

The Goals Approach: Business and Software Modeling Traceability by means of HCI

The GOALS Approach: Business and Software Modeling
Traceability by means of Human-Computer Interaction

Enterprise Modeling Language and Method

PhD Thesis

Pedro Valente

Supervisors

Nuno Nunes

Marco Winckler

Universidade da Madeira

The Goals Approach: Business and Software Modeling Traceability by means of HCI

II

The Goals Approach: Business and Software Modeling Traceability by means of HCI

III

Acknowledgements

I wish to thank my Professor Nuno Nunes, who believed in me from the beginning of the
project, and to Professor Marco Winckler who further supported me in believing in myself.

I wish to thank the UMa Rector, Professor José Carmo and his Rectory, who gave me personal
support to go to France in order to work in my thesis, as requested by me and my supervisors.

I wish to thank my Mother and Father, who gave all the support that I needed when I needed.

But mostly, I wish to thank Micaela, and Paulinho also, who were with me from the first
moment until the very last one. And also to my family of friends.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

IV

Abstract
The management of an enterprise relies on the continuous organization and development of its
business and software systems. A process that requires merging the ideas of the enterprise’
systems managers, targeting the specification of business requirements and the conception and
implementation of a supporting information system. This process finds obstacles in the
identification and communication of requirements, and also in their transformation in software
artefacts, leading to difficulties or loss of traceability between business and software models.
Existing methods, languages and techniques are still not sufficiently standardized to ensure that
when a business improvement is introduced, the supportive software solution will be
implemented within budget and time. Methods are still too closed to the concepts of their
original scientific domains, conceiving solutions which are not representative of the business
and software conceptual relation and of the complexity concealed in an improvement effort,
namely concerning usability and user experience. Moreover, the lack of a common modeling
language and method for the conception of holistic and traceable software solutions, also
refrains the performance of the enterprise development process. The GOALS Approach
presents a solution to surpass these barriers by means of the specification of an enterprise
modeling language that relates the business and software conceptual structures using a shared
set of concepts, a notation, process, method and techniques, that allow the design of the software
as a result of the business organization, ensuring traceability by means of the permanent
representation of the business structure in the software structure.

Keywords: Enterprise Architecture, Enterprise Engineering, Human-Computer Interaction,
Software Engineering, Software Architecture, Language, Traceability.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

V

Contents
1. Introduction .. 1

1.1. Origins ... 3

1.2. Motivation ... 4

1.2.1. Business Modeling Contribution .. 5

1.2.2. Software Modeling Contribution ... 6

1.3. Research Question ... 6

1.4. Thesis Organization ... 10

2. State of The Art .. 11

2.1. The Zachman Framework for Enterprise Architecture .. 12

2.2. Business-driven Modeling Methods .. 13

2.2.1. Service Design .. 13

2.2.2. Enterprise Engineering ... 14

2.2.3. Business Process Management ... 17

2.3. Human-centric based Methods .. 18

2.3.1. Human-Computer Interaction .. 18

2.4. Software-oriented Modeling Methods ... 19

2.4.1. Requirements Engineering ... 20

2.4.2. Software Engineering ... 22

2.4.3. Service Oriented Architecture .. 25

2.5. Matching of the Goals Approach ... 26

2.6. Traceability .. 27

2.7. Conclusions ... 28

3. The Goals Language ... 30

3.1. Structure... 30

3.1.1. Semantics ... 32

3.2. Enterprise Structure Concepts ... 33

3.2.1. Business Process (BP) .. 33

3.2.2. User Task (UT) ... 34

3.2.3. Interaction Space (IX) .. 36

3.2.4. Business Rule (BR) .. 38

3.2.5. Data Entity (DE) ... 39

3.3. Software Architecture Concepts .. 40

3.3.1. Aggregation Space (AS) ... 41

3.3.2. Interaction Component (IC) ... 42

3.3.3. Interaction Object (IO) ... 43

3.3.4. User Interface System Responsibility (UISR) ... 44

3.3.5. Database System Responsibility (DBSR) .. 45

3.4. Conclusions ... 47

4. The Goals Process, Method and Techniques ... 48

4.1. Process ... 48

The Goals Approach: Business and Software Modeling Traceability by means of HCI

VI

4.1.1. Iterative and Incremental .. 49

4.1.2. Strategy ... 50

4.2. Method ... 50

4.2.1. Architectural Control and Agility .. 52

4.2.2. Architectural Interaction Patterns ... 53

4.3. Case Study – “iKiosk” Project ... 54

4.3.1. Analysis Phase .. 55

4.3.1.1. Step 1 - Service Design ... 55

4.3.1.2. Step 2 - Business Process Design ... 57

4.3.1.3. Step 3 - Enterprise Structuring .. 58

4.3.1.4. Step 4 - Task Modeling ... 60

4.3.2. Design Phase .. 62

4.3.2.1. Step 5 – User Interface Design ... 62

4.3.2.2. Step 6 – Business Logic Structuring ... 67

4.3.2.3. Step 7 – Database Structuring ... 68

4.3.2.4. Step 8 – Software Architecting ... 69

4.3.3. Case Study Conclusions ... 70

4.4. Case Study - “Star Project” ... 71

4.4.1. Step 1 - Service Design .. 72

4.4.2. Step 2 - Business Process Design ... 74

4.4.3. Step 3 - Enterprise Structuring ... 75

4.4.4. Step 4 - Task Modeling .. 76

4.4.5. Step 5 – User Interface Design ... 77

4.4.6. Step 6 – Business Logic Structuring .. 80

4.4.7. Step 7 – Database Structuring .. 81

4.4.8. Step 8 – Software Architecting .. 82

4.4.9. Case Study Conclusions ... 83

4.5. Conclusions ... 84

5. Goals EA Template .. 85

5.1. Organization .. 85

5.1.1. Stereotype Organization ... 86

5.2. Diagrams .. 87

5.3. Architectural Views ... 89

5.4. Conclusions ... 90

6. Validation ... 91

6.1. Cross-Consistency ... 91

6.2. Power of Expression .. 95

6.2.1. Service Design .. 95

MORELLI & TOLLESTRUP .. 95

SERVICE EXPERIENCE BLUEPRINT (SEB) .. 96

6.2.2. Enterprise Engineering ... 96

DEMO .. 96

ARCHIMATE .. 98

The Goals Approach: Business and Software Modeling Traceability by means of HCI

VII

BUSINESS MOTIVATION MODEL ... 99

ARMOR ... 99

6.2.3. Business Process Management ... 100

BUSINESS PROCESS MODEL AND NOTATION (BPMN) 100

KLUZA & NALEPA ... 101

PUTZ & SINZ .. 101

6.2.4. Human-Computer Interaction .. 101

CEDAR .. 102

SOUSA ... 102

NAVARRE ... 103

6.2.5. Requirements Engineering ... 103

GONZÁLEZ & DÍAZ .. 103

KORHERR & LIST ... 104

KAOS ... 105

I-STAR (i*) .. 105

MÁZON ... 106

6.2.6. Software Engineering ... 106

RATIONAL UNIFIED PROCESS (RUP) ... 107

PHILLIPS & KEMP... 109

DENNIS ... 110

GRAHAM .. 111

6.2.7. Service Oriented Architecture .. 111

ARSANJANI .. 111

6.3. Validation Conclusions.. 112

7. Conclusions .. 114

7.1. Future Work ... 116

7.1.1. Platform Specific Model for Information System Generation 116

7.1.2. Software Product Lines .. 116

7.1.3. Software Effort Estimation ... 116

7.1.4. Goals Modeling Tool ... 116

References .. 117

Appendix A – The Goals Conceptual Approach .. 124

Appendix B – Interaction Patterns ... 126

Appendix C – “iKiosk” Project Diagrams ... 128

Appendix D – “Star Project” Diagrams ... 131

List of Figures
Figure 1. GOALS Origins. ... 3

Figure 2. ZF Matching of the SD methods. .. 14

Figure 3. ZF Matching of the EE methods. .. 16

Figure 4. ZF Matching of the BPM methods. .. 18

Figure 5. ZF matching of HCI methods. .. 19

Figure 6. Example of Business Process to Use Case Relation Indefiniteness. 20

The Goals Approach: Business and Software Modeling Traceability by means of HCI

VIII

Figure 7. ZF Matching of the RE methods. .. 21

Figure 8. FDAF Meta-Model of Business Process and Use Cases. ... 23

Figure 9. ZF Matching of the SE methods RUP and TROPOS. .. 24

Figure 10. ZF Matching of SOA methods. ... 25

Figure 11. ZF Matching of GOALS. .. 26

Figure 12. CVM Traceability Problem Specification. ... 27

Figure 13. The GOALS Language Structure. .. 32

Figure 14. Meta-Model and Example of Business Process (BP). .. 34

Figure 15. Meta-Model and Example of User Task (UT). ... 35

Figure 16. Meta-Model and Derivation of IXs from UTs and relation to BRs and DEs. 37

Figure 17. Meta-Model and Example of Business Rule (BR). .. 38

Figure 18. Meta-Model and Example of Data Entity (DE). ... 40

Figure 19. Meta-Model and Example of Aggregation Space (AS). ... 41

Figure 20. Meta-Model and Example of Interaction Component (IC). 42

Figure 21. Meta-Model and Example of Interaction Object (IO). ... 43

Figure 22. Meta-Model and Example of User Interface System Responsibility (UISR). 45

Figure 23. Meta-Model and Example of Database System Responsibility (DBSR). 46

Figure 24. GOALS Process Analysis and Design Phases Modeling Concepts. 49

Figure 25. Goals Enterprise Development Process (EDP) Iterative Process. 49

Figure 26. GOALS Method Steps (1 to 8) and suggested Techniques. 51

Figure 27. “Simple - Interaction Design” Pattern. ... 53

Figure 28. Step 1 - Service Design Meta-Model and Example (“iKiosk” Project). 56

Figure 29. Step 2 – BP Design Meta-Model | Example of “Publish Classified” BP. 57

Figure 30. Enterprise Structure IX Diagram for “Publish Classified” BP. 59

Figure 31. Step 3 - Enterprise Structure Meta-Model | Example of “Publish Classified” BP. 60

Figure 32. Step 4 - Task Modeling Meta-Model and Example for “Insert Classified” UT. 61

Figure 33. Canonical Abstract Prototypes (CAPs). .. 63

Figure 34. Step 5 - Interaction Model Meta-Model | “Insert Classified (Text/Image/Link)”. . 64

Figure 35. Step 5 - User Interface Design of “Insert Classified” AS. 64

Figure 36. Example of User Interface Components Reuse. ... 65

Figure 37. User Interface Design for the Front-End of the “iKiosk” website. 66

Figure 38. Step 6 - Business Logic Structuring Meta-Model and Example. 67

Figure 39. Step 7 - Database Structuring Meta-Model and Example. 68

Figure 40. Step 8 - Software Architecture Example. ... 69

Figure 41. Step 1 - Service Design (“Star Project”). .. 73

Figure 42. Step 2 – Business Process Design of “Grow Community Project”. 74

Figure 43. Enterprise Structure Interaction Spaces Diagram. .. 75

Figure 44. Step 3 – Enterprise Structure of “Grow Community Project” BP. 76

Figure 45. Step 4 – Task Model | “Attract … Community”/“Support Project”. 77

Figure 46. Step 5 – Interaction Model | “Analyze … Intervention Information”. 78

Figure 47. User Interface Example. ... 79

Figure 48. User Interface Reuse Example. ... 79

Figure 49. Step 5 – Website Design of the “Star Project”. .. 80

Figure 50. Step 6 – Business Logic Structuring | “… Intervention Possibility”. 81

Figure 51. Step 7 – Database Structuring. .. 81

Figure 52. Step 8 – Software Architecture. .. 82

Figure 53. Enterprise Architect (EA) Organization. .. 85

The Goals Approach: Business and Software Modeling Traceability by means of HCI

IX

Figure 54. EA - Stereotypes Organization Tool. .. 86

Figure 55. EA - Package and Diagram Creation. ... 87

Figure 56. EA - Diagram Creation. .. 87

Figure 57. EA - Class Edition and Duplication (only changes the name) Tools. 88

Figure 58. EA - Relations between Classes. .. 88

Figure 59. EA - Setting the Visibility of Relations. ... 89

Figure 60. Enterprise Structure as an example of Enhanced Architectural View. 89

Figure 61. Cross-Consistency Matric of the GOALS Concepts. ... 92

Figure 62. Cross-Consistency Matrix and the GOALS Method Steps. 93

Figure 63. MORELLI & TOLLESTRUP and GOALS Service Design Representation. 95

Figure 64. SEB and GOALS Comparison. .. 96

Figure 65. DEMO and GOALS Relation of Concepts. .. 97

Figure 66. GOALS Representation of Transactions including More Than One Actor. 98

Figure 67. ARCHIMATE Modeling of the GOALS Structure. ... 98

Figure 68. BMM Model using the GOALS Language... 99

Figure 69. ARMOR Structure and Representation using the GOALS Language. 100

Figure 70. BPMN and GOALS equivalent BP Design. ... 100

Figure 71. KLUZA & NALEPA and GOALS equivalent Requirements Elicitation. 101

Figure 72. PUTZ & SINZ and GOALS equivalent Representation. 101

Figure 73. CEDAR and GOALS HCI Representation and User Interface Architecture. 102

Figure 74. SOUSA and GOALS User Interface Architectural Similarities. 102

Figure 75. NAVARRE and GOALS User Interface Architecture Representation. 103

Figure 76. GONZÁLEZ & DÍAZ and GOALS Requirements Elicitation. 104

Figure 77. KORHERR & LIST and GOALS Requirements Elicitation Representation. 104

Figure 78. KAOS and GOALS Concept Mapping and Example. .. 105

Figure 79. I* and GOALS equivalent Representation. .. 105

Figure 80. MAZÓN and GOALS equivalent Representation. ... 106

Figure 81. GOALS Change relatively to the RUP SDP. .. 107

Figure 82. RUP and GOALS Architectural Organization. ... 108

Figure 83. RUP PHILLIPS & KEMP and GOALS User Interface Architecture. 110

Figure 84. DENNIS and GOALS Relation of Use Case Concepts. 110

Figure 85. GRAHAM and GOALS Similarities to I*. ... 111

Figure 86. ARSANJANI and GOALS SOA Representation. .. 112

Figure 87. GOALS and Related Work Concepts Comparison. .. 113

Figure 88. Design Patterns for Human-Computer Interaction. .. 126

Figure 89. Design Pattern: Service Oriented Architecture (SOA). .. 127

Figure 90. Business Process “Decoy”. ... 128

Figure 91. Business Process “Publish Advertisement”. ... 128

Figure 92. Business Process “Validate Reporter”. ... 128

Figure 93. Enterprise Structure “Decoy”. .. 129

Figure 94. Enterprise Structure “Publish Advertisement”. .. 129

Figure 95. Enterprise Structure “Validate Reporter” ... 129

Figure 96. Task Model “Deliver Printing”, “Receive Payment”, “Serve Coffee” UT. 130

Figure 97. Task M. “Support Customer Activity”,“Obtain Classified”,“Obtain News” UT. 130

Figure 98. Task Model “Publish Reporter News” .. 130

Figure 99. Business Process “Conceive Investment Project”. ... 131

Figure 100. Business Process “Evaluate Investment”. ... 131

The Goals Approach: Business and Software Modeling Traceability by means of HCI

X

Figure 101. Business Process “Support Investment”. .. 131

Figure 102. Enterprise Structure “Conceive Investment Project”. ... 132

Figure 103. Enterprise Structure “Evaluate Investment”. .. 132

Figure 104. Enterprise Structure “Support Project”. .. 132

Figure 105. TM “Present Investment Possibilities”|“Investment Possibilities Feedback”. ... 133

Figure 106. TM “Present Project” | “Support Project”. ... 133

List of Tables
Table 1. The Zachman Framework (ZF) Matrix. ... 12

Table 2. Results of the ZF Matching. ... 28

Table 3. Enterprise Structure Concepts Definition, Origin and Symbol. 30

Table 4. Interaction Design Concepts Definition, Origin and Symbol. 31

Table 5. Software Architecture Specific Components, Definition, Origin and Symbol. 31

Table 6. GOALS Method Steps, Input and Outputs, and Affinity of Responsibility. 52

Table 7. BDD Pseudo-Code and GOALS Components Relation. ... 63

Table 8. “iKiosk” Project Development Process. .. 70

Table 9. “Star Project” Development Process. ... 83

List of Acronyms
AS – Aggregation Space
BP – Business Process
BPI – Business Process Improvement
BR – Business Rule
DBSR – Database System Responsibility
DE – Data Entity
EDP – Enterprise Development Process
IC – Interaction Component
IO – Interaction Object
IX – Interaction Space
ROI – Return of the Investment
SDP – Software Development Process
UISR – User Interface System Responsibility
UT – User Task
UX – User Experience
ZF – Zachman Framework

Formatting
concept - italic – business and/or software modeling concept.
Model - capitalized - business and/or software model.
Technique - italic capitalized - business and/or software modeling technique.
METHOD – all capitalized - business and/or software modeling method or language.
Goals Concept (GC) - capitalized (acronym) - GOALS modeling language concept, or only
acronym.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

1

1. Introduction

Traceability of business and software modeling is a requisite concerning business and
Information Technology (IT) alignment, and may be perceived as the cornerstone of enterprise
development performance. Traceability is the establishment of a relation between business and
software concepts that allows the recognition of which components of the business are
supported by which components of the Information System, and what may be the impact of
changing business requirements over the software structure. Complementarily, by means of
traceability, it is possible to acknowledge which aspects of the business are still not supported
by a software system (and which are), so that new improvements may be identified. These
improvements may be introduced at an acceptable rate, especially if the translation of business
and software models is avoided [de Vries et al., 2017; Ouyang et al., 2009]. The translation
process overhead is in fact what justifies the introduction of a common language of shared
concepts that may be used by business and software modelers to carry on the daily Enterprise
Development Process (EDP), the process that coordinates the business and software modeling
and implementation tasks.

The introduction of a new language in this context requires that the coordination of the ideas of
business and software modelers concerning the enterprise are concealed, which may not be
straightforward, as the perspectives of both, observing the same enterprise problem, are distinct.
For business modelers, the problem is mostly related to the enactment and enhancement of
business processes, or Business Process Improvements (BPI), where people and software
represent solutions; whereas, for software modelers, those solutions are their analysis, design
and implementation problem. To surpass this barrier, the concepts used in the dialogue must be
properly understood, given the complexity and accuracy needed in the process of conceiving
the enterprise solution. Nevertheless, the establishment of this language is possible, since on
one hand, the business concepts with a bigger impact on software development may be
recognized by software modelers (e.g. the business process, actor and regulation concepts),
and on the other hand, business modelers have general knowledge over the more fundamental
software concepts (e.g. User Interface, programmed code and Database), as basic premises of
a business and software modeling language. Therefore, if the language is close to this high-
level of abstraction, the communication may be viable (effective) and fluent (efficient), instead
of being an important obstacle [Ferreira & Wazlawick, 2011].

Until now, methods that propose solutions to surpass the conceptual barrier between business
and software modeling, do not represent the full extension of the problem and related solution,
or do not apply techniques that allow the methodical elaboration of a holistic software
architecture for a given BPI, while maintaining traceability at the same time. We find that the
main reason is that methods maintain the used concepts closed to the scientific domains where
they are originated from, with few or sometimes unstructured extensions, and as a result, not
all the complexity that needs to be represented and managed, is addressed in a single conceptual
and traceable structure. Existing methods relate business and software artefacts, but typically:
(i) do not represent all the relevant business and software development artefacts; (ii) do not
provide the needed level of detail; or, (iii) leave room for uncertainty in the specification of the
relation between the business and software, which is a critical modeling when targeting
traceability. As a result, both: business and software architectural control [Perry & Wolf, 1992];
and, the application of agile development solutions [Beck et al., 2001], are difficult to attain.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

2

This thesis describes “The Goals Approach”, which aims at serving as a common language to
support EDP. By conveying the perspectives which are usually involved in in-house software
development and business management, we elaborated a method called “The Goals Approach”,
originated from the “Goals Software Construction Process” [Valente, 2009], where “Goals”, an
acronym, was ideated as “Goal-Oriented Approach (Led) Software”, expressing the target of
letting the software development being “led” by the goals of the business processes, now
abbreviated to Goals Approach, and referred as “GOALS” throughout the thesis. Our work
focuses in-house software development, for the reason that many enterprises should be aware
that they can develop their own software, and because it is where it is originated from.

GOALS is based on a single language, modeling: the customer service and business processes
of the enterprise; and: the User Interface, the Business Logic, and the Database of the
Information System, given a Model-View-Controller (MVC) pattern [Zukowski, 2013]. It
produces a software architecture that includes the business architecture as its “back-bone”,
ensuring traceability of business and software. By providing: a single structure based on a single
architectural language; and the application of each technique; in a single method, we believe
that we are creating conditions to enable the fluent dialogue of the (usually) multi-disciplinary
teams that carry on the daily enterprise development practice (or EDP).

Our method provides support for the following development roles of practitioners:

• Business Owner, by providing a holistic view of the business and software, and an EDP
that guides the modeling of both structures using a single method and language;

• Service Designer, by providing a tool to elaborate the customer interaction with the
business, identify applicable regulations, the used and produced resources and systems;

• Business Process Manager, by proving a tool to design business processes with
enhanced detail concerning their tasks, the used spaces, the regulations and data, using
modeling concepts which are understood in the software domain.

And complementarily, by providing a tool for software modelers, namely:

• Software Architect, by providing a holistic view of the Information System context, a
process, a method, techniques and a modeling language that facilitates the elaboration
of the conceptual architecture of the Information System;

• User Interface Designer, by supplying a structured business model, that includes the
service design, regulations and resources, providing a user task context, to which are
applied user-centered techniques targeting performance and testing;

• Software Developer, by providing a Software Architecture that allows understanding
the dependencies and importance of each programmed class by relating each component
with the business model artefacts.

The Goals Approach is presented using capital letters (GOALS), a situation also be applied to
other method’s names in order to facilitate recognition among Models and GOALS Modeling
Concepts (both capitalized), Techniques (italic capitalized) and business and software
development usual concepts (italic not capitalized) names. We present GOALS as a solution to
model and trace business and software, and as a contribution for the communication among
enterprise developers, targeting the improvement of their productivity, namely concerning the
production of better software and the identification of new opportunities of cooperation and
improvement in iterative (bigger or smaller) increments, as our background and motivation.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

3

1.1. Origins
The combination of views and models is one of the originalities of the GOALS Approach. The
approach relies on existing business and software languages to describe its underlying concepts.
Our approach is mainly based on WISDOM [Nunes, 2001] which supplies the core software
engineering process and the User Interface design focus [Nunes & Cunha, 2001], and on
PROCESS USE CASES [Valente & Sampaio, 2007] (which is also a WISDOM extension),
that establishes a structural relation between the business and software models using essential

use cases [Constantine & Lockwood, 2001]. The GOALS Approach applies CTT (Concur-Task
Trees) [Paternò, 1999] in two-steps: (1st step) decomposing essential use cases in terms of User
Intentions using a Task Model; and (2nd step) decomposing User Intentions in User Interactions
applying the BEHAVIOR DRIVEN DEVELOPMENT (BDD) [Chelimsky et al., 2010])
method, describing the system behavior, and designing the User Interface using modeling tools
of the ACTIVITY MODELING (AM) method [Constantine, 2006]. The structuring of the
system behavior and the internal structure of the Software Architecture comes from the
WISDOM Software Architectural Technique, that provides support for the User Interface and
complements the Domain Model [Booch et al., 2005], for the specification of the Information
System. GOALS is structured on DEMO [Dietz, 2006] as a mean to specify how business

processes human interaction is supported by GOALS User Tasks (essential use cases),
including DEMO Action Rules and Object Classes, which are complemented with the
Interaction Space (IX) concept, in order to support human interaction representation beyond the
standard in-person interaction, and for more than two actors.

Figure 1. GOALS Origins.

Figure 1 summarizes the methods from which GOALS is originated, firmly based in SE by
means of RUP [Kruchten, 2004] and USDP [Jacobson et al., 1999], and complemented with a
(user-centered) Human-Computer Interaction (HCI) perspective since the beginning by means
of the WISDOM method, which is complemented with ACTIVITY MODELING (AM)
techniques concerning the design for performance, later complemented with BDD. This logic
was extended to the Enterprise Engineering (EE) domain by the means of the PROCESS USE
CASES method, and based on DEMO concerning Enterprise Architecture specification.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

4

1.2. Motivation
The main motivation for the establishment of a single language is the improvement of the
Software Development Process (SDP) performance. A unified business and software modeling
language and method opens a space of communication for those who carry on the practice of
modeling the business and the software. We formalize that a software development team
includes the Software Architect, the User Interface Designer and the Software Developer
stakeholders. They have the responsibility of deciding the process, method, techniques and
implementation models of the Information System. The project team is only complete with the
stakeholders which are responsible for the business, which are the Business Owner, the Service

Designer, and the Business Process Manager, whom have the responsibility of providing the
resources, specifying (by modeling) and implementing (based on software or not) the business

processes of the enterprise. We assume that any of the team members may accumulate more
than one role, and that a role may be composed by more than one member (a team) with distinct
backgrounds. The objective is that all may use the same models and language so that they may
understand the BPI and its impact in the customer and collaborator relation, and
complementarily the impact of the improvement over the structure of the Information System.

By means of applying common development techniques, the business and software modelers
may understand the implications of their decisions in the other modeler’s work. And by using
the same method, they can also understand the logic that leads from one model to the other, and
from one concept to the other, even if they are working at the top-level concept (the goal of the
business process) or the detailed User Interface component that allows its faster execution. By
using the same language (and notation), project meetings may be faster, and by using the same
models, the documentation may be reduced and will also be more easily recognizable, since it
will be recurrently reused for the purpose of the ongoing “project dialogue”. As such, the
produced models also have value for more stakeholders. By using recurrently the (same)
notation, the semiology of the development practice may also benefit from the stability provided
by the usage of common business and software symbols, and therefore may more easily be
assimilated by the patterned enterprise development practices which may already exist. Beyond
the objective of organizing and facilitating the process of transferring business requirements
and transforming them in a software architecture, also exists the objective of being able to
understand how much working-time an Information System will take to be finished. Those
metrics depend directly on the design of the business and the software parts which will be
implemented. Yet, its measurement and therefore its estimation, can only be attained if the SDP
is properly stabilized concerning the production of software as a business-support for the
enterprise, probably optimized by means of the usage of a single enterprise modeling language.

These are the main inspirations that drive our research, which also reflect a desired state of
evolution of the Software Engineering (SE) discipline, from an ancient state of chaos
[Morgenshtern et al., 2007], to a more stable but still unproductive phase, that reports that full
software development project success is only around 20% (within budget and time) [The
Standish Group, 2014], despite the advances introduced by agile methods [VersionOne.com,
2017], and by the user involvement in the development process [The Standish Group, 2013]; to
a phase of maturity where there is the increased awareness on what may be the Return of the
Investment (ROI) based on the business and software design decisions as an ultimate challenge
[Valente et al., 2015]. Our motivation is now expressed in terms of the business and software
modeling contributions which we introduce as follows.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

5

1.2.1. Business Modeling Contribution
One of the key factors for project success is reaching team consensus over the BPI concerns,
which is easier if the team understands the relation of each of the business with each of the
software modeling concepts, in order to promote a faster and more effective understanding. By
using concepts which are originated from the scientific domains usually involved in in-house
software development, with adaptations in terms of: scope, structure and relation (between
concepts); our language introduces fruitful changes to the software development practice. The
first change, of structure, is that business processes should be named after their goal, as it is the
enterprise-recognizable business concept that reflects the undergoing objective, helping
focusing the target of software implementation. The second change, of scope, concerns
modeling the activities of the business processes using essential use cases [Constantine &
Lockwood, 2001], which are defined as “a complete task performed by one actor”, in order to
withdraw margins of uncertainty concerning requirements elicitation, especially in terms of
number, establishing a simplified and comprehensive (an “actor task-sized”) relation between
business and software models. The third change, of relation of concepts, is the inclusion of the
Interaction Space (IX) as the space where communication between actors happens, and where
specific regulations are applied over the management of certain data. The relation between
goals, essential use cases, IXs, regulations and data, is the “key” that enables the composition
of a business model that allows rationalization about the enterprise development problem on a
single diagram, and serves as the “door” to the specification of the Information System which
will support the BPI, as those concepts will be detailed, complemented and included as a part
of the final Software Architecture. By means of using the same language in a single top-down
analysis logic (from business process to data set), we are also creating conditions to focus on
what are the more important concepts that must be transferred from the business team to the
software development team. As a result, less work may be lost in the transfer, and there is no
need for translation efforts, contributing to increase the performance of the EDP.

The main contribution for the business modeling is related to the specification of a Business
Architecture that can receive software architectural support independently of the type of design
of its business processes. The Business Architecture (represented by the Enterprise Structure
model), becomes part of the Software Architecture, composing the Enterprise Architecture. The
Enterprise Structure includes the Interaction Space (IX) as the “aggregator” of data and
regulations which are at the disposal of the tasks which may be performed in those logical
spaces. The IX allows the representation of the interaction of one, two or more actors, and the
representation of the physical space where they interact, and which actions are performed. The
IX is then included in the Software Architecture as the component that ensures the application
of the business regulations (Business Rules, BR) and the usage of the data (Data Entities, DE).
The IXs, BRs and DEs are therefore shared concepts of the Business and Software
Architectures, which also represent a contribution to the SE domain by means of the inclusion
of the BR concepts as the business-specific concept of the Business Logic layer of the MVC
pattern of the Information System.

Although the proposed modeling structure may be complemented in order to measure business

process performance, using e.g. Key Performance Indicators (KPIs), these aspects are out of
the scope of current version of our approach, as its main target is the provision of a tool that
introduces enterprise enhancements which advantage is not in question of doubt, or in other
words, are “structural” to the enterprise.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

6

1.2.2. Software Modeling Contribution
The SDP performance can be strongly increased if the business model of the enterprise is
structured on components which are meaningful to software practitioners, and which may be
further detailed in order to produce the Information System internal structure. This is possible
by means of the detail of the human activity “down” to the level of interaction, and may be
achieved by using Human-Computer Interaction (HCI) techniques, representing an added value
for both business and software modelers, as they will be able to identify the Information System
components that support the business process-driven human mental and physical (partial,
working) activity. Once this is achieved, the dialogue between business and software modelers,
including User Interface Designers, may be fluent and potentially more fruitful based on a
better understanding about the business-problem and software-solution under analysis,
prospecting a project team faster agreement concerning the operationalization of the BPI. By
integrating the Enterprise Structure (Business Architecture) as the conceptual “back-bone”
structure of the Software Architecture, the received components (instantiations of concepts),
only have to be complemented with software-specific components to be conceived as the final
Information System implementation-independent architecture (the Software Architecture). As
the produced structure is directly related to an MVC implementation model, a standardized
straight-lined process may be assembled, based on a methodical implementation process easier
to carry out, eventually with a closer support from business modelers.

As our focus is the organization and coordination of business and software modeling, the
measurement of the development performance is out of the scope of the current version of our
approach, as the organization and automation of the SDP can be seen as a pre-requisite of
software success, aiming in the first place the effectiveness of the process, and in second place
its efficiency.

1.3. Research Question
The research question of our thesis concerns the establishment of a language and method to
produce the artefacts which are needed for in-house software development. The question is
considered as holistic in the perspective that, with a single language, one must be able to
develop software solutions to all the business activities that manage enterprise data. The
pertinence of the question exists because actual software development methods do not cover all
the business and software modeling relevant aspects maintaining traceability, and because the
ones that do are not supported by a development method. The research question is formulated
as follows.

Q1: Is it possible to establish a modeling language that can be applied by a single method

which is representative of the organized business activity and its supportive software system?

The research methodology was oriented by means of the usage, generalization, conciliation and
exclusion of scientific research methods and concepts from distinct research domains
concerning software development, during software practice in the University of Madeira
(UMa), a medium-sized enterprise, between 2002 and 2011. From this practice, an initial
version of GOALS was published as GOALS SOFTWARE CONSTRUCTION PROCESS
[Valente, 2009]), which (summarizing) was an extension of the WISDOM method [Nunes,
2001] by means of the PROCESS USE CASES method [Valente & Sampaio, 2007], using the
UNIFIED MODELING LANGUAGE (UML) [Booch et al., 2005].

The Goals Approach: Business and Software Modeling Traceability by means of HCI

7

The research method is originated from a logic that results from software development practice
with academic support as needed. This first application resulted in the elaboration of the
Software Architecture for a “major” BPI in the University of Madeira that included 5 “core”
business processes (from the pedagogical service: “distribution”, “scheduling”, “preparation”,
“lecturing” and “evaluation”). The Software Architecture was produced using WISDOM, and
related to the enterprise business processes by means of PROCESS USE CASES, and its User
Interface was designed using CANONICAL ABSTRACT PROTOTYPES [Constantine et al.,
2003], which received support from the HYDRA framework [Costa et al., 2007], for the
implementation of the User Interface using the remaining identified (Business Logic and
Database) Software Architecture components. The application was replicated for the
implementation of 7 business processes (course “course inquiry”, “business unit management”,
“facilities management”, “facilities access control”, “academic billing system”, “student credits
accreditation”, and “student academic background”), and leaded to the establishment of
GOALS as an internal SDP standard. The method was further used for 3 more BPIs (“course
accreditation”, “student’s academic requests” and “voting system”), before it was formalized
starting in 2012, and continued to be applied as a form of validation of its models in other BPIs.
Since traceability was found to be an unsolved problem in both Enterprise Engineering (EE)
and SE domains, the method was formalized concerning the methodical application of its
development techniques in consecutive steps.

As our research question targets business and software Information Systems modeling
traceability, our hypothesis reflects the establishment of a language of shared concepts as a
solution, as follows.

H1: It is possible by means of a cross-consistent relation of business and software concepts,

and by modeling the business human activity and relating it to software-specific components of

the software model by means of the application of architectural patterns.

The strategy that sustains H1 is mainly based on the identification of the spaces where users
carry on their tasks, aggregating in a logical relation: the tasks, the business regulations and the
data that apply in each case. These spaces are called as Interaction Spaces (IX), and where
found, in our opinion, to be the missing part of the business representation of existing methods,
and it is based on it that we apply the remaining techniques that bridge business and software
modeling. With the purpose of supporting H1, and beyond the validation provided by its
recurrently successful application, GOALS also received distinct forms of validation,
concerning: (1st) its performance, (2nd) its business structure, and (3rd) its conceptual structure:

• First, a study of the application of the method was carried out for five BPIs [Alves et
al., 2013], using the iUCP method [Nunes et al., 2011] for post-project estimation and
comparison of software development effort, revealing a performance stability that
allowed the identification of: requirements volatility, software framework (change), and
project type ; as aspects that add more (negative or positive) impact to the development
productivity than considered by the initial UCP method [Karner, 1993]. It led to the
proposal of a new formula which would reflect those aspects with higher accuracy. The
statistical evidence was observed for a seven BPI sample [Alves et al., 2013, p. 4] (P1
to P5, “facilities access control”; “academic billing system”; “students credits
accreditation”; “course accreditation”; and “student’s academic requests”; and two BPIs
(P6 and P7) from other stable software development environments, using other methods.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

8

• Secondly, it was also evaluated concerning its business conceptual structure, by means
of the comparison with the DEMO [Dietz, 2006] business process equivalent
representation [Valente et al., 2016b], highlighting the inclusion of the IX as the solution
to provide software architectural support for the (DEMO) business process
Transactions, modeled with essential use cases to represent human activity, and
including the IX as the element that provides support for that activity by ensuring
regulations and data conformance, for two of more actors performing their tasks
(essential use cases) in remote or in-person interaction.

• Thirdly, the GOALS language structure was validated concerning the cross-consistency
of concepts [Valente et al., 2017] (in a 10 step method, now presented in 8 steps), and
architectural restrictions concerning the organization of the business and software
models. The validation (extended) is presented in Section 6.1. Cross-Consistency. The
method was also published concerning its agile Human-Centered Software Engineering
(HCSE) perspective [Valente et al., 2016a], as a trade-off between agility and
traceability (architectural control) of business and software representations.

