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Abstract 
The management of an enterprise relies on the continuous organization and development of its 
business and software systems. A process that requires merging the ideas of the enterprise’ 
systems managers, targeting the specification of business requirements and the conception and 
implementation of a supporting information system. This process finds obstacles in the 
identification and communication of requirements, and also in their transformation in software 
artefacts, leading to difficulties or loss of traceability between business and software models. 
Existing methods, languages and techniques are still not sufficiently standardized to ensure that 
when a business improvement is introduced, the supportive software solution will be 
implemented within budget and time. Methods are still too closed to the concepts of their 
original scientific domains, conceiving solutions which are not representative of the business 
and software conceptual relation and of the complexity concealed in an improvement effort, 
namely concerning usability and user experience. Moreover, the lack of a common modeling 
language and method for the conception of holistic and traceable software solutions, also 
refrains the performance of the enterprise development process. The GOALS Approach 
presents a solution to surpass these barriers by means of the specification of an enterprise 
modeling language that relates the business and software conceptual structures using a shared 
set of concepts, a notation, process, method and techniques, that allow the design of the software 
as a result of the business organization, ensuring traceability by means of the permanent 
representation of the business structure in the software structure. 

Keywords: Enterprise Architecture, Enterprise Engineering, Human-Computer Interaction, 
Software Engineering, Software Architecture, Language, Traceability. 
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1. Introduction 

Traceability of business and software modeling is a requisite concerning business and 
Information Technology (IT) alignment, and may be perceived as the cornerstone of enterprise 
development performance. Traceability is the establishment of a relation between business and 
software concepts that allows the recognition of which components of the business are 
supported by which components of the Information System, and what may be the impact of 
changing business requirements over the software structure. Complementarily, by means of 
traceability, it is possible to acknowledge which aspects of the business are still not supported 
by a software system (and which are), so that new improvements may be identified. These 
improvements may be introduced at an acceptable rate, especially if the translation of business 
and software models is avoided [de Vries et al., 2017; Ouyang et al., 2009]. The translation 
process overhead is in fact what justifies the introduction of a common language of shared 
concepts that may be used by business and software modelers to carry on the daily Enterprise 
Development Process (EDP), the process that coordinates the business and software modeling 
and implementation tasks. 

The introduction of a new language in this context requires that the coordination of the ideas of 
business and software modelers concerning the enterprise are concealed, which may not be 
straightforward, as the perspectives of both, observing the same enterprise problem, are distinct. 
For business modelers, the problem is mostly related to the enactment and enhancement of 
business processes, or Business Process Improvements (BPI), where people and software 
represent solutions; whereas, for software modelers, those solutions are their analysis, design 
and implementation problem. To surpass this barrier, the concepts used in the dialogue must be 
properly understood, given the complexity and accuracy needed in the process of conceiving 
the enterprise solution. Nevertheless, the establishment of this language is possible, since on 
one hand, the business concepts with a bigger impact on software development may be 
recognized by software modelers (e.g. the business process, actor and regulation concepts), 
and on the other hand, business modelers have general knowledge over the more fundamental 
software concepts (e.g. User Interface, programmed code and Database), as basic premises of 
a business and software modeling language. Therefore, if the language is close to this high-
level of abstraction, the communication may be viable (effective) and fluent (efficient), instead 
of being an important obstacle [Ferreira & Wazlawick, 2011]. 

Until now, methods that propose solutions to surpass the conceptual barrier between business 
and software modeling, do not represent the full extension of the problem and related solution, 
or do not apply techniques that allow the methodical elaboration of a holistic software 
architecture for a given BPI, while maintaining traceability at the same time. We find that the 
main reason is that methods maintain the used concepts closed to the scientific domains where 
they are originated from, with few or sometimes unstructured extensions, and as a result, not 
all the complexity that needs to be represented and managed, is addressed in a single conceptual 
and traceable structure. Existing methods relate business and software artefacts, but typically: 
(i) do not represent all the relevant business and software development artefacts; (ii) do not 
provide the needed level of detail; or, (iii) leave room for uncertainty in the specification of the 
relation between the business and software, which is a critical modeling when targeting 
traceability. As a result, both: business and software architectural control [Perry & Wolf, 1992]; 
and, the application of agile development solutions [Beck et al., 2001], are difficult to attain. 
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This thesis describes “The Goals Approach”, which aims at serving as a common language to 
support EDP. By conveying the perspectives which are usually involved in in-house software 
development and business management, we elaborated a method called “The Goals Approach”, 
originated from the “Goals Software Construction Process” [Valente, 2009], where “Goals”, an 
acronym, was ideated as “Goal-Oriented Approach (Led) Software”, expressing the target of 
letting the software development being “led” by the goals of the business processes, now 
abbreviated to Goals Approach, and referred as “GOALS” throughout the thesis. Our work 
focuses in-house software development, for the reason that many enterprises should be aware 
that they can develop their own software, and because it is where it is originated from. 

GOALS is based on a single language, modeling: the customer service and business processes 
of the enterprise; and: the User Interface, the Business Logic, and the Database of the 
Information System, given a Model-View-Controller (MVC) pattern [Zukowski, 2013]. It 
produces a software architecture that includes the business architecture as its “back-bone”, 
ensuring traceability of business and software. By providing: a single structure based on a single 
architectural language; and the application of each technique; in a single method, we believe 
that we are creating conditions to enable the fluent dialogue of the (usually) multi-disciplinary 
teams that carry on the daily enterprise development practice (or EDP). 

Our method provides support for the following development roles of practitioners: 

• Business Owner, by providing a holistic view of the business and software, and an EDP 
that guides the modeling of both structures using a single method and language; 

• Service Designer, by providing a tool to elaborate the customer interaction with the 
business, identify applicable regulations, the used and produced resources and systems; 

• Business Process Manager, by proving a tool to design business processes with 
enhanced detail concerning their tasks, the used spaces, the regulations and data, using 
modeling concepts which are understood in the software domain. 

And complementarily, by providing a tool for software modelers, namely: 

• Software Architect, by providing a holistic view of the Information System context, a 
process, a method, techniques and a modeling language that facilitates the elaboration 
of the conceptual architecture of the Information System; 

• User Interface Designer, by supplying a structured business model, that includes the 
service design, regulations and resources, providing a user task context, to which are 
applied user-centered techniques targeting performance and testing; 

• Software Developer, by providing a Software Architecture that allows understanding 
the dependencies and importance of each programmed class by relating each component 
with the business model artefacts. 

The Goals Approach is presented using capital letters (GOALS), a situation also be applied to 
other method’s names in order to facilitate recognition among Models and GOALS Modeling 
Concepts (both capitalized), Techniques (italic capitalized) and business and software 
development usual concepts (italic not capitalized) names. We present GOALS as a solution to 
model and trace business and software, and as a contribution for the communication among 
enterprise developers, targeting the improvement of their productivity, namely concerning the 
production of better software and the identification of new opportunities of cooperation and 
improvement in iterative (bigger or smaller) increments, as our background and motivation. 
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1.1. Origins 
The combination of views and models is one of the originalities of the GOALS Approach. The 
approach relies on existing business and software languages to describe its underlying concepts. 
Our approach is mainly based on WISDOM [Nunes, 2001] which supplies the core software 
engineering process and the User Interface design focus [Nunes & Cunha, 2001], and on 
PROCESS USE CASES [Valente & Sampaio, 2007] (which is also a WISDOM extension), 
that establishes a structural relation between the business and software models using essential 

use cases [Constantine & Lockwood, 2001]. The GOALS Approach applies CTT (Concur-Task 
Trees) [Paternò, 1999] in two-steps: (1st step) decomposing essential use cases in terms of User 
Intentions using a Task Model; and (2nd step) decomposing User Intentions in User Interactions 
applying the BEHAVIOR DRIVEN DEVELOPMENT (BDD) [Chelimsky et al., 2010]) 
method, describing the system behavior, and designing the User Interface using modeling tools 
of the ACTIVITY MODELING (AM) method [Constantine, 2006]. The structuring of the 
system behavior and the internal structure of the Software Architecture comes from the 
WISDOM Software Architectural Technique, that provides support for the User Interface and 
complements the Domain Model [Booch et al., 2005], for the specification of the Information 
System. GOALS is structured on DEMO [Dietz, 2006] as a mean to specify how business 

processes human interaction is supported by GOALS User Tasks (essential use cases), 
including DEMO Action Rules and Object Classes, which are complemented with the 
Interaction Space (IX) concept, in order to support human interaction representation beyond the 
standard in-person interaction, and for more than two actors. 

 

Figure 1. GOALS Origins. 

Figure 1 summarizes the methods from which GOALS is originated, firmly based in SE by 
means of RUP [Kruchten, 2004] and USDP [Jacobson et al., 1999], and complemented with a 
(user-centered) Human-Computer Interaction (HCI) perspective since the beginning by means 
of the WISDOM method, which is complemented with ACTIVITY MODELING (AM) 
techniques concerning the design for performance, later complemented with BDD. This logic 
was extended to the Enterprise Engineering (EE) domain by the means of the PROCESS USE 
CASES method, and based on DEMO concerning Enterprise Architecture specification. 
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1.2. Motivation 
The main motivation for the establishment of a single language is the improvement of the 
Software Development Process (SDP) performance. A unified business and software modeling 
language and method opens a space of communication for those who carry on the practice of 
modeling the business and the software. We formalize that a software development team 
includes the Software Architect, the User Interface Designer and the Software Developer 
stakeholders. They have the responsibility of deciding the process, method, techniques and 
implementation models of the Information System. The project team is only complete with the 
stakeholders which are responsible for the business, which are the Business Owner, the Service 

Designer, and the Business Process Manager, whom have the responsibility of providing the 
resources, specifying (by modeling) and implementing (based on software or not) the business 

processes of the enterprise. We assume that any of the team members may accumulate more 
than one role, and that a role may be composed by more than one member (a team) with distinct 
backgrounds. The objective is that all may use the same models and language so that they may 
understand the BPI and its impact in the customer and collaborator relation, and 
complementarily the impact of the improvement over the structure of the Information System. 

By means of applying common development techniques, the business and software modelers 
may understand the implications of their decisions in the other modeler’s work.  And by using 
the same method, they can also understand the logic that leads from one model to the other, and 
from one concept to the other, even if they are working at the top-level concept (the goal of the 
business process) or the detailed User Interface component that allows its faster execution. By 
using the same language (and notation), project meetings may be faster, and by using the same 
models, the documentation may be reduced and will also be more easily recognizable, since it 
will be recurrently reused for the purpose of the ongoing “project dialogue”. As such, the 
produced models also have value for more stakeholders. By using recurrently the (same) 
notation, the semiology of the development practice may also benefit from the stability provided 
by the usage of common business and software symbols, and therefore may more easily be 
assimilated by the patterned enterprise development practices which may already exist. Beyond 
the objective of organizing and facilitating the process of transferring business requirements 
and transforming them in a software architecture, also exists the objective of being able to 
understand how much working-time an Information System will take to be finished. Those 
metrics depend directly on the design of the business and the software parts which will be 
implemented. Yet, its measurement and therefore its estimation, can only be attained if the SDP 
is properly stabilized concerning the production of software as a business-support for the 
enterprise, probably optimized by means of the usage of a single enterprise modeling language.  

These are the main inspirations that drive our research, which also reflect a desired state of 
evolution of the Software Engineering (SE) discipline, from an ancient state of chaos 
[Morgenshtern et al., 2007], to a more stable but still unproductive phase, that reports that full 
software development project success is only around 20% (within budget and time) [The 
Standish Group, 2014], despite the advances introduced by agile methods [VersionOne.com, 
2017], and by the user involvement in the development process [The Standish Group, 2013]; to 
a phase of maturity where there is the increased awareness on what may be the Return of the 
Investment (ROI) based on the business and software design decisions as an ultimate challenge 
[Valente et al., 2015]. Our motivation is now expressed in terms of the business and software 
modeling contributions which we introduce as follows. 
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1.2.1. Business Modeling Contribution 
One of the key factors for project success is reaching team consensus over the BPI concerns, 
which is easier if the team understands the relation of each of the business with each of the 
software modeling concepts, in order to promote a faster and more effective understanding. By 
using concepts which are originated from the scientific domains usually involved in in-house 
software development, with adaptations in terms of: scope, structure and relation (between 
concepts); our language introduces fruitful changes to the software development practice. The 
first change, of structure, is that business processes should be named after their goal, as it is the 
enterprise-recognizable business concept that reflects the undergoing objective, helping 
focusing the target of software implementation. The second change, of scope, concerns 
modeling the activities of the business processes using essential use cases [Constantine & 
Lockwood, 2001], which are defined as “a complete task performed by one actor”, in order to 
withdraw margins of uncertainty concerning requirements elicitation, especially in terms of 
number, establishing a simplified and comprehensive (an “actor task-sized”) relation between 
business and software models. The third change, of relation of concepts, is the inclusion of the 
Interaction Space (IX) as the space where communication between actors happens, and where 
specific regulations are applied over the management of certain data. The relation between 
goals, essential use cases, IXs, regulations and data, is the “key” that enables the composition 
of a business model that allows rationalization about the enterprise development problem on a 
single diagram, and serves as the “door” to the specification of the Information System which 
will support the BPI, as those concepts will be detailed, complemented and included as a part 
of the final Software Architecture. By means of using the same language in a single top-down 
analysis logic (from business process to data set), we are also creating conditions to focus on 
what are the more important concepts that must be transferred from the business team to the 
software development team. As a result, less work may be lost in the transfer, and there is no 
need for translation efforts, contributing to increase the performance of the EDP. 

The main contribution for the business modeling is related to the specification of a Business 
Architecture that can receive software architectural support independently of the type of design 
of its business processes. The Business Architecture (represented by the Enterprise Structure 
model), becomes part of the Software Architecture, composing the Enterprise Architecture. The 
Enterprise Structure includes the Interaction Space (IX) as the “aggregator” of data and 
regulations which are at the disposal of the tasks which may be performed in those logical 
spaces. The IX allows the representation of the interaction of one, two or more actors, and the 
representation of the physical space where they interact, and which actions are performed. The 
IX is then included in the Software Architecture as the component that ensures the application 
of the business regulations (Business Rules, BR) and the usage of the data (Data Entities, DE). 
The IXs, BRs and DEs are therefore shared concepts of the Business and Software 
Architectures, which also represent a contribution to the SE domain by means of the inclusion 
of the BR concepts as the business-specific concept of the Business Logic layer of the MVC 
pattern of the Information System. 

Although the proposed modeling structure may be complemented in order to measure business 

process performance, using e.g. Key Performance Indicators (KPIs), these aspects are out of 
the scope of current version of our approach, as its main target is the provision of a tool that 
introduces enterprise enhancements which advantage is not in question of doubt, or in other 
words, are “structural” to the enterprise. 
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1.2.2. Software Modeling Contribution 
The SDP performance can be strongly increased if the business model of the enterprise is 
structured on components which are meaningful to software practitioners, and which may be 
further detailed in order to produce the Information System internal structure. This is possible 
by means of the detail of the human activity “down” to the level of interaction, and may be 
achieved by using Human-Computer Interaction (HCI) techniques, representing an added value 
for both business and software modelers, as they will be able to identify the Information System 
components that support the business process-driven human mental and physical (partial, 
working) activity. Once this is achieved, the dialogue between business and software modelers, 
including User Interface Designers, may be fluent and potentially more fruitful based on a 
better understanding about the business-problem and software-solution under analysis, 
prospecting a project team faster agreement concerning the operationalization of the BPI. By 
integrating the Enterprise Structure (Business Architecture) as the conceptual “back-bone” 
structure of the Software Architecture, the received components (instantiations of concepts), 
only have to be complemented with software-specific components to be conceived as the final 
Information System implementation-independent architecture (the Software Architecture). As 
the produced structure is directly related to an MVC implementation model, a standardized 
straight-lined process may be assembled, based on a methodical implementation process easier 
to carry out, eventually with a closer support from business modelers. 

As our focus is the organization and coordination of business and software modeling, the 
measurement of the development performance is out of the scope of the current version of our 
approach, as the organization and automation of the SDP can be seen as a pre-requisite of 
software success, aiming in the first place the effectiveness of the process, and in second place 
its efficiency. 

1.3. Research Question 
The research question of our thesis concerns the establishment of a language and method to 
produce the artefacts which are needed for in-house software development. The question is 
considered as holistic in the perspective that, with a single language, one must be able to 
develop software solutions to all the business activities that manage enterprise data. The 
pertinence of the question exists because actual software development methods do not cover all 
the business and software modeling relevant aspects maintaining traceability, and because the 
ones that do are not supported by a development method. The research question is formulated 
as follows. 

Q1: Is it possible to establish a modeling language that can be applied by a single method 

which is representative of the organized business activity and its supportive software system? 

The research methodology was oriented by means of the usage, generalization, conciliation and 
exclusion of scientific research methods and concepts from distinct research domains 
concerning software development, during software practice in the University of Madeira 
(UMa), a medium-sized enterprise, between 2002 and 2011. From this practice, an initial 
version of GOALS was published as GOALS SOFTWARE CONSTRUCTION PROCESS 
[Valente, 2009]), which (summarizing) was an extension of the WISDOM method [Nunes, 
2001] by means of the PROCESS USE CASES method [Valente & Sampaio, 2007], using the 
UNIFIED MODELING LANGUAGE (UML) [Booch et al., 2005]. 
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The research method is originated from a logic that results from software development practice 
with academic support as needed. This first application resulted in the elaboration of the 
Software Architecture for a “major” BPI in the University of Madeira that included 5 “core” 
business processes (from the pedagogical service: “distribution”, “scheduling”, “preparation”, 
“lecturing” and “evaluation”). The Software Architecture was produced using WISDOM, and 
related to the enterprise business processes by means of PROCESS USE CASES, and its User 
Interface was designed using CANONICAL ABSTRACT PROTOTYPES [Constantine et al., 
2003], which received support from the HYDRA framework [Costa et al., 2007], for the 
implementation of the User Interface using the remaining identified (Business Logic and 
Database) Software Architecture components. The application was replicated for the 
implementation of 7 business processes (course “course inquiry”, “business unit management”, 
“facilities management”, “facilities access control”, “academic billing system”, “student credits 
accreditation”, and “student academic background”), and leaded to the establishment of 
GOALS as an internal SDP standard. The method was further used for 3 more BPIs (“course 
accreditation”, “student’s academic requests” and “voting system”), before it was formalized 
starting in 2012, and continued to be applied as a form of validation of its models in other BPIs. 
Since traceability was found to be an unsolved problem in both Enterprise Engineering (EE) 
and SE domains, the method was formalized concerning the methodical application of its 
development techniques in consecutive steps. 

As our research question targets business and software Information Systems modeling 
traceability, our hypothesis reflects the establishment of a language of shared concepts as a 
solution, as follows. 

H1: It is possible by means of a cross-consistent relation of business and software concepts, 

and by modeling the business human activity and relating it to software-specific components of 

the software model by means of the application of architectural patterns. 

The strategy that sustains H1 is mainly based on the identification of the spaces where users 
carry on their tasks, aggregating in a logical relation: the tasks, the business regulations and the 
data that apply in each case. These spaces are called as Interaction Spaces (IX), and where 
found, in our opinion, to be the missing part of the business representation of existing methods, 
and it is based on it that we apply the remaining techniques that bridge business and software 
modeling. With the purpose of supporting H1, and beyond the validation provided by its 
recurrently successful application, GOALS also received distinct forms of validation, 
concerning: (1st) its performance, (2nd) its business structure, and (3rd) its conceptual structure: 

• First, a study of the application of the method was carried out for five BPIs [Alves et 
al., 2013], using the iUCP method [Nunes et al., 2011] for post-project estimation and 
comparison of software development effort, revealing a performance stability that 
allowed the identification of: requirements volatility, software framework (change), and 
project type ; as aspects that add more (negative or positive) impact to the development 
productivity than considered by the initial UCP method [Karner, 1993]. It led to the 
proposal of a new formula which would reflect those aspects with higher accuracy. The 
statistical evidence was observed for a seven BPI sample [Alves et al., 2013, p. 4] (P1 
to P5, “facilities access control”; “academic billing system”; “students credits 
accreditation”; “course accreditation”; and “student’s academic requests”; and two BPIs 
(P6 and P7) from other stable software development environments, using other methods. 
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• Secondly, it was also evaluated concerning its business conceptual structure, by means 
of the comparison with the DEMO [Dietz, 2006] business process equivalent 
representation [Valente et al., 2016b], highlighting the inclusion of the IX as the solution 
to provide software architectural support for the (DEMO) business process 
Transactions, modeled with essential use cases to represent human activity, and 
including the IX as the element that provides support for that activity by ensuring 
regulations and data conformance, for two of more actors performing their tasks 
(essential use cases) in remote or in-person interaction. 

• Thirdly, the GOALS language structure was validated concerning the cross-consistency 
of concepts [Valente et al., 2017] (in a 10 step method, now presented in 8 steps), and 
architectural restrictions concerning the organization of the business and software 
models. The validation (extended) is presented in Section 6.1. Cross-Consistency. The 
method was also published concerning its agile Human-Centered Software Engineering 
(HCSE) perspective [Valente et al., 2016a], as a trade-off between agility and 
traceability (architectural control) of business and software representations. 

Based on the previously referenced work, the formalization of our method when through 
distinct phases, which are described as follows: 

• Effort Estimation and SDP Productivity Evaluation. A study was carried out in order 
to evaluate the use case as a “measure of effort” concerning software productivity using 
the GOALS method. With a sample of five (University of Madeira) projects, two 
projects from other enterprises were added, providing a (statistically workable) 
heterogeneous sample of seven. From the analysis of the factors that mostly affected 
each project (requirements volatility, software framework (change), and project type), 
it was possible validate a new formula effort of the iUCP method, by giving those factors 
a (bigger) weight that would reflect their real impact. The study received the honor of 
“Best Full Paper Award” from the conference. 

o (Full Paper) [Alves et al., 2013] Alves, R., Valente, P., Nunes, N. Improving 

Software Effort Estimation with Human Centric Models - A comparison of UCP 

and iUCP accuracy. In: Proceedings of 5th ACM SIGCHI Symposium on EICS 
'13, London, England. pp. 287-296. (2013) 

• User Experience and Service Design. A study was carried out, directed to the HCI and 
SE industry practitioners (sample of 97 questionnaires), in order to understand how the 
User Experience (UX) concerns were considered within the software development 
practice. It allowed understanding how strongly BPI (“business reorganization”) 
projects are related to the (paper) prototyping of the User Interface, namely in the phases 
of requirements elicitation, design and testing. And confirm that refactoring is strongly 
correlated to requirements evaluations (introduction or change). 

o (Full Paper) [Alves et al., 2014] Alves, R., Valente, P., Nunes, N. The State of 

User Experience Evaluation Practice. In: Proceedings of the 8th Nordic 
Conference on Human-Computer Interaction, pp. 93-102. (2014) 

• Intention to Improve Software Estimation. A position paper was published, declaring 
the importance of introducing changes to the SDP that would allow measuring the ROI 
of a project after requirements elicitation and before software implementation. And that 
a business driven system design should dictate the effort as a target for the accuracy of 
estimation effort, aiming the production of better software. 
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o (Short Paper) [Valente et al., 2015] Valente, P., Aveiro, D., Nunes, N. Improving 

Software Design decisions towards enhanced Return of Investment. In: 
Proceedings of ICEIS 2015, Barcelona, Spain. pp. 388-394. (2015) 

• Intention to Bridge EE and SE. The intention of bridging EE and SE was discussed 
as a project in a Doctoral Consortium, including the actual business model, the 
importance of defining an enterprise-sized development process (EDP) that includes the 
software development, and how effort estimation may be based on business and 
software models in the future (by weighting architectural components). 

o (Doutoral Consortium) Valente, P., Aveiro, D., Nunes, N. (2015). Bridging EE 

and SE: The Goals Approach. Enterprise Engineering Working Conference. 
https://www.researchgate.net/publication/283289437_Bridging_EE_and_SE_T
he_Goals_Approach 

• Business Model based on DEMO. The GOALS business model and its relation with 
the DEMO model was published, and how the “bridge” to Software Architecture could 
be achieved by means of a User-Centered perspective, applying the method with a total 
of 10 steps (now reduced to 8). 

o (Short Paper) [Valente et al., 2016b] Valente, P., Silva, T, Winckler, M., Nunes, 
N. Bridging Enterprise and Software Engineering through a User-Centered 

Design perspective. In: Proceedings of the Web Information Systems 
Engineering (WISE) 2016 Conference. (2016) 

• GOALS and Systems Development. The GOALS method was published, targeting its 
meta-model and concepts cross-consistency validation. Targeting model-driven in-
house software development, focus is also made on the technology that may be applied 
to implement each Software Architecture component. 

o (Full Paper) Valente, P., Silva, T, Winckler, M., Nunes, N. The Goals Approach: 

Agile Enterprise Driven Software Development. In: Proceedings of the 
Information System Development (ISD) 2016 Conference. (2016) 

o (Extended Full Paper) [Valente et al., 2017] In: Lecture Notes in Information 
Systems and Organisation, 22. (2017) 

• GOALS and Human-Centered Software Engineering. The GOALS method was 
published focusing the proposal of a trade-off between business architectural control 
and agile (user) task-sized (User Task (UT)) improvement efforts, and the need to 
induce the multi-disciplinary work within enterprises targeting project success. 

o (Full Paper) [Valente et al., 2016a] Valente, P., Silva, T, Winckler, M., Nunes, 
N. The Goals Approach: Enterprise Model-driven Agile Human-Centered 

Software Engineering. In: Proceedings of the HCSE+HESSD 2016 Conference. 
(2016) 

Our research was complemented with the comparison of our method with existing methods that 
address the business and software models relation. The original scientific domains (EE, HCI 
and SE) where complemented with Business Process Management (BPM), Service Design 
(SD), Requirements Engineering (RE), and Service Oriented Architecture (SOA) methods, for 
the purpose of comparison in terms of the coverage of the enterprise Information System 
development problem using the Zachman Framework (ZF) [Zachman, 2008] which is presented 
in Chapter 2. State of The Art, and in terms of the coverage of the business and software 
modeling concerns, presented in Chapter 6. Validation. 
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1.4. Thesis Organization 
The thesis is organized in seven chapters, which we introduce as follows. 

• Chapter 2. State of The Art, presents the state of the art concerning business and 
software modeling traceability, focusing on the business model conception, and how 
requirements are elicited targeting the software model architecting; 

• Chapter 3. The Goals Language, presents the structure of our language, its concepts, 
stereotypes and definitions, including their meta-model, an example, and their origin; 

• Chapter 4. The Goals Process, Method and Techniques, presents the process, method 
and techniques, including two case studies based on a real software development 
projects: (“iKiosk”) focusing the method application, and; (“Star Project”), focusing the 
decisions taken during the application of the method. 

• Chapter 5. Goals EA Template, presents how our method may be applied using a 
software tool available in the market (Enterprise Architect); 

• Chapter 6. Validation, presents the validation of the language by means of its internal 
cross-consistency, and its power of expression by means of comparison with other 
methods; 

• Chapter 7. Conclusions, presents our conclusions and future work. 
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2. State of The Art 

The scope of our language and method is the modeling of the business and the supporting 
Information System, targeting the specification of a business-traceable Software Architecture 
suitable for in-house software development. In this scope, we find the intention of “bridging” 
business and software models in methods originated from Enterprise Engineering (EE), based 
on business modeling, in Software Engineering (SE), targeting software modeling, and in 
Human-Computer Interaction (HCI), targeting software system behavior modeling for the 
support of human activity. These domains specify the requirements of an enterprise Information 
System that contains data, implements business regulations, and provides adequate behavior 
i.e. an Information System suitable for the daily enterprise operation. EE, SE and HCI, are in 
the origin of our proposal, and are complemented with the Service Design (SD), Business 
Process Management (BPM), Requirements Engineering (RE) and Service Oriented 
Architecture (SOA) domains, to extend these requirements to consider enhanced service and 
business process experience and connectivity. Each domain is introduced as follows. 

In the business perspective, the SD domain represents a very wide scope in terms of Information 
Systems requirements, which refers not only to the usability of the software, but also to the 
(emotional) User Experience (UX) in interaction with the business [Alves et al., 2014]. EE 
methods model the enterprise by means of elaborating Enterprise Architectures that include 
actors and business processes, and also transactions, regulations and data structures. The 
structures may be complemented with Organizational Operative Systems (OOS) to generate 
operational software, and with software development methods concerning Information System 
engineering. Closer to the SE domain, in the field of automatic code generation, BPM methods 
produce Workflow Management Systems (WfMS) from business process models, usually 
integrating business regulations in the final Software Architecture, which has a parallelism with 
the EE approaches that produce working software. 

In a human-centric perspective, HCI methods are not holistic business representations, 
however, they consider the context of interaction and also what the user expects from the 
system, usually with structured feedback, promoting the user performance and UX, besides and 
beyond ensuring usability. Those methods also produce valid in-house software architectures 
in the cases when they also include business regulations, and produce Database valid 
information by means of business concepts that model the domain of the Information System. 

In an Information System engineering perspective, RE strongly addresses the problem of 
traceability, observing it as the consequence of eliciting requirements from business models, 
independently of the used form (e.g. goal, use case, aspect or feature); techniques which are 
crucial in terms of elicitation capability and accuracy, as requirements generate the complexity 
managed in a SDP. In SE, existing methods elicit business requirements and apply 
transformations that produce Software Architectures. These are Model-Driven Architecture 
(MDA) methods, which are mostly derived from the RATIONAL UNIFIED PROCESS (RUP) 
[Kruchten, 2004], based on the responsibility which is isolated in use cases as a source of 
requirements. SOA methods, model the service and produce web-service structures that 
implement business-to-business. The methods do not model the User Interface, however, they 
can be used for enterprise Information Systems if its conception is provided by an alternative 
method. SOA establishes a relation between the business’ needed functionality and the system 
Business Logic, ensuring traceability. 
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The more representative methods of each domain will be analyzed concerning Information 
System conception and the requirements defined by the Zachman Framework [Zachman, 1986], 
with the purpose of understanding how comprehensive each method is, and how business and 
software traceability is achieved. We present the Zachman Framework as follows. 

2.1. The Zachman Framework for Enterprise Architecture 
The Zachman Framework (ZF) [Zachman, 1986], was conceived with the purpose of 
understanding the scope of what must be controlled within an enterprise, so that all of its parts 
are documented to provide a holistic view of the enterprise architecture which may be used as 
a base of its management. The ZF scope of analysis of the enterprise includes its business and 
Information System, divided in levels, from the more abstract to the more concrete perspective: 
“Scope”, “Concept”, “Logic”, “Physics”, “Technology”, and “Product”, relative to the roles of 
“Planner”, “Owner”, “Designer”, “Builder”, “Implementer”, and “Operator”. These are crossed 
with the interrogatives: “What?”, “How?”, “Where?”, “Who?”, “When?”, and “Why?”; 
specifying the enterprise architecture independently of the used method and notation. The ZF 
provides an ontology about the object under study, which in our case is the modeling of the 
business and software systems of the enterprise, the initial purpose of the ZF, despite the fact 
that it may be used for every type of object (besides the enterprise: a project, an airplane, a 
building, etc.) [Zachman, 2008]. 

Table 1. The Zachman Framework (ZF) Matrix. 

 
 
The crossing of the ZF conceptual levels with the interrogatives is presented in Table 1, a matrix 
of 36 cells in which are specified the modeling requirements that should be applied. Each cell 
suggests models based on the crossed concepts. The “Scope” level (at the top of the ZF) 
suggests the elaboration of lists of “Identification” for: “Inventory”, “Process”, “Distribution”, 
“Responsibility”, “Timing” and “Motivation”. The underneath levels of: “Concept”, “Logic”, 
“Physics”, “Technology”, and “Product”, maintain the same logic, but now crossed with the 
modeling concepts of: “Definition”, “Representation”, “Specification”, “Configuration” and 
“Instantiation” (replacing “Identification”), getting gradually closer to implementation. 
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This logic allows the representation of the enterprise architecture, to which we introduce a 
change concerning the specification of the “Where” column and the concept of “Distribution”, 
by means of extending it to the logical location, adding it to the original proposal (which initial 
name is “Network”), which refers to physical location, allowing it to also support virtual 
enterprises. Thus, this column has enhanced meaning if both physical places and logical spaces 
of the enterprise system are also represented in the architecture, whereas, the data network, 
should only be considered at the “Operation” level, which represents the materialization of the 
enterprise, and which is out of the scope of our analysis. The more representative methods of 
each scientific domain will be matched with the ZF, according to the literature review, which 
we present as follows. 

2.2. Business-driven Modeling Methods 
Business models aim at structuring the business with humans and system as equivalent and 
complementary parts towards the operationalization of the enterprise strategy. In the business 
modeling perspective, the organization of the parts usually relies on advanced technology from 
which the Information System conception must be tailored in order to fit the enterprise 
performance needs. The Service Design (SD), Enterprise Engineering (EE), and Business 
Process Management (BPM) more representative methods are presented as follows. 

2.2.1. Service Design 
Service Design (SD) started as a discipline of marketing and management of the service, where 
the specification of products and services assumed an important role in the modeling of the 
service and customer interaction, demanding levels of usability from Information Systems that 
may support its customer-oriented strategy. The EXPERIENCE CYCLE [Dubberly & Evenson, 
2008] is a customer oriented method that defines a specific strategy for the service-customer 
relation, in which the objective is to “Orient” (the customer), “Interact” (with the customer), so 
that the customer will probably wish to “Extend & Retain” (the experience), “Advocate” (about 
it), and “Connect & Attract” (other customers). The BLUEPRINT [Shostak, 1982] was the 
pioneer method, relating services and products for the purpose of designing the service as a 
whole. The BLUEPRINT establishes a relation that can be used for different purposes, 
including the development of Service Oriented Architectures (SOA) [Becker et al., 2008] (SOA 
methods are analyzed in Section 2.4.3. Service Oriented Architecture). In the BLUEPRINT, the 
logic that relates processes and resources is the rationale behind the way of thinking, analyzing 
and delineating the business. This logic by itself is however far from the level of detail needed 
to design the proper User Interface that satisfies customers over time. SD methods also express 
human intention and activity with detail. 

