cn(A) ⋆ α) ∩ (A ∪ {α}), follows from ⋆ definition and ∗
inclusion. Let δ ∈ (Cn(A) ⋆ α) ∩ (A ∪ {α}). If δ = α, then it follows from ∗ success
that δ ∈ A∗α. Assume now that δ /= α. Hence δ ∈ A and A∗α ⊢ δ. From the latter it
follows that A∗α ⊢ ¬α∨δ. Hence, by disjunctive elimination, it follows that δ ∈ A∗α.
Thus (Cn(A)⋆α)∩ (A∪{α}) ⊆ A∗α. Therefore (Cn(A)⋆α)∩ (A∪{α}) = A∗α.

Proof of Observation 5.2.15.
In order to prove that (K,≤ ∣K) is an ensconcement we must show that ≤ ∣K is a
transitive and total relation on K that satisfies (⪯ 1), (⪯ 2) and (⪯ 3).
According to (EE1) ≤ is a transitive relation and it follows from (EE1), (EE2) and
(EE3) that ≤ is a total relation (Lemma 3.2.38). Thus ≤ ∣K is a transitive and total
relation on K.(⪯ 1) Let β ∈ K∖Cn(∅). Assume by reductio ad absurdum that {α ∈ K ∶ β < ∣Kα} ⊢
β. Hence {α ∈ K ∶ β < α} ⊢ β. By compactness, and since /⊢ β, it follows that
there exists a non-empty finite subset A′ = {α1, . . . , αn} of {α ∈ K ∶ β < α} such that
A′ ⊢ β. Hence α1∧ . . .∧αn ⊢ β, from which it follows by (EE2) that α1∧ . . .∧αn ≤ β.
It follows from (EE3) and (EE1) that there exists αi ∈ A′ such that αi ≤ α1∧ . . .∧αn.
Thus, from (EE1) αi ≤ β. Contradiction.(⪯ 2) Let α,β ∈ K be such that /⊢ α and ⊢ β. It follows from (EE2) that α ≤ β. Thus
α ≤ ∣Kβ. Assume, by reductio ad absurdum, that β ≤ ∣Kα. Hence β ≤ α. Let θ ∈ L,
then by (EE2) θ ≤ β. Hence by (EE1) θ ≤ α. Hence for all δ ∈ L, δ ≤ α. Therefore,
by (EE5), it holds that ⊢ α. Contradiction. Thus α < ∣Kβ.(⪯ 3) Let α,β ∈ K be such that ⊢ α and ⊢ β. Hence, by (EE2), α ≤ β. Therefore
α ≤ ∣Kβ.

Proof of Observation 5.3.2.

(a) Let A be a belief base and ∼ an operator on A that satisfies relative success.
Let α ∈ L be such that ⊢ α. By relative success it follows that A ∼ α = A or
A ∼ α /⊢ α. The latter does not hold since α is a tautology. Hence A ∼ α = A.

(b) Assume that A ∼ α = A ∼ β = A. If A ⊢ α and A ⊢ β, then A ∼ α ⊢ α and
A ∼ β ⊢ β. Hence, by persistence, A ∼ (α ∧ β) ⊢ α and A ∼ (α ∧ β) ⊢ β, from
which it follows that A ∼ (α ∧ β) ⊢ α ∧ β. Therefore by relative success it
follows that A ∼ (α ∧ β) = A.
If A /⊢ α or A /⊢ β it follows that A /⊢ α∧β. From which it follows, by inclusion
and vacuity, that A ∼ (α ∧ β) = A. ∎





Appendix D

Proofs of Chapter 6

Lemma D.1 Let (A,⪯) be an ensconcement. If α,β ∈ A, then α =⪯ β if and only if
cut≺(α) = cut≺(β).

Proof.
If ⊢ α, then from (⪯ 2) it follows that ⊢ β. Hence, the proof follows from (⪯ 3)
and Lemma 5.2.19 (a). Assume now that /⊢ α and consequently that /⊢ β. From left
to right it follows from Lemma 5.2.19 (i). For the other direction: Let α,β ∈ A, if
α ≺ β, then by Lemma 5.2.19 (g) cut≺(α) ⊢ β and so cut≺(β) ⊢ β which contradicts
Lemma 5.2.19 (b). Due to the symmetry of the case we may conclude that β /≺ α.
Since α /≺ β, β /≺ α, and ⪯ is connected, we can conclude that α ⪯ β and β ⪯ α.
Lemma D.2 Let (A,⪯) be an ensconcement. Let − be the ⪯-based contraction on
A. Then:

(a) cut≺(α) ⊆ A − α.

(b) If A − α /⊢ β, then cut≺(α) /⊢ β.

(c) If A − α ⊢ β, then cut≺(α) ⊢ α ∨ β.

(d) If β ∈ cut≺(α), then β ∈ A − α ∧ β.

Proof.

(a) Let β ∈ cut≺(α). It follows that β ∈ A and cut≺(α) ⊢ α ∨ β. Thus, by definition
of ⪯-based contraction, β ∈ A − α.

(b) It follows trivially from (a).

(c) It is trivial if ⊢ β or ⊢ α. Assume now that /⊢ β and /⊢ α. From A − α ⊢ β
by compactness there exists a finite subset of A − α, H = {γ1, . . . , γk}, such
that H ⊢ β. It follows, by definition of ⪯-based contraction, that for each
γi ∈ H, cut≺(α) ⊢ α ∨ γi. Hence cut≺(α) ⊢ (α ∨ γ1) ∧ . . . ∧ (α ∨ γk). Therefore,
cut≺(α) ⊢ α ∨ (γ1 ∧ . . . ∧ γk), from which it follows that cut≺(α) ⊢ α ∨ β.

185
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(d) Let β ∈ cut≺(α). If ⊢ β, then cut≺(α ∧ β) ⊢ (α ∧ β) ∨ β. Hence, β ∈ A − α ∧ β.
Consider now that /⊢ β. Assume by reductio ad absurdum that β /∈ A − α ∧ β.
Hence, by Definition 5.2.20 it follows that cut≺(α ∧ β) /⊢ β and by Lemma
5.2.19 (k) and (e) that cut≺(α ∧ β) = cut≺(β). We will consider two cases:
Case 1) A − α ∧ β ⊢ α. Hence, by (c), cut≺(α ∧ β) ⊢ α. Thus cut≺(β) ⊢ α.
Therefore, by Observation 5.2.18, {γ ∈ A ∶ β ≺ γ} ⊢ α. Hence {γ ∈ A ∶ β ⪯ γ} ⊢
α, from which it follows that β /∈ cut≺(α). Contradiction.
Case 2) A − α ∧ β /⊢ α. It follows from (b) that cut≺(α ∧ β) /⊢ α. Hence, by
Lemma 5.2.19 (k) and (e), cut≺(α∧β) = cut≺(α). Therefore cut≺(α) = cut≺(β).
Hence β ∈ cut≺(β) which contradicts Lemma 5.2.19 (b). ∎

Lemma D.3 Let (A,⪯) be an ensconcement. If α ∈ A∖Cn(∅), then cut⪯(α) = {γ ∈
A ∶ α ⪯ γ}.
Proof.
Let β ∈ cut⪯(α). Hence {γ ∈ A ∶ β ≺ γ} /⊢ α. Since α,β ∈ A and ⪯ is a total
relation on A, it follows that, α ⪯ β or β ≺ α. In the latter case, it follows that{γ ∈ A ∶ β ≺ γ} ⊢ α. Hence α ⪯ β.
Let β ∈ {γ ∈ A ∶ α ⪯ γ}. Hence α ⪯ β. (A,⪯) is an ensconcement. Hence by (⪯ 1) it
follows that {γ ∈ A ∶ α ≺ γ} /⊢ α. Hence {γ ∈ A ∶ β ≺ γ} /⊢ α. Therefore β ∈ cut⪯(α).
Lemma D.4 [FH94, Han99b] Let K be a belief set and ÷ be an operator on K.
Then:

(a) If ÷ satisfies relevance, then it satisfies (÷5).
(b) If ÷ satisfies (÷1), (÷2), (÷3), and (÷5), then it satisfies relevance.

Lemma D.5 [FKR08] Let K be a belief set and ÷ be an operator on K that satisfies
inclusion, vacuity and disjunctive elimination. Then ÷ satisfies relevance.

Lemma D.6 If − is a brutal contraction on a belief base A, then for α,β ∈ A:

(a) (α /∈ A − (α ∧ β) or ⊢ α ∧ β) if and only if (α /∈ A − β or ⊢ β).

(b) Condition (CEB ⪯) is equivalent to condition (CBR ⪯).

Proof.

(a) Let (A,⪯) be an ensconcement, α,β ∈ A and − be the ⪯-based brutal contraction.
We intend to prove that α /∈ A −α ∧ β or ⊢ α ∧ β holds if and only if α /∈ A − β
or ⊢ β holds. Assume first that α /∈ A − α ∧ β or ⊢ α ∧ β holds. We will prove
by cases:
Case 1) ⊢ α ∧ β. Hence ⊢ β.
Case 2) /⊢ α∧β. Hence α /∈ A−α∧β. We can consider two cases ⊢ β or /⊢ β. In
the latter, from α /∈ A−α∧ β it follows that α /∈ cut≺(α∧ β). Thus, by Lemma
5.2.19 (d), it follows that α /∈ cut≺(β). Hence, α /∈ A − β.
Assume now that α /∈ A−β or ⊢ β. We will show that α /∈ A−α∧β or ⊢ α∧β.
We will prove by cases:
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Case 1) ⊢ β. If ⊢ α, then ⊢ α ∧ β. Consider now that /⊢ α. Hence, by
Lemma 5.2.19 (e), cut≺(α ∧ β) = cut≺(α). Therefore, by Lemma 5.2.19 (b),
α /∈ cut≺(α ∧ β). Hence α /∈ A − α ∧ β.
Case 2) /⊢ β. Then α /∈ A − β. Hence α /∈ cut≺(β). It follows, by Observation
5.2.18, that β /≺ α. Thus /⊢ α, by (⪯ 2). Furthermore, since ⪯ is total, α ⪯ β.
By Lemma 5.2.19 (h) and (i) it follows that cut≺(α ∧ β) = cut≺(α). Hence, by
Lemma 5.2.19 (b), α /∈ cut≺(α ∧ β). Therefore α /∈ A − α ∧ β.

(b) Follows trivially from (a). ∎
Proof of Observation 6.1.1.

(a) Assume that − is an operator on A that satisfies transitivity we will show that− satisfies ST. Let δ ∈ A, β ∈ A−α∧β and β /∈ A−β∧δ. Assume by reductio ad
absurdum that δ /∈ A − α ∧ δ, then by transitivity β /∈ A − α ∧ β. Contradiction.
Hence δ ∈ A − α ∧ δ.
Assume now that − is an operator on A that satisfies ST we will show that −
satisfies transitivity. Let β ∈ A, α /∈ A − α ∧ β and β /∈ A − β ∧ δ. Assume by
reductio ad absurdum that α ∈ A−α∧δ, then by ST β ∈ A−β∧δ. Contradiction.
Hence α /∈ A − α ∧ δ.

(b) Let α ∈ A, β ∈ A−α∧β and δ ∈ A−β ∧ δ. From inclusion it follows that β, δ ∈ A
and from (a) it follows that − satisfies ST. We will prove by cases:
Case 1) ⊢ α. From β ∈ A − α ∧ β it follows, by extensionality, that β ∈ A − β.
Thus, by success, ⊢ β. Therefore, by extensionality and success, and proceed-
ing as before, it follows from δ ∈ A − β ∧ δ that ⊢ δ. Thus, by relative closure,
δ ∈ A − α ∧ δ.
Case 2) /⊢ α. Then /⊢ α ∧ β. From β ∈ A − α ∧ β, it follows, by success, that
α /∈ A−α ∧ β. Assume, by reductio ad absurdum, that δ /∈ A−α ∧ δ. It follows,
by ST, that α ∈ A − α ∧ β. Contradiction. Hence δ ∈ A − α ∧ δ. ∎

Proof of Theorem 6.2.1.
Let − be an operator on A that satisfies success, inclusion, vacuity, failure, relative
closure, strong inclusion and uniform behaviour. We will start by proving that ⪯,
defined by (CBR ⪯), is an ensconcement relation. Let ⪯ be defined for α,β ∈ A as
follows:

α ⪯ β iff α /∈ A − β or ⊢ β.
(⪯ 1) Let γ ∈ A ∖ Cn(∅), we must show that H = {α ∈ A ∶ γ ≺ α} /⊢ γ. Let
α ∈ A and γ ≺ α, then, according to our construction (γ /∈ A − α or ⊢ α) and(α ∈ A − γ and /⊢ γ). Hence α ∈ A − γ. Hence H ⊆ A − γ. Therefore, by success, it
follows that H /⊢ γ.
(⪯ 2) Let α,β ∈ A such that /⊢ α and ⊢ β. We need to prove that α ⪯ β and β /⪯ α.
That α ⪯ β follows from the definition of ⪯. That β /⪯ α follows from the definition
of ⪯ and − relative closure.(⪯ 3) Follows trivially from the definition of ⪯.
(⪯ is total) Let α,β ∈ A. Assume that α /⪯ β. By the definition of ⪯, it follows that
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α /⪯ β if and only if α ∈ A − β and /⊢ β. We will prove by cases:
Case 1) ⊢ α. Then by definition of ⪯, β ⪯ α.
Case 2) /⊢ α. By success it follows that α /∈ A − α. Therefore A − β /⊆ A − α. From
which it follows by linearity (Observation 5.1.3 (d)) that A − α ⊆ A − β. Therefore
by success β /∈ A − α. Hence, by definition of ⪯, it follows that β ⪯ α.
(⪯ is transitive) Let α,β, γ ∈ A and assume that α ⪯ β and β ⪯ γ. By definition of⪯, it follows that (α /∈ A − β or ⊢ β) and (β /∈ A − γ or ⊢ γ).
If ⊢ γ, then by definition of ⪯ it follows that α ⪯ γ.
Assume now that /⊢ γ. Hence β /∈ A − γ. By relative closure it follows that /⊢ β.
Hence α /∈ A − β. Again, by relative closure it follows that /⊢ α. By Lemma C.2
(a) it follows that A − β ⊆ A − α and A − γ ⊆ A − β. Therefore, since ⊆ is transitive
A − γ ⊆ A − α. Hence by success α /∈ A − γ. Therefore, by definition of ⪯ it follows
that α ⪯ γ.
It remains to prove that:

A − α = { cut≺(α) if /⊢ α
A otherwise

We will prove by cases:
1. ⊢ α. Follows trivially by failure.
2. /⊢ α
2.1. A /⊢ α. It follows from vacuity, inclusion and Lemma 5.2.19 (c) that cut≺(α) =
A = A − α.
2.2. A ⊢ α.
2.2.1. α ∈ A. We will prove that A − α = cut≺(α) by double inclusion.(⊇) Let β ∈ cut≺(α) and assume by reductio ad absurdum that β /∈ A − α. From
β /∈ A − α it follows, by definition of ⪯ that β ⪯ α. On the other hand, since
β ∈ cut≺(α), it follows from Observation 5.2.18 that α ≺ β. Contradiction.
It follows that cut≺(α) ⊆ A − α.(⊆) Let β ∈ A−α and assume by reductio ad absurdum that β /∈ cut≺(α). By inclusion
it follows that β ∈ A. We will prove by cases:
Case 1) ⊢ β. Then, by (⪯ 2), α ≺ β. Therefore, from Observation 5.2.18, it follows
that β ∈ cut≺(α). Contradiction.
Case 2) /⊢ β. Since β /∈ cut≺(α), by Observation 5.2.18, it follows that α /≺ β. There-
fore, since ⪯ is a total relation, it follows that β ⪯ α. According to the definition of⪯ this means that β /∈ A − α or ⊢ α. In both cases we obtain a contradiction.
Therefore cut≺(α) = A − α.
2.2.2. α /∈ A. We will prove that A − α = cut≺(α) by double inclusion.(⊇) Let β ∈ cut≺(α) and assume by reductio ad absurdum that β /∈ A − α. From
β ∈ cut≺(α) it follows that β ∈ A. Hence β ∈ A ∖ A − α, from which it follows, by
relative closure, that /⊢ β. From Lemma C.2 (a), it follows that A − α ⊆ A − β.
We will consider two cases:
Case 1) A−α ⊂ A−β. Hence, by Lemma C.2 (d), A−β ⊢ α. Therefore, since β ∈ A,
from the case 2.2.1. it follows that cut≺(β) ⊢ α. Hence, from Observation 5.2.18,{γ ∈ A ∶ β ≺ γ} ⊢ α. Contradiction, since β ∈ cut≺(α).
Case 2) A − α = A − β. From β ∈ cut≺(α) it follows that {γ ∈ A ∶ β ⪯ γ} /⊢ α. Hence,
by Observation 5.2.18, it follows that cut≺(β) ∪ {γ ∈ A ∶ β =⪯ γ} /⊢ α. Hence, by
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Lemma D.1, it follows that cut≺(β) ∪ {γ ∈ A ∶ cut≺(β) = cut≺(γ)} /⊢ α. Therefore,
from case 2.2.1., it follows that (A− β)∪ {γ ∈ A ∶ A− β = A− γ} /⊢ α. Contradiction,
from uniform behaviour.
It follows that cut≺(α) ⊆ A − α.(⊆) Let β ∈ A − α and assume by reductio ad absurdum that β /∈ cut≺(α) (note that
it follows from inclusion that β ∈ A). We will consider two cases:
Case 1) ⊢ β. Then, by (⪯ 2), it follows that, if γ ∈ A and β ⪯ γ, then ⊢ γ. Therefore{γ ∈ A ∶ β ⪯ γ} ⊆ Cn(∅). Hence, since /⊢ α, it follows that {γ ∈ A ∶ β ⪯ γ} /⊢ α.
Therefore β ∈ cut≺(α). Contradiction.
Case 2) /⊢ β. From β /∈ cut≺(α) it follows that {γ ∈ A ∶ β ⪯ γ} ⊢ α. Then according to
the definition of ⪯, {γ ∈ A ∶ β /∈ A−γ or ⊢ γ} ⊢ α. Hence H = {γ ∈ A ∶ β /∈ A−γ} ⊢ α.
Let δ ∈H. Hence δ ∈ A and β /∈ A−δ. Thus A−α /⊆ A−δ (since β ∈ A−α). Therefore,
by Lemma C.2 (a), it follows that δ ∈ A−α. Hence H ⊆ A−α, from which it follows
by success that H /⊢ α. Contradiction.

Proof of Theorem 6.2.2.

Success Let /⊢ α and assume by reductio ad absurdum that A − α ⊢ α. Then it
follows from the definition of − that cut≺(α) ⊢ α. Contradiction by Lemma 5.2.19
(b).

Inclusion and Failure follow trivially.

Vacuity follows trivially from Lemma 5.2.19 (c).

Relative Closure If ⊢ α, trivial from failure. Let /⊢ α and assume by reductio ad
absurdum that β ∈ A,A−α ⊢ β and β /∈ A−α. It follows from the definition of − that
cut≺(α) ⊢ β and β /∈ cut≺(α). From β /∈ cut≺(α) it follows that {γ ∈ A ∶ β ⪯ γ} ⊢ α.
If ⊢ β, then it follows from (⪯2) that ⊢ α. Contradiction.
Assume that /⊢ β. Since cut≺(α) ⊢ β it follows that cut≺(α) ≠ ∅. Let δ ∈ cut≺(α).
δ, β ∈ A and ⪯ is a total relation, thus δ ⪯ β or β ≺ δ.
If δ ⪯ β, then {γ ∈ A ∶ β ⪯ γ} ⊆ {γ ∈ A ∶ δ ⪯ γ}. Contradiction, since {γ ∈ A ∶ β ⪯ γ} ⊢
α and δ ∈ cut≺(α).
If β ≺ δ, and since δ is an arbitrary element of cut≺(α), then for all γ ∈ cut≺(α), we
have that β ≺ γ. Contradiction, since cut≺(α) ⊢ β contradicts (⪯1).
Strong Inclusion Let ⊢ β, then by failure it follows that A − β = A. Hence A /⊢ α
and, by vacuity and inclusion, it follows that A − α = A. Therefore A − β ⊆ A − α.
Assume now that /⊢ β. Let A−β /⊢ α, it follows by the definition of − that cut≺(β) /⊢ α.
By Lemma 5.2.19 (k) it follows that cut≺(α ∧ β) = cut≺(α). By Lemma 5.2.19 (d)
cut≺(β) ⊆ cut≺(α∧β), then cut≺(β) ⊆ cut≺(α). Thus A−β ⊆ A−α (by − definition).
Uniform Behaviour Let β ∈ A,A ⊢ α and A − α = A − β. It follows triv-
ially from failure if ⊢ β. Let /⊢ β and assume by reductio ad absurdum that
α /∈ Cn(A − β ∪ {γ ∈ A ∶ A − β = A − γ}).
Since /⊢ β and β ∈ A, by success it follows that A − β ≠ A. Hence, for all δ, if
A − δ = A − β it follows that A − δ ≠ A and, by failure, /⊢ δ. Then it follows from
the hypothesis and the definition of − that cut≺(α) = cut≺(β) and (cut≺(β) ∪ {γ ∈
A ∶ cut≺(γ) = cut≺(β)}) /⊢ α. From Observation 5.2.18 and Lemma D.1 it follows
that ({γ ∈ A ∶ β ≺ γ} ∪ {γ ∈ A ∶ γ =⪯ β}) /⊢ α. Hence, {γ ∈ A ∶ β ⪯ γ} /⊢ α, and so
β ∈ cut≺(α) = cut≺(β). Contradiction (Lemma 5.2.19 (b)).
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(CBR ⪯) (⇒) Let α,β ∈ A be such that α ⪯ β. Suppose that /⊢ β. We intend
to prove that α /∈ A − β. It follows from (⪯ 2) that /⊢ α. By − definition it follows
that A − α = cut≺(α) and A − β = cut≺(β). From α ⪯ β it follows, by Lemma 5.2.19
(f), that cut≺(β) ⊆ cut≺(α). Hence, by Lemma 5.2.19 (b), α /∈ cut≺(β). Therefore,
α /∈ A − β.
(⇐) Let α,β ∈ A be such that α /∈ A − β or ⊢ β.
If ⊢ β, then, by (⪯ 2) and (⪯ 3), α ⪯ β.
Consider now that /⊢ β. Hence α /∈ A − β. It also holds, by definition of −, that
A − β = cut≺(β). Assume by reductio ad absurdum that α /⪯ β. Hence β ≺ α, since ⪯
is a total relation. From which it follows, by Observation 5.2.18, that α ∈ cut≺(β).
Thus α ∈ A − β. Contradiction.