Based on the previously referenced work, the formalization of our method when through
distinct phases, which are described as follows:

• Effort Estimation and SDP Productivity Evaluation. A study was carried out in order
to evaluate the use case as a “measure of effort” concerning software productivity using
the GOALS method. With a sample of five (University of Madeira) projects, two
projects from other enterprises were added, providing a (statistically workable)
heterogeneous sample of seven. From the analysis of the factors that mostly affected
each project (requirements volatility, software framework (change), and project type),
it was possible validate a new formula effort of the iUCP method, by giving those factors
a (bigger) weight that would reflect their real impact. The study received the honor of
“Best Full Paper Award” from the conference.

o (Full Paper) [Alves et al., 2013] Alves, R., Valente, P., Nunes, N. Improving

Software Effort Estimation with Human Centric Models - A comparison of UCP

and iUCP accuracy. In: Proceedings of 5th ACM SIGCHI Symposium on EICS
'13, London, England. pp. 287-296. (2013)

• User Experience and Service Design. A study was carried out, directed to the HCI and
SE industry practitioners (sample of 97 questionnaires), in order to understand how the
User Experience (UX) concerns were considered within the software development
practice. It allowed understanding how strongly BPI (“business reorganization”)
projects are related to the (paper) prototyping of the User Interface, namely in the phases
of requirements elicitation, design and testing. And confirm that refactoring is strongly
correlated to requirements evaluations (introduction or change).

o (Full Paper) [Alves et al., 2014] Alves, R., Valente, P., Nunes, N. The State of

User Experience Evaluation Practice. In: Proceedings of the 8th Nordic
Conference on Human-Computer Interaction, pp. 93-102. (2014)

• Intention to Improve Software Estimation. A position paper was published, declaring
the importance of introducing changes to the SDP that would allow measuring the ROI
of a project after requirements elicitation and before software implementation. And that
a business driven system design should dictate the effort as a target for the accuracy of
estimation effort, aiming the production of better software.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

9

o (Short Paper) [Valente et al., 2015] Valente, P., Aveiro, D., Nunes, N. Improving

Software Design decisions towards enhanced Return of Investment. In:
Proceedings of ICEIS 2015, Barcelona, Spain. pp. 388-394. (2015)

• Intention to Bridge EE and SE. The intention of bridging EE and SE was discussed
as a project in a Doctoral Consortium, including the actual business model, the
importance of defining an enterprise-sized development process (EDP) that includes the
software development, and how effort estimation may be based on business and
software models in the future (by weighting architectural components).

o (Doutoral Consortium) Valente, P., Aveiro, D., Nunes, N. (2015). Bridging EE

and SE: The Goals Approach. Enterprise Engineering Working Conference.
https://www.researchgate.net/publication/283289437_Bridging_EE_and_SE_T
he_Goals_Approach

• Business Model based on DEMO. The GOALS business model and its relation with
the DEMO model was published, and how the “bridge” to Software Architecture could
be achieved by means of a User-Centered perspective, applying the method with a total
of 10 steps (now reduced to 8).

o (Short Paper) [Valente et al., 2016b] Valente, P., Silva, T, Winckler, M., Nunes,
N. Bridging Enterprise and Software Engineering through a User-Centered

Design perspective. In: Proceedings of the Web Information Systems
Engineering (WISE) 2016 Conference. (2016)

• GOALS and Systems Development. The GOALS method was published, targeting its
meta-model and concepts cross-consistency validation. Targeting model-driven in-
house software development, focus is also made on the technology that may be applied
to implement each Software Architecture component.

o (Full Paper) Valente, P., Silva, T, Winckler, M., Nunes, N. The Goals Approach:

Agile Enterprise Driven Software Development. In: Proceedings of the
Information System Development (ISD) 2016 Conference. (2016)

o (Extended Full Paper) [Valente et al., 2017] In: Lecture Notes in Information
Systems and Organisation, 22. (2017)

• GOALS and Human-Centered Software Engineering. The GOALS method was
published focusing the proposal of a trade-off between business architectural control
and agile (user) task-sized (User Task (UT)) improvement efforts, and the need to
induce the multi-disciplinary work within enterprises targeting project success.

o (Full Paper) [Valente et al., 2016a] Valente, P., Silva, T, Winckler, M., Nunes,
N. The Goals Approach: Enterprise Model-driven Agile Human-Centered

Software Engineering. In: Proceedings of the HCSE+HESSD 2016 Conference.
(2016)

Our research was complemented with the comparison of our method with existing methods that
address the business and software models relation. The original scientific domains (EE, HCI
and SE) where complemented with Business Process Management (BPM), Service Design
(SD), Requirements Engineering (RE), and Service Oriented Architecture (SOA) methods, for
the purpose of comparison in terms of the coverage of the enterprise Information System
development problem using the Zachman Framework (ZF) [Zachman, 2008] which is presented
in Chapter 2. State of The Art, and in terms of the coverage of the business and software
modeling concerns, presented in Chapter 6. Validation.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

10

1.4. Thesis Organization
The thesis is organized in seven chapters, which we introduce as follows.

• Chapter 2. State of The Art, presents the state of the art concerning business and
software modeling traceability, focusing on the business model conception, and how
requirements are elicited targeting the software model architecting;

• Chapter 3. The Goals Language, presents the structure of our language, its concepts,
stereotypes and definitions, including their meta-model, an example, and their origin;

• Chapter 4. The Goals Process, Method and Techniques, presents the process, method
and techniques, including two case studies based on a real software development
projects: (“iKiosk”) focusing the method application, and; (“Star Project”), focusing the
decisions taken during the application of the method.

• Chapter 5. Goals EA Template, presents how our method may be applied using a
software tool available in the market (Enterprise Architect);

• Chapter 6. Validation, presents the validation of the language by means of its internal
cross-consistency, and its power of expression by means of comparison with other
methods;

• Chapter 7. Conclusions, presents our conclusions and future work.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

11

2. State of The Art

The scope of our language and method is the modeling of the business and the supporting
Information System, targeting the specification of a business-traceable Software Architecture
suitable for in-house software development. In this scope, we find the intention of “bridging”
business and software models in methods originated from Enterprise Engineering (EE), based
on business modeling, in Software Engineering (SE), targeting software modeling, and in
Human-Computer Interaction (HCI), targeting software system behavior modeling for the
support of human activity. These domains specify the requirements of an enterprise Information
System that contains data, implements business regulations, and provides adequate behavior
i.e. an Information System suitable for the daily enterprise operation. EE, SE and HCI, are in
the origin of our proposal, and are complemented with the Service Design (SD), Business
Process Management (BPM), Requirements Engineering (RE) and Service Oriented
Architecture (SOA) domains, to extend these requirements to consider enhanced service and
business process experience and connectivity. Each domain is introduced as follows.

In the business perspective, the SD domain represents a very wide scope in terms of Information
Systems requirements, which refers not only to the usability of the software, but also to the
(emotional) User Experience (UX) in interaction with the business [Alves et al., 2014]. EE
methods model the enterprise by means of elaborating Enterprise Architectures that include
actors and business processes, and also transactions, regulations and data structures. The
structures may be complemented with Organizational Operative Systems (OOS) to generate
operational software, and with software development methods concerning Information System
engineering. Closer to the SE domain, in the field of automatic code generation, BPM methods
produce Workflow Management Systems (WfMS) from business process models, usually
integrating business regulations in the final Software Architecture, which has a parallelism with
the EE approaches that produce working software.

In a human-centric perspective, HCI methods are not holistic business representations,
however, they consider the context of interaction and also what the user expects from the
system, usually with structured feedback, promoting the user performance and UX, besides and
beyond ensuring usability. Those methods also produce valid in-house software architectures
in the cases when they also include business regulations, and produce Database valid
information by means of business concepts that model the domain of the Information System.

In an Information System engineering perspective, RE strongly addresses the problem of
traceability, observing it as the consequence of eliciting requirements from business models,
independently of the used form (e.g. goal, use case, aspect or feature); techniques which are
crucial in terms of elicitation capability and accuracy, as requirements generate the complexity
managed in a SDP. In SE, existing methods elicit business requirements and apply
transformations that produce Software Architectures. These are Model-Driven Architecture
(MDA) methods, which are mostly derived from the RATIONAL UNIFIED PROCESS (RUP)
[Kruchten, 2004], based on the responsibility which is isolated in use cases as a source of
requirements. SOA methods, model the service and produce web-service structures that
implement business-to-business. The methods do not model the User Interface, however, they
can be used for enterprise Information Systems if its conception is provided by an alternative
method. SOA establishes a relation between the business’ needed functionality and the system
Business Logic, ensuring traceability.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

12

The more representative methods of each domain will be analyzed concerning Information
System conception and the requirements defined by the Zachman Framework [Zachman, 1986],
with the purpose of understanding how comprehensive each method is, and how business and
software traceability is achieved. We present the Zachman Framework as follows.

2.1. The Zachman Framework for Enterprise Architecture
The Zachman Framework (ZF) [Zachman, 1986], was conceived with the purpose of
understanding the scope of what must be controlled within an enterprise, so that all of its parts
are documented to provide a holistic view of the enterprise architecture which may be used as
a base of its management. The ZF scope of analysis of the enterprise includes its business and
Information System, divided in levels, from the more abstract to the more concrete perspective:
“Scope”, “Concept”, “Logic”, “Physics”, “Technology”, and “Product”, relative to the roles of
“Planner”, “Owner”, “Designer”, “Builder”, “Implementer”, and “Operator”. These are crossed
with the interrogatives: “What?”, “How?”, “Where?”, “Who?”, “When?”, and “Why?”;
specifying the enterprise architecture independently of the used method and notation. The ZF
provides an ontology about the object under study, which in our case is the modeling of the
business and software systems of the enterprise, the initial purpose of the ZF, despite the fact
that it may be used for every type of object (besides the enterprise: a project, an airplane, a
building, etc.) [Zachman, 2008].

Table 1. The Zachman Framework (ZF) Matrix.

The crossing of the ZF conceptual levels with the interrogatives is presented in Table 1, a matrix
of 36 cells in which are specified the modeling requirements that should be applied. Each cell
suggests models based on the crossed concepts. The “Scope” level (at the top of the ZF)
suggests the elaboration of lists of “Identification” for: “Inventory”, “Process”, “Distribution”,
“Responsibility”, “Timing” and “Motivation”. The underneath levels of: “Concept”, “Logic”,
“Physics”, “Technology”, and “Product”, maintain the same logic, but now crossed with the
modeling concepts of: “Definition”, “Representation”, “Specification”, “Configuration” and
“Instantiation” (replacing “Identification”), getting gradually closer to implementation.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

13

This logic allows the representation of the enterprise architecture, to which we introduce a
change concerning the specification of the “Where” column and the concept of “Distribution”,
by means of extending it to the logical location, adding it to the original proposal (which initial
name is “Network”), which refers to physical location, allowing it to also support virtual
enterprises. Thus, this column has enhanced meaning if both physical places and logical spaces
of the enterprise system are also represented in the architecture, whereas, the data network,
should only be considered at the “Operation” level, which represents the materialization of the
enterprise, and which is out of the scope of our analysis. The more representative methods of
each scientific domain will be matched with the ZF, according to the literature review, which
we present as follows.

2.2. Business-driven Modeling Methods
Business models aim at structuring the business with humans and system as equivalent and
complementary parts towards the operationalization of the enterprise strategy. In the business
modeling perspective, the organization of the parts usually relies on advanced technology from
which the Information System conception must be tailored in order to fit the enterprise
performance needs. The Service Design (SD), Enterprise Engineering (EE), and Business
Process Management (BPM) more representative methods are presented as follows.

2.2.1. Service Design
Service Design (SD) started as a discipline of marketing and management of the service, where
the specification of products and services assumed an important role in the modeling of the
service and customer interaction, demanding levels of usability from Information Systems that
may support its customer-oriented strategy. The EXPERIENCE CYCLE [Dubberly & Evenson,
2008] is a customer oriented method that defines a specific strategy for the service-customer
relation, in which the objective is to “Orient” (the customer), “Interact” (with the customer), so
that the customer will probably wish to “Extend & Retain” (the experience), “Advocate” (about
it), and “Connect & Attract” (other customers). The BLUEPRINT [Shostak, 1982] was the
pioneer method, relating services and products for the purpose of designing the service as a
whole. The BLUEPRINT establishes a relation that can be used for different purposes,
including the development of Service Oriented Architectures (SOA) [Becker et al., 2008] (SOA
methods are analyzed in Section 2.4.3. Service Oriented Architecture). In the BLUEPRINT, the
logic that relates processes and resources is the rationale behind the way of thinking, analyzing
and delineating the business. This logic by itself is however far from the level of detail needed
to design the proper User Interface that satisfies customers over time. SD methods also express
human intention and activity with detail.

The SERVICE EXPERIENCE BLUEPRINT (SEB) [Patrício et al., 2008], is a method based
on the BLUEPRINT that decomposes softgoals and goals, and further specifies the relation
between the actions that the user takes in the dialogue with the enterprise system as his
experience sequence (the route), in a similar way that essential use cases are decomposed in
terms of user intentions and system responsibilities [Constantine & Lockwood, 2001]. SEB
prevents the over-decomposition of requirements (too much granularity) before task analysis
that may lead to solutions more complex than necessary. It also has the benefit of increasing
the probability of producing a more complete User Interface, since when the service design is
evolved there is the tendency to reduce the number of interactions (touch-points), maintaining
or increasing the number of provided services.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

14

The SD challenges can also be considered as a reference concerning usability as they also
design the user’s (customer) emotions. The MORELLI & TOLLESTRUP’s [Morelli &
Tollestrup, 2006] method, elaborates a motivation matrix compliant with the user experience
levels demanded by the market [Pine & Gilmore, 1998], that may eventually be used to design
User Interfaces with a high-level of performance. This method is an example of a valid high-
level requirements modeling approach targeting the specification of Information Systems,
however, the modeling of the internal structure of the system, or even the User Interface, is out
of the scope of the method beyond the proposed identification of use cases.

Figure 2. ZF Matching of the SD methods.

Figure 2 presents the matching of the SD methods concerning service elaboration, traceability
and software development. It is possible to identify that the EXPERIENCE CYCLE and the
BLUEPRINT methods cover the top of the conceptual logic of the ZF, providing insight of the
logic of the business, the customer intention and the expected route of interaction. The Becker
method focuses on functionality in a SD branch that directly relates to SOA, and the MORELLI
& TOLLESTRUP’s method focus on motivation not however providing a software
architecture. The SEB method relies on essential use cases decomposition based on a line of
interaction avoiding use cases indefiniteness in the representation of the customer relation.

2.2.2. Enterprise Engineering
Enterprise Engineering (EE) has emerged as a discipline for the application of knowledge,
principles, and techniques to the analysis, design, implementation and operation of all elements
associated with an enterprise. Existing methods derive software solutions from business models
in the process of architecting and engineering the parts of an enterprise that suit its
implementation and governance. The development of an Enterprise Architecture is a usual
practice of EE methods, which widely vary in scope and form of representation of the enterprise
business, being more market oriented and less software-architectural, or more Information
System development oriented and less human-centric.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

15

The Business Motivation Model (BMM) is an enterprise strategy model. BMM targets the
specification of the reasons “why” the enterprise acts towards a given “objective”, and how it
should achieve it. The model serves as a support in order to understand the existence of the
business processes of the enterprise, and what are the desired results, according to the enterprise
strategic vision. BMM reflects only a part of what is the business model, since business

processes are not designed, as the concerns are more related to the courses of action as a whole,
and the related business rules and policies conception, including their relation to internal and
external motivators. BMM does not consider the software model.

The Open Group Architecture Framework (TOGAF) [The Open Group, 2011], is a method that
predicts the elaboration of a business, a data, a technology, and an application architecture.
TOGAF targets the specification of the enterprise, and the identification of its building blocks
using the ARCHIMATE language [The Open Group, 2012]: “Application Component”,
“Application Function”, “Application Interface”, “Application Service”, and “Data Object”.
These architectural components may be related to equivalent business components, including
“Business Services” and “Business Processes”, and also to infrastructure (e.g. software server)
components. However, the identified building blocks do not provide enough detail in order to
architect the software system, and as such, TOGAF does not establish a relation that ensures
traceability at the level of the implemented component. Yet, as the application parts are
identified along with the business processes, other SE methods may be used in order to model
the software, such as the ARMSTRONG method [Armstrong et al., 2013], published by The
Open Group. The resulting transformation of the method uses the “Business Interaction” to
derive “Business Use Cases” between the involved actors, and then use an Activity Diagram to
represent the business process of that interaction, with which it derives the functionality that
must be implemented by use cases. In our perspective, this method also leaves gaps in the
relation between the business and software modeling relation, namely: what is the relation
between the “Business Use Cases” and the business process “activities”, and what is the relation
between the “activities” and the use cases, also skipping the design of the User Interface.
Moreover, TOGAF provides a set of modeling tools and documentation which we do not find
as suitable for in-house software development, and observe it as a potential threat to the
efficiency of the SDP due to management time overhead.

DEMO [Dietz, 2006] is an enterprise engineering method that produces valuable business and
software artefacts concerning Information System conception. Software development is usually
prospected using the GENERIC SOFTWARE DEVELOPMENT PROCESS (GSDP) [Kervel
et al., 2013], which derives software specifications from the DEMO enterprise ontology to a
system ontology. However, DEMO and the derived methods do not contemplate the User
Interface design, since the user task model does not provide sufficient detail besides the
(“coordination”) acts (“request”, “promise”, “state” and “accept”), of a transaction between
two actors. Another approach to Information System conception is the software
operationalization by means of ORGANIZATIONAL OPERATING SYSTEMS (OOS)
[Páscoa & Tribolet, 2015], which is also based on DEMO models, in order to deploy operational
software. Yet, as DEMO does not produce enough information for User Interface specification
besides the business process work flow and the coordination acts, the usability of the system
cannot be ensured, resulting in conceptions that need User Interface adjustments in order to be
usable [Hintzen et al., 2014].

The Goals Approach: Business and Software Modeling Traceability by means of HCI

16

ARMOR [Engelsman & Wieringa, 2012] is a method that adapted concepts from other
methods, namely TOGAF [The Open Group, 2011], KAOS [Lamsweerde, 2000], i* [Yu, 1995],
TROPOS [Morandini et al., 2014] and BMM [Object Management Group, 2007] in order to
establish the specification of an Enterprise Architecture. The ARMOR architecture specifies
the business in terms of stakeholder’s goals, including the “influence” to which they are subject
to, the possible “conflicts”, and their decomposition. From the decomposition of goals,
ARMOR derives “requirements” and then establishes a relation of one-to-one with the
“Architecture Component” concept. There are more EE methods relative to enterprise
architecting, like the LIVING MODELS [Breu et al., 2011] and the ZIKRA [Zikra, 2014]
methods, which propose the formal design of business processes and software components,
however, not with enough detail and without a well-defined software development method.

Figure 3. ZF Matching of the EE methods.

Figure 3 presents the framing of the EE methods in the ZF. These complement each other to
cover the layers “Conceptual” to “Technology”. DEMO and TOGAF cover most of the
modeling needs concerning the “What” and “How” columns, DEMO covers three layers of the
“Who” and “When” columns, and is complemented in the “Technology” layer by the OOS,
concerning software operationalization of actors and their coordination in transactions. The
“Why” column is covered by the BMM (which is its main target), DEMO at a conceptual level,
and the regulations implementation is left to the OOS and GSDP methods, in the “Physics” and
“Technology” layers, respectively. As we do not find evidence of User Interface design in the
presented methods, that chasm should be left to the GSDP method (in the “Where” column),
but since no detailed user information is produced to from transactions and cannot find further
evidence of its effectiveness in the literature, we also highlight that indefiniteness (with a red
lined opaque rectangle). Still in the “Where” column, the TOGAF fills the “Designer” layer by
means of the ARCHIMATE “Business Interface” and “Location” concepts. The ARMOR
method distinguishes itself by means of modeling concern which may be matched win the
“Scope” layer, namely by accessing stakeholder’s concerns as its main target.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

17

2.2.3. Business Process Management
Business Process Management (BPM), in the considered analysis scope, refers to the
automation of business processes. BPM has evolved over time by means of the introduction of
business process models and the execution of modeling languages [Ouyang et al., 2009], in
order to produced Workflow Management Systems (WfMS). Software is designed according
to the logic of business processes, producing User Interfaces that work, in which however
usability is not addresses, as the information to achieve it is not present in the development
process, reason why it is impossible to expect adequate behavior from the system without
further complementing the methods with a user-centered perspective. The Business Process
Model and Notation (BPMN) [Hagen, 2010], is the reference language on which rely most of
the execution languages that implement workflow standards [Garcês et al., 2009]. BPMN is a
business process modeling language, which however does not have a method to apply it in order
to produce valuable software solutions in a patterned way like other methods do.

The methods of KLUZA & NALEPA [Kluza & Nalepa, 2013] and DECREUS & POELS
[Decreus & Poels, 2011], are examples that derive requirements from BPMN activities,
providing however an unclear relation between business and software, and an incomplete
software architecture which is seen as insufficient to be considered as electable for in-house
software development. Besides that, the indefiniteness of the relation with the business process
activities, which may result in many or few user tasks, impedes the creation of a stable business
and software relation. This increases the probability of generating unnecessary entropy in the
software modeling method, producing a solution which may be more complex than the problem
itself, i.e. not as much simplified since the beginning as it could, increasing the probability of
introducing combinatorial explosions in the system [Aveiro et al., 2015].

It is however possible to identify that by means of providing business semantics, which is the
case of the KLUZA & NALEPA method, and doing it by means of identifying business rules
tasks (“BR Tasks”), as impositions of the system when dealing with existing BPMN activities,
the resulting requirements are also semantically similar to use cases. The semantics are also
applied in the method of PÜTZ & SINZ [Pütz & Sinz, 2010], which presents a more structured
derivation of workflow systems, as they derive BPMN models from business processes using
the Semantic Object Model (SOM) notation, an approach which is close to SOA methods,
relating actions and resources, and those actions to BPMN activities, however, not designing
the User Interface. This situation also happens with the MINERVA method [Delgado et al.,
2010], which also relies on SOM and BPMN, in this case orienting the solution to a SOA
concerning a final software architecture. A similar approach is presented in the BPLSOA
method [Cardona & Duarte, 2013], which applies Software Product Lines (SPL), developing
“Service Points” (web services) per BPMN activities.

Figure 4 presents the ZF matching of the BPM methods, which in the most common case find
the solution for software generation in business regulations and domain concepts, however
without contemplating the User Interface design, therefore not being suitable to support the
needed service usability and UX demands. When semantics are added to the method, that is
reflected in the ZF within the “Scope” level, facilitated by the higher-level concepts used by
those methods. The cells which are not specifically covered by BPM methods are related to the
“Where” column and “Designer” and “Builder” levels, which is more specifically the human-
computer interaction aspects of Information System development, identified as “HCI”.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

18

Figure 4. ZF Matching of the BPM methods.

2.3. Human-centric based Methods
Human-centric methods involve the human (user) perspective in the design of the system,
initially bridging HCI and SE [Nunes & Cunha, 1999], by proposing techniques that may be
incorporated in the development process [Joshi et al., 2010], which in our opinion should be
“native” in the quest for a holistic and effective SDP. In a systems engineering perspective,
methods seek to enhance the effectiveness and efficiency of the system grounded on the
perspective of the user, instead of (only) the internal structure of the Information System.

2.3.1. Human-Computer Interaction
Human-Computer Interaction (HCI) methods establish architectural relations between the
business process human activities and the design of the User Interface, yet not always
considering the full complexity of the Information System.

Existing methods design the system from a User-Centered Design (UCD) perspective, focusing
on the design based on user analysis, from which the CEDAR [Akiki, 2013] method is an
example, as it designs the User Interface based on task analysis, complemented with data
models, from which our approach is different as it complementarily conceives the Business
Logic layer. The same situation happens with SOUSA [Sousa et al., 2008] method, that
structures the software architecture by means of deriving implementation solutions from the
decomposition of the business processes mapped as “activities” and “tasks”; a straight-forward
and practical solution that can be used to generate code of an Information System which User
Interface was conceived, based on a user-centered perspective from business process models
with no traceability gaps, which is a single situation that we find in the literature besides our
approach. The SEMI-FORMAL FRAMEWORK [Bowen & Dittmar, 2016] is an example of
an HCI method that has concerns related to collaborative User Interface design, since in the
HCI domain, the level of elaboration of the User Interface is so detailed that the same User
Interface may need working hours from more than one designer.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

19

NAVARRE [Navarre et al., 2009], presents a method that produces enough information to
develop a Software Architecture driven by user task modeling, and by relating the user actions
with system functions, and producing enough semantical information to design a Database.
Similarly to agile methods, the business structuring is out of the scope of this method, yet it is
compatible with conception following User Task identification, with a User Interface
architecture oriented for critical systems, where the interaction level is always specified with
the intention of producing immediate system feedback. The feedback is mandatory in an
adequate enterprise Information System, yet, this level of feedback is beyond minimal
implementation, which is in our perspective is letting the user know the result of its operations.

Figure 5. ZF matching of HCI methods.

Figure 5 presents the ZF matching of the HCI methods, which elicit user requirements from
human activity and develop a software architecture, covering the greatest part of the software
development and SE architectural requirements, with advantages in terms of User Interface
design. HCI methods produce software architectures suitable for in-house development, yet, do
not usually representative of the business, except the case of the SOUSA method. The relation
with the business is structured by means of task models and user stories, a relation of user
activity and software components targeting user performance. The specific feedback supported
by the NAVARRE method is highlighted by filling three layers of the “When” column. The
CEDAR method is comprehensive concerning data management. The BOWEN&DITTMAR
method reveals the level of detail of the HCI methods in terms of User Interface design.

2.4. Software-oriented Modeling Methods
Software models aim at architecting the software parts which are relevant for implementation,
in which perspective business and human needs represent the problem under analysis, and the
software parts represent the software solution for the Business Process Improvement (BPI). The
methods that predict the capture of requirements from business process models targeting
software architecture elaboration, are within the scope of our analysis, to which we provide a
historical background of the main field of Software Engineering.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

20

2.4.1. Requirements Engineering
Requirements Engineering (RE) gained importance within the Software Engineering (SE)
domain in the 1990’s when requirements elicitation was established as the first phase of the
waterfall model. Later, with the introduction of software development methods, namely the
RATIONAL UNIFIED PROCESS (RUP) [Kruchten, 2004], it gained new importance, as the
engineering process that would be carried out along the overall SDP, where use cases assumed
a preponderant role, today extended to other types of requirements, namely goals. RE methods
model the business and its human activity producing specifications that can be used for software
modeling. Traceability is a priority expressed by the principle that once requirements are
elicited, they should be tracked along the lifecycle of the requirement until the generated code,
even if the retro-traceability, from the software to the stakeholder strategical needs, is lost in
this process over time [Nair et al., 2013]. Traceability efforts mostly concern: pre and post-
requirements i.e. track requirements to their origin, and to their implementation, respectively;
and the need to maintain traceability along the requirement lifecycle. Applied techniques mostly
rely on use cases or goals [Loniewski et al., 2010].

KAOS [Lamsweerde, 2000], is a Goal-Oriented Requirement Engineering (GORE) that aims
at specifying the basic operations that a system must comply with in order to support the
business goals and the user expectations. KAOS defines a model that relates those goals
(including the expectations) with the parts of the system which are operated automatically or
by human action. The method provides an approach to the specification of the functionality of
the system (Business Logic), however, not addressing its full complexity, namely the Database
and the User Interface.

The ULLAH & LAI [Ullah & Lai, 2011] method decompose business goals and complement
them with software models, and are examples of the concern of aligning business and software
by means of maintaining traceability, yet not producing a software architecture usable for in-
house development. The GONZÁLEZ & DÍAZ [González & Díaz, 2007] method, combines
goals and use cases, and the KORHERR & LIST [Korherr & List, 2006] method withdraws
use cases from business processes modeled using UML Activity Diagrams, yet, both presenting
an unclear relation in this extraction (of use cases), leaving space for uncertainty in terms of the
number of structured requirements. The I-STAR (I*) framework [Yu, 1995] considers the
complete “tasks” and their dependence relatively to “resources” and “goals”, that may be used
to capture the requirements for the elaboration of an Information System, which can be used
e.g. to model the data warehouses [Mazón et al., 2007], solely based on the requirements
information produced by I* and the application of software architectural patterns.

Figure 6. Example of Business Process to Use Case Relation Indefiniteness.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

21

Figure 6 presents one example from the KORHERR & LIST method of how the derivation of
use cases can be carried out, in this case, from UML activities. The technique method is
representative of the problem that we raise concerning the capturing of requirements from
business processes, which we define as a problem of “requirements indefiniteness”, as it is in
most cases impossible to know with how many structured requirements (in this case, use cases)
the user will carry on in his task. E.g. the “Record the Claim” and “Calculate Insurance Sum”
are performed consecutively, and are related to three use cases, and the question that stands is
if there is the need for two or three (or more) User Interfaces, or if only one. A similar situation,
but based on goals, happens in the GONZÁLEZ & DÍAZ method.

Figure 7 presents the matching of the RE methods in the ZF, where it is possible to identify that
methods work between the “How” and “What” columns, producing artefacts valid for software
development, leaving the rest of the Information System conception to the SE methods that use
the elicited requirements for their SDP (marked by green rectangles). The business process
requirements modeling indefiniteness is highlighted with a red oval. I* is the most
comprehensive method, namely by modeling the “reasons why” actors need to perform their
tasks, in which is accompanied by the KAOS method. Contrarily to use cases, goal oriented
approaches provide a social perspective that provides context to the design. As such, use cases
are more direct to software implementation, and goals are more oriented to the description of
the business, including the user.

Figure 7. ZF Matching of the RE methods.

It is based on RE techniques that the existing SDPs rely on in order to be successful in the
process of designing software. However, from our analysis we infer that despite targeting
software development, methods do not target the support of a complete software architecture,
reason why the applied transformations are usually restrict in terms of Information System
specifications, an aspect which also explains why traceability of business requirements and
software implementation traceability is still unclear in terms of a stable patterned relation
between business goals, use cases, and software components specification.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

22

2.4.2. Software Engineering
Software Engineering (SE) began with the challenges related to the management of hardware
systems in the 1940’s, and was initially referenced as “programming in the large”. As systems
gradually developed in complexity and required the application of traditional engineering
practices, the scientific field acquired the current name of “Software Engineering”, leading to
the appearance of the first (“Flow”) diagrams in the 1940’s, and the first high-level languages
(ALGOL, FORTRAN, COBOL) in the 1950’s. The appearance of high-level languages led to
the introduction of theories of “large programming”, and software applicability expanded due
to his enhanced potential to solve data management problems. Operating systems and servers,
were more powerful but the problems being solved within enterprises were also more complex,
and software entered an era known as “the software Crisis”. As a result of this, new methods
appeared, and it was after the second NATO conference on SE in 1968, that the software system
development lifecycle was firstly divided in five stages: “Specification”; “Design”;
“Programming”; “Debugging” and “Maintenance”. This led to the application of distinct
techniques for each stage in order to gradually control project complexity, and consequently to
its definite establishment as an engineering discipline in the late 1980’s. New methods and
techniques were introduced since then, continuously raising SE development effectiveness, as
its current main objective.

Software Engineering (SE) methods are fairly complete approaches regarding business and
software modeling, and may be divided in architectural-centric and agile. Architectural-centric
methods focus in attaining certain quality attributes of the software architecture under
development, and usually use OBJECT-ORIENTED SOFTWARE ENGINEERING (OOSE)
[Jacobson, 1992], in order to apply use case-driven techniques and derive a software
architecture from business models and requirements. Use cases were integrated in the
RATIONAL UNIFIED PROCESS (RUP), a refinement of the OOSE-based UNIFIED
SOFTWARE DEVELOPMENT PROCESS [Jacobson et al., 1999], where one use case
represents at least one user interaction with the system with a certain purpose, eliciting use

cases based on the design of business processes using UML Activity Diagrams, and developing
the architecture of the software based on a class Domain Model [Booch et al., 2005].

In this process, the relation between use cases and the business process human activities is not
structured in a clear way, as the use case scope is left to the analyst decision, leading to a
variance in the number of use cases that may support one specific task under the user
responsibility. This situation, earlier described as use cases “indefiniteness”, leads us to a
situation where the “What” and “How” columns of the ZF become inconsistent. This happens
because the relation between both can be derived in different ways, and with different results.
As examples, this situation happens in the methods of GRAHAM [Graham, 1996], BIDDLE
[Biddle et al., 2002] (despite using essential use cases), the FORMAL DESIGN ANALYSIS
FRAMEWORK (FDAF) [Dai & Cooper, 2007], and DENNIS [Dennis et al., 2012]. The
situation is further exemplified in the analysis of the business process (left) and use case (right)
meta-model of the FDAF method presented in Figure 8, in which it is not possible to identify
common structures between both. The business process is observed in the processing
perspective, and the use case decomposition considers the actor, which however does not exist
in the business meta-model.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

23

Figure 8. FDAF Meta-Model of Business Process and Use Cases.

TROPOS [Morandini et al., 2014] represents a distinct SE perspective, as a method which is
oriented to the specification of agents and the capabilities that an Information System must
address in order to fulfil the business model. TROPOS bases the specification of the business
model on i*, from which information it implicitly withdraws the functions that implement each
capability by means of the specification of Activity Diagrams [Bresciani et al., 2004], in order
to apply the OO Analysis & Design engineering process in order to elaborate the architecture
of the system.

TROPOS is oriented to the interaction between agents, and for that purpose considers the goals
and softgoals of the agents, an information that includes emotional expectations, which once
combined may induce the specification of complementary functionality of the system. The
interaction between actors is specified including the performed tasks and intentions. However,
business regulations and the User Interface design is not contemplated. Moreover, the relation
from the specification of goals and capabilities allows distinct specifications for the same
problem, depending on the implementation strategy, and therefore, indefiniteness is also
introduced in this case, making TROPOS closer, but with improvements, when compared to
RUP and OOSE specification.

Villiers elaborated the matching of RATIONAL UNIFIED PROCESS (RUP) with the Zachman
Framework (ZF) in order to assess the method [Villiers, 2003], and proceeded by matching the
artefacts produced by RUP in each of cell, applying the extension of the ZF for Information
Systems architecture (Figure 9), to which we have the following observations:

• Unstructured Descriptions: In the matching, it is possible to identify that in the “Scope”
view, the requirements are matched only by an unstructured description, and for this
reason cannot be validated as artefacts that ensure traceability between business and
software modeling. The same applies to business rules.

• Use Cases Scope: The usage of use cases (Function and Owner’s View cell) to detail
the task of the actors (“People” and “Owner” View cell) is not sufficient to represent
the business activity, namely its business processes, leading to uncertainty regarding
how many use cases represent a complete task of the user, therefore leaving this relation
specification to the business and software modelers decision.

• “Network” as a “Where” representation solution: We do not agree on the physical data
network, nodes and file location, as a specification of the “Where” column, since we
believe that the network should only be represented at the Operational (or Product) level,
and oppositely, the place where things may happen, is being omitted.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

24

Figure 9. ZF Matching of the SE methods RUP and TROPOS.

The ZF matching of RUP (by Villiers) and TROPOS is presented in Figure 9. RUP based covers
the greatest part of the software modeling destined ZF cells, below the “Owner” View and
including it, there is an unclear relation of use cases with the business process modeling, which
can be seen as the space where imprecision occurs in Information Systems development within
enterprises (represented with a red filled square). Moreover, more abstract concepts, namely
from the “Scope” view, are not considered in a structured way, and are produced by narratives,
and therefore do not ensure full business to software traceability (represented with a red oval).
TROPOS, by means of the usage of I*, covers “Scope” layer cells, and further fills the “Why”
column cells by means of the specification of the reasons why actors perform certain tasks
based on softgoals modeling. TROPOS does not cover the User Interface design, however, it
creates conditions for the application of methods that may cover this chasm, as the
indefiniteness of requirements is reduced by the usage of the I* practice of specifying a single
task (the “dependum”) between two actors (the “depending” and the “dependee”).

Agile Methods (AM) target the automation of the system based on the incremental and gradual
of software for the support of the business activity. They usually rely on e.g. EXTREME
PROGRAMMING (XP) [K Beck, 1999], SCRUM [Schwaber, 2004] or SAFE [Scaled Agile,
2017], to be operated, which are out of the scope of analysis, as they are SDPs which may be
integrated with any object-oriented modeling language to implement BPIs at the user task level.
Moreover, the development of architectural spikes is not observed as a positive approach to
enterprise Information Systems development, because of the need to avoid refactoring and
maintain business traceability. The same applies to Software Process Improvements (SPI),
which intent is to control and improve the SDP [Development, 2010; ISO, 2003; Martins & da
Silva, 2016], which are usually also oriented to small and medium enterprises [Laporte et al.,
2008; Paternoster et al., 2014], matching our future work namely concerning effort estimation
and project management in the quest of enhancing the ROI of software development. Thus, for
a purpose of disambiguation, GOALS is to be compared to business and software development
languages and methods and not SDPs and SPIs, considering the problem being solved.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

25

2.4.3. Service Oriented Architecture
The SD domain methods that provide a software development support, mostly concern service
interoperability business-to-business as implemented by Service Oriented Architecture (SOA)
methods, which usually deploy web services settled in object-oriented software architectures.
SOA is however not oriented for User Interface design.

The approach is based in business process modeling for the specification of clusters of web
services that are able to send and receive data, and perform operations over this data on user
demand (by means of e.g. a third party developed User Interface). In SOA, the user focus is on
the list of services which are provided, which are extracted from business processes [Arsanjani
et al., 2008; Bell, 2008; Erl, 2005], using use cases SOUP [Mittal, 2006], or doing it
independently of the used technique [Papazoglou et al., 2006].

Figure 10. ZF Matching of SOA methods.

Figure 10 presents the matching of the SOA methods, which cover the “What” and “How”
columns, which are the ones which are more closely related to the data and function layers of
Information Systems concerning the MVC model, also known as Database and Business Logic.
In the cases that use cases are used for functional requirements elicitation, the first layer of the
ZF is also covered by SOA methods. The “Where” and “When” columns are not covered by
SOA methods, as those articulations do not assume an important role beyond architectural
service invocation precedence imposition

Despite the fact that the User Interface is not designed in these methods, they are relevant in
terms of the business and software modeling scope and can eventually be completed with other
methods in order to produce a User Interface design, in the process of increasing the enterprise
software development success rate. An approach that may produce similar results is the SOA
derivation methods which are based on a user-centered perspective, to which the traditional
SOA methods can be applied concerning Information System implementation.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

26

2.5. Matching of the Goals Approach
The matching of the GOALS Approach with the ZF, serves the purpose of understanding the
scope of the language and method, and provides an overview of the concepts, including their
stereotypes, which will be presented in the next Chapters. GOALS covers 24 of the 30 cells of
the ZF. They refer to: the organization of business in the “Scope” layer, of the human activity
in the “How” column, of interaction spaces in the “Where” column, of the user in the “Who”
column, of relations in the “When” column, and of reasons in the “Why” column. GOALS
provides a notation which are composed by the stereotypes which are presented in each of ZF
cells in Figure 11. The planner cells are filled with a semiotic logic that gives meaning to each
column, and which are considered separately from the 24 covered cells, as they are undergoing
future work, suiting however the purpose of explaining the remaining concepts.