The SERVICE EXPERIENCE BLUEPRINT (SEB) [Patrício et al., 2008], is a method based 
on the BLUEPRINT that decomposes softgoals and goals, and further specifies the relation 
between the actions that the user takes in the dialogue with the enterprise system as his 
experience sequence (the route), in a similar way that essential use cases are decomposed in 
terms of user intentions and system responsibilities [Constantine & Lockwood, 2001]. SEB 
prevents the over-decomposition of requirements (too much granularity) before task analysis 
that may lead to solutions more complex than necessary. It also has the benefit of increasing 
the probability of producing a more complete User Interface, since when the service design is 
evolved there is the tendency to reduce the number of interactions (touch-points), maintaining 
or increasing the number of provided services. 
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The SD challenges can also be considered as a reference concerning usability as they also 
design the user’s (customer) emotions. The MORELLI & TOLLESTRUP’s [Morelli & 
Tollestrup, 2006] method, elaborates a motivation matrix compliant with the user experience 
levels demanded by the market [Pine & Gilmore, 1998], that may eventually be used to design 
User Interfaces with a high-level of performance. This method is an example of a valid high-
level requirements modeling approach targeting the specification of Information Systems, 
however, the modeling of the internal structure of the system, or even the User Interface, is out 
of the scope of the method beyond the proposed identification of use cases. 

 

Figure 2. ZF Matching of the SD methods. 

Figure 2 presents the matching of the SD methods concerning service elaboration, traceability 
and software development. It is possible to identify that the EXPERIENCE CYCLE and the 
BLUEPRINT methods cover the top of the conceptual logic of the ZF, providing insight of the 
logic of the business, the customer intention and the expected route of interaction. The Becker 
method focuses on functionality in a SD branch that directly relates to SOA, and the MORELLI 
& TOLLESTRUP’s method focus on motivation not however providing a software 
architecture. The SEB method relies on essential use cases decomposition based on a line of 
interaction avoiding use cases indefiniteness in the representation of the customer relation. 

2.2.2. Enterprise Engineering 
Enterprise Engineering (EE) has emerged as a discipline for the application of knowledge, 
principles, and techniques to the analysis, design, implementation and operation of all elements 
associated with an enterprise. Existing methods derive software solutions from business models 
in the process of architecting and engineering the parts of an enterprise that suit its 
implementation and governance. The development of an Enterprise Architecture is a usual 
practice of EE methods, which widely vary in scope and form of representation of the enterprise 
business, being more market oriented and less software-architectural, or more Information 
System development oriented and less human-centric. 
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The Business Motivation Model (BMM) is an enterprise strategy model. BMM targets the 
specification of the reasons “why” the enterprise acts towards a given “objective”, and how it 
should achieve it. The model serves as a support in order to understand the existence of the 
business processes of the enterprise, and what are the desired results, according to the enterprise 
strategic vision. BMM reflects only a part of what is the business model, since business 

processes are not designed, as the concerns are more related to the courses of action as a whole, 
and the related business rules and policies conception, including their relation to internal and 
external motivators. BMM does not consider the software model. 

The Open Group Architecture Framework (TOGAF) [The Open Group, 2011], is a method that 
predicts the elaboration of a business, a data, a technology, and an application architecture. 
TOGAF targets the specification of the enterprise, and the identification of its building blocks 
using the ARCHIMATE language [The Open Group, 2012]: “Application Component”, 
“Application Function”, “Application Interface”, “Application Service”, and “Data Object”. 
These architectural components may be related to equivalent business components, including 
“Business Services” and “Business Processes”, and also to infrastructure (e.g. software server) 
components. However, the identified building blocks do not provide enough detail in order to 
architect the software system, and as such, TOGAF does not establish a relation that ensures 
traceability at the level of the implemented component. Yet, as the application parts are 
identified along with the business processes, other SE methods may be used in order to model 
the software, such as the ARMSTRONG method [Armstrong et al., 2013], published by The 
Open Group. The resulting transformation of the method uses the “Business Interaction” to 
derive “Business Use Cases” between the involved actors, and then use an Activity Diagram to 
represent the business process of that interaction, with which it derives the functionality that 
must be implemented by use cases. In our perspective, this method also leaves gaps in the 
relation between the business and software modeling relation, namely: what is the relation 
between the “Business Use Cases” and the business process “activities”, and what is the relation 
between the “activities” and the use cases, also skipping the design of the User Interface. 
Moreover, TOGAF provides a set of modeling tools and documentation which we do not find 
as suitable for in-house software development, and observe it as a potential threat to the 
efficiency of the SDP due to management time overhead. 

DEMO [Dietz, 2006] is an enterprise engineering method that produces valuable business and 
software artefacts concerning Information System conception. Software development is usually 
prospected using the GENERIC SOFTWARE DEVELOPMENT PROCESS (GSDP) [Kervel 
et al., 2013], which derives software specifications from the DEMO enterprise ontology to a 
system ontology. However, DEMO and the derived methods do not contemplate the User 
Interface design, since the user task model does not provide sufficient detail besides the 
(“coordination”) acts (“request”, “promise”, “state” and “accept”), of a transaction between 
two actors. Another approach to Information System conception is the software 
operationalization by means of ORGANIZATIONAL OPERATING SYSTEMS (OOS) 
[Páscoa & Tribolet, 2015], which is also based on DEMO models, in order to deploy operational 
software. Yet, as DEMO does not produce enough information for User Interface specification 
besides the business process work flow and the coordination acts, the usability of the system 
cannot be ensured, resulting in conceptions that need User Interface adjustments in order to be 
usable [Hintzen et al., 2014]. 
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ARMOR [Engelsman & Wieringa, 2012] is a method that adapted concepts from other 
methods, namely TOGAF [The Open Group, 2011], KAOS [Lamsweerde, 2000], i* [Yu, 1995], 
TROPOS [Morandini et al., 2014] and BMM [Object Management Group, 2007] in order to 
establish the specification of an Enterprise Architecture. The ARMOR architecture specifies 
the business in terms of stakeholder’s goals, including the “influence” to which they are subject 
to, the possible “conflicts”, and their decomposition. From the decomposition of goals, 
ARMOR derives “requirements” and then establishes a relation of one-to-one with the 
“Architecture Component” concept. There are more EE methods relative to enterprise 
architecting, like the LIVING MODELS [Breu et al., 2011] and the ZIKRA [Zikra, 2014] 
methods, which propose the formal design of business processes and software components, 
however, not with enough detail and without a well-defined software development method. 

 

Figure 3. ZF Matching of the EE methods. 

Figure 3 presents the framing of the EE methods in the ZF. These complement each other to 
cover the layers “Conceptual” to “Technology”. DEMO and TOGAF cover most of the 
modeling needs concerning the “What” and “How” columns, DEMO covers three layers of the 
“Who” and “When” columns, and is complemented in the “Technology” layer by the OOS, 
concerning software operationalization of actors and their coordination in transactions. The 
“Why” column is covered by the BMM (which is its main target), DEMO at a conceptual level, 
and the regulations implementation is left to the OOS and GSDP methods, in the “Physics” and 
“Technology” layers, respectively. As we do not find evidence of User Interface design in the 
presented methods, that chasm should be left to the GSDP method (in the “Where” column), 
but since no detailed user information is produced to from transactions and cannot find further 
evidence of its effectiveness in the literature, we also highlight that indefiniteness (with a red 
lined opaque rectangle). Still in the “Where” column, the TOGAF fills the “Designer” layer by 
means of the ARCHIMATE “Business Interface” and “Location” concepts. The ARMOR 
method distinguishes itself by means of modeling concern which may be matched win the 
“Scope” layer, namely by accessing stakeholder’s concerns as its main target. 
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2.2.3. Business Process Management 
Business Process Management (BPM), in the considered analysis scope, refers to the 
automation of business processes. BPM has evolved over time by means of the introduction of 
business process models and the execution of modeling languages [Ouyang et al., 2009], in 
order to produced Workflow Management Systems (WfMS). Software is designed according 
to the logic of business processes, producing User Interfaces that work, in which however 
usability is not addresses, as the information to achieve it is not present in the development 
process, reason why it is impossible to expect adequate behavior from the system without 
further complementing the methods with a user-centered perspective. The Business Process 
Model and Notation (BPMN) [Hagen, 2010], is the reference language on which rely most of 
the execution languages that implement workflow standards [Garcês et al., 2009]. BPMN is a 
business process modeling language, which however does not have a method to apply it in order 
to produce valuable software solutions in a patterned way like other methods do. 

The methods of KLUZA & NALEPA [Kluza & Nalepa, 2013] and DECREUS & POELS 
[Decreus & Poels, 2011], are examples that derive requirements from BPMN activities, 
providing however an unclear relation between business and software, and an incomplete 
software architecture which is seen as insufficient to be considered as electable for in-house 
software development. Besides that, the indefiniteness of the relation with the business process 
activities, which may result in many or few user tasks, impedes the creation of a stable business 
and software relation. This increases the probability of generating unnecessary entropy in the 
software modeling method, producing a solution which may be more complex than the problem 
itself, i.e. not as much simplified since the beginning as it could, increasing the probability of 
introducing combinatorial explosions in the system [Aveiro et al., 2015]. 

It is however possible to identify that by means of providing business semantics, which is the 
case of the KLUZA & NALEPA method, and doing it by means of identifying business rules 
tasks (“BR Tasks”), as impositions of the system when dealing with existing BPMN activities, 
the resulting requirements are also semantically similar to use cases. The semantics are also 
applied in the method of PÜTZ & SINZ [Pütz & Sinz, 2010], which presents a more structured 
derivation of workflow systems, as they derive BPMN models from business processes using 
the Semantic Object Model (SOM) notation, an approach which is close to SOA methods, 
relating actions and resources, and those actions to BPMN activities, however, not designing 
the User Interface. This situation also happens with the MINERVA method [Delgado et al., 
2010], which also relies on SOM and BPMN, in this case orienting the solution to a SOA 
concerning a final software architecture. A similar approach is presented in the BPLSOA 
method [Cardona & Duarte, 2013], which applies Software Product Lines (SPL), developing 
“Service Points” (web services) per BPMN activities. 

Figure 4 presents the ZF matching of the BPM methods, which in the most common case find 
the solution for software generation in business regulations and domain concepts, however 
without contemplating the User Interface design, therefore not being suitable to support the 
needed service usability and UX demands. When semantics are added to the method, that is 
reflected in the ZF within the “Scope” level, facilitated by the higher-level concepts used by 
those methods. The cells which are not specifically covered by BPM methods are related to the 
“Where” column and “Designer” and “Builder” levels, which is more specifically the human-
computer interaction aspects of Information System development, identified as “HCI”. 
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Figure 4. ZF Matching of the BPM methods. 

2.3. Human-centric based Methods 
Human-centric methods involve the human (user) perspective in the design of the system, 
initially bridging HCI and SE [Nunes & Cunha, 1999], by proposing techniques that may be 
incorporated in the development process [Joshi et al., 2010], which in our opinion should be 
“native” in the quest for a holistic and effective SDP. In a systems engineering perspective, 
methods seek to enhance the effectiveness and efficiency of the system grounded on the 
perspective of the user, instead of (only) the internal structure of the Information System. 

2.3.1. Human-Computer Interaction 
Human-Computer Interaction (HCI) methods establish architectural relations between the 
business process human activities and the design of the User Interface, yet not always 
considering the full complexity of the Information System. 

Existing methods design the system from a User-Centered Design (UCD) perspective, focusing 
on the design based on user analysis, from which the CEDAR [Akiki, 2013] method is an 
example, as it designs the User Interface based on task analysis, complemented with data 
models, from which our approach is different as it complementarily conceives the Business 
Logic layer. The same situation happens with SOUSA [Sousa et al., 2008] method, that 
structures the software architecture by means of deriving implementation solutions from the 
decomposition of the business processes mapped as “activities” and “tasks”; a straight-forward 
and practical solution that can be used to generate code of an Information System which User 
Interface was conceived, based on a user-centered perspective from business process models 
with no traceability gaps, which is a single situation that we find in the literature besides our 
approach. The SEMI-FORMAL FRAMEWORK [Bowen & Dittmar, 2016] is an example of 
an HCI method that has concerns related to collaborative User Interface design, since in the 
HCI domain, the level of elaboration of the User Interface is so detailed that the same User 
Interface may need working hours from more than one designer. 



The Goals Approach: Business and Software Modeling Traceability by means of HCI 

19 
   

NAVARRE [Navarre et al., 2009], presents a method that produces enough information to 
develop a Software Architecture driven by user task modeling, and by relating the user actions 
with system functions, and producing enough semantical information to design a Database. 
Similarly to agile methods, the business structuring is out of the scope of this method, yet it is 
compatible with conception following User Task identification, with a User Interface 
architecture oriented for critical systems, where the interaction level is always specified with 
the intention of producing immediate system feedback. The feedback is mandatory in an 
adequate enterprise Information System, yet, this level of feedback is beyond minimal 
implementation, which is in our perspective is letting the user know the result of its operations. 

 

Figure 5. ZF matching of HCI methods. 

Figure 5 presents the ZF matching of the HCI methods, which elicit user requirements from 
human activity and develop a software architecture, covering the greatest part of the software 
development and SE architectural requirements, with advantages in terms of User Interface 
design. HCI methods produce software architectures suitable for in-house development, yet, do 
not usually representative of the business, except the case of the SOUSA method. The relation 
with the business is structured by means of task models and user stories, a relation of user 
activity and software components targeting user performance. The specific feedback supported 
by the NAVARRE method is highlighted by filling three layers of the “When” column. The 
CEDAR method is comprehensive concerning data management. The BOWEN&DITTMAR 
method reveals the level of detail of the HCI methods in terms of User Interface design. 

2.4. Software-oriented Modeling Methods 
Software models aim at architecting the software parts which are relevant for implementation, 
in which perspective business and human needs represent the problem under analysis, and the 
software parts represent the software solution for the Business Process Improvement (BPI). The 
methods that predict the capture of requirements from business process models targeting 
software architecture elaboration, are within the scope of our analysis, to which we provide a 
historical background of the main field of Software Engineering. 
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2.4.1. Requirements Engineering 
Requirements Engineering (RE) gained importance within the Software Engineering (SE) 
domain in the 1990’s when requirements elicitation was established as the first phase of the 
waterfall model. Later, with the introduction of software development methods, namely the 
RATIONAL UNIFIED PROCESS (RUP) [Kruchten, 2004], it gained new importance, as the 
engineering process that would be carried out along the overall SDP, where use cases assumed 
a preponderant role, today extended to other types of requirements, namely goals. RE methods 
model the business and its human activity producing specifications that can be used for software 
modeling. Traceability is a priority expressed by the principle that once requirements are 
elicited, they should be tracked along the lifecycle of the requirement until the generated code, 
even if the retro-traceability, from the software to the stakeholder strategical needs, is lost in 
this process over time [Nair et al., 2013]. Traceability efforts mostly concern: pre and post-
requirements i.e. track requirements to their origin, and to their implementation, respectively; 
and the need to maintain traceability along the requirement lifecycle. Applied techniques mostly 
rely on use cases or goals [Loniewski et al., 2010]. 

KAOS [Lamsweerde, 2000], is a Goal-Oriented Requirement Engineering (GORE) that aims 
at specifying the basic operations that a system must comply with in order to support the 
business goals and the user expectations. KAOS defines a model that relates those goals 
(including the expectations) with the parts of the system which are operated automatically or 
by human action. The method provides an approach to the specification of the functionality of 
the system (Business Logic), however, not addressing its full complexity, namely the Database 
and the User Interface. 

The ULLAH & LAI [Ullah & Lai, 2011] method decompose business goals and complement 
them with software models, and are examples of the concern of aligning business and software 
by means of maintaining traceability, yet not producing a software architecture usable for in-
house development. The GONZÁLEZ & DÍAZ [González & Díaz, 2007] method, combines 
goals and use cases, and the KORHERR & LIST [Korherr & List, 2006] method withdraws 
use cases from business processes modeled using UML Activity Diagrams, yet, both presenting 
an unclear relation in this extraction (of use cases), leaving space for uncertainty in terms of the 
number of structured requirements. The I-STAR (I*) framework [Yu, 1995] considers the 
complete “tasks” and their dependence relatively to “resources” and “goals”, that may be used 
to capture the requirements for the elaboration of an Information System, which can be used 
e.g. to model the data warehouses [Mazón et al., 2007], solely based on the requirements 
information produced by I* and the application of software architectural patterns. 

 

Figure 6. Example of Business Process to Use Case Relation Indefiniteness. 
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Figure 6 presents one example from the KORHERR & LIST method of how the derivation of 
use cases can be carried out, in this case, from UML activities. The technique method is 
representative of the problem that we raise concerning the capturing of requirements from 
business processes, which we define as a problem of “requirements indefiniteness”, as it is in 
most cases impossible to know with how many structured requirements (in this case, use cases) 
the user will carry on in his task. E.g. the “Record the Claim” and “Calculate Insurance Sum” 
are performed consecutively, and are related to three use cases, and the question that stands is 
if there is the need for two or three (or more) User Interfaces, or if only one. A similar situation, 
but based on goals, happens in the GONZÁLEZ & DÍAZ method. 

Figure 7 presents the matching of the RE methods in the ZF, where it is possible to identify that 
methods work between the “How” and “What” columns, producing artefacts valid for software 
development, leaving the rest of the Information System conception to the SE methods that use 
the elicited requirements for their SDP (marked by green rectangles). The business process 
requirements modeling indefiniteness is highlighted with a red oval. I* is the most 
comprehensive method, namely by modeling the “reasons why” actors need to perform their 
tasks, in which is accompanied by the KAOS method. Contrarily to use cases, goal oriented 
approaches provide a social perspective that provides context to the design. As such, use cases 
are more direct to software implementation, and goals are more oriented to the description of 
the business, including the user. 

 

Figure 7. ZF Matching of the RE methods. 

It is based on RE techniques that the existing SDPs rely on in order to be successful in the 
process of designing software. However, from our analysis we infer that despite targeting 
software development, methods do not target the support of a complete software architecture, 
reason why the applied transformations are usually restrict in terms of Information System 
specifications, an aspect which also explains why traceability of business requirements and 
software implementation traceability is still unclear in terms of a stable patterned relation 
between business goals, use cases, and software components specification. 
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2.4.2. Software Engineering 
Software Engineering (SE) began with the challenges related to the management of hardware 
systems in the 1940’s, and was initially referenced as “programming in the large”. As systems 
gradually developed in complexity and required the application of traditional engineering 
practices, the scientific field acquired the current name of “Software Engineering”, leading to 
the appearance of the first (“Flow”) diagrams in the 1940’s, and the first high-level languages 
(ALGOL, FORTRAN, COBOL) in the 1950’s. The appearance of high-level languages led to 
the introduction of theories of “large programming”, and software applicability expanded due 
to his enhanced potential to solve data management problems. Operating systems and servers, 
were more powerful but the problems being solved within enterprises were also more complex, 
and software entered an era known as “the software Crisis”. As a result of this, new methods 
appeared, and it was after the second NATO conference on SE in 1968, that the software system 
development lifecycle was firstly divided in five stages: “Specification”; “Design”; 
“Programming”; “Debugging” and “Maintenance”. This led to the application of distinct 
techniques for each stage in order to gradually control project complexity, and consequently to 
its definite establishment as an engineering discipline in the late 1980’s. New methods and 
techniques were introduced since then, continuously raising SE development effectiveness, as 
its current main objective. 

Software Engineering (SE) methods are fairly complete approaches regarding business and 
software modeling, and may be divided in architectural-centric and agile. Architectural-centric 
methods focus in attaining certain quality attributes of the software architecture under 
development, and usually use OBJECT-ORIENTED SOFTWARE ENGINEERING (OOSE) 
[Jacobson, 1992], in order to apply use case-driven techniques and derive a software 
architecture from business models and requirements. Use cases were integrated in the 
RATIONAL UNIFIED PROCESS (RUP), a refinement of the OOSE-based UNIFIED 
SOFTWARE DEVELOPMENT PROCESS [Jacobson et al., 1999], where one use case 
represents at least one user interaction with the system with a certain purpose, eliciting use 

cases based on the design of business processes using UML Activity Diagrams, and developing 
the architecture of the software based on a class Domain Model [Booch et al., 2005]. 

In this process, the relation between use cases and the business process human activities is not 
structured in a clear way, as the use case scope is left to the analyst decision, leading to a 
variance in the number of use cases that may support one specific task under the user 
responsibility. This situation, earlier described as use cases “indefiniteness”, leads us to a 
situation where the “What” and “How” columns of the ZF become inconsistent. This happens 
because the relation between both can be derived in different ways, and with different results. 
As examples, this situation happens in the methods of GRAHAM [Graham, 1996], BIDDLE 
[Biddle et al., 2002] (despite using essential use cases), the FORMAL DESIGN ANALYSIS 
FRAMEWORK (FDAF) [Dai & Cooper, 2007], and DENNIS [Dennis et al., 2012]. The 
situation is further exemplified in the analysis of the business process (left) and use case (right) 
meta-model of the FDAF method presented in Figure 8, in which it is not possible to identify 
common structures between both. The business process is observed in the processing 
perspective, and the use case decomposition considers the actor, which however does not exist 
in the business meta-model. 
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Figure 8. FDAF Meta-Model of Business Process and Use Cases. 

TROPOS [Morandini et al., 2014] represents a distinct SE perspective, as a method which is 
oriented to the specification of agents and the capabilities that an Information System must 
address in order to fulfil the business model. TROPOS bases the specification of the business 
model on i*, from which information it implicitly withdraws the functions that implement each 
capability by means of the specification of Activity Diagrams [Bresciani et al., 2004], in order 
to apply the OO Analysis & Design engineering process in order to elaborate the architecture 
of the system. 

TROPOS is oriented to the interaction between agents, and for that purpose considers the goals 
and softgoals of the agents, an information that includes emotional expectations, which once 
combined may induce the specification of complementary functionality of the system. The 
interaction between actors is specified including the performed tasks and intentions. However, 
business regulations and the User Interface design is not contemplated. Moreover, the relation 
from the specification of goals and capabilities allows distinct specifications for the same 
problem, depending on the implementation strategy, and therefore, indefiniteness is also 
introduced in this case, making TROPOS closer, but with improvements, when compared to 
RUP and OOSE specification. 

Villiers elaborated the matching of RATIONAL UNIFIED PROCESS (RUP) with the Zachman 
Framework (ZF) in order to assess the method [Villiers, 2003], and proceeded by matching the 
artefacts produced by RUP in each of cell, applying the extension of the ZF for Information 
Systems architecture (Figure 9), to which we have the following observations: 

• Unstructured Descriptions: In the matching, it is possible to identify that in the “Scope” 
view, the requirements are matched only by an unstructured description, and for this 
reason cannot be validated as artefacts that ensure traceability between business and 
software modeling. The same applies to business rules. 

• Use Cases Scope: The usage of use cases (Function and Owner’s View cell) to detail 
the task of the actors (“People” and “Owner” View cell) is not sufficient to represent 
the business activity, namely its business processes, leading to uncertainty regarding 
how many use cases represent a complete task of the user, therefore leaving this relation 
specification to the business and software modelers decision. 

• “Network” as a “Where” representation solution: We do not agree on the physical data 
network, nodes and file location, as a specification of the “Where” column, since we 
believe that the network should only be represented at the Operational (or Product) level, 
and oppositely, the place where things may happen, is being omitted. 
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Figure 9. ZF Matching of the SE methods RUP and TROPOS. 

The ZF matching of RUP (by Villiers) and TROPOS is presented in Figure 9. RUP based covers 
the greatest part of the software modeling destined ZF cells, below the “Owner” View and 
including it, there is an unclear relation of use cases with the business process modeling, which 
can be seen as the space where imprecision occurs in Information Systems development within 
enterprises (represented with a red filled square). Moreover, more abstract concepts, namely 
from the “Scope” view, are not considered in a structured way, and are produced by narratives, 
and therefore do not ensure full business to software traceability (represented with a red oval). 
TROPOS, by means of the usage of I*, covers “Scope” layer cells, and further fills the “Why” 
column cells by means of the specification of the reasons why actors perform certain tasks 
based on softgoals modeling. TROPOS does not cover the User Interface design, however, it 
creates conditions for the application of methods that may cover this chasm, as the 
indefiniteness of requirements is reduced by the usage of the I* practice of specifying a single 
task (the “dependum”) between two actors (the “depending” and the “dependee”). 

Agile Methods (AM) target the automation of the system based on the incremental and gradual 
of software for the support of the business activity. They usually rely on e.g. EXTREME 
PROGRAMMING (XP) [K Beck, 1999], SCRUM [Schwaber, 2004] or SAFE [Scaled Agile, 
2017], to be operated, which are out of the scope of analysis, as they are SDPs which may be 
integrated with any object-oriented modeling language to implement BPIs at the user task level. 
Moreover, the development of architectural spikes is not observed as a positive approach to 
enterprise Information Systems development, because of the need to avoid refactoring and 
maintain business traceability. The same applies to Software Process Improvements (SPI), 
which intent is to control and improve the SDP [Development, 2010; ISO, 2003; Martins & da 
Silva, 2016], which are usually also oriented to small and medium enterprises [Laporte et al., 
2008; Paternoster et al., 2014], matching our future work namely concerning effort estimation 
and project management in the quest of enhancing the ROI of software development. Thus, for 
a purpose of disambiguation, GOALS is to be compared to business and software development 
languages and methods and not SDPs and SPIs, considering the problem being solved. 
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2.4.3. Service Oriented Architecture 
The SD domain methods that provide a software development support, mostly concern service 
interoperability business-to-business as implemented by Service Oriented Architecture (SOA) 
methods, which usually deploy web services settled in object-oriented software architectures. 
SOA is however not oriented for User Interface design. 

The approach is based in business process modeling for the specification of clusters of web 
services that are able to send and receive data, and perform operations over this data on user 
demand (by means of e.g. a third party developed User Interface). In SOA, the user focus is on 
the list of services which are provided, which are extracted from business processes [Arsanjani 
et al., 2008; Bell, 2008; Erl, 2005], using use cases SOUP [Mittal, 2006], or doing it 
independently of the used technique [Papazoglou et al., 2006]. 

 

Figure 10. ZF Matching of SOA methods. 

Figure 10 presents the matching of the SOA methods, which cover the “What” and “How” 
columns, which are the ones which are more closely related to the data and function layers of 
Information Systems concerning the MVC model, also known as Database and Business Logic. 
In the cases that use cases are used for functional requirements elicitation, the first layer of the 
ZF is also covered by SOA methods. The “Where” and “When” columns are not covered by 
SOA methods, as those articulations do not assume an important role beyond architectural 
service invocation precedence imposition 

Despite the fact that the User Interface is not designed in these methods, they are relevant in 
terms of the business and software modeling scope and can eventually be completed with other 
methods in order to produce a User Interface design, in the process of increasing the enterprise 
software development success rate. An approach that may produce similar results is the SOA 
derivation methods which are based on a user-centered perspective, to which the traditional 
SOA methods can be applied concerning Information System implementation. 
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2.5. Matching of the Goals Approach 
The matching of the GOALS Approach with the ZF, serves the purpose of understanding the 
scope of the language and method, and provides an overview of the concepts, including their 
stereotypes, which will be presented in the next Chapters. GOALS covers 24 of the 30 cells of 
the ZF. They refer to: the organization of business in the “Scope” layer, of the human activity 
in the “How” column, of interaction spaces in the “Where” column, of the user in the “Who” 
column, of relations in the “When” column, and of reasons in the “Why” column. GOALS 
provides a notation which are composed by the stereotypes which are presented in each of ZF 
cells in Figure 11. The planner cells are filled with a semiotic logic that gives meaning to each 
column, and which are considered separately from the 24 covered cells, as they are undergoing 
future work, suiting however the purpose of explaining the remaining concepts. 

 

Figure 11. ZF Matching of GOALS. 

In Figure 11, the “What” column, the business concept represents the information related by 
means of syntactic relations. In the “How” columns, the human activity is described in terms 
of User Tasks, User Intentions and User Interactions, which in the semiotic logic, should be 
applied according certain principles and wisdom, based on the knowledge which is provided by 
the components of the “Where” column, reflecting the information presented by the system. In 
the “Who” column, the actor may be modeled at different levels, namely using the information 
from his tasks, intentions and interactions. We leave the cell empty at the “Planner” level 
because the system can be used by anyone, and for that reason leave that specification void. In 
the “When” column, the syntagmatic meaning refers to the orientation to keep historical data, 
in the “Concepts” level, the transition specifies the business process design, and the dependency 
relation is used for the remaining relation between concepts. 

Hence, the GOALS business and software models allow covering the ZF from the “Concepts” 
to the “Technology” layer, which is where our focus is, as they are the ones which are sufficient 
to bridge EE and SE by means of HCI. In this delimited zone of the ZF, GOALS proposes a 
solution to solve a critical issue of User Interface and system conception by means of the 
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introduction of the interaction space concept in the business representation, as the space where 
users carry on their tasks, suggesting the implementation of the interaction between users and 
between users and Information System in a single User Interface (by default) with the objective 
of diminishing human effort by means of reducing navigation [Winckler et al., 2015]. This is 
possible because it is likely that most of the User Interfaces may be implemented in a single 
screen, without the need to alternate with other system interfaces, a mechanism which however 
may be present when needed. 

2.6. Traceability 
The analysis of Software Product Lines (SPL) facilitates understanding how GOALS solves the 
business and software traceability problem, despite the fact that the elaboration of SPLs is out 
of the scope of the problem being solved, which refers to a single system development. We use 
the example and problem statement provided by the CONCEPTUAL VARIABILITY MODEL 
(CVM) [Berg et al., 2005], to illustrate the problem of traceability as observed by SPLs.  

In the top of Figure 12, the phases of a SDP are divided in the “Problem” and “Solution” spaces, 
and at the bottom, the traceability problem refers the need to trace multiple “Requirements” 
(from the “Problem Space”), to the “Design” elements which will be implemented (in the 
“Solution Space”). It references a many-to-many relation between both sides, which may 
become unmanageable because of the need to track the changes between multiple distinct 
models. The described traceability problem is “shortcut” by GOALS by means of representing 
the “Problem Space” in the “Solution Space” (as highlighted in the top of the Figure). I.e. the 
representation of “Requirements” is materialized as “Design Elements” that will be 
implemented (programmed) as a structural part (the “back-bone”) of the software solution. 
Thus, the GOALS Software Architecture represents both the “Problem” and the “Design”. 

 

Figure 12. CVM Traceability Problem Specification. 

This applies to the phases of “Requirements”, “Domain Analysis”, “Architecture” and “Design” 
considering the CVM. Therefore, traceability is not lost as long as the business and software 
models are updated. This means that as long as traceability of design objects to code is also not 
lost, then traceability between the business model and software implementation is maintained. 
As GOALS is independent from implementation, the traceability from the design model to 
implementation is dependent on the software development framework and the relation that is 
established to the design for each type of component. As such, if the relation between the 
Software Architecture and the each implemented class is of one-to-one, traceability is trivial, if 
not, patterns to maintain traceability, automatically if possible [Tryggeseth & Nytro, 1997], 
should be considered, yet only between the design model and the source code implementation.  
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Comparing the CVM and GOALS, the identification of the commonalities (“Problem” and 
“Solution” common parts) and variability (“Problem” and “Solution” distinct parts) of the lines 
of software production, may also be carried out differently. Since with GOALS the “Problem” 
is represented in the “Design”, the identification of the differences may be carried out by means 
of identifying the common and distinct parts using a single model (the Software Architecture), 
with no need to “track-back” the “Design” to the “Requirements”. This facilitates understanding 
which version of the requirements and which version of the remaining Software Architecture 
components is valid in different SPLs. 

2.7. Conclusions 
The matching of the identified method in terms of filled cells in the ZF targeting traceable 
architectures between business and software is presented in Table 2. The SD, EE and BPM 
methods fill 19, 25 and 27 cells respectively, reflecting the representation of the business, and 
the generation of workflow and organizational operative systems from the design of business 

processes (in the cases of BPM and EE). The RE field, fills 14 cells of the ZF, which refer to 
the purpose of the domain, which is the establishment of the relation between business and 
software, and not the targeted software development. The HCI and SOA domains fill 19 and 16 
of the cells, reflecting the produced software architecture, which are User Interfaces without 
specified Database design (in HCI), and Database and Business Logic without User Interfaces. 
The SE domain, namely RUP and derived methods, fill 26 of the cells, yet, not covering the 
higher levels of specification. GOALS fills 24 cells with which it models the business and 
software, plus five cells of the “Planner” layer which are used to support the specification of 
the remaining concepts in this thesis. However, as the semiotic layer is part of ongoing work, 
these cells are still not considered in the final count. 

Table 2. Results of the ZF Matching. 

Comparison Matched Cells 

Service Design (SD) 19 

Enterprise Engineering (EE) 25 

Business Process Management (BPM) 27 

Human-Computer Interaction (HCI) 19 

Requirements Engineering (RE) 14 

Software Engineering (SE) 26 

Service Oriented Architecture (SOA) 16 

GOALS 24 

 
The importance of the number of filled cells is relative, and is merely indicative of the coverage 
which results in each domain in order to fulfil existing challenges, in this case in the perspective 
of business and software traceability. Nevertheless, considering the holistic perspective of the 
enterprise provided by the ZF, which considers the business and software models as 
complementary parts, the coverage of the 30 cells should be prospected when aiming a complete 
enterprise Information System modeling and code generation. 