Proof of Theorem 6.2.3.
Let − be an operator to A that satisfies success, inclusion, vacuity, extensionality,
conjunctive factoring, disjunctive elimination, transitivity, EB1 and EB2. We will
start by proving that ⪯, defined by (CEB ⪯), is an ensconcement relation.
(⪯ is total) Let α,β ∈ A be such that α /⪯ β. By (CEB ⪯), it follows that α ∈ A−α∧β
and /⊢ α ∧ β. It follows, by success, that β /∈ A−α ∧ β. Therefore β ⪯ α, by (CEB ⪯).
(⪯ is transitive) Let α,β, δ ∈ A be such that α ⪯ β and β ⪯ δ. We wish to prove
that α ⪯ δ. It follows trivially by (CEB ⪯) if ⊢ α ∧ δ. Assume now that /⊢ α ∧ δ.
From α ⪯ β and β ⪯ δ it follows, by (CEB ⪯), that (α /∈ A − α ∧ β or ⊢ α ∧ β) and
(β /∈ A− β ∧ δ or ⊢ β ∧ δ). By relative closure (Observation 5.1.2) there are only two
possible cases to consider:
Case 1) α /∈ A−α∧β and β /∈ A−β∧δ. Hence, by transitivity, α /∈ A−α∧δ. Therefore,
by (CEB ⪯), α ⪯ δ.
Case 2) α /∈ A − α ∧ β and ⊢ β ∧ δ. It follows, by failure (Observation 5.1.2), that/⊢ α and, by extensionality, that A − α ∧ δ = A − α. Thus, by success, α /∈ A − α ∧ δ.
Therefore α ⪯ δ, by (CEB ⪯).
(⪯1) Let γ ∈ A ∖Cn(∅) and let H = {α ∈ A ∶ γ ≺ α}. We will show that H ⊆ A − γ.
Let α ∈ H. If ⊢ α, then by relative closure α ∈ A − γ. Assume now that /⊢ α. From
α ∈H it follows that γ ≺ α. By (CEB ⪯) this means that:
(γ /∈ A − α ∧ γ or ⊢ α ∧ γ) and (α ∈ A − α ∧ γ and /⊢ α ∧ γ). This condition holds if
and only if (γ /∈ A − α ∧ γ, α ∈ A − α ∧ γ and /⊢ α ∧ γ) or (⊢ α ∧ γ, α ∈ A − α ∧ γ and/⊢ α ∧ γ). In the latter case we have a contradiction. From the former, and since/⊢ α, it follows, by conjunctive factoring and success that A − α ∧ γ = A − γ. Hence
α ∈ A − γ. Therefore H ⊆ A − γ and thus H /⊢ γ, by success.
(⪯2) Let α,β ∈ A, /⊢ α and ⊢ β. We wish to prove that α ≺ β. From ⊢ β, it follows by
extensionality that A−α∧β = A−α. Hence, by success, α /∈ A−α∧β. Therefore α ⪯ β,
by (CEB ⪯). It remains to prove that β /⪯ α. Assume by reductio ad absurdum that
β ⪯ α. By (CEB ⪯), this means that β /∈ A −α ∧ β or ⊢ α ∧ β. The latter contradicts/⊢ α and the former contradicts relative closure. Hence β /⪯ α, from which it follows
that α ≺ β.
(⪯3) Follows trivially by (CEB ⪯).
(EBC) It remains to show that − satisfies (EBC), i.e., that A − α = {β ∈ A ∶
cut≺(α) ⊢ α ∨ β}.

We will prove by cases:
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1. ⊢ α. Follows trivially by failure.

2. /⊢ α
2.1 A /⊢ α. By vacuity and inclusion it follows that A−α = A. On the other hand,

by Lemma 5.2.19 (c), cut≺(α) = A, from which it follows that {β ∈ A ∶ cut≺(α) ⊢
α ∨ β} = A.

2.2 A ⊢ α.

We will prove (EBC), i.e. A−α = {β ∈ A ∶ cut≺(α) ⊢ α∨β}, by double inclusion.
(⊆) Let β ∈ A − α. It follows, from inclusion that β ∈ A. We intend to prove that
cut≺(α) ⊢ α ∨ β.
It is trivial if ⊢ α∨β. Consider now that /⊢ α∨β and assume by reductio ad absurdum
that cut≺(α) /⊢ α ∨ β. It follows that {δ ∈ A ∶ {γ ∈ A ∶ δ ⪯ γ} /⊢ α} /⊢ α ∨ β. From
(CEB ⪯) it holds that Z /⊢ α ∨ β where Z = {δ ∈ A ∶ {γ ∈ A ∶ δ /∈ A − δ ∧ γ or ⊢
δ ∧ γ} /⊢ α}. According to EB2, Y ⊢ α ∨ β, where Y = {γ ∈ A ∶ γ ∈ A − γ ∧ α}.
Let θ ∈ Y . Hence θ ∈ A − θ ∧ α. We will prove that θ ∈ Z i.e., that W /⊢ α
where W = {γ ∈ A ∶ θ /∈ A − θ ∧ γ or ⊢ θ ∧ γ}. Let λ ∈ W . Hence λ ∈ A and
θ /∈ A − θ ∧ λ or ⊢ θ ∧ λ.
Now we will show that, λ ∈ A−α. If ⊢ λ then, by relative closure, λ ∈ A−α. Assume
now that /⊢ λ. Hence, since ⊢ θ ∧ λ can not hold, it follows that θ /∈ A − θ ∧ λ, and
thus /⊢ θ by failure. To prove that λ ∈ A − α it is enough to show, by EB1, that
X = {γ ∈ A ∶ λ /∈ A − λ ∧ γ} /⊢ α. We will show that X ⊆ A − α. If δ ∈ X is such that⊢ δ, then, by relative closure, δ ∈ A − α.
For all δ ∈X∖Cn(∅) it follows that λ /∈ A−λ∧δ. By transitivity and ST (Observation
6.1.1) it follows, from θ /∈ A− λ∧ θ, λ /∈ A− λ∧ δ and θ ∈ A− θ ∧α, that δ ∈ A−α ∧ δ.
It follows, by success and conjunctive factoring, that δ ∈ A − α. Hence X ⊆ A − α.
Thus, by success, X /⊢ α.
Therefore, λ ∈ A − α. Hence W ⊆ A − α. By success it follows that W /⊢ α. Hence
Y ⊆ Z. Contradiction, since Y ⊢ α ∨ β and Z /⊢ α ∨ β.
(⊇) We will start by proving that cut≺(α) ⊆ A − α. Let δ ∈ cut≺(α). If ⊢ δ, then
δ ∈ A − α by relative closure. Consider now that /⊢ δ and assume by reductio ad
absurdum that δ /∈ A − α. Hence, by EB1, it follows that {γ ∈ A ∶ δ /∈ A − δ ∧ γ} ⊢ α.
Let ψ ∈ A such that δ /∈ A − δ ∧ ψ. Thus, by (CEB ⪯), δ ⪯ ψ. Therefore {γ ∈ A ∶ δ /∈
A − δ ∧ γ} ⊆ {γ ∈ A ∶ δ ⪯ γ}. It follows that {γ ∈ A ∶ δ ⪯ γ} ⊢ α. Hence δ /∈ cut≺(α).
Contradiction.
Hence cut≺(α) ⊆ A − α. Therefore, if β ∈ A and cut≺(α) ⊢ α ∨ β, then A − α ⊢ α ∨ β
from which, by disjunctive elimination, it follows that β ∈ A − α.

Proof of Theorem 6.2.4.
Success Let /⊢ α and assume by reductio ad absurdum that A−α ⊢ α. Then it follows
by compactness that there exists a finite subset of A−α, A′ = {β1, . . . , βk}, such that
A′ ⊢ α. Then it follows from the definition of − that cut≺(α) ⊢ α ∨ βi, i = 1, . . . , k.
Then cut≺(α) ⊢ α∨(β1∧β2∧ . . .∧βk). Hence cut≺(α) ⊢ α. Contradiction by Lemma
5.2.19 (b).
Inclusion Trivial.
Vacuity Let A /⊢ α and let β ∈ A. By Lemma 5.2.19 (c) it follows that cut≺(α) = A,
from which it follows that cut≺(α) ⊢ α ∨ β, hence, according to the definition of −,
β ∈ A − α. Therefore A ⊆ A − α.
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Extensionality Let ⊢ α ↔ β. Then cut≺(α) = cut≺(β) by Lemma 5.2.19 (e), and
the rest follows trivially.
Disjunctive Elimination Let β ∈ A and β ∉ A−α. Then it follows from the defini-
tion of − that cut≺(α) /⊢ α∨ β. Assume by reductio ad absurdum that A−α ⊢ α∨ β.
Then compactness yields that there exists a finite subset of A−α, A′ = {β1, . . . , βk},
such that A′ ⊢ α ∨ β. It follows from the definition of − that cut≺(α) ⊢ α ∨ βi, i =
1, . . . , k. Then cut≺(α) ⊢ α∨(β1∧β2∧. . .∧βk). Hence cut≺(α) ⊢ α∨β. Contradiction.
Conjunctive Factoring First we will consider the case when ⊢ α ∧ β. Hence ⊢ α
and ⊢ β. It follows, by definition of −, that A − α ∧ β = A − α = A − β = A.
Let /⊢ α ∧ β. We will prove by cases:
Case 1) cut≺(α) ⊢ β. Then by Lemma 5.2.19 (j) cut≺(α ∧ β) = cut≺(α). We will
prove by double inclusion that A − α ∧ β = A − α. Let γ ∈ A − α ∧ β. It follows from
the definition of − that γ ∈ A and cut≺(α∧β) ⊢ (α∧β)∨γ, then cut≺(α∧β) ⊢ α∨γ.
Hence cut≺(α) ⊢ α ∨ γ, from which we can conclude that γ ∈ A − α.
For the other inclusion, let γ ∈ A − α. Then it follows from the definition of − that
γ ∈ A and cut≺(α) ⊢ α ∨ γ. Then, by Lemma 5.2.19 (d), cut≺(α ∧ β) ⊢ α ∨ γ. On
the other hand cut≺(α) ⊢ β yields cut≺(α) ⊢ β ∨ γ, then cut≺(α ∧ β) ⊢ β ∨ γ. Hence
cut≺(α ∧ β) ⊢ (α ∧ β) ∨ γ. Therefore γ ∈ A − α ∧ β.
Case 2) cut≺(β) ⊢ α. Due to the symmetry of the case, it follows that A−α∧β = A−β.
Case 3) cut≺(α) /⊢ β and cut≺(β) /⊢ α. It follows by Lemma 5.2.19 (k) that
cut≺(α ∧ β) = cut≺(α) = cut≺(β). Let γ ∈ A − α ∧ β. According to the definition
of −, γ ∈ A and cut≺(α∧β) ⊢ (α∧β)∨γ iff cut≺(α∧β) ⊢ α∨γ and cut≺(α∧β) ⊢ β∨γ
iff cut≺(α) ⊢ α ∨ γ and cut≺(β) ⊢ β ∨ γ iff γ ∈ A − α and γ ∈ A − β. Hence
A − α ∧ β = A − α ∩A − β.
Transitivity Let β ∈ A, α /∈ A − α ∧ β and β /∈ A − β ∧ δ. If α /∈ A, then by inclusion
it follows that α /∈ A − α ∧ δ. Assume now that α ∈ A. From α /∈ A − α ∧ β and
β /∈ A − β ∧ δ it follows, by definition of −, that cut≺(α ∧ β) /⊢ α and cut≺(β ∧ δ) /⊢ β
and thus /⊢ α and /⊢ β. We will prove by cases:
Case 1) ⊢ δ. It follows trivially by extensionality and success that α /∈ A − α ∧ δ.
Case 2) /⊢ δ. From cut≺(α ∧ β) /⊢ α and cut≺(β ∧ δ) /⊢ β it follows by Lemma 5.2.19
(k) and (e) that cut≺(α ∧ β) = cut≺(α) and cut≺(β ∧ δ) = cut≺(β). Hence, from
Lemma 5.2.19 (d), cut≺(β) ⊆ cut≺(α) and cut≺(δ) ⊆ cut≺(β) from which it follows
that cut≺(δ) ⊆ cut≺(α). Assume by reductio ad absurdum that α ∈ A −α ∧ δ. Hence,
by success, it follows that A − α ∧ δ /⊢ δ. Therefore, by Lemma D.2 (b) and (c), it
follows that cut≺(α ∧ δ) ⊢ α and cut≺(α ∧ δ) /⊢ δ. From which it follows, by Lemma
5.2.19 (k) and (e), that cut≺(α∧ δ) = cut≺(δ). Hence, cut≺(δ) ⊢ α. Contradiction by
Lemma 5.2.19 (b), since cut≺(δ) ⊆ cut≺(α).
EB1 Let β ∈ A. If ⊢ β, then cut≺(α) ⊢ α∨β. From which it follows, by definition of− that β ∈ A−α. Assume now that /⊢ β. Let X = {γ ∈ A ∶ β /∈ A−β∧γ} /⊢ α. We wish
to prove that β ∈ A−α, i.e., by definition of −, that β ∈ A and cut≺(α) ⊢ α∨β. To do
so, it is enough to prove that β ∈ cut≺(α), i.e., that {γ ∈ A ∶ β ⪯ γ} /⊢ α. Let θ ∈ A be
such that β ⪯ θ. If ⊢ θ then θ ∈X by extensionality and success. Consider now that/⊢ θ and assume by reductio ad absurdum, that θ /∈ X. Hence β ∈ A − β ∧ θ. Thus,
by success, θ /∈ A − β ∧ θ. By definition of −, it follows that cut≺(β ∧ θ) /⊢ θ ∨ (β ∧ θ).
Hence cut≺(β ∧ θ) /⊢ θ. By Lemma 5.2.19 (d) it follows that cut≺(β) /⊢ θ. Therefore
θ /∈ cut≺(β) from which it follows, by Observation 5.2.18, that β /≺ θ. Since ⪯ is
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a total relation it follows that θ ⪯ β. Hence θ =⪯ β. From Lemma 5.2.19 (i), it
follows that cut≺(θ) = cut≺(β) = cut≺(β ∧ θ). On the other hand, from β ∈ A − β ∧ θ
and Definition 5.2.20 it follows that cut≺(β ∧ θ) ⊢ β. And so, cut≺(β) ⊢ β which
contradicts Lemma 5.2.19 (b). Hence θ ∈ X. Therefore {γ ∈ A ∶ β ⪯ γ} ⊆ X, from
which it follows that {γ ∈ A ∶ β ⪯ γ} /⊢ α and consequently that β ∈ A − α.
EB2 Let β ∈ A − α we will prove that {γ ∈ A ∶ γ ∈ A − γ ∧ α} ⊢ α ∨ β.
It is trivial if ⊢ α ∨ β. Assume now that /⊢ α ∨ β. From β ∈ A − α it follows that
cut≺(α) ⊢ α ∨ β. Let δ ∈ cut≺(α), then by Lemma D.2 (d), δ ∈ X = {γ ∈ A ∶ γ ∈
A − α ∧ γ}. It follows that cut≺(α) ⊆X. Therefore X ⊢ α ∨ β.
(CEB ⪯) (⇒) Let α,β ∈ A be such that α ⪯ β. If ⊢ α, then by (⪯ 2), ⊢ β. Hence⊢ α∧β. Consider now that /⊢ α. Assume by reductio ad absurdum that α ∈ A−α∧β.
Hence, cut≺(α ∧ β) ⊢ α ∨ (α ∧ β). Therefore, cut≺(α ∧ β) ⊢ α. Thus, by Lemma
5.2.19 (b), cut≺(α ∧ β) /⊢ β. Hence, by Lemma 5.2.19 (k) and (e), it follows that
cut≺(α ∧ β) = cut≺(β). Hence cut≺(β) ⊢ α. Therefore, by Observation 5.2.18, it
follows that {γ ∈ A ∶ β ≺ γ} ⊢ α. Thus, since α ⪯ β and ⪯ is a transitive relation on
A, it follows that {γ ∈ A ∶ α ≺ γ} ⊢ α, which contradicts (⪯ 1).
(⇐) We will consider two cases:
Case 1) ⊢ α ∧ β. Then, by (⪯ 3), α ⪯ β.
Case 2) α /∈ A − α ∧ β. Assume by reductio ad absurdum that α /⪯ β. Hence
β ≺ α, since ⪯ is a total relation. From which it follows, by Observation 5.2.18,
that α ∈ cut≺(β). Thus, by Lemma 5.2.19 (d), α ∈ cut≺(α ∧ β). Therefore, by
Lemma D.2 (a), α ∈ A − α ∧ β. Contradiction.

Proof of Observation 6.3.5.

(a) Success, inclusion and vacuity follow trivially by Observation 6.2.2. From Ob-
servation 6.2.2 we also know that − satisfies: strong inclusion, failure, relative
closure and uniform behaviour. Extensionality and conjunctive factoring follow
trivially by Observations 5.1.3 (d).
Transitivity: Let β ∈ A, α /∈ A − α ∧ β and β /∈ A − β ∧ δ. Hence, by relative
closure /⊢ β. We intend to prove that α /∈ A − α ∧ δ. It follows trivially by
inclusion if α /∈ A. Assume now that α ∈ A. In this case, by relative closure/⊢ α. We will prove by cases:
Case 1) ⊢ δ. It follows by extensionality and success.
Case 2) /⊢ δ. From α /∈ A − α ∧ β and β /∈ A − β ∧ δ it follows by relative clo-
sure, Lemma C.1 and Observation 5.1.3 (c) that A − β ⊆ A − α ∧ β ⊆ A − α
and A − δ ⊆ A − β ∧ δ ⊆ A − β. Hence A − δ ⊆ A − α. Thus, by decomposition
(Observation 5.1.3 (d)), it follows that A−α ∧ δ ⊆ A−α. If α ∈ A−α ∧ δ, then
α ∈ A − α which contradicts success. Hence α /∈ A − α ∧ δ.
EB1: Let β ∈ A and {γ ∈ A ∶ β /∈ A − β ∧ γ} /⊢ α. We will show that β ∈ A − α.
We will prove by cases:
Case 1) A /⊢ α. It follows by vacuity.
Case 2) ⊢ β. It follows by relative closure.
Case 3) A ⊢ α and /⊢ β. Let X = {γ ∈ A ∶ β /∈ A−β ∧γ}. Assume by reductio ad
absurdum that β /∈ A − α. By relative closure and strong inclusion, it follows
that A − α ⊆ A − β. We will consider two cases:
Case 3.1) A−α ⊂ A−β. It follows that A−β /⊆ A−α. From which it follows, by
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strong inclusion, that A−β ⊢ α. On the other hand, by Lemma C.3 A−β ⊆X.
Therefore X ⊢ α. Contradiction.
Case 3.2) A−α = A−β. By uniform behaviour it follows that α ∈ Cn(A−β∪{γ ∈
A ∶ A− β = A− γ}). Let Y = A− β ∪ {γ ∈ A ∶ A− β = A− γ}. We will now show
that Y ⊆ X. Let ψ ∈ Y . If ⊢ ψ, then ψ ∈ X, by extensionality and success.
Assume now that /⊢ ψ. We will consider two cases:
Case 3.2.1) A − β = A − ψ. Hence, by decomposition (Observation 5.1.3 (d)),
A − β ∧ ψ ⊆ A − β.
Case 3.2.2) ψ ∈ A − β. By linearity (Observation 5.1.3 (d)) and success,
A − ψ ⊆ A − β. Hence, by decomposition, A − β ∧ ψ ⊆ A − β.
Hence in both cases ψ ∈X, since from A − β ∧ψ ⊆ A − β it follows, by success,
that β /∈ A − β ∧ ψ. Therefore Y ⊆ X. But this leads to a contradiction since
Y ⊢ α and X /⊢ α.
EB2: Let β ∈ A−α. We intend to prove that X = {γ ∈ A ∶ γ ∈ A−γ∧α} ⊢ α∨β.
It is trivial if ⊢ α ∨ β. Consider now that /⊢ α ∨ β. From β ∈ A − α it follows
by inclusion that β ∈ A and by Lemma C.1 that β ∈ A − α ∧ β. Hence β ∈ X.
Therefore X ⊢ α ∨ β.

(b) Follows trivially from Example 6.3.2. ∎
Proof of Observation 6.3.6.

(a) Success, inclusion and vacuity follow trivially by Theorem 6.2.4. On the other
hand, by Theorem 6.2.4, − satisfies disjunctive elimination. Hence, by Obser-
vation 5.1.2, it also satisfies failure and relative closure.

(b) Follows trivially from Examples 6.3.3 and 6.3.4. ∎
Proof of Observation 6.3.7.

(a) It follows from Lemma D.6 (b) and Theorems 6.2.1 and 6.2.2.

(b) Let A = {p, q, p ∨ q} and ⪯ be an ensconcement relation on A defined by:
p ≺ q ≺ p ∨ q. Let − be the ⪯-based contraction on A. Hence A − p = {q, p ∨ q}
and A − q = {p, p ∨ q}. The relation ⪯′ defined by condition (CBR ⪯) based on
the operation − is not an ensconcement. Indeed, since q ∈ A − p and p ∈ A − q,
it follows from (CBR ⪯), that p /⪯′ q and q /⪯′ p. Therefore ⪯′ is not total and
thus, ⪯′ is not an ensconcement relation. ∎

Proof of Observation 6.5.1.

(a)–(d) Straightforward.

(e) Let K be a belief set and ÷ be an operator on K that satisfies (÷1), (÷2), (÷3)
and (÷5). It follows from Lemma D.4 (b) that ÷ satisfies relevance. Therefore,
since logical relevance follows trivially from relevance, it holds that ÷ satisfies
logical relevance. Finally, it follows from Observation 5.1.3 (a) that ÷ satisfies
disjunctive elimination.
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(f) Let K be a belief set, β ∈ K, α /∈ K÷α∧β, β /∈ K÷β∧δ and assume by reductio ad
absurdum that α ∈ K÷α∧δ. From the latter it follows by conjunctive trisection
(which is satisfied due to Observation 3.1.7 (a) and (b)) that α ∈ K÷α∧ δ ∧β.
On the other hand, by (÷V ) and (÷6), it follows that K÷α∧β ∧ δ is identical
to: (i) K ÷ α ∧ β, (ii) K ÷ α ∧ β ∩ K ÷ β ∧ δ or (iii) K ÷ β ∧ δ. The first
two cases can not hold, since α ∈ K ÷ α ∧ β ∧ δ and α /∈ K ÷ α ∧ β. Thus
K÷α∧β∧δ = K÷β∧δ. Hence β /∈ K÷α∧β∧δ, from which it follows, by (÷1),
that α∧β /∈ K÷α∧β∧δ. Hence, by (÷8) (which is satisfied due to Observation
3.1.7 (a)), K÷α∧β ∧ δ ⊆ K÷α∧β. Contradiction, since α ∈ K÷α∧β ∧ δ and
α /∈ K ÷ α ∧ β.

(g) Let K be a belief set. Let β ∈ K and X = {γ ∈ K ∶ β /∈ K ÷ β ∧ γ} /⊢ α. We
wish to prove that β ∈ K ÷ α. This follows trivially by (÷1) if ⊢ β and by(÷3) if α /∈ K. Assume now that /⊢ β and α ∈ K. From X /⊢ α it follows that
α /∈X. Therefore, β ∈ K ÷ β ∧α, from which it follows by (÷4) and (÷V ) that
β ∈ K ÷ α.

(h) Let K be a belief set and β ∈ K ÷ α. We intend to show that X = {γ ∈ K ∶ γ ∈
K ÷ γ ∧ α} ⊢ α ∨ β. It is trivial if ⊢ α ∨ β. Assume now that /⊢ α ∨ β. From⊢ α ↔ (α ∨ β) ∧ α it follows, by (÷6), that K ÷ α = K ÷ (α ∨ β) ∧ α. Hence
β ∈ K÷ (α∨β)∧α. Therefore, by (÷1), α∨β ∈ K÷ (α∨β)∧α. Thus, by (÷2),
α ∨ β ∈ K. Hence α ∨ β ∈X.