Figure 11. ZF Matching of GOALS.

In Figure 11, the “What” column, the business concept represents the information related by
means of syntactic relations. In the “How” columns, the human activity is described in terms
of User Tasks, User Intentions and User Interactions, which in the semiotic logic, should be
applied according certain principles and wisdom, based on the knowledge which is provided by
the components of the “Where” column, reflecting the information presented by the system. In
the “Who” column, the actor may be modeled at different levels, namely using the information
from his tasks, intentions and interactions. We leave the cell empty at the “Planner” level
because the system can be used by anyone, and for that reason leave that specification void. In
the “When” column, the syntagmatic meaning refers to the orientation to keep historical data,
in the “Concepts” level, the transition specifies the business process design, and the dependency
relation is used for the remaining relation between concepts.

Hence, the GOALS business and software models allow covering the ZF from the “Concepts”
to the “Technology” layer, which is where our focus is, as they are the ones which are sufficient
to bridge EE and SE by means of HCI. In this delimited zone of the ZF, GOALS proposes a
solution to solve a critical issue of User Interface and system conception by means of the

The Goals Approach: Business and Software Modeling Traceability by means of HCI

27

introduction of the interaction space concept in the business representation, as the space where
users carry on their tasks, suggesting the implementation of the interaction between users and
between users and Information System in a single User Interface (by default) with the objective
of diminishing human effort by means of reducing navigation [Winckler et al., 2015]. This is
possible because it is likely that most of the User Interfaces may be implemented in a single
screen, without the need to alternate with other system interfaces, a mechanism which however
may be present when needed.

2.6. Traceability
The analysis of Software Product Lines (SPL) facilitates understanding how GOALS solves the
business and software traceability problem, despite the fact that the elaboration of SPLs is out
of the scope of the problem being solved, which refers to a single system development. We use
the example and problem statement provided by the CONCEPTUAL VARIABILITY MODEL
(CVM) [Berg et al., 2005], to illustrate the problem of traceability as observed by SPLs.

In the top of Figure 12, the phases of a SDP are divided in the “Problem” and “Solution” spaces,
and at the bottom, the traceability problem refers the need to trace multiple “Requirements”
(from the “Problem Space”), to the “Design” elements which will be implemented (in the
“Solution Space”). It references a many-to-many relation between both sides, which may
become unmanageable because of the need to track the changes between multiple distinct
models. The described traceability problem is “shortcut” by GOALS by means of representing
the “Problem Space” in the “Solution Space” (as highlighted in the top of the Figure). I.e. the
representation of “Requirements” is materialized as “Design Elements” that will be
implemented (programmed) as a structural part (the “back-bone”) of the software solution.
Thus, the GOALS Software Architecture represents both the “Problem” and the “Design”.

Figure 12. CVM Traceability Problem Specification.

This applies to the phases of “Requirements”, “Domain Analysis”, “Architecture” and “Design”
considering the CVM. Therefore, traceability is not lost as long as the business and software
models are updated. This means that as long as traceability of design objects to code is also not
lost, then traceability between the business model and software implementation is maintained.
As GOALS is independent from implementation, the traceability from the design model to
implementation is dependent on the software development framework and the relation that is
established to the design for each type of component. As such, if the relation between the
Software Architecture and the each implemented class is of one-to-one, traceability is trivial, if
not, patterns to maintain traceability, automatically if possible [Tryggeseth & Nytro, 1997],
should be considered, yet only between the design model and the source code implementation.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

28

Comparing the CVM and GOALS, the identification of the commonalities (“Problem” and
“Solution” common parts) and variability (“Problem” and “Solution” distinct parts) of the lines
of software production, may also be carried out differently. Since with GOALS the “Problem”
is represented in the “Design”, the identification of the differences may be carried out by means
of identifying the common and distinct parts using a single model (the Software Architecture),
with no need to “track-back” the “Design” to the “Requirements”. This facilitates understanding
which version of the requirements and which version of the remaining Software Architecture
components is valid in different SPLs.

2.7. Conclusions
The matching of the identified method in terms of filled cells in the ZF targeting traceable
architectures between business and software is presented in Table 2. The SD, EE and BPM
methods fill 19, 25 and 27 cells respectively, reflecting the representation of the business, and
the generation of workflow and organizational operative systems from the design of business

processes (in the cases of BPM and EE). The RE field, fills 14 cells of the ZF, which refer to
the purpose of the domain, which is the establishment of the relation between business and
software, and not the targeted software development. The HCI and SOA domains fill 19 and 16
of the cells, reflecting the produced software architecture, which are User Interfaces without
specified Database design (in HCI), and Database and Business Logic without User Interfaces.
The SE domain, namely RUP and derived methods, fill 26 of the cells, yet, not covering the
higher levels of specification. GOALS fills 24 cells with which it models the business and
software, plus five cells of the “Planner” layer which are used to support the specification of
the remaining concepts in this thesis. However, as the semiotic layer is part of ongoing work,
these cells are still not considered in the final count.

Table 2. Results of the ZF Matching.

Comparison Matched Cells

Service Design (SD) 19

Enterprise Engineering (EE) 25

Business Process Management (BPM) 27

Human-Computer Interaction (HCI) 19

Requirements Engineering (RE) 14

Software Engineering (SE) 26

Service Oriented Architecture (SOA) 16

GOALS 24

The importance of the number of filled cells is relative, and is merely indicative of the coverage
which results in each domain in order to fulfil existing challenges, in this case in the perspective
of business and software traceability. Nevertheless, considering the holistic perspective of the
enterprise provided by the ZF, which considers the business and software models as
complementary parts, the coverage of the 30 cells should be prospected when aiming a complete
enterprise Information System modeling and code generation.

In a qualitative analysis, the techniques provided by RE methods are crucial for the relation of
business and software models, and we believe that by means of further specifying the relation
between goals and tasks, including user-centered concerns, more effective traceable standards
may appear. The SD challenges can be considered as an ultimate target concerning usability

The Goals Approach: Business and Software Modeling Traceability by means of HCI

29

when observed from the software modeling perspective, since the derived requirements are
more representative of the business than those of any other domain, which once fully
represented and structurally related to a User Interface structure, may represent an added value
in systems development. It is precisely in this gap, the User Interface interaction modeling of
human and system, the main purpose of the HCI domain, and an absolute and still uncovered
need in SE, that we believe that is the weakest link, and also the key, to cover of the gap between
the EE and the SE domains. SOA are the best example of how software development may
become productive if it is possible to work with one less tier of software architecture, the User
Interface, considering an MVC model. SOA is not sufficient in order to cope with the demands
of an enterprise Information System, yet, they are an example of how traceability may be
straightforward if it is settled in firm and simple relations between distinct concepts, even if one
is originated from business (the business process and/or the service) and another from software
modeling (the web service).

The main distinction between GOALS and the analyzed methods happens in terms of the
number of use cases which are identified in the SDP as derived from business processes, and
in the way that those use cases are further decomposed into intentions and interactions,
removing uncertainty from the business-to-software modeling traceability, and solving the
requirements “indefiniteness” problem, as will be presented throughout the thesis. The pattern-
based GOALS traceability structure is complemented with the representation of the business
model in the software model, which ensures that traceability between the enterprise relevant
conceptual constructs is not lost. The approach allows designing the user task with detail and
establish a direct relation with the software architecture, instead of extending the originally
identified use cases, and losing track of the type of human behavior (intention, interaction, etc.)
and its supportive software implementation.

The GOALS process, structure (language and notation), method and techniques are presented
in the following chapters.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

30

3. The Goals Language

The GOALS modeling language is composed by concepts that model the business and the
software of the enterprise. These concepts are related in a single structure, and for each, there
is a definition, a symbol, and a logic relation with the other concepts. Each concept is expressed
by a Unified Modeling Language (UML) class which stereotype is the concept’ symbol, and
the structure is a relation of usage between the classes with a multiplicity of many-to-many.
Each of the concepts and its meaning within the language structure will be presented as follows.

3.1. Structure
In order to develop the GOALS language structure, two architectures have been defined to
represent the enterprise: the business and software architectures, the Enterprise Structure and
the Software Architecture, respectively. Together, they compose the Enterprise Architecture,
which is complemented with a process, a method and a set of techniques, which represent the
guidelines and way-of-building of business and software models. The Enterprise Architecture
concepts provide the notation by means of UML class stereotypes (the symbol), and the relation
between the classes is expressed by dependency (usage), meaning that one component depends
on the good functioning of the other in order to properly work.

The Enterprise Structure describes the business, which briefly states that: a Business Process
(BP) is composed of User Tasks (UT), which are performed by users (or actors) in Interaction
Spaces (IX) (whether physical or electronic), applying the enterprise’ Business Rules (BR) over
defined Data Entities (DE, which are business concepts). The concepts, definition, origin and
symbols of the Enterprise Structure are presented in Table 3.

Table 3. Enterprise Structure Concepts Definition, Origin and Symbol.

Concept Definition Origin Symbol
Business Process

(BP)
A Network of UTs that Lead to a Goal GOALS

User Task

(UT)
A Complete User Task within a BP AM

Interaction Space
(IX)

The Space that provides UT Support WISDOM

Business Rule
(BR)

A Business Restriction over

DE’s Structural Relations
DEMO

Data Entity

(DE)
Persistent Information

about a Business Concept
WISDOM

The Enterprise Structure allows the modeling of the business human activity, of the available
resources (physical or logical) and the existing goals. Maintaining the same top-down logic,
the modeling towards the Software Architecture is carried out by means of the User Interface
which supports each UT. The “bridge” between the Enterprise Structure human activity and the
Software Architecture is achieved by means of Human-Computer Interaction (HCI) techniques,
establishing a relation of UTs, User Intentions and User Interactions with the User Interface’
Aggregation Spaces, Interaction Components and Interaction Objects, respectively. The
relation maximizes the modeling of human activity in terms of meaning, and minimizes it in
terms of number, inducing the simplification of the system back from the business design.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

31

The interaction concepts which complement the UT in terms of human behavior structuring,
are presented in Table 4.

Table 4. Interaction Design Concepts Definition, Origin and Symbol.

Concept Definition Origin Symbol

User Intention
The Sequence of Actions that the User

Wishes to Perform to Complete a UT
AM

User Interaction
The Interaction Inputs of the Information

System Performed by the User
GOALS

The Software Architecture defines that an: Aggregation Space (AS) is composed of Interaction
Components (IC) that trigger User Interface System Responsibilities (UISR) and Database
System Responsibilities (DBSR, both belong the Business Logic layer) by means of the
Interaction Objects (IO) and remaining User Interface structure (AS and IC) where HCI occurs
(UT, User Intention, and User Interaction), in order to manage existing Enterprise Structure
data (Data Entities, DE), according to the enterprise regulations (Business Rules, BR), as
ensured by the Interaction Space (IX).

The AS, IC, IO, UISR and DBSR are the five software-specific concepts of the Software
Architecture, which are architecturally related to the Enterprise Structure by means of the
specific relation of one-to-one between the (software) AS and the (business) UT, and of the UT
with its supportive IX, inheriting its BRs as parts of the Business Logic, and the DEs as part of
the Database. The software-specific concepts, definition, origin and symbol of the Software
Architecture are presented in Table 5.

Table 5. Software Architecture Specific Components, Definition, Origin and Symbol.

Concept Definition Origin Symbol
Aggregation

Space
A User Interface HYDRA

Interaction
Component

Tool of a User Interface
WISDOM
HYDRA

Interaction
Object

A User Interface Object that triggers SRs
HYDRA
GOALS

User Interface
SR

A SR that provides support for User Interface

data presentation
AM/GOALS

Database
SR

A SR that manages data AM/GOALS

The concepts and their symbol provide the notation of the language, and the structure that
relates both business and software concepts provides the syntax. The semantics of each concept
is provided by a semiotic logic (the Ideology) that is applied to the Enterprise Structure, the
Software Architecture and the Human Activity, in order to provide an understanding concerning
the meaning of each concept and relation of concepts. The semantical specification is direct to
the Enterprise Structure and reflected in the Software Architecture by means of a “meaning” to
the IX, BR and DE concepts that remains valid to the User Interface, Business Logic and
Database layers. The Ideology, Enterprise Structure and Software Architecture concepts
relations are presented in Figure 13.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

32

Figure 13. The GOALS Language Structure.

Figure 13 presents the Enterprise Structure and Software Architecture concepts meta-model
(considering the M2 level of the OMG modeling infrastructure), using UML classes which
stereotype is the concept’s symbol, and the dependency relation is represented using a filled
line (instead of a dashed line), for the purpose of meta-model interpretation. All the relations
are of many-to-many, except for the one-to-one (1 to 1) relation of UT and AS. The relation of
UT and AS is defined as of one-to-one (identified as Software Architectural Support) in order
to promote business and software organization and traceability, establishing that when an actor
performs a UT he does it by using a single AS, which implementation must provide all the
desired system behavior. The Software Architectural Support is further detailed in Sections:
3.2.2. User Task (UT), 3.3.1. Aggregation Space (AS), 3.3.2. Interaction Component (IC), and
3.3.3. Interaction Object (IO). The remaining concepts are presented in the remaining sections.

3.1.1. Semantics
The semantics of the language is provided by means of the Ideology (structure of semiotic
concepts) presented in Figure 13, which states that: an enterprise is an organization that has a
certain ideology based on its purpose for the surrounding society, considering or not the related
cultural premises. The ideology is based on certain beliefs and principles, which should drive
the enterprise towards achieving success (its goals). These principles should drive the wisdom
which users apply when carrying on their tasks, as they are materializing the enterprise’s beliefs,
and should also be based on existing knowledge, which should be structured by means of
syntagmatic relations, relations which are then composed of other paradigmatic and syntactic
relations of business concepts. Paradigmatic relations are (complex) relations which are based
on syntactic relations between business concepts of the enterprise. The ideology targets project
team focus. The ideology and the GOALS conceptual approach is further presented in Appendix
A – The Goals Conceptual Approach.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

33

3.2. Enterprise Structure Concepts
The Enterprise Structure is a relation of concepts that represents the business of the enterprise.
The concepts are, from top-to-bottom: The Business Process (BP), the User Task (UT), the
Interaction Space (IX), the Business Rule (BR) and Data Entity (DE). It provides a structured
view of the concepts which are relevant for the functioning of the business and how they are
related with each other. It allows business management by means of providing a single view of
its structure, targeting its validation before software development.

The Enterprise Structure is also the first step aiming enhanced cooperation between business
and software modelers, as its concepts may be recognized by both domains with the inclusion
of the IX as the common (hybrid) linking concept between the user responsibility (the UT) and
existing regulations (BRs), which are common concepts to the business and software
functioning, and which are based on the existing structure of DEs (the Domain Model). The IX
represents the physical and the logical space that is used by actors to perform their tasks. Being
a hybrid (business and software) concept, it can be used to model the physical space (e.g. a
room), and also the logical space which will be replaced by an Aggregation Space (a User
Interface), for the support of an actor perspective of the IX when interacting with the enterprise
by means of the Information System.

Each of the Enterprise Structure concepts are presented in the following sections, explaining its
origin, adaptions to the original definition and structural relations to other GOALS concepts.

3.2.1. Business Process (BP)
Origin

The Business Process (BP) concept is originated from software development and business

process organization practice, to promote the dialogue between Business Owner, Business

Process Manager, and Software Architect in order to organize the User Tasks (UT) of the actors
involved in a BP Improvement (BPI). From the modeling of BPs using the ERIKSSON-
PENCKER method [Eriksson & Penker, 2000], emerged PROCESS USE CASES method
[Valente & Sampaio, 2007], that enabled the documentation of a BP using essential use cases
for the representation of complete UTs. The replication of the process allowed the stabilization
of the definition of the used concepts, namely: the BP and its goal, the business concepts (e.g.
person, degree, etc.), and the complete UT, which were perceptible by business and software
modelers, but especially by the users (“Person or Group of Persons Whom Uses the System”).

Definition

The coupled definitions of BP and goal are presented as follows:

• Business Process (BP): “A Network of User Tasks that lead to a Goal”. Each BP is a
sequence of (at least one) UTs, which are interrelated in a given Business Logic, leading
to the achievement of a goal. Once the BP is successfully completed, a new objective
of the enterprise has been accomplished. The definition of the tasks that compose each
BP (User Tasks) is presented in the following section.

• Goal: “The objective of the BP”. A goal is defined as the objective of the BP, names the
BP, and is always the act of achieving a business concept (defined as a concept that has
meaning for those who have knowledge about the enterprise), and is represented by
means of one or more Data Entities (DE). Any business concept can be a combination
of any other concepts, as defined in semiotics [Damjanovic et al., 2005].

The Goals Approach: Business and Software Modeling Traceability by means of HCI

34

Meta-Model and Example

Figure 14. Meta-Model and Example of Business Process (BP).

The meta-model of the BP is presented in Figure 14, and specifies that many actors can
“Initiate” a BP, and many actors can “Participate” in it, and also, that many Data Entities (DE)
can be used and produced by a BP. The example presents a situation where “Actor A” initiates
and “Actor B” participates in the “Business Process” BP, which uses “Data Entity A” and
produces “Data Entity B”.

Semiotic Logic

The BP implements beliefs by recurrently achieving goals that support the enterprise ideology
within the society. These beliefs apply certain principles, from which may be generated wisdom
from the existing knowledge. For example, if our enterprise system is a public university, the
“solidarity” principle may be present e.g. by means of the belief that “by facilitating access to
studies to more persons, the purpose of raising the society’s education level will be better
fulfilled” may exist.

Meaning to the SDP

The BP is usually settled in a unique set of related enterprise business concepts (DEs) which
support the BP execution, and compose the enterprise Domain Model (as will be presented in
Sections 3.2.5. Data Entity (DE) and 4.3.2.3. Step 7 – Database Structuring). The relation
between the BP and the set of DEs increases awareness on the problem begin solved, namely
for Service Designers and Business Process Managers, by means of deepening their knowledge
on the specific part of the enterprise being evolved. This facilitates the BPI development,
resulting in faster and more productive meetings, increasing the probability of developing
projects in less time. Moreover, the relation between BPs, actors and DEs, provides a view of
what each BP uses and produces as DEs (products and services) in order to achieve its goal,
reflecting the enterprise production logic from a higher level.

3.2.2. User Task (UT)
Origin

The User Task (UT) is originated by the need to analyze Business Processes (BP) so that the
Software Architect may identify who would make what, so that every needed information is
processed according to each actor (a person or group of persons) responsibility. It was noticed
that by means of the application of the WISDOM method there was a clear tendency to identify
the steps that the user had to carry on in the User Interface in a single Activity Diagram [Booch
et al., 2005], reflecting what the user “would like” to do (User Intentions) when carrying on his
task, so that he would finish it as quick and accurately as possible. This approach represented a
change of logic when compared to “traditional” use cases, as it induces simplification by
withdrawing unnecessary steps, so that user performance may be raised, and the number of
implementation parts may be minimized while maintaining (or raising) effectiveness, therefore,
(probably) increasing the efficiency and performance of the system.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

35

This focus led to the implementation of User Interfaces that allowed the execution of every
User Intention in the same screen, without navigation, in almost all cases. Thus, by focusing on
what the user needed, instead of the existing data concepts and business regulations, it was
possible to promote the simplification of the system, which is reflected in less man-hour effort,
promoting the enterprise (business and software) development performance by promoting the
user performance.

Definition

The User Task (UT) definition comes from the definition introduced by Larry Constantine and
Lucy Lockwood of essential use case [Constantine & Lockwood, 2001], as a “Complete and

Meaningful Task Carried Out in Relationship with a System”, and as an evolution of the
“traditional” use case introduced by UML [Booch et al., 2005]. This brought a relevant change
when applied to BPs, since: if two use cases of the same person were consecutive, then they
would be the same; once the task will only be totally completed when the second use case is
finished. This is a realistic and pragmatic perspective of the UT within the context of a BP,
since it is not necessary to represent the task’s intermediary steps in the BP design. In an
extreme case of importance in which their representation would be needed, then their task
description could be concatenated (e.g. using a “+” sign) in the essential use case (UT) name,
still representing the full task in the same way.

Meta-Model and Example

Figure 15. Meta-Model and Example of User Task (UT).

Figure 15 presents the meta-model of the UT, which defines that one actor may carry on many
UTs and that a UT can also be carried out by many actors (as cooperative work); one BP can
have many UTs; one UT can belong to many BPs; and UTs are related consecutively or
conditionally. The example presents a BP where the flow is defined by means of an UML
Activity Diagram (in which the initial and final points are omitted), that identifies 5 UTs which
are performed consecutively from actors “A” to “B”, “B” to “C” and “C” to “B”, and eventually
to “Actor A” that may execute it or not (as the relation of the “User Task D” with the “User
Task E” is conditional).

Semiotic Structure

The user will use the knowledge (syntagmatic and paradigmatic relations) provided by the
Interaction Space (IX), in order to carry on his UT with the wisdom derived from the enterprise
principles and beliefs, following its ideology. For example, if the principle is “solidarity” rather
than “profiting”, the suggestion for a person’s registration for studying may privilege choosing
a cheap(er) degree or degrees with a supporting scholarship, as example of a wise decision.

Meaning to the SDP

The principle that an actor (a user) never carries on two UTs sequentially (i.e. without
alternating with other actor’s UT) and separately, is an “axiom” that aims user performance and
software development efficiency by means of inducing the reduction of the articulatory distance

The Goals Approach: Business and Software Modeling Traceability by means of HCI

36

of the UT i.e. the user’s effort [Winckler et al., 2015], and by suggesting that the necessary tools
should be provided using as little User Interface implementation space as possible. If two UTs
are consecutive, then they can be merged in a single sequence of acts, expressed by a single UT
that represents their completion. The design of the BP with essential use cases also promotes
the efficiency of the SDP, since most BPs are limited in terms of the number of tasks and actors,
leading to a fluent dialogue when the BP design is presented (e.g. in A4 or A3 paper sheets)
and the BP logic is visible and the tasks are readable from sight in a meeting table. This impact
reflects concern over the people (the user stakeholder) work, promotes dialogue and also
commitment regarding the achievement of the project’s goal, which is inevitably related to the
meaning (expressed by the goal) of the BPs considered in the BPI under development.

3.2.3. Interaction Space (IX)
Origin

The Interaction Space (IX) is originated from the gathering of interaction spaces (now
referenced as Interaction Components) generated from the application of the WISDOM

Software Architectural Technique to the User Intentions of a given UT. This led to the
establishment of a Model-Driven Architecture, the Hydra Framework [Costa et al., 2007], for
User Interface development, which implemented the interaction spaces clustering using
Aggregation Spaces (AS). With the formalization GOALS, the IX is structurally defined as the
space of communication between two or more UTs that happen in the same (physical or
electronic) space, where the same Business Rules (BR) and Data Entities (DE) are used. It
reflects the relation of the customer with the enterprise, in the same way that in the DEMO
method, the initiator and the executer participate in a transaction subject to Action Rules and
using Object Classes. The IX was identified as the solution to represent physical and electronic
spaces and as a basis for the User Interface development. The Lines of Visibility and Interaction
which are presented in Section 4.3.1.1. Step 1 - Service Design, may also be considered as
Interaction Spaces that include BPs, DEs and actors.

Definition

The original IX definition is derived from the WISDOM concept of interaction space, as a User
Interface space where the “User Interacts with Functions, Containers and Information in order

to Carry On a Task” [Nunes, 2001]. We adapt this concept to the enterprise context by means
of its generalization in order to complementarily consider the support of the UT in person, as
in any of the cases the same BRs and DEs apply. Hence, we redefine the IX as “The Space that

Supports a UT” (with the same BRs and DEs). One IX supports the interaction of two or more
users in person or remotely while each one carries on his own UT. If two actors carry on the
same UT remotely, then they are necessarily performing cooperative work [Grudin, 1994].

Meta-Model and Example

The meta-model presented in Figure 16 defines that one IX can support one to many UTs. The
IX uses and includes BRs, and can also directly use and include a DE if no BRs are identified
to apply in that IX. In the example, the identification of IX is architecturally deduced from the
relation of UTs. They are the space that supports the interaction of two or more actors. The IX
supports the application of BRs that apply over DEs, defining the IX Logic that “builds-up” the
Enterprise Structure. The relation of IX to UTs, BRs or DEs, can be expressed along with the
BP design, or by means of an integrated representation of the BP design where the physical
space of the IX is represented, allowing the communications of more than two actors per
business transaction, as will be presented in Section 4.3.1.3. Step 3 - Enterprise Structuring.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

37

Figure 16. Meta-Model and Derivation of IXs from UTs and relation to BRs and DEs.

The example shows the derivation of IXs in order to support the interaction between Actors
“A” and “B”, and “B” and “C”, by means of IX “A” (a Request) and “B” (a Coordination)
respectively, which is possible since the UTs “A”, “B”, “D” and “E” are subject to the same
BRs and DEs, and the same happens in the case of UTs “B”, “C” and “D”, except that UT “C”
is not subject to BR “B” in order to access DE “B”. If another interaction between Actors “A”
and “B” would occur (e.g. between User Task “E” and “F”), then again, the same or a new IX
may be defined (e.g. “C”) in order to support that interaction, depending on the business
conceptual idea.

Semiotic Structure

The IX grants the user control over information, respecting existing paradigmatic and the
syntactic relations. Information should be presented using syntagmatic (historical) information,
from which the user can withdraw knowledge in order to apply the enterprise principles and
fulfill his task applying wisdom. For example, the IX can enable the possibility of proceeding
with a person’s registration, presenting that person’s registrations from the past, and eventually
outcomes of registrations from others to facilitate user decision.

Meaning to the SDP

The IX represents a logic that that aims user performance and software development efficiency
by means of believing that the most productive way of working for the user is giving him a
User Interface that facilitates his task in terms of data and tool availability. In other words, if
all the needed data and tools are always available (or always when needed), navigation is
reduced, and also the mental effort of maintaining variables that concern the task execution. It
induces the reduction of the articulatory distance of the UT i.e. the user’s physical interaction
with the User Interface [Winckler et al., 2015], and suggests the composition of the User
Interface in such a way that the user has a clue of what each concept means, which is possible
since the design is based on what are the User Intentions and User Interactions when dealing
with a UT in a given system state. It also suggests locating the components by the highest
affinity possible, and using as little implementation space as possible in order to raise the
probability of reducing implementation objects and therefore reducing implementation effort.
It can be observed as a technology-ecologic approach, that aims giving the user what he needs
when he needs, using an adequate, instead of an over-worked solution.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

38

3.2.4. Business Rule (BR)
Origin

The Business Rule (BR) is originated from the clustering of System Responsibilities (SR)
derived from the application of the WISDOM Software Architectural Technique. Since part of
the SRs had repeated semantics, and the organization was carried out by affinity of meanings,
it was possible to establish a correlation with recurrent User Intentions (e.g. “Authenticate
Self”), and also identify the ones which did not had a patterned and recurrent existence. These
were SRs which usually characterized relevant perspectives of the BP e.g. “Calculate Degree
Average”, which may be only a single User Intention and Interaction, but which implementation
is not patterned, is usually more complex as it expresses specific business regulations, whereas
the remaining SRs where usually implemented in a patterned and simpler way (e.g. direct or
filtered SQL queries to tables). This led to the isolation of these SRs as Business Rules
highlighting the difficulties of implementation. With the formalization of GOALS, a relation
was established with the DEMO Transaction’ Action Rules which coordination logic however
does not apply, as it is already expressed in the BP design. By means of relating the BR to the
IX, we also solve an identified DEMO problem, which is when to execute the Action Rule. In
GOALS, the execution of the BR is considered permanent throughout the Information System
every time the containing IX is used (invoked) by other components.

Definition

The Business Rule (BR) specification is based on DEMO concept of Action Rule, which defines
a structure of decision (using pseudo-code) that applies restrictions to Object Classes
concerning the execution of business transactions. These restrictions are considered in GOALS
as paradigmatic relations which are applied to the syntactic relations of Data Entities (DE) in
order to produce a new valuable business concept. Hence, we define a BR as “A Restriction

over DE’s Structural Relations”. BRs represent regulations or explicitly defined requirements
that should be elicited in order to understand the restrictions which the user is subject to when
carrying on a UT, and do not represent collaboration impositions with other actors.

Meta-Model and Example

Figure 17. Meta-Model and Example of Business Rule (BR).

Figure 17 presents the BR meta-model, which defines that the BR may be used and included in
many IXs, and also that a BR can use many DEs. The IX can optionally be linked to DEs. The
example shows that IX “A” includes BRs “A” and “B”, and that IX “B” uses DE “B”, directly,
without BR intervention. This is same structure presented in Figure 16, now with the physical
representation of the IX.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

39

Semiotic Structure

A BR defines a paradigmatic relation of business concepts (DEs) which cannot be structured
by the DEs syntactic relation, resulting in a new meaning (business concept). This information
can be presented to the IX as a syntagmatic structure defining an historical sequence of data,
complementarily provide information from similar past decisions in order to support the
fulfilment of UTs with enhanced knowledge improving the possibility of doing it with wisdom,
and according to the enterprise principles. For example, if the BR should verify adequacy of a
Contact for a Person, then it should apply an algorithm that will produce new information to be
interpreted by the system, kept by the DE and represented in the IX (to support the UT).

Meaning to the SDP

The BRs are considered as the more important SR of the GOALS Business Logic, as they are
the only business-specific programmed class in this layer. By means of isolating BRs, the
Software Architect is able to better control the effort that will be applied in the implementation,
or at least increase the possibility of acknowledging in advance where unexpected effort may
be generated. This enables a more balanced management of the team, since developers may
have vocation for more or less patterned work. The BR is architecturally related to the IX,
however, it may be invoked by any software-specific component to ensure the conceptual
specification of the Enterprise Structure. The Business Logic structuring is presented in
Sections 3.3.4. User Interface System Responsibility (UISR), 3.3.5. Database System
Responsibility (DBSR) and 4.3.2.2. Step 6 – Business Logic Structuring.

3.2.5. Data Entity (DE)
Origin

The Data Entity (DE) is originated from the modeling of the Information System Domain Model
using UML classes, following the WISDOM method, with no changes. As it was a concept that
expressed information that always had a meaning within the enterprise and was recognized by
those whom have knowledge about it (stakeholders), it became a standard of communication
for users, Service Designer and Software Architect, especially about the Customer, leading to
the normalization of the enterprise concepts (e.g. candidacies and pre-registration become only
candidacies), a “dialect” of the enterprise that may promote communication and development
effectiveness. Since the Domain Model could be transformed into Database related tables, the
DE domain model stands as a common development artefact.

Definition

The Data Entity (DE) definition is provided by WISDOM definition of entity, which is a class
of “Persistent Information about a Business Concept”. This means that persistency will be
maintained by the Information System, and that it will enclose meaningful business concepts.
DEs are related between each other allowing a simple representation of reality which is made
available by means of a Database application. In terms of common Database objects, DEs are
expressed as Tables, and attributes are expressed by Fields [Ling et al., 1981]. DEs are related
between each other by means of semiotic syntactic relations, which are expressed using a UML
association, also implying the definition of multiplicity between the related DEs. Multiplicity
will typically be of one-to-many or many-to-many, since the definition of a specific multiplicity
(e.g. 1 to 5) is uncommon, and should be expressed by a BR due to its volatility (as it will
eventually change over time). The definition of relations of one-to-one is also uncommon as in
those cases the DEs meanings can usually be conciliated in a single DE.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

40

Meta-Model and Example

Figure 18. Meta-Model and Example of Data Entity (DE).

In Figure 18 the meta-model of the DE follows what is specified by UML and the Domain
Model for the establishment of relations between classes [Booch et al., 2005]. It states that the
DE can be related to another DE with an association relation with cardinality of one-to-many
or many-to-many, and that a new association class can be generated from the relation of two
DEs. The example presents a situation where DE “A” is related in one-to-many to “B”, which
has Fields “A” and “B” (e.g. a “Student” has many “Grade” which have a “Mark” and a “Date”).

Semiotic Structure

A DE is a business concept, and has a meaning for itself within the enterprise which can be
understood by every stakeholder (with enough expertise about the enterprise). DEs are also
related between themselves, composing a simple syntactic structure. For example, consider: a
“Person” whom has “Contacts” and is “Registered” (as a customer).

Meaning to the SDP

The identification of DEs should be carried along the BP improvement, so that the analyst may
develop a well-defined notion of the concepts involved in it and how they are related. By means
of establishing a dialogue based on the Domain Model, the Software Architect will have a very
detailed vision of the concepts which are used along the BP execution, so that that knowledge
may be transmitted to the software development team. By means of a dialogue which is based
solely on existing DEs, it may be possible to delineate the construction of every component of
the system, which is particularly important for the Software Developers of the Business Logic
and the Database, and also for the User Interface Designer, since the User Interface is also
designed using the same concepts. This means that the way in which the concepts are related
must be “solid” i.e. almost unchangeable in time, and the only way in which this can be achieved
is by means of recurrently testing the conceptual structure before the design and implementation
of the system, since a misconception at the Database layer will almost inevitably lead to a
restructuring of the Business Logic and the User Interface.

3.3. Software Architecture Concepts
The Software Architecture for a given Business Process (BP) inherits the Enterprise Structure
based on each User Task (UT) of the BP, and is elaborated by means of the application user-
centered techniques that gradually develop its User Interface, Business Logic and Database,
based on the Interaction Spaces’ (IX) Business Rules (BR) and Data Entities (DE) of the
Enterprise Structure. The IX, BR and DE are hybrid business and software concepts which are
complemented with software-specific components to “build-up” the Software Architecture.

The Software Architecture is composed by the software-specific concepts of Aggregation Space
(AS) [Costa et al., 2007] (one per UT), which is composed by Interaction Components (IC)
which are composed by Interaction Objects (IO), which trigger User Interface (UISR) and
Database System Responsibilities (DBSR), which architecturally use IX, BRs and DEs
associated to that UT, ensuring traceability between business and software modeling.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

41

The reuse and generalization of the identified components by means of their semantic meaning
along the Analysis and especially in the Design phase, is crucial, as it promotes simplification
by means of generalization, reducing analysis mistakes and eliminating duplicated artefacts.
The User Interface is composed of the IX, the AS, the IC and the IO implementation concepts,
and the Business Logic is composed of the BR, UISR and DBSR programmable classes’
concepts. The Database is composed of Tables and Fields derived from the identified DEs. The
software-specific Software Architecture concepts will be presented concerning its origin,
definition, symbol, and logic of relation to other concepts, as follows.

3.3.1. Aggregation Space (AS)
Origin

The Aggregation Space (AS) is originated from the Hydra Framework [Costa et al., 2007], and
represents the composition of WISDOM interaction spaces which support User Intentions.
Since most of the User Interfaces for the support of a User Task (UT) can be implemented in a
single screen without navigation (without opening or replacing the actual screen by a new one),
or in the worst case, at least the initial information related to the task “fits” one screen, the AS
conceptually became the perspective of one actor, when performing a UT, over the set of data
and regulations of an IX, concerning one execution of a BP.

Definition

The original definition of the AS comes from its mapping to use cases [Costa et al., 2007].
Since most User Interfaces can be implemented in a single AS, we define the AS as "A User

Interface”, meaning what the user is watching at a given moment in the Information System. In
the cases which may be necessary a second AS, the usage of one AS to another represents a
navigation between both.

Meta-Model

Figure 19. Meta-Model and Example of Aggregation Space (AS).

Figure 19 presents the meta-model, where it can be read that the AS provides architectural
support to the UT in a relation by default of 1 UT to 1 AS. The AS uses one or more Interaction
Spaces, depending on the Enterprise Structure specification. The example presents the visual
representation of the AS, which is the User Interface space that the user observes, and which
will be structured with Interaction Components (IC) and Interaction Objects (IO).

Semiotic Structure

The AS is a composition of ICs which should make clear to the user as much as necessary, the
syntactic (relative to DE) and paradigmatic (relative to BR) data relations of the business

concepts which are presented in the User Interface. The presentation should provide the user as
much syntagmatic (relative to historical) information as possible, so that the user, being aware
of the enterprise principles, may perform his UT as wisely as possible.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

42

Meaning to the SDP

The AS is one perspective of one user of the IX when preforming a UT. This means that the
more UTs that depend on one IX, the more AS it will have associated. In one group of AS
associated to UTs (e.g. a UT “request” and UT “response”) of the same IX, the reuse of
software-specific components is very high, if not total, since what varies is the behavior of the
AS, IC and IOs, and not necessarily the data. In each of these perspectives, which may be
related to one or more Interaction Spaces (IX) depending of the UT, each actor (e.g. the
“requester” and the “respondent”) will have distinct privileges over the existing data and tools
e.g. one actor is not able to edit another actor’s data. The distinct privileges, information and
tools that will be available are designed following a user-centered sequence of techniques that
will be presented on Sections 4.3.1.4 and 4.4.4 (Step 4 - Task Modeling).