In a qualitative analysis, the techniques provided by RE methods are crucial for the relation of 
business and software models, and we believe that by means of further specifying the relation 
between goals and tasks, including user-centered concerns, more effective traceable standards 
may appear. The SD challenges can be considered as an ultimate target concerning usability 
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when observed from the software modeling perspective, since the derived requirements are 
more representative of the business than those of any other domain, which once fully 
represented and structurally related to a User Interface structure, may represent an added value 
in systems development. It is precisely in this gap, the User Interface interaction modeling of 
human and system, the main purpose of the HCI domain, and an absolute and still uncovered 
need in SE, that we believe that is the weakest link, and also the key, to cover of the gap between 
the EE and the SE domains. SOA are the best example of how software development may 
become productive if it is possible to work with one less tier of software architecture, the User 
Interface, considering an MVC model. SOA is not sufficient in order to cope with the demands 
of an enterprise Information System, yet, they are an example of how traceability may be 
straightforward if it is settled in firm and simple relations between distinct concepts, even if one 
is originated from business (the business process and/or the service) and another from software 
modeling (the web service). 

The main distinction between GOALS and the analyzed methods happens in terms of the 
number of use cases which are identified in the SDP as derived from business processes, and 
in the way that those use cases are further decomposed into intentions and interactions, 
removing uncertainty from the business-to-software modeling traceability, and solving the 
requirements “indefiniteness” problem, as will be presented throughout the thesis. The pattern-
based GOALS traceability structure is complemented with the representation of the business 
model in the software model, which ensures that traceability between the enterprise relevant 
conceptual constructs is not lost. The approach allows designing the user task with detail and 
establish a direct relation with the software architecture, instead of extending the originally 
identified use cases, and losing track of the type of human behavior (intention, interaction, etc.) 
and its supportive software implementation. 

The GOALS process, structure (language and notation), method and techniques are presented 
in the following chapters.  
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3. The Goals Language 

The GOALS modeling language is composed by concepts that model the business and the 
software of the enterprise. These concepts are related in a single structure, and for each, there 
is a definition, a symbol, and a logic relation with the other concepts. Each concept is expressed 
by a Unified Modeling Language (UML) class which stereotype is the concept’ symbol, and 
the structure is a relation of usage between the classes with a multiplicity of many-to-many. 
Each of the concepts and its meaning within the language structure will be presented as follows. 

3.1. Structure 
In order to develop the GOALS language structure, two architectures have been defined to 
represent the enterprise: the business and software architectures, the Enterprise Structure and 
the Software Architecture, respectively. Together, they compose the Enterprise Architecture, 
which is complemented with a process, a method and a set of techniques, which represent the 
guidelines and way-of-building of business and software models. The Enterprise Architecture 
concepts provide the notation by means of UML class stereotypes (the symbol), and the relation 
between the classes is expressed by dependency (usage), meaning that one component depends 
on the good functioning of the other in order to properly work. 

The Enterprise Structure describes the business, which briefly states that: a Business Process 
(BP) is composed of User Tasks (UT), which are performed by users (or actors) in Interaction 
Spaces (IX) (whether physical or electronic), applying the enterprise’ Business Rules (BR) over 
defined Data Entities (DE, which are business concepts). The concepts, definition, origin and 
symbols of the Enterprise Structure are presented in Table 3. 

Table 3. Enterprise Structure Concepts Definition, Origin and Symbol. 

Concept Definition Origin Symbol 
Business Process 

(BP) 
A Network of UTs that Lead to a Goal GOALS 

   
User Task 

(UT) 
A Complete User Task within a BP AM 

 

Interaction Space 
(IX) 

The Space that provides UT Support WISDOM 
 

Business Rule 
(BR) 

A Business Restriction over 

DE’s Structural Relations 
DEMO 

 
Data Entity 

(DE) 
Persistent Information 

about a Business Concept 
WISDOM 

 
 

The Enterprise Structure allows the modeling of the business human activity, of the available 
resources (physical or logical) and the existing goals. Maintaining the same top-down logic, 
the modeling towards the Software Architecture is carried out by means of the User Interface 
which supports each UT. The “bridge” between the Enterprise Structure human activity and the 
Software Architecture is achieved by means of Human-Computer Interaction (HCI) techniques, 
establishing a relation of UTs, User Intentions and User Interactions with the User Interface’ 
Aggregation Spaces, Interaction Components and Interaction Objects, respectively. The 
relation maximizes the modeling of human activity in terms of meaning, and minimizes it in 
terms of number, inducing the simplification of the system back from the business design. 
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The interaction concepts which complement the UT in terms of human behavior structuring, 
are presented in Table 4. 

Table 4. Interaction Design Concepts Definition, Origin and Symbol. 

Concept Definition Origin Symbol 

User Intention 
The Sequence of Actions that the User 

Wishes to Perform to Complete a UT 
AM 

 

User Interaction 
The Interaction Inputs of the Information 

System Performed by the User 
GOALS 

 
 
The Software Architecture defines that an: Aggregation Space (AS) is composed of Interaction 
Components (IC) that trigger User Interface System Responsibilities (UISR) and Database 
System Responsibilities (DBSR, both belong the Business Logic layer) by means of the 
Interaction Objects (IO) and remaining User Interface structure (AS and IC) where HCI occurs 
(UT, User Intention, and User Interaction), in order to manage existing Enterprise Structure 
data (Data Entities, DE), according to the enterprise regulations (Business Rules, BR), as 
ensured by the Interaction Space (IX). 

The AS, IC, IO, UISR and DBSR are the five software-specific concepts of the Software 
Architecture, which are architecturally related to the Enterprise Structure by means of the 
specific relation of one-to-one between the (software) AS and the (business) UT, and of the UT 
with its supportive IX, inheriting its BRs as parts of the Business Logic, and the DEs as part of 
the Database. The software-specific concepts, definition, origin and symbol of the Software 
Architecture are presented in Table 5. 

Table 5. Software Architecture Specific Components, Definition, Origin and Symbol. 

Concept Definition Origin Symbol 
Aggregation 

Space 
A User Interface HYDRA 

 
Interaction 
Component 

Tool of a User Interface 
WISDOM 
HYDRA  

Interaction 
Object 

A User Interface Object that triggers SRs 
HYDRA 
GOALS  

User Interface 
SR 

A SR that provides support for User Interface 

data presentation 
AM/GOALS 

 

Database 
SR 

A SR that manages data AM/GOALS 
 

 
The concepts and their symbol provide the notation of the language, and the structure that 
relates both business and software concepts provides the syntax. The semantics of each concept 
is provided by a semiotic logic (the Ideology) that is applied to the Enterprise Structure, the 
Software Architecture and the Human Activity, in order to provide an understanding concerning 
the meaning of each concept and relation of concepts. The semantical specification is direct to 
the Enterprise Structure and reflected in the Software Architecture by means of a “meaning” to 
the IX, BR and DE concepts that remains valid to the User Interface, Business Logic and 
Database layers. The Ideology, Enterprise Structure and Software Architecture concepts 
relations are presented in Figure 13. 
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Figure 13. The GOALS Language Structure. 

Figure 13 presents the Enterprise Structure and Software Architecture concepts meta-model 
(considering the M2 level of the OMG modeling infrastructure), using UML classes which 
stereotype is the concept’s symbol, and the dependency relation is represented using a filled 
line (instead of a dashed line), for the purpose of meta-model interpretation. All the relations 
are of many-to-many, except for the one-to-one (1 to 1) relation of UT and AS. The relation of 
UT and AS is defined as of one-to-one (identified as Software Architectural Support) in order 
to promote business and software organization and traceability, establishing that when an actor 
performs a UT he does it by using a single AS, which implementation must provide all the 
desired system behavior. The Software Architectural Support is further detailed in Sections: 
3.2.2. User Task (UT), 3.3.1. Aggregation Space (AS), 3.3.2. Interaction Component (IC), and 
3.3.3. Interaction Object (IO). The remaining concepts are presented in the remaining sections. 

3.1.1. Semantics 
The semantics of the language is provided by means of the Ideology (structure of semiotic 
concepts) presented in Figure 13, which states that: an enterprise is an organization that has a 
certain ideology based on its purpose for the surrounding society, considering or not the related 
cultural premises. The ideology is based on certain beliefs and principles, which should drive 
the enterprise towards achieving success (its goals). These principles should drive the wisdom 
which users apply when carrying on their tasks, as they are materializing the enterprise’s beliefs, 
and should also be based on existing knowledge, which should be structured by means of 
syntagmatic relations, relations which are then composed of other paradigmatic and syntactic 
relations of business concepts. Paradigmatic relations are (complex) relations which are based 
on syntactic relations between business concepts of the enterprise. The ideology targets project 
team focus. The ideology and the GOALS conceptual approach is further presented in Appendix 
A – The Goals Conceptual Approach. 
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3.2. Enterprise Structure Concepts 
The Enterprise Structure is a relation of concepts that represents the business of the enterprise. 
The concepts are, from top-to-bottom: The Business Process (BP), the User Task (UT), the 
Interaction Space (IX), the Business Rule (BR) and Data Entity (DE). It provides a structured 
view of the concepts which are relevant for the functioning of the business and how they are 
related with each other. It allows business management by means of providing a single view of 
its structure, targeting its validation before software development. 

The Enterprise Structure is also the first step aiming enhanced cooperation between business 
and software modelers, as its concepts may be recognized by both domains with the inclusion 
of the IX as the common (hybrid) linking concept between the user responsibility (the UT) and 
existing regulations (BRs), which are common concepts to the business and software 
functioning, and which are based on the existing structure of DEs (the Domain Model). The IX 
represents the physical and the logical space that is used by actors to perform their tasks. Being 
a hybrid (business and software) concept, it can be used to model the physical space (e.g. a 
room), and also the logical space which will be replaced by an Aggregation Space (a User 
Interface), for the support of an actor perspective of the IX when interacting with the enterprise 
by means of the Information System. 

Each of the Enterprise Structure concepts are presented in the following sections, explaining its 
origin, adaptions to the original definition and structural relations to other GOALS concepts. 

3.2.1. Business Process (BP) 
Origin 

The Business Process (BP) concept is originated from software development and business 

process organization practice, to promote the dialogue between Business Owner, Business 

Process Manager, and Software Architect in order to organize the User Tasks (UT) of the actors 
involved in a BP Improvement (BPI). From the modeling of BPs using the ERIKSSON-
PENCKER method [Eriksson & Penker, 2000], emerged PROCESS USE CASES method 
[Valente & Sampaio, 2007], that enabled the documentation of a BP using essential use cases 
for the representation of complete UTs. The replication of the process allowed the stabilization 
of the definition of the used concepts, namely: the BP and its goal, the business concepts (e.g. 
person, degree, etc.), and the complete UT, which were perceptible by business and software 
modelers, but especially by the users (“Person or Group of Persons Whom Uses the System”). 

Definition 

The coupled definitions of BP and goal are presented as follows: 

• Business Process (BP): “A Network of User Tasks that lead to a Goal”. Each BP is a 
sequence of (at least one) UTs, which are interrelated in a given Business Logic, leading 
to the achievement of a goal. Once the BP is successfully completed, a new objective 
of the enterprise has been accomplished. The definition of the tasks that compose each 
BP (User Tasks) is presented in the following section. 

• Goal: “The objective of the BP”. A goal is defined as the objective of the BP, names the 
BP, and is always the act of achieving a business concept  (defined as a concept that has 
meaning for those who have knowledge about the enterprise), and is represented by 
means of one or more Data Entities (DE). Any business concept can be a combination 
of any other concepts, as defined in semiotics [Damjanovic et al., 2005]. 
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Meta-Model and Example 

 

Figure 14. Meta-Model and Example of Business Process (BP). 

The meta-model of the BP is presented in Figure 14, and specifies that many actors can 
“Initiate” a BP, and many actors can “Participate” in it, and also, that many Data Entities (DE) 
can be used and produced by a BP. The example presents a situation where “Actor A” initiates 
and “Actor B” participates in the “Business Process” BP, which uses “Data Entity A” and 
produces “Data Entity B”. 

Semiotic Logic 

The BP implements beliefs by recurrently achieving goals that support the enterprise ideology 
within the society. These beliefs apply certain principles, from which may be generated wisdom 
from the existing knowledge. For example, if our enterprise system is a public university, the 
“solidarity” principle may be present e.g. by means of the belief that “by facilitating access to 
studies to more persons, the purpose of raising the society’s education level will be better 
fulfilled” may exist. 

Meaning to the SDP 

The BP is usually settled in a unique set of related enterprise business concepts (DEs) which 
support the BP execution, and compose the enterprise Domain Model (as will be presented in 
Sections 3.2.5. Data Entity (DE) and 4.3.2.3. Step 7 – Database Structuring). The relation 
between the BP and the set of DEs increases awareness on the problem begin solved, namely 
for Service Designers and Business Process Managers, by means of deepening their knowledge 
on the specific part of the enterprise being evolved. This facilitates the BPI development, 
resulting in faster and more productive meetings, increasing the probability of developing 
projects in less time. Moreover, the relation between BPs, actors and DEs, provides a view of 
what each BP uses and produces as DEs (products and services) in order to achieve its goal, 
reflecting the enterprise production logic from a higher level. 

3.2.2. User Task (UT) 
Origin 

The User Task (UT) is originated by the need to analyze Business Processes (BP) so that the 
Software Architect may identify who would make what, so that every needed information is 
processed according to each actor (a person or group of persons) responsibility. It was noticed 
that by means of the application of the WISDOM method there was a clear tendency to identify 
the steps that the user had to carry on in the User Interface in a single Activity Diagram [Booch 
et al., 2005], reflecting what the user “would like” to do (User Intentions) when carrying on his 
task, so that he would finish it as quick and accurately as possible. This approach represented a 
change of logic when compared to “traditional” use cases, as it induces simplification by 
withdrawing unnecessary steps, so that user performance may be raised, and the number of 
implementation parts may be minimized while maintaining (or raising) effectiveness, therefore, 
(probably) increasing the efficiency and performance of the system. 
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This focus led to the implementation of User Interfaces that allowed the execution of every 
User Intention in the same screen, without navigation, in almost all cases. Thus, by focusing on 
what the user needed, instead of the existing data concepts and business regulations, it was 
possible to promote the simplification of the system, which is reflected in less man-hour effort, 
promoting the enterprise (business and software) development performance by promoting the 
user performance. 

Definition 

The User Task (UT) definition comes from the definition introduced by Larry Constantine and 
Lucy Lockwood of essential use case [Constantine & Lockwood, 2001], as a “Complete and 

Meaningful Task Carried Out in Relationship with a System”, and as an evolution of the 
“traditional” use case introduced by UML [Booch et al., 2005]. This brought a relevant change 
when applied to BPs, since: if two use cases of the same person were consecutive, then they 
would be the same; once the task will only be totally completed when the second use case is 
finished. This is a realistic and pragmatic perspective of the UT within the context of a BP, 
since it is not necessary to represent the task’s intermediary steps in the BP design. In an 
extreme case of importance in which their representation would be needed, then their task 
description could be concatenated (e.g. using a “+” sign) in the essential use case (UT) name, 
still representing the full task in the same way. 

Meta-Model and Example 

 

Figure 15. Meta-Model and Example of User Task (UT). 

Figure 15 presents the meta-model of the UT, which defines that one actor may carry on many 
UTs and that a UT can also be carried out by many actors (as cooperative work); one BP can 
have many UTs; one UT can belong to many BPs; and UTs are related consecutively or 
conditionally. The example presents a BP where the flow is defined by means of an UML 
Activity Diagram (in which the initial and final points are omitted), that identifies 5 UTs which 
are performed consecutively from actors “A” to “B”, “B” to “C” and “C” to “B”, and eventually 
to “Actor A” that may execute it or not (as the relation of the “User Task D” with the “User 
Task E” is conditional). 

Semiotic Structure 

The user will use the knowledge (syntagmatic and paradigmatic relations) provided by the 
Interaction Space (IX), in order to carry on his UT with the wisdom derived from the enterprise 
principles and beliefs, following its ideology. For example, if the principle is “solidarity” rather 
than “profiting”, the suggestion for a person’s registration for studying may privilege choosing 
a cheap(er) degree or degrees with a supporting scholarship, as example of a wise decision. 

Meaning to the SDP 

The principle that an actor (a user) never carries on two UTs sequentially (i.e. without 
alternating with other actor’s UT) and separately, is an “axiom” that aims user performance and 
software development efficiency by means of inducing the reduction of the articulatory distance 
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of the UT i.e. the user’s effort [Winckler et al., 2015], and by suggesting that the necessary tools 
should be provided using as little User Interface implementation space as possible. If two UTs 
are consecutive, then they can be merged in a single sequence of acts, expressed by a single UT 
that represents their completion. The design of the BP with essential use cases also promotes 
the efficiency of the SDP, since most BPs are limited in terms of the number of tasks and actors, 
leading to a fluent dialogue when the BP design is presented (e.g. in A4 or A3 paper sheets) 
and the BP logic is visible and the tasks are readable from sight in a meeting table. This impact 
reflects concern over the people (the user stakeholder) work, promotes dialogue and also 
commitment regarding the achievement of the project’s goal, which is inevitably related to the 
meaning (expressed by the goal) of the BPs considered in the BPI under development. 

3.2.3. Interaction Space (IX) 
Origin 

The Interaction Space (IX) is originated from the gathering of interaction spaces (now 
referenced as Interaction Components) generated from the application of the WISDOM 

Software Architectural Technique to the User Intentions of a given UT. This led to the 
establishment of a Model-Driven Architecture, the Hydra Framework [Costa et al., 2007], for 
User Interface development, which implemented the interaction spaces clustering using 
Aggregation Spaces (AS). With the formalization GOALS, the IX is structurally defined as the 
space of communication between two or more UTs that happen in the same (physical or 
electronic) space, where the same Business Rules (BR) and Data Entities (DE) are used. It 
reflects the relation of the customer with the enterprise, in the same way that in the DEMO 
method, the initiator and the executer participate in a transaction subject to Action Rules and 
using Object Classes. The IX was identified as the solution to represent physical and electronic 
spaces and as a basis for the User Interface development. The Lines of Visibility and Interaction 
which are presented in Section 4.3.1.1. Step 1 - Service Design, may also be considered as 
Interaction Spaces that include BPs, DEs and actors. 

Definition 

The original IX definition is derived from the WISDOM concept of interaction space, as a User 
Interface space where the “User Interacts with Functions, Containers and Information in order 

to Carry On a Task” [Nunes, 2001]. We adapt this concept to the enterprise context by means 
of its generalization in order to complementarily consider the support of the UT in person, as 
in any of the cases the same BRs and DEs apply. Hence, we redefine the IX as “The Space that 

Supports a UT” (with the same BRs and DEs). One IX supports the interaction of two or more 
users in person or remotely while each one carries on his own UT. If two actors carry on the 
same UT remotely, then they are necessarily performing cooperative work [Grudin, 1994]. 

Meta-Model and Example 

The meta-model presented in Figure 16 defines that one IX can support one to many UTs. The 
IX uses and includes BRs, and can also directly use and include a DE if no BRs are identified 
to apply in that IX. In the example, the identification of IX is architecturally deduced from the 
relation of UTs. They are the space that supports the interaction of two or more actors. The IX 
supports the application of BRs that apply over DEs, defining the IX Logic that “builds-up” the 
Enterprise Structure. The relation of IX to UTs, BRs or DEs, can be expressed along with the 
BP design, or by means of an integrated representation of the BP design where the physical 
space of the IX is represented, allowing the communications of more than two actors per 
business transaction, as will be presented in Section 4.3.1.3.  Step 3 - Enterprise Structuring. 
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Figure 16. Meta-Model and Derivation of IXs from UTs and relation to BRs and DEs. 

The example shows the derivation of IXs in order to support the interaction between Actors 
“A” and “B”, and “B” and “C”, by means of IX “A” (a Request) and “B” (a Coordination) 
respectively, which is possible since the UTs “A”, “B”, “D” and “E” are subject to the same 
BRs and DEs, and the same happens in the case of UTs “B”, “C” and “D”, except that UT “C” 
is not subject to BR “B” in order to access DE “B”. If another interaction between Actors “A” 
and “B” would occur (e.g. between User Task “E” and “F”), then again, the same or a new IX 
may be defined (e.g. “C”) in order to support that interaction, depending on the business 
conceptual idea. 

Semiotic Structure 

The IX grants the user control over information, respecting existing paradigmatic and the 
syntactic relations. Information should be presented using syntagmatic (historical) information, 
from which the user can withdraw knowledge in order to apply the enterprise principles and 
fulfill his task applying wisdom. For example, the IX can enable the possibility of proceeding 
with a person’s registration, presenting that person’s registrations from the past, and eventually 
outcomes of registrations from others to facilitate user decision. 

Meaning to the SDP 

The IX represents a logic that that aims user performance and software development efficiency 
by means of believing that the most productive way of working for the user is giving him a 
User Interface that facilitates his task in terms of data and tool availability. In other words, if 
all the needed data and tools are always available (or always when needed), navigation is 
reduced, and also the mental effort of maintaining variables that concern the task execution. It 
induces the reduction of the articulatory distance of the UT i.e. the user’s physical interaction 
with the User Interface [Winckler et al., 2015], and suggests the composition of the User 
Interface in such a way that the user has a clue of what each concept means, which is possible 
since the design is based on what are the User Intentions and User Interactions when dealing 
with a UT in a given system state. It also suggests locating the components by the highest 
affinity possible, and using as little implementation space as possible in order to raise the 
probability of reducing implementation objects and therefore reducing implementation effort. 
It can be observed as a technology-ecologic approach, that aims giving the user what he needs 
when he needs, using an adequate, instead of an over-worked solution. 
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3.2.4. Business Rule (BR) 
Origin 

The Business Rule (BR) is originated from the clustering of System Responsibilities (SR) 
derived from the application of the WISDOM Software Architectural Technique. Since part of 
the SRs had repeated semantics, and the organization was carried out by affinity of meanings, 
it was possible to establish a correlation with recurrent User Intentions (e.g. “Authenticate 
Self”), and also identify the ones which did not had a patterned and recurrent existence. These 
were SRs which usually characterized relevant perspectives of the BP e.g. “Calculate Degree 
Average”, which may be only a single User Intention and Interaction, but which implementation 
is not patterned, is usually more complex as it expresses specific business regulations, whereas 
the remaining SRs where usually implemented in a patterned and simpler way (e.g. direct or 
filtered SQL queries to tables). This led to the isolation of these SRs as Business Rules 
highlighting the difficulties of implementation. With the formalization of GOALS, a relation 
was established with the DEMO Transaction’ Action Rules which coordination logic however 
does not apply, as it is already expressed in the BP design. By means of relating the BR to the 
IX, we also solve an identified DEMO problem, which is when to execute the Action Rule. In 
GOALS, the execution of the BR is considered permanent throughout the Information System 
every time the containing IX is used (invoked) by other components. 

Definition 

The Business Rule (BR) specification is based on DEMO concept of Action Rule, which defines 
a structure of decision (using pseudo-code) that applies restrictions to Object Classes 
concerning the execution of business transactions. These restrictions are considered in GOALS 
as paradigmatic relations which are applied to the syntactic relations of Data Entities (DE) in 
order to produce a new valuable business concept. Hence, we define a BR as “A Restriction 

over DE’s Structural Relations”. BRs represent regulations or explicitly defined requirements 
that should be elicited in order to understand the restrictions which the user is subject to when 
carrying on a UT, and do not represent collaboration impositions with other actors. 

Meta-Model and Example 

 

Figure 17. Meta-Model and Example of Business Rule (BR). 

Figure 17 presents the BR meta-model, which defines that the BR may be used and included in 
many IXs, and also that a BR can use many DEs. The IX can optionally be linked to DEs. The 
example shows that IX “A” includes BRs “A” and “B”, and that IX “B” uses DE “B”, directly, 
without BR intervention. This is same structure presented in Figure 16, now with the physical 
representation of the IX. 
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Semiotic Structure 

A BR defines a paradigmatic relation of business concepts (DEs) which cannot be structured 
by the DEs syntactic relation, resulting in a new meaning (business concept). This information 
can be presented to the IX as a syntagmatic structure defining an historical sequence of data, 
complementarily provide information from similar past decisions in order to support the 
fulfilment of UTs with enhanced knowledge improving the possibility of doing it with wisdom, 
and according to the enterprise principles. For example, if the BR should verify adequacy of a 
Contact for a Person, then it should apply an algorithm that will produce new information to be 
interpreted by the system, kept by the DE and represented in the IX (to support the UT). 

Meaning to the SDP 

The BRs are considered as the more important SR of the GOALS Business Logic, as they are 
the only business-specific programmed class in this layer. By means of isolating BRs, the 
Software Architect is able to better control the effort that will be applied in the implementation, 
or at least increase the possibility of acknowledging in advance where unexpected effort may 
be generated. This enables a more balanced management of the team, since developers may 
have vocation for more or less patterned work. The BR is architecturally related to the IX, 
however, it may be invoked by any software-specific component to ensure the conceptual 
specification of the Enterprise Structure. The Business Logic structuring is presented in 
Sections 3.3.4. User Interface System Responsibility (UISR), 3.3.5. Database System 
Responsibility (DBSR) and 4.3.2.2. Step 6 – Business Logic Structuring. 

3.2.5. Data Entity (DE) 
Origin 

The Data Entity (DE) is originated from the modeling of the Information System Domain Model 
using UML classes, following the WISDOM method, with no changes. As it was a concept that 
expressed information that always had a meaning within the enterprise and was recognized by 
those whom have knowledge about it (stakeholders), it became a standard of communication 
for users, Service Designer and Software Architect, especially about the Customer, leading to 
the normalization of the enterprise concepts (e.g. candidacies and pre-registration become only 
candidacies), a “dialect” of the enterprise that may promote communication and development 
effectiveness. Since the Domain Model could be transformed into Database related tables, the 
DE domain model stands as a common development artefact. 

Definition 

The Data Entity (DE) definition is provided by WISDOM definition of entity, which is a class 
of “Persistent Information about a Business Concept”. This means that persistency will be 
maintained by the Information System, and that it will enclose meaningful business concepts. 
DEs are related between each other allowing a simple representation of reality which is made 
available by means of a Database application. In terms of common Database objects, DEs are 
expressed as Tables, and attributes are expressed by Fields [Ling et al., 1981]. DEs are related 
between each other by means of semiotic syntactic relations, which are expressed using a UML 
association, also implying the definition of multiplicity between the related DEs. Multiplicity 
will typically be of one-to-many or many-to-many, since the definition of a specific multiplicity 
(e.g. 1 to 5) is uncommon, and should be expressed by a BR due to its volatility (as it will 
eventually change over time). The definition of relations of one-to-one is also uncommon as in 
those cases the DEs meanings can usually be conciliated in a single DE. 
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Meta-Model and Example 

 

Figure 18. Meta-Model and Example of Data Entity (DE). 

In Figure 18 the meta-model of the DE follows what is specified by UML and the Domain 
Model for the establishment of relations between classes [Booch et al., 2005]. It states that the 
DE can be related to another DE with an association relation with cardinality of one-to-many 
or many-to-many, and that a new association class can be generated from the relation of two 
DEs. The example presents a situation where DE “A” is related in one-to-many to “B”, which 
has Fields “A” and “B” (e.g. a “Student” has many “Grade” which have a “Mark” and a “Date”). 

Semiotic Structure 

A DE is a business concept, and has a meaning for itself within the enterprise which can be 
understood by every stakeholder (with enough expertise about the enterprise). DEs are also 
related between themselves, composing a simple syntactic structure. For example, consider: a 
“Person” whom has “Contacts” and is “Registered” (as a customer). 

Meaning to the SDP 

The identification of DEs should be carried along the BP improvement, so that the analyst may 
develop a well-defined notion of the concepts involved in it and how they are related. By means 
of establishing a dialogue based on the Domain Model, the Software Architect will have a very 
detailed vision of the concepts which are used along the BP execution, so that that knowledge 
may be transmitted to the software development team. By means of a dialogue which is based 
solely on existing DEs, it may be possible to delineate the construction of every component of 
the system, which is particularly important for the Software Developers of the Business Logic 
and the Database, and also for the User Interface Designer, since the User Interface is also 
designed using the same concepts. This means that the way in which the concepts are related 
must be “solid” i.e. almost unchangeable in time, and the only way in which this can be achieved 
is by means of recurrently testing the conceptual structure before the design and implementation 
of the system, since a misconception at the Database layer will almost inevitably lead to a 
restructuring of the Business Logic and the User Interface. 

3.3. Software Architecture Concepts 
The Software Architecture for a given Business Process (BP) inherits the Enterprise Structure 
based on each User Task (UT) of the BP, and is elaborated by means of the application user-
centered techniques that gradually develop its User Interface, Business Logic and Database, 
based on the Interaction Spaces’ (IX) Business Rules (BR) and Data Entities (DE) of the 
Enterprise Structure. The IX, BR and DE are hybrid business and software concepts which are 
complemented with software-specific components to “build-up” the Software Architecture. 

The Software Architecture is composed by the software-specific concepts of Aggregation Space 
(AS) [Costa et al., 2007] (one per UT), which is composed by Interaction Components (IC) 
which are composed by Interaction Objects (IO), which trigger User Interface (UISR) and 
Database System Responsibilities (DBSR), which architecturally use IX, BRs and DEs 
associated to that UT, ensuring traceability between business and software modeling. 
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The reuse and generalization of the identified components by means of their semantic meaning 
along the Analysis and especially in the Design phase, is crucial, as it promotes simplification 
by means of generalization, reducing analysis mistakes and eliminating duplicated artefacts. 
The User Interface is composed of the IX, the AS, the IC and the IO implementation concepts, 
and the Business Logic is composed of the BR, UISR and DBSR programmable classes’ 
concepts. The Database is composed of Tables and Fields derived from the identified DEs. The 
software-specific Software Architecture concepts will be presented concerning its origin, 
definition, symbol, and logic of relation to other concepts, as follows. 

3.3.1. Aggregation Space (AS) 
Origin 

The Aggregation Space (AS) is originated from the Hydra Framework [Costa et al., 2007], and 
represents the composition of WISDOM interaction spaces which support User Intentions. 
Since most of the User Interfaces for the support of a User Task (UT) can be implemented in a 
single screen without navigation (without opening or replacing the actual screen by a new one), 
or in the worst case, at least the initial information related to the task “fits” one screen, the AS 
conceptually became the perspective of one actor, when performing a UT, over the set of data 
and regulations of an IX, concerning one execution of a BP. 

Definition 

The original definition of the AS comes from its mapping to use cases [Costa et al., 2007]. 
Since most User Interfaces can be implemented in a single AS, we define the AS as "A User 

Interface”, meaning what the user is watching at a given moment in the Information System. In 
the cases which may be necessary a second AS, the usage of one AS to another represents a 
navigation between both. 

Meta-Model 

 

Figure 19. Meta-Model and Example of Aggregation Space (AS). 

Figure 19 presents the meta-model, where it can be read that the AS provides architectural 
support to the UT in a relation by default of 1 UT to 1 AS. The AS uses one or more Interaction 
Spaces, depending on the Enterprise Structure specification. The example presents the visual 
representation of the AS, which is the User Interface space that the user observes, and which 
will be structured with Interaction Components (IC) and Interaction Objects (IO). 

Semiotic Structure 

The AS is a composition of ICs which should make clear to the user as much as necessary, the 
syntactic (relative to DE) and paradigmatic (relative to BR) data relations of the business 

concepts which are presented in the User Interface. The presentation should provide the user as 
much syntagmatic (relative to historical) information as possible, so that the user, being aware 
of the enterprise principles, may perform his UT as wisely as possible. 
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Meaning to the SDP 

The AS is one perspective of one user of the IX when preforming a UT. This means that the 
more UTs that depend on one IX, the more AS it will have associated. In one group of AS 
associated to UTs (e.g. a UT “request” and UT “response”) of the same IX, the reuse of 
software-specific components is very high, if not total, since what varies is the behavior of the 
AS, IC and IOs, and not necessarily the data. In each of these perspectives, which may be 
related to one or more Interaction Spaces (IX) depending of the UT, each actor (e.g. the 
“requester” and the “respondent”) will have distinct privileges over the existing data and tools 
e.g. one actor is not able to edit another actor’s data. The distinct privileges, information and 
tools that will be available are designed following a user-centered sequence of techniques that 
will be presented on Sections 4.3.1.4 and 4.4.4 (Step 4 - Task Modeling). 

3.3.2. Interaction Component (IC) 
Origin 

The Interaction Component (IC) is originated from the WISDOM interaction space as the User 
Interface space that supports a User Intention and triggers a System Responsibility. In each IC 
where introduced the Fields of the DE which match the user needs when performing the 
intermediary steps of the UT (the User Intentions), becoming the visual design tool of the User 
Interface using CANONICAL ABSTRACT PROTOTYPES (CAPs)  [Constantine et al., 2003], 
since its internal organization and positioning represented a sequence of reading that facilitates 
the user work.  The IC was also implemented by the Hydra Framework, which structure 
included the CAP classes which provided the needed behavior in terms of data management. 

Definition 

The original definition is provided by WISDOM as the space where the “User Interacts with 

Functions, Containers and Information in order to Carry On a Task”. We define the IC as a 
“Tool of a User Interface”, meaning that it holds the data and objects which may be necessary 
to execute the actor’s User Intention. 

Meta-Model and Example 

 

Figure 20. Meta-Model and Example of Interaction Component (IC). 

Figure 20 presents the meta-model of the IC which defines that the IC is used by an AS, supports 
a User Intention, contains Interaction Objects (IO) and triggers User Interface (UISR) and 
(DBSR) Database System Responsibilities. The example presents the composition of 
Aggregation Space A with ICs “A”, “B” and “C” (each one supports a User Intention), which 
trigger User Interface System Responsibilities “A”, “B” and “C”. 
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Semiotic Structure 

The IC is the space of the User Interface that presents the data Fields organized according to 
the simple syntactic and more complex paradigmatic relations of the presented DEs. The 
presentation of syntagmatic relations is more complex, since it involves the historical 
presentation of data according to the syntactic, paradigmatic, or combined, presentation of data 
and past decisions along time, and may involve one of more Fields (Interaction Objects). 