(i) Let K be a belief set and assume that K ⊢ α and K − α = K − β. Then α ∈ K
and, furthermore, α ∈ {γ ∈ K ∶ K − β = K − γ}. Therefore α ∈ Cn(K − β ∪ {γ ∈
K ∶ K − β = K − γ}). ∎

Proof of Observation 6.5.2.

(a)–(c) Straightforward.

(d) Follows trivially from (c) and Observation 5.1.2.

(e) Let A be a belief set and − be an operator on A that satisfies inclusion, vacuity
and disjunctive elimination. Then, it follows from Lemma D.5 that − satisfies
relevance. Therefore, by Lemma D.4 (a) we can conclude that − satisfies (÷5).

(f) Let A be a belief set and − be an operator on A that satisfies inclusion, relative
closure and strong inclusion. Then, it follows from (c) that − satisfies (÷1).
Therefore, we can conclude that − satisfies (÷9), since this property follows
trivially from strong inclusion and (÷1). ∎

Proof of Theorem 6.5.3.
We will prove that statements 1.−4. are equivalent by showing that 1.⇔ 3., 3.⇔ 4.,
2.⇒ 4. and 3.⇒ 2..

(1.⇔ 3.) Follows trivially from Observations 3.2.47 and 3.1.7(a).
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(3.⇔ 4.) Follows from Observations 6.5.1 and 6.5.2 and the fact that inclusion
and (÷2) are two alternative designations of the same property, and this is also the
case regarding extensionality and (÷6) as well as conjunctive factoring and (÷V ).

(2.⇒ 4.) Follows trivially from Theorem 6.2.4.
(3.⇒ 2.) Let K be a belief set and ÷ be a contraction on K that satisfies (÷1)–(÷6) and (÷V ). Then it follows from Observation 6.5.1 (and from the fact that

inclusion and (÷2), extensionality and (÷6), and conjunctive factoring and (÷V )
are pairs of alternative designations for one same property) that ÷ satisfies the
postulates of inclusion, vacuity, success, extensionality, conjunctive factoring, dis-
junctive elimination, transitivity, EB1 and EB2. Therefore, according to Theorem
6.2.3, ÷ is an ensconcement-based contraction on K.

Proof of Observation 6.5.4.

(a) Follows trivially from Theorem 6.2.4, Observation 6.5.2 and the fact that inclu-
sion and (÷2), extensionality and (÷6), and conjunctive factoring and (÷V )
are pairs of alternative designations for one same property.

(b) We will show that in general − does not satisfy (÷1) nor (÷3) nor (÷5). Con-
sider the following counter-example: Let (A,⪯) be an ensconcement where
A = {q, q → p} and ⪯ is the two-level ensconcement relation on A defined by:
q ≺ q → p. Hence cut≺(p) = {q → p}. Let − be the ⪯-based contraction for
A. According to Definition 5.2.20, it holds that A − p = {q → p}. Therefore
A − p ≠ Cn(A − p) (hence − does not satisfy (÷1)) and A /⊆ Cn(A − p ∪ {p})
(hence − does not satisfy (÷5)). Furthermore p /∈ A and A − p ≠ A (hence −
does not satisfy (÷3)). ∎

Proof of Observation 6.5.5.
Let K be a belief set and ≤ be an epistemic entrenchment relation with respect to K.
Let ÷ be the ≤-based contraction on K and − be the ensconcement-based contraction
on K defined from ≤ ∣K. We start by recalling that (according to conditions (C÷≤)
and (EBC)) it holds that:

K ÷ α = { {β ∈ K ∶ α < α ∨ β} if /⊢ α
K otherwise

and

K − α = {β ∈ K ∶ cut<∣K(α) ⊢ α ∨ β}.
We recall also that, since ≤ is an epistemic entrenchment relation with respect to
K, it follows from Observation 5.2.15 that (K,≤ ∣K) is an ensconcement.
We will prove by cases that, for all α ∈ L, K − α = K ÷ α.
Case 1) α /∈ K. Hence K /⊢ α and K /⊢⊥. Thus by Lemma 5.2.19 (c) cut<∣K(α) = K.
Therefore K − α = K.
On the other hand, by definition of the operator ÷, it holds that K ÷ α ⊆ K. Let
β ∈ K. Since K is a logically closed set it holds that α ∨ β ∈ K. Hence by Lemmas
3.2.38 and 3.2.39 it follows that α < α∨β. Thus K ⊆ K÷α. Hence K−α = K = K÷α.
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Case 2) ⊢ α. Hence K − α = K ÷ α = K.
Case 3) α ∈ K and /⊢ α.
Let β ∈ K − α. Then, since K is a logically closed set, α ∨ β ∈ K. If ⊢ α ∨ β, then
α < ∣Kα ∨ β (by (⪯ 2)). Then α < α ∨ β. Hence β ∈ K ÷ α. Therefore K − α ⊆ K ÷ α.
Assume now that /⊢ α∨β. It follows, by definition of − that cut<∣K(α) ⊢ α∨β. Hence,
by Observation 5.2.18, {γ ∈ K ∶ α < ∣Kγ} ⊢ α ∨ β. Since ≤ ∣K is a total relation on
K it follows that α < ∣Kα ∨ β or α ∨ β ≤ ∣Kα. In the latter case it would follow that{γ ∈ K ∶ α ∨ β < ∣Kγ} ⊢ α ∨ β, which contradicts (⪯ 1). Therefore α < ∣Kα ∨ β. Then
α < α ∨ β, from which it follows that β ∈ K ÷ α. Hence K − α ⊆ K ÷ α.
Let β ∈ K÷α. Hence β ∈ K and α < α∨β. Since K is a logically closed set it follows
that α∨β ∈ K. Thus α < ∣Kα∨β. Therefore, by Observation 5.2.18, α∨β ∈ cut<∣K(α).
Hence β ∈ K − α.
Therefore K − α = K ÷ α.

Proof of Observation 6.5.6.
Let K be a belief set and (K,⪯) be an ensconcement. Let − be the ⪯-based con-
traction on K and ÷ be the epistemic entrenchment-based contraction on K defined
from the epistemic entrenchment relation ≤⪯. We start by recalling that (according
to conditions (C÷≤) and (EBC)) it holds that:

K ÷ α = { {β ∈ K ∶ α <⪯ α ∨ β} if /⊢ α
K otherwise

and

K − α = {β ∈ K ∶ cut≺(α) ⊢ α ∨ β}.
We will prove that, for all α ∈ L, K ÷ α = K − α.
If ⊢ α, then K÷α = K and ⊢ α∨β. From the latter it follows that K−α = K. Thus
K ÷ α = K − α.
Assume now that /⊢ α. Let α /∈ K (it follows that K /⊢ α since K is a logically closed
set). By definition of ÷, it follows that K÷α ⊆ K. Let β ∈ K. Thus α∨β ∈ K (since
K is a logically closed set). Therefore, by Lemmas 3.2.38 and 3.2.39, α <⪯ α ∨ β.
Hence K ⊆ K ÷ α. Thus K ÷ α = K. On the other hand, by Lemma 5.2.19 (c),
cut≺(α) = K. Thus K − α = K.
Assume now that α ∈ K and /⊢ α.
Let β ∈ K ÷ α. Hence β ∈ K and α <⪯ α ∨ β. We will prove by cases that β ∈ K − α.
Case 1) ⊢ α ∨ β. Then cut≺(α) ⊢ α ∨ β. Hence β ∈ K − α.
Case 2) /⊢ α∨β. Since K is a logically closed set and β ∈ K it follows that α∨β ∈ K.
From α <⪯ α∨β it follows, by definition of ≤⪯, that cut⪯(α∨β) ⊂ cut⪯(α). Therefore
there exists δ ∈ cut⪯(α), such that δ /∈ cut⪯(α ∨ β). Thus {γ ∈ K ∶ δ ≺ γ} ⊢ α ∨ β. By(⪯ 1) and, since ⪯ is a total relation on K, it follows that δ ≺ α∨β. From δ ∈ cut⪯(α)
it follows that {γ ∈ K ∶ δ ≺ γ} /⊢ α. Hence {γ ∈ K ∶ α ∨ β ⪯ γ} /⊢ α. Therefore
α ∨ β ∈ cut≺(α). Thus β ∈ K − α.
Let β ∈ K − α. We will prove that β ∈ K ÷ α. From β ∈ K − α it follows that β ∈ K
and cut≺(α) ⊢ α ∨ β. Furthermore, since K is a logically closed set it follows that
α ∨ β ∈ K. If ⊢ α ∨ β it follows, by Lemma 3.2.40, that α <⪯ α ∨ β. Thus β ∈ K ÷ α.
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Assume now that /⊢ α ∨ β.
From cut≺(α) ⊢ α ∨ β, and since α ∈ K, it follows by Observation 5.2.18, that{γ ∈ K ∶ α ≺ γ} ⊢ α ∨ β. Hence, by (⪯ 1) and since ⪯ is a total relation on K, it
follows that α ≺ α ∨ β.
Assume by reductio ad absurdum that α ∨ β ≤⪯ α. Thus, by the definition of ≤⪯, it
follows that cut⪯(α) ⊆ cut⪯(α∨β). Since α ∈ cut⪯(α), it follows that α ∈ cut⪯(α∨β).
Hence, by Lemma D.3, α∨β ⪯ α. Contradiction. Hence α∨β /≤⪯ α. Thus, by Lemma
3.2.38, α <⪯ α ∨ β, from which it follows that β ∈ K ÷ α.

Proof of Theorem 6.5.7.
We start by noticing that Observation 3.2.49 states exactly that 1. ⇔ 3.. Hence,
in order to prove that statements 1. − 4. are equivalent, we will show that 3.⇔ 4.,
2.⇒ 4. and 3.⇒ 2..

(3.⇔ 4.) Follows from Observations 6.5.1 and 6.5.2 and the fact that inclusion
and (÷2) are two alternative designations of the same property, and this is also the
case regarding failure and (÷3′).

(2.⇒ 4.) Follows trivially from Observation 6.2.2.

(3.⇒ 2.) Let K be a belief set and ÷ be a contraction on K that satisfies (÷1),
(÷2), (÷3), (÷3′), (÷4) and (÷9). Then it follows from Observation 6.5.1 (and from
the fact that inclusion and (÷2), and failure and (÷3′) are pairs of alternative des-
ignations for one same property) that ÷ satisfies the postulates of relative closure,
inclusion, vacuity, failure, success, strong inclusion and uniform behaviour. There-
fore, according to Observation 6.2.1, ÷ is a brutal contraction on K.

Proof of Observation 6.5.8.

(a) Follows trivially from Observation 6.2.2, Observation 6.5.2 and the fact that
inclusion and (÷2), and failure and (÷3′) are pairs of alternative designations
for one same property.

(b) We will show that in general − does not satisfy (÷1) nor (÷3) nor (÷9). Con-
sider the following counter-example: Let (A,⪯) be an ensconcement where
A = {q, p ∨ q, q → p} and ⪯ is the three-level ensconcement relation on A de-
fined by: q ≺ p ∨ q ≺ q → p. Let − be the ⪯-based brutal contraction on A.
According to Definition 5.2.21, it holds that A − p = cut≺(p) = {q → p} and
A− q = cut≺(q) = {p∨ q, q → p}. Therefore A− q ≠ Cn(A− q) (hence − does not
satisfy (÷1)) and, however p /∈ A− q, it does not hold that A− q ⊆ A− p (hence− does not satisfy (÷9)). Furthermore p /∈ A and A − p ≠ A (hence − does not
satisfy (÷3)). ∎

Proof of Observation 6.5.9.
Let K be a belief set and ≤ be an epistemic entrenchment relation with respect to
K. Let ÷ be the ≤-based severe withdrawal on K and − be the brutal contraction
on K defined from ≤ ∣K (notice that, according to Observation 5.2.15, (K,≤ ∣K) is
an ensconcement). We start by recalling that (according to conditions (R÷≤) and
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(BC)) it holds that:

K ÷ α = { {β ∈ K ∶ α < β} if /⊢ α
K otherwise

and

K − α = { cut<∣K(α) if /⊢ α
K otherwise

We will prove by cases that, for all α ∈ L, K − α = K ÷ α.
Case 1) α /∈ K. Hence K /⊢ α and K /⊢⊥. Thus by Lemma 5.2.19 (c) cut<∣K(α) = K.
Therefore K − α = K.
On the other hand, by definition of the operator ÷, it holds that K ÷ α ⊆ K. Let
β ∈ K. Hence by Lemmas 3.2.38 and 3.2.39 it follows that α < β. Thus K ⊆ K ÷ α.
Hence K − α = K = K ÷ α.
Case 2) ⊢ α. Hence K − α = K ÷ α = K.
Case 3) α ∈ K and /⊢ α.
Let β ∈ K − α. Hence β ∈ cut<∣K(α). Therefore, by Observation 5.2.18, α < ∣Kβ.
Hence α < β. Thus β ∈ K ÷ α.
Let β ∈ K ÷ α. Then α < β. Thus, α < ∣Kβ. By Observation 5.2.18, it follows that
β ∈ cut<∣K(α). Therefore β ∈ K − α. Hence K − α = K ÷ α.

Proof of Observation 6.5.10.
Let K be a belief set and (K,⪯) be an ensconcement. Let − be the ⪯-based brutal
contraction on K and ÷ be the severe withdrawal on K defined from the epistemic
entrenchment relation ≤⪯. We start by recalling that (according to conditions (R÷≤)
and (BC)) it holds that:

K ÷ α = { {β ∈ K ∶ α <⪯ β} if /⊢ α
K otherwise

and

K − α = { cut≺(α) if /⊢ α
K otherwise

We will prove that, for all α ∈ L, K ÷ α = K − α.
If ⊢ α, then K − α = K ÷ α = K. Assume now that /⊢ α.
Let β ∈ K − α. Hence β ∈ K. We will prove by cases that β ∈ K ÷ α.
Case 1) ⊢ β. Then, by Lemma 3.2.40, α <⪯ β. Thus β ∈ K ÷ α.
Case 2) K /⊢ α. Then α /∈ K and, by Lemmas 3.2.38 and 3.2.39, α <⪯ β. Thus
β ∈ K ÷ α.
Case 3) /⊢ β and K ⊢ α. Hence α ∈ K. From β ∈ K − α it follows that β ∈ cut≺(α).
Therefore, by Observation 5.2.18, α ≺ β. Assume by reductio ad absurdum that
β ≤⪯ α. Thus, by the definition of ≤⪯, cut⪯(α) ⊆ cut⪯(β). Since α ∈ cut⪯(α) it follows
that α ∈ cut⪯(β). Hence, by Lemma D.3, β ⪯ α. Contradiction. Hence by Lemma
3.2.38, α <⪯ β. Therefore β ∈ K ÷ α.
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Let β ∈ K ÷ α. Then β ∈ K and α <⪯ β. We will prove by cases that β ∈ K − α.
Case 1) K /⊢ α. Then cut≺(α) = K (by Lemma 5.2.19 (c)). Then β ∈ K − α.
Case 2) ⊢ β. Hence, by (⪯ 2) and (⪯ 3), H = {γ ∈ K ∶ β ⪯ γ} ⊆ Cn(∅). Thus H /⊢ α.
Hence β ∈ cut≺(α). Therefore β ∈ K − α.
Case 3) K ⊢ α and /⊢ β. From α <⪯ β it follows, by the definition of ≤⪯, that
cut⪯(β) ⊂ cut⪯(α). Therefore, there exists δ ∈ cut⪯(α) such that δ /∈ cut⪯(β). By
Lemma D.3 it follows that β /⪯ δ. Thus, since ⪯ is a total relation on K, it follows
that δ ≺ β. Hence β ∈ cut≺(α). Therefore β ∈ K − α.



Appendix E

Proofs of Chapter 7

Lemma E.1 ([Han94]) The following two conditions are equivalent:

1. A⊥⊥α = A⊥⊥β
2. For all subsets B of A: B ⊢ α if and only if B ⊢ β.

Lemma E.2 Let A be a belief base. Let − be an operator on A such that (for all α)
A − α = A ∖⋃(A⊥⊥α) , then − satisfies relevance, success, inclusion, vacuity, exten-
sionality, uniformity, core-retainment, disjunctive elimination, failure and relative
closure.

Proof.
Let − be an operator on a belief base A defined (for all α) by A −α = A ∖⋃(A⊥⊥α).
We will start by showing that − satisfies relevance. Let β ∈ A and β /∈ A − α.
Thus β ∈ ⋃(A⊥⊥α). Hence there exists Y ∈ A⊥⊥α such that β ∈ Y . Let X =
Y ∖ {β}∪ (A∖⋃(A⊥⊥α)). Hence X ⊆ A, A−α = A∖⋃(A⊥⊥α) ⊆X and X ∪ {β} ⊢ α.
It remains to prove that X /⊢ α. Assume by reductio ad absurdum that X ⊢ α.
Hence it follows by compactness that there exists a finite subset H = {γ1, ..., γn} of
X such that H ⊢ α. Where γ1, ..., γk ∈ Y ∖ {β} and γk+1, ..., γn ∈ A ∖ ⋃(A⊥⊥α), for
some 1 ≤ k < n. Hence {γ1, ..., γk}∪{γk+1, ..., γn} ⊢ α but {γ1, ..., γk} /⊢ α. Thus there
is some inclusion-minimal subset W of H such that W ⊢ α but no proper set of W
implies α. Hence W ∈ A⊥⊥α. On the other hand, since {γ1, ..., γk} /⊢ α, W contains at
least one of the γi ∈ {γk+1, ..., γn}. Contradiction since {γk+1, ..., γn} ⊆ A ∖⋃(A⊥⊥α).
Hence − satisfies relevance.
On the other hand, according to Definition 3.2.17, − is a kernel contraction. Hence,
it follows from Observations 5.2.4 and 5.1.2, that − satisfies success, inclusion, vacu-
ity, extensionality, uniformity, core-retainment, disjunctive elimination, failure and
relative closure.

Lemma E.3 Let A = {p, q} and R = L ∖(Cn(p)∪Cn(q)). Then R satisfies uniform
retractability and non-retractability propagation.

Proof.
Uniform retractability: Assume that it holds for all subsets A′ of A that α ∈
Cn(A′) if and only if β ∈ Cn(A′). We will prove that α ∈ R if and only if β ∈ R.

201
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Let α /∈ R. Then α ∈ Cn(p) or α ∈ Cn(q). Therefore β ∈ Cn(p) or β ∈ Cn(q). In
both cases it follows that β /∈ R. By symmetry of the case it follows that if β /∈ R,
then α /∈ R. Therefore α ∈ R if and only if β ∈ R.
Non-retractability propagation: Let α /∈ R and β ∈ Cn(α). From α /∈ R it
follows that α ∈ Cn(p) or α ∈ Cn(q). Hence β ∈ Cn(p) or β ∈ Cn(q). In both cases
it follows that β /∈ R. Thus R satisfies non-retractability propagation.

Lemma E.4 Let A = {p, q} and R = L ∖(Cn(∅) ∪ (Cn(p) ∖ Cn(q))). Then R
satisfies uniform retractability and conjunctive completeness.

Proof.
Uniform retractability: Assume that it holds for all subsets A′ of A that α ∈
Cn(A′) if and only if β ∈ Cn(A′). We will prove that α ∈ R if and only if β ∈ R.
Let α /∈ R. Then α ∈ Cn(∅) or α ∈ Cn(p) ∖Cn(q). In the first case it follows that
β ∈ Cn(∅). Therefore β /∈ R. Assume now that α ∈ Cn(p) ∖ Cn(q). Therefore
α ∈ Cn(p) and α /∈ Cn(q). Hence β ∈ Cn(p) and β /∈ Cn(q). Hence β /∈ R. By
symmetry of the case it follows that if β /∈ R, then α /∈ R. Therefore α ∈ R if and
only if β ∈ R.
Conjunctive completeness Let α ∧ β ∈ R. Thus α ∧ β /∈ Cn(∅) and α ∧ β /∈
Cn(p)∖Cn(q). Hence α∧β /∈ Cn(p) or α∧β ∈ Cn(q). In the former case α /∈ Cn(p)
or β /∈ Cn(p). Hence α ∈ R or β ∈ R. In the latter case, α ∈ Cn(q) and β ∈ Cn(q).
Since α /∈ Cn(∅) or β /∈ Cn(∅) (because α ∧ β /∈ Cn(∅)), it follows that α ∈ R or
β ∈ R. Therefore R satisfies conjunctive completeness.

Lemma E.5 Let A = {p, q} and R = L ∖Cn(q). Then R satisfies conjunctive
completeness, non-retractability propagation and uniform retractability.

Proof.
Conjunctive completeness: Let α∧ β ∈ R. Hence {q} /⊢ α∧ β. Therefore {q} /⊢ α
or {q} /⊢ β, from which it follows that α ∈ R or β ∈ R.
Non-retractability propagation: Let α /∈ R. Then {q} ⊢ α. Let β ∈ Cn(α).
Hence {q} ⊢ β, from which it follows that β /∈ R.
Uniform retractability: Assume that it holds for all subsets A′ of A that α ∈
Cn(A′) if and only if β ∈ Cn(A′). Let α /∈ R. Hence {q} ⊢ α, from which it follows
that {q} ⊢ β. Thus β /∈ R. It also holds, by symmetry of the case, that if β /∈ R,
then α /∈ R. Hence α ∈ R if and only if β ∈ R.

Proof of Observation 7.1.3.
Let R be a set that satisfies non-retractability of tautology, non-retractability prop-
agation and conjunctive completeness. We intend to prove that: α ∈ L/R if and only
if L ∖R ⊢ α.
Left to right is trivial. For the other direction consider that L ∖R ⊢ α. If ⊢ α, then
α /∈ R by non-retractability of tautology. Assume now that /⊢ α. Hence by compact-
ness there is a non-empty finite set H = {γ1, ..., γn} such that H ⊆ L ∖R and H ⊢ α.
Hence {γ1∧ ...∧γn} ⊢ α. By repeated use of conjunctive completeness it follows that
γ1 ∧ ... ∧ γn /∈ R. Hence, by non-retractability propagation, α /∈ R.

Proof of Observation 7.1.4.
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(a) Let α,β be such that ⊢ α↔ β. Hence α and β are implied by exactly the same
subsets of A. Thus, by uniform retractability, α ∈ R if and only if β ∈ R.

(b) Retractability of logical equivalents: Let α,β be such that ⊢ α↔ β. Hence
α ∈ Cn(β) and β ∈ Cn(α). If α /∈ R, then by non-retractability propagation
β /∈ R. It also holds that if β /∈ R, then α /∈ R. Therefore α ∈ R if and only if
β ∈ R.
Converse conjunctive completeness: Let α ∈ R and assume by reductio ad
absurdum that α ∧ β /∈ R. From the latter, by non-retractability propagation,
it follows that Cn(α ∧ β) ∩ R = ∅. Hence α /∈ R, which is a contradiction.
Therefore α ∧ β ∈ R. ∎

Proof of Theorem 7.1.5.
Let ∼ be an operator of shielded base contraction induced by a contraction operator− for A and a set R ⊆ L. We intend to prove that R satisfies non-retractability of
tautology and non-retractability upper bounding if and only if R = {α ∶ A ∼ α /⊢ α}.
(Left to right)
Let β ∈ R. Hence, A ∼ β = A − β. Furthermore, by non-retractability of tautology,/⊢ β. Therefore, by − success, A ∼ β /⊢ β.
Let β /∈ R. Hence, A ∼ β = A and by non-retractability upper bounding A ⊢ β.
Therefore A ∼ β ⊢ β.
Hence R = {α ∶ A ∼ α /⊢ α}.
(Right to left)
Let R = {α ∶ A ∼ α /⊢ α}. From the definition of R it follows trivially that R satisfies
non-retractability of tautology. Let β ∈ L/R. Hence A ∼ β ⊢ β and A ∼ β = A.
Therefore A ⊢ β. Hence R satisfies non-retractability upper bounding.