3.3.2. Interaction Component (IC)
Origin

The Interaction Component (IC) is originated from the WISDOM interaction space as the User
Interface space that supports a User Intention and triggers a System Responsibility. In each IC
where introduced the Fields of the DE which match the user needs when performing the
intermediary steps of the UT (the User Intentions), becoming the visual design tool of the User
Interface using CANONICAL ABSTRACT PROTOTYPES (CAPs) [Constantine et al., 2003],
since its internal organization and positioning represented a sequence of reading that facilitates
the user work. The IC was also implemented by the Hydra Framework, which structure
included the CAP classes which provided the needed behavior in terms of data management.

Definition

The original definition is provided by WISDOM as the space where the “User Interacts with

Functions, Containers and Information in order to Carry On a Task”. We define the IC as a
“Tool of a User Interface”, meaning that it holds the data and objects which may be necessary
to execute the actor’s User Intention.

Meta-Model and Example

Figure 20. Meta-Model and Example of Interaction Component (IC).

Figure 20 presents the meta-model of the IC which defines that the IC is used by an AS, supports
a User Intention, contains Interaction Objects (IO) and triggers User Interface (UISR) and
(DBSR) Database System Responsibilities. The example presents the composition of
Aggregation Space A with ICs “A”, “B” and “C” (each one supports a User Intention), which
trigger User Interface System Responsibilities “A”, “B” and “C”.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

43

Semiotic Structure

The IC is the space of the User Interface that presents the data Fields organized according to
the simple syntactic and more complex paradigmatic relations of the presented DEs. The
presentation of syntagmatic relations is more complex, since it involves the historical
presentation of data according to the syntactic, paradigmatic, or combined, presentation of data
and past decisions along time, and may involve one of more Fields (Interaction Objects).

Meaning to the SDP

The IC is the “path” to the internal architecture of the Information System by means of the
relation established to the System Responsibilities (SR), providing data and the expected
system behavior. The supportive pair IC-SR may be further decomposed by an Interaction
Model, in which case the already identified SRs serve as an interface function to new SRs. This
opens the possibility of deciding the level of decomposition needed from the design in order to
further structure or not the architecture beyond the IC i.e. if the tradeoff of investing more time
in the design will have a revenue in terms of implementation effort or enhanced architectural
control. The IC detail is presented in Sections 3.3.3. Interaction Object (IO) (the next section),
4.3.2.1 and 4.4.5 (Step 5 – User Interface Design).

3.3.3. Interaction Object (IO)
Origin

The Interaction Object (IO) is originated from the CAPs [Constantine et al., 2003] and Hydra
Framework [Costa et al., 2007], representing an object of interaction which holds data or
provides the execution of a command, triggering User Interface or Database System
Responsibilities. Typically, the IO represents e.g. HTML input, select, text area, option and
button elements. The IO enables User Interface and implemented code traceability.

Definition

The original definition of the IO comes from the Hydra Framework that specifies it as the
Canonical Abstract Prototype that supported a “leaf” action, and interaction as identified by the
CONCUR TASK TREES method [Paternò, 1999]. We define an IO as “A User Interface Object

that triggers SRs”, meaning that it is an object which is presented in the User Interface, and that
establishes a direct relation to the Business Logic of the Information System.

Meta-Model and Example

Figure 21. Meta-Model and Example of Interaction Object (IO).

Figure 21 presents the IO meta-model that specifies that each IO supports a User Interaction
which is part of a User Intention which is supported by the IC to which that IO belongs to, and
will trigger User Interface (UISR) or Database System Responsibilities (DBSR). The example
presents the Aggregation Space composition by: IC “A” which triggers the User Interface SR

The Goals Approach: Business and Software Modeling Traceability by means of HCI

44

“A”; IC “B” which triggers the User Interface SRs “B.1” and “B.2”; IC “C” which triggers the
User Interface SRs “C.1” and “C.1”, and Database SR “C.1”; by means of the Interaction
Objects presented in the User Interface. The IOs may be further specified using Canonical
Abstract Prototypes (CAP) [Constantine et al., 2003], as will be presented in Sections 4.3.2.1
and 4.4.5 (Step 5 – User Interface Design).

Semiotic Structure

The IO is the space that presents the data Fields of syntactic (relations of one or more DE) and
paradigmatic (relative to BRs) relations, including syntagmatic information or not. One
example of a syntactic information is a Field of the Database which may assume a value or a
list of values. A paradigmatic relation implies two of more DE, and when it is relative to BRs,
it involves a validation. One example is a success or error message. And syntagmatic relations
must present the evolution of the business concepts (DE or BR) along time. One example is a
list of the evolution of the value of a DE Field over time.

Meaning to the SDP

The IO represents the detail level which is necessary in order to design the User Interface of the
system. It is based on the IOs that is carried out the more artistic perspective of the Information
System development, as designers are expected to organize each object in such a way that the
whole (the AS which holds the ICs which hold the IOs) reflects the data which is being managed
and that the operations and what they represent for the UT are clear to the user in order to
promote its performance and minimize user mistakes.

As a guideline of design, the grouping by sequence of User Intentions (of ICs) and affinity of
IOs is a base that later will enable introducing the artistic facet of User Interface Designers,
who will express and develop its competences by means of the User Interface design with the
added value of knowing in advance, in a structured way, what are the business regulations and
the data concepts which are being elaborated, and how the user expects to achieve his task
objectives. The User Interface design is further presented in Sections 4.3.1.4. Step 4 - Task
Modeling and 4.4.5. Step 5 – User Interface Design.

3.3.4. User Interface System Responsibility (UISR)
The User Interface System Responsibility (UISR) is originated from the need to represent a
programmed function that provides data for Interaction Components (IC) and Interaction
Objects (IO). It represents a specific type of Business Logic function implementation which
characteristic is the provision of data to fill one or more IOs. The UISR may also execute
operations over the Database, in the same way that a Database System Responsibility (DBSR),
so that it is able to register e.g. patterned information of user, data and IP address. In fact, both
the UISR and DBSR have the same structure, but due to the nature of the work which is carried
out in terms of software development, the distinction is important, as it may have a direct impact
in the software development team organization, reason why the conceptual distinction of UISR
and BDSR stands as a form of promoting software organization.

Definition

The original definition of the System Responsibility is provided by ACTIVITY MODELING,
as the system response to the essential use cases User Intention. That definition is adopted and
extended in order to specialize the User Interface SR for the provision of data for an Interaction
Object or an Interaction Component, as “A SR that provides support for User Interface data

presentation”.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

45

Meta-Model and Example

Figure 22 presents the UISR meta-model that states that the UISR is triggered by ICs or IOs,
and that the UISR invokes DBSRs, other UISRs, and DEs. The existence of a relation between
UISRs reflects a situation where the invoking IC’ UISR serves as a (function) interface to the
existing IO’ (UI or DB) SRs. The inexistence of this relation means that the UISR has to assume
the responsibility of collecting the data and executing the necessary Database commands, since
this responsibility is not further divided (modularized) in IOs and corresponding (UI and DB)
SRs. The example presents the structuring of the Business Logic composition with UISRs,
namely the ones which were derived from User Intentions and use the UISRs which were
derived from their User Interactions: the UISR “A” which uses UISR “A.1”; the UISR “B”
which uses UISRs “B.1” and “B.2”; and UISR “C” which uses UISRs “C.1” and “C.2”.

Figure 22. Meta-Model and Example of User Interface System Responsibility (UISR).

Semiotic Structure

The UISR is responsible for the transfer of syntactic, paradigmatic and if possible syntagmatic
data from the Database to the User Interface.

Meaning to the SDP

The UISR represents the simplest form of implementation of Business Logic functions, since
the collection of data can be regarded as the simplest way of managing data, also known as a
"reading” act. It is also the SR which usually exists in bigger number, as User Interfaces usually
have more data Fields (e.g. input, select, text area, option) than commands (buttons). For this
reason, concerning the development of an AS, it may be more productive if the same developer
is responsible for the implementation of every UISR, as he will have to manage simple yet a
large number of functions. By means of maintaining control of the implemented Business Logic
functions, the Project Manager is also able to control the evolution of the development, knowing
in advance that the UISRs will typically take less time to develop than DBSRs and BRs.

3.3.5. Database System Responsibility (DBSR)
Origin

The Database System Responsibility (DBSR) is originated from the need to represent a system
function that alters data in the Database, typically to record the results of the UT. It represents
a type of Business Logic function which characteristic is managing large amounts of variables
that have to comply with business regulations by means of implementing and validating them,
whether these regulations (Business Rules) are implemented as a separated Business Logic
function or not. The BDSR may also provide data to the User Interface in the same way that a
User Interface System Responsibility (UISR) does, in order to e.g. provide immediate feedback.
Both UISR and DBSR have the same logic structure, but due to the nature of the work which
is carried out, the distinction is important, as it has a direct impact in the team organization.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

46

Definition

The original definition of the System Responsibility is provided by ACTIVITY MODELING,
as the system response to the essential use cases User Intention. That definition is adopted and
extended in order to specialize the Database SR for the management of data as triggered by an
Interaction Object or an Interaction Component, usually in order to implement algorithms that
prepare the data which will be recorded in the Database, respecting the existing BRs, since they
are always architecturally subject to the validation which they provide. Hence, we define the
DBSR as “A SR that manages data”.

Meta-Model and Example

Figure 23. Meta-Model and Example of Database System Responsibility (DBSR).

Figure 23 presents the DBSR meta-model that states that the DBSR is triggered by ICs or IOs,
that the DBSR invokes UISRs, and other DBSRs and DEs. The existence of a relation between
DBSRs reflects a situation where the invoking IC’ DBSR serves as a (function) interface to the
existing IO’ (UI or DB) SRs. The inexistence of this relation, in a same way that happens with
the UISR as reference in the previous Section, means that the UISR has to assume the
responsibility of receiving the data and executing the necessary Database commands. The
example presents the DBSR “C.1” which supports a User Interaction of the UISR “C” (which
on its turn supports a User Intention).

Semiotic Structure

The BDSR is oriented to the application of paradigmatic algorithms to the received syntactic
information in the process of transferring data from the User Interface to the Database.

Meaning to the SDP

The DBSR potentially represents the more complex form of implementation of Business Logic
functions, as usually these functions receive the information that corresponds to every object in
the User Interface and the actual state of the system, and processes it respecting existing BRs.
The DBSR typically exists in a smaller number than UISRs, but its implementation may
represent more development time than the implementation of all the UISRs that support a UT.
For this reason, concerning the development of a given AS, it may be important that the person
that develops DBSRs is not responsible for the remaining UISRs that compose the Business
Logic, since the overhead which is generated may be too much for the organization capabilities
of a single person, and therefore reduce the overall software development performance.

By means of maintaining control of the implemented Business Logic functions, the Project
Manager is also able to control the evolution of the development, knowing in advance that the
DBSRs will typically take more time to develop and change than UISRs, since if not
implemented in rigor the situation (an eventual “bug”) will always be noticed, if not during
testing, in production, which is the worst case possible.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

47

3.4. Conclusions
This chapter presented the notation of the language by means of the presentation of each
concept definition, symbol and meaning, providing insight concerning the relation of each with
the remaining concepts of the language, so that the modeler may analyze each one by itself. It
allows understanding the logic which is associated to the concept, what it expresses, and what
does it means when it is related to other concepts, including the number of other concepts on
which it relies on (uses) and sustains (is used by), so that the modeler may understand the
architectural logic of its enterprise, the business, the software, and the relation between both.

By explaining the origin we explain how each concept was evolved along time and its meaning
to the SDP, we are also providing insight on the importance of each concept at each moment,
and how the process may follow, since the existence of each concept suggests the continuation
of the SDP in the “direction” of the Software Architecture finalization. By providing the
semiotic structure of each, we are complementing the meta-model and example, in order to
provide business and software constructive guidelines: ideology, beliefs, principles and wisdom,
more closely related to the business model; and, knowledge, syntagmatic, paradigmatic,
syntactic and business concepts, more related to the software model.

The GOALS process and method that apply techniques to use the language concepts is
presented in the next Chapter (4. The Goals Process, Method and Techniques).

The Goals Approach: Business and Software Modeling Traceability by means of HCI

48

4. The Goals Process, Method and Techniques

GOALS has a conceptual structure and a notation that provides a language with which business
and software are modeled. This language is used to model the Enterprise Structure and the
Software Architecture following the GOALS process which is composed of the Analysis and
Design phases. The Analysis and Design phases apply a single method of 8 steps, 4 of which
are relative to the Analysis phase and the Enterprise Structure elaboration, and 4 of which are
relative to the Design phase and the Software Architecture elaboration. The strategy of
enterprise development is based on the evolution of the enterprise Interaction Spaces (IX). The
GOALS process, strategy, method and techniques are presented as follows, including the
presentation of two case studies (“iKiosk” and “Star Project”): the first oriented to the
application of the method, each step origin, elaboration, meta-model, and meaning to the SDP;
and the second oriented to the aspects that should be focused in each step in order to achieve
its correct elaboration.

4.1. Process
The process has two phases: the Analysis and the Design, as two sequential (sub) processes. In
the perspective of the Business Owner they represent the conception of the enterprise, its
business and the relation with the customer. In the perspective of the Enterprise Architect, they
refer to the analysis of the business problem, and the design of the software solution for a given
Business Process (BP) Improvement (BPI) concerning the strategical needs of the enterprise.
The phases may be elaborated independently, as once the Analysis is finished, the Design may
be carried out, immediately or posteriorly, as long as business regulations and business

concepts are maintained.

The modeling of both phases is carried out using the language for both the business and software
models. The language concepts refer to business (business-specific), to the software (software-
specific), or both (hybrid). The hybrid concepts are concepts of the business model which are
part of the software model, which are the Interaction Space (IX), Business Rules (BR) and Data
Entities (DE), and which are complemented with software-specific concepts concerning the
Software Architecture elaboration. Figure 24 presents the structure and related method phases,
using the concepts already introduced in Section 3.1. Structure.

These concepts presented are:

• Enterprise Structure: Business Process (BP) (and goal), User Task (UT), Interaction
Space (IX), Business Rule (BR), and Data Entity (DE).

• Human Activity: User Task, User Intention and User Interaction.
• Software Architecture: Aggregation Space (AS), Interaction Component (IC),

Interaction Object (IO), User Interface System Responsibility (UISR), Database System
Responsibility (DBSR).

The structure is what drives the process in the sense that all the modeling work targets the
elaboration of the two structures. The concepts, and its diagram meta-model will be presented
in a top-down logic following the dependency of concepts of the Enterprise Structure and the
Software Architecture. The method that applies techniques that use the language is presented
in Section 4.2. Method.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

49

Figure 24. GOALS Process Analysis and Design Phases Modeling Concepts.

Figure 24 presents the GOALS Process and the relation of concepts which are used to model
the Enterprise Structure and the Software Architecture in the Analysis and Design phases,
respectively. The relation between concepts is of dependency (many-to-many), except for the
relation of the Software Architectural Support (SAS). The SAS is the logic that relates UTs and
AS in a relation of one-to-one, as an approach that targets implementation of the requirements
of one complete business process task (UT) in a single User Interface (AS). One or more UTs
happen in an IX of the enterprise, which defines the channel of communication between actors
and their tasks (UTs). As these IXs implement Business Rules (BR) and Data Entities (DE), the
IX is also used by the AS (the User Interface) as an architectural imposition, reflecting that the
BRs and DEs of the enterprise must be respected in the communication of actors according to
the Business Architecture.

4.1.1. Iterative and Incremental

Figure 25. Goals Enterprise Development Process (EDP) Iterative Process.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

50

The process is iterative, and further defines that upon finishing the Analysis of a BPI, it (the
Analysis phase) may follow to another BP, and the design and implementation of the current
BPI may take place in parallel. Once the Analysis of the new BP is finished, its Design and
implementation may follow again, and again the Analysis phase follow to a third BP, gradually
incrementing the modeling and implementation of the Enterprise system.

Figure 25 presents an example, in which (from left to right), first takes place the “BPI 1”
Analysis elaborating the Enterprise Structure, which follows the “BPI 1” Design, elaborating
the Software Architecture of “BPI 1”. The process goes on to the “BPI 2” Analysis, which
includes and may be related to the “BPI 1” Enterprise Structure, and follows to the “BPI 2”
Design phase, which includes the models of both “BPI 1” and “BPI 2”.

4.1.2. Strategy
We define as a strategy, the gradual automation of the Interaction Spaces (IX) of the enterprise,
by means of transforming one physical IX (e.g. an office) into User Interfaces (Aggregation
Spaces) that support the work of those who carry on their UTs in that IX. This should be carried
out in function of what may be the IX which automation is more valuable for the enterprise
concerning its functioning, including user (and customer) satisfaction (relative to UX), while
saving resources. The improvement of IXs based on the automation of tasks which are solely
made in person mat benefit the relation with the customer, and at the same time replace
collaborators working time, saving human resources that may be used to other BPIs. As an
added suggestion of the strategy, the BPs which represent bigger loads of work in specific
periodic times may be automated first, in order to induce production stability.

One IX can hold the tasks of one-to-many (usually two) actors, and by means of elaborating
the Enterprise Structure relative to that IX, a conceptual structure is created that allows
understanding the distinct characteristics of the tasks which are based on it. Each task, which
may use one to many IX (usually two). can then be modeled and the corresponding software
structure designed, with the awareness of the applicable BRs and DEs, and solely the way in
which data is managed and introduced in the system varies from UT to UT.

4.2. Method
We use the GOALS structure (Figure 26) to illustrate how each component is produced in each
method steps. Steps 1 to 4 refer to the Analysis phase and Enterprise Structure, and Steps 5 to
8 refer to the Design phase and the Software Architecture. In the GOALS structure it is possible
to identify that the Service Design (Step 1) and Business Process Design (Step 2) involve the
BP and DE, and, BP and UT, concepts, respectively. This happens in the course of composing
the Enterprise Structure (Step 3), complementing it with the IX and BR concepts using the
Enterprise Architecting Technique. Each identified UT is detailed in User Intentions using a
Task Model (Step4) and applying the Software Architecting Technique, as the first level of the
application of the CONCUR TASK TREES (CTT) method, structuring the system in terms of
available Interaction Components (user tools), which at this stage may be physical or electronic,
and the corresponding higher-level UISRs and DBSRs. The Design further specifies each User
Intention using an Interaction Model (Step 5), in a second level of the CTT and the Software

Architecting Technique, integrated with the BEHAVIOR DRIVEN DEVELOPMENT (BDD)
method, conceiving the User Interface, and further structuring the system with IOs, UISRs and
DBSRs, proceeding towards the finish by structuring the Business Logic (Step 6), the Database
(Step 7), and the Software Architecture (Step 8).

The Goals Approach: Business and Software Modeling Traceability by means of HCI

51

Figure 26. GOALS Method Steps (1 to 8) and suggested Techniques.

Together with the Method, the GOALS structure defines the GOALS Enterprise Architecture
and the set of structured techniques that allow understanding how the whole business and
software structures are elaborated (modeled). The Service Design, the Business Process Design
and the Enterprise Structuring (Steps, 1, 2 and 3), apply the Production Logic, specifying the
production of the BPs in terms of DEs, the Cooperation Logic, specifying the cooperation
between actors in IXs, and the Interaction Space Logic, that specifies the BRs and DEs which
are used in each IX. By means of the detail of the UT and the specification of a User Interface
(an AS) by means of the Software Architectural Support, and the application of a Task Model
(Step 5) and an Interaction Model (Step 6), for a task decomposition according to the essential

use cases and BEHAVIOR DRIVEN DEVELOPMENT (BDD) techniques that identify all the
Business Logic (BRs, UISRs and DBSRs) of the system is identified. Then, all the identified
artefacts (GOALS concepts - UML classes) are structured still in a top-down process, based on
the common meaning identified along the method and expressed as DEs in a Domain Model.

The GOALS method steps are processed according to the ongoing SDP that drives the project
team coordination in the modeling of each diagram, using objects (instantiations) of the classes
of the GOALS structure, which artefacts elaboration require valences in the domains of
Enterprise Engineering, Human-Computer Interaction and Software Engineering. For this
reason, GOALS maintains the compatibility of each concept so that it may be recognized by
each domain practitioners and cooperate in each Step, in a progressive transfer of responsibility
from the EE to the SE domain by means of HCI, focusing enterprise development, design and
software implementation productivity. The cooperation starts in the Analysis and continues to
the Design where users, HCI and SE specialists, conceive the final Software Architecture. EE
is related to the roles of Business Owner, Service Designer and Business Process Manager,
HCI to User Interface Designer, and SE to Software Architect and Software Developer.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

52

Table 6 presents the artefacts used and produced by the method in the process of developing
the business and software models. The “Business Inputs” provide unstructured information that
must be available in any format. The “Enterprise Structure”, “User Behavior Specification”
and “Software Architecture” are artefacts that take part as inputs (I), outputs (O) or both (I/O)
in the “Output Models” of each Step, and may also be used in the subsequent Steps.

Table 6. GOALS Method Steps, Input and Outputs, and Affinity of Responsibility.

Process Analysis Design Responsibility

Artifacts/Steps 1 2 3 4 5 6 7 8 EE HCI SE

Business Inputs

Business Organization I I *

Business Regulations I *

Business Concepts I I I I I I *

User Collaboration I I I I * *

Enterprise Structure

Business Process (BP) O I I I *

User Task (UT) O I I I * *

Interaction Space (IX) O I I I * *

Business Rule (BR) IO IO I * *

Data Entity (DE) O IO IO I * *

Human-Computer Interaction

User Intentions O I * *

User Interactions IO * *

Software Architecture-Specific Components

Aggregation Space O I I I * *

Interaction Component O I I I * *

Interaction Object O I I * *

User Interface SR O O IO I I *

Database SR O O IO I I *

Output Models

Service Model O I *

Business Process Model O I I *

Business IX Organization O * *

Enterprise Structure O I I * * *

Task Model O I * * *

Interaction Model O I I I * *

User Interface Design O *

Business Logic Structure O I *

Database Structure O I *

Software Architecture O *

4.2.1. Architectural Control and Agility
The method is oriented by the strategy of defining an iterative BP-sized Analysis and User
Task-sized incremental design process to which is given flexibility in the form of a trade-off
between agility and business architecture, while maintaining traceability, targeting enterprise
architectural control. Agility is applied to the business architecture (the Enterprise Structure),
finding the room to apply user-centered techniques in the Interaction Space (IX). The trade-off
is explained by means of the brief analysis of two complementary cases of improvement:

• The ones which involve the Enterprise Structure, including Service, BP and UT
rearrangement, with a bigger impact in the Software Architecture, more specifically in
the software-specific components derived in the Task and Interaction Models;

The Goals Approach: Business and Software Modeling Traceability by means of HCI

53

• The ones which are circumscribed to the Software Architecture and a single IX or a
single UT (without BP reorganization) have a bigger probability of involving a smaller
number of components, having a smaller impact in the Software Architecture, as all are
subject to the same Business Rules (BR) and Data Entities (DE).

Thus, when the enterprise change implies BP reorganization, the method must follow the
Analysis and Design phases (Steps 1 to 8), otherwise it may be started from the Design (Steps
5 to 8) upon User Intentions validation (Step 4). This defines the agile trade-off characteristic
of GOALS, in which the time invested in the first 3 (Steps) business models (usually expressed
in one A4/A3 diagram per model depending on the BPI), has the revenue of the availability of
a business requirements structure (the Enterprise Structure/Business Architecture), that
becomes the “back-bone” of the Software Architecture by means of the application of user-
centered techniques, in a “top-down” process, using the already related business-and-software
hybrid concepts of IX, BR and DE, to apply architectural interaction patterns that fully structure
the User Interface, Business Logic and Database of the Information System.

4.2.2. Architectural Interaction Patterns
GOALS derives an architectural Human-Computer Interaction (HCI) pattern in function of the
interaction design in two steps (4 and 5), which conceive the two layers of User Interface and
Business Logic, for the support of the human User Intentions and Interactions, respectively.
The pattern defines that every User Intention will be supported by an Interaction Component
(IC) and a single UISR which will be responsible for receiving and sending data to and from
the Database, and which will execute other UISRs and DBSRs as a support for User Interaction.
The second-level UISRs and DBSRs are derived according to the need to build information
structures that the system may present to the user, so he may see and understand, followed by
the execution of data validation algorithms, according to the existing BRs and the DE’ structure
by means of the invocation of the IXs on the AS is based. Alternatively, BRs may be invoked
by any other software-specific component to promote architectural and/or SDP optimization.
In concrete terms, this User Interface may be a web page or client-side application that loads
and presents all the data in fields, which behavior is implemented by the AS, and which saves
the data to the Database upon user command. The pattern is called as “Simple – Interaction
Design” because the system immediate feedback is not enforced, and because it defines specific
architectural support for each User Interaction. The pattern is presented in Figure 27. Other
possible interaction patterns are presented in Appendix B – Interaction Patterns.

Figure 27. “Simple - Interaction Design” Pattern.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

54

4.3. Case Study – “iKiosk” Project
In order to illustrate the method of our approach we present a real software project developed
for the conception of a new enterprise. This business has the objective of selling classifieds
(announcements) and presenting actuality news in Madeira Island, Portugal. The project is
named as “iKiosk” since this type of information is usually available in newsstands (kiosks)
where coffee is sold daily. The idea is to settle a local store where the information will be
available in electronic format and only optionally in printed paper, serve coffee and provide in-
person support for classified and news printing and introduction. The system will also be
available for the World Wide Web. The Business Owner settled important preliminary societies
with “local” reporters who wished to post the news of their specialty. The project has increased
importance, and takes advantage, of the fact that printed journalism in Madeira is quite restrict
and also suffered a drawback in recent years, as one of the two more important journals found
its sponsoring cut due to the austerity measures applied in Portugal after 2010. For this reason,
the ideology of the project is: “Belief in the revitalization of the news service in Madeira by
means of on-line publishing based on the principle of the freedom of speech of qualified
reporters”. Three phases were defined, which were named as follows:

• Business Modeling. The modeling of the parts of the business parts that would support
the classifieds and news management, so that the Business Owner could understand the
complexity of the project which he had idealized.

• Software Modeling. The modeling of the Information System targeting the elaboration
of the website and the User Interface of the tasks to support its information, so that a
Software Developer could acknowledge all the logic behind the conception of the
system.

• Implementation. Two possibilities were defined concerning implementation.
Depending on available funds, it would take place in parallel with the installation of the
store facilities. Otherwise, only the website would be implemented.

The business modeling was carried out, and the roles involved were: the Business Owner who
accumulated the roles of Service Designer and Business Process Manager, the Software

Architect and a User Interface Designer. The main produced diagrams, presented in this
Chapter are:

• Service Design (of the enterprise).
• Business Processes Design of:

o “News Decoy”
o “Publish Advertisement”
o “Publish Classified”
o “Validate Reporter”

• User Tasks
o “Insert Classified” and “Obtain Classified” of the “Publish Classified” BP
o “Obtain News” and “Publish Reporter News” of the “News Decoy” BP.

These previous diagrams are presented as follows in order to illustrate the GOALS method
steps and the applied techniques. The remaining diagrams are presented in Appendix C –
“iKiosk” Project Diagrams.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

55

4.3.1. Analysis Phase
The Analysis phase models the enterprise in terms of a working system, which is independent
from the implementation-technology of the supporting Information System. The enterprise
system defines a human and logical structure that provides a service that has regulations and
manages data based on an Information System (independently of its physical implementation).

This working structure is represented by the Enterprise Structure (elaborated in Step 3), which
is based on the Service (Step 1) and Business Process (Step 2) designs, to which a fourth Step
is added in order to elicit the daily tools (based on User Intentions) that the user needs in order
to carry on his tasks, so that business and software modelers are aware of the logical context in
which user carries on its tasks. Step 4 (Task Modeling) establishes a first direct relation between
business and software models, to which the software Design phase follows. The four Steps of
the Analysis phase are presented as follows, starting with the Service and Business Process
design (Steps 1 and 2), the Enterprise Structuring (Step 3) and the Task Model (Step 4).

4.3.1.1. Step 1 - Service Design
Origin

The Service Design is originated from the need to understand the relation between Business
Processes (BP), user participation, and used and produced resources and information, reflecting
the Production Logic of the enterprise. It enabled understanding the specificities of the desired
BP Improvement (BPI), representing the inception on the business problem after the
specification of the ideology of the project based on the High-Level Concept [Kreitzberg, 1996],
as also used in the WISDOM method. The established relation is useful for the Business Owner,
Service Designer, and Software Architect in order to rationalize over the BPI using a single
diagram. Moreover, the relation between DEs which is established in this Step is also included
in the software-oriented domain model of Step 7 (Section 4.3.2.3. Step 7 – Database
Structuring), as previously introduced in Section 3.2.5. Data Entity (DE).

Elaboration

The Production Logic follows the BP meta-model, stating that: A BP must be initiated and
other users may also participate, and that at least a DE must be produced, directly reflecting the
semantics of the goal of the BP or not, to which, however, it is always architecturally associated.
BPs do not relate directly between each other. This relation is established by people and DEs.
We assume that the number of produced resources (produced DEs), should be increased against
the number of consumed resources (used DEs) in order to enhance productivity. The used and
produced DEs are represented in the diagram.

The Service Design is a set of interrelated BPs by means of DEs and actors that provide a
service according to the business organization, including the lines of interaction and visibility.
We define the Service as "A network of BPs that provides a Service to the Customer according

to the Enterprise Goals". It is the expression of a service which is available in different touch-
points, with back-end support, which the actor, may visit, but not necessarily in a pre-defined
order. For this reason, the participation of the initiator of a BP is considered as Conditional i.e.
it is initiated only if the user wants to initiate it, whereas the participation in the BP may be
considered as mandatory or Sequential, since it has to give “sequence” to the initiation,
otherwise, the BP will not be properly executed. The concepts of Conditional and Sequential
participation will also applied in the Business Process Design (Step 2) in order to specify the
(mandatory or not) flow between BP tasks.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

56

The elaboration is carried out by means of the identification of the BPs with which the actor
interacts with, and the identification of the used and produced products and services which are
represented by DEs. BPs are named according their goal, their initialization (represented by a
line with an arrow) and participation (line with no arrow) by actors is specified, and the used
and produced DEs are identified (produced DEs should be explicitly identified). The touch-
points are represented by the initialization of BPs by the actors placed outside the line of
visibility, who may go beyond it in order to interact with the enterprise/service/business

process, and when they do, they interact with the actors which are outside the line of visibility,
representing a logical and physical location of the execution of the BPs that separates internal
from external collaborators with the purpose of representing the Service as a whole.

Meta-Model and Example

Figure 28. Step 1 - Service Design Meta-Model and Example (“iKiosk” Project).

Figure 28 presents the simplified meta-model of the Service Design, which is composed by the
BP, actor, DEs, lines of interaction (dashed square) and visibility (internal square), to which
the Production Logic should be applied. The example presents the relation of the “Customer”
actor with the “Publish Classified” BP, to which the “Attendant” is also related in a relation of
participation, whereas, the “Publish News” and “Decoy” BPs are initiated by the “Reporter”.
Two BPs use the “Classified/News” DE which was generalized in order to structure the
information of both classified and news that the “iKiosk” wishes to make available to their
clients, with the distinction that the news are introduced by the reporters, and the classifieds are
introduced by the customers. The “Payment” DE is relative to the payments of printing of
classifieds and news, and the “Person” DE represents the customer personal data.

Meaning to the SDP

The Service Design is the first approach to understanding how the enterprise interacts with the
customer, how it is organized and what are the business concepts which are involved in each
BP, and how they are related between each other. By establishing this relation, the analyst
develops a perception of how the information may be used, and what other information may be
added in order to process and obtain the desired outputs, including the BP goal.

The Software Architect will continue to explore how each BP internally works, and how it may
be improved and automated in order to promote the enterprise performance. It is important that
the analyst establishes the relation between DEs along the project, yet it is not mandatory at this
stage, since this relation will be established along the Method Steps as introduced in Section
3.2.5. Data Entity (DE) and will be further specified in Section 4.3.2.3. Step 7 – Database
Structuring.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

57

4.3.1.2. Step 2 - Business Process Design
Origin

The Business Process (BP) design is originated from the need to understand how information
is processed along a BP, what where the intervenients, and the tasks that they performed in
order to achieve the BP goal, as formalized by the Process Use Cases method [Valente &
Sampaio, 2007]. The simplification introduced by the normalization of User Tasks (UT) as
essential use cases [Constantine & Lockwood, 2001], made the resulting diagram more easily
readable. Thus, once designed, the model was used as a dialogue artefact in which the
stakeholders expressed their concerns, namely the users when describing their tasks, and the
Business Process Managers when describing the control needs of the system and the
regulations that should be applied. The model is also useful for Software Developers to
understand the course of user action, and Software Architect to define implementation priority.

Elaboration

The BP is designed by means of the relations between UTs and the human structure that
cooperates until they achieve the enterprise goal. The relation between UTs can be Conditional
or Sequential, and at least one actor must be defined as the initiator of the BP. The Conditional
execution (dashed line), is defined as an actor intention to follow a certain BP path or not. The
flexibility complements the traditional Sequential (mandatory) execution flow (solid line). Two
UTs may be carried out by the same actor in the same IX only if: (i) related Conditionally,
complete and meaningful, and not dependent on each other; or (ii) related Sequentially, with at
least another actor UT between them. This situation is clear when applied to the customer in
the Service Design, but it applies to BP design in a different way, as the user may not be able
to accomplish certain tasks if their data does not conform existing Business Rules (BR), so it
may happen that the user whishes not follow a certain path, but he is obliged to in order to add
information that satisfies existing BRs. In the BP design, the regulations, which in GOALS are
expressed as Business Rules (BR), are not represented, as they are later expressed in the
Enterprise Structure. The BP design is elaborated using an Activity Diagram with UTs and
swim lanes, or by relating each actor to his UTs, and representing the IX physical space.

Meta-Model and Example

Figure 29. Step 2 – BP Design Meta-Model | Example of “Publish Classified” BP.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

58

Figure 29 presents the meta-model of the BP design, which is composed of the actor, the UT
and the IX. The example presents the “Publish Classified” BP design, which is composed of
the UTs “Insert Classified” and “Obtain Classified/News” which are carried out by the
“Customer” Actor, and receive the conditional support of the “Attendant” by means of the
“Provide Classified Support” and “Support Customer Activity” UTs, respectively, depending
on the will of the customer. Both customer UTs are conditional, meaning that the customer may
interact with the business without completing any of the UTs. Notice that the representation of
the IX physical space is not supported by UML, and for that reason, the diagram must be
complemented with drawing tools (or drawn out by hand) for this representation purpose.

The “Obtain Classified/News” UT initially was “Obtain Classified” (only), but given the
generalization which was carried out in order to support “Classifieds” and “News” after
validation, in Steps 4 (Task Model, Section 4.3.1.4) and 5 (User Interface Design, Section
4.3.2.1), that the structure could be generalized, the “Obtain Classified” and “Obtain News”
became the same. The specification of separate UTs for “Insert Classified” and “Obtain
News/Classifieds” in the same IX, is a decision which targets the division of the type of support
from the “Attendant” and the computers of the store where these UTs could be performed.

Meaning to the SDP

The BP design is the cornerstone of the dialog between stakeholders, including the final user.
It is based on it that the Service Designer, the Business Process Manager, and the Software

Architect, make the dialogue that will detail the system requirements and explicit existing
expectations, to which the software modelers must comply with. The BP design will serve the
purpose of defining the priority of implementation, since the UTs information may be used
along the implementation namely for the integration and testing of the programmed software
components. As optional requirement, we suggest that at this stage the Interaction Spaces (IX)
where actors interact are identified, designing the physical perspective of the BP, in order to
consolidate the rationale behind the elaboration of the Enterprise Structure in Step 3. Otherwise,
if all the interaction is remote, a simple sequence of flows of UT of actors is sufficient.

4.3.1.3. Step 3 - Enterprise Structuring
Origin

The Enterprise Structure is the generalization of the original WISDOM software architecture,
which was simplified in order to be readable and fit an adequate paper support (usually an A3
sheet) that allowed the representation of related Business Process (BP) Improvements (BPI).
This generalization also originated the establishment of the business and software traceability
by means of the User Tasks (UT) of the BPs and the WISDOM tasks and related interaction
spaces generated from essential use cases decomposition. With the recurrent generalization of
the WISDOM software architecture, the model started to be elaborated after the BP design,
since at that stage enough information was already collected in order to understand which UTs
were subject to which Business Rules (BR) and which Data Entities (DE) that they used, bot
represented in the WISDOM software architecture, becoming the Enterprise Structure. This
was the relevant business information available for the detail of requirements and software
modeling in the Design phase.

Elaboration

The Enterprise Structure elaboration is the continuation of the BP design, and is based on the
identification of the Business Rules (BRs) and Data Entities (DEs) with which the Interaction

The Goals Approach: Business and Software Modeling Traceability by means of HCI

59

Spaces (IX) must comply with. It involves the elaboration of the Interaction Spaces Diagram,
based on the BP design, which later only needs rearrangement in order to be transformed in the
Enterprise Structure. The diagram is the establishment of a relation of business concepts
dependency in each IX, whether these are regulations, expressed by BRs, or data, expressed by
DEs, its logical resources. The IXs are derived from the UTs relations, as one IX typically
supports the actor’s interaction, representing a physical or computer supported space. In
concrete terms, IXs represent offices, rooms, places as physical places, or computerized User
Interfaces that allow both data management and the execution of programmed routines.

Figure 30. Enterprise Structure IX Diagram for “Publish Classified” BP.