Meaning to the SDP 

The IC is the “path” to the internal architecture of the Information System by means of the 
relation established to the System Responsibilities (SR), providing data and the expected 
system behavior. The supportive pair IC-SR may be further decomposed by an Interaction 
Model, in which case the already identified SRs serve as an interface function to new SRs. This 
opens the possibility of deciding the level of decomposition needed from the design in order to 
further structure or not the architecture beyond the IC i.e. if the tradeoff of investing more time 
in the design will have a revenue in terms of implementation effort or enhanced architectural 
control. The IC detail is presented in Sections 3.3.3. Interaction Object (IO) (the next section), 
4.3.2.1 and 4.4.5 (Step 5 – User Interface Design). 

3.3.3. Interaction Object (IO) 
Origin 

The Interaction Object (IO) is originated from the CAPs [Constantine et al., 2003] and Hydra 
Framework [Costa et al., 2007], representing an object of interaction which holds data or 
provides the execution of a command, triggering User Interface or Database System 
Responsibilities. Typically, the IO represents e.g. HTML input, select, text area, option and 
button elements. The IO enables User Interface and implemented code traceability. 

Definition 

The original definition of the IO comes from the Hydra Framework that specifies it as the 
Canonical Abstract Prototype that supported a “leaf” action, and interaction as identified by the 
CONCUR TASK TREES method [Paternò, 1999]. We define an IO as “A User Interface Object 

that triggers SRs”, meaning that it is an object which is presented in the User Interface, and that 
establishes a direct relation to the Business Logic of the Information System. 

Meta-Model and Example 

 

Figure 21. Meta-Model and Example of Interaction Object (IO). 

Figure 21 presents the IO meta-model that specifies that each IO supports a User Interaction 
which is part of a User Intention which is supported by the IC to which that IO belongs to, and 
will trigger User Interface (UISR) or Database System Responsibilities (DBSR). The example 
presents the Aggregation Space composition by: IC “A” which triggers the User Interface SR 
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“A”; IC “B” which triggers the User Interface SRs “B.1” and “B.2”; IC “C” which triggers the 
User Interface SRs “C.1” and “C.1”, and Database SR “C.1”; by means of the Interaction 
Objects presented in the User Interface. The IOs may be further specified using Canonical 
Abstract Prototypes (CAP) [Constantine et al., 2003], as will be presented in Sections 4.3.2.1 
and 4.4.5 (Step 5 – User Interface Design). 

Semiotic Structure 

The IO is the space that presents the data Fields of syntactic (relations of one or more DE) and 
paradigmatic (relative to BRs) relations, including syntagmatic information or not. One 
example of a syntactic information is a Field of the Database which may assume a value or a 
list of values. A paradigmatic relation implies two of more DE, and when it is relative to BRs, 
it involves a validation. One example is a success or error message. And syntagmatic relations 
must present the evolution of the business concepts (DE or BR) along time. One example is a 
list of the evolution of the value of a DE Field over time. 

Meaning to the SDP 

The IO represents the detail level which is necessary in order to design the User Interface of the 
system. It is based on the IOs that is carried out the more artistic perspective of the Information 
System development, as designers are expected to organize each object in such a way that the 
whole (the AS which holds the ICs which hold the IOs) reflects the data which is being managed 
and that the operations and what they represent for the UT are clear to the user in order to 
promote its performance and minimize user mistakes. 

As a guideline of design, the grouping by sequence of User Intentions (of ICs) and affinity of 
IOs is a base that later will enable introducing the artistic facet of User Interface Designers, 
who will express and develop its competences by means of the User Interface design with the 
added value of knowing in advance, in a structured way, what are the business regulations and 
the data concepts which are being elaborated, and how the user expects to achieve his task 
objectives. The User Interface design is further presented in Sections 4.3.1.4.  Step 4 - Task 
Modeling and 4.4.5. Step 5 – User Interface Design. 

3.3.4. User Interface System Responsibility (UISR) 
The User Interface System Responsibility (UISR) is originated from the need to represent a 
programmed function that provides data for Interaction Components (IC) and Interaction 
Objects (IO). It represents a specific type of Business Logic function implementation which 
characteristic is the provision of data to fill one or more IOs. The UISR may also execute 
operations over the Database, in the same way that a Database System Responsibility (DBSR), 
so that it is able to register e.g. patterned information of user, data and IP address. In fact, both 
the UISR and DBSR have the same structure, but due to the nature of the work which is carried 
out in terms of software development, the distinction is important, as it may have a direct impact 
in the software development team organization, reason why the conceptual distinction of UISR 
and BDSR stands as a form of promoting software organization. 

Definition 

The original definition of the System Responsibility is provided by ACTIVITY MODELING, 
as the system response to the essential use cases User Intention. That definition is adopted and 
extended in order to specialize the User Interface SR for the provision of data for an Interaction 
Object or an Interaction Component, as “A SR that provides support for User Interface data 

presentation”. 
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Meta-Model and Example 

Figure 22 presents the UISR meta-model that states that the UISR is triggered by ICs or IOs, 
and that the UISR invokes DBSRs, other UISRs, and DEs. The existence of a relation between 
UISRs reflects a situation where the invoking IC’ UISR serves as a (function) interface to the 
existing IO’ (UI or DB) SRs. The inexistence of this relation means that the UISR has to assume 
the responsibility of collecting the data and executing the necessary Database commands, since 
this responsibility is not further divided (modularized) in IOs and corresponding (UI and DB) 
SRs. The example presents the structuring of the Business Logic composition with UISRs, 
namely the ones which were derived from User Intentions and use the UISRs which were 
derived from their User Interactions: the UISR “A” which uses UISR “A.1”; the UISR “B” 
which uses UISRs “B.1” and “B.2”; and UISR “C” which uses UISRs “C.1” and “C.2”. 

 

Figure 22. Meta-Model and Example of User Interface System Responsibility (UISR). 

Semiotic Structure 

The UISR is responsible for the transfer of syntactic, paradigmatic and if possible syntagmatic 
data from the Database to the User Interface. 

Meaning to the SDP 

The UISR represents the simplest form of implementation of Business Logic functions, since 
the collection of data can be regarded as the simplest way of managing data, also known as a 
"reading” act. It is also the SR which usually exists in bigger number, as User Interfaces usually 
have more data Fields (e.g. input, select, text area, option) than commands (buttons). For this 
reason, concerning the development of an AS, it may be more productive if the same developer 
is responsible for the implementation of every UISR, as he will have to manage simple yet a 
large number of functions. By means of maintaining control of the implemented Business Logic 
functions, the Project Manager is also able to control the evolution of the development, knowing 
in advance that the UISRs will typically take less time to develop than DBSRs and BRs. 

3.3.5. Database System Responsibility (DBSR) 
Origin 

The Database System Responsibility (DBSR) is originated from the need to represent a system 
function that alters data in the Database, typically to record the results of the UT. It represents 
a type of Business Logic function which characteristic is managing large amounts of variables 
that have to comply with business regulations by means of implementing and validating them, 
whether these regulations (Business Rules) are implemented as a separated Business Logic 
function or not.  The BDSR may also provide data to the User Interface in the same way that a 
User Interface System Responsibility (UISR) does, in order to e.g. provide immediate feedback. 
Both UISR and DBSR have the same logic structure, but due to the nature of the work which 
is carried out, the distinction is important, as it has a direct impact in the team organization. 
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Definition 

The original definition of the System Responsibility is provided by ACTIVITY MODELING, 
as the system response to the essential use cases User Intention. That definition is adopted and 
extended in order to specialize the Database SR for the management of data as triggered by an 
Interaction Object or an Interaction Component, usually in order to implement algorithms that 
prepare the data which will be recorded in the Database, respecting the existing BRs, since they 
are always architecturally subject to the validation which they provide. Hence, we define the 
DBSR as “A SR that manages data”. 

Meta-Model and Example 

 

Figure 23. Meta-Model and Example of Database System Responsibility (DBSR). 

Figure 23 presents the DBSR meta-model that states that the DBSR is triggered by ICs or IOs, 
that the DBSR invokes UISRs, and other DBSRs and DEs. The existence of a relation between 
DBSRs reflects a situation where the invoking IC’ DBSR serves as a (function) interface to the 
existing IO’ (UI or DB) SRs. The inexistence of this relation, in a same way that happens with 
the UISR as reference in the previous Section, means that the UISR has to assume the 
responsibility of receiving the data and executing the necessary Database commands. The 
example presents the DBSR “C.1” which supports a User Interaction of the UISR “C” (which 
on its turn supports a User Intention). 

Semiotic Structure 

The BDSR is oriented to the application of paradigmatic algorithms to the received syntactic 
information in the process of transferring data from the User Interface to the Database. 

Meaning to the SDP 

The DBSR potentially represents the more complex form of implementation of Business Logic 
functions, as usually these functions receive the information that corresponds to every object in 
the User Interface and the actual state of the system, and processes it respecting existing BRs. 
The DBSR typically exists in a smaller number than UISRs, but its implementation may 
represent more development time than the implementation of all the UISRs that support a UT. 
For this reason, concerning the development of a given AS, it may be important that the person 
that develops DBSRs is not responsible for the remaining UISRs that compose the Business 
Logic, since the overhead which is generated may be too much for the organization capabilities 
of a single person, and therefore reduce the overall software development performance. 

By means of maintaining control of the implemented Business Logic functions, the Project 
Manager is also able to control the evolution of the development, knowing in advance that the 
DBSRs will typically take more time to develop and change than UISRs, since if not 
implemented in rigor the situation (an eventual “bug”) will always be noticed, if not during 
testing, in production, which is the worst case possible. 



The Goals Approach: Business and Software Modeling Traceability by means of HCI 

47 
   

3.4. Conclusions 
This chapter presented the notation of the language by means of the presentation of each 
concept definition, symbol and meaning, providing insight concerning the relation of each with 
the remaining concepts of the language, so that the modeler may analyze each one by itself. It 
allows understanding the logic which is associated to the concept, what it expresses, and what 
does it means when it is related to other concepts, including the number of other concepts on 
which it relies on (uses) and sustains (is used by), so that the modeler may understand the 
architectural logic of its enterprise, the business, the software, and the relation between both. 

By explaining the origin we explain how each concept was evolved along time and its meaning 
to the SDP, we are also providing insight on the importance of each concept at each moment, 
and how the process may follow, since the existence of each concept suggests the continuation 
of the SDP in the “direction” of the Software Architecture finalization. By providing the 
semiotic structure of each, we are complementing the meta-model and example, in order to 
provide business and software constructive guidelines: ideology, beliefs, principles and wisdom, 
more closely related to the business model; and, knowledge, syntagmatic, paradigmatic, 
syntactic and business concepts, more related to the software model. 

The GOALS process and method that apply techniques to use the language concepts is 
presented in the next Chapter (4. The Goals Process, Method and Techniques). 
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4. The Goals Process, Method and Techniques 

GOALS has a conceptual structure and a notation that provides a language with which business 
and software are modeled. This language is used to model the Enterprise Structure and the 
Software Architecture following the GOALS process which is composed of the Analysis and 
Design phases. The Analysis and Design phases apply a single method of 8 steps, 4 of which 
are relative to the Analysis phase and the Enterprise Structure elaboration, and 4 of which are 
relative to the Design phase and the Software Architecture elaboration. The strategy of 
enterprise development is based on the evolution of the enterprise Interaction Spaces (IX). The 
GOALS process, strategy, method and techniques are presented as follows, including the 
presentation of two case studies (“iKiosk” and “Star Project”): the first oriented to the 
application of the method, each step origin, elaboration, meta-model, and meaning to the SDP; 
and the second oriented to the aspects that should be focused in each step in order to achieve 
its correct elaboration. 

4.1. Process 
The process has two phases: the Analysis and the Design, as two sequential (sub) processes. In 
the perspective of the Business Owner they represent the conception of the enterprise, its 
business and the relation with the customer. In the perspective of the Enterprise Architect, they 
refer to the analysis of the business problem, and the design of the software solution for a given 
Business Process (BP) Improvement (BPI) concerning the strategical needs of the enterprise. 
The phases may be elaborated independently, as once the Analysis is finished, the Design may 
be carried out, immediately or posteriorly, as long as business regulations and business 

concepts are maintained. 

The modeling of both phases is carried out using the language for both the business and software 
models. The language concepts refer to business (business-specific), to the software (software-
specific), or both (hybrid). The hybrid concepts are concepts of the business model which are 
part of the software model, which are the Interaction Space (IX), Business Rules (BR) and Data 
Entities (DE), and which are complemented with software-specific concepts concerning the 
Software Architecture elaboration. Figure 24 presents the structure and related method phases, 
using the concepts already introduced in Section 3.1. Structure. 

These concepts presented are: 

• Enterprise Structure: Business Process (BP) (and goal), User Task (UT), Interaction 
Space (IX), Business Rule (BR), and Data Entity (DE). 

• Human Activity: User Task, User Intention and User Interaction. 
• Software Architecture: Aggregation Space (AS), Interaction Component (IC), 

Interaction Object (IO), User Interface System Responsibility (UISR), Database System 
Responsibility (DBSR). 

The structure is what drives the process in the sense that all the modeling work targets the 
elaboration of the two structures. The concepts, and its diagram meta-model will be presented 
in a top-down logic following the dependency of concepts of the Enterprise Structure and the 
Software Architecture. The method that applies techniques that use the language is presented 
in Section 4.2. Method. 
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Figure 24. GOALS Process Analysis and Design Phases Modeling Concepts. 

Figure 24 presents the GOALS Process and the relation of concepts which are used to model 
the Enterprise Structure and the Software Architecture in the Analysis and Design phases, 
respectively. The relation between concepts is of dependency (many-to-many), except for the 
relation of the Software Architectural Support (SAS). The SAS is the logic that relates UTs and 
AS in a relation of one-to-one, as an approach that targets implementation of the requirements 
of one complete business process task (UT) in a single User Interface (AS). One or more UTs 
happen in an IX of the enterprise, which defines the channel of communication between actors 
and their tasks (UTs). As these IXs implement Business Rules (BR) and Data Entities (DE), the 
IX is also used by the AS (the User Interface) as an architectural imposition, reflecting that the 
BRs and DEs of the enterprise must be respected in the communication of actors according to 
the Business Architecture. 

4.1.1. Iterative and Incremental 

 

Figure 25. Goals Enterprise Development Process (EDP) Iterative Process. 
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The process is iterative, and further defines that upon finishing the Analysis of a BPI, it (the 
Analysis phase) may follow to another BP, and the design and implementation of the current 
BPI may take place in parallel. Once the Analysis of the new BP is finished, its Design and 
implementation may follow again, and again the Analysis phase follow to a third BP, gradually 
incrementing the modeling and implementation of the Enterprise system. 

Figure 25 presents an example, in which (from left to right), first takes place the “BPI 1” 
Analysis elaborating the Enterprise Structure, which follows the “BPI 1” Design, elaborating 
the Software Architecture of “BPI 1”. The process goes on to the “BPI 2” Analysis, which 
includes and may be related to the “BPI 1” Enterprise Structure, and follows to the “BPI 2” 
Design phase, which includes the models of both “BPI 1” and “BPI 2”. 

4.1.2. Strategy 
We define as a strategy, the gradual automation of the Interaction Spaces (IX) of the enterprise, 
by means of transforming one physical IX (e.g. an office) into User Interfaces (Aggregation 
Spaces) that support the work of those who carry on their UTs in that IX. This should be carried 
out in function of what may be the IX which automation is more valuable for the enterprise 
concerning its functioning, including user (and customer) satisfaction (relative to UX), while 
saving resources. The improvement of IXs based on the automation of tasks which are solely 
made in person mat benefit the relation with the customer, and at the same time replace 
collaborators working time, saving human resources that may be used to other BPIs. As an 
added suggestion of the strategy, the BPs which represent bigger loads of work in specific 
periodic times may be automated first, in order to induce production stability. 

One IX can hold the tasks of one-to-many (usually two) actors, and by means of elaborating 
the Enterprise Structure relative to that IX, a conceptual structure is created that allows 
understanding the distinct characteristics of the tasks which are based on it. Each task, which 
may use one to many IX (usually two). can then be modeled and the corresponding software 
structure designed, with the awareness of the applicable BRs and DEs, and solely the way in 
which data is managed and introduced in the system varies from UT to UT. 

4.2. Method 
We use the GOALS structure (Figure 26) to illustrate how each component is produced in each 
method steps. Steps 1 to 4 refer to the Analysis phase and Enterprise Structure, and Steps 5 to 
8 refer to the Design phase and the Software Architecture. In the GOALS structure it is possible 
to identify that the Service Design (Step 1) and Business Process Design (Step 2) involve the 
BP and DE, and, BP and UT, concepts, respectively. This happens in the course of composing 
the Enterprise Structure (Step 3), complementing it with the IX and BR concepts using the 
Enterprise Architecting Technique. Each identified UT is detailed in User Intentions using a 
Task Model (Step4) and applying the Software Architecting Technique, as the first level of the 
application of the CONCUR TASK TREES (CTT) method, structuring the system in terms of 
available Interaction Components (user tools), which at this stage may be physical or electronic, 
and the corresponding higher-level UISRs and DBSRs. The Design further specifies each User 
Intention using an Interaction Model (Step 5), in a second level of the CTT and the Software 

Architecting Technique, integrated with the BEHAVIOR DRIVEN DEVELOPMENT (BDD) 
method, conceiving the User Interface, and further structuring the system with IOs, UISRs and 
DBSRs, proceeding towards the finish by structuring the Business Logic (Step 6), the Database 
(Step 7), and the Software Architecture (Step 8). 
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Figure 26. GOALS Method Steps (1 to 8) and suggested Techniques. 

Together with the Method, the GOALS structure defines the GOALS Enterprise Architecture 
and the set of structured techniques that allow understanding how the whole business and 
software structures are elaborated (modeled). The Service Design, the Business Process Design 
and the Enterprise Structuring (Steps, 1, 2 and 3), apply the Production Logic, specifying the 
production of the BPs in terms of DEs, the Cooperation Logic, specifying the cooperation 
between actors in IXs, and the Interaction Space Logic, that specifies the BRs and DEs which 
are used in each IX. By means of the detail of the UT and the specification of a User Interface 
(an AS) by means of the Software Architectural Support, and the application of a Task Model 
(Step 5) and an Interaction Model (Step 6), for a task decomposition according to the essential 

use cases and BEHAVIOR DRIVEN DEVELOPMENT (BDD) techniques that identify all the 
Business Logic (BRs, UISRs and DBSRs) of the system is identified. Then, all the identified 
artefacts (GOALS concepts - UML classes) are structured still in a top-down process, based on 
the common meaning identified along the method and expressed as DEs in a Domain Model. 

The GOALS method steps are processed according to the ongoing SDP that drives the project 
team coordination in the modeling of each diagram, using objects (instantiations) of the classes 
of the GOALS structure, which artefacts elaboration require valences in the domains of 
Enterprise Engineering, Human-Computer Interaction and Software Engineering. For this 
reason, GOALS maintains the compatibility of each concept so that it may be recognized by 
each domain practitioners and cooperate in each Step, in a progressive transfer of responsibility 
from the EE to the SE domain by means of HCI, focusing enterprise development, design and 
software implementation productivity. The cooperation starts in the Analysis and continues to 
the Design where users, HCI and SE specialists, conceive the final Software Architecture. EE 
is related to the roles of Business Owner, Service Designer and Business Process Manager, 
HCI to User Interface Designer, and SE to Software Architect and Software Developer. 
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Table 6 presents the artefacts used and produced by the method in the process of developing 
the business and software models. The “Business Inputs” provide unstructured information that 
must be available in any format. The “Enterprise Structure”, “User Behavior Specification” 
and “Software Architecture” are artefacts that take part as inputs (I), outputs (O) or both (I/O) 
in the “Output Models” of each Step, and may also be used in the subsequent Steps. 

Table 6. GOALS Method Steps, Input and Outputs, and Affinity of Responsibility. 

Process Analysis Design Responsibility 

Artifacts/Steps 1 2 3 4 5 6 7 8 EE HCI SE 

Business Inputs 

Business Organization I I       *   

Business Regulations   I      *   

Business Concepts I I I I I  I  *   

User Collaboration I I  I I    * *  

Enterprise Structure 

Business Process (BP) O I I     I *   

User Task (UT)  O I I    I * *  

Interaction Space (IX)  O I  I   I * *  

Business Rule (BR)   IO   IO  I *  * 

Data Entity (DE) O  IO    IO I *  * 

Human-Computer Interaction 

User Intentions    O I     * *  

User Interactions     IO     * * 

Software Architecture-Specific Components 

Aggregation Space  O  I  I  I  * * 

Interaction Component    O I I  I  * * 

Interaction Object     O I  I  * * 

User Interface SR    O O IO I I   * 

Database SR    O O IO I I   * 

Output Models 

Service Model O I       *   

Business Process Model  O I I     *   

Business IX Organization   O      * *  

Enterprise Structure   O   I  I * * * 

Task Model    O I    * * * 

Interaction Model     O I I I  * * 

User Interface Design     O     *  

Business Logic Structure      O  I   * 

Database Structure       O I   * 

Software Architecture        O   * 

 

4.2.1. Architectural Control and Agility 
The method is oriented by the strategy of defining an iterative BP-sized Analysis and User 
Task-sized incremental design process to which is given flexibility in the form of a trade-off 
between agility and business architecture, while maintaining traceability, targeting enterprise 
architectural control. Agility is applied to the business architecture (the Enterprise Structure), 
finding the room to apply user-centered techniques in the Interaction Space (IX).  The trade-off 
is explained by means of the brief analysis of two complementary cases of improvement:  

• The ones which involve the Enterprise Structure, including Service, BP and UT 
rearrangement, with a bigger impact in the Software Architecture, more specifically in 
the software-specific components derived in the Task and Interaction Models; 
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• The ones which are circumscribed to the Software Architecture and a single IX or a 
single UT (without BP reorganization) have a bigger probability of involving a smaller 
number of components, having a smaller impact in the Software Architecture, as all are 
subject to the same Business Rules (BR) and Data Entities (DE). 

Thus, when the enterprise change implies BP reorganization, the method must follow the 
Analysis and Design phases (Steps 1 to 8), otherwise it may be started from the Design (Steps 
5 to 8) upon User Intentions validation (Step 4). This defines the agile trade-off characteristic 
of GOALS, in which the time invested in the first 3 (Steps) business models (usually expressed 
in one A4/A3 diagram per model depending on the BPI), has the revenue of the availability of 
a business requirements structure (the Enterprise Structure/Business Architecture), that 
becomes the “back-bone” of the Software Architecture by means of the application of user-
centered techniques, in a “top-down” process, using the already related business-and-software 
hybrid concepts of IX, BR and DE, to apply architectural interaction patterns that fully structure 
the User Interface, Business Logic and Database of the Information System. 

4.2.2. Architectural Interaction Patterns 
GOALS derives an architectural Human-Computer Interaction (HCI) pattern in function of the 
interaction design in two steps (4 and 5), which conceive the two layers of User Interface and 
Business Logic, for the support of the human User Intentions and Interactions, respectively. 
The pattern defines that every User Intention will be supported by an Interaction Component 
(IC) and a single UISR which will be responsible for receiving and sending data to and from 
the Database, and which will execute other UISRs and DBSRs as a support for User Interaction. 
The second-level UISRs and DBSRs are derived according to the need to build information 
structures that the system may present to the user, so he may see and understand, followed by 
the execution of data validation algorithms, according to the existing BRs and the DE’ structure 
by means of the invocation of the IXs on the AS is based. Alternatively, BRs may be invoked 
by any other software-specific component to promote architectural and/or SDP optimization. 
In concrete terms, this User Interface may be a web page or client-side application that loads 
and presents all the data in fields, which behavior is implemented by the AS, and which saves 
the data to the Database upon user command. The pattern is called as “Simple – Interaction 
Design” because the system immediate feedback is not enforced, and because it defines specific 
architectural support for each User Interaction. The pattern is presented in Figure 27. Other 
possible interaction patterns are presented in Appendix B – Interaction Patterns. 

 

Figure 27. “Simple - Interaction Design” Pattern. 
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4.3. Case Study – “iKiosk” Project 
In order to illustrate the method of our approach we present a real software project developed 
for the conception of a new enterprise. This business has the objective of selling classifieds 
(announcements) and presenting actuality news in Madeira Island, Portugal. The project is 
named as “iKiosk” since this type of information is usually available in newsstands (kiosks) 
where coffee is sold daily. The idea is to settle a local store where the information will be 
available in electronic format and only optionally in printed paper, serve coffee and provide in-
person support for classified and news printing and introduction. The system will also be 
available for the World Wide Web. The Business Owner settled important preliminary societies 
with “local” reporters who wished to post the news of their specialty. The project has increased 
importance, and takes advantage, of the fact that printed journalism in Madeira is quite restrict 
and also suffered a drawback in recent years, as one of the two more important journals found 
its sponsoring cut due to the austerity measures applied in Portugal after 2010. For this reason, 
the ideology of the project is: “Belief in the revitalization of the news service in Madeira by 
means of on-line publishing based on the principle of the freedom of speech of qualified 
reporters”. Three phases were defined, which were named as follows: 

• Business Modeling. The modeling of the parts of the business parts that would support 
the classifieds and news management, so that the Business Owner could understand the 
complexity of the project which he had idealized. 

• Software Modeling. The modeling of the Information System targeting the elaboration 
of the website and the User Interface of the tasks to support its information, so that a 
Software Developer could acknowledge all the logic behind the conception of the 
system. 

• Implementation. Two possibilities were defined concerning implementation. 
Depending on available funds, it would take place in parallel with the installation of the 
store facilities. Otherwise, only the website would be implemented. 

The business modeling was carried out, and the roles involved were: the Business Owner who 
accumulated the roles of Service Designer and Business Process Manager, the Software 

Architect and a User Interface Designer. The main produced diagrams, presented in this 
Chapter are: 

• Service Design (of the enterprise). 
• Business Processes Design of: 

o “News Decoy” 
o “Publish Advertisement” 
o “Publish Classified” 
o “Validate Reporter” 

• User Tasks 
o “Insert Classified” and “Obtain Classified” of the “Publish Classified” BP 
o “Obtain News” and “Publish Reporter News” of the “News Decoy” BP. 

These previous diagrams are presented as follows in order to illustrate the GOALS method 
steps and the applied techniques. The remaining diagrams are presented in Appendix C – 
“iKiosk” Project Diagrams. 
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4.3.1. Analysis Phase 
The Analysis phase models the enterprise in terms of a working system, which is independent 
from the implementation-technology of the supporting Information System. The enterprise 
system defines a human and logical structure that provides a service that has regulations and 
manages data based on an Information System (independently of its physical implementation). 

This working structure is represented by the Enterprise Structure (elaborated in Step 3), which 
is based on the Service (Step 1) and Business Process (Step 2) designs, to which a fourth Step 
is added in order to elicit the daily tools (based on User Intentions) that the user needs in order 
to carry on his tasks, so that business and software modelers are aware of the logical context in 
which user carries on its tasks. Step 4 (Task Modeling) establishes a first direct relation between 
business and software models, to which the software Design phase follows. The four Steps of 
the Analysis phase are presented as follows, starting with the Service and Business Process 
design (Steps 1 and 2), the Enterprise Structuring (Step 3) and the Task Model (Step 4). 

4.3.1.1. Step 1 - Service Design 
Origin 

The Service Design is originated from the need to understand the relation between Business 
Processes (BP), user participation, and used and produced resources and information, reflecting 
the Production Logic of the enterprise. It enabled understanding the specificities of the desired 
BP Improvement (BPI), representing the inception on the business problem after the 
specification of the ideology of the project based on the High-Level Concept [Kreitzberg, 1996], 
as also used in the WISDOM method. The established relation is useful for the Business Owner, 
Service Designer, and Software Architect in order to rationalize over the BPI using a single 
diagram. Moreover, the relation between DEs which is established in this Step is also included 
in the software-oriented domain model of Step 7 (Section 4.3.2.3. Step 7 – Database 
Structuring), as previously introduced in Section 3.2.5. Data Entity (DE). 

Elaboration 

The Production Logic follows the BP meta-model, stating that: A BP must be initiated and 
other users may also participate, and that at least a DE must be produced, directly reflecting the 
semantics of the goal of the BP or not, to which, however, it is always architecturally associated. 
BPs do not relate directly between each other. This relation is established by people and DEs. 
We assume that the number of produced resources (produced DEs), should be increased against 
the number of consumed resources (used DEs) in order to enhance productivity. The used and 
produced DEs are represented in the diagram. 

The Service Design is a set of interrelated BPs by means of DEs and actors that provide a 
service according to the business organization, including the lines of interaction and visibility. 
We define the Service as "A network of BPs that provides a Service to the Customer according 

to the Enterprise Goals". It is the expression of a service which is available in different touch-
points, with back-end support, which the actor, may visit, but not necessarily in a pre-defined 
order. For this reason, the participation of the initiator of a BP is considered as Conditional i.e. 
it is initiated only if the user wants to initiate it, whereas the participation in the BP may be 
considered as mandatory or Sequential, since it has to give “sequence” to the initiation, 
otherwise, the BP will not be properly executed. The concepts of Conditional and Sequential 
participation will also applied in the Business Process Design (Step 2) in order to specify the 
(mandatory or not) flow between BP tasks.  
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The elaboration is carried out by means of the identification of the BPs with which the actor 
interacts with, and the identification of the used and produced products and services which are 
represented by DEs. BPs are named according their goal, their initialization (represented by a 
line with an arrow) and participation (line with no arrow) by actors is specified, and the used 
and produced DEs are identified (produced DEs should be explicitly identified). The touch-
points are represented by the initialization of BPs by the actors placed outside the line of 
visibility, who may go beyond it in order to interact with the enterprise/service/business 

process, and when they do, they interact with the actors which are outside the line of visibility, 
representing a logical and physical location of the execution of the BPs that separates internal 
from external collaborators with the purpose of representing the Service as a whole. 

Meta-Model and Example 

 

Figure 28. Step 1 - Service Design Meta-Model and Example (“iKiosk” Project). 

Figure 28 presents the simplified meta-model of the Service Design, which is composed by the 
BP, actor, DEs, lines of interaction (dashed square) and visibility (internal square), to which 
the Production Logic should be applied. The example presents the relation of the “Customer” 
actor with the “Publish Classified” BP, to which the “Attendant” is also related in a relation of 
participation, whereas, the “Publish News” and “Decoy” BPs are initiated by the “Reporter”. 
Two BPs use the “Classified/News” DE which was generalized in order to structure the 
information of both classified and news that the “iKiosk” wishes to make available to their 
clients, with the distinction that the news are introduced by the reporters, and the classifieds are 
introduced by the customers. The “Payment” DE is relative to the payments of printing of 
classifieds and news, and the “Person” DE represents the customer personal data. 

Meaning to the SDP 

The Service Design is the first approach to understanding how the enterprise interacts with the 
customer, how it is organized and what are the business concepts which are involved in each 
BP, and how they are related between each other. By establishing this relation, the analyst 
develops a perception of how the information may be used, and what other information may be 
added in order to process and obtain the desired outputs, including the BP goal. 

The Software Architect will continue to explore how each BP internally works, and how it may 
be improved and automated in order to promote the enterprise performance. It is important that 
the analyst establishes the relation between DEs along the project, yet it is not mandatory at this 
stage, since this relation will be established along the Method Steps as introduced in Section 
3.2.5. Data Entity (DE) and will be further specified in Section 4.3.2.3. Step 7 – Database 
Structuring. 
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4.3.1.2.  Step 2 - Business Process Design 
Origin 

The Business Process (BP) design is originated from the need to understand how information 
is processed along a BP, what where the intervenients, and the tasks that they performed in 
order to achieve the BP goal, as formalized by the Process Use Cases method [Valente & 
Sampaio, 2007]. The simplification introduced by the normalization of User Tasks (UT) as 
essential use cases [Constantine & Lockwood, 2001], made the resulting diagram more easily 
readable. Thus, once designed, the model was used as a dialogue artefact in which the 
stakeholders expressed their concerns, namely the users when describing their tasks, and the 
Business Process Managers when describing the control needs of the system and the 
regulations that should be applied. The model is also useful for Software Developers to 
understand the course of user action, and Software Architect to define implementation priority. 

Elaboration 

The BP is designed by means of the relations between UTs and the human structure that 
cooperates until they achieve the enterprise goal. The relation between UTs can be Conditional 
or Sequential, and at least one actor must be defined as the initiator of the BP. The Conditional 
execution (dashed line), is defined as an actor intention to follow a certain BP path or not. The 
flexibility complements the traditional Sequential (mandatory) execution flow (solid line). Two 
UTs may be carried out by the same actor in the same IX only if: (i) related Conditionally, 
complete and meaningful, and not dependent on each other; or (ii) related Sequentially, with at 
least another actor UT between them. This situation is clear when applied to the customer in 
the Service Design, but it applies to BP design in a different way, as the user may not be able 
to accomplish certain tasks if their data does not conform existing Business Rules (BR), so it 
may happen that the user whishes not follow a certain path, but he is obliged to in order to add 
information that satisfies existing BRs. In the BP design, the regulations, which in GOALS are 
expressed as Business Rules (BR), are not represented, as they are later expressed in the 
Enterprise Structure. The BP design is elaborated using an Activity Diagram with UTs and 
swim lanes, or by relating each actor to his UTs, and representing the IX physical space. 

Meta-Model and Example 

 

Figure 29. Step 2 – BP Design Meta-Model | Example of “Publish Classified” BP. 
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Figure 29 presents the meta-model of the BP design, which is composed of the actor, the UT 
and the IX. The example presents the “Publish Classified” BP design, which is composed of 
the UTs “Insert Classified” and “Obtain Classified/News” which are carried out by the 
“Customer” Actor, and receive the conditional support of the “Attendant” by means of the 
“Provide Classified Support” and “Support Customer Activity” UTs, respectively, depending 
on the will of the customer. Both customer UTs are conditional, meaning that the customer may 
interact with the business without completing any of the UTs. Notice that the representation of 
the IX physical space is not supported by UML, and for that reason, the diagram must be 
complemented with drawing tools (or drawn out by hand) for this representation purpose. 