Proof of Observation 7.1.6.
Let A be a belief base, R ⊆ L and ∼ be a shielded base contraction induced by a
contraction operator − and R. We intend to prove that R satisfies non-retractability
preservation if and only if R satisfies non-retractability upper bounding, and − and
R satisfy condition (R - −).
Assume first that R satisfies non-retractability preservation.
Condition (R - −): Assume that α /∈ R and β ∈ R. By non-retractability preserva-
tion it follows that A ∼ β ⊢ α. On the other hand A ∼ β = A − β, by definition of ∼.
Therefore A − β ⊢ α.
Non-retractability upper bounding: By non-retractability preservation L/R ⊆
Cn(A ∼ α). On the other hand, by definition of shielded base contraction, A ∼ α ⊆ A.
Hence, by monotony, L/R ⊆ Cn(A).
Assume now that R satisfies non-retractability upper bounding and that − and R are
related through condition (R - −). Let α ∈ L/R and β ∈ L. We intend to prove that
A ∼ β ⊢ α.
If β ∈ R, then it follows by definition of ∼ that A ∼ β = A − β. On the other hand,
by condition (R - −) it follows that A − β ⊢ α. Hence A ∼ β ⊢ α.
Assume now that β /∈ R. Hence, by definition of ∼, it follows that A ∼ β = A. On
the other hand by non-retractability upper bounding it follows that A ⊢ α. Thus
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A ∼ β ⊢ α.

Proof of Observation 7.1.7.
Let A be a belief base, − be a contraction on A, R ⊆ L, and ∼ be the shielded
base contraction induced by − and R. Assume that R satisfies non-retractability
preservation and non-retractability of tautology.
Conjunctive completeness: Let α ∧ β ∈ R and assume by reductio ad absur-
dum that α /∈ R and β /∈ R. By non-retractability of tautology /⊢ α ∧ β. On the
other hand, by non-retractability preservation L/R ⊆ Cn(A ∼ (α ∧ β)). Hence
A ∼ (α ∧ β) ⊢ α and A ∼ (α ∧ β) ⊢ β. Therefore A ∼ (α ∧ β) ⊢ α ∧ β. By defi-
nition of ∼, A ∼ (α∧β) = A− (α∧β). Thus A− (α∧β) ⊢ α∧β, which contradicts −
success.
Non-retractability propagation: Let α /∈ R and β ∈ Cn(α). If ⊢ β, then by
non-retractability of tautology β /∈ R. Consider now that /⊢ β. By non-retractability
preservation L/R ⊆ Cn(A ∼ β). Hence A ∼ β ⊢ α. Therefore A ∼ β ⊢ β. Hence β /∈ R
(otherwise it would follow that A − β ⊢ β, which contradicts − success).
Uniform retractability: Assume that for all subsets A′ of A, A′ ⊢ α if and only
if A′ ⊢ β. Assume that α /∈ R. By non-retractability preservation L/R ⊆ Cn(A ∼ β).
Hence A ∼ β ⊢ α. Since ∼ is a shielded base contraction it follows that A ∼ β ⊆ A.
Hence, by hypothesis, A ∼ β ⊢ β. Assume by reductio ad absurdum that β ∈ R.
Thus by non-retractability of tautology /⊢ β. On the other hand, by definition of ∼,
A ∼ β = A − β. Therefore A − β ⊢ β, which contradicts − success. Hence if α /∈ R,
then β /∈ R. By symmetry of the case it holds that if β /∈ R, then α /∈ R. Hence α ∈ R
if and only if β ∈ R.
Retractability of logical equivalents: Follows by Observation 7.1.4 since, as
shown above, R satisfies uniform retractability.

Proof of Theorem 7.2.1.
Let A be a belief base, − be a contraction on A, R ⊆ L, and ∼ be the shielded base
contraction induced by − and R.
Thus,

A ∼ α = { A − α if α ∈ R
A otherwise

where − is an operator on A that satisfies success and inclusion.

(a) It follows trivially from its definition that ∼ satisfies inclusion.

Assume that − satisfies vacuity. It follows trivially from its definition that ∼
satisfies vacuity.

Assume that − satisfies failure. If α /∈ R, then A ∼ α = A. Assume now that
α ∈ R. Hence A ∼ α = A − α. If /⊢ α, then it follows, by − success, that
A ∼ α /⊢ α. If ⊢ α, then by − failure A ∼ α = A − α = A. Therefore ∼ satisfies
relative success.

Assume that − satisfies relative closure. If α /∈ R it follows trivially that
A ∩Cn(A ∼ α) ⊆ A ∼ α. Assume now that α ∈ R. Then A ∼ α = A − α, and it
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follows trivially by − relative closure that A∩Cn(A ∼ α) ⊆ A ∼ α. Therefore ∼
satisfies relative closure.

Assume that − satisfies relevance. Let β ∈ A and β /∈ A ∼ α. Hence A ∼ α =
A − α, and it follows trivially from − relevance that ∼ satisfies relevance.

Assume that − satisfies core-retainment. Let β ∈ A and β /∈ A ∼ α. Hence
A ∼ α = A − α, and it follows trivially from − core-retainment that ∼ satisfies
core-retainment.

Assume that − satisfies disjunctive elimination. Let β ∈ A and β /∈ A ∼ α.
Hence A ∼ α = A − α, and it follows trivially from − disjunctive elimination
that ∼ satisfies disjunctive elimination.

(b) Let R and − be such that condition (R - −) is satisfied.

Now we will show that ∼ satisfies persistence. Let α,β ∈ L. Assume that A ∼
β ⊢ β. We intend to prove that A ∼ α ⊢ β. It follows trivially if ⊢ β. Assume
now that /⊢ β. By − success it follows that A − β /⊢ β. Hence A ∼ β /= A − β.
Thus, by definition of ∼, it follows that β /∈ R. Therefore A ∼ β = A, from
which it follows that A ⊢ β. If α ∈ R, then it follows by condition (R - −) that
A ∼ α ⊢ β. If α /∈ R, then A ∼ α = A. Hence A ∼ α ⊢ β.

Assume that − satisfies failure and extensionality. Let α,β be such that ⊢ α↔
β. We must prove that A ∼ α = A ∼ β. It holds that ⊢ α if and only if ⊢ β.
Therefore there are two cases to consider:
Case 1) ⊢ α and ⊢ β. Hence, by − failure, A − α = A − β = A. Then A ∼ α =
A ∼ β = A.
Case 2) /⊢ α and /⊢ β. Assume by reductio ad absurdum, without loss of
generality, that α /∈ R and β ∈ R. By condition (R - −) it follows that
A − β ⊢ α. Thus A − β ⊢ β, which contradicts − success. Hence α ∈ R if and
only if β ∈ R. We will prove by cases:
Case 2.1) α ∈ R and β ∈ R. Hence A ∼ α = A − α and A ∼ β = A − β. Thus, by− extensionality, A ∼ α = A ∼ β.
Case 2.2) α /∈ R and β /∈ R. Thus A ∼ α = A ∼ β = A.

Assume that − satisfies failure and uniformity. Assume that for all subsets A′
of A, A′ ⊢ α if and only if A′ ⊢ β. We must prove that A ∼ α = A ∼ β. If ⊢ α,
then ⊢ β (since ∅ ⊆ A). By − failure, A − α = A − β = A. Hence, by definition
of ∼, it follows that A ∼ α = A ∼ β = A.
Consider now that /⊢ α. Hence /⊢ β. Assume without loss of generality, that
α /∈ R and β ∈ R. By condition (R - −) it follows that A − β ⊢ α. On the
other hand, it follows from − inclusion that A − β ⊆ A. Hence by hypothesis,
A − β ⊢ β, which contradicts − success. Hence α ∈ R if and only if β ∈ R.
So there are two cases to consider:
Case 1) α ∈ R and β ∈ R . Then A ∼ α = A − α and A ∼ β = A − β. By −
uniformity A − α = A − β. Hence A ∼ α = A ∼ β.
Case 2) α /∈ R and β /∈ R. Then A ∼ α = A ∼ β = A.
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(c) Let R be a set that satisfies non-retractability preservation.
It follows from Observation 7.1.6 that − and R satisfy condition (R - −). The
rest of the proof follows trivially from (b).

(d) It follows trivially if α /∈ R. Assume now that α ∈ R. Hence A ∼ α = A − α.
By non-retractability of tautology, it follows that /⊢ α. Thus, from − success it
follows that A ∼ α /⊢ α.

(e) Let ⊢ α↔ β. By retractability of logical equivalents it follows that α ∈ R if and
only if β ∈ R. Thus, there are two cases to consider:
Case 1) α /∈ R and β /∈ R. Then A ∼ α = A ∼ β = A.
Case 2) α ∈ R and β ∈ R. Then A ∼ α = A − α and A ∼ β = A − β. Thus by −
extensionality it follows that A ∼ α = A ∼ β.

(f) Assume that for all subsets A′ of A, A′ ⊢ α if and only if A′ ⊢ β. By uniform
retractability α ∈ R if and only if β ∈ R. There are two cases to consider:
Case 1) α ∈ R and β ∈ R . Then A ∼ α = A − α and A ∼ β = A − β. By −
uniformity A − α = A − β. Hence A ∼ α = A ∼ β.
Case 2) α /∈ R and β /∈ R. Then A ∼ α = A ∼ β = A.

(g) Let A ∼ β ⊢ β and ⊢ β → α.
Case 1) β /∈ R. Hence A ∼ β = A and A ⊢ α. It follows by non-retractability
propagation that α /∈ R. Therefore A ∼ α = A and A ∼ α ⊢ α.
Case 2) β ∈ R. Hence A ∼ β = A − β. Thus, by − success, it follows that ⊢ β.
Thus ⊢ α and (consequently) A ∼ α ⊢ α.

Assume that − satisfies extensionality. Let α,β be such that ⊢ α↔ β. Hence
β ∈ Cn(α) and α ∈ Cn(β), from which it follows, by non-retractability propa-
gation, that α ∈ R if and only if β ∈ R. Thus if α /∈ R, then A ∼ α = A = A ∼ β.
If α ∈ R, then by − extensionality, A ∼ α = A − α = A − β = A ∼ β.

(h) We start by noticing that, according to Observation 7.1.4, if R satisfies uniform
retractability, then it also satisfies retractability of logical equivalents. Now
assume that − satisfies vacuity and failure and let R be a set that satisfies
conjunctive completeness and retractability of logical equivalents. We will prove
that ∼ satisfies conjunctive constancy. Let A ∼ α = A ∼ β = A. If A /⊢ α ∧ β,
then by − inclusion and vacuity A ∼ (α ∧ β) = A. Consider that A ⊢ α ∧ β.
Hence A ⊢ α and A ⊢ β. If α ∧ β /∈ R, then A ∼ (α ∧ β) = A. Assume now
that α ∧ β ∈ R. Hence, by conjunctive completeness α ∈ R or β ∈ R. Assume
without loss of generality that α ∈ R. Hence A − α ⊢ α. Thus, by − success,⊢ α, from which it follows that ⊢ (α ∧ β)↔ β. Therefore, by retractability of
logical equivalents, β ∈ R. Hence A−β ⊢ β. Thus, by − success, ⊢ β. Therefore⊢ α ∧ β, from which it follows by − failure that A ∼ (α ∧ β) = A.

(i) We start by noticing that, according to Observation 5.1.2, if − satisfies unifor-
mity, then it also satisfies extensionality. Now assume that − satisfies vacuity
and extensionality and let R be a set that satisfies non-retractability propaga-
tion and conjunctive completeness. We will show that ∼ satisfies conjunctive
constancy. Let A ∼ α = A ∼ β = A. We will prove by cases:
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Case 1) ⊢ α. Then ⊢ β ↔ (α ∧ β). By non-retractability propagation α ∧ β ∈ R
if and only if β ∈ R, from which it follows by the definition of ∼ and − exten-
sionality that A ∼ (α ∧ β) = A ∼ β = A.
Case 2) ⊢ β. The proof is symmetrical to the one presented in the previous
case.
Case 3) /⊢ α and /⊢ β.
Case 3.1) α ∈ R. Then A ∼ α = A − α. Hence by − success A ∼ α /⊢ α. Thus
A /⊢ α (since A ∼ α = A). Therefore, A /⊢ α∧β, from which it follows by − vacu-
ity and inclusion that A−(α∧β) = A. Thus, by definition of ∼, A ∼ (α∧β) = A.
Case 3.2) β ∈ R. The proof is symmetrical to the one presented in the previous
case.
Case 3.3) α /∈ R and β /∈ R. Then by conjunctive completeness α∧β /∈ R. Hence
A ∼ (α ∧ β) = A. ∎

Proof of Theorem 7.2.2.

(a) That R satisfies non-retractability of tautology follows trivially by definition of
R.

Assume that ∼ satisfies inclusion. We will show thatR satisfies non-retractability
upper bounding. Let α ∈ L ∖R. Hence A ∼ α ⊢ α. Thus, by ∼ inclusion, A ⊢ α.

Assume that ∼ satisfies extensionality. Consider α,β ∈ L such that ⊢ α ↔ β.
Then by ∼ extensionality A ∼ α = A ∼ β. Let α /∈ R. Hence A ∼ α ⊢ α. Thus
A ∼ β ⊢ α, from which it follows that A ∼ β ⊢ β. Hence β /∈ R. By symmetry
of the case, if β /∈ R, then α /∈ R. Hence α ∈ R if and only if β ∈ R. Thus R
satisfies retractability of logical equivalents.

Assume that ∼ satisfies inclusion and uniformity. We will prove that R satisfies
uniform retractability. Assume that for all subsets A′ of A, A′ ⊢ α if and only
if A′ ⊢ β. Let α /∈ R. Hence A ∼ α ⊢ α, from which it follows (by hypothesis
and ∼ inclusion) that A ∼ α ⊢ β. Thus by ∼ uniformity A ∼ β ⊢ β. Therefore
β /∈ R. It follows by symmetry of the case that if β /∈ R, then α /∈ R. Therefore
α ∈ R if and only if β ∈ R. Hence R satisfies uniform retractability.

Assume that ∼ satisfies success propagation. We will show that R satisfies non-
retractability propagation. Consider α such that α /∈ R. It follows that A ∼ α ⊢
α. Consider β such that β ∈ Cn(α). Hence by deduction ⊢ α → β. Thus, by ∼
success propagation, A ∼ β ⊢ β. Therefore β /∈ R. Hence Cn(α) ∩R = ∅.

Assume that ∼ satisfies relative success and conjunctive constancy. We will
show that R satisfies conjunctive completeness. Let α /∈ R and β /∈ R. It
follows by definition of R that A ∼ α ⊢ α and A ∼ β ⊢ β. Hence, by ∼ relative
success, A ∼ α = A ∼ β = A. Thus, by ∼ conjunctive constancy A ∼ (α∧ β) = A,
from which it follows that A ∼ (α ∧ β) ⊢ α ∧ β. Therefore α ∧ β /∈ R.

Assume that ∼ that satisfies persistence. We will show that R satisfies non-
retractability preservation, conjunctive completeness, non-retractability propa-
gation and retractability of logical equivalents.
Non-retractability preservation: Let α be an arbitrary sentence and β ∈
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L ∖R. Hence A ∼ β ⊢ β. By persistence A ∼ α ⊢ β. Thus L ∖R ⊆ Cn(A ∼ α).
Conjunctive completeness: Let α /∈ R and β /∈ R. Hence, by definition of
R, A ∼ α ⊢ α and A ∼ β ⊢ β. Thus, by ∼ persistence, A ∼ (α ∧ β) ⊢ α and
A ∼ (α ∧ β) ⊢ β. Therefore A ∼ (α ∧ β) ⊢ α ∧ β. Thus α ∧ β /∈ R.
Non-retractability propagation: Let α /∈ R and β ∈ Cn(α). Hence, by
definition of R, A ∼ α ⊢ α. By persistence it follows that A ∼ β ⊢ α. Therefore
A ∼ β ⊢ β. Hence, by definition of R, β /∈ R.
Retractability of logical equivalents: Follows trivially by Observation
7.1.4, since, as shown above, R satisfies non-retractability propagation.

Assume that ∼ satisfies inclusion and persistence. We will show that R satisfies
uniform retractability. Assume that for all subsets A′ of A, A′ ⊢ α if and only
if A′ ⊢ β. Let α /∈ R. Hence, by definition of R, A ∼ α ⊢ α. By ∼ persistence it
follows that A ∼ β ⊢ α and by ∼ inclusion A ∼ β ⊆ A. Therefore by hypothesis
A ∼ β ⊢ β. Hence β /∈ R, by definition of R. It follows by symmetry of the case
that if β /∈ R, then α /∈ R. Hence α ∈ R if and only if β ∈ R.

(b) Follows trivially from (a) and Observation 7.1.6. ∎
Proof of Theorem 7.2.3.

Let A be a belief base, ∼ be an operator on A and R = {α ∶ A ∼ α /⊢ α}. Let − be
the operator on A defined by:

A − α = { A ∼ α if α ∈ R
A ∖⋃(A⊥⊥α) otherwise

.

In what follows we show that this operator satisfies statements (a), (b) and (c).

(a) Assume that ∼ satisfies relative success and inclusion. We start by showing that− satisfies success and inclusion. It follows from ∼ inclusion and definition of −
that − satisfies inclusion. We will now show that − satisfies success. Let α be
such that /⊢ α. If α ∈ R, then A − α = A ∼ α and by definition of R, A ∼ α /⊢ α.
Thus A − α /⊢ α. If α /∈ R, then A − α = A ∖⋃(A⊥⊥α). Therefore, by Lemma
E.2, A−α /⊢ α. Hence, according to Definition 5.1.1, − is a contraction operator.

Finally we show that the following equality holds:

A ∼ α = { A − α if α ∈ R
A otherwise

If α ∈ R, then by definition of −, A ∼ α = A − α. Assume now that α /∈ R.
Hence A ∼ α ⊢ α, from which it follows, by ∼ relative success, that A ∼ α = A.

(b) Assume that ∼ satisfies vacuity. We will prove that − satisfies vacuity. Consider
that A /⊢ α. If α ∈ R, then A−α = A ∼ α. By ∼ vacuity it follows that A ⊆ A−α.
If α /∈ R, then A − α = A ∖⋃(A⊥⊥α). Thus, by Lemma E.2, A ⊆ A − α.

Assume that ∼ satisfies extensionality. We will prove that − satisfies exten-
sionality. Let α and β be such that ⊢ α ↔ β. Let α ∈ R. Hence A ∼ α /⊢ α.
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Thus, by ∼ extensionality, A ∼ β /⊢ α. From which it follows that A ∼ β /⊢ β.
Therefore β ∈ R. Hence A − α = A ∼ α = A ∼ β = A − β. Let α /∈ R. Hence
β /∈ R. From ⊢ α ↔ β it follows, by Lemma E.1, that A⊥⊥α = A⊥⊥β. Hence
A − α = A − β.

Assume that ∼ satisfies failure. We will prove that − satisfies failure. Let ⊢ α.
If α ∈ R, then A − α = A ∼ α. By ∼ failure it follows that A − α = A. If α /∈ R,
then A − α = A ∖⋃(A⊥⊥α). Thus, by Lemma E.2, A − α = A.

Assume that ∼ satisfies relative closure. We will prove that − satisfies relative
closure. If α ∈ R, then A−α = A ∼ α. The rest of the proof for this case follows
by ∼ relative closure. Consider now that α /∈ R. Hence A − α = A ∖⋃(A⊥⊥α).
The rest of the proof follows trivially by Lemma E.2.

Assume that ∼ satisfies inclusion and uniformity. We will prove that − satisfies
uniformity. Assume that it holds for all subsets A′ of A that A′ ⊢ α if and
only if A′ ⊢ β. By ∼ uniformity it follows that A ∼ α = A ∼ β. Consider the
case that α ∈ R. Hence A ∼ α /⊢ α. Thus A ∼ β /⊢ α. By ∼ inclusion A ∼ β ⊆ A.
Therefore, by hypothesis, A ∼ β /⊢ β. Hence, β ∈ R. Thus A − α = A − β.
Consider now that α /∈ R. Hence β /∈ R. By Lemma E.1, it follows that
A⊥⊥α = A⊥⊥β. Hence A − α = A − β.

Assume that ∼ satisfies relevance. We will prove that − satisfies relevance. If
α ∈ R, then A − α = A ∼ α and the rest of the proof for this case follows by∼ relevance. Let α /∈ R. Hence A − α = A ∖ ⋃(A⊥⊥α). The rest of the proof
follows trivially by Lemma E.2.

Assume that ∼ satisfies core-retainment. We will prove that − satisfies core-
retainment. If α ∈ R, then A − α = A ∼ α. The rest of the proof for this case
follows by ∼ core-retainment. Let α /∈ R. Hence A−α = A∖⋃(A⊥⊥α). The rest
of the proof follows trivially by Lemma E.2.

Assume that ∼ satisfies disjunctive elimination. We will prove that − satisfies
disjunctive elimination. If α ∈ R, then A−α = A ∼ α. Let β ∈ A and β /∈ A−α.
Hence β /∈ A ∼ α. Thus, by ∼ disjunctive elimination, A ∼ α /⊢ α∨β. Therefore
A − α /⊢ α ∨ β. Let α /∈ R. Hence A − α = A ∖⋃(A⊥⊥α). The rest of the proof
follows trivially by Lemma E.2.

(c) Assume that ∼ satisfies persistence. Let α /∈ R and β ∈ R. From α /∈ R it follows
that A ∼ α ⊢ α. Hence, by ∼ persistence it follows that A ∼ β ⊢ α. From β ∈ R
it follows that A − β = A ∼ β. Hence A − β ⊢ α. ∎

Proof of Theorem 7.3.1.
Let A be a belief base. We will prove this theorem by showing that condition (1) is
equivalent to condition (2) and to condition (3).
(1 → 2) Let ∼ be an operator on A that satisfies relative success and inclusion. Let
R be the set defined by:

R = {α ∶ A ∼ α /⊢ α}
According to Theorem 7.2.2 (a) R satisfies non-retractability of tautology. On the
other hand, it follows from Theorem 7.2.3 (a) that there exists an operator − such
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that ∼ is the shielded base contraction induced by − and R.
(2 → 1) Let ∼ be the operator of shielded base contraction induced by a contraction
operator − and a set R ⊆ L that satisfies non-retractability of tautology. Hence by
Theorem 7.2.1 (a) and (d), ∼ satisfies relative success and inclusion.
(1 → 3) Let ∼ be an operator on A that satisfies relative success and inclusion. By
Observation 5.3.2 (a) it follows that ∼ also satisfies failure. Hence, according to The-
orem 7.2.3 ((a) and (b)), ∼ is a shielded base contraction induced by an operator −
that satisfies failure and R.
(3 → 1) Let ∼ be an operator of shielded base contraction induced by a contraction
operator − that satisfies failure and a set R ⊆ L. By Theorem 7.2.1 (a), ∼ satisfies
relative success and inclusion.