The identification of IXs in the “Publish Classified” BP is presented in Figure 30, where it was
defined that the four UTs of the BP are performed in the “Classifieds” IX, which must ensure
the application of the BRs “Security Validation”, “Classified Price”, “Classified Availability”
and “Classified Printing Price”. The elaboration of the remaining IX is also presented, namely
the “Printing Zone”, the “Coffee Bar”, and the “Cashier”, each one with its BRs and DEs,
namely for the prices of printing, coffee and final payment. At this stage, some of the
dependencies are already established based on the semantic of each object e.g. the “Cashier”
IX will use the “Classified Printing Price” (which relation is represented) and probably the
“Coffee Price” (still not represented). In the final Enterprise Structure all relations that may be
semantically be identified should be represented.

The Enterprise Structure elaboration follows, continuing the rearrangement of the previous
diagram namely the BRs and DEs that should apply in each case, relating each component by
means usage. The structure is representative of the social interaction support concerning the BP
execution in terms of stable and essential norms, also known as the organizational kernel
[Stamper, 2013]. The technique that uses the Interaction Spaces Diagram for IX identification
and their relation to BRs and DEs is called as the GOALS Enterprise Architectural Technique.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

60

Example

Figure 31. Step 3 - Enterprise Structure Meta-Model | Example of “Publish Classified” BP.

Figure 31 presents the Enterprise Structure of the “Publish Classified” BP presented in the
Service Design, maintaining precisely the same structure of concepts that was elaborated in the
Interaction Spaces Diagram. The structure of the Interaction Spaces Diagram for the “Publish
Classified” BP is now related to the “Person” and “Classified/News”) DEs by means of the
affinity of the used business concepts semantics. A similar situation happens with the “News”
IX, which is related to the “News Printing Price” and “Filter News” BRs, which uses the
“Payment” and also the “Classified/News” DE, as presented in the Appendix C – “iKiosk”
Project Diagrams, and the “Decoy BP”.

Meaning to the SDP

The Enterprise Structure is the diagram that enables understanding the complexity of the
ongoing BPI, and provides a structure of requirements to which the software development team
must comply with in the process of developing the Information System. It is useful as a support
to guide the elaboration of the detail of each of the UT in a last Step of the Analysis phase, and
also for every Step of the software Design, since the IXs, BRs and DEs represent unchangeable
information (unless erroneous) which can be interpreted as a persistent conceptual business
structure that must be complemented with software specific parts, concerning their automation,
from that moment on.

4.3.1.4. Step 4 - Task Modeling
Origin

The Task Model is originated from the need to understand what may be the best sequence of
steps to accomplish the User Task (UT), according to a logical sequence of data management
(of business concepts). The decomposition of the UT User Intentions using the CONCUR
TASK TREES (CTT) method allowed the elaboration of a compromise between the user and
the software development team that promoted cooperation, and allowed the structuring of the
User Interface. By means of the application of the WISDOM Software Architectural Technique
to each User Intention the internal structure of the system was also derived in terms of system
responsibilities (components of the Business Logic), establishing the Task Model as a firm
software development artefact.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

61

Elaboration

The Task Model details the sequence of actions that leads to the completion of the UT under
the actor’ responsibility. It describes human behavior and is the first level of decomposition of
the CTT method [Paternò, 1999], providing a second level of the structure of the User Interface
by means of the Interaction Component (IC), following the specification of the Aggregation
Space (AS) that supports the UT. From the UTs are derived User Intentions and System
Responsibilities (SR) according to the decomposition of an essential use case. Each IC and
supporting SR are named according to the meaning (the business concept, DE) which is being
used. In each case, the name assumes an action (the user’s responsibility) over the business

concept (e.g. “Insert”, “Delete”). The Task Model is modeled using an UML Activity Diagram
(without the initial and final signs), specifying the flow of User Intentions, following the
application of the Software Architectural Technique.

Example

Figure 32. Step 4 - Task Modeling Meta-Model and Example for “Insert Classified” UT.

Figure 32 presents the meta-model of the Task Model, which defines that the AS is associated
in a relation of 1 to 1 with the UT, and that the UT has many User Intentions. The Task Model,
applies the Software Architectural Technique, eliciting ICs and UISRs (according to the defined
interaction pattern). The example presents the Activity Diagram of User Intentions and its
corresponding UISRs and ICs. The User Intentions “Identify Self”, “Insert Classified (…)”,
“Previews New Classified”, “Classified Payment”, and “Confirm Classified Insertion”, are
supported by pairs of IC and UISR, namely: “Identification” IC and “User Validation” UISR,
“Classified” IC and “Classified” UISR, “Preview” IC and “Return Preview” UISR, “Payment”
IC and “Payment” UISR, “Insert Classified” IC and “Confirm Classified Insertion” UISR. For
purposes of reuse of the software-specific components, the managed business concepts are
compared to the DEs already existing in the Domain Model (for purposes of validation).
Business concepts are nouns and the intentions are the verbs of the User Intentions. If a new
business concept is identified, then it must be clarified if its meaning is already included in the
existing DEs (e.g. “Classified Preview” in “News/Classified” DE) or included as a new DE.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

62

Meaning to the SDP

The Task Model details User Tasks (UT) in order to obtain information to carry on the User
Interface design, which happens in Step 7 – User Interface Design, and it defines the perspective
of a specific actor concerning an Interaction Space (IX), which has a direct one-to-one relation
with the software-specific component, the Aggregation Space. It represents the identification
of the tools which are used along the UT, which may be implemented by the Information
System or not, to which the relation of: the UT with the AS; and of the User Intentions with the
SRs; can already be established in this last step of the Analysis phase, prospecting what will be
probably implemented. In the case when new Data Entities are identified then they must also
be expressed as DEs, that also update the Service Design. This DE identification process, should
be maintained up to the Step 7 (presented in Section 4.3.2.3. Step 7 – Database Structuring),
where the DEs structure will be detailed in terms of tables and fields of a Database.

4.3.2. Design Phase
The Design phase is the continuation of the method, gradually transposing the responsibility of
elaboration from the business to the software domain. The Enterprise Structure of the ongoing
Business Process Improvement (BPI) is the reference model that provides the requirements for
the production of a Software Architecture for in-house software development. The process
continues in a top-down logic, by means of detailing the User Intentions of each User Task
(UT) in User Interactions (Step 5 – User Interface Design) aiming the design the User Interface,
the Business Logic (Step 6 – Business Logic Structuring) and the Database (Step 7 – Database
Structuring) structures, getting gradually closer to a level of detail that suits implementation,
and finishes with the elaboration of the Software Architecture (Step 8 – Software Architecting).

4.3.2.1. Step 5 – User Interface Design
Origin

This step is originated from the need to design the User Interface in a top-down process in order
to ensure that all the needed information for this purpose was elicited from business
requirements, and that the most convenient technological solutions would not influence the
system being designed. With the application of the CONCUR TASK TRESS (CTT) method,
and the structuring of User Interfaces with the Hydra Framework [Costa et al., 2007], which
supports the Model-Driven implementation of the WISDOM interaction space (now referenced
as Interaction Components (IC)), the detail of the User Interface fields becomes the remaining
concern. The detail of the IC and its Fields is useful for the Business Logic and Database
structuring, placing the User Interface Design as the driving model of the system specification.
With the formalization of the GOALS method, the BEHAVIOR DRIVEN DEVELOPMENT
(BDD) method was used to articulate the dialogue of the User Interface by means of the
elaboration of an Interaction Model which is complemented with the Canonical Abstract
Prototypes (CAP) [Constantine et al., 2003], for the final design of the User Interface.

Elaboration

The Interaction Modeling specifies each User Intention in terms of User Interactions. It also
defines Aggregation Space (AS) usage and the behavior of the system in terms of the System
Responsibilities (SR) triggered by Interaction Objects (IO), which are the components with
which the user interacts with in terms of e.g. clicks and keyboard inputs. It is used to generate
a User Interface design, part of the Business Logic, and identify the Fields of the Data Entities
(DE). The Interaction Model is carried out by means of the application of the BEHAVIOR
DRIVEN DEVELOPMENT (BDD) method [Chelimsky et al., 2010]. BDD is an agile software

The Goals Approach: Business and Software Modeling Traceability by means of HCI

63

development process that describes the system behavior based on a User-Centered Design
perspective, producing pseudo-code for User Interface specification by means of the
elaboration of User Stories. User Stories describe a feature for the support of a certain purpose
(the UT) within a certain scenario which in GOALS is specified by a state of the system within
a certain AS. BDD’s pseudo-code has the following syntax.

Given [State] When [Interaction] Then [System Behavior]

Where [State] represents the actual state of the system given the information of the AS with
which the user is interacting with; [Interaction] is a flow of User Interactions that specify User
Intentions; and [System Behavior] is the expected outcome that triggers User Interface (UISR)
and Database (DBSR) SRs. The software architectural components are derived from BDD
pseudo-code by means of the relation presented in Table 7.

Table 7. BDD Pseudo-Code and GOALS Components Relation.

BDD pseudo-code GOALS Component
Given Aggregation Space (identification) + [State]
When User Interaction + Interaction Object + SR
Click, Choose, Set, Type User Interactions 'Click', 'Choose', 'Set' or ‘Type‘
Display 'Page' or Go to 'Page' User Interface SR 'Display Page' + IC 'Page'
Field Data Entity Field
Then (last) System Responsibility (SR)

The Interaction Model defines that a User Story is applied to each UT, composing a User
Interface that references Interaction Components (IC) and Interaction Objects (IO) that together
compose the AS of that UT. The User Story starts with a Given clause that identifies the AS
and its [State] if necessary, and specifies a When sentence for each User Intention (of the Task
Model) identifying new IOs and SRs by means of a second application of the WISDOM
Software Architectural Technique, finishing with behavior specification in the Then clause.

Figure 33. Canonical Abstract Prototypes (CAPs).

Each IO is then customized according the CANONICAL ABSTRACT PROTOTYPES (CAPs)
[Constantine et al., 2003] and its compatibility with the BDD operations, namely to support:
BDD “Type” with the “Modify”, “Select” with “Select”, and “Click” with the “Start/Go/To”
CAP, while the space that the IO occupies is expressed by the space of the CAP container in
the User Interface design. The CAPs are presented in Figure 33.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

64

Example

Figure 34. Step 5 - Interaction Model Meta-Model | “Insert Classified (Text/Image/Link)”.

Figure 34 presents the Interaction Model meta-model that states that a User Interaction is
supported by an IO that uses UISRs and DBSRs. The example presents the decomposition of
the “Insert Classified (Text, Image, Link)” User Intention into the “Type Classified Text”,
“Select Image”, “Type Link”, “Type Contact” and “Click Preview” User Interactions.

These User Interactions, similarly to the Information System structuring which was carried out
in the Task Model by means of the software architectural technique, have a correspondence,
now with IOs instead of ICs, which in the same way are related to SRs, the first ones UISRs,
and the last one the "Display Preview, Payment and Insertion Options" DBSR, which is a
convention concerning the application of the BDD method to implement the chosen interaction
pattern, towards the User Interface and Information System structuring.

Figure 35. Step 5 - User Interface Design of “Insert Classified” AS.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

65

Figure 35 example the Aggregation Space “Insert Classified” User Interface design, which was
developed for the iKiosk project. It is composed of five ICs, as identified in the UT “Insert
Classified” in terms of User Intentions, and each IC is composed by its Interaction Objects as a
result of the elaboration of the Interaction Model for each User Intention. It includes customer
personal data, enables the introduction of a classified, its previews, presents the payment in
case it applies, and has a final “Insert” button.

Figure 36. Example of User Interface Components Reuse.

We take as example the “Classified Data” IC in order to illustrate the reuse of ICs which our
method facilitates. The IC is composed of the Fields “Text”, “Image”, “Link”, “Classified
Contacts”, and “Preview” which makes the navigation to the “Classified Preview” IC. Since a
new User Intention, “View Classified” (in the original “Obtain Classified” UT), was identified
as using the same IOs, then the “Classified Data” IC was reused concerning the “Obtain
Classified” AS, which supports the UT with the same name. According to the Interaction
Model, the behavior of both “Insert Classified” and “Obtain Classified” AS, may change.

Website Design

In order to elaborate the website design, the information from the “News/Classified” and
“Advertisement” DEs had to be presented to the user in order to fulfill the objective of
establishing a “decoy” that would attract people to the “iKiosk” daily information. As the
related DEs were produced in the “Publish Classified”, “Publish News” and “Publish
Advertisement” BPs, the UTs that produced this information were analyzed targeting software-
specific components reuse for the support of the “Obtain News” UT of the “News Decoy” BP.
Thus, to the original “Obtain News” UT decomposition in User Intentions, new User Intentions
were identified which were related to the “Classifieds” and the “Advertisements”, as the user
could also be interested in business opportunities from sponsors or other “iKiosk” users (e.g.
part-time jobs or car selling). This lead to the unification of the “News” and “Classified”
software structure, as both structures have the same common entities related, namely the
“Categories” and “Items”, the detail (Text/Image/Link), the Contacts, the way of obtaining it
(by Phone, eMail or Facebook), and the payment, to which the “Advertisements” were added
composing the website front-end. The website allows the search of news and classifieds using
the same tools, producing a common list that may be filtered in order to display only one or the
other, from which one may be chosen, so that the user may take action contacting of obtaining
the item according to the available options. The list of advertisements would be filtered
according to the terms search and the level of promotion which was accorded concerning each
advertisement.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

66

Figure 37. User Interface Design for the Front-End of the “iKiosk” website.

In the User Interface presented in Figure 37, it is possible to identify the reuse of components
by means of comparison with the “Insert Classified” AS, to which are added the
“Advertisement” IC, and the generalization of the “News” and “Classified” structure which
promotes software simplification. This is reflected in the Software Architecture in terms of the
generalization of the “News” IC, that now supports both classifieds and news, and for that
reason had its name changed to “News/Classified”, which Business Logic and Database
components are the same than the “Classified” IC, invoked with distinct parameters by the
invoking AS, “News” (the website) and “Classified”, respectively. A User Intention of “Insert
Classified” was added to the “Obtain News” UT, from which the “Insert Classified” User
Interaction was added, establishing the navigation from the “Obtain News/Classified” AS to
the “Insert Classified” IC, which is reflected in the Software Architecture by a usage relation
from the first to the second. As a complementary result of the unification of the “Insert
Classified” and “Obtain Classified/News” UTs, the web site could also be used in the “iKiosk”
store in order simplify the “Insert Classified” BP, in which case, the “Customer” actor and the
“Attendant”, would only perform a single UT in the “Classifieds” IX.

Meaning to the SDP

Once the User Interface design is finished, the User Interface Designer will begin to realize
what are the more complex parts of the Information System, so that he may focus the software
development efforts in ensuring that these parts will be properly elaborated. Moreover, by
eliciting the fields of the User Interface, and its behavior, the Software Developers can program
the components under their responsibility with a higher level of knowledge concerning the
desired functioning. This knowledge may have a positive impact in the software development
performance, by ensuring that the programmer knows what is desired in terms of User Interface
appearance, arrangement, desired sequence of fields and commands usage, the Business Logic
structure expected behavior and the Database tables and fields structure. It is what drives the
design and the development of the Information System in terms of its detail.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

67

4.3.2.2. Step 6 – Business Logic Structuring
Origin

The Business Logic structuring became the logical sequence of the elaboration of the User
Interface since based on the application of the Software Architectural Technique, the Business
Logic System Responsibilities (SR) are already identified and need to be organized in terms of
Database dependency. As the model also provides information for the Database structuring
namely in terms of used fields, it is therefore an essential step of the Information System
structuring, and the beginning of the Software Architecture elaboration.

Elaboration

The Business Rules (BR) are the foundation of the Business Logic as the business-specific SR
of the model, which are now complemented with the User Interface (UISR) and Database
(DBSR) SRs. SRs and BRs need adjustment in terms of Data Entity (DE) usage, which is carried
on based on the used Fields identified in User Interface design. First it is necessary to define
the DEs to which each Field belongs to, establishing a relation between the BRs and SRs, and
the DEs. The relation between SR and the User Interface related components: Aggregation
Space, Interaction Space, Interaction Components and Interaction Objects; can also be
represented for the purpose of analysis of this first approach to the Software Architecture, and
for clarification of the Business Logic components usage. At this stage, the Software Architect
is already aware of the existing business concepts, since these have been identified and
elaborated since the Service Design (Step 1) of the Analysis phase. Once all the identified User
Interface Fields are properly supported by the Business Logic components as expected in the
User Stories, the Business Logic structuring can be considered as finished.

Example

Figure 38. Step 6 - Business Logic Structuring Meta-Model and Example.

Figure 38 presents the meta-model of the Business Logic structuring, which states that the
Information System has many BRs, the IC and the IO have many UISRs and DBSRs, reflecting
the “Read and Save – Interaction Design” pattern. The example presents a structure of SRs
derived by means of the detail of User Intentions, generating the “Classified” and “News”
UISRs, and the detail of User Intentions in User Interactions, generating the “Text Options”,
“Image Options”, “Link Options”, and “Contact Options” UISRs, and the “Make Available
Preview, Payment and Insertion Option” BDSR. Both “Classified” and “News” UISRs use the
same SRs due to a generalization of the “News” and “Classified” concepts that led to the
specification of the “Classified/News” concept, since it was identified both were consistently
related to every other concept in a similar way, and distinction would be made by means of the
type of record and the parametrization that would apply to each.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

68

Meaning to the SDP

Once the Business Logic structuring is finished the software design process can be considered
as “almost” finished in terms of its design. The remaining modeling parts are simply the finish
of the establishment of the relation that were defined after the Enterprise Structure elaboration.
The method follows to the Database structuring and final Software Architecture.

4.3.2.3. Step 7 – Database Structuring
Origin

The Database structuring is the core software engineering model, since it is where the data of
the system is persistent over time, and where no structural errors may exist without affecting
negatively the Information System functioning. For this reason, the Data Entities relation
elaboration starts on the first Step of the Analysis Phase, and its detail in terms of Fields is also
carried out along the remaining SDP ensuring that this model is always updated when new
relevant information is elicited. The Database structuring represents the base of the conceptual
business and software structures.

Elaboration

Data Entities (DE) identification started in Step 1 - Service Design, and continued along the
SDP, so at this stage the practitioner already has a well-defined notion of the business concepts
under analysis. In terms of Database objects, DEs are implemented by Tables, and its attributes
by Fields. DEs are related by means of syntactic relations with multiplicity of typically one-to-
many, or many-to-many. DEs relations define restrictions that are not subject to the logic of
design specifications of the User Interface and the Business Logic in which they are used. Here,
the Business Concept is worked on its full scope i.e. if one DE can directly relate “in any means”
to another, a relation of one-to-many is established from the DE that uses, to the DE that is
used. Complementarily, the Fields identified in the previous Steps, are also associated to its
containing DE. The Database Structuring is now possible once all DEs and DE’ Fields are
identified.

Example

Figure 39. Step 7 - Database Structuring Meta-Model and Example.

Figure 39 presents the meta-model for the Database structuring, which defines that the DE can
be used by any of the Business Logic components, the BR, UISR and DBSR, in a relation of
many to many. The example (partially) presents the Database specification, reflecting a
situation where DE “Person” is related the “Classified/News”, meaning that a customer can
publish many “Classifieds” or “News”, since both the “Reporter” and “Customer” or other user
interacting with the system are represented in the “Person” DE. The DE “Payment” has a
relation of many to many to the “Classified/News” DE since a payment can include more than
one classified or news, and each of these may also have more than one payment. In a complete
representation of the Database, all the fields identified in the User Interface must be present.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

69

Meaning to the SDP

The Database if the core element of the Information System, and for that reason, and since the
system was designed in top-down process, the remaining Step is the Software Architecture
elaboration, which precedes implementation.

4.3.2.4. Step 8 – Software Architecting
Origin

The Software Architecture as presented by GOALS is an evolution of the WISDOM
architecture, with the inclusion of the Enterprise Structure, which logic of dependency is also
originated from itself. In other words, the Software Architecture is an evolution of itself, after
a process of generalization, also including the original WISDOM Architecture. The Software
Architecture is the model that allows the distribution of software development work targeting
development performance.

Elaboration

The Software Architecture relates all the components identified in the previous Steps (except
for the User Intentions and User Interaction classes) in a single structure by means of a relation
of usage. The Software Architecture can be used to specify priority and allocation for a software
development team. Priority logic is contrary to the logic of components usage. Hence,
components should be implemented from bottom to up, as the upper objects use bottom ones.

Figure 40 presents the Software Architecture, with the relations previously introduced in the
language meta-model, in a top-down relation from the User Interface, the Business Logic and
the Database components, where the Enterprise Structure relation are highlighted with a
stronger line. Each AS supports a UT with the same name, having therefore a relation with the
Enterprise Structure by means of the UT and the used IX. The original “Obtain Classified” AS
is represented to highlight the reuse of the ICs and underlying UISRs, DBSRs and DEs.

Example

Figure 40. Step 8 - Software Architecture Example.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

70

Meaning to the SDP

The Software Architecture is the more important diagram that should be pursued along the SDP,
as it represents the solution for the BPI problem, and it also allows the specification of the best
possible organization of the software development team, by means of specifying the precedence
of implementation of its components, contributing to promote the SDP performance, which
continues with the implementation of the Information System.

4.3.3. Case Study Conclusions
Concerning the GOALS method application, the “iKiosk” project served to present the concepts
used in each model, and how the modeler may develop, always in a “top-down” sequence, the
enterprise business and software models. The applied techniques follow the meaning of each
(previously presented) concept, maintaining the coherence of the produced logical structure as
the modeling of the BPI is carried on, maintaining the coherence between the complexity of the
problem and the complexity of the solution. The complexity of the problem is reflected by the
human activity to which an automated supported is needed, and of the solution depends on the
corresponding software architecture in terms of User Interfaces (Aggregation Spaces),
Interaction Components and Interaction Objects, and their supporting Business Logic.

Table 8. “iKiosk” Project Development Process.

Date Stakeholders Phase Steps H

1 07-02-2017
Business Owner

Software Architect
Analysis 1. Service Design 4

2 12-02-2017 Software Architect Analysis
1. Service Design
2. BP Design

5

3 21-02-2017
Business Owner

Software Architect
Analysis

2. BP Design
3. Enterprise Structure

4

4 05-03-2017 Software Architect
Analysis &

Design

3. Enterprise Structure
4. Task Model
5. User Interface

5

5 18-03-2016
Software Architect

User Interface Designer
Design

4. Task Model
5. User Interface
6. Business Logic
7. Database

15

6 26-03-2017
Software Architect

User Interface Designer
Design

4. Task Model
5. User Interface
Conciliation of Classifieds

and News Architecture
8. Software Architecture

15

7 14-04-2017
Business Owner

Software Architect

Analysis &
Design

Project Validation 1

 49

The “iKiosk” project had the production moments presented in Table 8, in which the
intervenient stakeholders are distinguished. The Business Owner whom accumulated the roles
of Service Designer and Business Process Designer participated in three moments (meetings).
The Enterprise Architect assumed the Analysis of the business, and was joined by a User

Interface Designer in the Design phase for the User Interface specification. The total number
of hours is presented in column “H”, in a total of 49 for the complete project specification. The
project is currently in the process of acquiring the resources for its implementation.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

71

4.4. Case Study - “Star Project”
We now present a case study of the application of GOALS that includes the organization of the
business of a new enterprise and all the Method Steps that the analyst should go through before
reaching a stage of software implementation. The “Star” project is a real software project that
has the implicit intention of creating an enterprise, and the explicit intention of creating an
Information System for the World Wide Web, targeting large audiences of people that want to
support charity. We present the project as follows.

The “Star Project” was developed for a local Buddhist community in Madeira, Portugal, which
aims at raising funds to invest in areas of the globe which have basic chasms e.g. water and
food supply, namely in Africa and Asia. The project is named as the “Star”, in allusion to the
will of creating a patterned process of society development that could be replicated in case of
success “illuminating” a different road for success of poor countries and cities. The objective
is to create an enterprise that would channelize investments from people that would be
interested in helping other people located in remote places.

The idea is to elaborate the project according to the Buddhist philosophy of reaching an
independence, in this case for the people that promotes the investments and its society, as long
as those investments are considered as fruitful for the location, and as long as they promote
structural changes that benefit the community and fill relevant chasms. The project had as
primary objective the creation of a website that promoted the creation of a support community
for investment projects, that may receive supporter feedback and pre-investments, as presented
by promotors at existing investment capturing sites (e.g. Kiva [Kiva, 2017] or Zidisha [Zidisha,
2017]), to which the “Star Project” site would channelize investment.

Since it was predicted that the enterprise once fully operational would have an indirect relation
with considerable amounts of money, and would also involve the creation of full-time jobs, a
strategy was defined, first targeting the development of the minimal software implementation
possible, and also the minimal involvement possible of the Business Owners and colleagues in
terms of spent time. Thus, the strategy was to minimize investment, aim the development of a
full-operational pilot project which once found successful, would posteriorly be increased in
terms of people, business and software development in a second project. The roles involved in
the project were two Business Owners, a Software Architect and a User Interface Designer.

The project predicted the execution of two phases:

• Business Modeling. Given the complexity of the project, distinct iterations of the
Analysis of the business were defined. In each iteration the produced models were
validated until there was a solid idea of the processes that would support the business in
a regular basis, so that it would be possible to identify all the tasks that would support
the website information production.

• Website Modeling. Once the full complexity of the business was acknowledged,
namely identifying the most basic concepts that would support it, the web site design
would take place, so that it would also be possible to estimate the software development
effort and consider the best implementation options, considering the possibility of
applying for European funds, concerning its implementation.

The following GOALS models were produced:

The Goals Approach: Business and Software Modeling Traceability by means of HCI

72

• 1. Service Design
• 2. Business Process Design

o “Grow Community”
o “Support Project”
o “Capture Investment”
o “Evaluate Investment Support”

• 3. Enterprise Structure
• 4. Task Model

o User Tasks of “Grow Community” BP
o User Tasks of “Support Project” BP

• 5. User Interface Design
o “Attract Project Community” of “Grow Community” BP
o “Support Project” of “Grow Community” BP

• 6. Business Logic Structuring
• 7. Database Structuring
• 8. Software Architecture

We present the totality of the produced diagrams in order to illustrate our language and method,
as follows, and the remaining diagrams are presented in Appendix D – “Star Project” Diagrams.

4.4.1. Step 1 - Service Design
The design of the service went through a phase of inception in order to understand how could
be produced the project information for the customer (supporter in the project perspective). We
defined the ideology of the project, based on the High-Level Concept [Kreitzberg, 1996], as:
“Capture of Charity Investment to promote the Sustainability of Places with Chasms”. In order
to specify the Production Logic of the enterprise, we started by elaborating a Domain Model of
the logical structure that consumes and produces the business concepts (Data Entities (DE)).
After, we followed to the organization of the Business Processes (BP) that would manage those
DEs, and following that, we identified the actors of the enterprise that would assume the
responsibility of initializing and participating in each BP. Finally, we defined the lines of
interaction and visibility, separating the internal and external actors.

Data Entities Identification

The following text describes the Domain Model and justifies existing choices. The promoters
(DE “Promoter”) and their investment (DE “Investment”) proposals at fund capturing sites
where considered strategical as sources of opportunity to help needing countries (DE “Place”)
and specific regions in basic issues such as water, food, education and environment (DE
“Chasms”). However, the idea also targeted the edification of benevolent permanent changes
(DE “Benefits”) that would promote the filling of the region chasms gradually and
consecutively, aiding its development process. The idea was to channelize as much investment
as possible, not towards too many investments, but to strategic investments that would fill
existing chasms, thus, the investments could be more than one towards the same benefit, reason
why are considered investment channels (DE “Investment Channel”), which cross multiple
investments to produce a synergy (DE “Synergy”) for the region. A synergy is an added value
from two or more efforts that generates a total which is more than the sum of the parts, i.e.
building a bridge and a road may add more benefit than the road and the bridge independently,
as it may promote the region commerce and its sustainability (DE “Sustainability”).

The Goals Approach: Business and Software Modeling Traceability by means of HCI

73

Business Process Identification

Four BPs where were conceived in order to organize the activity of the enterprise. Considering
the project implementation strategy, the focus was on the “Grow Community Project” BP, as
the process that would produce the information to present in the website driven by the process
of elaborating the projects based on the “Capture Investment” BP. The “Grow Community
Project” BP would capture investment intentions, present projects, and grow the community at
the same time, creating a logic of (customer) support (“Project Support” BP) that started before
the investments, would accompany the project along the its evaluation (“Evaluate Investment
Success” BP), and would only finish after the project end.

Actors Identification

Figure 41 presents the Service Design. Four actors were identified and related to the BPs in
which they participated or initiated. The “Supporter” as the external actor (placed outside the
red line of interaction), the “Mission Manager”, “Project Manager”, and “Project Builder”.
From a specific relation of the DEs, was elicited the main business concept structured logic of
the project. It is (highlighted with a stronger line of association) the elaboration of “Synergies”
of “Investment” which will produce “Sustainability” based on its benefits, which are measured
according the defined and readable “Success Parameters”.

Figure 41. Step 1 - Service Design (“Star Project”).

By the analysis of the Service Design it is important to acknowledge the produced and
consumed DEs, namely the ones that reflect the axis of the project. The “Project” DE is
produced by the “Grow Community Project” BP, but only after the “Investment” and “Synergy”
DEs are produced by the “Capture Investment” BP. The axis DEs are considered to be produced
along with the “Project” and “Synergy” DEs. The more relevant relations of production are: the
“Capture Investment” BP and the “Investment” and “Synergy” DEs; the “Grow Community
Project” BP and the “Community” and “Project” DEs; the “Evaluate Investment Success” BP
and the usage of “Success Parameters” DE; and the “Support Investment” BP and the “Event”
and “Intervention” DEs. These relations are the top and the bottom of a relation of concepts
that is structured upon the semiotic logic of business concepts, their syntactic, paradigmatic
and syntagmatic relations that will compose the knowledge of the Information System, to suit
the ideology of the enterprise.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

74

4.4.2. Step 2 - Business Process Design
The four Business Processes (BP) were designed, and the focus was directed to the “Grow
Community Project” BP which would implement the logic of obtaining supporter to the
ongoing projects by means of the user interaction with the website, also providing possibilities
of participation. The design was carried out based on the Cooperation Logic, which defines that
the BP goes from one actor to the other by means of complete UTs using logical Interaction
Spaces, as all the conception of the project was to be based on remote interaction except for the
one predicted in the “Support Investment” BP, which concerns the preparation of support events
and interventions in the place. We now present the logic with which was produced the “Grow
Community Project” BP.

User Tasks Identification

The “Grow Community Project” is the BP which produces information to feed the website in
order to capture supporter for existing investments. The idea is to obtain support from the
customers, as the “Project Manager” presents the approved projects, which represent strategical
investments by means of the “Present Project” UT. Once the “Project Manager” presents the
project, the “Present Project Activity” UT, carried out by the “Mission Manager” Actor follows,
in order to increasingly create a project community that would be interested in participating in
distinct support possibilities, namely, investments, in-loco interventions, deals or donations.

Interaction Spaces Identification

The identification of Interaction Spaces (IX) is done in a patterned way, knowing in advance
that every time two actors transmit information from one to the other, by executing one UT and
the other, and that one IX will be used for that effect. In the case of the “Grow Community
Project” BP, IXs were named after the more important Data Entity (DE) that characterized the
transaction, or the logic of cooperation. These IXs where the “World Forum”, reflecting the
wide “space” which is created by presenting to the “World” the projects that need support, and
the “Project”, which is characterized by the project information that will be presented. As all
the human interaction is remote, the BP was presented using a simple flow of UTs, without the
representation of the physical space of each IX.

Figure 42. Step 2 – Business Process Design of “Grow Community Project”.

The “Grow Community Project” BP is presented in Figure 42. The BP flow reflects the need to
capture the Actor “Supporter” support, to which the “Present Project” and “Present Project
Activity” UTs are strategical. As the “Supporter” performs his “Investment Feedback” UT in
the “Conceive Investment Project” BP, the “Project Manager” may monitor the feedback until
he feels that has the conditions to present the project by means of “Present Project” UT. Once
the project is presented, the Actor “Supporter” may execute the “Support Project” UT as many
times as he may wish.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

75

4.4.3. Step 3 - Enterprise Structuring
The Enterprise Structure was carried out by means of the elaboration of an Interaction Spaces
Diagram that related Business Rules (BR) to the identified Interaction Spaces (IX) in order to
understand the main concerns when dealing with the information present in each of the UTs
that associated to each IX. After, the Enterprise Structure was finished, by means of relating
each BR to the DEs identified in Step 1 - Service Design.

Business Rules Identification

The elaboration of the Enterprise Structure was oriented by means of the identification of the
concerns and regulations that should apply in each of the identified Interaction Spaces (IX).
The main concern is the law of existing countries, and the application of the principles of the
project, namely regarding the creation of synergies of channels of investment, and the defense
against false promoters and projects. For each IX, the Business Rules (BR) that should be
applied were identified: “Investment Applicable Law”, “Expected Benefits & Population ROI”,
“Synergy Specification”, “Sustainability Warranties” and “Intervention Viability”; are
examples of the rigor that must exist in the process conceiving an investment plan. Since there
is no need to specify the physical space of IXs, the information concerning DE organization in
IXs is not considered, until the elaboration of the final Enterprise Structure, and as such, is not
presented in the diagram. The Interaction Spaces Diagram of the elaboration of the Enterprise
Structure for the “Grow Project Community” BP is presented in Figure 43.

Figure 43. Enterprise Structure Interaction Spaces Diagram.

The “Project” and “World Forum” involve the creation of the project, and also of the customer
supportive interaction, to which important regulations apply. These are, for the “World Forum”
IX: “Scheduling Constraints”, “Synergy Specification”, “Project Plan”, Expected Benefits &
ROI”, and “Sustainability Warranties”. These BRs reflect the focus on the financial rigor that
the project must comply with. For the “Project” IX: “Intervention Internal Rules”, “Intervention
Viability”, “Resources Requirements”, “Deals Rules”, and “Registration”. These BRs reflect
the rules that must apply to the predicted types of support, namely concerning deals,
interventions, and the resources that may be involved.

Data Entities Identification

The DEs which were already identified in Step 1 - Service Design, are now complemented
with the “Resources” and “Deals” DEs. The BRs were related to DEs by means of the
semantical meaning of each BR, and the more basic DE concepts.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

76

Figure 44. Step 3 – Enterprise Structure of “Grow Community Project” BP.

Figure 44 presents the final Enterprise Structure of the “Grow Project Community” BP, where
it is possible to identify the IXs and BRs of the Interaction Spaces Diagram are now related to
the DEs that apply in each case. This structure represents the business up to the moment that it
was elaborated according to the diagrams produced in order to attain the objective of the project,
which was the elaboration of the website User Interface design. This model is supposed to be
updated along the continuation of the modeling of the enterprise.

4.4.4. Step 4 - Task Modeling
From the “Grow Project Community” BP we focus on the “Present Project Activity” UT
performed by the “Mission Manager”, which objective is to publish the distinct forms of support
that may be available in each project. The needed information is introduced by the “Project
Manager” and “Project Builder” Actors in the “Present Investment Possibilities” (of the
“Conceive Investment Project” BP), and “Present Project” UTs (of the “Grow Community
Project” BP); and by the “Mission Manager” in the “Plan Intervention” UT (of the “Support
Investment” BP). The participation actions were found to be the “Investment”, “In-Loco
Interventions” and “Deals & Donations”, to which the “Mission Manager” could also add more
project information. The Task Model, which is the first of the two-step decomposition of the
UT in User Intention (first step) and User Interactions (second step) according to the CTT
method, was elaborated for two UTs, in order to specify the logic of cooperation concerning
the usage of the same business concepts, promoting the continuous reuse of components.

Task Model

The Task Model includes the User Intentions of the “Present Project Activity” (left side of
Figure 45) and the “Support Project” UTs, namely “Publish Project Information”, “Publish
Investment Possibilities”, “Publish In-Loco Intervention Information” and “Publish Donation
& Deals Possibilities”, which have a correspondence in the User Intentions of the “Supporter”
Actor (right side of the Figure), of “Analyze Investment Possibilities”, “Analyze In-Loco
Intervention Information” and “Analyze Donation & Deals Possibilities”.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

77

Figure 45. Step 4 – Task Model | “Attract … Community”/“Support Project”.

The Task Model is presented in Figure 45. The decomposition of the User Intention by affinity
in nouns (business concepts) and verbs, allows the identification of the “Investment
Possibilities”, “In-Loco Intervention Information”, and “Donation & Deals Possibilities” as
new business concepts, which are to be included in the “Investment”, “In-Loco Intervention”
and “Donations & Deals” DEs, respectively. Thus, from these business concepts, the attributes
of “Publish” and “Analyze” were considered, establishing a direct relation between the User
Intentions of the distinct UTs (e.g. “Publish Investment Possibilities” and “Analyze Investment
Possibilities”), and promote the derivation and reuse of the “Investment Possibilities”, the “In-
Loco Intervention Possibility” and “Donations & Deals” Interaction Components (IC).

4.4.5. Step 5 – User Interface Design
The User Interface design targeting the identification of Fields and arrangement of Interaction
Components (IC) depends on the elaboration of the Interaction Model, which applies a structure
of decision to each User Intention. According to the interaction pattern chosen to specify the
elaboration of the Software Architecture of the Information System, the specification allows
the collection of all the data, and their presentation in Interaction Objects (IO) by means of the
support provided by User Interface System Responsibilities (UISR), followed by an operation
as demanded by the user, supported by a Database System Responsibilities (DBSR).