The “Obtain Classified/News” UT initially was “Obtain Classified” (only), but given the 
generalization which was carried out in order to support “Classifieds” and “News” after 
validation, in Steps 4 (Task Model, Section 4.3.1.4) and 5 (User Interface Design, Section 
4.3.2.1), that the structure could be generalized, the “Obtain Classified” and “Obtain News” 
became the same. The specification of separate UTs for “Insert Classified” and “Obtain 
News/Classifieds” in the same IX, is a decision which targets the division of the type of support 
from the “Attendant” and the computers of the store where these UTs could be performed. 

Meaning to the SDP 

The BP design is the cornerstone of the dialog between stakeholders, including the final user. 
It is based on it that the Service Designer, the Business Process Manager, and the Software 

Architect, make the dialogue that will detail the system requirements and explicit existing 
expectations, to which the software modelers must comply with. The BP design will serve the 
purpose of defining the priority of implementation, since the UTs information may be used 
along the implementation namely for the integration and testing of the programmed software 
components. As optional requirement, we suggest that at this stage the Interaction Spaces (IX) 
where actors interact are identified, designing the physical perspective of the BP, in order to 
consolidate the rationale behind the elaboration of the Enterprise Structure in Step 3. Otherwise, 
if all the interaction is remote, a simple sequence of flows of UT of actors is sufficient. 

4.3.1.3.  Step 3 - Enterprise Structuring 
Origin 

The Enterprise Structure is the generalization of the original WISDOM software architecture, 
which was simplified in order to be readable and fit an adequate paper support (usually an A3 
sheet) that allowed the representation of related Business Process (BP) Improvements (BPI). 
This generalization also originated the establishment of the business and software traceability 
by means of the User Tasks (UT) of the BPs and the WISDOM tasks and related interaction 
spaces generated from essential use cases decomposition. With the recurrent generalization of 
the WISDOM software architecture, the model started to be elaborated after the BP design, 
since at that stage enough information was already collected in order to understand which UTs 
were subject to which Business Rules (BR) and which Data Entities (DE) that they used, bot 
represented in the WISDOM software architecture, becoming the Enterprise Structure. This 
was the relevant business information available for the detail of requirements and software 
modeling in the Design phase. 

Elaboration 

The Enterprise Structure elaboration is the continuation of the BP design, and is based on the 
identification of the Business Rules (BRs) and Data Entities (DEs) with which the Interaction 
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Spaces (IX) must comply with. It involves the elaboration of the Interaction Spaces Diagram, 
based on the BP design, which later only needs rearrangement in order to be transformed in the 
Enterprise Structure. The diagram is the establishment of a relation of business concepts 
dependency in each IX, whether these are regulations, expressed by BRs, or data, expressed by 
DEs, its logical resources. The IXs are derived from the UTs relations, as one IX typically 
supports the actor’s interaction, representing a physical or computer supported space. In 
concrete terms, IXs represent offices, rooms, places as physical places, or computerized User 
Interfaces that allow both data management and the execution of programmed routines. 

 

Figure 30. Enterprise Structure IX Diagram for “Publish Classified” BP. 

The identification of IXs in the “Publish Classified” BP is presented in Figure 30, where it was 
defined that the four UTs of the BP are performed in the “Classifieds” IX, which must ensure 
the application of the BRs “Security Validation”, “Classified Price”, “Classified Availability” 
and “Classified Printing Price”. The elaboration of the remaining IX is also presented, namely 
the “Printing Zone”, the “Coffee Bar”, and the “Cashier”, each one with its BRs and DEs, 
namely for the prices of printing, coffee and final payment. At this stage, some of the 
dependencies are already established based on the semantic of each object e.g. the “Cashier” 
IX will use the “Classified Printing Price” (which relation is represented) and probably the 
“Coffee Price” (still not represented). In the final Enterprise Structure all relations that may be 
semantically be identified should be represented. 

The Enterprise Structure elaboration follows, continuing the rearrangement of the previous 
diagram namely the BRs and DEs that should apply in each case, relating each component by 
means usage. The structure is representative of the social interaction support concerning the BP 
execution in terms of stable and essential norms, also known as the organizational kernel 
[Stamper, 2013].  The technique that uses the Interaction Spaces Diagram for IX identification 
and their relation to BRs and DEs is called as the GOALS Enterprise Architectural Technique. 
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Example 

 

Figure 31. Step 3 - Enterprise Structure Meta-Model | Example of “Publish Classified” BP. 

Figure 31 presents the Enterprise Structure of the “Publish Classified” BP presented in the 
Service Design, maintaining precisely the same structure of concepts that was elaborated in the 
Interaction Spaces Diagram. The structure of the Interaction Spaces Diagram for the “Publish 
Classified” BP is now related to the “Person” and “Classified/News”) DEs by means of the 
affinity of the used business concepts semantics. A similar situation happens with the “News” 
IX, which is related to the “News Printing Price” and “Filter News” BRs, which uses the 
“Payment” and also the “Classified/News” DE, as presented in the Appendix C – “iKiosk” 
Project Diagrams, and the “Decoy BP”. 

Meaning to the SDP 

The Enterprise Structure is the diagram that enables understanding the complexity of the 
ongoing BPI, and provides a structure of requirements to which the software development team 
must comply with in the process of developing the Information System. It is useful as a support 
to guide the elaboration of the detail of each of the UT in a last Step of the Analysis phase, and 
also for every Step of the software Design, since the IXs, BRs and DEs represent unchangeable 
information (unless erroneous) which can be interpreted as a persistent conceptual business 
structure that must be complemented with software specific parts, concerning their automation, 
from that moment on. 

4.3.1.4.  Step 4 - Task Modeling 
Origin 

The Task Model is originated from the need to understand what may be the best sequence of 
steps to accomplish the User Task (UT), according to a logical sequence of data management 
(of business concepts). The decomposition of the UT User Intentions using the CONCUR 
TASK TREES (CTT) method allowed the elaboration of a compromise between the user and 
the software development team that promoted cooperation, and allowed the structuring of the 
User Interface. By means of the application of the WISDOM Software Architectural Technique 
to each User Intention the internal structure of the system was also derived in terms of system 
responsibilities (components of the Business Logic), establishing the Task Model as a firm 
software development artefact. 
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Elaboration 

The Task Model details the sequence of actions that leads to the completion of the UT under 
the actor’ responsibility. It describes human behavior and is the first level of decomposition of 
the CTT method [Paternò, 1999], providing a second level of the structure of the User Interface 
by means of the Interaction Component (IC), following the specification of the Aggregation 
Space (AS) that supports the UT. From the UTs are derived User Intentions and System 
Responsibilities (SR) according to the decomposition of an essential use case. Each IC and 
supporting SR are named according to the meaning (the business concept, DE) which is being 
used. In each case, the name assumes an action (the user’s responsibility) over the business 

concept (e.g. “Insert”, “Delete”). The Task Model is modeled using an UML Activity Diagram 
(without the initial and final signs), specifying the flow of User Intentions, following the 
application of the Software Architectural Technique. 

Example 

 

Figure 32. Step 4 - Task Modeling Meta-Model and Example for “Insert Classified” UT. 

Figure 32 presents the meta-model of the Task Model, which defines that the AS is associated 
in a relation of 1 to 1 with the UT, and that the UT has many User Intentions. The Task Model, 
applies the Software Architectural Technique, eliciting ICs and UISRs (according to the defined 
interaction pattern). The example presents the Activity Diagram of User Intentions and its 
corresponding UISRs and ICs. The User Intentions “Identify Self”, “Insert Classified (…)”, 
“Previews New Classified”, “Classified Payment”, and “Confirm Classified Insertion”, are 
supported by pairs of IC and UISR, namely: “Identification” IC and “User Validation” UISR, 
“Classified” IC and “Classified” UISR, “Preview” IC and “Return Preview” UISR, “Payment” 
IC and “Payment” UISR, “Insert Classified” IC and “Confirm Classified Insertion” UISR. For 
purposes of reuse of the software-specific components, the managed business concepts are 
compared to the DEs already existing in the Domain Model (for purposes of validation). 
Business concepts are nouns and the intentions are the verbs of the User Intentions. If a new 
business concept is identified, then it must be clarified if its meaning is already included in the 
existing DEs (e.g. “Classified Preview” in “News/Classified” DE) or included as a new DE. 
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Meaning to the SDP 

The Task Model details User Tasks (UT) in order to obtain information to carry on the User 
Interface design, which happens in Step 7 – User Interface Design, and it defines the perspective 
of a specific actor concerning an Interaction Space (IX), which has a direct one-to-one relation 
with the software-specific component, the Aggregation Space. It represents the identification 
of the tools which are used along the UT, which may be implemented by the Information 
System or not, to which the relation of: the UT with the AS; and of the User Intentions with the 
SRs; can already be established in this last step of the Analysis phase, prospecting what will be 
probably implemented. In the case when new Data Entities are identified then they must also 
be expressed as DEs, that also update the Service Design. This DE identification process, should 
be maintained up to the Step 7 (presented in Section 4.3.2.3. Step 7 – Database Structuring), 
where the DEs structure will be detailed in terms of tables and fields of a Database. 

4.3.2. Design Phase 
The Design phase is the continuation of the method, gradually transposing the responsibility of 
elaboration from the business to the software domain. The Enterprise Structure of the ongoing 
Business Process Improvement (BPI) is the reference model that provides the requirements for 
the production of a Software Architecture for in-house software development. The process 
continues in a top-down logic, by means of detailing the User Intentions of each User Task 
(UT) in User Interactions (Step 5 – User Interface Design) aiming the design the User Interface, 
the Business Logic (Step 6 – Business Logic Structuring) and the Database (Step 7 – Database 
Structuring) structures, getting gradually closer to a level of detail that suits implementation, 
and finishes with the elaboration of the Software Architecture (Step 8 – Software Architecting). 

4.3.2.1. Step 5 – User Interface Design 
Origin 

This step is originated from the need to design the User Interface in a top-down process in order 
to ensure that all the needed information for this purpose was elicited from business 
requirements, and that the most convenient technological solutions would not influence the 
system being designed. With the application of the CONCUR TASK TRESS (CTT) method, 
and the structuring of User Interfaces with the Hydra Framework [Costa et al., 2007], which 
supports the Model-Driven implementation of the WISDOM interaction space (now referenced 
as Interaction Components (IC)), the detail of the User Interface fields becomes the remaining 
concern. The detail of the IC and its Fields is useful for the Business Logic and Database 
structuring, placing the User Interface Design as the driving model of the system specification. 
With the formalization of the GOALS method, the BEHAVIOR DRIVEN DEVELOPMENT 
(BDD) method was used to articulate the dialogue of the User Interface by means of the 
elaboration of an Interaction Model which is complemented with the Canonical Abstract 
Prototypes (CAP) [Constantine et al., 2003], for the final design of the User Interface. 

Elaboration 

The Interaction Modeling specifies each User Intention in terms of User Interactions. It also 
defines Aggregation Space (AS) usage and the behavior of the system in terms of the System 
Responsibilities (SR) triggered by Interaction Objects (IO), which are the components with 
which the user interacts with in terms of e.g. clicks and keyboard inputs. It is used to generate 
a User Interface design, part of the Business Logic, and identify the Fields of the Data Entities 
(DE). The Interaction Model is carried out by means of the application of the BEHAVIOR 
DRIVEN DEVELOPMENT (BDD) method [Chelimsky et al., 2010]. BDD is an agile software 
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development process that describes the system behavior based on a User-Centered Design 
perspective, producing pseudo-code for User Interface specification by means of the 
elaboration of User Stories. User Stories describe a feature for the support of a certain purpose 
(the UT) within a certain scenario which in GOALS is specified by a state of the system within 
a certain AS. BDD’s pseudo-code has the following syntax. 

Given [State] When [Interaction] Then [System Behavior] 

Where [State] represents the actual state of the system given the information of the AS with 
which the user is interacting with; [Interaction] is a flow of User Interactions that specify User 
Intentions; and [System Behavior] is the expected outcome that triggers User Interface (UISR) 
and Database (DBSR) SRs. The software architectural components are derived from BDD 
pseudo-code by means of the relation presented in Table 7. 

Table 7. BDD Pseudo-Code and GOALS Components Relation. 

BDD pseudo-code GOALS Component 
Given Aggregation Space (identification) + [State] 
When User Interaction + Interaction Object + SR 
Click, Choose, Set, Type User Interactions 'Click', 'Choose', 'Set' or ‘Type‘ 
Display 'Page' or Go to 'Page' User Interface SR 'Display Page' + IC 'Page' 
Field Data Entity Field 
Then (last) System Responsibility (SR) 

 
The Interaction Model defines that a User Story is applied to each UT, composing a User 
Interface that references Interaction Components (IC) and Interaction Objects (IO) that together 
compose the AS of that UT. The User Story starts with a Given clause that identifies the AS 
and its [State] if necessary, and specifies a When sentence for each User Intention (of the Task 
Model) identifying new IOs and SRs by means of a second application of the WISDOM 
Software Architectural Technique, finishing with behavior specification in the Then clause. 

 

Figure 33. Canonical Abstract Prototypes (CAPs). 

Each IO is then customized according the CANONICAL ABSTRACT PROTOTYPES (CAPs) 
[Constantine et al., 2003] and its compatibility with the BDD operations, namely to support: 
BDD “Type” with the “Modify”, “Select” with “Select”, and “Click” with the “Start/Go/To” 
CAP, while the space that the IO occupies is expressed by the space of the CAP container in 
the User Interface design. The CAPs are presented in Figure 33. 
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Example 

 

Figure 34. Step 5 - Interaction Model Meta-Model | “Insert Classified (Text/Image/Link)”. 

Figure 34 presents the Interaction Model meta-model that states that a User Interaction is 
supported by an IO that uses UISRs and DBSRs. The example presents the decomposition of 
the “Insert Classified (Text, Image, Link)” User Intention into the “Type Classified Text”, 
“Select Image”, “Type Link”, “Type Contact” and “Click Preview” User Interactions. 

These User Interactions, similarly to the Information System structuring which was carried out 
in the Task Model by means of the software architectural technique, have a correspondence, 
now with IOs instead of ICs, which in the same way are related to SRs, the first ones UISRs, 
and the last one the "Display Preview, Payment and Insertion Options" DBSR, which is a 
convention concerning the application of the BDD method to implement the chosen interaction 
pattern, towards the User Interface and Information System structuring. 

 

Figure 35. Step 5 - User Interface Design of “Insert Classified” AS. 
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Figure 35 example the Aggregation Space “Insert Classified” User Interface design, which was 
developed for the iKiosk project. It is composed of five ICs, as identified in the UT “Insert 
Classified” in terms of User Intentions, and each IC is composed by its Interaction Objects as a 
result of the elaboration of the Interaction Model for each User Intention. It includes customer 
personal data, enables the introduction of a classified, its previews, presents the payment in 
case it applies, and has a final “Insert” button. 

 

Figure 36. Example of User Interface Components Reuse. 

We take as example the “Classified Data” IC in order to illustrate the reuse of ICs which our 
method facilitates. The IC is composed of the Fields “Text”, “Image”, “Link”, “Classified 
Contacts”, and “Preview” which makes the navigation to the “Classified Preview” IC. Since a 
new User Intention, “View Classified” (in the original “Obtain Classified” UT), was identified 
as using the same IOs, then the “Classified Data” IC was reused concerning the “Obtain 
Classified” AS, which supports the UT with the same name. According to the Interaction 
Model, the behavior of both “Insert Classified” and “Obtain Classified” AS, may change. 

Website Design 

In order to elaborate the website design, the information from the “News/Classified” and 
“Advertisement” DEs had to be presented to the user in order to fulfill the objective of 
establishing a “decoy” that would attract people to the “iKiosk” daily information. As the 
related DEs were produced in the “Publish Classified”, “Publish News” and “Publish 
Advertisement” BPs, the UTs that produced this information were analyzed targeting software-
specific components reuse for the support of the “Obtain News” UT of the “News Decoy” BP. 
Thus, to the original “Obtain News” UT decomposition in User Intentions, new User Intentions 
were identified which were related to the “Classifieds” and the “Advertisements”, as the user 
could also be interested in business opportunities from sponsors or other “iKiosk” users (e.g. 
part-time jobs or car selling). This lead to the unification of the “News” and “Classified” 
software structure, as both structures have the same common entities related, namely the 
“Categories” and “Items”, the detail (Text/Image/Link), the Contacts, the way of obtaining it 
(by Phone, eMail or Facebook), and the payment, to which the “Advertisements” were added 
composing the website front-end. The website allows the search of news and classifieds using 
the same tools, producing a common list that may be filtered in order to display only one or the 
other, from which one may be chosen, so that the user may take action contacting of obtaining 
the item according to the available options. The list of advertisements would be filtered 
according to the terms search and the level of promotion which was accorded concerning each 
advertisement. 
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Figure 37. User Interface Design for the Front-End of the “iKiosk” website. 

In the User Interface presented in Figure 37, it is possible to identify the reuse of components 
by means of comparison with the “Insert Classified” AS, to which are added the 
“Advertisement” IC, and the generalization of the “News” and “Classified” structure which 
promotes software simplification. This is reflected in the Software Architecture in terms of the 
generalization of the “News” IC, that now supports both classifieds and news, and for that 
reason had its name changed to “News/Classified”, which Business Logic and Database 
components are the same than the “Classified” IC, invoked with distinct parameters by the 
invoking AS, “News” (the website) and “Classified”, respectively. A User Intention of “Insert 
Classified” was added to the “Obtain News” UT, from which the “Insert Classified” User 
Interaction was added, establishing the navigation from the “Obtain News/Classified” AS to 
the “Insert Classified” IC, which is reflected in the Software Architecture by a usage relation 
from the first to the second. As a complementary result of the unification of the “Insert 
Classified” and “Obtain Classified/News” UTs, the web site could also be used in the “iKiosk” 
store in order simplify the “Insert Classified” BP, in which case, the “Customer” actor and the 
“Attendant”, would only perform a single UT in the “Classifieds” IX. 

Meaning to the SDP 

Once the User Interface design is finished, the User Interface Designer will begin to realize 
what are the more complex parts of the Information System, so that he may focus the software 
development efforts in ensuring that these parts will be properly elaborated. Moreover, by 
eliciting the fields of the User Interface, and its behavior, the Software Developers can program 
the components under their responsibility with a higher level of knowledge concerning the 
desired functioning. This knowledge may have a positive impact in the software development 
performance, by ensuring that the programmer knows what is desired in terms of User Interface 
appearance, arrangement, desired sequence of fields and commands usage, the Business Logic 
structure expected behavior and the Database tables and fields structure. It is what drives the 
design and the development of the Information System in terms of its detail. 
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4.3.2.2. Step 6 – Business Logic Structuring 
Origin 

The Business Logic structuring became the logical sequence of the elaboration of the User 
Interface since based on the application of the Software Architectural Technique, the Business 
Logic System Responsibilities (SR) are already identified and need to be organized in terms of 
Database dependency. As the model also provides information for the Database structuring 
namely in terms of used fields, it is therefore an essential step of the Information System 
structuring, and the beginning of the Software Architecture elaboration. 

Elaboration 

The Business Rules (BR) are the foundation of the Business Logic as the business-specific SR 
of the model, which are now complemented with the User Interface (UISR) and Database 
(DBSR) SRs. SRs and BRs need adjustment in terms of Data Entity (DE) usage, which is carried 
on based on the used Fields identified in User Interface design. First it is necessary to define 
the DEs to which each Field belongs to, establishing a relation between the BRs and SRs, and 
the DEs. The relation between SR and the User Interface related components: Aggregation 
Space, Interaction Space, Interaction Components and Interaction Objects; can also be 
represented for the purpose of analysis of this first approach to the Software Architecture, and 
for clarification of the Business Logic components usage. At this stage, the Software Architect 
is already aware of the existing business concepts, since these have been identified and 
elaborated since the Service Design (Step 1) of the Analysis phase. Once all the identified User 
Interface Fields are properly supported by the Business Logic components as expected in the 
User Stories, the Business Logic structuring can be considered as finished. 

Example 

 

Figure 38. Step 6 - Business Logic Structuring Meta-Model and Example. 

Figure 38 presents the meta-model of the Business Logic structuring, which states that the 
Information System has many BRs, the IC and the IO have many UISRs and DBSRs, reflecting 
the “Read and Save – Interaction Design” pattern. The example presents a structure of SRs 
derived by means of the detail of User Intentions, generating the “Classified” and “News” 
UISRs, and the detail of User Intentions in User Interactions, generating the “Text Options”, 
“Image Options”, “Link Options”, and “Contact Options” UISRs, and the “Make Available 
Preview, Payment and Insertion Option” BDSR.  Both “Classified” and “News” UISRs use the 
same SRs due to a generalization of the “News” and “Classified” concepts that led to the 
specification of the “Classified/News” concept, since it was identified both were consistently 
related to every other concept in a similar way, and distinction would be made by means of the 
type of record and the parametrization that would apply to each. 
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Meaning to the SDP 

Once the Business Logic structuring is finished the software design process can be considered 
as “almost” finished in terms of its design. The remaining modeling parts are simply the finish 
of the establishment of the relation that were defined after the Enterprise Structure elaboration. 
The method follows to the Database structuring and final Software Architecture. 

4.3.2.3. Step 7 – Database Structuring 
Origin 

The Database structuring is the core software engineering model, since it is where the data of 
the system is persistent over time, and where no structural errors may exist without affecting 
negatively the Information System functioning. For this reason, the Data Entities relation 
elaboration starts on the first Step of the Analysis Phase, and its detail in terms of Fields is also 
carried out along the remaining SDP ensuring that this model is always updated when new 
relevant information is elicited. The Database structuring represents the base of the conceptual 
business and software structures. 

Elaboration 

Data Entities (DE) identification started in Step 1 - Service Design, and continued along the 
SDP, so at this stage the practitioner already has a well-defined notion of the business concepts 
under analysis. In terms of Database objects, DEs are implemented by Tables, and its attributes 
by Fields. DEs are related by means of syntactic relations with multiplicity of typically one-to-
many, or many-to-many. DEs relations define restrictions that are not subject to the logic of 
design specifications of the User Interface and the Business Logic in which they are used. Here, 
the Business Concept is worked on its full scope i.e. if one DE can directly relate “in any means” 
to another, a relation of one-to-many is established from the DE that uses, to the DE that is 
used. Complementarily, the Fields identified in the previous Steps, are also associated to its 
containing DE. The Database Structuring is now possible once all DEs and DE’ Fields are 
identified. 

Example 

 

Figure 39. Step 7 - Database Structuring Meta-Model and Example. 

Figure 39 presents the meta-model for the Database structuring, which defines that the DE can 
be used by any of the Business Logic components, the BR, UISR and DBSR, in a relation of 
many to many. The example (partially) presents the Database specification, reflecting a 
situation where DE “Person” is related the “Classified/News”, meaning that a customer can 
publish many “Classifieds” or “News”, since both the “Reporter” and “Customer” or other user 
interacting with the system are represented in the “Person” DE. The DE “Payment” has a 
relation of many to many to the “Classified/News” DE since a payment can include more than 
one classified or news, and each of these may also have more than one payment. In a complete 
representation of the Database, all the fields identified in the User Interface must be present. 
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Meaning to the SDP 

The Database if the core element of the Information System, and for that reason, and since the 
system was designed in top-down process, the remaining Step is the Software Architecture 
elaboration, which precedes implementation. 

4.3.2.4. Step 8 – Software Architecting 
Origin 

The Software Architecture as presented by GOALS is an evolution of the WISDOM 
architecture, with the inclusion of the Enterprise Structure, which logic of dependency is also 
originated from itself. In other words, the Software Architecture is an evolution of itself, after 
a process of generalization, also including the original WISDOM Architecture. The Software 
Architecture is the model that allows the distribution of software development work targeting 
development performance. 

Elaboration 

The Software Architecture relates all the components identified in the previous Steps (except 
for the User Intentions and User Interaction classes) in a single structure by means of a relation 
of usage. The Software Architecture can be used to specify priority and allocation for a software 
development team. Priority logic is contrary to the logic of components usage. Hence, 
components should be implemented from bottom to up, as the upper objects use bottom ones. 

Figure 40 presents the Software Architecture, with the relations previously introduced in the 
language meta-model, in a top-down relation from the User Interface, the Business Logic and 
the Database components, where the Enterprise Structure relation are highlighted with a 
stronger line. Each AS supports a UT with the same name, having therefore a relation with the 
Enterprise Structure by means of the UT and the used IX. The original “Obtain Classified” AS 
is represented to highlight the reuse of the ICs and underlying UISRs, DBSRs and DEs. 

Example 

 

Figure 40. Step 8 - Software Architecture Example. 
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Meaning to the SDP 

The Software Architecture is the more important diagram that should be pursued along the SDP, 
as it represents the solution for the BPI problem, and it also allows the specification of the best 
possible organization of the software development team, by means of specifying the precedence 
of implementation of its components, contributing to promote the SDP performance, which 
continues with the implementation of the Information System. 

4.3.3. Case Study Conclusions 
Concerning the GOALS method application, the “iKiosk” project served to present the concepts 
used in each model, and how the modeler may develop, always in a “top-down” sequence, the 
enterprise business and software models. The applied techniques follow the meaning of each 
(previously presented) concept, maintaining the coherence of the produced logical structure as 
the modeling of the BPI is carried on, maintaining the coherence between the complexity of the 
problem and the complexity of the solution. The complexity of the problem is reflected by the 
human activity to which an automated supported is needed, and of the solution depends on the 
corresponding software architecture in terms of User Interfaces (Aggregation Spaces), 
Interaction Components and Interaction Objects, and their supporting Business Logic. 

Table 8. “iKiosk” Project Development Process. 

# Date Stakeholders Phase Steps H 

1 07-02-2017 
Business Owner 

Software Architect 
Analysis 1. Service Design 4 

2 12-02-2017 Software Architect Analysis 
1. Service Design 
2. BP Design 

5 

3 21-02-2017 
Business Owner 

Software Architect 
Analysis 

2. BP Design 
3. Enterprise Structure 

4 

4 05-03-2017 Software Architect 
Analysis & 

Design 

3. Enterprise Structure 
4. Task Model 
5. User Interface 

5 

5 18-03-2016 
Software Architect 

User Interface Designer 
Design 

4. Task Model 
5. User Interface 
6. Business Logic 
7. Database 

15 

6 26-03-2017 
Software Architect 

User Interface Designer 
Design 

4. Task Model 
5. User Interface 
Conciliation of Classifieds 

and News Architecture 
8. Software Architecture 

15 

7 14-04-2017 
Business Owner 

Software Architect 

Analysis & 
Design 

Project Validation 1 

 49 
 
The “iKiosk” project had the production moments presented in Table 8, in which the 
intervenient stakeholders are distinguished. The Business Owner whom accumulated the roles 
of Service Designer and Business Process Designer participated in three moments (meetings). 
The Enterprise Architect assumed the Analysis of the business, and was joined by a User 

Interface Designer in the Design phase for the User Interface specification. The total number 
of hours is presented in column “H”, in a total of 49 for the complete project specification. The 
project is currently in the process of acquiring the resources for its implementation. 
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4.4. Case Study - “Star Project” 
We now present a case study of the application of GOALS that includes the organization of the 
business of a new enterprise and all the Method Steps that the analyst should go through before 
reaching a stage of software implementation. The “Star” project is a real software project that 
has the implicit intention of creating an enterprise, and the explicit intention of creating an 
Information System for the World Wide Web, targeting large audiences of people that want to 
support charity. We present the project as follows. 

The “Star Project” was developed for a local Buddhist community in Madeira, Portugal, which 
aims at raising funds to invest in areas of the globe which have basic chasms e.g. water and 
food supply, namely in Africa and Asia. The project is named as the “Star”, in allusion to the 
will of creating a patterned process of society development that could be replicated in case of 
success “illuminating” a different road for success of poor countries and cities. The objective 
is to create an enterprise that would channelize investments from people that would be 
interested in helping other people located in remote places. 

The idea is to elaborate the project according to the Buddhist philosophy of reaching an 
independence, in this case for the people that promotes the investments and its society, as long 
as those investments are considered as fruitful for the location, and as long as they promote 
structural changes that benefit the community and fill relevant chasms. The project had as 
primary objective the creation of a website that promoted the creation of a support community 
for investment projects, that may receive supporter feedback and pre-investments, as presented 
by promotors at existing investment capturing sites (e.g. Kiva [Kiva, 2017] or Zidisha [Zidisha, 
2017]), to which the “Star Project” site would channelize investment. 

Since it was predicted that the enterprise once fully operational would have an indirect relation 
with considerable amounts of money, and would also involve the creation of full-time jobs, a 
strategy was defined, first targeting the development of the minimal software implementation 
possible, and also the minimal involvement possible of the Business Owners and colleagues in 
terms of spent time. Thus, the strategy was to minimize investment, aim the development of a 
full-operational pilot project which once found successful, would posteriorly be increased in 
terms of people, business and software development in a second project. The roles involved in 
the project were two Business Owners, a Software Architect and a User Interface Designer.  

The project predicted the execution of two phases: 

• Business Modeling. Given the complexity of the project, distinct iterations of the 
Analysis of the business were defined. In each iteration the produced models were 
validated until there was a solid idea of the processes that would support the business in 
a regular basis, so that it would be possible to identify all the tasks that would support 
the website information production. 

• Website Modeling. Once the full complexity of the business was acknowledged, 
namely identifying the most basic concepts that would support it, the web site design 
would take place, so that it would also be possible to estimate the software development 
effort and consider the best implementation options, considering the possibility of 
applying for European funds, concerning its implementation. 

The following GOALS models were produced: 
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• 1. Service Design 
• 2. Business Process Design 

o “Grow Community” 
o “Support Project” 
o “Capture Investment” 
o “Evaluate Investment Support” 

• 3. Enterprise Structure 
• 4. Task Model 

o User Tasks of “Grow Community” BP 
o User Tasks of “Support Project” BP 

• 5. User Interface Design 
o “Attract Project Community” of “Grow Community” BP 
o “Support Project” of “Grow Community” BP 

• 6. Business Logic Structuring 
• 7. Database Structuring 
• 8. Software Architecture 

We present the totality of the produced diagrams in order to illustrate our language and method, 
as follows, and the remaining diagrams are presented in Appendix D – “Star Project” Diagrams. 

4.4.1.  Step 1 - Service Design 
The design of the service went through a phase of inception in order to understand how could 
be produced the project information for the customer (supporter in the project perspective). We 
defined the ideology of the project, based on the High-Level Concept [Kreitzberg, 1996], as: 
“Capture of Charity Investment to promote the Sustainability of Places with Chasms”. In order 
to specify the Production Logic of the enterprise, we started by elaborating a Domain Model of 
the logical structure that consumes and produces the business concepts (Data Entities (DE)). 
After, we followed to the organization of the Business Processes (BP) that would manage those 
DEs, and following that, we identified the actors of the enterprise that would assume the 
responsibility of initializing and participating in each BP. Finally, we defined the lines of 
interaction and visibility, separating the internal and external actors. 

Data Entities Identification 

The following text describes the Domain Model and justifies existing choices. The promoters 
(DE “Promoter”) and their investment (DE “Investment”) proposals at fund capturing sites 
where considered strategical as sources of opportunity to help needing countries (DE “Place”) 
and specific regions in basic issues such as water, food, education and environment (DE 
“Chasms”). However, the idea also targeted the edification of benevolent permanent changes 
(DE “Benefits”) that would promote the filling of the region chasms gradually and 
consecutively, aiding its development process. The idea was to channelize as much investment 
as possible, not towards too many investments, but to strategic investments that would fill 
existing chasms, thus, the investments could be more than one towards the same benefit, reason 
why are considered investment channels (DE “Investment Channel”), which cross multiple 
investments to produce a synergy (DE “Synergy”) for the region. A synergy is an added value 
from two or more efforts that generates a total which is more than the sum of the parts, i.e. 
building a bridge and a road may add more benefit than the road and the bridge independently, 
as it may promote the region commerce and its sustainability (DE “Sustainability”).  



The Goals Approach: Business and Software Modeling Traceability by means of HCI 

73 
   

Business Process Identification 

Four BPs where were conceived in order to organize the activity of the enterprise. Considering 
the project implementation strategy, the focus was on the “Grow Community Project” BP, as 
the process that would produce the information to present in the website driven by the process 
of elaborating the projects based on the “Capture Investment” BP. The “Grow Community 
Project” BP would capture investment intentions, present projects, and grow the community at 
the same time, creating a logic of (customer) support (“Project Support” BP) that started before 
the investments, would accompany the project along the its evaluation (“Evaluate Investment 
Success” BP), and would only finish after the project end. 

Actors Identification 

Figure 41 presents the Service Design. Four actors were identified and related to the BPs in 
which they participated or initiated. The “Supporter” as the external actor (placed outside the 
red line of interaction), the “Mission Manager”, “Project Manager”, and “Project Builder”. 
From a specific relation of the DEs, was elicited the main business concept structured logic of 
the project. It is (highlighted with a stronger line of association) the elaboration of “Synergies” 
of “Investment” which will produce “Sustainability” based on its benefits, which are measured 
according the defined and readable “Success Parameters”. 

 

Figure 41. Step 1 - Service Design (“Star Project”). 