Proof of Theorems 7.3.4, 7.3.9 and 7.3.13.
(Right-to-left)
Let A be a belief base and ∼ an operator that satisfies relative success, inclusion and
uniformity. Let R be the set defined by:

R = {α ∶ A ∼ α /⊢ α}
It follows from Theorem 7.2.2 that R satisfies uniform retractability.
Furthermore, from Theorem 7.2.2, it follows that:
- If ∼ satisfies success propagation, then R satisfies non-retractability propagation;
- If ∼ satisfies conjunctive constancy, then R satisfies conjunctive completeness;
From Theorem 7.2.3 (a) it follows that there exists a contraction operator − such
that ∼ is the shielded base contraction induced by − and R. Furthermore, from
Theorem 7.2.3 (c), if ∼ satisfies persistence, then − and R satisfy condition (R - −).
For Theorem 7.3.4
From Theorem 7.2.3 and Observation 5.2.1 it follows that − is a partial meet con-
traction.
For Theorem 7.3.9
From Theorem 7.2.3 and Observation 5.2.4 it follows that − is a kernel contraction.
For Theorem 7.3.13
From Theorem 7.2.3 and Observation 5.2.5 it follows that − is a smooth kernel con-
traction.
(Left-to-right)
Let A be a belief base, − be an operator on A and R ⊆ L. Let ∼ be such that:

A ∼ α = { A − α if α ∈ R
A otherwise

From Theorem 7.2.1 it follows that if − satisfies success, inclusion, failure, vacuity
and uniformity, then:
- If R satisfies uniform retractability, then ∼ satisfies uniformity (Theorem 7.2.1 (f)).
- If R satisfies non-retractability propagation, then ∼ satisfies success propagation
(Theorem 7.2.1 (g)).
- If R satisfies conjunctive completeness and uniform retractability, then ∼ satisfies
conjunctive constancy (Theorem 7.2.1 (h)).
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- If R and − satisfy condition (R - −), then ∼ satisfies persistence and uniformity
(Theorem 7.2.1 (b)).
For Theorem 7.3.4
If − is a partial meet contraction operator on A, then from Observation 5.2.1 − sat-
isfies success, inclusion, uniformity and relevance. From Observation 5.1.2 it follows
that − satisfies failure and vacuity. Hence from Theorem 7.2.1 (a) it holds also that∼ satisfies relative success, inclusion and relevance.
For Theorem 7.3.9
If − is a kernel contraction operator on A, then from Observation 5.2.4 − satisfies
success, inclusion, uniformity and core-retainment. From Observation 5.1.2 it fol-
lows that − satisfies failure and vacuity. Hence from Theorem 7.2.1 (a) it holds also
that ∼ satisfies relative success, inclusion and core-retainment.
For Theorem 7.3.13
If − is a smooth kernel contraction operator on A, then from Observation 5.2.5 −
satisfies success, inclusion, uniformity, core-retainment and relative closure. From
Observation 5.1.2 it follows that − satisfies failure and vacuity. Hence from Theorem
7.2.1 (a) it holds also that ∼ satisfies relative success, inclusion, core-retainment and
relative closure.

Proof of Observation 7.3.8.
It follows from Example 7.3.7 that:

(i) SPMC /⊆ CC-SPMC, SP-SPMC /⊆ CC-SPMC and SP-SPMC /⊆ SP+CC-SPMC;

(ii) SPMC /⊆ SP-SPMC, CC-SPMC /⊆ SP-SPMC and CC-SPMC /⊆ SP+CC-SPMC;

(iii) SP+CC-SPMC /⊆ P-SPMC.

On the other hand it follows from Corollary 7.3.6 that SP+CC-SPMC ⊆ CC-SPMC,
SP+CC-SPMC ⊆ SP-SPMC, CC-SPMC ⊆ SPMC and SP-SPMC ⊆ SPMC. Further-
more, combining Corollary 7.3.6 and Observations 5.1.2, 5.3.1 and 5.3.2 (b) we can
conclude that P-SPMC ⊆ SP+CC-SPMC. Therefore SP+CC-SPMC ⊂ CC-SPMC,
SP+CC-SPMC ⊂ SP-SPMC, CC-SPMC ⊂ SPMC, SP-SPMC ⊂ SPMC and P-SPMC⊂ SP+CC-SPMC.

Proof of Observation 7.3.12.
That P-SKC ⊆ SP+CC-SKC follows trivially from Corollary 7.3.11 and Observa-
tions 5.1.2, 5.3.1 and 5.3.2 (b).
That SP+CC-SKC ⊆ CC-SKC, SP+CC-SKC ⊆ SP-SKC, CC-SKC ⊆ SKC and SP-
SKC ⊆ SKC follow trivially from Corollary 7.3.11.
To prove that SP+CC-SKC /⊆ P-SKC, CC-SKC /⊆ SP+CC-SKC, SP-SKC /⊆ SP+CC-
SKC, SP-SKC /⊆ CC-SKC, CC-SKC /⊆ SP-SKC, SKC /⊆ CC-SKC and SKC /⊆ SP-SKC
it is enough to consider the shielded contractions presented in Example 7.3.7, at-
tending to Definition 7.3.10, Corollary 7.3.11 and to the fact that every partial meet
contraction is a kernel contraction (Observation 6.4.1).
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Proof of Observation 7.3.16.
That P-SSKC ⊆ SP+CC-SSKC follows trivially from Corollary 7.3.15 and Observa-
tions 5.1.2, 5.3.1 and 5.3.2 (b).
That SP+CC-SSKC ⊆ CC-SSKC, SP+CC-SSKC ⊆ SP-SSKC, CC-SSKC ⊆ SSKC
and SP-SSKC ⊆ SSKC follow trivially from Corollary 7.3.15.
To prove that SP+CC-SSKC /⊆ P-SSKC, CC-SSKC /⊆ SP+CC-SSKC, SP-SSKC /⊆
SP+CC-SSKC, SP-SSKC /⊆ CC-SSKC, CC-SSKC /⊆ SP-SSKC, SSKC /⊆ CC-SSKC
and SSKC /⊆ SP-SSKC it is enough to consider the shielded contractions presented in
Example 7.3.7, attending to Definition 7.3.14, Corollary 7.3.15 and to the fact that
every partial meet contraction is a smooth kernel contraction (Observation 6.4.1).

Proof of Theorem 7.3.17.
(Right-to-left)
Let A be a belief base and ∼ an operator that satisfies relative success, inclusion,
vacuity, extensionality and disjunctive elimination. Let R be the set defined by:

R = {α ∶ A ∼ α /⊢ α}
It follows from Theorem 7.2.2 that R satisfies retractability of logical equivalents.
Furthermore, from Theorem 7.2.2 it follows that:
- If ∼ satisfies success propagation, then R satisfies non-retractability propagation;
- If ∼ satisfies conjunctive constancy, then R satisfies conjunctive completeness;
From Theorem 7.2.3 and Observation 5.2.11 it follows that there exists a basic AGM-
generated base contraction − such that ∼ is the shielded base contraction induced
by − and R. Furthermore, from Theorem 7.2.3 (c), if ∼ satisfies persistence, then −
and R satisfy condition condition (R - −).
(Left-to-right)
Let A be a belief base, − be a basic AGM-generated base contraction operator on
A and R ⊆ L. Let ∼ be such that:

A ∼ α = { A − α if α ∈ R
A otherwise

From Observation 5.2.11 − satisfies success, inclusion, vacuity, extensionality and
disjunctive elimination. From Observation 5.1.2 (d) it holds that − also satisfies
failure. Hence, from Theorem 7.2.1 (a) it follows that ∼ satisfies relative success, in-
clusion, vacuity and disjunctive elimination. Furthermore, it follows from Theorem
7.2.1 that:
- If R satisfies retractability of logical equivalents, then ∼ satisfies extensionality (The-
orem 7.2.1 (d)).
- If R satisfies non-retractability propagation, then ∼ satisfies success propagation
and extensionality (Theorem 7.2.1 (g)).
- If R satisfies conjunctive completeness and retractability of logical equivalents, then∼ satisfies conjunctive constancy (Theorem 7.2.1 (h)).
- If R satisfies non-retractability propagation and conjunctive completeness, then ∼
satisfies conjunctive constancy (Theorem 7.2.1 (i)).
- If R and − satisfy condition (R - −), then ∼ satisfies persistence and extensionality
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(Theorem 7.2.1 (b)).

Proof of Observation 7.3.20.
That P-SbAGMC ⊆ SP+CC-SbAGMC follows trivially from Corollary 7.3.19 and
Observations 5.3.1 and 5.3.2 (b).
That SP+CC-SbAGMC ⊆ CC-SbAGMC, SP+CC-SbAGMC ⊆ SP-SbAGMC, CC-
SbAGMC ⊆ SbAGMC and SP-SbAGMC ⊆ SbAGMC follow trivially from Corollary
7.3.19.
To prove that SP+CC-SbAGMC /⊆ P-SbAGMC, CC-SbAGMC /⊆ SP+CC-SbAGMC,
SP-SbAGMC /⊆ SP+CC-SbAGMC, SP-SbAGMC /⊆ CC-SbAGMC, CC-SbAGMC /⊆
SP-SbAGMC, SbAGMC /⊆ CC-SbAGMC and SbAGMC /⊆ SP-SbAGMC it is enough
to consider the shielded contractions presented in Example 7.3.7, attending to Def-
inition 7.3.18, Corollary 7.3.19, Observation 7.1.4 and to the fact that every partial
meet contraction is a basic AGM-generated base contraction (Observation 6.4.1).

Proof of Observation 7.4.2.
According to Example 7.4.1 (a) it holds that P-SSKC /⊆ SPMC. Hence, from Obser-
vations 7.3.8 and 7.3.16, it follows that SSKC /⊆ SPMC, SP-SSKC /⊆ SP-SPMC, CC-
SSKC /⊆ CC-SPMC, SP+CC-SSKC /⊆ SP+CC-SPMC and P-SSKC /⊆ P-SPMC. On
the other hand, by Corollaries 7.3.6 and 7.3.15 and Observation 5.1.2 (a), it follows
that SPMC ⊆ SSKC, SP-SPMC ⊆ SP-SSKC, CC-SPMC ⊆ CC-SSKC, SP+CC-SPMC⊆ SP+CC-SSKC and P-SPMC ⊆ P-SSKC. Therefore SPMC ⊂ SSKC, SP-SPMC ⊂
SP-SSKC, CC-SPMC ⊂ CC-SSKC, SP+CC-SPMC ⊂ SP+CC-SSKC and P-SPMC⊂ P-SSKC.

According to Example 7.4.1 (b) it holds that P-SKC /⊆ SSKC. Hence, from Obser-
vations 7.3.12 and 7.3.16 it follows that SKC /⊆ SSKC, SP-SKC /⊆ SP-SSKC, CC-SKC/⊆ CC-SSKC, SP+CC-SKC /⊆ SP+CC-SSKC and P-SKC /⊆ P-SSKC. On the other
hand, by Corollaries 7.3.11 and 7.3.15, it follows that SSKC ⊆ SKC, SP-SSKC ⊆ SP-
SKC, CC-SSKC ⊆ CC-SKC, SP+CC-SSKC ⊆ SP+CC-SKC and P-SSKC ⊆ P-SKC.
Therefore SSKC ⊂ SKC, SP-SSKC ⊂ SP-SKC, CC-SSKC ⊂ CC-SKC, SP+CC-SSKC⊂ SP+CC-SKC and P-SSKC ⊂ P-SKC.

Proof of Observation 7.4.4.
According to Example 7.4.3 it holds that P-SbAGMC /⊆ SPMC. Hence it follows,
from Observations 7.3.8 and 7.3.20, that SbAGMC /⊆ SPMC, SP-SbAGMC /⊆ SP-
SPMC, CC-SbAGMC /⊆ CC-SPMC, SP+CC-SbAGMC /⊆ SP+CC-SPMC and P-
SbAGMC /⊆ P-SPMC. On the other hand, according to Corollaries 7.3.6 and 7.3.19
and Observation 5.1.2, it holds that SPMC ⊆ SbAGMC, SP-SPMC ⊆ SP-SbAGMC,
CC-SPMC ⊆ CC-SbAGMC, SP+CC-SPMC ⊆ SP+CC-SbAGMC and P-SPMC ⊆
P-SbAGMC. Therefore SPMC ⊂ SbAGMC, SP-SPMC ⊂ SP-SbAGMC, CC-SPMC⊂ CC-SbAGMC, SP+CC-SPMC ⊂ SP+CC-SbAGMC and P-SPMC ⊂ P-SbAGMC.

Proof of Observation 7.4.6.
According to Examples 7.4.3 and 7.4.5 it holds, respectively, that P-SbAGMC /⊆
SKC and that P-SSKC /⊆ SbAGMC. Therefore it follows from Observations 7.3.12,
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7.3.16, 7.3.20 and 7.4.2 that all the statements of this result hold.



Appendix F

Proofs of Chapter 8

Lemma F.1 Let A be a belief base. Let ∗ be an operator on A such that (for all α)
A ∗ α = (A ∖⋃(A⊥⊥¬α)) ∪ {α}, then ∗ satisfies relevance, consistency, success, in-
clusion, vacuity, weak extensionality, uniformity, core-retainment, disjunctive elim-
ination and relative closure.

Proof.
Let ∗ be an operator on a belief base A defined (for all α) by A∗α = (A∖⋃(A⊥⊥¬α))∪{α}. We will start by showing that ∗ satisfies relevance. Let β ∈ A and β /∈ A ∗ α.
Thus β ∈ ⋃(A⊥⊥¬α). Hence there exists Y ∈ A⊥⊥¬α such that β ∈ Y . Let X =
Y ∖{β}∪(A∖⋃(A⊥⊥¬α))∪{α}. Hence X ⊆ A∪{α}, A∗α = (A∖⋃(A⊥⊥¬α))∪{α} ⊆X
and X ∪ {β} ⊢⊥ (since X ∪ {β} ⊢ ¬α and α ∈ X). It remains to prove that X /⊢⊥.
Assume by reductio ad absurdum that X ⊢⊥. Hence, by deduction it follows that
X ′ = Y ∖ {β} ∪ (A ∖⋃(A⊥⊥¬α)) ⊢ ¬α. It follows by compactness that there exists a
finite subset H = {γ1, ..., γn} of X ′ such that H ⊢ ¬α. Where γ1, ..., γk ∈ Y ∖ {β} and
γk+1, ..., γn ∈ A∖⋃(A⊥⊥¬α), for some 1 ≤ k < n. Hence {γ1, ..., γk}∪{γk+1, ..., γn} ⊢ ¬α
but {γ1, ..., γk} /⊢ ¬α. Thus there is some inclusion-minimal subset W of H such
that W ⊢ ¬α but no proper set of W implies ¬α. Hence W ∈ A⊥⊥¬α. On the
other hand, since {γ1, ..., γk} /⊢ ¬α, W contains at least one of the γi ∈ {γk+1, ..., γn}.
Contradiction since {γk+1, ..., γn} ⊆ A ∖⋃(A⊥⊥¬α). Hence ∗ satisfies relevance.
On the other hand, by definition of kernel revision, ∗ is a kernel revision. Hence,
by Observations 5.2.7, ∗ satisfies consistency, success, inclusion, uniformity and
core-retainment. On the other hand, by Observation 8.2.1, ∗ satisfies vacuity, weak
extensionality, disjunctive elimination and relative closure.

Lemma F.2 Let R and C be subsets of L.

(a) R is closed under double negation and condition (C-R) holds if and only if C
is closed under double negation and condition (R-C) holds.

(b) R satisfies retractability of logical equivalents and condition (C-R) holds if and
only if C satisfies credibility of logical equivalents and condition (R-C) holds.

Proof. 1

Let R and C be subsets of L.
1In this proof we will use Observation 8.7.1, whose proof is presented after this one. However,

this is not an issue because the result that is proven here is not used in the proof of that Observation.

215
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(a) We intend to prove that R is closed under double negation and condition (C-
R) holds if and only if C is closed under double negation and condition (R-C)
holds.
(From left to right) α ∈ C iff ¬α ∈ R iff ¬¬¬α ∈ R iff ¬¬α ∈ C. Therefore C is
closed under double negation. Thus, according to Observation 8.7.1, condition
(R-C) holds.
(From right to left) α ∈ R iff ¬α ∈ C iff ¬¬¬α ∈ C iff ¬¬α ∈ R. Therefore R is
closed under double negation. Thus, according to Observation 8.7.1, condition
(C-R) holds.

(b) We intend to prove that R satisfies retractability of logical equivalents and con-
dition (C-R) holds if and only if C satisfies credibility of logical equivalents
and condition (R-C) holds.
(From left to right) Let ⊢ α ↔ β. Hence ⊢ ¬α ↔ ¬β. Let α ∈ C. Then, by
condition (C-R), ¬α ∈ R. Therefore, by retractability of logical equivalents,¬β ∈ R, from which it follows, by condition (C-R), that β ∈ C. By symmetry
of the case it holds that if β ∈ C, then α ∈ C. Hence C satisfies credibility of
logical equivalents. On the other hand, since R satisfies retractability of logical
equivalents, then R also satisfies closure under double negation. Thus from (a)
condition (R-C) holds.
(From right to left) Let ⊢ α ↔ β. Hence ⊢ ¬α ↔ ¬β. Let α ∈ R. Then,
by condition (R-C), ¬α ∈ C. Therefore, by credibility of logical equivalents,¬β ∈ C, from which it follows, by condition (R-C), that β ∈ R. By symmetry
of the case it holds that if β ∈ R, then α ∈ R. Hence R satisfies retractability of
logical equivalents. On the other hand, since C satisfies retractability of logical
equivalents, then C also satisfies closure under double negation. Thus from (a)
condition(C-R) holds. ∎

Proof of Observation 8.2.1.

(a) Let A be a belief base and ⊛ be an operator on A that satisfies relevance and
relative success. Let β ∈ A and β /∈ A ⊛ α. It follows by relative success that
α ∈ A ⊛ α. Assume by reductio ad absurdum that A ⊛ α ⊢ ¬α ∨ β. Hence
A ⊛ α ⊢ β. On the other hand, by relevance, there exists some A′ such that
A ⊛ α ⊆ A′ ⊆ A ∪ {α},A′ /⊢⊥ but A′ ∪ {β} ⊢⊥. Contradiction, since every set
that contains A⊛ α implies β.

(b) Trivial.

(c) Let A be a belief base and ⊛ be an operator on A that satisfies persistence,
relative success and vacuity. Assume that A⊛ α /⊢ ¬β. Hence A ∩A⊛ α /⊢ ¬β.
From which it follows by persistence that A ∩ A ⊛ β /⊢ ¬β. We will prove by
cases that β ∈ A⊛ β.
Case 1) A /⊢ ¬β. Hence, by vacuity, A ∪ {β} ⊆ A⊛ β. Thus β ∈ A⊛ β.
Case 2) A ⊢ ¬β. Hence A /= A ⊛ β. Therefore it follows, by relative success,
that β ∈ A⊛ β.
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(d) Let A be a belief base and ⊛ be an operator on A that satisfies relative success
and relevance. Let β ∈ A and β /∈ A ⊛ α. It follows by relative success that
α ∈ A ⊛ α. On the other hand, by relevance, there exists some A′ such that
A ⊛ α ⊆ A′ ⊆ A ∪ {α},A′ /⊢⊥ but A′ ∪ {β} ⊢⊥. Since α ∈ A ⊛ α it holds that
α ∈ A′. Let B = A′ ∖ {α}. Hence B ⊆ A. On the other hand, since A′ /⊢⊥
it follows that B ∪ {α} /⊢⊥. Thus B /⊢ ¬α. From A′ ∪ {β} ⊢⊥ it follows that(B ∪ {α}) ∪ {β} ⊢⊥. Hence, by deduction B ∪ {β} ⊢ ¬α.

(e) Let A /⊢ ¬α. Assume by reductio ad absurdum that A ∪ {α} /⊆ A ⊛ α. By
success it follows that α ∈ A ⊛ α. Hence, there exists some β such that β ∈ A
and β /∈ A ⊛ α. Thus, by core-retainment, there exists A′ ⊆ A such that
A′ /⊢ ¬α and A′ ∪ {β} ⊢ ¬α. Contradiction, since A′ ∪ {β} ⊆ A. Therefore,
A ∪ {α} ⊆ A⊛ α.

(f) Let β ∈ A∩Cn(A⊛α∩A) and assume by reductio ad absurdum that β /∈ A⊛α.
Then, by disjunctive elimination, A ⊛ α /⊢ ¬α ∨ β. On the other hand, from
β ∈ Cn(A⊛α∩A) it follows by monotony that A⊛α ⊢ β then A⊛α ⊢ ¬α∨β.
Contradiction. Therefore, β ∈ A⊛ α. Hence A ∩Cn(A⊛ α ∩A) ⊆ A⊛ α.

(g) Let β ∈ A and β /∈ A ⊛ α. By success it follows that α ∈ A ⊛ α. Assume by
reductio ad absurdum that A ⊛ α ⊢ ¬α ∨ β. Thus A ⊛ α ⊢ β. On the other
hand, by relevance, there is some set A′ such that A ⊛ α ⊆ A′ ⊆ A ∪ {α} and
A′ /⊢⊥ but A′∪{β} ⊢⊥. Contradiction, since A′ ⊢ β. Therefore, A⊛α /⊢ ¬α∨β.

(h) Let A /⊢ ¬α. Assume by reductio ad absurdum that A∪{α} /⊆ A⊛α. There are
two cases to consider:
Case 1) α /∈ A⊛α. Hence, by relative success, it follows that A⊛α = A and by
strong regularity it holds that A⊛ α ⊢ ¬α. Hence A ⊢ ¬α. Contradiction.
Case 2) There exists β ∈ A such that β /∈ A ⊛ α. Hence by core-retainment,
there exists A′ ⊆ A such that A′ /⊢ ¬α and A′ ∪ {β} ⊢ ¬α. Contradiction since
A′ ∪ {β} ⊆ A and A /⊢ ¬α. ∎

Proof of Observation 8.2.2.

(a) Let α /∈ A ⊛ α and β /∈ A ⊛ β. By relative success it follows that A ⊛ α = A
and A ⊛ β = A. If A /⊢ ¬α, then by vacuity A ∪ {α} ⊆ A ⊛ α, from which it
follows that α ∈ A ⊛ α. Contradiction. Hence A ⊢ ¬α. By symmetry of the
case it follows that A ⊢ ¬β. Thus A ∩A⊛α ⊢ ¬α and A ∩A⊛ β ⊢ ¬β. Hence,
by persistence, A ∩ A ⊛ (α ∨ β) ⊢ ¬α and A ∩ A ⊛ (α ∨ β) ⊢ ¬β. Therefore
A ∩ A ⊛ (α ∨ β) ⊢ ¬α ∧ ¬β. Thus A ∩ A ⊛ (α ∨ β) ⊢ ¬(α ∨ β). Hence by
monotony A⊛ (α∨β) ⊢ ¬(α∨β). It follows, by consistency preservation, that
α ∨ β /∈ A⊛ (α ∨ β).

(b) Strict improvement Let α ∈ A ⊛ α and ⊢ α → β. Thus A ⊛ α ⊢ β. By
consistency preservation A⊛ α /⊢ ¬β. Hence by strong regularity β ∈ A⊛ β.
Regularity Let A ⊛ α ⊢ β. By consistency preservation A ⊛ α /⊢ ¬β. Hence
by strong regularity β ∈ A⊛ β. ∎
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Proof of Observation 8.3.1.