Interaction Model

In the example presented in Figure 46, the “Analyze In-Loco Intervention Information” User
Intention of the “Support Project” UT (of the “Grow Community Project” BP), is decomposed
into a logic of interaction based on the BDD method. The User Story is presented in UML notes
and related to the User Interactions, derived from the BDD pseudo-code as presented in Table
7, until reaching the “Type Registration Observations” and “Click Register for Intervention”,
along with the identified IOs and SRs.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

78

Figure 46. Step 5 – Interaction Model | “Analyze … Intervention Information”.

User Interface Design

The User Interface reflects the structure of business concepts which are involved in the UT, as
presented in the Service Design (Section 4.4.1. Step 1 - Service Design). Applied to the “Star
Project” this logical structure is the relation of the “Synergy” DE with the remaining business

concepts. The “Synergy” drives the project including multiple investment channels, which are
composed of distinct investment possibilities, interventions to help support the project, and the
possibility of donating and establishing deals by supporters who may want to work, provide
machinery or any other valuable physical resources that they may want to dispense.

The User Interface is elaborated from top-left to right-down following the western calligraphy.
In the case that the method is to be used in a social environment where the calligraphy may be
e.g. from top-right to left-down, the adaptation of this logic should be considered. The resulting
User Interface, including the ICs derived from the remaining User Intentions of the “Support
Project” UT, are presented in Figure 47, where the “In-Loco Interventions” IC is highlighted
with its concept symbol.

Following the Interaction Model, the “Supporter” Actor may type observations and register for
an intervention. The “In-Loco Interventions” IC, the “Registration Observations” and the
“Intervention Registration” IOs are highlighted in the Figure using UML stereotype nearby the
object as designed using the Canonical Abstract Prototypes (CAP). The presented User
Interface structure is the result of the elaboration of the “Present Project” UT Task Model of
the “Project Manager” Actor, from which the following ICs were reused: “Project Character”;
“Project Sustainability”; “Success Parameters”; “Investment Possibilities”; “In-Loco
Interventions”; and “Donations & Deals”, according to the ones which were identified in the
Task Model of the “Support Project” UT of the “Supporter” Actor.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

79

Figure 47. User Interface Example.

The “In-Loco Interventions” IC which has a correspondence with the “Present Project Activity”
UT of the “Mission Manager” Actor which is presented in Figure 48. Both User Interfaces
reflect the type of reuse which is facilitated by means of the application of the GOALS method,
since the “Intervention Public Observations” IO and the “Intervention Publication” IO are what
changes in the “In-Loco Interventions” IC, allowing the “Mission Manager” to perform an
interaction in the “Registration Observations” IO, in the same way of the interaction in the
“Intervention Registration” IO performed by the “Supporter”. The remaining components of
the IC are maintained, and the structure of ICs of the AS of both actors is the same, as long as
the components are reused to the User Intentions and User Interactions that they apply.

Figure 48. User Interface Reuse Example.

Website Design

The design of the website is oriented by the “Support Project” and “Investment Possibilities
Feedback” UTs of the “Supporter” Actor, which have a structure of projects which needs to be
browsed so that the user may choose which project to support, and how. Thus, the “Investment
Possibilities Feedback” UT refers to the “Investment Possibilities” IC of “Support Project” UT
presenting a project still not approved, so that the user may “Introduce Textual Feedback”,
promise “Participation” or “Donations & Deals”, compromising on how much money he would
like to invest. Figure 49 presents the resulting website front-end design which allows browsing
the places and projects. A new IC “Project Design” was added in order to provide a visual
impact of the project, namely in terms of the service provided to the community. In the example,
the GOALS notation was used to exemplify the objective of the IC, to which are added the
already known supporter interaction possibilities, now in terms of a pre-investment poll.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

80

Figure 49. Step 5 – Website Design of the “Star Project”.

4.4.6. Step 6 – Business Logic Structuring
The Business Logic structuring focus on the “In-Loco Intervention Possibility” User Intention,
which provides support structure to the “Attract Project Community” and “Support Project”
UTs, distinguished in terms of functioning according to the User Stories of the Interaction
Model of each UT, which function as actors “permissions” over the management of each
business concept. The structuring is carried out according to the affinity logic of the business

concepts, promoting the reuse of existing DEs.

Structuring by Affinity of Business Concepts

The Business Logic components that support Interaction Components (IC), usually manage
more than one field and eventually more than one DE. The components that support Interaction
Objects (IO), usually manage one Field if they are User Interface System Responsibilities
(UISR), and more than one DE if they are Database System Responsibilities (DBSR). The
relation of the User Interface components with the Business Logic is already established,
providing meaning to each of the components of the Business Logic, which are now to be
related to the existing DEs, according to the perception that exists of the managed business

concepts, independently of the reading and writing implementation that may be used to
implement each Business Logic component.

The structure present in Figure 50 contains the “In-Loco Intervention Possibility” UISR, which
serves as an interface to the remaining UISRs and DBSRs derived by the “Analyze In-Loco
Intervention Information” and “Publish In-Loco Intervention Information” Interaction Models.
The UISRs are responsible for collecting the information which is presented in the User
Interface. The “Save Intervention, Highlight Confirmation” and “Save Registration, Highlight
and eMail Confirmation” BDSRs are responsible for saving the data in the Database and
produce feedback to the User Interface.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

81

Figure 50. Step 6 – Business Logic Structuring | “… Intervention Possibility”.

Each component is related by means of affinity of the Fields of the DEs where these Fields
belong. In the case of the DBSRs, the relation is established by means of the prediction of what
are the DEs which it algorithm will need. Furthermore, the Enterprise Structure “Sustainability
Warranties”, “Intervention Viability”, and “Intervention Internal Rules” BRs are also included.
The “In-Loco Intervention Possibility” UISR is related to those BRs by means of the “Attract
Project Community” and “Support Project” UTs IXs, namely “Project” and “World Forum”.

4.4.7. Step 7 – Database Structuring
The Database structuring is the detail of the domain model and the Data Entities (DE) which it
contains in terms of Fields and new DEs, following their derivation in the previous Steps. The
Fields are placed in the DEs by means of the affinity of their meaning. These Fields are class
attributes, which may contain data, or may be calculated. In the cases when they are calculated,
they may represent states of the system which characterize the DE. These states are independent
from the states of the system that highlight the result of User Interactions, although these states
may depend on them in function of the defined User Stories, and therefore, the related Business
Logic components (UISR, DBSR and BR).

Structuring by Affinity of Business Concepts

Figure 51. Step 7 – Database Structuring.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

82

The example in Figure 51 presents the Database structure after the elaboration of Step 6 –
Business Logic Structuring, to which the DEs “Intervention Tasks”, “Intervention
Registration”, and “Intervention Rules” where added as a result of Step 5 – User Interface
Design, along with new Fields, namely: “Reading” and “Date” of the “Success Parameters”
DE; “Objective”, “Value” and “Expected Revenue” of the “Investment” DE; “Date” and “Cost”
of the “Intervention” DE, and “Information” of the “Intervention Tasks” DE.

4.4.8. Step 8 – Software Architecting
The Enterprise Structure elaboration is the arrangement of the diagram using the relations which
were already previously established. Usually the relation between DEs is not represented, since
at this stage, their positioning by means of affinity is sufficient in order to understand the
functioning of the system. By means of arranging the diagram by affinity, the software modeler
will usually be able to find the more appropriated spaces to position each Software Architecture
component while maintaining the readability of the diagram, which will usually fit an A3 sheet.

Figure 52 presents the Software Architecture of the “Investment Feedback” and “Support
Project” Aggregation Spaces (AS), which support the UTs with the same name of the “Grow
Project Community” BP, which is the specification of front-office of the website. The “Project
Information” IC is the common support structure of both UTs. Each IC has a UISR which serves
as an electronic interface to the UISRs and DBSRs that support the User Interactions. The
Business Rules (BR) of the Enterprise Structure which refer to the Interaction Spaces (IX)
where the supported UT occurs, “Project” and “World Forum” are also presented in the
architecture.

Figure 52. Step 8 – Software Architecture.

Notice that the “Star Project” complexity is elevated when compared e.g. to the “iKiosk” project
presented in Chapter 4. The Goals Process, Method and Techniques. That happens because of
the number of business concepts. For this reason, the number of components is high, yet,
nevertheless, all the Fields of the User Interface are represented enabling traceability and also
facilitating implementation control. The Software Architecture may be used in order to assign
and create a collaboration concerning each component development within the software
development team.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

83

4.4.9. Case Study Conclusions
The presented case study reflects how the method may be used in order to specify the
organization of enterprises including envisioning the facilities and buildings that they may
occupy. The case study allows the understanding which business parts (or logical facilities) of
the enterprise are supported by automated software and which parts are not, observed in the
holistic perspective of the Business Owner, the Service Designer and the Business Process

Manager during the Analysis phase.

The development moments of the “Star Project” are presented in Table 9. There were 2 formal
meetings with the Business Owners, which also performed the roles of Service Designer in two
meetings (08-02-2017 and 23-02-2017). The project followed the Method Steps and had
demanding phases concerning the final steps of each Analysis and Design phases, in a total of
86 working hours including the client time.

Table 9. “Star Project” Development Process.

Date Stakeholders Phase Steps H

1 27-09-2016
Business Owner

Software Architect
Analysis

User Interface Drafts of

Business Owner

1. Service Design
4

2 20-10-2016 Software Architect Analysis
1. Service Design
2. BP Design

10

3 08-02-2017
Business Owner

Service Designer

Software Architect

Analysis 2. BP Design 3

4 12-02-2017 Software Architect Analysis

2. BP Design
3. Enterprise Structure
3. Enterprise Structure
4. Task Model

20

5 23-02-2017

Business Owner

Service Designer

Software Architect

User Interface Designer

Analysis &
Design

1. Service Design
2. BP Design
3. Enterprise Structure
4. Task Model
5. User Interface

8

6 18-03-2016
Software Architect

User Interface Designer
Design

4. Task Model
5. User Interface
6. Business Logic
7. Database
8. Software Architecture

40

7 14-04-2017
Business Owner

Software Architect

Analysis &
Design

5. User Interface

Project Validation
1

 86

The number of hours spent in the elaboration of the Design phase in moment 6, 40, reflects the
complexity of the project, which is augmented by the fact that the conception of the enterprise
was completely new, without a reference model of any other enterprise besides what the
websites of capturing organizations present. The presence of a User Interface Designer revealed
to be important in order to help managing the complexity generated from the derived
components and their design and structuring. Independently of the managed complexity, the
Method Steps were followed in a standard way, and the client approved the final User Interface
design, which was the main objective of the project.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

84

4.5. Conclusions
This chapter presented the process that applies a single method and language, including the
bridging and structuring techniques which elaborate the Software Architecture based on the
Business Architecture (the Enterprise Structure). Two case studies were presented, which
complement each other by first presenting the conception of each step and its elaboration, and
after, highlighting the more important aspects of each step and their related decisions, in the
process of elaborating the business and software models.

The application of the method allowed the design of the service and business processes of the
enterprise, including the used spaces, applied regulations and used data. From this information,
the business is structured, and based on this structure, human-centric techniques are applied,
structuring of the User Interface of the Information System, its Business Logic, which is
complemented with a Domain Model from which the Database is derived, achieving the full
specification of the Software Architecture for the BPI. Whether a single BP-sized improvement,
or all the BPs of the enterprise.

The final Software Architecture reflects the business requirements which are being supported,
since the relation from the User Interface (an Aggregation Space (AS)) to the User Task (UT)
is of one-to-one (by default), and each UT decomposition in terms of intentions and interactions,
and their relation to the structure of the Information System is also of one-to-one. The remaining
business requirements are expressed in the Software Architecture by means of Business Rules
(BR) in the Business Logic, and by Data Entities (DE) in the Database, which processing is
ensured by means of the Interaction Space (IX) which is used (architecturally) “inherited” by
the Aggregation Space, as a reinforcement of the (one-to-one) traceability of (business) UT and
(software) AS.

The resulting Business and Software Architectures may be used to organize the business and
its people, and also the implementation of the software that will support that organization. The
Software Architecture may be used to define implementation priority, and also affection in
function of each team member software development competences. The process may be applied
for smaller or larger software development teams, and smaller or larger BPIs, knowing in
advance, that smaller projects have increased probabilities of success [The Standish Group,
2013]. For this reason, the EDP should allow software project size to be evolved adequately,
according to the development team capability, privileging effectiveness in first place, and
efficiency in second, as efficiency depends also on experience, a reason to favor preliminary
positive results (slower projects), as these may induce efficiency improvement (faster projects)
in the long-term.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

85

5. Goals EA Template

The usage of architectural applications (or tools) for the elaboration of the models of a software
development project gives the modeler advantages in terms of model organization. Concerning
the elaboration of GOALS diagrams, an architectural tool allows the creation of a template that
includes classes (GOALS concepts), their stereotypes (symbols), and the relation between
concepts, which are simplified to dependency and association.

The main difference from an architectural tool to a design tool, is the maintenance of a single
representation of each class along all the diagrams where those classes may be instantiated in
terms of its structure and also its associations. This eliminates the need to update the design of
the diagram when a class or a relation changes or is deleted, as that change will also happen in
the remaining diagrams automatically. Thus, an architectural application allows the elaboration
of multiple diagrams where the same classes are used, yet only presenting the ones which are
needed at each moment for the conception of the system. Moreover, each class may also include
diagrams which represent their internal structure, a drill-down that allows an enhanced
organization of the diagrams of the project.

The tool elected to model GOALS is Enterprise Architect v13.5 Ultimate Edition [Sparx
Systems, 2017], which provides support for the application of the UML 2.1 language, providing
a set of features which allow the organization of all the information of a project, namely the
stereotypes and diagrams, which we present as follows, focusing the application of GOALS.

5.1. Organization
The Enterprise Architect (EA) basic features are the “Tool Box”, which provides the classes
and relationships which may be used to elaborate the diagrams, the “Project Browser”, which
allows the identification of the created diagrams and components, the “Diagram” zone in which
the modeler elaborates each diagram, and the “Tool Bar” which provides an extensive set of
tools concerning overall EA functionality, separated in tabulators (“Start”, “Design”, etc.).

Figure 53. Enterprise Architect (EA) Organization.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

86

5.1.1. Stereotype Organization
Each class type should have its own stereotype in order to facilitate its identification in the
diagrams. Each GOALS concept is a UML class type to which a stereotype may be defined
using the “UML Types” tool, available from the “Tool Bar”, at “Configure -> UML Types”, as
presented in Figure 54. In the “UML Types” tool, the modeler may create a new “Stereotype”,
typing its designation and “Base Class” (which should the generic “class”), and then clicking
the button “Save”.

In order to specify a file with the image of the stereotype, the modeler should edit the stereotype
by selecting it from the existing “Stereotypes” (e.g. the “AS” stereotype as shown in the Figure),
and select its metafile by specifying its location in the local hard drive. The stereotype file
should be of the type “.EMF” (Enhanced Metadata File) or “.WMF” (Windows Meta File). We
suggest that the image has transparency so that only the stereotype lines are visible in the
diagram, and not the background (usually a white rectangle), in order to improve readability.

Figure 54. EA - Stereotypes Organization Tool.

For the creation of the .EMF or .WMF file, we suggest using the Microsoft PowerPoint®, by:
drawing the image; selecting the image; selecting the option “Save as Picture…” from the drop-
down menu when right-clicking (for right handed people) the image; and then choosing the
image format, in order to experiment it in EA. We suggest the creation of the stereotypes for
the 12 GOALS concepts (using the in-brackets acronyms): Business Process (BP), User Task
(UT); Interaction Space (IX); Business Rule (BR); Data Entity (DE); User Intention
(UserIntention); User Interaction (UserInteraction); Aggregation Space (AS); Interaction
Component (IC); Interaction Object (IO); User Interface System Responsibility (UISR); and
Database System Responsibility (DBSR).

The Goals Approach: Business and Software Modeling Traceability by means of HCI

87

5.2. Diagrams
In EA, diagrams are managed in the “Project Browser”, using a hierarchical structure of views
that contain the diagrams of the project. We suggest the creation of a view with the name of the
project, in which all the diagrams will be contained.

Figure 55. EA - Package and Diagram Creation.

Figure 55 exemplifies the situation, where the first step (highlighted as “1”) is selecting the
option of “Add View”, and naming the view (“2”), in this case “Apoio Social” (the name of the
project). After the view is created, diagrams may be added by selecting “Add Diagram…” (“4”),
and naming the diagram, in this case “1. Service Design” (“5”), which will after appear under
the view “Apoio Social”, as highlighted with an horizontal bulleted line

Diagrams may be created in two ways. By means of using the “Insert Diagram…” option (as
presented in Figure 55), or by setting a class as a “Composite Element”, in which case, the
diagram is created as a dependency of the class. This situation is presented in Figure 56, where
after selection the option “Composite”, a new “Child Diagram” will be created as a dependency
of the class (in this case “Agendamento”), with the same name. The diagram will automatically
be opened in the “Diagram” zone, empty, in order to be elaborated.

Figure 56. EA - Diagram Creation.

Class Creation

With the diagram open, the modeler may add classes and actors, by means dragging them from
the “Class” tool from the “Tool Box” to the diagram, to which a name should be given (e.g.
“Pessoa”), and the stereotype defined (e.g. “DE”). The modeler may also duplicate classes of
the diagram by copying an existing class as a new class, using the “Paste Element(s) as New”
tool from the “Edit” drop-down menu (or using the “Ctrl + Shift + V” command after “Crtl +
C”), and changing its name. Both class creating dialogs are presented in Figure 57.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

88

Figure 57. EA - Class Edition and Duplication (only changes the name) Tools.

In the class edition tool, the modeler will also find other structural aspects of the class, namely
the attributes management (in the “Detail” separator) which are used to define the Fields of
DEs, and the relation of the class with other classes (in the “Link” separator).

Relations between Classes

After two or more classes are already added to the diagram, these may be related between each
other. Since GOALS is oriented to the modeling by hand, some adaptations must be made in
order to support its modeling using software architectural tool. The relations are of dependency
and association:

• The “Dependency” defines that one class depends on the other class existence and good
functioning in order to properly work. This is the structural relation that applies between
each of the GOALS concepts, independently of business or software.

• The “Association” relates classes in order to compose its meaning, using a cardinality
that defines for each of the predicted instantiations of one class, how many may exist
from the other class that composes the relation. It applies to Data Entities (DE). It also
applies to the relation between User Tasks (UT), for the elaboration of the Step 2.
Business Process design. When the relation is conditional, the dependency relation
should be used.

Figure 58 presents the 3 types of relation. The dependency (on the left), where the Business
Process depends on the User Tasks, which depend on the Interaction Space. The association (in
the middle), where Data Entity (DE) class “Projecto” is associated to the DE “Serviço” with a
cardinality of 1 to many (represented as 1 and *). The remaining DEs are associated with no
cardinality (as an unfinished diagram). The directional (source -> destination) association (on
the right) defining the flow of a BP execution, which in the case of the conditional relation
(from “Agendamento” to “Ir à Consulta”) is represented with the dependency.

Figure 58. EA - Relations between Classes.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

89

When existing components are added to existing diagrams, the relation which they have with
other components are also presented in the diagram by default. However, in some diagrams, it
may be necessary to hide some of the relations of the components in order to remove complexity
and make it more readable. Two examples are the relations of UTs of the BP design, and the
association of DEs in the Enterprise Structure and the Software Architecture. Those relations
may be hidden by means of right clicking the relation with the right mouse button (if right
handed, if left handed-left button), and setting the Visibility to “Hide Connector”, as presented
in Figure 59.

Figure 59. EA - Setting the Visibility of Relations.

5.3. Architectural Views
The possibility of managing classes and all their relations with other classes in each different
diagram where it is represented, allow the elaboration of enhanced architectural views, which
gather the information from multiple diagrams, in order to provide a holistic perspective of the
system being modeled. In GOALS, these diagrams are the Enterprise Structure and the Software
Architecture, and are the main reason that justified the usage of an architectural tool for the
elaboration of a software development project.

Figure 60. Enterprise Structure as an example of Enhanced Architectural View.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

90

These diagrams are enhanced architectural views that provide a privileged perspective of the
system which in the case of GOALS, include all the previously generated components. These
diagrams are useful as a base of knowledge that allows the identification namely of, missing
relations, duplicated or wrong relations, missing components, and by means of arranging the
classes by affinity, also facilitates the identification of lack of organization in classes names.

Figure 60 presents an Enterprise Structure example, which contains 25 classes, and 26 relations
of dependency. In this diagram, 15 relations between Data Entities (DE) were hidden in order
to facilitate its reading. In the case that the relations do not harm the readability of the diagram,
then they may still be presented, which is the case of the 4 flow associations between User
Tasks (UT), as they are useful to understand the functional logic without the need to open other
diagrams, in this case, the Business Process (BP) design. Thus, this type of diagram summarizes
all the previous work, and also serves as a menu to navigate to the internal diagrams of
composite elements, namely of the UTs, which in the specific case of GOALS, are from where
the design of the system continues.

5.4. Conclusions
This chapter presented how the Enterprise Architect (independently of the role that he plays:
Business Owner, Service Designer or Business Process Manager, Software Architect, User
Interface Designer and Software Developer. may take advantage of the usage of an architectural
modeling application in order to develop the 8 models of the system that reflects the business
and the software components organization.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

91

6. Validation

The validation of our method is considered in the perspectives of its internal consistency, and
of its power of expression. The validation of the GOALS language internal structure cross-
consistency targets the validation of our research hypothesis, and also allows the space for the
classification of the possible relation types between the language’s concepts. Both validation
perspectives reflect our contribution concerning the effectiveness, of producing a representative
business and software traceable model, and the efficiency of producing a software structure
based on a consistent and clear relation between models using a single modeling language.

The cross-consistency validation presented in this chapter is a second and extended version of
the validation published in [Valente et al., 2017], in which the validation is extended to the
method, and related to the Enterprise Structure (business and hybrid) and Software Architecture
(software-specific) concepts, also highlighting the human activity, User Interface, Business
Logic, and Database layers and their concept’s relations. The power of expression is validated
by means of the comparison of the GOALS language with other development methods, in terms
of: the assertiveness of the requirements elicitation; and comprehensiveness of representation
of the business and software in scope and detail. This involves comparison by means of
mapping the concepts of the methods analyzed in Chapter 2. State of The Art, with the GOALS
concepts, in every case that a comparison applies, and modeling the business, requirements or
software presented structures using the GOALS language, highlighting the differences. In this
comparison, we also include an extended comparison with the DEMO structure which was
previously published in [Valente et al., 2016b].

The analysis of the GOALS process in terms of development effort estimation [Alves et al.,
2013], previously referenced in Section 1.3. Research Question, is out of the scope of the
present validation, which only referrers to the method and language.

6.1. Cross-Consistency
Our research was based on the question of (Q1) “If it is possible to establish a modeling

language that can be applied by a single method which is representative of the organized

business activity and its supportive software system?”. And by placing the hypothesis (H1) that
it “Is possible by means of a cross-consistent relation of business and software concepts, and

by modeling the business human activity and relating it to software-specific components of the

software model by means of the application of architectural patterns”. The validation of H1 is
carried out by means of the validation of the internal consistency of the structure of the GOALS
language, and by the application of architectural patterns and restrictions (the method) that
allow the Information System implementation from a business model, ensuring traceability.

The cross-consistency between concepts is based on the application of the Cross-Consistency
Assessment (CCA) [Ritchey, 2015] method and the application of the General Morphological
Analysis (GMA) to the relation between GOALS concepts. The objective is to find an
“inference model” out of the relations analysis which ensures integrity and clarity, considered
as the “Solution Space”, from within the remaining contradictory or incompatible relations. In
the CCA which was carried out, the GOALS concepts are considered without parameters, as
the only relation being considered is the UML usage of one concept by the other, and not the
compatibility of states of these concepts once instantiated as components, which is a task of the
responsibility of the Software Developer concerning the programming of the model.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

92

The CCA was applied to the five software-specific components of the Software Architecture:
Aggregation Space (AS), Interaction Component (IX), Interaction Object (IO), User Interface
System Responsibility (UISR) and Database System Responsibility (DBSR); the two business-
specific concepts: Business Process (BP) and User Task (UT); and to the three hybrid Enterprise
Structure components: Interaction Space (IX); Business Rule (BR) and Data Entity (DE) . The
Cross-Consistency Matrix (CCM), and the resulting types of relations are presented in Figure
61 (Enterprise Structure concepts are underlined), from BP to DE, according to an UML usage
relation i.e. the component on top uses and depends on the component on the lines below to
properly work. The concepts are organized according to the their character: Human Activity,
which refers to the daily organized actions performed by humans within the business context;
User Interface, which are the components that present and provide information management
tools; Business Logic, which refers to the programmable classes; and, Database, which refers
to the tables and fields and relations between them, of the Information System.

Figure 61. Cross-Consistency Matric of the GOALS Concepts.

From the validation of the relation between concepts as considered in the matrix presented in
Figure 61, we defined four types of relations validation:

• Architectural Usage. Underlined correct sign (�). GOALS architectural relations.
Define relations between components which are generated by means of the application
of the GOALS method, and which are part of its meta-model, as presented throughout
Chapters 3. The Goals Language. It’s the “inference model”.

• Allowed Usage. Correct sign (�). Relations that can be applied for the purpose of
architectural optimization. Mostly represent: Business Modeling Flexibility (�1), in
order to allow other possible representation such as the “Usage of Spaces (IXs) by BPs”,
or the “Direct Usage of DE by IX”; or Software Architectural Horizontal Reuse (�2)
of the concept by itself, of to use other concepts from the same layer e.g. any of the
Software Architecture concepts invoking itself (notice that the UISR and BDSR
concepts are structurally equal, reason why the �2 validation also applies in this case).

The Goals Approach: Business and Software Modeling Traceability by means of HCI

93

• Contingency Usage. Wrong sign (�). Which are relations that that should not occur,
but may represent a useful trade-off, as they can simplify implementation, however
introducing architectural disorganization: Business Architectural Restrictions (�1), as
the Enterprise Structure BRs should always be accessed by IXs and not directly, and
also as DEs should be accessed by means of UI or DB SRs, and not by User Interface
components; Software Architectural Restrictions (�2), in order to ensure the
architectural control as a result of the one-to-one relation of the User Task to the AS, of
its User Intentions to the IC, and of its User Interactions to the IO, from the two-step
application of the Software Architectural Technique.

• Restricted Usage. Wrong underlined sign (�). Relations that should not exist, as the
BP and UT concepts cannot directly use Business Logic software-specific concepts, the
IX should not use any software-specific component, and the BR should not use any
other BR, in order to promote their independence in terms of regulations validation,
unless that criteria is introduced in the architectural specification for purposes of
improvement of the framework.

The Architectural Usage relations represent the “solution space”, which is the one in which
we now focus in order to sustain our research hypothesis. While the validation by means of the
CCA method supports the first part of H1: “It is possible by means of a cross-consistent relation

of business and software concepts”, the application of the method validates the second part:
“and by modeling the business human activity and relating it to software-specific components

[…] by means of the application of architectural patterns”. Figure 62 presents the CCM
“inference model” of the GOALS language and its relation with the Steps of the method.
Enterprise Structure concepts crossing relations are presented in darker doted green, and
software-specific concepts relations in lighter plain green, the invocation from business to
software or the opposite is presented in lighter doted green.

Figure 62. Cross-Consistency Matrix and the GOALS Method Steps.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

94

Thus, the second part of H1, which states that the cross-consistency should be complemented
with a method that applies the language, is sustained by the following techniques:

• The Software Architectural Support (UT-AS crossing), as a one-to-one relation of the
business-specific User Task (UT) concept and the software-specific Aggregation Space
(AS), that ensures support for a complete human (user) with one User Interface. This
structural relation is maintained thorough Steps 2 to 4. After it, the AS is decomposed
into ICs and IOs using independent techniques in the following Steps.

• The Cooperation Logic (UT-IX and AS-IX crossings), that ensures that the same IX
support is given to the pair UT-AS one-to-one relation, ensuring that the same
regulations (BRs) and information (DEs) are provided, independently of a physical of
computerized IX.

o This provides the isolation of the business responsibility which is enclosed in
business regulations in terms of BRs (Business Rules), as the business-specific
concept of the Business Logic, among software-specific concepts.

o This also allows the elaboration of the AS as a result of the IX to which its own
UT is attached, increasing the probability of finding reusable structures of User
Interface, that will serve more than one AS by means of recognizing the business

concept (DE) being managed.
o By means of recognizing reusable User Interface components, the recognition

of the Business Logic components may also be facilitated by means of
recognizing which UISR or DBSR components may provide the needed data for
the User Interface component (IC or IO) or any of its supporting System
Responsibilities (SR).

• The Software Architectural Technique, that by means of the consecutive decomposition
of the UT in terms of User Intentions and User Interactions (steps 4 and 5), results in
the elicitation of ICs and IOs that use the corresponding UISR and BDSR (which use
Data Entity elements), in order to elaborate the internal structure of the Information
System.

• The Business Logic Structuring (Step 6), that applies semiotic analysis based on the
identified business concepts (DEs) in order to relate the Business Logic components to
the Database Tables and Fields, and that isolates the responsibility of BRs and the
business-specific component of this layer.

• The Database Structuring (Step 7), that by means of semiotic analysis elaborates the
data structure that reflects the existing enterprise business concepts, composed in a
single diagram (the UML Domain Model) of DEs and corresponding Fields.

• The Software Architecture (Step 8), is simply the presentation of every concept’s
component and their relations (DEs relations are usually omitted, and the UT-IX relation
is replaced by the UT-AS one-to-one relation in the cases when a computerized support
exists).

Finding that the Architectural Usage relations presented in the CCM are valid, and that the
GOALS techniques that elicit and generate each component are suitable for the specification of
a Software Architecture for a given BPI, independently of technology used for implementation,
in order to provide support for a BPI, which business process is designed or may be translated
to the GOALS language, we sustain our hypothesis.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

95

6.2. Power of Expression
The empirical validation of the power of expression of our method targets understanding how
GOALS may be used to model different types of business and software development aspects,
in the perspective of the identification of requirements and the (model-driven) transformation
of these requirements in software architectures. The methods analyzed in Chapter 2. State of
The Art, are now compared in terms of the used techniques and their scope concerning the
business and software modeling. The models considered for comparison are relative to: the
social organization of the human activity in business processes and services, the correspondent
derivation of requirements; the task model, which specifies the organization of the individual
human activity in order to complete a task; the conceptual and implementation-independent
software structure for of the User Interface, Business Logic, and Database of the Information
System. Each method concepts are mapped to GOALS concepts in order to evaluate:
comprehensiveness in large scope and in detail; requirements elicitation; and software
architecting techniques, in every case that the comparison applies. The differences and
similarities are highlighted, and qualitative evaluations and modeling suggestions are made.

6.2.1. Service Design
The Service Design develops a “high-level” perspective of the functioning of the enterprise. In
this perspective, the relation of business processes and what they produce and consume provide
a view of the structure of goals of the enterprise, their internal and external actors.

MORELLI & TOLLESTRUP

Figure 63 presents a model of MORELLI & TOLLESTRUP [Morelli & Tollestrup, 2006],
which represents a large fabric of food. At the enterprise modeling level, the business processes
granularity is not adequate to represent large groups of business processes which are related in
order to produce complex products, reason why they are represented by “Platforms” (right side).

Figure 63. MORELLI & TOLLESTRUP and GOALS Service Design Representation.

In Figure 63, the fabric of food has a sequence of platforms (e.g. “Food Manufacture”), which
define the process of production. In GOALS, the platforms are matched by the Interaction and
Visibility Lines (only the last is represented) and the DEs that they manage, which are common
to other platforms. In GOALS, the relation between Business Processes (BPs) does not exist
(reason why the BPs access directly to the DEs, instead of the platform), because the flow of
information is analyzed by means of the structure of Business Rules (BRs) for data validation
during the execution of the BP. Nevertheless, the execution may be analyzed by means of the
cardinality of the relation between DEs e.g. one “Prepared Package” has many “Semi-Finished
Package”, and also by means of the semantical analysis of the involved concepts. MORELLI
& TOLLESTRUP identify use cases but not the internal Software Architecture.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

96

SERVICE EXPERIENCE BLUEPRINT (SEB)

The BLUEPRINT is a reference in the modeling of the interaction of the customer with the
enterprise given a certain business perspective. It defines the line of interaction and the lines of
visibility, which are important, inclusively in a marketing perspective, specifying what the
customer should see or not. The SERVICE EXPERIENCE BLUEPRINT (SEB) [Patrício et al.,
2008] is a based on the BLUEPRINT, and targets Information System development using a
logic of decomposition compatible with essential use cases in terms of the generated
requirements granularity. The method contributes to clarify the relation of the customer with
the system, while predicting that it has a “back-office” system, beyond the line of visibility.

Figure 64. SEB and GOALS Comparison.

In the example presented in Figure 64, a customer-service interaction identified by means of a
goal (mapped to a User Task, a goal within the service to the customer), is decomposed
according to the interaction of the customer with the front-end of the service. In the cases when
there is an arrow in the direction of the customer task, mapped to a User Intention in GOALS,
the information is presented using an Interaction Component (an IC). And if the direction is
towards the front-end, it is received by a User Interface System Responsibility (UISR), which
accesses a back-stage of Service Interface Links (also represented with UISRs).

The multi-interface modeling proposed by SEB could be based on the decomposition of the
User Intention and ICs into User Interactions and Interaction Objects (IO) and structured into
Aggregations Spaces (concerning each UT), implementing Steps 2 (BP design), 4 (Task Model)
and 5 (Interaction Model) of the GOALS method, to reach a structured User Interface design.
This possibility may enhance implementation time, as in most cases, the difference between the
user performing the tasks alone in his computer, and with a bank collaborator, in person, or
remotely, is that the both will use distinct implementation of each tool, and a different set of
permissions which may be described in the Interaction Model (Step 5).

6.2.2. Enterprise Engineering
DEMO [Dietz, 2006], is the reference method in EE. It uses transactions in order to organize
the enterprise human activity, and produces models which contain information that may be used
to structure the Business Logic and the Database of an Information System. ARCHIMATE, the
BUSINESS MOTIVATION MODEL, and ARMOR are also compared with GOALS in terms
of common concepts identification.

DEMO

The GOALS structure may be compared to the DEMO structure based on the analysis of the
concepts which are involved in the transactions of the business processes. The GOALS
Business Process (BP), User Task (UT), Business Rule (BR) and Data Entity (DE) concepts are

The Goals Approach: Business and Software Modeling Traceability by means of HCI

97

compatible and can be derived from the DEMO concepts of: (Transaction) Coordination Act
(C-Act), Action Rule and Object Class, respectively. GOALS adds to those concepts the Goal
(name) of the Business Process (BP), and the Interaction Space (IX). For the purpose of
understanding how GOALS provides support for the enterprise human activity, we establish a
relation between the “inter-related sets of transactions”, which define a BP in DEMO, with a
BP in GOALS.

Figure 65. DEMO and GOALS Relation of Concepts.

Figure 65 presents the relation that is established between the DEMO transactions and the
GOALS BP and its UTs. UTs are related to DEMO transactions by means of merging
consecutive Coordination Acts (C-Acts). The C-Acts are: request (rq), promise (pm), state (st),
and accept (ac). User Tasks (UT) are derived from DEMO in terms of consecutive C-Acts
performed by the same actor (e.g. sequence “T1 pm st”). In DEMO the transaction activity is
related to Actions Rules, in the same way that in GOALS the UTs are related to the space (IX)
where they occur, and then related to BRs, being therefore mapped to Actions Rules (from
which their definition is derived). The Action Rules are then related to Class Objects in DEMO,
in the same way that BRs are related to DEs in GOALS.

The identification of IX is based on the space used by actors in order to perform their UTs, and
the relation with the concept of Business Rule is based on the WISDOM Software Architectural

Technique which relates human activity (the UTs) with system behavior (the BRs) by means of
an IX. Hence, it serves as a door that relates business-and-software recognizable concepts of
Interaction Space, Business Rule and Data Entity. GOALS uses the concept of IX, in order to
establish a relation with the User Interface and remaining structure of the Information System
(the Business Logic and the Database). The DEMO method does not consider the human user
activity, as every transaction only specify two interactions between two users, with no changes.
As a result, the resulting systems need adjustment in terms of User Interface design based on
other methods, reason why we believe that the IX is an important increment to DEMO
concerning the elaboration of the business model.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

98

Figure 66. GOALS Representation of Transactions including More Than One Actor.

The establishment of the IX has the benefit of also allowing the specification of different types
of relations of human activities, namely the bi-directional relation (on the right side of the
structures presented in Figure 66), in this case presented using a Conditional relation (dashed
bi-directional line), equivalent to a flow of three UTs between two actors, in this case
represented with a Sequential relation (two full one-direction line, on the left of the structures).
The Conditional relation means that the user may not perform a UT, and that the BP execution
will continue as long as existing BRs are respected. When a bi-directional Conditional relation
is used, at least one BR should be shared between the related UTs, meaning that there is a
common aspect to be treated by the actors. Figure 66 illustrates the situation and also the
transformation of a Sequential and Conditional BP execution first supported by two IXs (on the
left) to one IX (on the right), meaning that all the actors (in this case three actors) perform their
UTs in the same physical or logical space. Thus, the difference between both methods business
conceptual structures is that GOALS considers the human interaction within a certain space
besides the remaining conceptual structure. This creates conditions to further consider relevant
aspects such as the actor context, the physical and logical space that they use, and the UTs
which they carry on. The relation of derivation of IXs from UTs may be specified for the support
of more than two UTs, and ultimately for the support of all of the UTs of a BP.