By the analysis of the Service Design it is important to acknowledge the produced and 
consumed DEs, namely the ones that reflect the axis of the project. The “Project” DE is 
produced by the “Grow Community Project” BP, but only after the “Investment” and “Synergy” 
DEs are produced by the “Capture Investment” BP. The axis DEs are considered to be produced 
along with the “Project” and “Synergy” DEs. The more relevant relations of production are: the 
“Capture Investment” BP and the “Investment” and “Synergy” DEs; the “Grow Community 
Project” BP and the “Community” and “Project” DEs; the “Evaluate Investment Success” BP 
and the usage of “Success Parameters” DE; and the “Support Investment” BP and the “Event” 
and “Intervention” DEs. These relations are the top and the bottom of a relation of concepts 
that is structured upon the semiotic logic of business concepts, their syntactic, paradigmatic 
and syntagmatic relations that will compose the knowledge of the Information System, to suit 
the ideology of the enterprise. 
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4.4.2. Step 2 - Business Process Design 
The four Business Processes (BP) were designed, and the focus was directed to the “Grow 
Community Project” BP which would implement the logic of obtaining supporter to the 
ongoing projects by means of the user interaction with the website, also providing possibilities 
of participation. The design was carried out based on the Cooperation Logic, which defines that 
the BP goes from one actor to the other by means of complete UTs using logical Interaction 
Spaces, as all the conception of the project was to be based on remote interaction except for the 
one predicted in the “Support Investment” BP, which concerns the preparation of support events 
and interventions in the place. We now present the logic with which was produced the “Grow 
Community Project” BP. 

User Tasks Identification 

The “Grow Community Project” is the BP which produces information to feed the website in 
order to capture supporter for existing investments. The idea is to obtain support from the 
customers, as the “Project Manager” presents the approved projects, which represent strategical 
investments by means of the “Present Project” UT. Once the “Project Manager” presents the 
project, the “Present Project Activity” UT, carried out by the “Mission Manager” Actor follows, 
in order to increasingly create a project community that would be interested in participating in 
distinct support possibilities, namely, investments, in-loco interventions, deals or donations. 

Interaction Spaces Identification 

The identification of Interaction Spaces (IX) is done in a patterned way, knowing in advance 
that every time two actors transmit information from one to the other, by executing one UT and 
the other, and that one IX will be used for that effect. In the case of the “Grow Community 
Project” BP, IXs were named after the more important Data Entity (DE) that characterized the 
transaction, or the logic of cooperation. These IXs where the “World Forum”, reflecting the 
wide “space” which is created by presenting to the “World” the projects that need support, and 
the “Project”, which is characterized by the project information that will be presented. As all 
the human interaction is remote, the BP was presented using a simple flow of UTs, without the 
representation of the physical space of each IX. 

 

Figure 42. Step 2 – Business Process Design of “Grow Community Project”. 

The “Grow Community Project” BP is presented in Figure 42. The BP flow reflects the need to 
capture the Actor “Supporter” support, to which the “Present Project” and “Present Project 
Activity” UTs are strategical. As the “Supporter” performs his “Investment Feedback” UT in 
the “Conceive Investment Project” BP, the “Project Manager” may monitor the feedback until 
he feels that has the conditions to present the project by means of “Present Project” UT. Once 
the project is presented, the Actor “Supporter” may execute the “Support Project” UT as many 
times as he may wish. 
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4.4.3. Step 3 - Enterprise Structuring 
The Enterprise Structure was carried out by means of the elaboration of an Interaction Spaces 
Diagram that related Business Rules (BR) to the identified Interaction Spaces (IX) in order to 
understand the main concerns when dealing with the information present in each of the UTs 
that associated to each IX. After, the Enterprise Structure was finished, by means of relating 
each BR to the DEs identified in  Step 1 - Service Design. 

Business Rules Identification 

The elaboration of the Enterprise Structure was oriented by means of the identification of the 
concerns and regulations that should apply in each of the identified Interaction Spaces (IX). 
The main concern is the law of existing countries, and the application of the principles of the 
project, namely regarding the creation of synergies of channels of investment, and the defense 
against false promoters and projects. For each IX, the Business Rules (BR) that should be 
applied were identified: “Investment Applicable Law”, “Expected Benefits & Population ROI”, 
“Synergy Specification”, “Sustainability Warranties” and “Intervention Viability”; are 
examples of the rigor that must exist in the process conceiving an investment plan. Since there 
is no need to specify the physical space of IXs, the information concerning DE organization in 
IXs is not considered, until the elaboration of the final Enterprise Structure, and as such, is not 
presented in the diagram. The Interaction Spaces Diagram of the elaboration of the Enterprise 
Structure for the “Grow Project Community” BP is presented in Figure 43. 

 

Figure 43. Enterprise Structure Interaction Spaces Diagram. 

The “Project” and “World Forum” involve the creation of the project, and also of the customer 
supportive interaction, to which important regulations apply. These are, for the “World Forum” 
IX: “Scheduling Constraints”, “Synergy Specification”, “Project Plan”, Expected Benefits & 
ROI”, and “Sustainability Warranties”. These BRs reflect the focus on the financial rigor that 
the project must comply with. For the “Project” IX: “Intervention Internal Rules”, “Intervention 
Viability”, “Resources Requirements”, “Deals Rules”, and “Registration”. These BRs reflect 
the rules that must apply to the predicted types of support, namely concerning deals, 
interventions, and the resources that may be involved. 

Data Entities Identification 

The DEs which were already identified in  Step 1 - Service Design, are now complemented 
with the “Resources” and “Deals” DEs. The BRs were related to DEs by means of the 
semantical meaning of each BR, and the more basic DE concepts. 
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Figure 44. Step 3 – Enterprise Structure of “Grow Community Project” BP. 

Figure 44 presents the final Enterprise Structure of the “Grow Project Community” BP, where 
it is possible to identify the IXs and BRs of the Interaction Spaces Diagram are now related to 
the DEs that apply in each case. This structure represents the business up to the moment that it 
was elaborated according to the diagrams produced in order to attain the objective of the project, 
which was the elaboration of the website User Interface design. This model is supposed to be 
updated along the continuation of the modeling of the enterprise. 

4.4.4. Step 4 - Task Modeling 
From the “Grow Project Community” BP we focus on the “Present Project Activity” UT 
performed by the “Mission Manager”, which objective is to publish the distinct forms of support 
that may be available in each project. The needed information is introduced by the “Project 
Manager” and “Project Builder” Actors in the “Present Investment Possibilities” (of the 
“Conceive Investment Project” BP), and “Present Project” UTs (of the “Grow Community 
Project” BP); and by the “Mission Manager” in the “Plan Intervention” UT (of the “Support 
Investment” BP). The participation actions were found to be the “Investment”, “In-Loco 
Interventions” and “Deals & Donations”, to which the “Mission Manager” could also add more 
project information. The Task Model, which is the first of the two-step decomposition of the 
UT in User Intention (first step) and User Interactions (second step) according to the CTT 
method, was elaborated for two UTs, in order to specify the logic of cooperation concerning 
the usage of the same business concepts, promoting the continuous reuse of components. 

Task Model 

The Task Model includes the User Intentions of the “Present Project Activity” (left side of 
Figure 45) and the “Support Project” UTs, namely “Publish Project Information”, “Publish 
Investment Possibilities”, “Publish In-Loco Intervention Information” and “Publish Donation 
& Deals Possibilities”, which have a correspondence in the User Intentions of the “Supporter” 
Actor (right side of the Figure), of “Analyze Investment Possibilities”, “Analyze In-Loco 
Intervention Information” and “Analyze Donation & Deals Possibilities”. 
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Figure 45. Step 4 – Task Model | “Attract … Community”/“Support Project”. 

The Task Model is presented in Figure 45. The decomposition of the User Intention by affinity 
in nouns (business concepts) and verbs, allows the identification of the “Investment 
Possibilities”, “In-Loco Intervention Information”, and “Donation & Deals Possibilities” as 
new business concepts, which are to be included in the “Investment”, “In-Loco Intervention” 
and “Donations & Deals” DEs, respectively. Thus, from these business concepts, the attributes 
of “Publish” and “Analyze” were considered, establishing a direct relation between the User 
Intentions of the distinct UTs (e.g. “Publish Investment Possibilities” and “Analyze Investment 
Possibilities”), and promote the derivation and reuse of the “Investment Possibilities”, the “In-
Loco Intervention Possibility” and “Donations & Deals” Interaction Components (IC). 

4.4.5. Step 5 – User Interface Design 
The User Interface design targeting the identification of Fields and arrangement of Interaction 
Components (IC) depends on the elaboration of the Interaction Model, which applies a structure 
of decision to each User Intention. According to the interaction pattern chosen to specify the 
elaboration of the Software Architecture of the Information System, the specification allows 
the collection of all the data, and their presentation in Interaction Objects (IO) by means of the 
support provided by User Interface System Responsibilities (UISR), followed by an operation 
as demanded by the user, supported by a Database System Responsibilities (DBSR). 

Interaction Model 

In the example presented in Figure 46, the “Analyze In-Loco Intervention Information” User 
Intention of the “Support Project” UT (of the “Grow Community Project” BP), is decomposed 
into a logic of interaction based on the BDD method. The User Story is presented in UML notes 
and related to the User Interactions, derived from the BDD pseudo-code as presented in Table 
7, until reaching the “Type Registration Observations” and “Click Register for Intervention”, 
along with the identified IOs and SRs. 
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Figure 46. Step 5 – Interaction Model | “Analyze … Intervention Information”. 

User Interface Design 

The User Interface reflects the structure of business concepts which are involved in the UT, as 
presented in the Service Design (Section 4.4.1.  Step 1 - Service Design). Applied to the “Star 
Project” this logical structure is the relation of the “Synergy” DE with the remaining business 

concepts. The “Synergy” drives the project including multiple investment channels, which are 
composed of distinct investment possibilities, interventions to help support the project, and the 
possibility of donating and establishing deals by supporters who may want to work, provide 
machinery or any other valuable physical resources that they may want to dispense. 

The User Interface is elaborated from top-left to right-down following the western calligraphy. 
In the case that the method is to be used in a social environment where the calligraphy may be 
e.g. from top-right to left-down, the adaptation of this logic should be considered. The resulting 
User Interface, including the ICs derived from the remaining User Intentions of the “Support 
Project” UT, are presented in Figure 47, where the “In-Loco Interventions” IC is highlighted 
with its concept symbol. 

Following the Interaction Model, the “Supporter” Actor may type observations and register for 
an intervention. The “In-Loco Interventions” IC, the “Registration Observations” and the 
“Intervention Registration” IOs are highlighted in the Figure using UML stereotype nearby the 
object as designed using the Canonical Abstract Prototypes (CAP). The presented User 
Interface structure is the result of the elaboration of the “Present Project” UT Task Model of 
the “Project Manager” Actor, from which the following ICs were reused: “Project Character”; 
“Project Sustainability”; “Success Parameters”; “Investment Possibilities”; “In-Loco 
Interventions”; and “Donations & Deals”, according to the ones which were identified in the 
Task Model of the “Support Project” UT of the “Supporter” Actor. 
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Figure 47. User Interface Example. 

The “In-Loco Interventions” IC which has a correspondence with the “Present Project Activity” 
UT of the “Mission Manager” Actor which is presented in Figure 48. Both User Interfaces 
reflect the type of reuse which is facilitated by means of the application of the GOALS method, 
since the “Intervention Public Observations” IO and the “Intervention Publication” IO are what 
changes in the “In-Loco Interventions” IC, allowing the “Mission Manager” to perform an 
interaction in the “Registration Observations” IO, in the same way of the interaction in the 
“Intervention Registration” IO performed by the “Supporter”. The remaining components of 
the IC are maintained, and the structure of ICs of the AS of both actors is the same, as long as 
the components are reused to the User Intentions and User Interactions that they apply. 

 

Figure 48. User Interface Reuse Example. 

Website Design 

The design of the website is oriented by the “Support Project” and “Investment Possibilities 
Feedback” UTs of the “Supporter” Actor, which have a structure of projects which needs to be 
browsed so that the user may choose which project to support, and how. Thus, the “Investment 
Possibilities Feedback” UT refers to the “Investment Possibilities” IC of “Support Project” UT 
presenting a project still not approved, so that the user may “Introduce Textual Feedback”, 
promise “Participation” or “Donations & Deals”, compromising on how much money he would 
like to invest. Figure 49 presents the resulting website front-end design which allows browsing 
the places and projects. A new IC “Project Design” was added in order to provide a visual 
impact of the project, namely in terms of the service provided to the community. In the example, 
the GOALS notation was used to exemplify the objective of the IC, to which are added the 
already known supporter interaction possibilities, now in terms of a pre-investment poll. 
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Figure 49. Step 5 – Website Design of the “Star Project”. 

4.4.6. Step 6 – Business Logic Structuring 
The Business Logic structuring focus on the “In-Loco Intervention Possibility” User Intention, 
which provides support structure to the “Attract Project Community” and “Support Project” 
UTs, distinguished in terms of functioning according to the User Stories of the Interaction 
Model of each UT, which function as actors “permissions” over the management of each 
business concept. The structuring is carried out according to the affinity logic of the business 

concepts, promoting the reuse of existing DEs. 

Structuring by Affinity of Business Concepts 

The Business Logic components that support Interaction Components (IC), usually manage 
more than one field and eventually more than one DE. The components that support Interaction 
Objects (IO), usually manage one Field if they are User Interface System Responsibilities 
(UISR), and more than one DE if they are Database System Responsibilities (DBSR). The 
relation of the User Interface components with the Business Logic is already established, 
providing meaning to each of the components of the Business Logic, which are now to be 
related to the existing DEs, according to the perception that exists of the managed business 

concepts, independently of the reading and writing implementation that may be used to 
implement each Business Logic component. 

The structure present in Figure 50 contains the “In-Loco Intervention Possibility” UISR, which 
serves as an interface to the remaining UISRs and DBSRs derived by the “Analyze In-Loco 
Intervention Information” and “Publish In-Loco Intervention Information” Interaction Models. 
The UISRs are responsible for collecting the information which is presented in the User 
Interface. The “Save Intervention, Highlight Confirmation” and “Save Registration, Highlight 
and eMail Confirmation” BDSRs are responsible for saving the data in the Database and 
produce feedback to the User Interface. 
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Figure 50. Step 6 – Business Logic Structuring | “… Intervention Possibility”. 

Each component is related by means of affinity of the Fields of the DEs where these Fields 
belong. In the case of the DBSRs, the relation is established by means of the prediction of what 
are the DEs which it algorithm will need. Furthermore, the Enterprise Structure “Sustainability 
Warranties”, “Intervention Viability”, and “Intervention Internal Rules” BRs are also included. 
The “In-Loco Intervention Possibility” UISR is related to those BRs by means of the “Attract 
Project Community” and “Support Project” UTs IXs, namely “Project” and “World Forum”. 

4.4.7. Step 7 – Database Structuring 
The Database structuring is the detail of the domain model and the Data Entities (DE) which it 
contains in terms of Fields and new DEs, following their derivation in the previous Steps. The 
Fields are placed in the DEs by means of the affinity of their meaning. These Fields are class 
attributes, which may contain data, or may be calculated. In the cases when they are calculated, 
they may represent states of the system which characterize the DE. These states are independent 
from the states of the system that highlight the result of User Interactions, although these states 
may depend on them in function of the defined User Stories, and therefore, the related Business 
Logic components (UISR, DBSR and BR). 

Structuring by Affinity of Business Concepts 

 

Figure 51. Step 7 – Database Structuring. 
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The example in Figure 51 presents the Database structure after the elaboration of Step 6 – 
Business Logic Structuring, to which the DEs “Intervention Tasks”, “Intervention 
Registration”, and “Intervention Rules” where added as a result of Step 5 – User Interface 
Design, along with new Fields, namely: “Reading” and “Date” of the “Success Parameters” 
DE; “Objective”, “Value” and “Expected Revenue” of the “Investment” DE; “Date” and “Cost” 
of the “Intervention” DE, and “Information” of the “Intervention Tasks” DE. 

4.4.8. Step 8 – Software Architecting 
The Enterprise Structure elaboration is the arrangement of the diagram using the relations which 
were already previously established. Usually the relation between DEs is not represented, since 
at this stage, their positioning by means of affinity is sufficient in order to understand the 
functioning of the system. By means of arranging the diagram by affinity, the software modeler 
will usually be able to find the more appropriated spaces to position each Software Architecture 
component while maintaining the readability of the diagram, which will usually fit an A3 sheet. 

Figure 52 presents the Software Architecture of the “Investment Feedback” and “Support 
Project” Aggregation Spaces (AS), which support the UTs with the same name of the “Grow 
Project Community” BP, which is the specification of front-office of the website. The “Project 
Information” IC is the common support structure of both UTs. Each IC has a UISR which serves 
as an electronic interface to the UISRs and DBSRs that support the User Interactions. The 
Business Rules (BR) of the Enterprise Structure which refer to the Interaction Spaces (IX) 
where the supported UT occurs, “Project” and “World Forum” are also presented in the 
architecture. 

 

Figure 52. Step 8 – Software Architecture. 

Notice that the “Star Project” complexity is elevated when compared e.g. to the “iKiosk” project 
presented in Chapter 4. The Goals Process, Method and Techniques. That happens because of 
the number of business concepts. For this reason, the number of components is high, yet, 
nevertheless, all the Fields of the User Interface are represented enabling traceability and also 
facilitating implementation control. The Software Architecture may be used in order to assign 
and create a collaboration concerning each component development within the software 
development team. 
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4.4.9. Case Study Conclusions 
The presented case study reflects how the method may be used in order to specify the 
organization of enterprises including envisioning the facilities and buildings that they may 
occupy. The case study allows the understanding which business parts (or logical facilities) of 
the enterprise are supported by automated software and which parts are not, observed in the 
holistic perspective of the Business Owner, the Service Designer and the Business Process 

Manager during the Analysis phase. 

The development moments of the “Star Project” are presented in Table 9. There were 2 formal 
meetings with the Business Owners, which also performed the roles of Service Designer in two 
meetings (08-02-2017 and 23-02-2017). The project followed the Method Steps and had 
demanding phases concerning the final steps of each Analysis and Design phases, in a total of 
86 working hours including the client time. 

Table 9. “Star Project” Development Process. 

# Date Stakeholders Phase Steps H 

1 27-09-2016 
Business Owner 

Software Architect 
Analysis 

User Interface Drafts of 

Business Owner 

1. Service Design 
4 

2 20-10-2016 Software Architect Analysis 
1. Service Design 
2. BP Design 

10 

3 08-02-2017 
Business Owner 

Service Designer 

Software Architect 

Analysis 2. BP Design 3 

4 12-02-2017 Software Architect Analysis 

2. BP Design 
3. Enterprise Structure 
3. Enterprise Structure 
4. Task Model 

20 

5 23-02-2017 

Business Owner 

Service Designer 

Software Architect 

User Interface Designer 

Analysis & 
Design 

1. Service Design 
2. BP Design 
3. Enterprise Structure 
4. Task Model 
5. User Interface 

8 

6 18-03-2016 
Software Architect 

User Interface Designer 
Design 

4. Task Model 
5. User Interface 
6. Business Logic 
7. Database 
8. Software Architecture 

40 

7 14-04-2017 
Business Owner 

Software Architect 

Analysis & 
Design 

5. User Interface 

Project Validation 
1 

 86 
 
The number of hours spent in the elaboration of the Design phase in moment 6, 40, reflects the 
complexity of the project, which is augmented by the fact that the conception of the enterprise 
was completely new, without a reference model of any other enterprise besides what the 
websites of capturing organizations present. The presence of a User Interface Designer revealed 
to be important in order to help managing the complexity generated from the derived 
components and their design and structuring. Independently of the managed complexity, the 
Method Steps were followed in a standard way, and the client approved the final User Interface 
design, which was the main objective of the project. 
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4.5. Conclusions 
This chapter presented the process that applies a single method and language, including the 
bridging and structuring techniques which elaborate the Software Architecture based on the 
Business Architecture (the Enterprise Structure). Two case studies were presented, which 
complement each other by first presenting the conception of each step and its elaboration, and 
after, highlighting the more important aspects of each step and their related decisions, in the 
process of elaborating the business and software models. 

The application of the method allowed the design of the service and business processes of the 
enterprise, including the used spaces, applied regulations and used data. From this information, 
the business is structured, and based on this structure, human-centric techniques are applied, 
structuring of the User Interface of the Information System, its Business Logic, which is 
complemented with a Domain Model from which the Database is derived, achieving the full 
specification of the Software Architecture for the BPI. Whether a single BP-sized improvement, 
or all the BPs of the enterprise. 

The final Software Architecture reflects the business requirements which are being supported, 
since the relation from the User Interface (an Aggregation Space (AS)) to the User Task (UT) 
is of one-to-one (by default), and each UT decomposition in terms of intentions and interactions, 
and their relation to the structure of the Information System is also of one-to-one. The remaining 
business requirements are expressed in the Software Architecture by means of Business Rules 
(BR) in the Business Logic, and by Data Entities (DE) in the Database, which processing is 
ensured by means of the Interaction Space (IX) which is used (architecturally) “inherited” by 
the Aggregation Space, as a reinforcement of the (one-to-one) traceability of (business) UT and 
(software) AS. 

The resulting Business and Software Architectures may be used to organize the business and 
its people, and also the implementation of the software that will support that organization. The 
Software Architecture may be used to define implementation priority, and also affection in 
function of each team member software development competences. The process may be applied 
for smaller or larger software development teams, and smaller or larger BPIs, knowing in 
advance, that smaller projects have increased probabilities of success [The Standish Group, 
2013]. For this reason, the EDP should allow software project size to be evolved adequately, 
according to the development team capability, privileging effectiveness in first place, and 
efficiency in second, as efficiency depends also on experience, a reason to favor preliminary 
positive results (slower projects), as these may induce efficiency improvement (faster projects) 
in the long-term.  
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5. Goals EA Template 

The usage of architectural applications (or tools) for the elaboration of the models of a software 
development project gives the modeler advantages in terms of model organization. Concerning 
the elaboration of GOALS diagrams, an architectural tool allows the creation of a template that 
includes classes (GOALS concepts), their stereotypes (symbols), and the relation between 
concepts, which are simplified to dependency and association. 

The main difference from an architectural tool to a design tool, is the maintenance of a single 
representation of each class along all the diagrams where those classes may be instantiated in 
terms of its structure and also its associations. This eliminates the need to update the design of 
the diagram when a class or a relation changes or is deleted, as that change will also happen in 
the remaining diagrams automatically. Thus, an architectural application allows the elaboration 
of multiple diagrams where the same classes are used, yet only presenting the ones which are 
needed at each moment for the conception of the system. Moreover, each class may also include 
diagrams which represent their internal structure, a drill-down that allows an enhanced 
organization of the diagrams of the project. 

The tool elected to model GOALS is Enterprise Architect v13.5 Ultimate Edition [Sparx 
Systems, 2017], which provides support for the application of the UML 2.1 language, providing 
a set of features which allow the organization of all the information of a project, namely the 
stereotypes and diagrams, which we present as follows, focusing the application of GOALS. 

5.1. Organization 
The Enterprise Architect (EA) basic features are the “Tool Box”, which provides the classes 
and relationships which may be used to elaborate the diagrams, the “Project Browser”, which 
allows the identification of the created diagrams and components, the “Diagram” zone in which 
the modeler elaborates each diagram, and the “Tool Bar” which provides an extensive set of 
tools concerning overall EA functionality, separated in tabulators (“Start”, “Design”, etc.). 

 

Figure 53. Enterprise Architect (EA) Organization. 
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5.1.1. Stereotype Organization 
Each class type should have its own stereotype in order to facilitate its identification in the 
diagrams. Each GOALS concept is a UML class type to which a stereotype may be defined 
using the “UML Types” tool, available from the “Tool Bar”, at “Configure -> UML Types”, as 
presented in Figure 54. In the “UML Types” tool, the modeler may create a new “Stereotype”, 
typing its designation and “Base Class” (which should the generic “class”), and then clicking 
the button “Save”. 

In order to specify a file with the image of the stereotype, the modeler should edit the stereotype 
by selecting it from the existing “Stereotypes” (e.g. the “AS” stereotype as shown in the Figure), 
and select its metafile by specifying its location in the local hard drive. The stereotype file 
should be of the type “.EMF” (Enhanced Metadata File) or “.WMF” (Windows Meta File). We 
suggest that the image has transparency so that only the stereotype lines are visible in the 
diagram, and not the background (usually a white rectangle), in order to improve readability. 

 

Figure 54. EA - Stereotypes Organization Tool. 

For the creation of the .EMF or .WMF file, we suggest using the Microsoft PowerPoint®, by: 
drawing the image; selecting the image; selecting the option “Save as Picture…” from the drop-
down menu when right-clicking (for right handed people) the image; and then choosing the 
image format, in order to experiment it in EA. We suggest the creation of the stereotypes for 
the 12 GOALS concepts (using the in-brackets acronyms): Business Process (BP), User Task 
(UT); Interaction Space (IX); Business Rule (BR); Data Entity (DE); User Intention 
(UserIntention); User Interaction (UserInteraction); Aggregation Space (AS); Interaction 
Component (IC); Interaction Object (IO); User Interface System Responsibility (UISR); and 
Database System Responsibility (DBSR). 
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5.2. Diagrams 
In EA, diagrams are managed in the “Project Browser”, using a hierarchical structure of views 
that contain the diagrams of the project. We suggest the creation of a view with the name of the 
project, in which all the diagrams will be contained. 

 

Figure 55. EA - Package and Diagram Creation. 

Figure 55 exemplifies the situation, where the first step (highlighted as “1”) is selecting the 
option of “Add View”, and naming the view (“2”), in this case “Apoio Social” (the name of the 
project). After the view is created, diagrams may be added by selecting “Add Diagram…” (“4”), 
and naming the diagram, in this case “1. Service Design” (“5”), which will after appear under 
the view “Apoio Social”, as highlighted with an horizontal bulleted line 

Diagrams may be created in two ways. By means of using the “Insert Diagram…” option (as 
presented in Figure 55), or by setting a class as a “Composite Element”, in which case, the 
diagram is created as a dependency of the class. This situation is presented in Figure 56, where 
after selection the option “Composite”, a new “Child Diagram” will be created as a dependency 
of the class (in this case “Agendamento”), with the same name. The diagram will automatically 
be opened in the “Diagram” zone, empty, in order to be elaborated. 

 

Figure 56. EA - Diagram Creation. 

Class Creation 

With the diagram open, the modeler may add classes and actors, by means dragging them from 
the “Class” tool from the “Tool Box” to the diagram, to which a name should be given (e.g. 
“Pessoa”), and the stereotype defined (e.g. “DE”). The modeler may also duplicate classes of 
the diagram by copying an existing class as a new class, using the “Paste Element(s) as New” 
tool from the “Edit” drop-down menu (or using the “Ctrl + Shift + V” command after “Crtl + 
C”), and changing its name. Both class creating dialogs are presented in Figure 57. 
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Figure 57. EA - Class Edition and Duplication (only changes the name) Tools. 

In the class edition tool, the modeler will also find other structural aspects of the class, namely 
the attributes management (in the “Detail” separator) which are used to define the Fields of 
DEs, and the relation of the class with other classes (in the “Link” separator). 

Relations between Classes 

After two or more classes are already added to the diagram, these may be related between each 
other. Since GOALS is oriented to the modeling by hand, some adaptations must be made in 
order to support its modeling using software architectural tool. The relations are of dependency 
and association: 

• The “Dependency” defines that one class depends on the other class existence and good 
functioning in order to properly work. This is the structural relation that applies between 
each of the GOALS concepts, independently of business or software. 

• The “Association” relates classes in order to compose its meaning, using a cardinality 
that defines for each of the predicted instantiations of one class, how many may exist 
from the other class that composes the relation. It applies to Data Entities (DE). It also 
applies to the relation between User Tasks (UT), for the elaboration of the Step 2. 
Business Process design. When the relation is conditional, the dependency relation 
should be used. 

Figure 58 presents the 3 types of relation. The dependency (on the left), where the Business 
Process depends on the User Tasks, which depend on the Interaction Space. The association (in 
the middle), where Data Entity (DE) class “Projecto” is associated to the DE “Serviço” with a 
cardinality of 1 to many (represented as 1 and *). The remaining DEs are associated with no 
cardinality (as an unfinished diagram). The directional (source -> destination) association (on 
the right) defining the flow of a BP execution, which in the case of the conditional relation 
(from “Agendamento” to “Ir à Consulta”) is represented with the dependency. 

 

Figure 58. EA - Relations between Classes. 
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When existing components are added to existing diagrams, the relation which they have with 
other components are also presented in the diagram by default. However, in some diagrams, it 
may be necessary to hide some of the relations of the components in order to remove complexity 
and make it more readable. Two examples are the relations of UTs of the BP design, and the 
association of DEs in the Enterprise Structure and the Software Architecture. Those relations 
may be hidden by means of right clicking the relation with the right mouse button (if right 
handed, if left handed-left button), and setting the Visibility to “Hide Connector”, as presented 
in Figure 59. 

 

Figure 59. EA - Setting the Visibility of Relations. 

5.3. Architectural Views 
The possibility of managing classes and all their relations with other classes in each different 
diagram where it is represented, allow the elaboration of enhanced architectural views, which 
gather the information from multiple diagrams, in order to provide a holistic perspective of the 
system being modeled. In GOALS, these diagrams are the Enterprise Structure and the Software 
Architecture, and are the main reason that justified the usage of an architectural tool for the 
elaboration of a software development project. 

 

Figure 60. Enterprise Structure as an example of Enhanced Architectural View. 
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These diagrams are enhanced architectural views that provide a privileged perspective of the 
system which in the case of GOALS, include all the previously generated components. These 
diagrams are useful as a base of knowledge that allows the identification namely of, missing 
relations, duplicated or wrong relations, missing components, and by means of arranging the 
classes by affinity, also facilitates the identification of lack of organization in classes names. 

Figure 60 presents an Enterprise Structure example, which contains 25 classes, and 26 relations 
of dependency. In this diagram, 15 relations between Data Entities (DE) were hidden in order 
to facilitate its reading. In the case that the relations do not harm the readability of the diagram, 
then they may still be presented, which is the case of the 4 flow associations between User 
Tasks (UT), as they are useful to understand the functional logic without the need to open other 
diagrams, in this case, the Business Process (BP) design. Thus, this type of diagram summarizes 
all the previous work, and also serves as a menu to navigate to the internal diagrams of 
composite elements, namely of the UTs, which in the specific case of GOALS, are from where 
the design of the system continues. 

5.4. Conclusions 
This chapter presented how the Enterprise Architect (independently of the role that he plays: 
Business Owner, Service Designer or Business Process Manager, Software Architect, User 
Interface Designer and Software Developer. may take advantage of the usage of an architectural 
modeling application in order to develop the 8 models of the system that reflects the business 
and the software components organization. 
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6. Validation 

The validation of our method is considered in the perspectives of its internal consistency, and 
of its power of expression. The validation of the GOALS language internal structure cross-
consistency targets the validation of our research hypothesis, and also allows the space for the 
classification of the possible relation types between the language’s concepts. Both validation 
perspectives reflect our contribution concerning the effectiveness, of producing a representative 
business and software traceable model, and the efficiency of producing a software structure 
based on a consistent and clear relation between models using a single modeling language. 

The cross-consistency validation presented in this chapter is a second and extended version of 
the validation published in [Valente et al., 2017], in which the validation is extended to the 
method, and related to the Enterprise Structure (business and hybrid) and Software Architecture 
(software-specific) concepts, also highlighting the human activity, User Interface, Business 
Logic, and Database layers and their concept’s relations. The power of expression is validated 
by means of the comparison of the GOALS language with other development methods, in terms 
of: the assertiveness of the requirements elicitation; and comprehensiveness of representation 
of the business and software in scope and detail. This involves comparison by means of 
mapping the concepts of the methods analyzed in Chapter 2. State of The Art, with the GOALS 
concepts, in every case that a comparison applies, and modeling the business, requirements or 
software presented structures using the GOALS language, highlighting the differences. In this 
comparison, we also include an extended comparison with the DEMO structure which was 
previously published in [Valente et al., 2016b]. 

The analysis of the GOALS process in terms of development effort estimation [Alves et al., 
2013], previously referenced in Section 1.3. Research Question, is out of the scope of the 
present validation, which only referrers to the method and language. 

6.1. Cross-Consistency 
Our research was based on the question of (Q1) “If it is possible to establish a modeling 

language that can be applied by a single method which is representative of the organized 

business activity and its supportive software system?”. And by placing the hypothesis (H1) that 
it “Is possible by means of a cross-consistent relation of business and software concepts, and 

by modeling the business human activity and relating it to software-specific components of the 

software model by means of the application of architectural patterns”. The validation of H1 is 
carried out by means of the validation of the internal consistency of the structure of the GOALS 
language, and by the application of architectural patterns and restrictions (the method) that 
allow the Information System implementation from a business model, ensuring traceability. 

The cross-consistency between concepts is based on the application of the Cross-Consistency 
Assessment (CCA) [Ritchey, 2015] method and the application of the General Morphological 
Analysis (GMA) to the relation between GOALS concepts. The objective is to find an 
“inference model” out of the relations analysis which ensures integrity and clarity, considered 
as the “Solution Space”, from within the remaining contradictory or incompatible relations. In 
the CCA which was carried out, the GOALS concepts are considered without parameters, as 
the only relation being considered is the UML usage of one concept by the other, and not the 
compatibility of states of these concepts once instantiated as components, which is a task of the 
responsibility of the Software Developer concerning the programming of the model. 
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The CCA was applied to the five software-specific components of the Software Architecture: 
Aggregation Space (AS), Interaction Component (IX), Interaction Object (IO), User Interface 
System Responsibility (UISR) and Database System Responsibility (DBSR); the two business-
specific concepts: Business Process (BP) and User Task (UT); and to the three hybrid Enterprise 
Structure components: Interaction Space (IX); Business Rule (BR) and Data Entity (DE) . The 
Cross-Consistency Matrix (CCM), and the resulting types of relations are presented in Figure 
61 (Enterprise Structure concepts are underlined), from BP to DE, according to an UML usage 
relation i.e. the component on top uses and depends on the component on the lines below to 
properly work. The concepts are organized according to the their character: Human Activity, 
which refers to the daily organized actions performed by humans within the business context; 
User Interface, which are the components that present and provide information management 
tools; Business Logic, which refers to the programmable classes; and, Database, which refers 
to the tables and fields and relations between them, of the Information System. 