(a) Let ⊢ α↔ β. If α ∈ C, then by single sentence closure β ∈ C. By symmetry of
the case it follows that is β ∈ C, then α ∈ C. Thus α ∈ C if and only if β ∈ C.

(b) Let ⊢ α↔ β. It follows trivially by uniform credibility, that α ∈ C if and only
if β ∈ C.

(c) Let A /⊢⊥ and ¬α /∈ C. Then by expansive credibility it follows that A ⊢ α.
Therefore by credibility lower bounding α ∈ C.

(d) Let α ∈ Cn(∅). Then ¬α ⊢⊥. From which it follows by element consistency
that ¬α /∈ C. Therefore, by negation completeness, α ∈ C.

(e) Trivial. ∎
Proof of Theorem 8.3.2.

Let A be a consistent belief base and ⊛ be an operator of credibility-limited revision
induced by a revision operator ∗ for A and a set C ⊆ L that satisfies expansive cred-
ibility and closure under double negation. We will prove by double inclusion that
C = {α ∶ α ∈ A⊛ α}.
Let α ∈ C. Then A ⊛ α = A ∗ α, from which it follows by ∗ success that α ∈ A ⊛ α.
Therefore C ⊆ {α ∶ α ∈ A⊛ α}.
Let α ∈ A ⊛ α. If A ⊛ α /= A, then by definition of ⊛ it follows that α ∈ C. Assume
now that A⊛ α = A. Thus A /⊢ ¬α (since A /⊢⊥). By expansive credibility it follows
that ¬¬α ∈ C. Therefore α ∈ C (since C satisfies closure under double negation).
Hence {α ∶ α ∈ A⊛ α} ⊆ C.

Proof of Theorem 8.4.1.
Let A be a belief base, C ⊆ L, and ⊛ be a credibility-limited base revision induced
by a revision operator ∗ and C.
Thus,

A⊛ α = { A ∗ α if α ∈ C
A otherwise

where, by Definition 5.1.4, ∗ is an operator on A that satisfies success, consistency
and inclusion.

(a) That ⊛ satisfies inclusion follows trivially by its definition and ∗ inclusion.

That ⊛ satisfies relative success follows trivially by its definition and ∗ success.

Let ∗ be an operator on A that satisfies relevance. Let β ∈ A and β /∈ A ⊛ α.
Hence A⊛ α = A ∗ α, and it follows trivially from ∗ relevance that ⊛ satisfies
relevance.

Let ∗ be an operator on A that satisfies core-retainment. Let β ∈ A and
β /∈ A⊛α. Hence A⊛α = A∗α, and it follows trivially from ∗ core-retainment
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that ⊛ satisfies core-retainment.

Let ∗ be an operator on A that satisfies disjunctive elimination. Let β ∈ A
and β /∈ A⊛α. Hence A⊛α = A ∗α, and it follows trivially from ∗ disjunctive
elimination that ⊛ satisfies disjunctive elimination.

Let ∗ be an operator on A that satisfies relative closure. If α ∈ C, then
A⊛α = A∗α. Thus, by ∗ relative closure it follows thatA∩Cn(A∩A⊛α) ⊆ A⊛α.
If α /∈ C, then A⊛ α = A. Thus A ∩Cn(A ∩A⊛ α) = A = A⊛ α.

(b) Let C be a set that satisfies element consistency and α ∈ L. We will show that⊛ satisfies consistency preservation. Let A /⊢⊥. It follows trivially if α /∈ C.
Assume now that α ∈ C. Then A⊛ α = A ∗ α. On the other hand, by element
consistency, α /⊢⊥. Hence, by ∗ consistency A⊛ α /⊢⊥.

(c) Let C be a set that satisfies uniform credibility and ∗ a revision operator that
satisfies uniformity. Let it be the case that for all subsets A′ ⊆ A, A′ ∪ {α} ⊢⊥
if and only if A′ ∪ {β} ⊢⊥. By uniform credibility α ∈ C if and only if β ∈ C. If
α ∈ C, then β ∈ C. The rest follows from ∗ uniformity.
If α /∈ C, then β /∈ C. Thus A ∩A⊛ α = A = A ∩A⊛ β.

(d) We start by noticing that, according to Observation 8.3.1, if C satisfies single
sentence closure, then it also satisfies credibility of logical equivalents. Let C be
a set that satisfies credibility of logical equivalents and ∗ a revision operator
that satisfies weak extensionality. We intend to prove that ⊛ satisfies weak
extensionality. Let ⊢ α↔ β. By credibility of logical equivalents α ∈ C if and
only if β ∈ C. If α ∈ C, then β ∈ C. The rest follows from ∗ weak extensionality.
If α /∈ C, then β /∈ C, from which it follows that A ⊛ α = A ⊛ β = A. Thus
A ∩A⊛ α = A ∩A⊛ β.

(e) We start by noticing that, according to Observation 8.3.1, if C satisfies either
credibility of logical equivalents or uniform credibility or single sentence closure,
then it also satisfies closure under double negation. Let C be a set that sat-
isfies expansive credibility and closure under double negation and ∗ a revision
operator that satisfies vacuity. We intend to prove that ⊛ satisfies vacuity.
Consider that A /⊢ ¬α. By expansive credibility ¬¬α ∈ C. Thus by closure
under double negation α ∈ C. Hence A⊛ α = A ∗ α. Therefore, it follows by ∗
vacuity that A ∪ {α} ⊆ A⊛ α.

(f) Let A /⊢⊥ and let C be a set that satisfies expansive credibility and single sentence
closure. We intend to prove that ⊛ satisfies strict improvement. Let α ∈ A⊛α
and ⊢ α → β. Suppose that α /∈ C. By single sentence closure ¬¬α /∈ C. Thus
by expansive credibility A ⊢ ¬α. On the other hand, by definition of ⊛, it
follows that A ⊛ α = A. Hence A ⊢⊥. Contradiction. Hence α ∈ C. Thus by
single sentence closure β ∈ C. Therefore A ⊛ β = A ∗ β, from which it follows
by ∗ success that β ∈ A⊛ β.
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(g) Let A /⊢⊥. We start by noticing that, according to Observation 8.3.1, if C
satisfies either credibility of logical equivalents or uniform credibility or single
sentence closure, then it also satisfies closure under double negation. Let C
be a set that satisfies expansive credibility, closure under double negation and
disjunctive completeness. We intend to prove that ⊛ satisfies disjunctive dis-
tribution. Let α /∈ A ⊛ α and β /∈ A ⊛ β. Thus, by ∗ success, it follows that
α /∈ C and β /∈ C. By closure under double negation it follows that ¬¬α /∈ C and¬¬β /∈ C, from which it follows, by expansive credibility that A ⊢ ¬(α∨β). On
the other hand, by disjunctive completeness α∨β /∈ C. Therefore A⊛(α∨β) = A,
thus α ∨ β /∈ A⊛ (α ∨ β) (since A /⊢⊥).

(h) Let C and ∗ satisfy condition (C - ∗) and assume C satisfies element consis-
tency.

Let A∩A⊛β ⊢ ¬β and α ∈ L. It holds that A ⊢ ¬β. If β ∈ C, then by element
consistency β /⊢⊥. On the other hand, A⊛β = A ∗β, from which it follows, by∗ success, that A ∗ β ⊢⊥ (since it holds that A ⊛ β ⊢ ¬β). This contradicts ∗
consistency. Hence β /∈ C. If α ∈ C, then A⊛α = A∗α. On the other hand, by
condition (C - ∗), it follows that A ∩A ∗ α ⊢ ¬β. Therefore A ∩A ⊛ α ⊢ ¬β.
If α /∈ C, then A⊛ α = A. Hence A ∩A⊛ α ⊢ ¬β.

Assume that ∗ is a revision operator that satisfies weak extensionality. We
intend to prove that ⊛ satisfies weak extensionality. Let ⊢ α ↔ β. Assume
that α /∈ C. If β ∈ C, then by element consistency β /⊢⊥. On the other
hand, A⊛ β = A ∗ β, from which it follows, by ∗ success and consistency, that
A⊛ β /⊢ ¬β. From α /∈ C it follows, by condition (C - ∗), that A∩A⊛ β ⊢ ¬α.
Therefore A ⊛ β ⊢ ¬α from which it follows that A ⊛ β ⊢ ¬β. Contradiction.
Hence β /∈ C. By symmetry of the case it also follows that if β /∈ C, then α /∈ C.
Therefore α ∈ C if and only if α ∈ C.
Let α ∈ C. Then β ∈ C. Hence A⊛ α = A ∗ α and A⊛ β = A ∗ β. From which
it follows, by ∗ weak extensionality, that A ∩A⊛ α = A ∩A⊛ β.
Let α /∈ C. Then β /∈ C. Hence A ⊛ α = A ⊛ β = A. Therefore A ∩ A ⊛ α =
A ∩A⊛ β = A.

Assume that ∗ is a revision operator that satisfies uniformity. We intend to
prove that ⊛ satisfies uniformity. Let it be the case that for all subsets A′ ⊆ A,
A′ ∪ {α} ⊢⊥ if and only if A′ ∪ {β} ⊢⊥. If α,β ∈ C, then A ⊛ α = A ∗ α and
A⊛β = A∗β. By ∗ uniformity A∩A∗α = A∩A∗β. Hence A∩A⊛α = A∩A⊛β.
If α /∈ C and β /∈ C, then A⊛ α = A⊛ β = A. Hence A ∩A⊛ α = A ∩A⊛ β.
Assume now by reductio ad absurdum, without loss of generality, that α ∈ C
and β /∈ C. Hence by condition (C - ∗) it follows that A ∩ A ∗ α ⊢ ¬β. On
the other hand, from α ∈ C, it follows that A ⊛ α = A ∗ α and, by element
consistency, that α /⊢⊥. Hence, by ∗ consistency A ⊛ α /⊢⊥. By ∗ success it
follows that A⊛ α /⊢ ¬α. Thus A ∩A⊛ α /⊢ ¬α. By hypothesis it follows that
A ∩A⊛ α /⊢ ¬β. Contradiction.

(i) Let C and ∗ satisfy condition (C - ∗) and assume C satisfies expansive credibil-
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ity. Let ∗ be a revision operator that satisfies vacuity. Consider that A /⊢ ¬α.
It follows by expansive credibility that ¬¬α ∈ C. Assume by reductio ad absur-
dum that α /∈ C. Hence by condition (C - ∗) it follows that A∩A∗¬¬α ⊢ ¬α.
From which it follows that A ⊢ ¬α. Contradiction. Hence α ∈ C. Therefore
A⊛ α = A ∗ α. Thus, by ∗ vacuity it follows that A ∪ {α} ⊆ A⊛ α. ∎

Proof of Theorem 8.4.2.
Let ⊛ be an operator on A that satisfies consistency preservation. We will show
that C satisfies element consistency. Let α ∈ C. Then α ∈ A⊛α. On the other hand
from A /⊢⊥ it follows by ⊛ consistency preservation that A⊛ α /⊢⊥. Hence α /⊢⊥.

Let ⊛ be an operator on A that satisfies strict improvement. We will show that
C satisfies single sentence closure. Let α ∈ C and β ∈ Cn(α). Hence α ∈ A⊛ α and⊢ α → β. Thus, by strict improvement, β ∈ A⊛ β. Therefore β ∈ C.

Let ⊛ be an operator on A that satisfies disjunctive distribution. We will show
that C satisfies disjunctive completeness. Let α ∨ β ∈ C. Hence α ∨ β ∈ A⊛ (α ∨ β).
Thus, by disjunctive distribution, α ∈ A⊛α or β ∈ A⊛β. From which it follows that
α ∈ C or β ∈ C.

Let ⊛ be an operator on A that satisfies vacuity. We will show that C satisfies
expansive credibility and credibility lower bounding.
Expansive credibility: Let A /⊢ α. Then A /⊢ ¬¬α. By ⊛ vacuity it follows that¬α ∈ A⊛ ¬α. Therefore ¬α ∈ C.
Credibility lower bounding: Let A ⊢ α. It follows that A /⊢ ¬α, since A /⊢⊥.
Thus, by ⊛ vacuity, α ∈ A⊛ α. Hence α ∈ C.

Let ⊛ be an operator on A that satisfies relative success, uniformity, vacuity and
consistency preservation. We will show that C satisfies uniform credibility. Assume
that it holds for all subsets A′ of A that A′ ∪ {α} ⊢⊥ if and only if A′ ∪ {β} ⊢⊥.
Hence, by ⊛ uniformity, A∩A⊛α = A∩A⊛β. Let α /∈ C. Thus α /∈ A⊛α. Therefore
by ⊛ vacuity A ⊢ ¬α and by ⊛ relative success A ⊛ α = A. Thus A = A ∩ A ⊛ β.
Therefore A∩A⊛β ⊢ ¬α. From which it follows, by hypothesis, that A∩A⊛β ⊢ ¬β.
Thus A ⊛ β ⊢ ¬β. By ⊛ consistency preservation it follows that β /∈ A ⊛ β. Hence
β /∈ C. By symmetry of the case it follows from β /∈ C that α /∈ C. Therefore α ∈ C
if and only if β ∈ C.

Let ⊛ be an operator on A that satisfies relative success, vacuity, consistency
preservation and weak extensionality. We will show that C satisfies credibility of
logical equivalents. Let ⊢ α ↔ β. Suppose that α /∈ C. Hence α /∈ A ⊛ α. Thus
by relative success A ⊛ α = A. Assume by reductio ad absurdum that β ∈ C. Thus
β ∈ A⊛β. Thus, by ⊛ consistency preservation, A⊛β /⊢ ¬β. By weak extensionality
it follows that A∩A⊛α = A∩A⊛β. Thus A∩A⊛α /⊢ ¬β, from which it follows that
A∩A⊛α /⊢ ¬α. Therefore, A /⊢ ¬α. From which it follows by vacuity that α ∈ A⊛α.
Contradiction. Hence if α /∈ C, then β /∈ C. By symmetry of the case it follows that
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β /∈ C, then α /∈ C. Therefore α ∈ C if and only if β ∈ C.

Let ⊛ be an operator on A that satisfies consistency preservation, persistence,
relative success and vacuity. By Observation 8.2.1 (c) it follows that ⊛ satisfies
strong regularity. By Observation 8.2.2 it follows that ⊛ also satisfies disjunctive
distribution, strict improvement and regularity. Thus as shown above C satisfies
single sentence closure and disjunctive completeness. We will now show that C also
satisfies revision credibility. Let α ∈ C and β ∈ Cn(A ⊛ α). Hence, by ⊛ regularity,
it follows that β ∈ A⊛ β. Hence β ∈ C, by definition of C. It remains to show that
C satisfies uniform credibility.
Assume that it holds for all subsets A′ of A that A′∪{α} ⊢⊥ if and only if A′∪{β} ⊢⊥.
We intend to prove that α ∈ C holds if and only if β ∈ C holds.
Consider that β /∈ C. Hence β /∈ A⊛ β. By ⊛ relative success and vacuity it follows,
respectively, that A ⊛ β = A and A ⊢ ¬β. Hence A ∩A ⊛ β ⊢ ¬β. By persistence it
follows that A∩A⊛α ⊢ ¬β. From which it follows by hypothesis that A∩A⊛α ⊢ ¬α.
Hence A⊛α ⊢ ¬α. By consistency preservation it follows that α /∈ A⊛α. Thus α /∈ C.
By symmetry of the case it follows that if α /∈ C, then β /∈ C.

Let ⊛ be an operator on A that satisfies persistence, relative success and vacuity.
By Observation 8.2.1 (c) it follows that ⊛ satisfies strong regularity. We will show
that C satisfies strong revision credibility.
Let A ⊛ α /⊢ ¬β. Then by ⊛ strong regularity, β ∈ A ⊛ β. Therefore, β ∈ C, by
definition of C.

Proof of Theorem 8.4.3.
Let A be a consistent belief base, ⊛ be an operator on A and C = {α ∶ α ∈ A ⊛ α}.
Let ∗ be the operator on A defined by:

A ∗ α = { A⊛ α if α ∈ C(A ∖⋃(A⊥⊥¬α)) ∪ {α} otherwise
.

In what follows we show that this operator satisfies statements (a), (b) and (c).

(a) We start by showing that the following equality holds:

A⊛ α = { A ∗ α if α ∈ C
A otherwise

If α ∈ C, then by definition of ∗, A⊛α = A∗α. Assume now that α /∈ C. Hence
α /∈ A⊛ α, from which it follows, by ⊛ relative success, that A⊛ α = A.
It remains to show that ∗ is a revision operator. According to Definition 5.1.4
we must to show that ∗ satisfies success, inclusion and consistency.
That ∗ satisfies success follows trivially by ∗ definition.
That ∗ satisfies inclusion follows trivially by ∗ definition and ⊛ inclusion.
Let α /⊢⊥. If α ∈ C, then A ∗ α = A⊛ α. Thus, by ⊛ consistency preservation,
it follows that A ∗ α /⊢⊥. Assume now that α /∈ C. Thus, by Lemma F.1, it
follows that A ∗ α /⊢⊥.
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(b) Assume ⊛ satisfies vacuity. We will prove that ∗ satisfies vacuity. If α ∈ C,
then A∗α = A⊛α and the rest of the proof for this case follows by ⊛ vacuity.
If α /∈ C, then A ∗ α = (A ∖ ⋃(A⊥⊥¬α)) ∪ {α}. The rest of the proof follows
trivially by Lemma F.1.

Assume ⊛ satisfies relevance. We will prove that ∗ satisfies relevance. If α ∈ C,
then A∗α = A⊛α and the rest of the proof for this case follows by ⊛ relevance.
Let α /∈ C. Hence A ∗α = (A∖⋃(A⊥⊥¬α))∪ {α}. The rest of the proof follows
trivially by Lemma F.1.

Assume ⊛ satisfies core-retainment. We will prove that ∗ satisfies core-retainment.
If α ∈ C, then A ∗ α = A⊛ α and the rest of the proof for this case follows by⊛ core-retainment. Let α /∈ C. Hence A ∗ α = (A ∖⋃(A⊥⊥¬α)) ∪ {α}. The rest
of the proof follows trivially by Lemma F.1.

Assume ⊛ satisfies disjunctive elimination. We will prove that ∗ satisfies
disjunctive elimination. If α ∈ C, then A ∗ α = A ⊛ α and the rest of the
proof for this case follows by ⊛ disjunctive elimination. Let α /∈ C. Hence
A ∗ α = (A ∖ ⋃(A⊥⊥¬α)) ∪ {α}. The rest of the proof follows trivially by
Lemma F.1.

Assume ⊛ satisfies uniformity, relative success, vacuity and consistency preser-
vation. We will prove that ∗ satisfies uniformity. Assume that it holds for all
subsets A′ ⊆ A,A′ ∪ {α} ⊢⊥ if and only if A′ ∪ {β} ⊢⊥. Let β /∈ C. Hence,
by ⊛ relative success it follows that A ⊛ β = A and by vacuity that A ⊢ ¬β.
Hence A ∩A ⊛ β ⊢ ¬β. Therefore, by hypothesis A ∩A ⊛ β ⊢ ¬α. Thus by ⊛
uniformity A∩A⊛α ⊢ ¬α. From which it follows that A⊛α ⊢ ¬α. Hence, by⊛ consistency preservation, it follows that α /∈ C. By symmetry of the case it
follows that if α /∈ C, then β /∈ C. Therefore α ∈ C if and only if β ∈ C.
Let α ∈ C, then β ∈ C. Hence A ∗ α = A ⊛ α and A ∗ β = A ⊛ β. Thus by ⊛
uniformity A ∩A ∗ α = A ∩A ∗ β.
Let α /∈ C, then β /∈ C. Then A ∗ α = (A ∖⋃(A⊥⊥¬α)) ∪ {α} and A ∗ β = (A ∖⋃(A⊥⊥¬β))∪{β}. From which it follows by Lemma F.1 that A∩A∗α = A∩A∗β.

Assume ⊛ satisfies weak extensionality, relative success, vacuity and consis-
tency preservation. We will prove that ∗ satisfies weak extensionality. Let α
and β be such that ⊢ α↔ β. Let β /∈ C. Hence, by ⊛ relative success it follows
that A⊛β = A and by vacuity that A ⊢ ¬β. Hence A∩A⊛β ⊢ ¬β. Therefore,
by hypothesis A∩A⊛ β ⊢ ¬α. Thus by ⊛ weak extensionality A∩A⊛α ⊢ ¬α.
From which it follows that A⊛α ⊢ ¬α. Hence, by ⊛ consistency preservation,
it follows that α /∈ C. By symmetry of the case it follows that if α /∈ C, then
β /∈ C. Therefore α ∈ C if and only if β ∈ C.
Let α ∈ C, then β ∈ C. Hence A ∗ α = A ⊛ α and A ∗ β = A ⊛ β. Thus by ⊛
weak extensionality A ∩A ∗ α = A ∩A ∗ β.
Let α /∈ C, then β /∈ C. Then A ∗ α = (A ∖⋃(A⊥⊥¬α)) ∪ {α} and A ∗ β = (A ∖⋃(A⊥⊥¬β))∪{β}. From which it follows by Lemma F.1 that A∩A∗α = A∩A∗β.

Assume ⊛ satisfies relative closure. We will prove that ∗ satisfies relative
closure. If α ∈ C, then A ∗ α = A ⊛ α and the rest of the proof for this case
follows by ⊛ relative closure. Let α /∈ C. Hence A ∗α = (A∖⋃(A⊥⊥¬α))∪ {α}.
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The rest of the proof follows trivially by Lemma F.1.

(c) Consider that ⊛ satisfies persistence, relative success and vacuity. We intend to
prove that C and ∗ satisfy condition (C - ∗).
Let α /∈ C and β ∈ C. Then, by relative success, A⊛ α = A. By definition of ∗
it follows that A ∗ β = A⊛ β.
If A /⊢ ¬α, then by ⊛ vacuity it follows that α ∈ A⊛ α. From which it follows
that α ∈ C. Contradiction.
Hence A ⊢ ¬α. Therefore A∩A⊛α ⊢ ¬α. Hence, by ⊛ persistence, A∩A⊛β ⊢¬α. Thus A ∩A ∗ β ⊢ ¬α. ∎

Proof of Theorem 8.5.1.
Let A be a consistent belief base.
((a) → (b)) Let ⊛ be an operator on A that satisfies relative success, consistency
preservation and inclusion. Let C be the set defined by:

C = {α ∶ α ∈ A⊛ α}
According to Theorem 8.4.2, C satisfies element consistency. On the other hand, it
follows from Theorem 8.4.3 (a) that there exists an operator ∗ such that ⊛ is the
credibility-limited base revision induced by ∗ and C.
((b) → (a)) Let ⊛ be the operator of credibility-limited base revision induced by a
revision operator ∗ and a set C ⊆ L that satisfies element consistency. Hence by
Theorem 8.4.1 (a) and (b), ⊛ satisfies relative success, consistency preservation and
inclusion.