ARCHIMATE

The ARCHIMATE Language models the business and the software parts of the architecture of
an enterprise, and is oriented for the identification of the building blocks of the enterprise. We
used the concepts provided by the language in order to identify the possible mappings between
both languages so that the GOALS language could be represented using ARCHIMATE.

Figure 67. ARCHIMATE Modeling of the GOALS Structure.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

99

Figure 67 presents the relation of concepts of ARCHIMATE and GOALS. The UT is mapped
to the “Business Interaction” reflecting the interaction between actors that occurs in GOALS
each performing its UT. In the business perspective, the “Business Interface” and the
“Location” concepts are compliant with the notion of IX, and the “Business Function” is
compliant with the BR, and the “Business Object” with the DE. In the software perspective, the
“Application Interface” is compliant with the AS, and since we do not find specific and suitable
representation to the IC and IO components, we mapped these concepts to the generic
“Application Component”. The UISR and BDSR are mapped to the “Application Service” and
“Application Function” concepts. ARCHIMATE distinguishes the “Business Object” from
“Data Object”, whereas we map both to the DE representation.

BUSINESS MOTIVATION MODEL

The BUSINESS MOTIVATION MODEL (BMM) is more closely related to GOALS in terms
of the ideology specification of the enterprise, than in the perspective of the operational
implementation of the enterprise decisions. The “Strategy” and “Tactics” reveal enterprise
concepts which may be applied as guiding lines in the specification of business processes,
which is work in progress in GOALS.

Figure 68. BMM Model using the GOALS Language.

The higher level concepts used in the BMM are presented in Figure 68, which define a
“Mission” (ideology on GOALS) from which is established a “Vision” (beliefs) which is
specified by means of goals (BP and its goal) and “Objectives” (quantifiable “goals”), which
are supported by a “Course of Action” which “Strategy” (wisdom) and “Tactics” (UT) are
governed by “business rules” (BR) and “business policy” (principles). Both approaches are
similar in the way that they relate the concepts, yet, distinct in the form that they organized
them. The GOALS existing relations are presented with a full line, and the non-existent with a
dashed lighter line.

ARMOR

ARMOR produced a simplified Enterprise Architecture which has a similarity with GOALS in
terms of the (one-to-one) relation that is established between the business requirement and its
implementation. It supports modeling the goals of the stakeholders and their decomposition,
including “influence” and “conflict” control, from which it withdraws requirements which
should be supported by an “architectural component”. The relation is presented in Figure 69.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

100

Figure 69. ARMOR Structure and Representation using the GOALS Language.

The mapping between ARMOR and GOALS is coincident in the relation that is established by
“Hard Goals” (quantifiable goals) and the (“complete”) UTs, and the “one-to-one” relation of
the “Architecture Component” with the AS (or any other User Interface component), in order
to provide the same support. ARMOR is another example of the compatibility of GOALS and
the goal-oriented techniques which motivates future work regarding the evolution of GOALS
concerning the specification of the UX requirements, and further development of the Task
Model and software architectural reuse improvements.

6.2.3. Business Process Management
BPMN is the reference modeling language in BPM. It may be used to model human activity,
resources and rules, however without specifying a method.

BUSINESS PROCESS MODEL AND NOTATION (BPMN)

BPMN provides a very consistent representation of business process, that nevertheless allows
that one user may carry on more than one task consecutively, an aspect that is not benevolent
for Information Systems development, as it may lead to the identification of more use cases
then needed, which may be reflected in more components depending on the patterns used to
elaborate the Software Architecture. Also, the representation of business processes allows the
representation of part of the business regulations in the business process design, which we do
not observe as a good practice, since these regulations should be independent from the business

process execution, otherwise, slight regulations changes may change its design, and as such
lead to the loss of traceability.

Figure 70. BPMN and GOALS equivalent BP Design.

Taking as an example the BPMN “Shipment Process of a Hardware Retailer” diagram presented
in Figure 70, the “Check if Extra Insurance is Necessary” activity may depend on a business
regulations concerning “insurances” which is only expressed by means of the human activity
and the flow of the business process, and is never expressed in the resulting structure as an
independent business concept. If the regulation concerning insurance may be applied to other
business processes, and if it changes, then the design of both may have to change, with even a
bigger impact in the supporting Information System.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

101

KLUZA & NALEPA

In our perspective, the KLUZA & NALEPA [Kluza & Nalepa, 2013] method presents a solution
for the problem of rule representation using BPMN, by means of a semantic analysis which
allows the isolation and separation of business rules concerns, producing information to
structure the Business Logic of the Information System.

Figure 71. KLUZA & NALEPA and GOALS equivalent Requirements Elicitation.

Figure 71 presents the BPMN and Business Rules combination (adapted example diagram)
produced by the method, and the equivalent GOALS representation, which identifies the BPMN
activities as User Intentions, once they are performed by the same user in the “Calculate
Liability Insurance Price” UT. From the BPMN diagram it is possible to extract the dependency
of the User Intentions from the business rules, and also the dependency between them, and also
the transition to the “Display Payment Results” and the “Send Payment Results”, which may
be mapped to UISR and DBSR components, respectively.

PUTZ & SINZ

PUTZ & SINZ [Pütz & Sinz, 2010] present a solution that enables the identification of channels
of communication by means of business objects. The method applies the SEMANTIC OBJECT
MODEL (SOM) and identifies transactions and tasks by means of the interaction schema (IAS)
and the task-event schema (TES), then producing decompositions of the system until reaching
an executable BPMN description. This information may be useful in order to identify the tasks
and the User Interface spaces in a methodical way, however, it lacks a domain model, which
could benefit the approach. The model and an example are presented in Figure 72.

Figure 72. PUTZ & SINZ and GOALS equivalent Representation.

6.2.4. Human-Computer Interaction
The Human-Computer Interaction (HCI) methods produce software architectures to respond to
the user interaction providing adequate User Interface behavior, using User-Centered Design
(UCD) techniques. The architectures are usually complex, as they structure the spaces of the
User Interface, and its fields in terms of the type, usually the managed data concepts, and also
the behavior that should be applied in terms of relations between fields and spaces.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

102

The combined HCI and SE are recognized as Human-Centered Software Engineering (HCSE)
methods, in which WISDOM was pioneer by means of the Software Architectural Technique
(as referred in the thesis) generating the User Interface and Business Logic of the Information
System, further complementing it with the Domain Model, completing the MVC architecture.
Therefore, the question related to HCI does not concern the Software Architecture elaboration
only, but to how representative the method may be of the business in order to provide support
for a BP, elicit requirements and maintain traceability.

CEDAR

The CEDAR method [Akiki, 2013] establishes a relation between a task model (of e.g. a use

case), decomposing it until the physical interaction between human and system (e.g. a click),
and relates this activity to User Interface components. The structure is presented in Figure 73,
where the CEDAR method example architecture is modeled using GOALS. The final structure
is similar to the GOALS User Interface model, as the use case (equivalent to “TaskModel”) is
related to the User Interface specification (“AUIModel”), and the “Task” is related to the
“AUIElement”, to which a certain type of interaction object is specified (“AUIElementType”).

Figure 73. CEDAR and GOALS HCI Representation and User Interface Architecture.

CEDAR develops the type of User Interface architecture that enables complex specifications
that support requirements specified by User Stories [Memmel et al., 2007], usually more
detailed than use cases in terms of interaction specifications and system behavior, which may
be complemented with scenarios that may express distinct contexts according e.g. the
elaboration of personas. The CEDAR method is however, not representative of the business.

SOUSA

Figure 74. SOUSA and GOALS User Interface Architectural Similarities.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

103

The SOUSA method [Sousa et al., 2008], establishes a relation between business processes and
data by means of a task model, from which it derives a User Interface which has an equivalent
structure to the GOALS User Interface structural logic. SOUSA structures a “Screen”, a
“Screen Fragment”, and a “Screen Element” similarly to GOALS: Aggregation Space,
Interaction Component and Interaction Object. Furthermore, a “Screen Group”, defined as “a
group of closely related screens” can also be related to the AS of a given Interaction Space (IX).
This is the level of complexity which we find that is acceptable for the development of the User
Interface of an enterprise Information System, since this structure provides enough detail in
order to group complete tasks (User Tasks), User Intentions and Interactions.

NAVARRE

There are other types of architectures, which are more specific in terms of the rigor which is
architecturally introduced by its structure. In the case of the NAVARRE method [Navarre et
al., 2009], actions and the User Interface architectural components are related by means of a
sequence of human and system execution. At this level of specification, the feedback is also
structured by means of a rigorous structure in which attention is also paid to the parameters
specifying the flow of information (Figure 75).

Figure 75. NAVARRE and GOALS User Interface Architecture Representation.

This reinforced structure of information also specified more detailed and probably better well-
built User Interfaces since this level of detail will augment the probability of identifying errors
sooner and predict its behavior more clearly. However, this level of detail is out of the scope of
the present study.

6.2.5. Requirements Engineering
The Requirements Engineering (RE) methods are considered in the perspective of goal, use
case, and combined elicitation techniques, and their relation with software specification.

GONZÁLEZ & DÍAZ

The GONZÁLEZ & DÍAZ method [González & Díaz, 2007] is a goal-driven approach that
decomposes goals until the task level, from which it derives use cases as requirements. It is an
effective logic of decomposition, which however in our perspective has the problem of eliciting
use cases from different levels of granularity, which may correspond to GOALS User Tasks or
User Intentions, creating indefiniteness in terms of the structuring of the Information System.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

104

Figure 76. GONZÁLEZ & DÍAZ and GOALS Requirements Elicitation.

Figure 76 presents the method and what would be the equivalent representation with the
GOALS language, from which it is possible to establish a relation between the use cases and
User Tasks (UT), and the method tasks and User Intentions, in which the indefiniteness of use
cases is expressed by the first and second levels of use cases which are identified using the
GOALS language.

KORHERR & LIST

The KORHERR & LIST method [Korherr & List, 2006], captures use cases from business

process models in what is one example why the alignment of the system implementation and
the business process design traceability may be lost when the system is implemented. We
named this situation as use cases “Indefiniteness”, when it is possible to derive a different
number of use cases from the same process, which would result in different software
conception, probably with different software architectures.

Figure 77. KORHERR & LIST and GOALS Requirements Elicitation Representation.

Figure 77 presents the same business process modeled by KORHERR & LIST and GOALS, in
which the activities performed by the same actor e.g. “Record the Claim” and “Calculate the
Insurance Claim” are merged in the same, a UT named as “Record the Claim and Calculate the
Insurance Claim”, which includes “Check Policy”, “Formulate Claim Description” and “Proof
of Documents” as User Intentions. The difference between the two methods is that GOALS
separates the concerns targeting software implementation, promoting the simplification of the
implementation. The actions of the actor are performed over a User Interface and inevitably the
rules are implemented in programmed code, and by separating the concerns, less User Interfaces
will be implemented, and also the dependency of their logic with the rules will be diminished.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

105

KAOS

KAOS [Lamsweerde, 2000], is goal-oriented method that relates human goals and tasks to
system functionality, which vocation is the elaboration of software systems, but not necessarily
Information Systems, as the functionality specification is not supported by a Domain Model.
KAOS specifies “Goals” and their decomposition (including concurrency), the “Agents” and
“Objects”, active and inactive system components, respectively, and the “Requirements” and
“Expectations” which are system and human responsibilities, also respectively.

Figure 78. KAOS and GOALS Concept Mapping and Example.

Figure 78 presents a KAOS (adapted) diagram and its modeling using the GOALS language, in
which, the agent is represented by Interaction Spaces (IX), which may be considered as
equivalent in terms of ensuring regulations and data management. The goal is mapped to the
User Intention, and these to System Responsibilities, which are equivalent to KAOS “actions”.
By means of maintaining a structure relation between the business requirements, derived from
their expectation, the KAOS method ensures traceability between business and the software up
to the specification of the software agent, however, not the User Interface or the Database.

I-STAR (i*)

The I* (i-star, or i*) modeling framework [Yu, 1995], defines a set of concepts, namely
actor/agent, task, goal, softgoal and resource, which are very similar to GOALS in the way that
they model the interaction between the human actors. Both see the communication between
actors as a sequence from one actor to the other by means of sharing something, which in most
cases is a task, a goal/softgoal or resource.

Figure 79. I* and GOALS equivalent Representation.

In GOALS, natively, the shared concept is the Interaction Space, in which actors perform each
his own User Task, subject to the same rules and sharing the same data. I* must also be
considered as a business process model, since it defines an ongoing permanent situation, until
a goal is achieved or one of its components is not available anymore.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

106

GOALS further structures Business Rules when compared with I*, and I* further introduces
beliefs (only available in the GOALS ideology) and positions as a further specification of the
actor social context. GOALS may conceptually be used with I* in order to further compose the
Enterprise Structure with a social perspective.

MAZÓN

MAZÓN [Mazón et al., 2007], presents a method that uses the I* framework to model the
requirements and the Database of a data warehouse. It uses the concepts of (from more abstract
to more specific) strategic goal, decision goal and information goal in order to derive the fact
tables, the bases and dimensions of a data warehouse. The model is developed by means of the
decomposition of the hierarchy of goals and the identification of the tasks that support the
achievement of each goal. Based on the tasks, the information requirements are identified, and
the fact tables and their dimensions (or base) are identified and related.

Figure 80 presents the computation independent model of the method and the equivalent
representation using the GOALS language. Goals and tasks are expressed by User Intentions,
and the information and resources are represented using Data Entities (DE).

Figure 80. MAZÓN and GOALS equivalent Representation.

The structure of concepts is different, but the logic of relation is the same, as it relates the data
that should be used to satisfy the usage of the system which will support achieving the goal.
This relation is not sufficient in order to model the User Interface, but the establishment of this
relation compares to the relation which is established in the GOALS Service Design (Step 1)
between Business Processes and DEs i.e. the relation is not fully structured in terms of user
actions, but it is possible to perceive that it will be used for the purpose of the human activity.

6.2.6. Software Engineering
The RATIONAL UNIFIED PROCESS (RUP) and the UNIFIED MODELING LANGUAGE
(UML) are the de facto standards as Software Development Process (SDP), for requirements
elicitation and for software architecture elaboration. Many methods apply the combined RUP
and UML Object-Oriented (OO) analysis and design techniques in order to develop the internal
structure of the Information System. The RUP and the derived methods are analyzed concerning
use cases elicitation and the internal structure of the Information System elaboration.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

107

RATIONAL UNIFIED PROCESS (RUP)

The RUP Software Development Process (SDP) is composed of the phases of “Inception”,
“Elaboration”, “Construction” and “Transition”, which gradually build the Information System
based on the “Business Modeling”, “Requirements”, “Analysis & Design”, “Implementation”,
“Test” and “Deployment” process workflows.

Figure 81. GOALS Change relatively to the RUP SDP.

The RUP and GOALS SDPs may can be compared in the perspectives of the “Business
Modeling”, “Requirements” and “Analysis & Design”, however with changes, as the “Business
Modeling” workflow may be considered as already included in the “Analysis & Design” by
carrying on iteratively the Analysis (business model) and Design (software model) phases.
Consequently, as requirements are already identified, the “Requirements” workflow may be
considered for non-functional requirements only. The change is highlighted in Figure 81
(orange dashed line trapezoid), and represents an improvement to the SDP with one less
workflow (“Business Modeling”), and a “thinner” “Requirements” workflow. This change
brings clarification and efficiency to the SDP, since the three phases are reduced to two and
performed in a single logical sequence (software design after business analysis), applying
techniques that induce a more straight-lined and well-defined relation of business and software.

Independently of SDP, the structure of requirements is the focus of our comparison, as it drives
the system design. RUP focuses its target in the elaboration of the internal structure of the
Information System based on OO business concepts, in order to provide support for the needed
functionality as identified in use cases. This may be considered as more architecture-centric
than human-centric approach, focusing more on the software structure and functionality than
on how the user completes a task, which in contexts where UX and performance matters, makes
the difference. Therefore, the most commonly observed problem of the application of RUP is
related to the User Interface design and usability [Nunes, 2009], as the elicited use cases do not
have a suitable well-defined level of granularity when considered in the business environment.
The Use case may represent a full set of tasks, a single task, or a “click” task, and may be related
by “inclusion” and “extension” sub-dividing responsibility, but its business representation
continues limited as they do not become “meaningful” in a business perspective, as they do not
represent a full task, not allowing the specification of a uniform logic of communication
between actors . Without a business-centric organization, the architectural organization is
driven by system functionality, creating levels of dependency that may become unmanageable.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

108

Grouping functions by functionality raises a problem of modifiability [Bachmann et al., 2007],
a situation that similarly also applies to the Normalized Systems [Bruyn & Mannaert, 2012],
being therefore independent from the method, as the coupling between packages (or modules)
is a problem of organization, more than of functionality or system design, which in the limit
only exists because the deployment demands it.

Figure 82. RUP and GOALS Architectural Organization.

In the example of architecture organization of LARMAN [Larman, 2001]) presented in Figure
82, functionality is organized in the “Presentation”, “Domain” and “Persistence” packages. By
means of mapping: the package to the Interaction Space (IX, gathering data and regulations);
the internal packages to Aggregation Spaces (AS), Interaction Components (IC, gathering
functionality from business concepts e.g. “Sales”), and Data Entities (DE) (targeting MVC);
the “«interface»” classes to UISRs; and the remaining functions to DBSRs, we derive the same
architecture in GOALS, where the organization is now business-centric, and based on business
model concepts (the “Domain” IX and the “Database Façade” DE), proving insight on what
would be equivalent RUP and GOALS architectural structures.

GOALS is independent from implementation, and therefore, each implementation concept may
be supported by a distinct technology, whether a software-specific (AS, IC, IO, UISR or BDSR)
of hybrid (IX, BR or DE) component. Once components are grouped around business concepts
they become “business-centric” i.e. the organization is based on Business Processes (BP)
(which concerns are usually distinct), providing an affinity logic which is refined by the sub-
division of the BP in UTs performed in IXs (managing the same business concepts). This
promotes a high level of coupling to each IX of the BP, and a lower level of coupling between
BPs. The business-centric organization also allows an easier identification of component
implementation priority, facilitating work distribution among the software development team.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

109

The (undefined) level of granularity of the RUP use cases also contributes to generate the
recurrent need for refactoring, since when new tasks which are similar to already existing tasks
are introduced by new business processes, there is the need to use the already implemented
functions in order to avoid repeating code. And when new parameters are needed, the need to
refactor at least a single package will probably exist, in which situation the same need may also
be propagated to distinct packages that support other business processes. This is an issue that
GOALS contributes to diminish by means of the elaboration of the Software Architecture in
terms of UTs of the same Interaction Space (IX), promoting the reuse of the User Interface
components (AS, IC or IO) within that logical space, also preparing the Business Logic layer
functions to support more than one invoking component, and therefore inducing the
generalization of components from conception (design-time), contributing to avoid refactoring.
Another important cause that may lead to refactoring efforts, is that the functionality enclosed
in packages (in order to be used by functions of other packages) that implement business
regulations, may be programmed in multiple functions, that provide and receive data from the
User Interface, and not necessarily isolated in a single function, raising (business regulations)
modifiability issues. By means of isolating regulations in Business Rules (BR), GOALS clearly
separates the business and the software (logic) concerns, “dodging” the need to organize
packages, promoting the BR as the more important element of the Business Logic, and
specializing the remaining SRs solely in the management and communication of data, so that
they may be programmed separately, as business regulations are left out of the scope of their
concerns. For example, the architecture presented using the GOALS language in Figure 82 is
based on the dependencies presented in the LARMAN architecture, from where it is possible
to identify that according to the Enterprise Structure model, the missing element is the Business
Rule (BR) as the mediating component between IX and DE.

The RUP Domain Model is left unchanged along the GOALS method, since it is from it, and
by maintaining the elaboration of this model along the SDP, that the affinity relations valid for
the elaboration of the RUP packages, are also used for the specification (and reuse) of the User
Interface (AS, IC, and IO), and the supporting Business Logic, which only after are related to
the Domain Model classes (Data Entities, DE) and attributes (DE Fields). Summarizing, when
compared to RUP, GOALS maintains the same Domain, but uses essential use cases, and from
them, builds first the User Interface, and only after an equivalent Business Logic.

PHILLIPS & KEMP

The PHILLIPS & KEMP method [Phillips & Kemp, 2002], includes a “Main Flow”,
“Subflows” and “Exception Flows”, from which it derives components of the User Interface
being conceived. Figure 83 presents one example (adapted) of architecture derived from the
application of the method. The identified problem is the granularity of reuse at the level of the
user interaction, reflecting the (usually) lower level of abstraction of the use case when it is not
essential (considering the complete task within the BP flow), impeding that the level of reuse
may be identified at a higher-level “tool”, “User Intention”, or “set-of-interactions”. For
example, the “W1” User Interface (book data: “Title”, etc.), may be needed in other parts of
the system. And since there is the probability that this system is not implemented independently
of the remaining use case information, this part may probably be implemented at first as part
of the “Request Book” use case, and not as an isolated and reusable component, augmenting
the probabilities of architectural reorganization especially when new semantically close use

cases are introduced to the system.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

110

Figure 83. RUP PHILLIPS & KEMP and GOALS User Interface Architecture.

The problem may be worst when use cases may be used to model the business process of the
enterprise using Activity Diagrams, since there is the tendency to specify more than one use

case per actor in the course of the business process, as a complete user task will usually involve
use cases which are part of other complete tasks. In GOALS the complete tasks are use cases
(User Tasks) and by granularity level, the use cases usually identified with RUP, are at the level
of the User Intention, settling a higher level of abstraction of the User Task (UT) relatively to
the essential use cases applied by the PHILLIPS & KEMP method. In this situation the use

cases will probably not be exclusive in terms of the used data and components, and for that
reason, if the reuse and structuring of the components is not carried out in design time, it will
be almost impossible to ensure that the architectural control and total reuse of components is
maintained without a refactoring overhead effort.

DENNIS

The DENNIS method [Dennis et al., 2012], is an example where the same situation of use case
“Indefiniteness” happens. In this case, after being derived from business processes modeled
using Activity Diagrams, use cases were iteratively rearranged, yet losing all possibilities of
maintaining traceability of the business and software models.

Figure 84. DENNIS and GOALS Relation of Use Case Concepts.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

111

Figure 84 presents an example of a use cases model which was derived using the DENNIS
method. Each “extended” and “included” use case are at the granularity level of GOALS User
Intentions, as they are part of a bigger task. Each of the User Intentions will have a
correspondence with an Interaction Component (IC), that will have greater probabilities of
being identified for reuse, since it has a higher level of granularity than the interactions
predicted in the use cases specifications.

GRAHAM

Curiously, the method from GRAHAM [Graham, 1996], in 1986, already provided an
interesting approach to surpass the granularity problem, and provide a similar form of
communication between actors to goals, by means of using a model of business process which
is also similar to I* [Yu, 1995] in order to withdraw use cases. As the use cases are seen as the
linking artefact between actors, the indefiniteness and granularity problem is eliminated. Figure
85 exemplifies the situation, where the “Customer” places an order, and the “Salesman”
executes it over the system, in a cleaner (easier to read) and more consistent (less probability,
more resistant, to change) representation of business processes using use cases. Thus, the level
of granularity of the GRAHAM use case is precisely the same than in GOALS.

Figure 85. GRAHAM and GOALS Similarities to I*.

6.2.7. Service Oriented Architecture
Service oriented architectures (SOA) provide services of information that are usually used by
remote enterprise’ systems in order to enable commercial relations automatically, eventually
without other human intervention than the customer. What is important is the structure of
information transferred from one enterprise to the other, and the reference to an ongoing
business transaction. For this purpose, in the terms of the human activity perspective, the user
intentions have a level of granularity that suits the structuring of the information to be
transferred, which will also be subject to commands i.e. functions that receive and records data.

ARSANJANI

The ARSANJANI method includes an extensive SOA framework that organizes the business

processes and formulates the services that must be implemented in order to supply external
enterprise connectivity needs. Functionality is organized in packages, but since it is elicited
based on a business perspective, its identification and organization becomes independent from
deployment, separating the operative system needs from the semantic model.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

112

Figure 86. ARSANJANI and GOALS SOA Representation.

Figure 86 presents the SOA framework [Arsanjani et al., 2008] and the meta-model of its
conceptual structure as it may be designed using GOALS, where the User Intentions “Candidate
Services” are directly related to the User Interface System Responsibilities establishing a SOA
structuring logic.

6.3. Validation Conclusions
This chapter aimed at validating the GOALS language and method for the purpose of
Information System analysis and design. We provided a cross-consistency validation, and also
a perspective of the power of expression of the language, in terms of scope and detail, by means
of modeling other methods diagrams using GOALS, highlighting the differences. This allows
understanding its ease of use, since by means of seeing the same information modeled by two
languages, the modeler may understand what is the notation and method that suits his needs,
since as long as the used concepts are compatible, any language may be used to complete the
enterprise architecture.

The more important and structuring comparisons are relative to DEMO and RUP methods. On
one hand, GOALS is structured on DEMO for the specification of a software model that
supports any possible combination of business processes based on transactions. This is a
validation which “entitles” the GOALS business model to be included as the “back-bone”
structure of a Software Architecture composed by means of the detail of the human activity. On
the other hand, relatively to RUP, the inclusion of the business “back-bone” in the software
model allows the specification of the Information System in a top-down process benefiting the
conception of the User Interface and the isolation of business regulations in the Business Logic,
promoting the system modularization. The specification of the Database remains compatible,
acknowledging however in advance which MVC components will use which Tables and Fields.

Considering current SE practice, GOALS Software Architecture may be considered as
business-centric, suggesting changes to the organization of packages, since the Interaction
Space (IX) allows establishing a relation to all the software components of the User Tasks (UT)
which are performed on it, including the User Interface, Business Logic and Database in a
structure of usage, providing new reference terms for packages creation, centered in business
functionality (the business processes) instead of software functionality (the use cases).

The Goals Approach: Business and Software Modeling Traceability by means of HCI

113

Figure 87. GOALS and Related Work Concepts Comparison.

Figure 87 presents the mapping of all methods compared with the GOALS model, where it is
possible to identify that business-oriented methods (namely ARCHIMATE) cover a great part,
considering the lines of interaction and visibility, also structuring the concept of belief (BMM
and ARMOR) as a relevant social aspect of enterprise and system engineering. The software-
oriented RUP-based methods cover the GOALS model in a good extend, from which they
derive the needed software architectures, however not ensuring a clear line of traceability
between the business representation and the use cases identification. Moreover, it is also
important to observe how methods may be combined to extend their solution to the areas of the
problem which they do not address, as long as the used concepts remain compatible.

GOALS is not compared directly to agile methods, namely XP, SCRUM and SAFE, which
processes that guide the software project, in which the precision and traceability of the software
architecture is not a relevant. The Agile Manifesto software development values “Individuals
and interactions”; “Working Software”; “Customer Collaboration”; and “Responding to
Change”. GOALS contributes to favor those values by means organizing what the manifesto
“leaves behind”, by means of organizing in 8 Steps the “Processes and (their) Tools” in terms
of Business Processes (BP), User Tasks (UT) and Interaction Components (tools of a User
Interface), whereas development tools are out of the scope of current study; in order to produce
the minimal “Comprehensive Documentation” in 4 business (Steps 1 to 4) and 5 software
models (5 to 8), including and Interaction Model, the User Interface design and the Information
System specification in an MVC pattern; in order to facilitate “Contract Negotiation”, based on
less and more easily readable models where the physical and logical spaces are also modeled,
providing the space to apply user-centered techniques that favor agile development; which
facilitates “Following a Plan” driven by the business model and the customer needs.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

114

7. Conclusions

This thesis presented the GOALS language and method, which may be used to model the
enterprise and its software Information System, ensuring business and software traceability.
The method may be used to architect the business according to the needs of the users, customers
and other parties, which are related to the enterprise activity. It details the activity in terms of
user interactions and software components that must be programmed to support it, and provide
adequate User Interface behavior, Business Logic processing, and a Database structured on
enterprise business concepts.

GOALS applies the method based on an Enterprise Development Process (EDP) oriented by a
strategy of evolution of the logical spaces of the enterprise, both in their physical and
technological perspectives: the interactive spaces (of human and Information System: User
Task, Interaction Space, Aggregation Space); interactive tools (User Intention, Interaction
Component) and interactive objects (User Interactions, Interaction Objects, System
Responsibilities, and Fields of Data Entities:). This logic provides perspective on the
environment of the enterprise and the user context in function of the business processes goals.
The business processes and actor relation also provides a service social perspective of the
organization of the enterprise concerning the initiators and participants, and their relation with
the customer, and the results that they use and produce in terms of business concepts.

GOALS finds the “space” to fill the “gap” between enterprise and software engineering in the
modeling of the spaces of the enterprise, where the human-computer interaction techniques are
applied in order to produce User Interface architectures, their behavior and the relation to the
remaining internal structure of the information system. The used techniques are based on task
and interaction models, which have a relation with the higher and lower level functions of the
Business Logic of the Information System. Additionally, the higher level functions may be used
for the specification of service clusters of functions, which may be used for SOA in order to
specify web services clusters, while the lower level functions provide the nuclear information
and commands of the system. In the same way that SOA establishes a relation between the
business and the Business Logic of the system, GOALS exemplifies that the alignment between
enterprise and software engineering processes can also be achieved in order to provide support
for the cooperation of EE and SE towards the objective of implementing the Information System
using a well-defined and mainly more time-efficient enterprise and software development
process, challenging the idea that there is an absolute need to define separate ontologies for
enterprise and information system as defined in the EE manifesto [Dietz, 2014].

Independently of the covered ZF cells filled by GOALS and by the related methods (as
presented in Chapter 2. State of The Art), we believe that the main contribution of our language
is the consistency of the relation between business and software which is achieved by means of
the representation of the business process design using essential use cases, promoting a stable
logic of modeling. With it, “Indefiniteness” at the use case level “disappears”, as essential use

cases becomes a complete business process task, establishing its user intentions at the same
level of granularity of the “traditional” use case (as in most cases more than one is needed to
complete a business process task), and finishing at the interaction level. This level of granularity
of specification allows the application of agile development techniques that may be used to
improve a single use case, a User Intention, a User Interaction, or the data contained in each
field, and its form (relative to semiotics): syntagmatic, paradigmatic or syntactic information.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

115

The contribution of our proposal is mostly related to the Software Engineering (SE) domain,
from which our method is originated, to which we add an enterprise context that facilitates
understanding the requirements that the system must conform with, namely the used spaces,
the business regulations that apply, and the information that it must hold. It is by means of
separating the design from implementation, and by elaborating the affinity of the business
components first, and only after, of the semantically related software-specific components, that
we “dodge” the need to create packages based on functionality, shifting to a business-centric
organization, that promotes cohesion with identified Interaction Spaces, also diminishing it
between distinct BPs, maintaining traceability by means of the relation of the business and
software architectures. By means of representing the business structure in the software
structure, we contribute to diminish the problem of tracing models from the requirements
throughout the design phase, which is also a recurrent in Software Product Lines.

The GOALS language may be used by existing development processes (XP, SCRUM, SAFE
and RUP) depending on the desired level of specification, targeting the elaboration of
architectural “spikes” that may be implemented in increments, matching agile software
architecture requirements [Grundy, 2013]. Moreover, the GOALS language may also be used
to reflect enterprise architectures modeled using the DEMO method as a form of translation
that facilitates software development. This is carried out by means of relating DEMO
interrelated Transactions, their Action Rules and Objects Classes to the User Tasks, Business
Rules and Data Entities of the GOALS language, and further complementing it with the
Interaction Spaces where the human activity occurs.

Besides the presented contents, GOALS induces a new way of thinking about software and the
modeling of the enterprise, as it tries to embrace all the complexity involved in an enterprise
improvement, whether business or software, and preferably both. The business complexity is
expressed from the design of the service and the business process, to the user task, intention
and interaction. And each has a direct or patterned relation with the parts of the supporting
Software Architecture. Attention is also paid to the strategy of the EDP, privileging the
identification of working spaces, and its transformation in business processes and working
software.

This “straight line” between business and software modeling can only be achieved because the
modeling of the business is already the modeling of the software, as the business model is
“natively” integrated in the software model. The implementation-independent model allows the
“reflection” of the problem in the solution and leaves the implementation responsibility to
software managers, knowing in advance, that all the Software Architecture components can be
implemented in a relation of one (component) to one (e.g. file or table) implementation object,
depending on the chosen implementation technology.

The presented work also benefits from the contribution of The Timeless Way of Building
[Alexander, 1979], which induces the elaboration of building artefacts according to the needs,
being these requirements manifestly expressed, or observed by the architect. The models which
are produced are subject to suitable established patterns, which should be replicated in order to
perfect the process of building. In the same way, by means of observing what is really important
in each person daily life, including the user, manager, software practitioner and system needs,
we established a solution based on accepted patterns that provides support for recurrently
observable enterprise business and software development problems.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

116

7.1. Future Work
In a stable production environment, which uses software patterns in order to augment the
software production performance, it is possible to understand what may be the reference
software architecture for a given business development problem. Then, by means of direct
comparison, it may be possible to understand that are the design decisions that lead to cheaper
or more expensive software development and provide and increased or decreased Return of the
Investment (ROI). Thus, by means of analyzing the business it is possible to understand the
benefits and expected return, and by means of the modeling of the software it will be possible
to estimate the cost of development, opening a space and an ultimate software challenge, which
is the “art” of predicting the software development effort with accuracy and generating usable
software from business and software models.

7.1.1. Platform Specific Model for Information System Generation
We believe that by means of the establishment of a Platform Specific Model (PSM) it is possible
to generate the complete structure of an enterprise Information System Software Architecture.
For that purpose, the level of detail and formalization of the GOALS method needs to be
increased with the customization concerning the historical presentation of data, the level of
User Interface feedback, and the full specification of the semiotic logic.

7.1.2. Software Product Lines
GOALS is oriented to the development of a single system, yet, we believe that the proposed
architectural solution may contribute to Software Product Lines (SPL) by means of facilitating
the identification of the valid versions of the implemented objects. By means of implementing
the versioning of the produced architectures (including their components), we may help the
objective of conciliating distinct architectures (SPLs), identify the compliant components and
transporting those parts to new architectures, where the requirements must be updated.

7.1.3. Software Effort Estimation
Based on the application of the GOALS method in a software development environment, we
expect to be able to better control the estimation and execution of software development in
order to further enhance the Use Case Points formula [Alves et al., 2013; Karner, 1993]. We
believe that if estimation may be based on the size of the business process in terms of use cases,
the number of regulations and managed data entities, and also the User Interface design option,
then it may be possible to contribute to increase software project accuracy.

7.1.4. Goals Modeling Tool
The following stage of the our future work aims the development of a GOALS language
modeling tool that may apply the process and method using the language with architectural
control, and the possibility of managing the software project, controlling estimation and
implementation, and generation and testing of the final Information System.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

117

References

Akiki, P. (2013). Engineering adaptive user interfaces for enterprise applications. PhD Thesis.
Open University.

Alexander, C. (1979). The Timeless Way of Building. New York Oxford University Press.
doi:10.1080/00918360802623131

Alves, R., Valente, P., & Nunes, N. J. (2013). Improving Software Effort Estimation with
Human-centric Models: A Comparison of UCP and iUCP Accuracy. Proceedings of the

5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 287–296.
doi:10.1145/2480296.2480300

Alves, R., Valente, P., & Nunes, N. J. (2014). The State of User Experience Evaluation Practice.
In Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast,

Foundational (pp. 93–102). New York, NY, USA: ACM. doi:10.1145/2639189.2641208
Armstrong, C., Baker, J. D., Band, I., Courtney, S., Jonkers, H., Muchandi, V., & Owen, M.

(2013). Using the Archimate Language with UML.
Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., & Holley, K. (2008). SOMA:

a method for developing service-oriented solutions. IBM Systems Journal, 47(3), 377–396.
doi:10.1147/sj.473.0377

Aveiro, D., Pergl, R., & Valenta, M. (Eds.). (2015). Advances in Enterprise Engineering IX. In
Proceedings of the 5th Enterprise Engineering Working Conference (EEWC). Prague,
Czech Republic: Springer International Publishing. doi:10.1007/978-3-319-19297-0

Bachmann, F., Bass, L., & Nord, R. (2007). Modifiability Tactics. Software Engineering

Institute, Technical(September). www.sei.cmu.edu/publications/pubweb.html
Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70–77.

doi:10.1109/2.796139
Beck, K., Beedle, M., Bennekum, A. van, Cockburn, A., Cunningham, W., Fowler, M., et al.

(2001). Manifesto for Agile Software Development. http://agilemanifesto.org/. Accessed
12 December 2017

Becker, J., Knackstedt, R., Matzner, M., & Pöppelbuß, J. (2008). Leveraging Product-Service
Systems by Implementing Service-oriented Architecture. In International RESER

Conference 2008 (pp. 1–17).
Bell, M. (2008). Service-oriented modeling (SOA): service analysis, design, and architecture.