 

Figure 61. Cross-Consistency Matric of the GOALS Concepts. 

From the validation of the relation between concepts as considered in the matrix presented in 
Figure 61, we defined four types of relations validation: 

• Architectural Usage. Underlined correct sign ( � ). GOALS architectural relations. 
Define relations between components which are generated by means of the application 
of the GOALS method, and which are part of its meta-model, as presented throughout 
Chapters 3. The Goals Language. It’s the “inference model”. 

• Allowed Usage. Correct sign ( � ). Relations that can be applied for the purpose of 
architectural optimization. Mostly represent: Business Modeling Flexibility ( �1 ), in 
order to allow other possible representation such as the “Usage of Spaces (IXs) by BPs”, 
or the “Direct Usage of DE by IX”; or Software Architectural Horizontal Reuse ( �2 ) 
of the concept by itself, of to use other concepts from the same layer e.g. any of the 
Software Architecture concepts invoking itself (notice that the UISR and BDSR 
concepts are structurally equal, reason why the �2 validation also applies in this case). 
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• Contingency Usage. Wrong sign ( � ). Which are relations that that should not occur, 
but may represent a useful trade-off, as they can simplify implementation, however 
introducing architectural disorganization: Business Architectural Restrictions ( �1 ), as 
the Enterprise Structure BRs should always be accessed by IXs and not directly, and 
also as DEs should be accessed by means of UI or DB SRs, and not by User Interface 
components; Software Architectural Restrictions ( �2 ), in order to ensure the 
architectural control as a result of the one-to-one relation of the User Task to the AS, of 
its User Intentions to the IC, and of its User Interactions to the IO, from the two-step 
application of the Software Architectural Technique. 

• Restricted Usage. Wrong underlined sign ( � ). Relations that should not exist, as the 
BP and UT concepts cannot directly use Business Logic software-specific concepts, the 
IX should not use any software-specific component, and the BR should not use any 
other BR, in order to promote their independence in terms of regulations validation, 
unless that criteria is introduced in the architectural specification for purposes of 
improvement of the framework. 

The Architectural Usage relations represent the “solution space”, which is the one in which 
we now focus in order to sustain our research hypothesis. While the validation by means of the 
CCA method supports the first part of H1: “It is possible by means of a cross-consistent relation 

of business and software concepts”, the application of the method validates the second part: 
“and by modeling the business human activity and relating it to software-specific components 

[…] by means of the application of architectural patterns”. Figure 62 presents the CCM 
“inference model” of the GOALS language and its relation with the Steps of the method. 
Enterprise Structure concepts crossing relations are presented in darker doted green, and 
software-specific concepts relations in lighter plain green, the invocation from business to 
software or the opposite is presented in lighter doted green. 

 

Figure 62. Cross-Consistency Matrix and the GOALS Method Steps. 
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Thus, the second part of H1, which states that the cross-consistency should be complemented 
with a method that applies the language, is sustained by the following techniques: 

• The Software Architectural Support (UT-AS crossing), as a one-to-one relation of the 
business-specific User Task (UT) concept and the software-specific Aggregation Space 
(AS), that ensures support for a complete human (user) with one User Interface. This 
structural relation is maintained thorough Steps 2 to 4. After it, the AS is decomposed 
into ICs and IOs using independent techniques in the following Steps. 

• The Cooperation Logic (UT-IX and AS-IX crossings), that ensures that the same IX 
support is given to the pair UT-AS one-to-one relation, ensuring that the same 
regulations (BRs) and information (DEs) are provided, independently of a physical of 
computerized IX. 

o This provides the isolation of the business responsibility which is enclosed in 
business regulations in terms of BRs (Business Rules), as the business-specific 
concept of the Business Logic, among software-specific concepts.  

o This also allows the elaboration of the AS as a result of the IX to which its own 
UT is attached, increasing the probability of finding reusable structures of User 
Interface, that will serve more than one AS by means of recognizing the business 

concept (DE) being managed. 
o By means of recognizing reusable User Interface components, the recognition 

of the Business Logic components may also be facilitated by means of 
recognizing which UISR or DBSR components may provide the needed data for 
the User Interface component (IC or IO) or any of its supporting System 
Responsibilities (SR). 

• The Software Architectural Technique, that by means of the consecutive decomposition 
of the UT in terms of User Intentions and User Interactions (steps 4 and 5), results in 
the elicitation of ICs and IOs that use the corresponding UISR and BDSR (which use 
Data Entity elements), in order to elaborate the internal structure of the Information 
System. 

• The Business Logic Structuring (Step 6), that applies semiotic analysis based on the 
identified business concepts (DEs) in order to relate the Business Logic components to 
the Database Tables and Fields, and that isolates the responsibility of BRs and the 
business-specific component of this layer. 

• The Database Structuring (Step 7), that by means of semiotic analysis elaborates the 
data structure that reflects the existing enterprise business concepts, composed in a 
single diagram (the UML Domain Model) of DEs and corresponding Fields. 

• The Software Architecture (Step 8), is simply the presentation of every concept’s 
component and their relations (DEs relations are usually omitted, and the UT-IX relation 
is replaced by the UT-AS one-to-one relation in the cases when a computerized support 
exists). 

Finding that the Architectural Usage relations presented in the CCM are valid, and that the 
GOALS techniques that elicit and generate each component are suitable for the specification of 
a Software Architecture for a given BPI, independently of technology used for implementation, 
in order to provide support for a BPI, which business process is designed or may be translated 
to the GOALS language, we sustain our hypothesis. 
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6.2. Power of Expression 
The empirical validation of the power of expression of our method targets understanding how 
GOALS may be used to model different types of business and software development aspects, 
in the perspective of the identification of requirements and the (model-driven) transformation 
of these requirements in software architectures. The methods analyzed in Chapter 2. State of 
The Art, are now compared in terms of the used techniques and their scope concerning the 
business and software modeling. The models considered for comparison are relative to: the 
social organization of the human activity in business processes and services, the correspondent 
derivation of requirements; the task model, which specifies the organization of the individual 
human activity in order to complete a task; the conceptual and implementation-independent 
software structure for of the User Interface, Business Logic, and Database of the Information 
System. Each method concepts are mapped to GOALS concepts in order to evaluate: 
comprehensiveness in large scope and in detail; requirements elicitation; and software 
architecting techniques, in every case that the comparison applies. The differences and 
similarities are highlighted, and qualitative evaluations and modeling suggestions are made. 

6.2.1. Service Design 
The Service Design develops a “high-level” perspective of the functioning of the enterprise. In 
this perspective, the relation of business processes and what they produce and consume provide 
a view of the structure of goals of the enterprise, their internal and external actors. 

MORELLI & TOLLESTRUP 

Figure 63 presents a model of MORELLI & TOLLESTRUP [Morelli & Tollestrup, 2006], 
which represents a large fabric of food. At the enterprise modeling level, the business processes 
granularity is not adequate to represent large groups of business processes which are related in 
order to produce complex products, reason why they are represented by “Platforms” (right side). 

 

Figure 63. MORELLI & TOLLESTRUP and GOALS Service Design Representation. 

In Figure 63, the fabric of food has a sequence of platforms (e.g. “Food Manufacture”), which 
define the process of production. In GOALS, the platforms are matched by the Interaction and 
Visibility Lines (only the last is represented) and the DEs that they manage, which are common 
to other platforms. In GOALS, the relation between Business Processes (BPs) does not exist 
(reason why the BPs access directly to the DEs, instead of the platform), because the flow of 
information is analyzed by means of the structure of Business Rules (BRs) for data validation 
during the execution of the BP. Nevertheless, the execution may be analyzed by means of the 
cardinality of the relation between DEs e.g. one “Prepared Package” has many “Semi-Finished 
Package”, and also by means of the semantical analysis of the involved concepts. MORELLI 
& TOLLESTRUP identify use cases but not the internal Software Architecture. 
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SERVICE EXPERIENCE BLUEPRINT (SEB) 

The BLUEPRINT is a reference in the modeling of the interaction of the customer with the 
enterprise given a certain business perspective. It defines the line of interaction and the lines of 
visibility, which are important, inclusively in a marketing perspective, specifying what the 
customer should see or not. The SERVICE EXPERIENCE BLUEPRINT (SEB) [Patrício et al., 
2008] is a based on the BLUEPRINT, and targets Information System development using a 
logic of decomposition compatible with essential use cases in terms of the generated 
requirements granularity. The method contributes to clarify the relation of the customer with 
the system, while predicting that it has a “back-office” system, beyond the line of visibility. 

 

Figure 64. SEB and GOALS Comparison. 

In the example presented in Figure 64, a customer-service interaction identified by means of a 
goal (mapped to a User Task, a goal within the service to the customer), is decomposed 
according to the interaction of the customer with the front-end of the service. In the cases when 
there is an arrow in the direction of the customer task, mapped to a User Intention in GOALS, 
the information is presented using an Interaction Component (an IC). And if the direction is 
towards the front-end, it is received by a User Interface System Responsibility (UISR), which 
accesses a back-stage of Service Interface Links (also represented with UISRs). 

The multi-interface modeling proposed by SEB could be based on the decomposition of the 
User Intention and ICs into User Interactions and Interaction Objects (IO) and structured into 
Aggregations Spaces (concerning each UT), implementing Steps 2 (BP design), 4 (Task Model) 
and 5 (Interaction Model) of the GOALS method, to reach a structured User Interface design. 
This possibility may enhance implementation time, as in most cases, the difference between the 
user performing the tasks alone in his computer, and with a bank collaborator, in person, or 
remotely, is that the both will use distinct implementation of each tool, and a different set of 
permissions which may be described in the Interaction Model (Step 5). 

6.2.2. Enterprise Engineering 
DEMO [Dietz, 2006], is the reference method in EE. It uses transactions in order to organize 
the enterprise human activity, and produces models which contain information that may be used 
to structure the Business Logic and the Database of an Information System. ARCHIMATE, the 
BUSINESS MOTIVATION MODEL, and ARMOR are also compared with GOALS in terms 
of common concepts identification. 

DEMO 

The GOALS structure may be compared to the DEMO structure based on the analysis of the 
concepts which are involved in the transactions of the business processes. The GOALS 
Business Process (BP), User Task (UT), Business Rule (BR) and Data Entity (DE) concepts are 
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compatible and can be derived from the DEMO concepts of: (Transaction) Coordination Act 
(C-Act), Action Rule and Object Class, respectively. GOALS adds to those concepts the Goal 
(name) of the Business Process (BP), and the Interaction Space (IX). For the purpose of 
understanding how GOALS provides support for the enterprise human activity, we establish a 
relation between the “inter-related sets of transactions”, which define a BP in DEMO, with a 
BP in GOALS. 

 

Figure 65. DEMO and GOALS Relation of Concepts. 

Figure 65 presents the relation that is established between the DEMO transactions and the 
GOALS BP and its UTs. UTs are related to DEMO transactions by means of merging 
consecutive Coordination Acts (C-Acts). The C-Acts are: request (rq), promise (pm), state (st), 
and accept (ac). User Tasks (UT) are derived from DEMO in terms of consecutive C-Acts 
performed by the same actor (e.g. sequence “T1 pm st”). In DEMO the transaction activity is 
related to Actions Rules, in the same way that in GOALS the UTs are related to the space (IX) 
where they occur, and then related to BRs, being therefore mapped to Actions Rules (from 
which their definition is derived). The Action Rules are then related to Class Objects in DEMO, 
in the same way that BRs are related to DEs in GOALS. 

The identification of IX is based on the space used by actors in order to perform their UTs, and 
the relation with the concept of Business Rule is based on the WISDOM Software Architectural 

Technique which relates human activity (the UTs) with system behavior (the BRs) by means of 
an IX. Hence, it serves as a door that relates business-and-software recognizable concepts of 
Interaction Space, Business Rule and Data Entity. GOALS uses the concept of IX, in order to 
establish a relation with the User Interface and remaining structure of the Information System 
(the Business Logic and the Database). The DEMO method does not consider the human user 
activity, as every transaction only specify two interactions between two users, with no changes. 
As a result, the resulting systems need adjustment in terms of User Interface design based on 
other methods, reason why we believe that the IX is an important increment to DEMO 
concerning the elaboration of the business model. 
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Figure 66. GOALS Representation of Transactions including More Than One Actor. 

The establishment of the IX has the benefit of also allowing the specification of different types 
of relations of human activities, namely the bi-directional relation (on the right side of the 
structures presented in Figure 66), in this case presented using a Conditional relation (dashed 
bi-directional line), equivalent to a flow of three UTs between two actors, in this case 
represented with a Sequential relation (two full one-direction line, on the left of the structures). 
The Conditional relation means that the user may not perform a UT, and that the BP execution 
will continue as long as existing BRs are respected. When a bi-directional Conditional relation 
is used, at least one BR should be shared between the related UTs, meaning that there is a 
common aspect to be treated by the actors. Figure 66 illustrates the situation and also the 
transformation of a Sequential and Conditional BP execution first supported by two IXs (on the 
left) to one IX (on the right), meaning that all the actors (in this case three actors) perform their 
UTs in the same physical or logical space. Thus, the difference between both methods business 
conceptual structures is that GOALS considers the human interaction within a certain space 
besides the remaining conceptual structure. This creates conditions to further consider relevant 
aspects such as the actor context, the physical and logical space that they use, and the UTs 
which they carry on. The relation of derivation of IXs from UTs may be specified for the support 
of more than two UTs, and ultimately for the support of all of the UTs of a BP. 

ARCHIMATE 

The ARCHIMATE Language models the business and the software parts of the architecture of 
an enterprise, and is oriented for the identification of the building blocks of the enterprise. We 
used the concepts provided by the language in order to identify the possible mappings between 
both languages so that the GOALS language could be represented using ARCHIMATE. 

 

Figure 67. ARCHIMATE Modeling of the GOALS Structure. 
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Figure 67 presents the relation of concepts of ARCHIMATE and GOALS. The UT is mapped 
to the “Business Interaction” reflecting the interaction between actors that occurs in GOALS 
each performing its UT. In the business perspective, the “Business Interface” and the 
“Location” concepts are compliant with the notion of IX, and the “Business Function” is 
compliant with the BR, and the “Business Object” with the DE. In the software perspective, the 
“Application Interface” is compliant with the AS, and since we do not find specific and suitable 
representation to the IC and IO components, we mapped these concepts to the generic 
“Application Component”. The UISR and BDSR are mapped to the “Application Service” and 
“Application Function” concepts. ARCHIMATE distinguishes the “Business Object” from 
“Data Object”, whereas we map both to the DE representation. 

BUSINESS MOTIVATION MODEL 

The BUSINESS MOTIVATION MODEL (BMM) is more closely related to GOALS in terms 
of the ideology specification of the enterprise, than in the perspective of the operational 
implementation of the enterprise decisions. The “Strategy” and “Tactics” reveal enterprise 
concepts which may be applied as guiding lines in the specification of business processes, 
which is work in progress in GOALS. 

 

Figure 68. BMM Model using the GOALS Language. 

The higher level concepts used in the BMM are presented in Figure 68, which define a 
“Mission” (ideology on GOALS) from which is established a “Vision” (beliefs) which is 
specified by means of goals (BP and its goal) and “Objectives” (quantifiable “goals”), which 
are supported by a “Course of Action” which “Strategy” (wisdom) and “Tactics” (UT) are 
governed by “business rules” (BR) and “business policy” (principles). Both approaches are 
similar in the way that they relate the concepts, yet, distinct in the form that they organized 
them. The GOALS existing relations are presented with a full line, and the non-existent with a 
dashed lighter line. 

ARMOR 

ARMOR produced a simplified Enterprise Architecture which has a similarity with GOALS in 
terms of the (one-to-one) relation that is established between the business requirement and its 
implementation. It supports modeling the goals of the stakeholders and their decomposition, 
including “influence” and “conflict” control, from which it withdraws requirements which 
should be supported by an “architectural component”. The relation is presented in Figure 69. 



The Goals Approach: Business and Software Modeling Traceability by means of HCI 

100 
   

 

Figure 69. ARMOR Structure and Representation using the GOALS Language. 

The mapping between ARMOR and GOALS is coincident in the relation that is established by 
“Hard Goals” (quantifiable goals) and the (“complete”) UTs, and the “one-to-one” relation of 
the “Architecture Component” with the AS (or any other User Interface component), in order 
to provide the same support. ARMOR is another example of the compatibility of GOALS and 
the goal-oriented techniques which motivates future work regarding the evolution of GOALS 
concerning the specification of the UX requirements, and further development of the Task 
Model and software architectural reuse improvements. 

6.2.3. Business Process Management 
BPMN is the reference modeling language in BPM. It may be used to model human activity, 
resources and rules, however without specifying a method. 

BUSINESS PROCESS MODEL AND NOTATION (BPMN) 

BPMN provides a very consistent representation of business process, that nevertheless allows 
that one user may carry on more than one task consecutively, an aspect that is not benevolent 
for Information Systems development, as it may lead to the identification of more use cases 
then needed, which may be reflected in more components depending on the patterns used to 
elaborate the Software Architecture. Also, the representation of business processes allows the 
representation of part of the business regulations in the business process design, which we do 
not observe as a good practice, since these regulations should be independent from the business 

process execution, otherwise, slight regulations changes may change its design, and as such 
lead to the loss of traceability. 

 

Figure 70. BPMN and GOALS equivalent BP Design. 

Taking as an example the BPMN “Shipment Process of a Hardware Retailer” diagram presented 
in Figure 70, the “Check if Extra Insurance is Necessary” activity may depend on a business 
regulations concerning “insurances” which is only expressed by means of the human activity 
and the flow of the business process, and is never expressed in the resulting structure as an 
independent business concept. If the regulation concerning insurance may be applied to other 
business processes, and if it changes, then the design of both may have to change, with even a 
bigger impact in the supporting Information System. 
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KLUZA & NALEPA 

In our perspective, the KLUZA & NALEPA [Kluza & Nalepa, 2013] method presents a solution 
for the problem of rule representation using BPMN, by means of a semantic analysis which 
allows the isolation and separation of business rules concerns, producing information to 
structure the Business Logic of the Information System. 

 

Figure 71. KLUZA & NALEPA and GOALS equivalent Requirements Elicitation. 

Figure 71 presents the BPMN and Business Rules combination (adapted example diagram) 
produced by the method, and the equivalent GOALS representation, which identifies the BPMN 
activities as User Intentions, once they are performed by the same user in the “Calculate 
Liability Insurance Price” UT. From the BPMN diagram it is possible to extract the dependency 
of the User Intentions from the business rules, and also the dependency between them, and also 
the transition to the “Display Payment Results” and the “Send Payment Results”, which may 
be mapped to UISR and DBSR components, respectively. 

PUTZ & SINZ 

PUTZ & SINZ [Pütz & Sinz, 2010] present a solution that enables the identification of channels 
of communication by means of business objects. The method applies the SEMANTIC OBJECT 
MODEL (SOM) and identifies transactions and tasks by means of the interaction schema (IAS) 
and the task-event schema (TES), then producing decompositions of the system until reaching 
an executable BPMN description. This information may be useful in order to identify the tasks 
and the User Interface spaces in a methodical way, however, it lacks a domain model, which 
could benefit the approach. The model and an example are presented in Figure 72. 

 

Figure 72. PUTZ & SINZ and GOALS equivalent Representation. 

6.2.4. Human-Computer Interaction 
The Human-Computer Interaction (HCI) methods produce software architectures to respond to 
the user interaction providing adequate User Interface behavior, using User-Centered Design 
(UCD) techniques. The architectures are usually complex, as they structure the spaces of the 
User Interface, and its fields in terms of the type, usually the managed data concepts, and also 
the behavior that should be applied in terms of relations between fields and spaces. 
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The combined HCI and SE are recognized as Human-Centered Software Engineering (HCSE) 
methods, in which WISDOM was pioneer by means of the Software Architectural Technique 
(as referred in the thesis) generating the User Interface and Business Logic of the Information 
System, further complementing it with the Domain Model, completing the MVC architecture. 
Therefore, the question related to HCI does not concern the Software Architecture elaboration 
only, but to how representative the method may be of the business in order to provide support 
for a BP, elicit requirements and maintain traceability. 

CEDAR 

The CEDAR method [Akiki, 2013] establishes a relation between a task model (of e.g. a use 

case), decomposing it until the physical interaction between human and system (e.g. a click), 
and relates this activity to User Interface components. The structure is presented in Figure 73, 
where the CEDAR method example architecture is modeled using GOALS. The final structure 
is similar to the GOALS User Interface model, as the use case (equivalent to “TaskModel”) is 
related to the User Interface specification (“AUIModel”), and the “Task” is related to the 
“AUIElement”, to which a certain type of interaction object is specified (“AUIElementType”). 

 

Figure 73. CEDAR and GOALS HCI Representation and User Interface Architecture. 

CEDAR develops the type of User Interface architecture that enables complex specifications 
that support requirements specified by User Stories [Memmel et al., 2007], usually more 
detailed than use cases in terms of interaction specifications and system behavior, which may 
be complemented with scenarios that may express distinct contexts according e.g. the 
elaboration of personas. The CEDAR method is however, not representative of the business. 

SOUSA 

 

Figure 74. SOUSA and GOALS User Interface Architectural Similarities. 



The Goals Approach: Business and Software Modeling Traceability by means of HCI 

103 
   

The SOUSA method [Sousa et al., 2008], establishes a relation between business processes and 
data by means of a task model, from which it derives a User Interface which has an equivalent 
structure to the GOALS User Interface structural logic. SOUSA structures a “Screen”, a 
“Screen Fragment”, and a “Screen Element” similarly to GOALS: Aggregation Space, 
Interaction Component and Interaction Object. Furthermore, a “Screen Group”, defined as “a 
group of closely related screens” can also be related to the AS of a given Interaction Space (IX). 
This is the level of complexity which we find that is acceptable for the development of the User 
Interface of an enterprise Information System, since this structure provides enough detail in 
order to group complete tasks (User Tasks), User Intentions and Interactions. 

NAVARRE 

There are other types of architectures, which are more specific in terms of the rigor which is 
architecturally introduced by its structure. In the case of the NAVARRE method [Navarre et 
al., 2009], actions and the User Interface architectural components are related by means of a 
sequence of human and system execution. At this level of specification, the feedback is also 
structured by means of a rigorous structure in which attention is also paid to the parameters 
specifying the flow of information (Figure 75). 

 

Figure 75. NAVARRE and GOALS User Interface Architecture Representation. 

This reinforced structure of information also specified more detailed and probably better well-
built User Interfaces since this level of detail will augment the probability of identifying errors 
sooner and predict its behavior more clearly. However, this level of detail is out of the scope of 
the present study. 

6.2.5. Requirements Engineering 
The Requirements Engineering (RE) methods are considered in the perspective of goal, use 
case, and combined elicitation techniques, and their relation with software specification. 

GONZÁLEZ & DÍAZ 

The GONZÁLEZ & DÍAZ method [González & Díaz, 2007] is a goal-driven approach that 
decomposes goals until the task level, from which it derives use cases as requirements. It is an 
effective logic of decomposition, which however in our perspective has the problem of eliciting 
use cases from different levels of granularity, which may correspond to GOALS User Tasks or 
User Intentions, creating indefiniteness in terms of the structuring of the Information System. 
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Figure 76. GONZÁLEZ & DÍAZ and GOALS Requirements Elicitation. 

Figure 76 presents the method and what would be the equivalent representation with the 
GOALS language, from which it is possible to establish a relation between the use cases and 
User Tasks (UT), and the method tasks and User Intentions, in which the indefiniteness of use 
cases is expressed by the first and second levels of use cases which are identified using the 
GOALS language. 

KORHERR & LIST 

The KORHERR & LIST method [Korherr & List, 2006], captures use cases from business 

process models in what is one example why the alignment of the system implementation and 
the business process design traceability may be lost when the system is implemented. We 
named this situation as use cases “Indefiniteness”, when it is possible to derive a different 
number of use cases from the same process, which would result in different software 
conception, probably with different software architectures. 

 

Figure 77. KORHERR & LIST and GOALS Requirements Elicitation Representation. 

Figure 77 presents the same business process modeled by KORHERR & LIST and GOALS, in 
which the activities performed by the same actor e.g. “Record the Claim” and “Calculate the 
Insurance Claim” are merged in the same, a UT named as “Record the Claim and Calculate the 
Insurance Claim”, which includes “Check Policy”, “Formulate Claim Description” and “Proof 
of Documents” as User Intentions. The difference between the two methods is that GOALS 
separates the concerns targeting software implementation, promoting the simplification of the 
implementation. The actions of the actor are performed over a User Interface and inevitably the 
rules are implemented in programmed code, and by separating the concerns, less User Interfaces 
will be implemented, and also the dependency of their logic with the rules will be diminished. 
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KAOS 

KAOS [Lamsweerde, 2000], is goal-oriented method that relates human goals and tasks to 
system functionality, which vocation is the elaboration of software systems, but not necessarily 
Information Systems, as the functionality specification is not supported by a Domain Model. 
KAOS specifies “Goals” and their decomposition (including concurrency), the “Agents” and 
“Objects”, active and inactive system components, respectively, and the “Requirements” and 
“Expectations” which are system and human responsibilities, also respectively. 

 

Figure 78. KAOS and GOALS Concept Mapping and Example. 

Figure 78 presents a KAOS (adapted) diagram and its modeling using the GOALS language, in 
which, the agent is represented by Interaction Spaces (IX), which may be considered as 
equivalent in terms of ensuring regulations and data management. The goal is mapped to the 
User Intention, and these to System Responsibilities, which are equivalent to KAOS “actions”. 
By means of maintaining a structure relation between the business requirements, derived from 
their expectation, the KAOS method ensures traceability between business and the software up 
to the specification of the software agent, however, not the User Interface or the Database. 

I-STAR (i*) 

The I* (i-star, or i*) modeling framework [Yu, 1995], defines a set of concepts, namely 
actor/agent, task, goal, softgoal and resource, which are very similar to GOALS in the way that 
they model the interaction between the human actors. Both see the communication between 
actors as a sequence from one actor to the other by means of sharing something, which in most 
cases is a task, a goal/softgoal or resource. 

  

Figure 79. I* and GOALS equivalent Representation. 

In GOALS, natively, the shared concept is the Interaction Space, in which actors perform each 
his own User Task, subject to the same rules and sharing the same data. I* must also be 
considered as a business process model, since it defines an ongoing permanent situation, until 
a goal is achieved or one of its components is not available anymore. 
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GOALS further structures Business Rules when compared with I*, and I* further introduces 
beliefs (only available in the GOALS ideology) and positions as a further specification of the 
actor social context. GOALS may conceptually be used with I* in order to further compose the 
Enterprise Structure with a social perspective. 

MAZÓN 

MAZÓN [Mazón et al., 2007], presents a method that uses the I* framework to model the 
requirements and the Database of a data warehouse. It uses the concepts of (from more abstract 
to more specific) strategic goal, decision goal and information goal in order to derive the fact 
tables, the bases and dimensions of a data warehouse. The model is developed by means of the 
decomposition of the hierarchy of goals and the identification of the tasks that support the 
achievement of each goal. Based on the tasks, the information requirements are identified, and 
the fact tables and their dimensions (or base) are identified and related. 

Figure 80 presents the computation independent model of the method and the equivalent 
representation using the GOALS language. Goals and tasks are expressed by User Intentions, 
and the information and resources are represented using Data Entities (DE). 

 

Figure 80. MAZÓN and GOALS equivalent Representation. 

The structure of concepts is different, but the logic of relation is the same, as it relates the data 
that should be used to satisfy the usage of the system which will support achieving the goal. 
This relation is not sufficient in order to model the User Interface, but the establishment of this 
relation compares to the relation which is established in the GOALS Service Design (Step 1) 
between Business Processes and DEs i.e. the relation is not fully structured in terms of user 
actions, but it is possible to perceive that it will be used for the purpose of the human activity. 

6.2.6. Software Engineering 
The RATIONAL UNIFIED PROCESS (RUP) and the UNIFIED MODELING LANGUAGE 
(UML) are the de facto standards as Software Development Process (SDP), for requirements 
elicitation and for software architecture elaboration. Many methods apply the combined RUP 
and UML Object-Oriented (OO) analysis and design techniques in order to develop the internal 
structure of the Information System. The RUP and the derived methods are analyzed concerning 
use cases elicitation and the internal structure of the Information System elaboration. 
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RATIONAL UNIFIED PROCESS (RUP) 

The RUP Software Development Process (SDP) is composed of the phases of “Inception”, 
“Elaboration”, “Construction” and “Transition”, which gradually build the Information System 
based on the “Business Modeling”, “Requirements”, “Analysis & Design”, “Implementation”, 
“Test” and “Deployment” process workflows. 

 

Figure 81. GOALS Change relatively to the RUP SDP. 

The RUP and GOALS SDPs may can be compared in the perspectives of the “Business 
Modeling”, “Requirements” and “Analysis & Design”, however with changes, as the “Business 
Modeling” workflow may be considered as already included in the “Analysis & Design” by 
carrying on iteratively the Analysis (business model) and Design (software model) phases. 
Consequently, as requirements are already identified, the “Requirements” workflow may be 
considered for non-functional requirements only. The change is highlighted in Figure 81 
(orange dashed line trapezoid), and represents an improvement to the SDP with one less 
workflow (“Business Modeling”), and a “thinner” “Requirements” workflow. This change 
brings clarification and efficiency to the SDP, since the three phases are reduced to two and 
performed in a single logical sequence (software design after business analysis), applying 
techniques that induce a more straight-lined and well-defined relation of business and software. 

Independently of SDP, the structure of requirements is the focus of our comparison, as it drives 
the system design. RUP focuses its target in the elaboration of the internal structure of the 
Information System based on OO business concepts, in order to provide support for the needed 
functionality as identified in use cases. This may be considered as more architecture-centric 
than human-centric approach, focusing more on the software structure and functionality than 
on how the user completes a task, which in contexts where UX and performance matters, makes 
the difference. Therefore, the most commonly observed problem of the application of RUP is 
related to the User Interface design and usability [Nunes, 2009], as the elicited use cases do not 
have a suitable well-defined level of granularity when considered in the business environment. 
The Use case may represent a full set of tasks, a single task, or a “click” task, and may be related 
by “inclusion” and “extension” sub-dividing responsibility, but its business representation 
continues limited as they do not become “meaningful” in a business perspective, as they do not 
represent a full task, not allowing the specification of a uniform logic of communication 
between actors . Without a business-centric organization, the architectural organization is 
driven by system functionality, creating levels of dependency that may become unmanageable. 
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Grouping functions by functionality raises a problem of modifiability [Bachmann et al., 2007], 
a situation that similarly also applies to the Normalized Systems [Bruyn & Mannaert, 2012], 
being therefore independent from the method, as the coupling between packages (or modules) 
is a problem of organization, more than of functionality or system design, which in the limit 
only exists because the deployment demands it. 

 

Figure 82. RUP and GOALS Architectural Organization. 

In the example of architecture organization of LARMAN [Larman, 2001]) presented in Figure 
82, functionality is organized in the “Presentation”, “Domain” and “Persistence” packages. By 
means of mapping: the package to the Interaction Space (IX, gathering data and regulations); 
the internal packages to Aggregation Spaces (AS), Interaction Components (IC, gathering 
functionality from business concepts e.g. “Sales”), and Data Entities (DE) (targeting MVC); 
the “«interface»” classes to UISRs; and the remaining functions to DBSRs, we derive the same 
architecture in GOALS, where the organization is now business-centric, and based on business 
model concepts (the “Domain” IX and the “Database Façade” DE), proving insight on what 
would be equivalent RUP and GOALS architectural structures. 

GOALS is independent from implementation, and therefore, each implementation concept may 
be supported by a distinct technology, whether a software-specific (AS, IC, IO, UISR or BDSR) 
of hybrid (IX, BR or DE) component. Once components are grouped around business concepts 
they become “business-centric” i.e. the organization is based on Business Processes (BP) 
(which concerns are usually distinct), providing an affinity logic which is refined by the sub-
division of the BP in UTs performed in IXs (managing the same business concepts). This 
promotes a high level of coupling to each IX of the BP, and a lower level of coupling between 
BPs. The business-centric organization also allows an easier identification of component 
implementation priority, facilitating work distribution among the software development team. 
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The (undefined) level of granularity of the RUP use cases also contributes to generate the 
recurrent need for refactoring, since when new tasks which are similar to already existing tasks 
are introduced by new business processes, there is the need to use the already implemented 
functions in order to avoid repeating code. And when new parameters are needed, the need to 
refactor at least a single package will probably exist, in which situation the same need may also 
be propagated to distinct packages that support other business processes. This is an issue that 
GOALS contributes to diminish by means of the elaboration of the Software Architecture in 
terms of UTs of the same Interaction Space (IX), promoting the reuse of the User Interface 
components (AS, IC or IO) within that logical space, also preparing the Business Logic layer 
functions to support more than one invoking component, and therefore inducing the 
generalization of components from conception (design-time), contributing to avoid refactoring. 
Another important cause that may lead to refactoring efforts, is that the functionality enclosed 
in packages (in order to be used by functions of other packages) that implement business 
regulations, may be programmed in multiple functions, that provide and receive data from the 
User Interface, and not necessarily isolated in a single function, raising (business regulations) 
modifiability issues. By means of isolating regulations in Business Rules (BR), GOALS clearly 
separates the business and the software (logic) concerns, “dodging” the need to organize 
packages, promoting the BR as the more important element of the Business Logic, and 
specializing the remaining SRs solely in the management and communication of data, so that 
they may be programmed separately, as business regulations are left out of the scope of their 
concerns. For example, the architecture presented using the GOALS language in Figure 82 is 
based on the dependencies presented in the LARMAN architecture, from where it is possible 
to identify that according to the Enterprise Structure model, the missing element is the Business 
Rule (BR) as the mediating component between IX and DE. 