Proofs of Theorems 8.5.3, 8.5.6, 8.5.9.
(Right-to-left)
Let A be a consistent belief base and ⊛ be an operator that satisfies relative success,
consistency preservation, inclusion, vacuity and uniformity. Let C be the set defined
by:

C = {α ∶ α ∈ A⊛ α}
It follows from Theorem 8.4.2 that C satisfies element consistency, expansive credi-
bility and uniform credibility.
Furthermore, from Theorem 8.4.2, it follows that:
- If ⊛ satisfies strict improvement, then C satisfies single sentence closure;
- If ⊛ satisfies disjunctive distribution, then C satisfies disjunctive completeness;
From Theorem 8.4.3 (a) it follows that there exists a revision operator ∗ such that⊛ is the credibility-limited base revision induced by ∗ and C. Furthermore from
Theorem 8.4.3 (c) it follows that if ⊛ satisfies persistence, then C and ∗ satisfy
condition (C - ∗).
For Theorem 8.5.3
From Observation 8.4.3 and Observation 5.2.3 it follows that ∗ is a partial meet
revision.
For Theorem 8.5.6
From Observation 8.4.3 and Observation 5.2.7 it follows that ∗ is a kernel revision.
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For Theorem 8.5.9
From Observation 8.4.3 and Observation 5.2.9 it follows that ∗ is a smooth kernel
revision.
(Left-to-right)
Let A be a consistent belief base, ∗ be an operator on A and C ⊆ L. Let ⊛ be such
that:

A⊛ α = { A ∗ α if α ∈ C
A otherwise

From Theorem 8.4.1 it follows that if ∗ satisfies success, consistency, inclusion,
vacuity and uniformity, then:
- ⊛ satisfies inclusion and relative success.
- If C satisfies element consistency, then ⊛ satisfies consistency preservation.
- If C satisfies uniform credibility, then ⊛ satisfies uniformity.
- If C satisfies expansive credibility and uniform credibility, then ⊛ satisfies vacuity.
- If C satisfies expansive credibility and single sentence closure, then ⊛ satisfies strict
improvement.
- If C satisfies expansive credibility, uniform credibility and disjunctive completeness,
then ⊛ satisfies disjunctive distribution.
- If C satisfies expansive credibility and C and ∗ satisfy condition (C - ∗), then ⊛
satisfies vacuity.
- If C satisfies element consistency and C and ∗ satisfy condition (C - ∗), then ⊛
satisfies persistence and uniformity.
For Theorem 8.5.3
If ∗ is a partial meet revision operator on A, then from Observation 5.2.3 ∗ satisfies
success, consistency, inclusion, relevance and uniformity. From Observation 8.2.1 it
follows that ∗ satisfies vacuity. Hence from Theorem 8.4.1 (a) it holds also that ⊛
satisfies relevance.
For Theorem 8.5.6
If ∗ is a kernel revision operator on A, then from Observation 5.2.7 ∗ satisfies success,
consistency, inclusion, core-retainment and uniformity. From Observation 8.2.1 it
follows that ∗ satisfies vacuity. Hence from Theorem 8.4.1 (a) it holds also that ⊛
satisfies core-retainment.
For Theorem 8.5.9
If ∗ is a smooth kernel revision operator on A, then ∗ is a kernel revision operator
and ∗ satisfies relative closure (Observation 5.2.9). Hence from Theorem 8.4.1 (a)
it holds also that ⊛ satisfies core-retainment and relative closure.

Proof of Theorem 8.5.12.
(Right-to-left)
Let A be a consistent belief base and ⊛ be an operator that satisfies relative suc-
cess, consistency preservation, inclusion, vacuity, weak extensionality and disjunc-
tive elimination. Let C be the set defined by:

C = {α ∶ α ∈ A⊛ α}
It follows from Theorem 8.4.2 that C satisfies element consistency, expansive credi-
bility and credibility of logical equivalents.
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Furthermore, from Theorem 8.4.2, it follows that:
- If ⊛ satisfies strict improvement, then C satisfies single sentence closure;
- If ⊛ satisfies disjunctive distribution, then C satisfies disjunctive completeness;
From Observation 8.4.3 and Observation 5.2.13 it follows that there exists a basic
AGM-generated base revision ∗ such that ⊛ is the credibility-limited base revision
induced by ∗ and C. Furthermore from Theorem 8.4.3 (c) it follows that if ⊛ satis-
fies persistence, then C and ∗ satisfy condition (C - ∗).

(Left-to-right)
Let A be a consistent belief base, C ⊆ L and ∗ be a basic AGM-generated revision
operator on A. Let ⊛ be such that:

A⊛ α = { A ∗ α if α ∈ C
A otherwise

From Observation 5.2.13 ∗ satisfies success, consistency, inclusion, vacuity, weak
extensionality and disjunctive elimination. Hence from Theorem 8.4.1 (a) it follows
that ⊛ satisfies relative success, inclusion and disjunctive elimination. Furthermore,
it follows from Theorem 8.4.1 that:
- If C satisfies element consistency, then ⊛ satisfies consistency preservation.
- If C satisfies credibility of logical equivalents, then ⊛ satisfies weak extensionality.
- If C satisfies expansive credibility and credibility of logical equivalents, then ⊛ sat-
isfies vacuity.
- If C satisfies expansive credibility and single sentence closure, then ⊛ satisfies strict
improvement.
- If C satisfies single sentence closure, then ⊛ satisfies weak extensionality.
- If C satisfies expansive credibility and single sentence closure, then ⊛ satisfies vacu-
ity.
- If C satisfies expansive credibility, credibility of logical equivalents and disjunctive
completeness, then ⊛ satisfies disjunctive distribution.
- If C satisfies expansive credibility, single sentence closure and disjunctive complete-
ness, then ⊛ satisfies disjunctive distribution.
- If C satisfies expansive credibility and C and ∗ satisfy condition (C - ∗), then ⊛
satisfies vacuity.
- If C satisfies element consistency and C and ∗ satisfy condition (C - ∗), then ⊛
satisfies persistence and weak extensionality.

Proof of Observation 8.6.1. 2

We will prove that P-CLPMR ⊂ SI+DD-CLPMR. That P-CLPMR ⊆ SI+DD-CLPMR
follows by Corollary 8.5.5 and Observations 8.2.1 and 8.2.2. Suppose by reductio
ad absurdum that SI+DD-CLPMR ⊆ P-CLPMR. Let A = {p, q} and − be a partial
meet contraction on A such that A− (p∧ q) = {p}. Let R = L ∖Cn(q). Let ∼ be the
operator of shielded base contraction induced by − and R. As shown in Example
7.3.7 (c) ∼ is a SP+CC-SPMC but not a P-SPMC. On the other hand it follows by

2We note that throughout this proof we will use results of Section 8.8. However, this is not an
issue because the observation that is proven here is not used in the proofs of those results that are
presented further ahead.
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Corollary 8.8.6 that the operator ⊛ defined from ∼ via the consistency-preserving
Levi identity is a SI+DD-CLPMR. Thus ⊛ is a P-CLPMR. It follows by Corollary
8.8.8, Observation 5.1.2 and Theorem 8.8.9 that ∼ is a P-SPMC. Contradiction. The
remaining items of this result can be proven reasoning in an analogous way taking
into account the Corollaries 8.5.5, 8.5.8, 8.5.11 and 8.5.14 and having in mind that
according to Observations 7.4.2 and 7.4.4 the shielded contraction ∼ presented in:

� Example 7.3.7 (a) is a SPMC, SKC, SSKC, SbAGMC, SP-SPMC, SP-SKC, SP-
SSKC and SP-SbAGMC. However ∼ is not a CC-SPMC, CC-SKC, CC-SSKC,
CC-SbAGMC, SP+CC-SPMC, SP+CC-SKC, SP+CC-SSKC and SP+CC-
SbAGMC (since, as shown in that example ∼ does not satisfy conjunctive
constancy);

� Example 7.3.7 (b) is a SPMC, SKC, SSKC, SbAGMC, CC-SPMC, CC-SKC,
CC-SSKC and CC-SbAGMC. However ∼ is not a SP-SPMC, SP-SKC, SP-
SSKC, SP-SbAGMC, SP+CC-SPMC, SP+CC-SKC, SP+CC-SSKC and SP+CC-
SbAGMC (since, as shown in that example ∼ does not satisfy success propa-
gation);

� Example 7.3.7 (c) is a SP+CC-SKC, SP+CC-SSKC and SP+CC-SbAGMC.
However ∼ is not a P-SKC, P-SSKC and a P-SbAGMC (since, as shown in
that example ∼ does not satisfy persistence). ∎

Proof of Observation 8.6.2.
That CLPMR ⊆ CLSKR, SI-CLPMR ⊆ SI-CLSKR, DD-CLPMR ⊆ DD-CLSKR,
SI+DD-CLPMR ⊆ SI+DD-CLSKR and P-CLPMR ⊆ P-CLSKR follow trivially by
Corollaries 8.5.5 and 8.5.11 and Observation 8.2.1 (d).
To prove that CLSKR /⊆ CLPMR, SI-CLSKR /⊆ SI-CLPMR, DD-CLSKR /⊆ DD-
CLPMR, SI+DD-CLSKR /⊆ SI+DD-CLPMR and P-CLSKR /⊆ P-CLPMR, having
in mind Observation 8.6.1, it is enough to show that P-CLSKR /⊆ CLPMR.
To do so it is enough to reason as in the proof of Observation 8.6.1, considering
the shielded contraction presented in Example 7.4.1 (a) that is a P-SSKC but not a
SPMC.
That CLSKR ⊆ CLKR, SI-CLSKR ⊆ SI-CLKR, DD-CLSKR ⊆ DD-CLKR, SI+DD-
CLSKR ⊆ SI+DD-CLKR and P-CLSKR ⊆ P-CLKR follow trivially by Corollaries
8.5.8 and 8.5.11.
To prove that CLKR /⊆ CLSKR, SI-CLKR /⊆ SI-CLSKR, DD-CLKR /⊆ DD-CLSKR,
SI+DD-CLKR /⊆ SI+DD-CLSKR and P-CLKR /⊆ P-CLSKR, having in mind Ob-
servation 8.6.1, it is enough to show that P-CLKR /⊆ CLSKR.
To do so it is enough to reason as in the proof of Observation 8.6.1, considering
the shielded contraction presented in Example 7.4.1 (b) that is a P-SKC but not a
SSKC.

Proof of Observation 8.6.3.
That CLPMR ⊆ CLbAGMR, SI-CLPMR ⊆ SI-CLbAGMR, DD-CLPMR ⊆ DD-
CLbAGMR, SI+DD-CLPMR ⊆ SI+DD-CLbAGMR and P-CLPMR ⊆ P-CLbAGMR
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follow trivially by Corollaries 8.5.5 and 8.5.14 and Observation 8.2.1.
To prove that CLbAGMR /⊆ CLPMR, SI-CLbAGMR /⊆ SI-CLPMR, DD-CLbAGMR/⊆ DD-CLPMR, SI+DD-CLbAGMR /⊆ SI+DD-CLPMR and P-CLbAGMR /⊆ P-
CLPMR, having in mind Observation 8.6.1, it is enough to show that P-CLbAGMR/⊆ CLPMR.
To do so it is enough to reason as in the proof of Observation 8.6.1, considering
the shielded contraction presented in Example 7.4.3 that is a P-SbAGMC but not
a SPMC.

Proof of Observation 8.6.4.
Having in mind Observations 8.6.1 and 8.6.2, to prove all the statements of this result
it is enough to show that P-CLbAGMR /⊆ CLKR and that P-CLSKR /⊆ CLbAGMR.
To do that it is enough to reason as in the proof of Observation 8.6.1, considering
the shielded contractions presented in Examples 7.4.3 and 7.4.5 (that show that
P-SbAGMC /⊆ SKC and that P-SSKC /⊆ SbAGMC).

Proof of Observation 8.7.1.
Let R and C be subsets of L that are closed under double negation. We intend to
prove that condition (C-R) holds if and only if condition (R-C) also holds.
(From left to right) α ∈ R iff ¬¬α ∈ R iff ¬α ∈ C.
(From right to left) α ∈ C iff ¬¬α ∈ C iff ¬α ∈ R.

Proof of Observation 8.7.2.
Let A be a belief base, R and C sets of sentences that satisfy condition (C-R).

(a) Assume that R satisfies closure under double negation.

Let R be a set that satisfies non-retractability of logical equivalents we intend
to prove that C satisfies credibility of logical equivalents.
Let ⊢ α↔ β and assume without loss of generality that α ∈ C. Hence ¬α ∈ R.
Therefore ¬β ∈ R, since R satisfies non-retractability of logical equivalents.
Thus β ∈ C. By symmetry of the case it follows that if β ∈ C, then α ∈ C.
Thus α ∈ C if and only if β ∈ C.
Let C be a set that satisfies credibility of logical equivalents we intend to prove
that R satisfies non-retractability of logical equivalents.
Let ⊢ α↔ β and assume without loss of generality that α ∈ R. Hence ¬¬α ∈ R,
from which it follows that ¬α ∈ C. Therefore ¬β ∈ C, since C satisfies cred-
ibility of logical equivalents (and ⊢ ¬α ↔ ¬β). Thus ¬¬β ∈ R, from which it
follows that β ∈ R. By symmetry of the case it follows that if β ∈ R, then
α ∈ R. Thus α ∈ R if and only if β ∈ R.

Let R be a set that satisfies non-retractability of tautology we intend to prove
that C satisfies element consistency.
Let α ⊢⊥. Hence ⊢ ¬α. Therefore ¬α /∈ R, since R satisfies non-retractability
of tautology. Thus α /∈ C.
Let C be a set that satisfies element consistency we intend to prove that R
satisfies non-retractability of tautology.
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Let ⊢ α. Hence {¬α} ⊢⊥. Thus, since C satisfies element consistency, ¬α /∈ C.
From which it follows that ¬¬α /∈ R. Therefore α /∈ R.

Let R be a set that satisfies non-retractability propagation we intend to prove
that C satisfies single sentence closure.
Let α ∈ C and β ∈ Cn(α). Hence ¬α ∈ R and, by deduction, ⊢ α → β. Thus⊢ ¬β → ¬α. Therefore ¬α ∈ Cn(¬β). Assume by reductio ad absurdum that
β /∈ C. Hence ¬β /∈ R. From which it follows that ¬α /∈ R, since R satisfies
non-retractability propagation. Contradiction. Thus β ∈ C.
Let C be a set of sentences that satisfies single sentence closure we intend to
prove that R satisfies non-retractability propagation.
Let α /∈ R and suppose that β ∈ Cn(α). From α /∈ R it follows that ¬¬α /∈ R,
from which it follows that ¬α /∈ C. From β ∈ Cn(α) it follows that ⊢ ¬β → ¬α.
Thus by single sentence closure, it follows that ¬β /∈ C. Therefore ¬¬β /∈ R,
from which it follows, that β /∈ R.

Let R be a set that satisfies uniform retractability with respect to A. We intend
to prove that C satisfies uniform credibility with respect to A.
Assume that it holds for all subsets A′ of A that A′ ⊢ ¬α if and only if A′ ⊢ ¬β.
Then, ¬α ∈ R if and only if ¬β ∈ R, since R satisfies uniform retractability with
respect to A. Hence α ∈ C if and only if β ∈ C.
Let C be a set that satisfies uniform credibility with respect to A. We intend
to prove that R satisfies uniform retractability with respect to A.
Assume that it holds for all subsets A′ of A that A′ ⊢ α if and only if
A′ ⊢ β. Hence for all subsets A′ of A it holds that A′ ∪ {¬α} ⊢⊥ if and
only if A′ ∪ {¬β} ⊢⊥. Therefore, by uniform credibility, it follows that ¬α ∈ C
if and only if ¬β ∈ C. Thus ¬¬α ∈ R if and only if ¬¬β ∈ R. Hence α ∈ R if
and only if β ∈ R.

Let R be a set that satisfies non-retractability upper bounding with respect to
A. We intend to prove that C satisfies expansive credibility with respect to A.
Assume that ¬α /∈ C. Hence ¬¬α /∈ R, from which it follows that α /∈ R. Thus
A ⊢ α, since by non-retractability upper bounding, L ∖R ⊆ Cn(A).
Let C be a set that satisfies expansive credibility with respect to A. We intend
to prove that R satisfies non-retractability upper bounding with respect to A.
Let α ∈ L ∖R. Then ¬¬α /∈ R, from which it follows that ¬α /∈ C. Hence, by
expansive credibility with respect to A, it follows that A ⊢ α.

b) Assume that R satisfies retractability of logical equivalents.
Let R be a set that satisfies conjunctive completeness we intend to prove that
C satisfies disjunctive completeness.
Let α /∈ C and β /∈ C. Therefore ¬α /∈ R and ¬β /∈ R. By conjunctive complete-
ness it follows that ¬α ∧ ¬β /∈ R. Thus, by retractability of logical equivalents,
it follows that ¬(α ∨ β) /∈ R. Therefore α ∨ β /∈ C.
Let C be a set that satisfies disjunctive completeness we intend to prove that
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R satisfies conjunctive completeness.
Let α /∈ R and β /∈ R. Thus ¬¬α /∈ R and ¬¬β /∈ R, from which it follows that¬α /∈ C and ¬β /∈ C. From which it follows, by disjunctive completeness that¬α∨¬β /∈ C. Hence ¬(¬α∨¬β) /∈ R. Thus by retractability of logical equivalents
it follows that α ∧ β /∈ R. ∎

Proof of Observation 8.7.3.
Follows trivially from Lemma F.2 and Observation 8.7.2.

Proof of Observation 8.7.4.
Let α /∈ C and β ∈ C. We intent to prove that A ∩A ∗ β ⊢ ¬α.
From α /∈ C and β ∈ C it follows by condition (C-R) that ¬α /∈ R and ¬β ∈ R.
Therefore, according to condition (R - −), A−¬β ⊢ ¬α. On the other hand, by the
Levi identity, A ∗ β = (A − ¬β) ∪ {β}. Therefore, A ∩A ∗ β = A ∩ ((A − ¬β) ∪ {β}) =(A ∩ (A − ¬β)) ∪ (A ∩ {β}) = (A − ¬β) ∪ (A ∩ {β}). Thus A − ¬β ⊆ A ∩A ∗ β, from
which it follows that A ∩A ∗ β ⊢ ¬α.

Proof of Observation 8.7.5.
Let α /∈ R and β ∈ R. We intent to prove that A − β ⊢ α.
By condition (R-C), it follows that ¬α /∈ C and ¬β ∈ C. Therefore, according to
condition (C - ∗), A∩A∗¬β ⊢ ¬¬α. Thus, it follows from the Harper identity that
A − β ⊢ α.

Proof of Theorem 8.8.1.
Assume first that α ∈ R. It follows that ¬α ∈ C. Hence A ∼ α = A−α = (A∗¬α)∩A =(A ⊛ ¬α) ∩ A. If α /∈ R, then ¬α /∈ C. Hence A ⊛ ¬α = A and A ∼ α = A. Thus
A ∼ α = A = (A⊛ ¬α) ∩A.

Proof of Theorem 8.8.2.

(a) Assume first that α /∈ C. Hence A ⊛ α = A. If α ∈ C, then ¬α ∈ R. Thus
A⊛ α = A ∗ α = (A − ¬α) ∪ {α} = (A ∼ ¬α) ∪ {α}.

(b) It remains to prove that: α ∈ C if and only if A ∼ ¬α /⊢ ¬α.
Let α /∈ C. Then ¬α /∈ R. Hence, by ∼ definition, A ∼ ¬α = A. Thus, by R
non-retractability upper bounding, A ∼ ¬α ⊢ ¬α.
Let α ∈ C. Then ¬α ∈ R. Therefore, by ∼ definition, A ∼ ¬α = A − ¬α. On the
other hand, by R non-retractability of tautology, /⊢ ¬α. Thus, by − success,
A ∼ ¬α /⊢ ¬α. ∎

Proof of Observation 8.8.3.
Let A be a consistent belief base and (for all α ∈ L)

A⊛ α = { (A ∼ ¬α) ∪ {α} if A ∼ ¬α /⊢ ¬α
A otherwise
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Relative success and consistency preservation follow directly from the definition of ⊛.

Assume that ∼ satisfies inclusion. We intend to prove that ⊛ satisfies inclusion.
It follows directly from the definition of ⊛ and ∼ inclusion that A⊛ α ⊆ A ∪ {α}.

Assume that ∼ satisfies inclusion and persistence. We intend to prove that ⊛
satisfies disjunctive distribution, persistence and strong regularity.
Disjunctive distribution: Let α /∈ A ⊛ α and β /∈ A ⊛ β. Hence, by definition of⊛, A⊛α = A⊛ β = A. Furthermore A ∼ ¬α ⊢ ¬α and A ∼ ¬β ⊢ ¬β. By ∼ persistence
A ∼ ¬(α ∨ β) ⊢ ¬α and A ∼ ¬(α ∨ β) ⊢ ¬β. Hence A ∼ ¬(α ∨ β) ⊢ ¬(α ∨ β). Hence
A⊛(α∨β) = A. Thus α∨β /∈ A⊛(α∨β), since A /⊢⊥ and by ∼ inclusion A ⊢ ¬(α∨β).
Persistence: Let A ∩A⊛ β ⊢ ¬β. Hence A ⊢ ¬β and A⊛ β ⊢ ¬β. If A ∼ ¬β /⊢ ¬β,
then β ∈ A⊛β. Thus A⊛β ⊢⊥, from which it follows, by ⊛ definition and deduction,
that A ∼ ¬β ⊢ ¬β. Contradiction. Hence A ∼ ¬β ⊢ ¬β. From which it follows, by∼ persistence, that A ∼ ¬α ⊢ ¬β. By ∼ inclusion A ∼ ¬α ⊆ A. We will consider two
cases:
Case 1) A ∼ ¬α ⊢ ¬α. Hence A⊛ α = A. Then A ∩A⊛ α = A ⊢ ¬β.
Case 2) A ∼ ¬α /⊢ ¬α. Hence A ⊛ α = (A ∼ ¬α) ∪ {α} from which it follows that
A∩A⊛α = (A∩(A ∼ ¬α))∪(A∩{α}) = (A ∼ ¬α)∪(A∩{α}). Thus A ∼ ¬α ⊆ A∩A⊛α.
Therefore A ∩A⊛ α ⊢ ¬β.
Strong regularity: Let A ⊛ α /⊢ ¬β. By definition of ⊛ we have two cases to
consider:
Case 1) A⊛α = A. Then A /⊢ ¬β. By ∼ inclusion A ∼ ¬β /⊢ ¬β. Hence, by definition
of ⊛, β ∈ A⊛ β.
Case 2) A⊛ α = (A ∼ ¬α) ∪ {α}. Thus (A ∼ ¬α) ∪ {α} /⊢ ¬β. From which it follows
that A ∼ ¬α /⊢ ¬β. By ∼ persistence it follows that A ∼ ¬β /⊢ ¬β. Hence, by definition
of ⊛, β ∈ A⊛ β.