Wiley. ISBN: 978-0-470-14111-3
Berg, K., Bishop, J., & Muthig, D. (2005). Tracing software product line variability: from

problem to solution space. Proceedings of SAICSIT 2005, 182–191. ISBN: 1-59593-258-
5

Biddle, R., Noble, J., & Tempero, E. (2002). Essential Use Cases and Responsibility in Object-
oriented Development. In Proc. of 25th ACSC ’02 (pp. 7–16). Darlinghurst, Australia.
ISBN: 0-909925-82-8

Booch, B. G., Rumbaugh, J., & Jacobson, I. (2005). The Unified Modeling Language User

Guide (2nd ed.). Addison-Wesley. ISBN: 0321267974
Bowen, J., & Dittmar, A. (2016). A semi-formal framework for describing interaction design

spaces. Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems - EICS ’16, 229–238. doi:10.1145/2933242.2933247
Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An

Agent-Oriented Software Development Methodology. Autonomous Agents and Multi-

Agent Systems, 8(3), 203–236. doi:10.1023/B:AGNT.0000018806.20944.ef

The Goals Approach: Business and Software Modeling Traceability by means of HCI

118

Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., & Innerhofer-oberperfler, F.
(2011). Living Models – Ten Principles for Change-Driven Software Engineering.
International Journal of Software and Informatics, 5(231101), 267–290.

Bruyn, P. De, & Mannaert, H. (2012). Towards applying normalized systems concepts to
modularity and the systems engineering process. ICONS 2012 : The Seventh International

Conference on Systems, (c), 59–66. ISBN: 9781612081847
Cardona, V., & Duarte, H. (2013). Approach for the Model Driven Development of Business

Processes Lines Based on Service Oriented Architectures. American International Journal

of Contemporary Research, 3(7), 78–87.
Chelimsky, D., Astels, D., Dennis, Z., Hellesøy, A., Helmkamp, B., & North, D. (2010). The

RSpec Book - Behaviour-Driven Development with RSpec, Cucumber, and Friends. The
Pragmatic Bookshelf. ISBN: 978-1-93435-637-1

Constantine, L. L. (2006). Activity Modeling. ReVision, 35, 27–51. doi:10.1007/978-1-84800-
907-3_3

Constantine, L. L., & Lockwood, L. a. . (2001). Structure and style in use cases for user interface
design. Object Modeling and User Interface Design., 1(July 2015), 245–280.
doi:10.1.1.94.8255

Constantine, L., Windl, H., Noble, J., & Lockwood, L. (2003). From Abstraction to Realization:

Canonical Abstract Prototypes for User Interface Design REVISED. Distribution (Vol. 1).
doi:10.1287/opre.1080.0628

Costa, D., Nobrega, L., & Nunes, N. J. (2007). An MDA approach for generating web interfaces
with UML ConcurTaskTrees and canonical abstract prototypes. Lecture Notes in

Computer Science, 4385, 137–152. doi:10.1007/978-3-540-70816-2_11
Dai, L., & Cooper, K. (2007). Using FDAF to bridge the gap between enterprise and software

architectures for security. Science of Computer Programming, 66(1), 87–102.
doi:10.1016/j.scico.2006.10.010

Damjanovic, V., Gasevic, D., & Devedzic, V. (2005). Semiotics for ontologies and knowledge
representation. CEUR Workshop Proceedings, 130, 1–4.

de Vries, M., van der Merwe, A., & Gerber, A. (2017). Extending the enterprise evolution
contextualisation model. Enterprise Information Systems, 11(6), 787–827.
doi:10.1080/17517575.2015.1090629

Decreus, K., & Poels, G. (2011). A Goal-Oriented Requirements Engineering Method for
Business Processes. Information Systems Evolution SE - 3, 72, 29–43. doi:10.1007/978-3-
642-17722-4_3

Delgado, A., Ruiz, F., Guzman, I. G.-R. De, & Piattini, M. (2010). A Model-driven and Service-
oriented framework for the business process improvement. Journal of Systems Integration,
1(3), 45–55. http://www.si-journal.org/index.php/JSI/article/view/55

Dennis, A., Wixom, B. H., & Tegarden, D. (2012). Systems Analysis and Design with UML.
Wiley. ISBN: 978-1-118-03742-3

Development, C. (2010). CMMI for Development, Version 1.3, (November).
Dietz, J. L. G. (2006). Enterprise ontology. New York: Springer. doi:10.1007/3-540-33149-2
Dietz, J. L. G. (2014). Enterprise engineering - The manifesto. Lecture Notes in Business

Information Processing, 174 LNBIP(January), 1–2. doi:10.1007/978-3-319-06505-2
Dubberly, H., & Evenson, S. (2008). The experience cycle. Interactions, 15(3), 11–15.

doi:10.1145/1353782.1340976
Engelsman, W., & Wieringa, R. (2012). Goal-Oriented Requirements Engineering and

Enterprise Architecture. Requirements Engineering: Foundation for …, (iv), 306–320.
doi:10.1007/978-3-642-28714-5_27

The Goals Approach: Business and Software Modeling Traceability by means of HCI

119

Eriksson, H., & Penker, M. (2000). Business Modeling With UML. Business Patterns at Work,
12. doi:978-0471295518

Erl, T. (2005). SOA: Principles of Service Design. 2003 Symposium on Applications and the

Internet Workshops, 2003. Proceedings. doi:10.1109/SAINTW.2003.1210138
Ferreira, M. G., & Wazlawick, R. S. (2011). Software process improvement: A organizational

change that need to be managed and motivated. Proceedings of World Academy of Science,

Engineering and Technology, 74(2), 301–309.
http://www.scopus.com/inward/record.url?eid=2-s2.0-
79953280646&partnerID=40&md5=2c1d9d7b1231de33c3e3f5debe8fc48d%5Cnhttp://w
ww.scopus.com/personalization/myprofile.url?zone=TopNavBar&origin=recordpage%5
Cnhttp://www.scopus.com/record/display.url?eid=2-s2.0

Garcês, R., Jesus, T. de, Cardoso, J., & Valente, P. (2009). Open Source Workflow
Management Systems: A Concise Survey. 2009 BPM & Workflow Handbook, 179–190.

González, J. L. D. la V., & Díaz, S. (2007). Business process-driven requirements engineering:
a goal-based approach. Proceedings of the 8th Workshop on Business Process Modeling,

Development, and Support, 1–9.
Graham, I. (1996). Task scripts, use cases and scenarios in object oriented analysis. Object

Oriented Systems, 3(3), 123–142.
Grudin, I. (1994). Computer-supported cooperative work: History and focus. Computer, 27(5),

19–26. doi:10.1109/2.291294
Grundy, J. (2013). Foreword by John Grundy: Architecture vs Agile: competition or

cooperation? In Agile Software Architecture. ISBN: 9780124077720
Hagen, V. (2010). An Overview of BPMN 2 . 0 and its Potential Use. LN Business Information

Processing, 67. doi:https://doi.org/10.1007/978-3-642-16298-5_3
Hintzen, J., Van Kervel, S. J. H., Van Meeuwen, T., Vermolen, J., & Zijlstra, B. (2014). A

professional case management system in production, modeled and implemented using
DEMO. Proceedings of 16th IEEE Conference on Business Informatics, 1182. ISBN:
1613-0073

ISO. (2003). Internacional ISO/IEC 15504-2 (Vol. 2003).
Jacobson, I. (1992). Object-oriented Software Engineering. New York, USA: ACM. ISBN: 0-

201-54435-0
Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software Development Process.

IEEE Software, 16, 96–102. doi:10.1109/TSE.2006.59
Joshi, A., Sarda, N. L., & Tripathi, S. (2010). Measuring effectiveness of HCI integration in

software development processes. Journal of Systems and Software, 83(11), 2045–2058.
doi:10.1016/j.jss.2010.03.078

Karner, G. (1993). Resource estimation for objectory projects. Objective Systems SF AB, 1–9.
http://si.lopesgazzani.com.br/docentes/marcio/gcm/p_Karner_ResourceEstimationForOb
jectoryProjects.pdf

Kervel, S. van, Dietz, J. L. G., Hintzen, J., van Meeuwen, T., & Zijlstra, B. (2013). Enterprise
Ontology Driven Software Engineering. Journal of Chemical Information and Modeling,
53, 1689–1699. doi:10.1017/CBO9781107415324.004

Kiva. (2017). Kiva - Loans that Change Lives. https://www.kiva.org/
Kluza, K., & Nalepa, G. (2013). Towards Rule-oriented Business Process Model Generation.

Computer Science and Information Systems, 939–946. ISBN: 9781467344715
Korherr, B., & List, B. (2006). Aligning business processes and software connecting the UML

2 profile for event driven process chains with use cases and components. In The 18th

Conference on Advanced Information Systems Engineering (CAiSE ’06) (Vol. 231).

The Goals Approach: Business and Software Modeling Traceability by means of HCI

120

Luxembourg.
Kreitzberg, C. (1996). Managing for Usability. Multimedia: A management perspective.
Kruchten, P. (2004). The Rational Unified Process: an introduction (3rd ed.). Addison Wesley.

doi:10.1109/ICSE.2002.146346
Laporte, C. Y., Alexandre, S., Irish, T., & Engineering, S. (2008). A Software Engineering

Lifecycle Standard for Very Small Enterprises, 129–141.
Larman, G. (2001). Applying UML and Patterns. In 8th Conference on the Advances of

Computer Entertainment Technology (p. 627). Prentice Hall Professional. ISBN:
0130925691

Ling, T.-W., Tompa, F. W., & Kameda, T. (1981). An Improved Third Normal Form for
Relational Databases. ACM Trans. Database Syst., 6(2), 329–346.
doi:10.1145/319566.319583

Loniewski, G., Insfran, E., & Abrah, S. (2010). A Systematic Review of the Use of
Requirements Engineering Techniques in Model-Driven Development. Model Driven

Engineering Languages and Systems, (Mdd), 213–227. doi:10.1007/978-3-642-16129-
2_16

Martins, P. V., & da Silva, A. R. (2016). ProPAM/static: A static view of a methodology for
process and project alignment. Advances in Intelligent Systems and Computing, 405, 47–
57. doi:10.1007/978-3-319-26285-7_5

Mazón, J., Pardillo, J., & Trujillo, J. (2007). A Model-Driven Goal-Oriented Requirement
Engineering Approach for Data Warehouses. Science, (ii), 255–264. doi:10.1007/978-3-
540-76292-8_31

Memmel, T., Box, D., Box, D., Reiterer, H., & Box, D. (2007). Agile Human-Centered
Software Engineering. In Proceedings of the 21st British HCI Group Annual Conference

on\ People and Computers BCS-HCI ’07 (pp. 167–175). Lancaster, United Kingdom.
Mittal, K. (2006). Build Your SOA Part 3 The Service-Oriented Unified Process.pdf.

https://www.ibm.com/developerworks/library/ws-soa-method3/index.html
Morandini, M., Dalpiaz, F., Nguyen, C. D., & Siena, A. (2014). The Tropos Software

Engineering Methodology. Handbook on Agent-Oriented Design Processes, 463–490.
doi:10.1007/978-3-642-39975-6_14

Morelli, N., & Tollestrup, C. (2006). New Representation Techniques for Designing in a
Systemic Perspective. 8th International Conference on Engineering and Product Design

Education, E and DPE 2006, (March 2016), 81–86.
Morgenshtern, O., Raz, T., & Dvir, D. (2007). Factors affecting duration and effort estimation

errors in software development projects. Information and Software Technology, 49(8),
827–837. doi:10.1016/j.infsof.2006.09.006

Nair, S., Luis, J., Vara, D., & Sen, S. (2013). A Review of Traceability Research at the
Requirements Engineering Conference RE@21. In Requirements Engineering Conference

(RE) (pp. 222–229). Rio de Janeiro, Brazil: IEEE. doi:10.1109/RE.2013.6636722
Navarre, D., Palanque, P., & Winckler, M. (2009). Task Models and System Models as A

Bridge Between Hci and Software Engineering. Human-Centered Software Engineering,
HCI, 357–385. doi:10.1007/978-1-84800-907-3_17

Nunes, N. (2001). Object Modeling for User-Centered Development and User Interface

Design : The Wisdom Approach. University of Madeira.
Nunes, N., Constantine, L., & Kazman, R. (2011). iUCP: Estimating Interactive-Software

Project Size with Enhanced Use-Case Points. IEEE Software, 28(4), 64–73.
doi:10.1109/MS.2010.111

Nunes, N. J., & Cunha, J. F. (1999). A Bridge Too Far: The WISDOM Approach. Proceedings

The Goals Approach: Business and Software Modeling Traceability by means of HCI

121

of the Workshop on Object-Oriented Technology, 283–291. ISBN: 3-540-66954-X
Object Management Group. (2007). The Business Motivation Model, (September), 1–82.

http://www.businessrulesgroup.org/second_paper/BRG-BMM.pdf
Ouyang, C., Dumas, M., Van Der Aalst, W. M. P., Hofstede, A. H. M. Ter, & Mendling, J.

(2009). From Business Process Models to Process-Oriented Software Systems. ACM

Transactions on Software Engineering & Methodology, 19(1), 2:1-2:37.
doi:10.1145/1555392.1555395

Papazoglou, M. P., Heuvel, W. Van Den, Papazoglou, M. P., & Heuvel, W. Van Den. (2006).
Service-oriented design and development methodology. Int. J. Web Eng. Technol., 2(4),
412–442. doi:10.1504/IJWET.2006.010423

Páscoa, C., & Tribolet, J. (2015). Organizational Operating Systems, an Approach. Procedia

Computer Science, 64, 180–187. doi:10.1016/j.procs.2015.08.479
Paternò, F. (1999). Model-Based Design and Evaluation of Interactive Applications. London,

UK: Springer-Verlag. doi:10.1007/978-1-4471-0445-2
Paternoster, N., Giardino, C., Unterkalmsteiner, M., & Gorschek, T. (2014). Software

development in startup companies : A systematic mapping study, 56, 1200–1218.
doi:10.1016/j.infsof.2014.04.014

Patrício, L., Fisk, R. P., & Falcão e Cunha, J. (2008). Designing Multi-Interface Service
Experiences. Journal of Service Research, 10(4), 318–334.
doi:10.1177/1094670508314264

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes, 17(4), 40–52. doi:10.1145/141874.141884
Phillips, C., & Kemp, E. (2002). In support of user interface design in the rational unified

process. Australian Computer Science Communications, 24, 21–27.
doi:10.1145/563997.563989

Pine, J., & Gilmore, J. H. (1998). Wellcome to the Experience Economy. Harvard Business

Review, 76(4), 97–105. doi:Article
Pütz, C., & Sinz, E. J. (2010). Model-driven Derivation of BPMN Workflow Schemata from

SOM Business Process Models. Enterprise Modeling and Information Systems

Architecture, 5(2), 1–16. doi:http://dx.doi.org/10.18417/emisa.5.2.4
Ritchey, T. (2015). Principles of Cross-Consistency Assessment in General Morphological

Modelling. Acta Morphologica Generalis, 4(2), 1–20.
http://www.amg.swemorph.com/pdf/amg-4-2-2015.pdf

Scaled Agile. (2017). Scaled Agile Framework (SAFE).
http://www.scaledagileframework.com/

Schwaber, K. (2004). Agile Project Management with Scrum. Pearson Education. ISBN:
9780735637900

Shostak, L. (1982). How to Design a Service. European Journal of Marketing, 16(1), 49–63.
doi:https://doi.org/10.1108/EUM0000000004799

Sousa, K., Doyens, P., Mendonça, H., Rogier, E., & Vandermeulen, J. (2008). User Interface
Derivation from Business Processes : A Model-Driven Approach for Organizational
Engineering. SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
553–560. doi:10.1145/1363686.1363821

Stamper, R. (2013). On developing organisational semiotics as an empirical science: the need
for scientific method and rigorous debate. Proceedings of the Fourteenth International

Conference on Informatics and Semiotics in Organisations, 1–13. ISBN: 9789898565518
Systems, S. (2017). Enterprise Architect. www.sparxsystems.com

The Goals Approach: Business and Software Modeling Traceability by means of HCI

122

The Open Group. (2011). TOGAF ® Version 9.1 Enterprise Edition - An Introduction.
The Open Group. (2012). An Introduction to ArchiMate, an Open Group Standard.

www.opengroup.org/archimate
The Standish Group. (2013). Chaos Manifesto 2013: Think Big, Act Small. The Standish Group

International, 1–52. http://www.standishgroup.com
The Standish Group. (2014). The Standish group: the chaos report. Project Smart, 16.

doi:10.1016/S0895-7061(01)01532-1
Tryggeseth, E., & Nytro, I. (1997). Dynamic traceability links supported by a system

architecture description. In Proc. of ICSM 1997 (pp. 180–187).
doi:10.1109/ICSM.1997.624244

Ullah, A., & Lai, R. (2011). Modeling Business Goal for Business / It Alignment Using
Requirements Engineering. Journal of Computer Information Systems, 51(3), 21–28.
doi:10.1080/08874417.2011.11645482

Valente, P. (2009). Goals Software Construction Process. Saarbrucken, Germany: VDM
Verlag Dr. Muller. ISBN: 978-3639212426

Valente, P., Aveiro, D., & Nunes, N. (2015). Improving Software Design Decisions towards
Enhanced Return of Investment. Proceedings of the 17th International Conference on

Enterprise Information Systems, 388–394. doi:10.5220/0005383803880394
Valente, P., & Sampaio, P. N. M. (2007). Process Use Cases: Use cases Identification. ICEIS

2007 - 9th International Conference on Enterprise Information Systems, Proceedings,
ISAS, 301–307.

Valente, P., Silva, T., Winckler, M., & Nunes, N. (2016a). Bridging Enterprise and Software
Engineering Through an User-Centered Design Perspective. In Web Information Systems

Engineering (WISE) (Vol. 2, pp. 463–477). doi:10.1007/978-3-319-26190-4
Valente, P., Silva, T., Winckler, M., & Nunes, N. (2016b). The Goals Approach: Enterprise

Model-Driven Agile Human-Centered Software Engineering. Human-Centered and

Error-Resilient Systems Development, 9856, 261–280. doi:10.1007/978-3-319-44902-
9_17

Valente, P., Silva, T., Winckler, M., & Nunes, N. (2017). The goals approach: Agile enterprise
driven software development. Lecture Notes in Information Systems and Organisation, 22,
201–219. doi:10.1007/978-3-319-52593-8_13

Van Lamsweerde, A. (2000). Handling obstacles in goal-oriented requirements engineering.
IEEE Transactions on Software Engineering, 26(10), 978–1005. doi:10.1109/32.879820

VersionOne.com. (2017). 11th Annual State of Agile Report. VersionOne Agile Annual Report,
1–16. doi:10.1093/jicru/ndl025

Villiers, D. de. (2003). Using the Zachman Framework to Assess the Rational Unified Process
Overview of the Zachman Framework, 1–10.

Winckler, M., Cava, R., Barboni, E., Palanque, P., & Freitas, C. (2015). Usability Aspects of
the Inside-in Approach for Ancillary Search Tasks on the Web. In Human-Computer

Interaction - INTERACT 2015 (pp. 211–230). Bamberg, Germany: Springer International
Publishing. doi:10.1007/978-3-319-22668-2_18

Yu, E. (1995). Modelling Strategic Actor Relationships for Business Process Reengineering.
International Journal of Cooperative Information Systems, 4(02n03), 125–144.
doi:10.1142/S0218843095000056

Zachman, J. (2008). The Concise Definition of The Zachman Framework. Zachman
International.

Zachman, J. A. (1986). A Framework for Information Systems Architecture. IBM Systmes

Journal, 26(3), 454–470. doi:10.1147/sj.263.0276

The Goals Approach: Business and Software Modeling Traceability by means of HCI

123

Zidisha. (2017). Zidisha - Person to Person Microlending. https://www.zidisha.org/
Zikra, I. (2014). Integration of Enterprise Modeling and Model Driven Development: A Meta-

Model and a Tool Prototype. Universitetsservice AB, 1–145. http://www.diva-
portal.org/smash/record.jsf?pid=diva2:719487

Zukowski, J. (2013). The Definitive Guide to Java Swing. Apress (3rd ed., Vol. 53). Apress.
doi:10.1017/CBO9781107415324.004

The Goals Approach: Business and Software Modeling Traceability by means of HCI

124

Appendix A – The Goals Conceptual Approach

This appendix presents theoretical ideas which are useful to help understanding the logic behind
the language presented in this thesis.

The Goals Approach is based on the idea that the more a given “being” is aware if its own
capabilities, the more the probabilities it will have of achieving goals in the most efficient and
effective way. The capabilities refer to the structure and readiness of the structure for action,
and the act of achieving goals refers to the action promoted over the structure in order to fulfil
goals that improve its survival capabilities. The logic and structure derived from the idea are
presented as follows, using the Goals constructive concepts using italic font. Applied to the
enterprise domain, the enterprise is the “being” which is being considered, where efficiency
refers to the resources used to achieve a goal, and effectiveness refers to the number of times
that a goal is achieved against how many times it is tried, and performance is the efficiency in
achieving successful goals. The resources, which are internal to the system, are represented by
business concepts, which are instantiated in order to produce the data of the Information
System, and are subject to regulations which are expressed by composed (or complex) business

concepts.

Humans interact with the enterprise system using Interaction Spaces where they can carry on
their User Tasks, as long as the regulations (Business Rules) which they are subject to, are
guaranteed by the Interaction Space functioning. The Interaction Spaces of the system are
physical, software-based, or combined, meaning that when humans interact with each other in
real physical places, the Interaction Space that they occupy must provide at least the data (Data
Entities) needed in order carry on the Users Tasks, independently of the used support e.g. paper
or Database. This is seen as the minimum business-support implementation possible, so that
users can exchange, produce and keep the data generated from their labor. If the data exchange
is subject to control under the enterprise defined regulations, this means that a second level of
implementation, where they are applied in an automated way or by means of human control,
exists. In the first case an automated software Information System, in the second, a user which
responsibility of action is under the guidance of the enterprise (a collaborator) must ensure that
the regulations are applied, recurring to the existing physical resources. An Information System
support for the user’s activity can be total or partial i.e. the information exchange can be totally
carried out inside the Information System, or the human users must recur to other means in
order to be able to fulfil their tasks. If the automation is complete (of 100%), then the interaction
between the users is necessarily remote (even if they are in the same physical space). In the
case of a remote interaction, each user benefits from one Interaction Space perspective (called
as an Aggregation Space), which provides all the tools and data which are necessary in order
to carry on his task(s), including data exposure and regulations application. This happens in
the same way that when a user interacts with another in person (in 0% automation), each one
has his own perspective based on the information that he can retain (senses) and process (brain
and body) from his environment, the outside external real world in that moment. In this case,
every business regulation is processed in each user’s mind, and for that reason, not subject to
automated enterprise verification, needing human control in order to ensure that they are
satisfied, a control which is left to the enterprise needs, as users are supposed to carry on their
tasks with wisdom and according to the enterprise’s ideology.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

125

With these premises, users cooperate with each other in order to attain the enterprise’s goal in
which they are working on, being aware (the enterprise collaborator), or not necessarily (e.g.
the customer or third party actor) of it (the enterprise goal). The human activity that is carried
out in order to attain a goal is the Business Process organization that is promoted by the
enterprise. The Business Process and goal concepts cover both, the daily operational routine of
the enterprise, and the business process (or goal) monitoring activity, even if executed by a
single actor and related to strategical (e.g. market-oriented) goals. From the cost of the human
and system activity it is possible to calculate the task efficiency which is matched against the
produced resources, meaning that when the enterprise “being” uses less resources in order to
achieve a goal, then the better is the (enterprise) performance.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

126

Appendix B – Interaction Patterns

The Goals Approach is presented based on a specific interaction design pattern by default which
enables attaining a level of detail that allows the maximization of the software development
performance. I.e. the more the system is detailed, the more modeling investment in terms of
man-hour is needed, but as a return, the implementation will be probably be faster, as Software

Developers will have less doubts concerning each component implementation. This is a trade-
off that should be analyzed in terms of its long-term impact, since the Information System has
a tendency to grow with the automation of BPs, and the complexity that may be generated from
systems with a low level of organization may become (the complexity) unmanageable, even if
only a reduced part of the enterprise BPs are automated. For example, a small enterprise may
have 15 BPs, and by implementing 5 with e.g. 25 UTs, the generated system may easily have
more than 100 components. These are figures from which a patterns organization of the system
may arise, or contrarily, it may already be sufficient in order to generate architectural chaos.

Thus, each interaction design pattern has advantages and disadvantages in the business and
software perspectives. The interaction design pattern used to illustrate the Goals targets a high
level of modularization, independently of the used implementation framework. However,
depending on time and budget, the Software Architect may decide, that the option of a smaller
implementation, and a lower level organization may apply, reason why we present the possible
interaction design patterns which may be elaborated with Goals. The default pattern includes
the option for a User Interface organization that first receives the data, presents it, and upon
user command saves the data to the Database. This aims software development performance,
by means of a separation of concerns which is achieved by means of the distinction between
User Interface-oriented and Database-oriented Business Logic components. This pattern is
called as the “Read and Save”, and since the user interaction is specified in two level (User
Intentions and Interaction, Steps 4 and 5 of the Goals method), it is further defined as “Read
and Save – Interaction Design” presented in Figure 88.

Figure 88. Design Patterns for Human-Computer Interaction.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

127

The standard pattern defines User Interface (UISR) and Database System Responsibilities
(DBSR) that will serve as an electronic interface of access to the more specific UISRs and
DBSRs that will be elicited in the Interaction Modeling. The advantage of this patterns is that
it defines a hierarchy of functions that ensures modularization and facilitates the reuse of the
system. The disadvantage is that it involves an investment in terms of design and
implementation that will only be returned in the long term, with the benefits of the organization.
An alternative to this patterns which has the advantage of reducing the investment time, is not
designing the user interaction and leaving the responsibility of implementation to the UISRs
and DBSRs which are identified in the Task Model. This is an approach which is close to the
well-known method “just do it” (absence of method). It may be applied to small improvements,
but it has the disadvantage of reducing the reuse capabilities of the implemented SRs without
restructuring (refactoring [Fowler, 2000]) parts which are already implemented. Since the
system is designed based only upon the User Intentions, it is named as “Read and Save – Only
Intentions”. If complementarily there is the need to save more time not making the design
distinction between UISR and DBSR, then the implementation is also possible by implementing
the SRs whether they are generated from the Task of the Interaction models (Steps 4 or 5, the
last of the Analysis and the First of the design, respectively). These systems, namely if produced
without the detail of the user interaction, may become unmanageable when the system grows if
a strong nomenclature that facilitate component reuse is not applied. They are named as
“Simplistic”, and further defined as “Intentions” and “Interaction Design”. Notice that an
implementation of a Simplistic patterns that predicts an homogeneity of the SRs in which the
communication happens in real time between the User Interface and the Database, it would be
“cooperative work” [Grudin, 1994], since if two users are using the same User Interface of the
system for the same BP execution using the same AS at the same time, then they would be
doing cooperative work, and if they would do it using two different AS, then when one user
would change data, the other one would see it if that data would make part of the other user’s
AS. If the Software Architecture would be considered without the User Interface, then it could
be considered as Software Oriented Architecture (SOA), in which the Web Services Interfaces
and Web Services Atomic Functions could be derived from the elaboration of the Task and
Interaction models using e.g. personas instead of actors, as presented in Figure 89.

Figure 89. Design Pattern: Service Oriented Architecture (SOA).

References

[Fowler, 2000] Fowler, M., et al., Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 2000.

[Grudin, 1994] Grudin, J.: Computer-supported cooperative work: history and focus. In:
Computer, V. 27, pp. 19-26. (1994)

The Goals Approach: Business and Software Modeling Traceability by means of HCI

128

Appendix C – “iKiosk” Project Diagrams

We now present the remaining diagrams for the “iKiosk” project.

Figure 90. Business Process “Decoy”.

Figure 91. Business Process “Publish Advertisement”.

Figure 92. Business Process “Validate Reporter”.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

129

Figure 93. Enterprise Structure “Decoy”.

Figure 94. Enterprise Structure “Publish Advertisement”.

Figure 95. Enterprise Structure “Validate Reporter”

The Goals Approach: Business and Software Modeling Traceability by means of HCI

130

Figure 96. Task Model “Deliver Printing”, “Receive Payment”, “Serve Coffee” UT.

Figure 97. Task M. “Support Customer Activity”,“Obtain Classified”,“Obtain News” UT.

Figure 98. Task Model “Publish Reporter News”

The Goals Approach: Business and Software Modeling Traceability by means of HCI

131

Appendix D – “Star Project” Diagrams

We now present the remaining diagrams for the “Star Project”.

Figure 99. Business Process “Conceive Investment Project”.

Figure 100. Business Process “Evaluate Investment”.

Figure 101. Business Process “Support Investment”.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

132

Figure 102. Enterprise Structure “Conceive Investment Project”.

Figure 103. Enterprise Structure “Evaluate Investment”.

Figure 104. Enterprise Structure “Support Project”.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

133

Figure 105. TM “Present Investment Possibilities”|“Investment Possibilities Feedback”.

Figure 106. TM “Present Project” | “Support Project”.

The Goals Approach: Business and Software Modeling Traceability by means of HCI

134

Glossary

actor, 1, 3, 5, 8, 11, 15, 16, 21, 22, 23, 24, 26, 30, 32, 33, 34, 35, 36, 38, 41, 42, 49, 50, 51, 55,
56, 57, 58, 59, 61, 62, 72, 73, 74, 79, 80, 87, 95, 97, 98, 99, 104, 105, 106, 107, 110, 111,
124, 126

Aggregation Space (AS), 30, 31, 33, 36, 40, 41, 42, 43, 48, 50, 61, 62, 65, 67, 70, 82, 84, 86,
92, 94, 103, 108, 109, 123

Agile, 1, 4, 8, 9, 19, 22, 24, 53, 62, 113, 114, 115
ARCHIMATE, 15, 16, 96, 98, 113
ARMOR, 16, 96, 99, 113
ARSANJANI, 25, 111
BOWEN & DITTMAR, 18
business concept, 1, 5, 11, 26, 30, 32, 33, 34, 38, 39, 40, 41, 44, 47, 48, 56, 59, 60, 61, 67, 68,

72, 73, 76, 77, 78, 80, 82, 94, 95, 100, 107, 108, 114, 116, 123
Business Logic, 2, 5, 7, 11, 18, 25, 28, 31, 33, 39, 40, 41, 43, 44, 45, 46, 50, 51, 52, 53, 60, 62,

66, 67, 68, 69, 70, 72, 80, 81, 82, 83, 84, 91, 92, 93, 94, 95, 96, 97, 101, 102, 109, 112, 114,
125

BUSINESS MOTIVATION MODEL (BMM), 15, 16, 99, 113
business process, 1, 4, 5, 6, 8, 11, 15, 17, 18, 19, 21, 22, 24, 25, 26, 29, 33, 49, 56, 94, 100, 104,

105, 107, 110, 111, 114, 116, 124
Business Process (BP), 30, 33, 34, 40, 48, 50, 51, 54, 55, 57, 58, 62, 72, 74, 86, 88, 90, 95, 96,

97, 106, 108, 124
Business Process Improvement (BPI), 1, 4, 5, 6, 7, 19, 24, 33, 34, 36, 48, 50, 55, 58, 60, 62, 70,

84, 94
Business Rule (BR), 5, 30, 31, 33, 36, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 53, 57, 58, 59,

60, 67, 68, 75, 76, 81, 82, 84, 86, 92, 93, 94, 95, 96, 97, 98, 99, 101, 106, 108, 109, 112, 123
CEDAR, 18, 19, 102
CONCEPTUAL VARIABILITY MODEL (CVM), 27
data, 2, 5, 6, 7, 8, 11, 13, 15, 18, 19, 20, 22, 23, 25, 26, 31, 35, 37, 39, 41, 42, 43, 44, 45, 46,

50, 53, 55, 56, 57, 59, 60, 65, 68, 77, 80, 81, 84, 94, 95, 101, 103, 105, 106, 108, 109, 110,
111, 114, 116, 123, 125, 126

Data Entity (DE), 5, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53,
55, 56, 58, 59, 60, 61, 62, 65, 67, 68, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 86, 87, 88, 89,
90, 92, 93, 94, 95, 96, 97, 99, 106, 108, 109

Database, 1, 2, 7, 11, 19, 25, 28, 31, 34, 39, 40, 41, 42, 43, 44, 45, 46, 50, 52, 53, 55, 56, 62,
66, 67, 68, 69, 70, 72, 80, 81, 82, 83, 84, 91, 94, 95, 96, 97, 106, 112, 114, 123, 125

Database System Responsibility (DBSR), 31, 40, 41, 43, 44, 45, 46, 48, 50, 51, 53, 63, 64, 67,
68, 77, 80, 81, 82, 86, 92, 94, 101, 108, 126

DENNIS, 22, 110
Domain Model, 3, 22, 33, 34, 39, 40, 61, 72, 84, 94, 102, 105, 109
Enterprise Development Process (EDP), 1, 2, 5, 9, 49, 114, 115
Enterprise Structure, 5, 6, 30, 31, 32, 33, 36, 39, 40, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62,

68, 69, 72, 75, 76, 81, 82, 84, 89, 90, 91, 92, 93, 106, 109
essential use case, 3, 5, 8, 13, 14, 22, 33, 35, 36, 44, 46, 51, 57, 58, 61, 96, 109, 110, 114
goal, 2, 4, 5, 11, 13, 16, 20, 21, 23, 28, 30, 32, 33, 34, 36, 48, 55, 56, 57, 95, 96, 99, 103, 105,

106, 111, 114, 123, 124
GONZÁLEZ & DÍAZ, 20, 21, 103
GRAHAM, 22, 111
Interaction Component (IC), 31, 40, 41, 42, 43, 44, 45, 46, 48, 53, 61, 62, 63, 64, 65, 66, 67,

77, 78, 79, 80, 82, 86, 93, 94, 96, 99, 108, 109, 111

The Goals Approach: Business and Software Modeling Traceability by means of HCI

135

Interaction Object (IO), 31, 40, 41, 42, 43, 44, 45, 46, 48, 50, 62, 63, 64, 65, 67, 77, 78, 79, 80,
86, 92, 93, 94, 96, 99, 108, 109

Interaction Space (IX), 5, 7, 8, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 48, 49, 50, 51, 53, 57,
58, 59, 60, 62, 74, 75, 76, 81, 82, 84, 86, 92, 93, 94, 97, 98, 99, 103, 108, 109, 112

I-STAR (I*), 20, 21, 23, 24, 105, 106, 111
KAOS, 16, 20, 21, 105
KLUZA & NALEPA, 17, 101
KORHERR & LIST, 20, 21, 104
LARMAN, 108, 109
MAZÓN, 20, 106
Model-View-Controller (MVC), 2, 5, 6, 25, 29, 102
MORELLI & TOLLESTRUP, 14, 95
NAVARRE, 19, 103
PHILLIPS & KEMP, 109, 110
PUTZ & SINZ, 101
RATIONAL UNIFIED PROCESS (RUP), 11, 20, 22, 23, 24, 28, 106, 107, 108, 109, 110, 112,

113, 115
regulations, 1, 2, 5, 7, 8, 11, 16, 17, 23, 31, 33, 35, 38, 41, 44, 45, 48, 55, 57, 59, 75, 84, 93, 94,

100, 108, 109, 112, 115, 116, 123
requirements, 1, 4, 5, 7, 8, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 38, 49, 58,

60, 62, 84, 91, 95, 100, 102, 103, 106, 107, 115, 116
resources, 2, 4, 13, 17, 20, 30, 50, 55, 59, 70, 75, 78, 100, 105, 106, 123, 124
Return of the Investment (ROI), 4, 8, 116
SERVICE EXPERIENCE BLUEPRINT (SEB), 13, 14, 96
softgoal, 13, 23, 24, 105
Software Architecture, 2, 3, 5, 6, 7, 19, 27, 28, 30, 31, 32, 40, 41, 47, 48, 49, 50, 51, 52, 53, 62,

66, 67, 68, 69, 70, 72, 77, 82, 83, 84, 89, 91, 92, 94, 100, 102, 109, 112, 126
Software Development Process (SDP), 4, 6, 11, 15, 20, 21, 24, 27, 29, 34, 35, 36, 37, 39, 40,

42, 43, 44, 45, 46, 47, 48, 51, 53, 56, 58, 60, 62, 66, 68, 69, 70, 106, 107, 109
SOUSA, 18, 19, 103
task, 2, 5, 7, 8, 9, 13, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 32, 33, 34, 35, 36, 41, 44,

49, 50, 51, 54, 55, 57, 58, 71, 95, 96, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111,
114, 115, 123, 124

transaction, 8, 11, 15, 16, 36, 38, 74, 96, 97, 101, 111, 112, 115
UML, 6, 30, 35, 39, 40, 51, 58, 61, 77, 78, 85, 86, 91, 92, 94, 106, 117, 118, 119, 120
UNIFIED MODELING LANGUAGE (UML), 6, 20, 21, 22, 24, 30, 32
use case, 11, 14, 15, 17, 20, 21, 22, 23, 24, 25, 29, 34, 35, 41, 100, 102, 103, 104, 106, 107,

109, 110, 111, 112, 113, 114, 116
User Experience (UX), 11, 17, 50, 100, 107
User Interface, 1, 2, 3, 7, 11, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 29, 30, 31, 33, 34, 36,

37, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 76, 77, 78, 79, 80, 82, 83, 84, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106,
107, 109, 110, 112, 114, 116, 125

User Interface System Responsibility (UISR), 31, 40, 41, 43, 44, 45, 46, 48, 50, 51, 53, 61, 63,
64, 67, 68, 77, 80, 81, 82, 86, 92, 94, 96, 99, 101, 108, 126

User Task (UT), 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52,
53, 57, 58, 59, 60, 61, 62, 63, 65, 66, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 88, 89, 90, 93,
94, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110, 112, 125

Zachman Framework (ZF), 9, 12, 13, 14, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28