The RUP Domain Model is left unchanged along the GOALS method, since it is from it, and 
by maintaining the elaboration of this model along the SDP, that the affinity relations valid for 
the elaboration of the RUP packages, are also used for the specification (and reuse) of the User 
Interface (AS, IC, and IO), and the supporting Business Logic, which only after are related to 
the Domain Model classes (Data Entities, DE) and attributes (DE Fields). Summarizing, when 
compared to RUP, GOALS maintains the same Domain, but uses essential use cases, and from 
them, builds first the User Interface, and only after an equivalent Business Logic. 

PHILLIPS & KEMP 

The PHILLIPS & KEMP method [Phillips & Kemp, 2002], includes a “Main Flow”, 
“Subflows” and “Exception Flows”, from which it derives components of the User Interface 
being conceived. Figure 83 presents one example (adapted) of architecture derived from the 
application of the method. The identified problem is the granularity of reuse at the level of the 
user interaction, reflecting the (usually) lower level of abstraction of the use case when it is not 
essential (considering the complete task within the BP flow), impeding that the level of reuse 
may be identified at a higher-level “tool”, “User Intention”, or “set-of-interactions”. For 
example, the “W1” User Interface (book data: “Title”, etc.), may be needed in other parts of 
the system. And since there is the probability that this system is not implemented independently 
of the remaining use case information, this part may probably be implemented at first as part 
of the “Request Book” use case, and not as an isolated and reusable component, augmenting 
the probabilities of architectural reorganization especially when new semantically close use 

cases are introduced to the system. 
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Figure 83. RUP PHILLIPS & KEMP and GOALS User Interface Architecture. 

The problem may be worst when use cases may be used to model the business process of the 
enterprise using Activity Diagrams, since there is the tendency to specify more than one use 

case per actor in the course of the business process, as a complete user task will usually involve 
use cases which are part of other complete tasks. In GOALS the complete tasks are use cases 
(User Tasks) and by granularity level, the use cases usually identified with RUP, are at the level 
of the User Intention, settling a higher level of abstraction of the User Task (UT) relatively to 
the essential use cases applied by the PHILLIPS & KEMP method. In this situation the use 

cases will probably not be exclusive in terms of the used data and components, and for that 
reason, if the reuse and structuring of the components is not carried out in design time, it will 
be almost impossible to ensure that the architectural control and total reuse of components is 
maintained without a refactoring overhead effort. 

DENNIS 

The DENNIS method [Dennis et al., 2012], is an example where the same situation of use case 
“Indefiniteness” happens. In this case, after being derived from business processes modeled 
using Activity Diagrams, use cases were iteratively rearranged, yet losing all possibilities of 
maintaining traceability of the business and software models. 

 

Figure 84. DENNIS and GOALS Relation of Use Case Concepts. 
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Figure 84 presents an example of a use cases model which was derived using the DENNIS 
method. Each “extended” and “included” use case are at the granularity level of GOALS User 
Intentions, as they are part of a bigger task. Each of the User Intentions will have a 
correspondence with an Interaction Component (IC), that will have greater probabilities of 
being identified for reuse, since it has a higher level of granularity than the interactions 
predicted in the use cases specifications. 

GRAHAM 

Curiously, the method from GRAHAM [Graham, 1996], in 1986, already provided an 
interesting approach to surpass the granularity problem, and provide a similar form of 
communication between actors to goals, by means of using a model of business process which 
is also similar to I* [Yu, 1995] in order to withdraw use cases. As the use cases are seen as the 
linking artefact between actors, the indefiniteness and granularity problem is eliminated. Figure 
85 exemplifies the situation, where the “Customer” places an order, and the “Salesman” 
executes it over the system, in a cleaner (easier to read) and more consistent (less probability, 
more resistant, to change) representation of business processes using use cases. Thus, the level 
of granularity of the GRAHAM use case is precisely the same than in GOALS.  

 

Figure 85. GRAHAM and GOALS Similarities to I*. 

6.2.7. Service Oriented Architecture 
Service oriented architectures (SOA) provide services of information that are usually used by 
remote enterprise’ systems in order to enable commercial relations automatically, eventually 
without other human intervention than the customer. What is important is the structure of 
information transferred from one enterprise to the other, and the reference to an ongoing 
business transaction. For this purpose, in the terms of the human activity perspective, the user 
intentions have a level of granularity that suits the structuring of the information to be 
transferred, which will also be subject to commands i.e. functions that receive and records data. 

ARSANJANI 

The ARSANJANI method includes an extensive SOA framework that organizes the business 

processes and formulates the services that must be implemented in order to supply external 
enterprise connectivity needs. Functionality is organized in packages, but since it is elicited 
based on a business perspective, its identification and organization becomes independent from 
deployment, separating the operative system needs from the semantic model. 
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Figure 86. ARSANJANI and GOALS SOA Representation. 

Figure 86 presents the SOA framework [Arsanjani et al., 2008] and the meta-model of its 
conceptual structure as it may be designed using GOALS, where the User Intentions “Candidate 
Services” are directly related to the User Interface System Responsibilities establishing a SOA 
structuring logic. 

6.3. Validation Conclusions 
This chapter aimed at validating the GOALS language and method for the purpose of 
Information System analysis and design. We provided a cross-consistency validation, and also 
a perspective of the power of expression of the language, in terms of scope and detail, by means 
of modeling other methods diagrams using GOALS, highlighting the differences. This allows 
understanding its ease of use, since by means of seeing the same information modeled by two 
languages, the modeler may understand what is the notation and method that suits his needs, 
since as long as the used concepts are compatible, any language may be used to complete the 
enterprise architecture. 

The more important and structuring comparisons are relative to DEMO and RUP methods. On 
one hand, GOALS is structured on DEMO for the specification of a software model that 
supports any possible combination of business processes based on transactions. This is a 
validation which “entitles” the GOALS business model to be included as the “back-bone” 
structure of a Software Architecture composed by means of the detail of the human activity. On 
the other hand, relatively to RUP, the inclusion of the business “back-bone” in the software 
model allows the specification of the Information System in a top-down process benefiting the 
conception of the User Interface and the isolation of business regulations in the Business Logic, 
promoting the system modularization. The specification of the Database remains compatible, 
acknowledging however in advance which MVC components will use which Tables and Fields. 

Considering current SE practice, GOALS Software Architecture may be considered as 
business-centric, suggesting changes to the organization of packages, since the Interaction 
Space (IX) allows establishing a relation to all the software components of the User Tasks (UT) 
which are performed on it, including the User Interface, Business Logic and Database in a 
structure of usage, providing new reference terms for packages creation, centered in business 
functionality (the business processes) instead of software functionality (the use cases). 
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Figure 87. GOALS and Related Work Concepts Comparison. 

Figure 87 presents the mapping of all methods compared with the GOALS model, where it is 
possible to identify that business-oriented methods (namely ARCHIMATE) cover a great part, 
considering the lines of interaction and visibility, also structuring the concept of belief (BMM 
and ARMOR) as a relevant social aspect of enterprise and system engineering. The software-
oriented RUP-based methods cover the GOALS model in a good extend, from which they 
derive the needed software architectures, however not ensuring a clear line of traceability 
between the business representation and the use cases identification. Moreover, it is also 
important to observe how methods may be combined to extend their solution to the areas of the 
problem which they do not address, as long as the used concepts remain compatible. 

GOALS is not compared directly to agile methods, namely XP, SCRUM and SAFE, which 
processes that guide the software project, in which the precision and traceability of the software 
architecture is not a relevant. The Agile Manifesto software development values “Individuals 
and interactions”; “Working Software”; “Customer Collaboration”; and “Responding to 
Change”. GOALS contributes to favor those values by means organizing what the manifesto 
“leaves behind”, by means of organizing in 8 Steps the “Processes and (their) Tools” in terms 
of Business Processes (BP), User Tasks (UT) and Interaction Components (tools of a User 
Interface), whereas development tools are out of the scope of current study; in order to produce 
the minimal “Comprehensive Documentation” in 4 business (Steps 1 to 4) and 5 software 
models (5 to 8), including and Interaction Model, the User Interface design and the Information 
System specification in an MVC pattern; in order to facilitate “Contract Negotiation”, based on 
less and more easily readable models where the physical and logical spaces are also modeled, 
providing the space to apply user-centered techniques that favor agile development; which 
facilitates “Following a Plan” driven by the business model and the customer needs. 
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7. Conclusions 

This thesis presented the GOALS language and method, which may be used to model the 
enterprise and its software Information System, ensuring business and software traceability. 
The method may be used to architect the business according to the needs of the users, customers 
and other parties, which are related to the enterprise activity. It details the activity in terms of 
user interactions and software components that must be programmed to support it, and provide 
adequate User Interface behavior, Business Logic processing, and a Database structured on 
enterprise business concepts. 

GOALS applies the method based on an Enterprise Development Process (EDP) oriented by a 
strategy of evolution of the logical spaces of the enterprise, both in their physical and 
technological perspectives: the interactive spaces (of human and Information System: User 
Task, Interaction Space, Aggregation Space); interactive tools (User Intention, Interaction 
Component) and interactive objects (User Interactions, Interaction Objects, System 
Responsibilities, and Fields of Data Entities:). This logic provides perspective on the 
environment of the enterprise and the user context in function of the business processes goals. 
The business processes and actor relation also provides a service social perspective of the 
organization of the enterprise concerning the initiators and participants, and their relation with 
the customer, and the results that they use and produce in terms of business concepts. 

GOALS finds the “space” to fill the “gap” between enterprise and software engineering in the 
modeling of the spaces of the enterprise, where the human-computer interaction techniques are 
applied in order to produce User Interface architectures, their behavior and the relation to the 
remaining internal structure of the information system. The used techniques are based on task 
and interaction models, which have a relation with the higher and lower level functions of the 
Business Logic of the Information System. Additionally, the higher level functions may be used 
for the specification of service clusters of functions, which may be used for SOA in order to 
specify web services clusters, while the lower level functions provide the nuclear information 
and commands of the system. In the same way that SOA establishes a relation between the 
business and the Business Logic of the system, GOALS exemplifies that the alignment between 
enterprise and software engineering processes can also be achieved in order to provide support 
for the cooperation of EE and SE towards the objective of implementing the Information System 
using a well-defined and mainly more time-efficient enterprise and software development 
process, challenging the idea that there is an absolute need to define separate ontologies for 
enterprise and information system as defined in the EE manifesto [Dietz, 2014]. 

Independently of the covered ZF cells filled by GOALS and by the related methods (as 
presented in Chapter 2. State of The Art), we believe that the main contribution of our language 
is the consistency of the relation between business and software which is achieved by means of 
the representation of the business process design using essential use cases, promoting a stable 
logic of modeling. With it, “Indefiniteness” at the use case level “disappears”, as essential use 

cases becomes a complete business process task, establishing its user intentions at the same 
level of granularity of the “traditional” use case (as in most cases more than one is needed to 
complete a business process task), and finishing at the interaction level. This level of granularity 
of specification allows the application of agile development techniques that may be used to 
improve a single use case, a User Intention, a User Interaction, or the data contained in each 
field, and its form (relative to semiotics): syntagmatic, paradigmatic or syntactic information. 
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The contribution of our proposal is mostly related to the Software Engineering (SE) domain, 
from which our method is originated, to which we add an enterprise context that facilitates 
understanding the requirements that the system must conform with, namely the used spaces, 
the business regulations that apply, and the information that it must hold. It is by means of 
separating the design from implementation, and by elaborating the affinity of the business 
components first, and only after, of the semantically related software-specific components, that 
we “dodge” the need to create packages based on functionality, shifting to a business-centric 
organization, that promotes cohesion with identified Interaction Spaces, also diminishing it 
between distinct BPs, maintaining traceability by means of the relation of the business and 
software architectures. By means of representing the business structure in the software 
structure, we contribute to diminish the problem of tracing models from the requirements 
throughout the design phase, which is also a recurrent in Software Product Lines. 

The GOALS language may be used by existing development processes (XP, SCRUM, SAFE 
and RUP) depending on the desired level of specification, targeting the elaboration of 
architectural “spikes” that may be implemented in increments, matching agile software 
architecture requirements [Grundy, 2013]. Moreover, the GOALS language may also be used 
to reflect enterprise architectures modeled using the DEMO method as a form of translation 
that facilitates software development. This is carried out by means of relating DEMO 
interrelated Transactions, their Action Rules and Objects Classes to the User Tasks, Business 
Rules and Data Entities of the GOALS language, and further complementing it with the 
Interaction Spaces where the human activity occurs. 

Besides the presented contents, GOALS induces a new way of thinking about software and the 
modeling of the enterprise, as it tries to embrace all the complexity involved in an enterprise 
improvement, whether business or software, and preferably both. The business complexity is 
expressed from the design of the service and the business process, to the user task, intention 
and interaction. And each has a direct or patterned relation with the parts of the supporting 
Software Architecture. Attention is also paid to the strategy of the EDP, privileging the 
identification of working spaces, and its transformation in business processes and working 
software. 

This “straight line” between business and software modeling can only be achieved because the 
modeling of the business is already the modeling of the software, as the business model is 
“natively” integrated in the software model. The implementation-independent model allows the 
“reflection” of the problem in the solution and leaves the implementation responsibility to 
software managers, knowing in advance, that all the Software Architecture components can be 
implemented in a relation of one (component) to one (e.g. file or table) implementation object, 
depending on the chosen implementation technology. 

The presented work also benefits from the contribution of The Timeless Way of Building 
[Alexander, 1979], which induces the elaboration of building artefacts according to the needs, 
being these requirements manifestly expressed, or observed by the architect. The models which 
are produced are subject to suitable established patterns, which should be replicated in order to 
perfect the process of building. In the same way, by means of observing what is really important 
in each person daily life, including the user, manager, software practitioner and system needs, 
we established a solution based on accepted patterns that provides support for recurrently 
observable enterprise business and software development problems. 
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7.1. Future Work 
In a stable production environment, which uses software patterns in order to augment the 
software production performance, it is possible to understand what may be the reference 
software architecture for a given business development problem. Then, by means of direct 
comparison, it may be possible to understand that are the design decisions that lead to cheaper 
or more expensive software development and provide and increased or decreased Return of the 
Investment (ROI). Thus, by means of analyzing the business it is possible to understand the 
benefits and expected return, and by means of the modeling of the software it will be possible 
to estimate the cost of development, opening a space and an ultimate software challenge, which 
is the “art” of predicting the software development effort with accuracy and generating usable 
software from business and software models. 

7.1.1. Platform Specific Model for Information System Generation 
We believe that by means of the establishment of a Platform Specific Model (PSM) it is possible 
to generate the complete structure of an enterprise Information System Software Architecture. 
For that purpose, the level of detail and formalization of the GOALS method needs to be 
increased with the customization concerning the historical presentation of data, the level of 
User Interface feedback, and the full specification of the semiotic logic. 

7.1.2. Software Product Lines 
GOALS is oriented to the development of a single system, yet, we believe that the proposed 
architectural solution may contribute to Software Product Lines (SPL) by means of facilitating 
the identification of the valid versions of the implemented objects. By means of implementing 
the versioning of the produced architectures (including their components), we may help the 
objective of conciliating distinct architectures (SPLs), identify the compliant components and 
transporting those parts to new architectures, where the requirements must be updated. 

7.1.3. Software Effort Estimation 
Based on the application of the GOALS method in a software development environment, we 
expect to be able to better control the estimation and execution of software development in 
order to further enhance the Use Case Points formula [Alves et al., 2013; Karner, 1993]. We 
believe that if estimation may be based on the size of the business process in terms of use cases, 
the number of regulations and managed data entities, and also the User Interface design option, 
then it may be possible to contribute to increase software project accuracy. 

7.1.4. Goals Modeling Tool 
The following stage of the our future work aims the development of a GOALS language 
modeling tool that may apply the process and method using the language with architectural 
control, and the possibility of managing the software project, controlling estimation and 
implementation, and generation and testing of the final Information System.  
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Appendix A – The Goals Conceptual Approach 

This appendix presents theoretical ideas which are useful to help understanding the logic behind 
the language presented in this thesis. 

The Goals Approach is based on the idea that the more a given “being” is aware if its own 
capabilities, the more the probabilities it will have of achieving goals in the most efficient and 
effective way. The capabilities refer to the structure and readiness of the structure for action, 
and the act of achieving goals refers to the action promoted over the structure in order to fulfil 
goals that improve its survival capabilities. The logic and structure derived from the idea are 
presented as follows, using the Goals constructive concepts using italic font. Applied to the 
enterprise domain, the enterprise is the “being” which is being considered, where efficiency 
refers to the resources used to achieve a goal, and effectiveness refers to the number of times 
that a goal is achieved against how many times it is tried, and performance is the efficiency in 
achieving successful goals. The resources, which are internal to the system, are represented by 
business concepts, which are instantiated in order to produce the data of the Information 
System, and are subject to regulations which are expressed by composed (or complex) business 

concepts. 

Humans interact with the enterprise system using Interaction Spaces where they can carry on 
their User Tasks, as long as the regulations (Business Rules) which they are subject to, are 
guaranteed by the Interaction Space functioning. The Interaction Spaces of the system are 
physical, software-based, or combined, meaning that when humans interact with each other in 
real physical places, the Interaction Space that they occupy must provide at least the data (Data 
Entities) needed in order carry on the Users Tasks, independently of the used support e.g. paper 
or Database. This is seen as the minimum business-support implementation possible, so that 
users can exchange, produce and keep the data generated from their labor. If the data exchange 
is subject to control under the enterprise defined regulations, this means that a second level of 
implementation, where they are applied in an automated way or by means of human control, 
exists. In the first case an automated software Information System, in the second, a user which 
responsibility of action is under the guidance of the enterprise (a collaborator) must ensure that 
the regulations are applied, recurring to the existing physical resources. An Information System 
support for the user’s activity can be total or partial i.e. the information exchange can be totally 
carried out inside the Information System, or the human users must recur to other means in 
order to be able to fulfil their tasks. If the automation is complete (of 100%), then the interaction 
between the users is necessarily remote (even if they are in the same physical space). In the 
case of a remote interaction, each user benefits from one Interaction Space perspective (called 
as an Aggregation Space), which provides all the tools and data which are necessary in order 
to carry on his task(s), including data exposure and regulations application. This happens in 
the same way that when a user interacts with another in person (in 0% automation), each one 
has his own perspective based on the information that he can retain (senses) and process (brain 
and body) from his environment, the outside external real world in that moment. In this case, 
every business regulation is processed in each user’s mind, and for that reason, not subject to 
automated enterprise verification, needing human control in order to ensure that they are 
satisfied, a control which is left to the enterprise needs, as users are supposed to carry on their 
tasks with wisdom and according to the enterprise’s ideology. 
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With these premises, users cooperate with each other in order to attain the enterprise’s goal in 
which they are working on, being aware (the enterprise collaborator), or not necessarily (e.g. 
the customer or third party actor) of it (the enterprise goal). The human activity that is carried 
out in order to attain a goal is the Business Process organization that is promoted by the 
enterprise. The Business Process and goal concepts cover both, the daily operational routine of 
the enterprise, and the business process (or goal) monitoring activity, even if executed by a 
single actor and related to strategical (e.g. market-oriented) goals. From the cost of the human 
and system activity it is possible to calculate the task efficiency which is matched against the 
produced resources, meaning that when the enterprise “being” uses less resources in order to 
achieve a goal, then the better is the (enterprise) performance. 
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Appendix B – Interaction Patterns 

The Goals Approach is presented based on a specific interaction design pattern by default which 
enables attaining a level of detail that allows the maximization of the software development 
performance. I.e. the more the system is detailed, the more modeling investment in terms of 
man-hour is needed, but as a return, the implementation will be probably be faster, as Software 

Developers will have less doubts concerning each component implementation. This is a trade-
off that should be analyzed in terms of its long-term impact, since the Information System has 
a tendency to grow with the automation of BPs, and the complexity that may be generated from 
systems with a low level of organization may become (the complexity) unmanageable, even if 
only a reduced part of the enterprise BPs are automated. For example, a small enterprise may 
have 15 BPs, and by implementing 5 with e.g. 25 UTs, the generated system may easily have 
more than 100 components. These are figures from which a patterns organization of the system 
may arise, or contrarily, it may already be sufficient in order to generate architectural chaos. 

Thus, each interaction design pattern has advantages and disadvantages in the business and 
software perspectives. The interaction design pattern used to illustrate the Goals targets a high 
level of modularization, independently of the used implementation framework. However, 
depending on time and budget, the Software Architect may decide, that the option of a smaller 
implementation, and a lower level organization may apply, reason why we present the possible 
interaction design patterns which may be elaborated with Goals. The default pattern includes 
the option for a User Interface organization that first receives the data, presents it, and upon 
user command saves the data to the Database. This aims software development performance, 
by means of a separation of concerns which is achieved by means of the distinction between 
User Interface-oriented and Database-oriented Business Logic components. This pattern is 
called as the “Read and Save”, and since the user interaction is specified in two level (User 
Intentions and Interaction, Steps 4 and 5 of the Goals method), it is further defined as “Read 
and Save – Interaction Design” presented in Figure 88. 

 

Figure 88. Design Patterns for Human-Computer Interaction. 
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The standard pattern defines User Interface (UISR) and Database System Responsibilities 
(DBSR) that will serve as an electronic interface of access to the more specific UISRs and 
DBSRs that will be elicited in the Interaction Modeling. The advantage of this patterns is that 
it defines a hierarchy of functions that ensures modularization and facilitates the reuse of the 
system. The disadvantage is that it involves an investment in terms of design and 
implementation that will only be returned in the long term, with the benefits of the organization. 
An alternative to this patterns which has the advantage of reducing the investment time, is not 
designing the user interaction and leaving the responsibility of implementation to the UISRs 
and DBSRs which are identified in the Task Model. This is an approach which is close to the 
well-known method “just do it” (absence of method). It may be applied to small improvements, 
but it has the disadvantage of reducing the reuse capabilities of the implemented SRs without 
restructuring (refactoring [Fowler, 2000]) parts which are already implemented. Since the 
system is designed based only upon the User Intentions, it is named as “Read and Save – Only 
Intentions”. If complementarily there is the need to save more time not making the design 
distinction between UISR and DBSR, then the implementation is also possible by implementing 
the SRs whether they are generated from the Task of the Interaction models (Steps 4 or 5, the 
last of the Analysis and the First of the design, respectively). These systems, namely if produced 
without the detail of the user interaction, may become unmanageable when the system grows if 
a strong nomenclature that facilitate component reuse is not applied. They are named as 
“Simplistic”, and further defined as “Intentions” and “Interaction Design”. Notice that an 
implementation of a Simplistic patterns that predicts an homogeneity of the SRs in which the 
communication happens in real time between the User Interface and the Database, it would be 
“cooperative work” [Grudin, 1994], since if two users are using the same User Interface of the 
system for the same BP execution using the same AS at the same time, then they would be 
doing cooperative work, and if they would do it using two different AS, then when one user 
would change data, the other one would see it if that data would make part of the other user’s 
AS. If the Software Architecture would be considered without the User Interface, then it could 
be considered as Software Oriented Architecture (SOA), in which the Web Services Interfaces 
and Web Services Atomic Functions could be derived from the elaboration of the Task and 
Interaction models using e.g. personas instead of actors, as presented in Figure 89. 

 

Figure 89. Design Pattern: Service Oriented Architecture (SOA). 
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Appendix C – “iKiosk” Project Diagrams 

We now present the remaining diagrams for the “iKiosk” project. 

 

Figure 90. Business Process “Decoy”. 

 

Figure 91. Business Process “Publish Advertisement”. 

 

Figure 92. Business Process “Validate Reporter”. 
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Figure 93. Enterprise Structure “Decoy”. 

 

Figure 94. Enterprise Structure “Publish Advertisement”. 

 

Figure 95. Enterprise Structure “Validate Reporter” 
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Figure 96. Task Model “Deliver Printing”, “Receive Payment”, “Serve Coffee” UT. 

 

Figure 97. Task M. “Support Customer Activity”,“Obtain Classified”,“Obtain News” UT. 

 

Figure 98. Task Model “Publish Reporter News” 

 



The Goals Approach: Business and Software Modeling Traceability by means of HCI 

131 
   

Appendix D – “Star Project” Diagrams 

We now present the remaining diagrams for the “Star Project”. 

 

Figure 99. Business Process “Conceive Investment Project”. 

 

Figure 100. Business Process “Evaluate Investment”. 

 

Figure 101. Business Process “Support Investment”. 
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Figure 102. Enterprise Structure “Conceive Investment Project”. 

 

Figure 103. Enterprise Structure “Evaluate Investment”. 

 

Figure 104. Enterprise Structure “Support Project”. 
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Figure 105. TM “Present Investment Possibilities”|“Investment Possibilities Feedback”. 

 

Figure 106. TM “Present Project” | “Support Project”. 



The Goals Approach: Business and Software Modeling Traceability by means of HCI 

134 
   

Glossary 

actor, 1, 3, 5, 8, 11, 15, 16, 21, 22, 23, 24, 26, 30, 32, 33, 34, 35, 36, 38, 41, 42, 49, 50, 51, 55, 
56, 57, 58, 59, 61, 62, 72, 73, 74, 79, 80, 87, 95, 97, 98, 99, 104, 105, 106, 107, 110, 111, 
124, 126 

Aggregation Space (AS), 30, 31, 33, 36, 40, 41, 42, 43, 48, 50, 61, 62, 65, 67, 70, 82, 84, 86, 
92, 94, 103, 108, 109, 123 

Agile, 1, 4, 8, 9, 19, 22, 24, 53, 62, 113, 114, 115 
ARCHIMATE, 15, 16, 96, 98, 113 
ARMOR, 16, 96, 99, 113 
ARSANJANI, 25, 111 
BOWEN & DITTMAR, 18 
business concept, 1, 5, 11, 26, 30, 32, 33, 34, 38, 39, 40, 41, 44, 47, 48, 56, 59, 60, 61, 67, 68, 

72, 73, 76, 77, 78, 80, 82, 94, 95, 100, 107, 108, 114, 116, 123 
Business Logic, 2, 5, 7, 11, 18, 25, 28, 31, 33, 39, 40, 41, 43, 44, 45, 46, 50, 51, 52, 53, 60, 62, 

66, 67, 68, 69, 70, 72, 80, 81, 82, 83, 84, 91, 92, 93, 94, 95, 96, 97, 101, 102, 109, 112, 114, 
125 

BUSINESS MOTIVATION MODEL (BMM), 15, 16, 99, 113 
business process, 1, 4, 5, 6, 8, 11, 15, 17, 18, 19, 21, 22, 24, 25, 26, 29, 33, 49, 56, 94, 100, 104, 

105, 107, 110, 111, 114, 116, 124 
Business Process (BP), 30, 33, 34, 40, 48, 50, 51, 54, 55, 57, 58, 62, 72, 74, 86, 88, 90, 95, 96, 

97, 106, 108, 124 
Business Process Improvement (BPI), 1, 4, 5, 6, 7, 19, 24, 33, 34, 36, 48, 50, 55, 58, 60, 62, 70, 

84, 94 
Business Rule (BR), 5, 30, 31, 33, 36, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 53, 57, 58, 59, 

60, 67, 68, 75, 76, 81, 82, 84, 86, 92, 93, 94, 95, 96, 97, 98, 99, 101, 106, 108, 109, 112, 123 
CEDAR, 18, 19, 102 
CONCEPTUAL VARIABILITY MODEL (CVM), 27 
data, 2, 5, 6, 7, 8, 11, 13, 15, 18, 19, 20, 22, 23, 25, 26, 31, 35, 37, 39, 41, 42, 43, 44, 45, 46, 

50, 53, 55, 56, 57, 59, 60, 65, 68, 77, 80, 81, 84, 94, 95, 101, 103, 105, 106, 108, 109, 110, 
111, 114, 116, 123, 125, 126 

Data Entity (DE), 5, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 
55, 56, 58, 59, 60, 61, 62, 65, 67, 68, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 86, 87, 88, 89, 
90, 92, 93, 94, 95, 96, 97, 99, 106, 108, 109 

Database, 1, 2, 7, 11, 19, 25, 28, 31, 34, 39, 40, 41, 42, 43, 44, 45, 46, 50, 52, 53, 55, 56, 62, 
66, 67, 68, 69, 70, 72, 80, 81, 82, 83, 84, 91, 94, 95, 96, 97, 106, 112, 114, 123, 125 

Database System Responsibility (DBSR), 31, 40, 41, 43, 44, 45, 46, 48, 50, 51, 53, 63, 64, 67, 
68, 77, 80, 81, 82, 86, 92, 94, 101, 108, 126 

DENNIS, 22, 110 
Domain Model, 3, 22, 33, 34, 39, 40, 61, 72, 84, 94, 102, 105, 109 
Enterprise Development Process (EDP), 1, 2, 5, 9, 49, 114, 115 
Enterprise Structure, 5, 6, 30, 31, 32, 33, 36, 39, 40, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 

68, 69, 72, 75, 76, 81, 82, 84, 89, 90, 91, 92, 93, 106, 109 
essential use case, 3, 5, 8, 13, 14, 22, 33, 35, 36, 44, 46, 51, 57, 58, 61, 96, 109, 110, 114 
goal, 2, 4, 5, 11, 13, 16, 20, 21, 23, 28, 30, 32, 33, 34, 36, 48, 55, 56, 57, 95, 96, 99, 103, 105, 

106, 111, 114, 123, 124 
GONZÁLEZ & DÍAZ, 20, 21, 103 
GRAHAM, 22, 111 
Interaction Component (IC), 31, 40, 41, 42, 43, 44, 45, 46, 48, 53, 61, 62, 63, 64, 65, 66, 67, 

77, 78, 79, 80, 82, 86, 93, 94, 96, 99, 108, 109, 111 



The Goals Approach: Business and Software Modeling Traceability by means of HCI 

135 
   

Interaction Object (IO), 31, 40, 41, 42, 43, 44, 45, 46, 48, 50, 62, 63, 64, 65, 67, 77, 78, 79, 80, 
86, 92, 93, 94, 96, 99, 108, 109 

Interaction Space (IX), 5, 7, 8, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 48, 49, 50, 51, 53, 57, 
58, 59, 60, 62, 74, 75, 76, 81, 82, 84, 86, 92, 93, 94, 97, 98, 99, 103, 108, 109, 112 

I-STAR (I*), 20, 21, 23, 24, 105, 106, 111 
KAOS, 16, 20, 21, 105 
KLUZA & NALEPA, 17, 101 
KORHERR & LIST, 20, 21, 104 
LARMAN, 108, 109 
MAZÓN, 20, 106 
Model-View-Controller (MVC), 2, 5, 6, 25, 29, 102 
MORELLI & TOLLESTRUP, 14, 95 
NAVARRE, 19, 103 
PHILLIPS & KEMP, 109, 110 
PUTZ & SINZ, 101 
RATIONAL UNIFIED PROCESS (RUP), 11, 20, 22, 23, 24, 28, 106, 107, 108, 109, 110, 112, 

113, 115 
regulations, 1, 2, 5, 7, 8, 11, 16, 17, 23, 31, 33, 35, 38, 41, 44, 45, 48, 55, 57, 59, 75, 84, 93, 94, 

100, 108, 109, 112, 115, 116, 123 
requirements, 1, 4, 5, 7, 8, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 38, 49, 58, 

60, 62, 84, 91, 95, 100, 102, 103, 106, 107, 115, 116 
resources, 2, 4, 13, 17, 20, 30, 50, 55, 59, 70, 75, 78, 100, 105, 106, 123, 124 
Return of the Investment (ROI), 4, 8, 116 
SERVICE EXPERIENCE BLUEPRINT (SEB), 13, 14, 96 
softgoal, 13, 23, 24, 105 
Software Architecture, 2, 3, 5, 6, 7, 19, 27, 28, 30, 31, 32, 40, 41, 47, 48, 49, 50, 51, 52, 53, 62, 

66, 67, 68, 69, 70, 72, 77, 82, 83, 84, 89, 91, 92, 94, 100, 102, 109, 112, 126 
Software Development Process (SDP), 4, 6, 11, 15, 20, 21, 24, 27, 29, 34, 35, 36, 37, 39, 40, 

42, 43, 44, 45, 46, 47, 48, 51, 53, 56, 58, 60, 62, 66, 68, 69, 70, 106, 107, 109 
SOUSA, 18, 19, 103 
task, 2, 5, 7, 8, 9, 13, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 32, 33, 34, 35, 36, 41, 44, 

49, 50, 51, 54, 55, 57, 58, 71, 95, 96, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 
114, 115, 123, 124 

transaction, 8, 11, 15, 16, 36, 38, 74, 96, 97, 101, 111, 112, 115 
UML, 6, 30, 35, 39, 40, 51, 58, 61, 77, 78, 85, 86, 91, 92, 94, 106, 117, 118, 119, 120 
UNIFIED MODELING LANGUAGE (UML), 6, 20, 21, 22, 24, 30, 32 
use case, 11, 14, 15, 17, 20, 21, 22, 23, 24, 25, 29, 34, 35, 41, 100, 102, 103, 104, 106, 107, 

109, 110, 111, 112, 113, 114, 116 
User Experience (UX), 11, 17, 50, 100, 107 
User Interface, 1, 2, 3, 7, 11, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 29, 30, 31, 33, 34, 36, 

37, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 
69, 70, 71, 72, 76, 77, 78, 79, 80, 82, 83, 84, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 
107, 109, 110, 112, 114, 116, 125 

User Interface System Responsibility (UISR), 31, 40, 41, 43, 44, 45, 46, 48, 50, 51, 53, 61, 63, 
64, 67, 68, 77, 80, 81, 82, 86, 92, 94, 96, 99, 101, 108, 126 

User Task (UT), 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 
53, 57, 58, 59, 60, 61, 62, 63, 65, 66, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 88, 89, 90, 93, 
94, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110, 112, 125 

Zachman Framework (ZF), 9, 12, 13, 14, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28 
 