Assume that ∼ satisfies inclusion, vacuity and uniformity. We intend to prove
that ⊛ satisfies uniformity.
Let it be the case that for all subsets A′ of A, A′∪{α} ⊢⊥ if and only if A′∪{β} ⊢⊥.
Hence, for all A′ ⊆ A, A′ ⊢ ¬α if and only if A′ ⊢ ¬β. By ∼ uniformity A ∼ ¬α = A ∼¬β. By ∼ inclusion A ∼ ¬β ⊆ A.
If A ∼ ¬α ⊢ ¬α. Then A ∼ ¬β ⊢ ¬α. Thus, by hypothesis, A ∼ ¬β ⊢ ¬β. Hence, by
definition of ⊛, A⊛ α = A⊛ β = A. Therefore A ∩A⊛ α = A ∩A⊛ β.
If A ∼ ¬α /⊢ ¬α. Then A ∼ ¬β /⊢ ¬α. From which it follows, by hypothesis,
that A ∼ ¬β /⊢ ¬β. Therefore, by definition of ⊛, A ⊛ α = (A ∼ ¬α) ∪ {α} and
A⊛ β = (A ∼ ¬β) ∪ {β}.
There are three cases to consider:
Case 1) α ∈ A. Then A /⊢ ¬α (since A /⊢⊥). Hence, by ∼ vacuity and inclusion
A ∼ ¬α = A. Thus A ∼ ¬β = A. Therefore A ∩ A ⊛ α = A ∩ ((A ∼ ¬α) ∪ {α}) =
A ∩ (A ∪ {α}) = A. Using a similar reasoning, it follows that A ∩A⊛ β = A. Hence
A ∩A⊛ α = A ∩A⊛ β.
Case 2) β ∈ A. Similar to the previous case.
Case 3) α /∈ A and β /∈ A. Then A ∩A ⊛ α = A ∩ ((A ∼ ¬α) ∪ {α}) = A ∼ ¬α = A ∼¬β = A ∩ ((A ∼ ¬β) ∪ {β}) = A ∩A⊛ β.
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Assume that ∼ satisfies relevance. We intend to prove that ⊛ satisfies relevance.
Let β ∈ A and β /∈ A ⊛ α. Hence A /= A ⊛ α. Thus A ⊛ α = (A ∼ ¬α) ∪ {α}
and A ∼ ¬α /⊢ ¬α. Hence β /∈ A ∼ ¬α. By ∼ relevance there is some A′ such
that A ∼ ¬α ⊆ A′ ⊆ A, A′ /⊢ ¬α but A′ ∪ {β} ⊢ ¬α. Let X = A′ ∪ {α}. Thus
A⊛ α ⊆X ⊆ A ∪ {α}. It remains to prove that:
1) X /⊢⊥.
2) X ∪ {β} ⊢⊥.
1) Assume by reductio ad absurdum that X ⊢⊥. Hence A′ ∪ {α} ⊢⊥. Thus, by de-
duction, A′ ⊢ α →⊥. Hence A′ ⊢ ¬α. Contradiction.
2) X ∪ {β} = A′ ∪ {α,β}. Since A′ ∪ {β} ⊢ ¬α it follows that A′ ∪ {α,β} ⊢⊥. Hence
X ∪ {β} ⊢⊥.

Assume that ∼ satisfies core-retainment. We intend to prove that ⊛ satisfies
core-retainment.
Let β ∈ A and β /∈ A ⊛ α. Hence A /= A ⊛ α. Thus A ⊛ α = (A ∼ ¬α) ∪ {α} and
A ∼ ¬α /⊢ ¬α. Hence β /∈ A ∼ ¬α. By ∼ core-retainment there is some A′ such that
A′ ⊆ A, A′ /⊢ ¬α but A′ ∪ {β} ⊢ ¬α.

Assume that ∼ satisfies conjunctive constancy, relative success and extensional-
ity. We intend to prove that ⊛ satisfies disjunctive distribution.
Let α /∈ A ⊛ α and β /∈ A ⊛ β. By definition of ⊛ it follows that A ∼ ¬α ⊢ ¬α
and A ∼ ¬β ⊢ ¬β. Hence by ∼ relative success, A ∼ ¬α = A ∼ ¬β = A. Thus,
by ∼ conjunctive constancy, A ∼ (¬α ∧ ¬β) = A. From which it follows, by ∼ ex-
tensionality, that A ∼ ¬(α ∨ β) = A. On the other hand A ⊢ ¬α ∧ ¬β. Hence
A ∼ ¬(α ∨ β) ⊢ ¬(α ∨ β). Therefore, by definition of ⊛, A⊛ (α ∨ β) = A. From A /⊢⊥
it follows that A⊛ (α ∨ β) /⊢ α ∨ β. Hence α ∨ β /∈ A⊛ (α ∨ β).

Assume that ∼ satisfies inclusion and success propagation. We intend to prove
that ⊛ satisfies strict improvement.
Let α ∈ A ⊛ α and ⊢ α → β. Hence ⊢ ¬β → ¬α. Assume by reductio ad absurdum
that A ∼ ¬α ⊢ ¬α. Then, by ∼ inclusion, A ⊢ ¬α. On the other hand, it follows from⊛ definition that A ⊛ α = A. Hence α ∈ A. Therefore A ⊢⊥. Contradiction. Hence
A ∼ ¬α /⊢ ¬α. Thus, by ∼ success propagation, A ∼ ¬β /⊢ ¬β. From which it follows,
by definition of ⊛, that β ∈ A⊛ β.

Assume that ∼ satisfies inclusion and vacuity. We intend to prove that ⊛ satisfies
vacuity.
Assume that A /⊢ ¬α. By ∼ inclusion and vacuity it follows that A ∼ ¬α = A /⊢ ¬α.
Hence, by definition of ⊛, it follows that A⊛ α = (A ∼ ¬α) ∪ {α} = A ∪ {α}.

Assume that ∼ satisfies disjunctive elimination. We intend to prove that ⊛ sat-
isfies disjunctive elimination.
Let β ∈ A and β /∈ A ⊛ α. Then A ∼ ¬α /⊢ ¬α and A ⊛ α = (A ∼ ¬α) ∪ {α}.
Thus β /∈ A ∼ ¬α, from which it follows by disjunctive elimination that A ∼ ¬α /⊢¬α ∨ β. Hence (A ∼ ¬α) ∪ {α} /⊢ ¬α ∨ β, otherwise it would follow by deduc-



233

tion that A ∼ ¬α ⊢ α → (¬α ∨ β) and consequently that A ∼ ¬α ⊢ ¬α ∨ β, since⊢ (¬α ∨ β)↔ (α → (¬α ∨ β)). Therefore A⊛ α /⊢ ¬α ∨ β.

Assume that ∼ satisfies extensionality, inclusion and vacuity. We intend to prove
that ⊛ satisfies weak extensionality.
Let ⊢ α↔ β. Then ⊢ ¬α↔ ¬β. We will prove by cases:
Case 1) A ∼ ¬α ⊢ ¬α. Then A ∼ ¬α ⊢ ¬β. Thus, by ∼ extensionality, A ∼ ¬β ⊢ ¬β.
Therefore, by definition of ⊛, A⊛ α = A⊛ β = A. Hence A ∩A⊛ α = A ∩A⊛ β.
Case 2) A ∼ ¬α /⊢ ¬α. Then A ∼ ¬α /⊢ ¬β. Therefore, by ∼ extensionality, A ∼ ¬β /⊢¬β. Therefore, by definition of ⊛, A⊛α = (A ∼ ¬α)∪{α} and A⊛β = (A ∼ ¬β)∪{β}.
Case 2.1) α ∈ A. Therefore A /⊢ ¬α (since A /⊢⊥) and A /⊢ ¬β. By ∼ vacuity and inclu-
sion it follows that A ∼ ¬α = A ∼ ¬β = A. Hence A∩A⊛α = A∩((A ∼ ¬α)∪{α}) = A.
By symmetry of the case it holds that A∩A⊛β = A. Therefore A∩A⊛α = A∩A⊛β.
Case 2.2) β ∈ A. Follows as in the previous case.
Case 2.3) α /∈ A and β /∈ A. By ∼ inclusion it follows that A ∼ ¬α ⊆ A and A ∼ ¬β ⊆ A.
Hence A∩A⊛α = A∩((A ∼ ¬α)∪{α}) = A ∼ ¬α. By symmetry of the case it follows
that A∩A⊛β = A ∼ ¬β. Hence by ∼ extensionality it follows that A∩A⊛α = A∩A⊛β.

Assume that ∼ satisfies inclusion, vacuity and relative closure. We intend to
prove that ⊛ satisfies relative closure.
Let β ∈ A ∩ Cn(A ∩ A ⊛ α). It follows trivially if A ∼ ¬α ⊢ ¬α. Assume now that
A ∼ ¬α /⊢ ¬α. Hence A⊛α = (A ∼ ¬α)∪{α}. Hence β ∈ A∩Cn(A∩((A ∼ ¬α)∪{α})).
Hence β ∈ A and β ∈ Cn((A ∩ (A ∼ ¬α)) ∪ (A ∩ {α})). We will prove by cases:
Case 1) α ∈ A. Then A /⊢ ¬α (since A /⊢⊥). Therefore, by ∼ inclusion and vacuity, it
follows that A ∼ ¬α = A. Thus A⊛ α = A ∪ {α}. Hence β ∈ A⊛ α.
Case 2) α /∈ A. Thus β ∈ A and β ∈ Cn((A ∼ ¬α) ∩ A). By ∼ inclusion it follows
that β ∈ A and β ∈ Cn(A ∼ ¬α). Therefore, by ∼ relative closure it follows that
β ∈ A ∼ ¬α. Thus β ∈ A⊛ α.

Proof of Observation 8.8.4.
Let A be a consistent belief base and A ∼ α = A ∩A⊛ ¬α (for all α ∈ L).
That ∼ satisfies inclusion follows directly from the definition of ∼.

Assume that ⊛ satisfies relative success and consistency preservation. We intend
to prove that ∼ satisfies relative success.
If A ∼ α ⊢ α, then by definition of ∼, A ⊛ ¬α ⊢ α. Hence, by ⊛ consistency preser-
vation, ¬α /∈ A⊛ ¬α. Thus, by ⊛ relative success, A⊛ ¬α = A. Therefore A ∼ α = A.

Assume that ⊛ satisfies persistence. We intend to prove that ∼ satisfies persis-
tence.
Let A ∼ α /⊢ β. Then A ∩ A ⊛ ¬α /⊢ β. Thus, by ⊛ persistence, A ∩ A ⊛ ¬β /⊢ β.
Therefore, A ∼ β /⊢ β.

Assume that ⊛ satisfies relative success and relevance. We intend to prove that∼ satisfies relevance.
Let β ∈ A and β /∈ A ∼ α. Then, by definition of ∼, β /∈ A ⊛ ¬α. By ⊛ relative
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success it follows that ¬α ∈ A ⊛ ¬α. By ⊛ relevance, there is some A′ such that
A ⊛ ¬α ⊆ A′ ⊆ A ∪ {¬α}, A′ /⊢⊥ but A′ ∪ {β} ⊢⊥. Let X = A′ ∖ {¬α}. Hence
X ⊆ A and, since ¬α ∈ A ⊛ ¬α ⊆ A′, it follows that X ∪ {¬α} = A′. Therefore
A⊛ ¬α ⊆ X ∪ {¬α}. Thus A ∼ α ⊆ X ∪ {¬α}. To prove that A ∼ α ⊆ X it is enough
to show that A ∼ α /⊢ ¬α.
Assume by reductio ad absurdum that A ∼ α ⊢ ¬α. Hence, by definition of ∼, A ⊢ ¬α.
From A′ ⊆ A ∪ {¬α} and A′ ∪ {β} ⊢⊥ it follows, by monotony, that A ∪ {¬α,β} ⊢⊥.
Contradiction, since A /⊢⊥. Therefore A ∼ α /⊢ ¬α. Hence A ∼ α ⊆ X. On the other
hand, from A′ /⊢⊥, it follows that X ∪ {¬α} /⊢⊥. Thus X /⊢ α. From A′ ∪ {β} ⊢⊥ it
follows thatX∪{¬α,β} ⊢⊥. From which it follows, using deduction, thatX∪{β} ⊢ α.

Assume that ⊛ satisfies core-retainment. We intend to prove that ∼ satisfies
core-retainment.
Let β ∈ A and β /∈ A ∼ α. Then, by definition of ∼, β /∈ A ⊛ ¬α. Hence, by ⊛
core-retainment, there is some A′ such that A′ ⊆ A, A′ /⊢ α but A′ ∪ {β} ⊢ α. Hence∼ satisfies core-retainment.

Assume that ⊛ satisfies uniformity. We intend to prove that ∼ satisfies unifor-
mity.
Let it be the case that for all subsets A′ of A, A′ ⊢ α if and only if A′ ⊢ β. Hence,
for all subsets A′ of A it holds that A′ ∪{¬α} ⊢⊥ if and only if A′ ∪{¬β} ⊢⊥. There-
fore, by ⊛ uniformity, A∩A⊛¬α = A∩A⊛¬β. Thus, by definition of ∼, A ∼ α = A ∼ β.

Assume that ⊛ satisfies vacuity. We intend to prove that ∼ satisfies vacuity.
Assume that A /⊢ α. Hence A /⊢ ¬¬α. Thus, by ⊛ vacuity it follows that A ∪ {¬α} ⊆
A⊛ ¬α. Thus A ⊆ A⊛ ¬α. Therefore A ∼ α = (A⊛ ¬α) ∩A = A.

Assume that ⊛ satisfies vacuity, relative success, consistency preservation, dis-
junctive distribution and weak extensionality. We intend to prove that ∼ satisfies
conjunctive constancy. As shown above ∼ satisfies inclusion and vacuity.
Let A ∼ α = A ∼ β = A. We will consider three cases:
Case 1) A ⊛ ¬α /⊢ α. Then A ∼ α /⊢ α. Thus A /⊢ α. From which it follows that
A /⊢ α ∧ β. Hence, by ∼ inclusion and vacuity, then A ∼ (α ∧ β) = A.
Case 2) A⊛ ¬β /⊢ β. This case is symmetrical with the first case.
Case 3) A ⊛ ¬α ⊢ α and A ⊛ ¬β ⊢ β. By ⊛ consistency preservation it follows that¬α /∈ A ⊛ ¬α and ¬β /∈ A ⊛ ¬β. Hence, by disjunctive distribution, it follows that¬α ∨ ¬β /∈ A ⊛ (¬α ∨ ¬β). Hence, by ⊛ relative success, A ⊛ (¬α ∨ ¬β) = A. By
definition of ∼, A ∼ (α ∧ β) = A ∩A ⊛ ¬(α ∧ β). Thus, by ⊛ weak extensionality, it
follows that A ∼ (α ∧ β) = A ∩A⊛ (¬α ∨ ¬β) = A.

Assume that ⊛ satisfies disjunctive elimination. We intend to prove that ∼ sat-
isfies disjunctive elimination.
Let β ∈ A and β /∈ A ∼ α. By definition of ∼ it follows that β /∈ A ⊛ ¬α. Therefore,
by ⊛ disjunctive elimination, A⊛ ¬α /⊢ (¬¬α) ∨ β. Thus A⊛ ¬α /⊢ α ∨ β. Therefore
A ∼ α /⊢ α ∨ β.
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Assume that ⊛ satisfies weak extensionality. We intend to prove that ∼ satisfies
extensionality.
Let ⊢ α ↔ β. Hence ⊢ ¬α ↔ ¬β. By definition of ∼ and ⊛ weak extensionality it
holds that A ∼ α = A ∩A⊛ ¬α = A ∩A⊛ ¬β = A ∼ β.

Assume that ⊛ satisfies consistency preservation, strict improvement and relative
success. We intend to prove that ∼ satisfies success propagation.
Let A ∼ α ⊢ α and ⊢ α → β. From the latter it follows that ⊢ ¬β → ¬α. By definition
of ∼ it holds that A ∼ α = A∩A⊛¬α. Hence A⊛¬α ⊢ α and A ⊢ α. Therefore A ⊢ β.
On the other hand, by ⊛ consistency preservation, ¬α /∈ A⊛¬α. From the latter and⊢ ¬β → ¬α it follows by ⊛ strict improvement that ¬β /∈ A ⊛ ¬β. Thus by ⊛ rela-
tive success it follows that A⊛¬β = A. Hence A ∼ β = A∩A⊛¬β = A. Thus A ∼ β ⊢ β.

Assume that ⊛ satisfies relative closure. We intend to prove that ∼ satisfies rel-
ative closure.
Let β ∈ A∩Cn(A ∼ α). Hence β ∈ A. Furthermore, by definition of ∼, it follows that(A ⊛ ¬α) ∩A ⊢ β. Thus by relative closure β ∈ A ⊛ ¬α. From which it follows, by
definition of ∼, that β ∈ A ∼ α.

Proof of Corollary 8.8.5.
By Definition 7.3.2 and Theorem 7.3.1 ∼ satisfies relative success and inclusion.
Thus, by Observation 8.8.3, ⊛ satisfies relative success, inclusion and consistency
preserving. Thus, by Theorem 8.5.1, ⊛ is the operator of credibility-limited base
revision induced by a revision operator ∗ on A and a set C ⊆ L that satisfies element
consistency. Therefore, by Definition 8.5.2, ⊛ is a basic credibility-limited base re-
vision operator.

Proof of Corollary 8.8.6.

(a) Follows trivially by Corollaries 7.3.6 and 8.5.5 and Observations 5.1.2 and
8.8.3.

(b) Follows trivially by Corollaries 7.3.11 and 8.5.8 and Observations 5.1.2 and
8.8.3.

(c) Follows trivially by Corollaries 7.3.15 and 8.5.11 and Observations 5.1.2 and
8.8.3.

(d) Follows trivially by Corollaries 7.3.19 and 8.5.14 and Observation 8.8.3. ∎
Proof of Corollary 8.8.7.

By Definition 8.5.2 and Theorem 8.5.1 ⊛ satisfies relative success, consistency preser-
vation and inclusion. By Observation 8.8.4 ∼ satisfies inclusion and relative success.
Thus, by Theorem 7.3.1, ∼ is a shielded contraction operator on A induced by a
contraction operator on A and a set R that satisfies non-retractability of tautology.
Thus, by Definition 7.3.2, ∼ is a basic shielded base contraction.

Proof of Corollary 8.8.8.
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(a) Follows trivially by Corollaries 7.3.6 and 8.5.5 and Observations 8.2.1 (b) and
8.8.4.

(b) Follows trivially by Corollaries 7.3.11 and 8.5.8 and Observations 8.2.1 (b) and
8.8.4.

(c) Follows trivially by Corollaries 7.3.15 and 8.5.11 and Observations 8.2.1 (b)
and 8.8.4.

(d) Follows trivially by Corollaries 7.3.19 and 8.5.14 and Observation 8.8.4. ∎
Proof of Theorem 8.8.9.

Let ⊛ = R(∼) and ∼2= C(R(∼)). Then:

A⊛ ¬α = { (A ∼ ¬¬α) ∪ {¬α} if A ∼ ¬¬α /⊢ α
A otherwise

and
A ∼2 α = A ∩A⊛ ¬α

By ∼ extensionality A ∼ ¬¬α = A ∼ α. There are two cases to consider:
Case 1) A ∼ ¬¬α ⊢ α. Then A⊛ ¬α = A, from which it follows that A ∼2 α = A. On
the other hand, by ∼ relative success, A ∼ α = A. Thus A ∼2 α = A ∼ α.
Case 2) A ∼ ¬¬α /⊢ α. Then A ⊛ ¬α = (A ∼ ¬¬α) ∪ {¬α} = (A ∼ α) ∪ {¬α}. Hence
A ∼2 α = A ∩ ((A ∼ α) ∪ {¬α}).
Let β ∈ A ∼ α. Then, by ∼ inclusion, β ∈ A. Hence β ∈ A ∼2 α. Thus A ∼ α ⊆ A ∼2 α.
Let β ∈ A ∼2 α. Then β ∈ A and β ∈ (A ∼ α) ∪ {¬α}. Hence β ∈ A ∼ α or β = ¬α.
If β = ¬α, then ¬α ∈ A. From A /⊢⊥ it follows that A /⊢ α. Then, by ∼ vacuity
and inclusion, A ∼ α = A. Therefore β ∈ A ∼ α. Hence A ∼2 α ⊆ A ∼ α. Therefore
A ∼2 α = A ∼ α.

Proof of Theorem 8.8.10.
Let ∼= C(⊛) and ⊛2 = R(C(⊛)). Then:

A ∼ ¬α = A ∩A⊛ ¬¬α
and

A⊛2 α = { (A ∼ ¬α) ∪ {α} if A ∼ ¬α /⊢ ¬α
A otherwise

If A /⊢ ¬α, then by ⊛ vacuity and inclusion A⊛α = A∪{α} and A⊛¬¬α = A∪{¬¬α}.
Thus, by ∼ definition, A ∼ ¬α = A. Hence A ∼ ¬α /⊢ ¬α. Thus A ⊛2 α = A ∪ {α}.
Therefore A⊛2 α = A⊛ α.
Assume now that A ⊢ ¬α. By ⊛ relative success ¬¬α ∈ A⊛¬¬α or A⊛¬¬α = A. On
the other hand, by ⊛ weak extensionality A∩A⊛¬¬α = A∩A⊛α. We will consider
two cases:
Case 1) A ⊛ ¬¬α = A. Hence A ∼ ¬α = A, from which it follows that A ∼ ¬α ⊢ ¬α.
Thus A⊛2 α = A.
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From A⊛¬¬α = A and A∩A⊛¬¬α = A∩A⊛α, it follows that A = A∩A⊛α. Hence
A ⊆ A ⊛ α. Since A ⊢ ¬α and A /⊢⊥ it follows, by ⊛ consistency preservation, that
α /∈ A⊛ α. Hence by ⊛ relative success A⊛ α = A.
Case 2) ¬¬α ∈ A⊛¬¬α. Hence, by ⊛ consistency preservation, A⊛¬¬α /⊢ ¬α. Thus
A ∼ ¬α /⊢ ¬α. Hence A⊛2α = (A ∼ ¬α)∪{α} = (A∩A⊛¬¬α)∪{α} = (A∩A⊛α)∪{α}.
Let β ∈ A⊛2α. Hence β ∈ A∩A⊛α or β = α. In the former case, β ∈ A⊛α. Assume
now that β = α. If α ∈ A⊛ α, then β ∈ A⊛ α.
Assume by reductio ad absurdum that α /∈ A ⊛ α. Hence, by ⊛ relative success
A ⊛ α = A. Thus A ⊛2 α = A ∪ {α}. Hence A ⊛2 α ⊢⊥ (since A ⊢ ¬α). Hence(A ∼ ¬α) ∪ {α} ⊢⊥. Therefore, by deduction, A ∼ ¬α ⊢ ¬α. Contradiction. Hence
A⊛2 α ⊆ A⊛ α.
Let β ∈ A⊛α. By ⊛ inclusion A⊛α ⊆ A∪{α}. Hence β ∈ A or β = α. In both cases,
β ∈ A⊛2 α. Hence A⊛ α ⊆ A⊛2 α. Therefore A⊛2 α = A⊛ α.
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[Fer01] Eduardo Fermé. Five faces of recovery. In Hans Rott and Mary-Anne
Williams, editors, Frontiers in Belief Revision, Applied Logic Series,
pages 247–259. Kluwer Academic Publishers, 2001.

[FGKIS13] Marcelo Alejandro Falappa, Alejandro Javier Garćıa, Gabriele Kern-
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[FH94] André Fuhrmann and Sven Ove Hansson. A survey of multiple contrac-
tion. Journal of Logic, Language and Information, 3:39–74, 1994.



BIBLIOGRAPHY 241
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[FH11] Eduardo Fermé and Sven Ove Hansson. AGM 25 years: Twenty-five
years of research in belief change. Journal of Philosophical Logic, 40:295–
331, 2011.
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[Rib10] Márcio Ribeiro. Revisão de crenças em lógicas de descrição e em outras
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