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a b s t r a c t 

In humans, there is clear evidence of an association between hip fracture risk and femoral neck bone 

mineral density, and some evidence of an association between fracture risk and the shape of the proximal 

femur. Here, we investigate whether the femoral cortex plays a role in these associations: do particular 

morphologies predispose to weaker cortices? To answer this question, we used cortical bone mapping 

to measure the distribution of cortical mass surface density (CMSD, mg/cm 

2 ) in a cohort of 125 females. 

Principal component analysis of the femoral surfaces identified three modes of shape variation accounting 

for 65% of the population variance. We then used statistical parametric mapping (SPM) to locate regions 

of the cortex where CMSD depends on shape, allowing for age. Our principal findings were increased 

CMSD with increased gracility over much of the proximal femur; and decreased CMSD at the superior 

femoral neck, coupled with increased CMSD at the calcar femorale, with increasing neck-shaft angle. 

In obtaining these results, we studied the role of spatial normalization in SPM, identifying systematic 

misregistration as a major impediment to the joint analysis of CMSD and shape. Through a series of 

experiments on synthetic data, we evaluated a number of registration methods for spatial normalization, 

concluding that only those predicated on an explicit set of homologous landmarks are suitable for this 

kind of analysis. The emergent methodology amounts to an extension of Geometric Morphometric Image 

Analysis to the domain of textured surfaces, alongside a protocol for labelling homologous landmarks in 

clinical CT scans of the human proximal femur. 

© 2018 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Hip fractures are the most common cause of acute orthopaedic

ospital admission in older people ( Parker and Johansen, 2006 ),

ith their annual incidence projected to rise worldwide from

.7 million in 1990 to 6.3 million in 2050 ( Sambrook and

ooper, 2006 ). Bone mineral density is currently the imaging

iomarker of choice for assessing an individual’s fracture risk, but

lthough it is specific ( Johnell et al., 2005; Kanis et al., 2008 ) it

acks sensitivity ( Kanis et al., 2008; Kaptoge et al., 2008; Sanders

t al., 2006 ), missing the majority who go on to fracture. There is

ow growing evidence that focal, structural weaknesses may pre-

ispose a hip to fracture ( Mayhew et al., 2005; Poole et al., 2010;

e Bakker et al., 2009 ), with both trabecular and cortical bone
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laying a role ( Holzer et al., 2009; Verhulp et al., 2008; Poole et al.,

012; Kopperdahl et al., 2014 ). 

Cortical bone mapping ( Treece et al., 2010, 2012; Treece and

ee, 2015 ) is an emerging technique for the quantitative analysis

f the cortex using clinical CT data. It measures key properties of

he cortex, for instance its thickness and mineral density, with high

ccuracy at several thousand locations across the proximal femur.

ach femur is therefore represented as a textured surface, with the

calar texture representing the cortical property of interest. Statis-

ical parametric mapping (SPM) ( Friston et al., 1994 ) can then be

sed to analyse large cohorts of the textured surfaces ( Tucholka

t al., 2012; Worsley et al., 2009 ), in order to deduce, for example,

ow the cortical property depends on age, sex or group. Analyses

f this nature have shed light on focal defects that appear to play

 role in fracture risk ( Treece et al., 2015; Poole et al., 2017; 2012 ),

nd the efficacy of exercise ( Allison et al., 2015 ) and pharmaceuti-

als ( Whitmarsh et al., 2016; Poole et al., 2015; Whitmarsh et al.,

015; Poole et al., 2011 ) in targeting these defects. 
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.media.2018.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.01.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ahg13@cam.ac.uk
mailto:gmt11@cam.ac.uk
mailto:kp254@medschl.cam.ac.uk
https://doi.org/10.1016/j.media.2018.01.001
http://creativecommons.org/licenses/by/4.0/


56 A.H. Gee et al. / Medical Image Analysis 45 (2018) 55–67 

Fig. 1. In this one-dimensional example of a textured ribbon, the figure shows five 

individuals from a population of 201. The population variance can be explained in 

its entirety by a single linear shape mode (a squash or expansion around the centre, 

with the ends fixed) and no variance in the texture. An alternative, though less 

parsimonious, explanation is that there is no variance in the shape but a complex 

variance in the texture, requiring three linear texture modes to explain 99% of the 

variance. 
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1 www.mi.eng.cam.ac.uk/ ∼rwp/stradwin . 
An important step in the SPM pipeline is to spatially normal-

ize the textured surfaces, a process which involves registering each

surface to a standardized template. Only once the textures have

been expressed on a common mesh, is it possible to fit a general

linear model and explain the texture at each vertex in terms of the

various regressors. In essence, surface registration involves estab-

lishing correspondences between the template’s vertices and the

vertices of each individual mesh. Inevitably, these correspondences

are ambiguous in the barren areas between distinguished features.

Different registration algorithms resolve the ambiguity in different

ways, in a manner that depends on the surface’s shape. Conse-

quently, SPM analysis of the relationship between a surface’s tex-

ture and its shape is problematic, since shape-dependent misreg-

istration induces shape-dependent texture variation which is seen

as statistically significant ( Gee and Treece, 2014 ). 

To better understand this phenomenon, consider the contrived

example in Fig. 1 , which shows some one-dimensional textured

surfaces. The surfaces are free to deform in the one dimension, so

they are best thought of as elastic ribbons. There is no unique way

to explain the evident inter-subject variance. At one extreme, we

could say that all the ribbons have precisely the same shape, with

no elastic stretching or compression, meaning that all the variance

is in the texture. At the other extreme, we could say that all the

ribbons have precisely the same texture, meaning that all the vari-

ance is in the shape. In between these two extremes are a con-

tinuum of explanations which involve some shape variation, and

also some texture variation that depends on shape. Given this am-

biguity, how could we possibly address questions such as “How

does the surface’s texture depend on its shape?” And yet such

questions are theoretically intriguing and also practically enticing,

since femoral shape appears to affect fracture risk ( Gregory and

Aspden, 2008 ) and also bone mineral density ( Machado et al.,

2014 ). At least in males, the connection between shape and frac-

ture risk is not independent of femoral neck bone mineral density

( Ripamonti et al., 2014 ), hinting at a spatially dependent relation-

ship between gross bone shape and the thickness and density of

the cortex. 

Returning to the two extreme interpretations of Fig. 1 , the

shape-only option leads to a compact model that can explain the

population variance with a single, linear shape mode: a squash or

expansion around the centre, with the ends fixed. This is how the

data was generated. In contrast, principal component analysis re-

veals that the texture-only option requires three texture modes to

account for 99% of the population variance. Information parsimony

( Davies et al., 2002 ) is one way to resolve the ambiguity, another

being enforced correspondence between distinguished landmarks

( Bookstein, 1991 ). Either way, we need to be clear that any subse-

quent statistical analysis is entirely predicated on the assumptions

used to establish correspondences. 

In this paper, we explore these issues in the context of the cor-

tical bone mapping pipeline. Our motivation is to understand how

the cortex of the human proximal femur depends on its shape. In

Section 2 , we review the cortical bone mapping pipeline and de-
cribe several different registration algorithms that can be used to

patially normalize the textured surfaces. We design a synthetic

ata set which sheds light on the systematic misregistration in-

roduced by the various algorithms, and introduce the real human

ata which we hope to analyse. In Section 3 , we perform and dis-

uss a series of experiments on the synthetic data, leading to a

ovel framework for controlling the correspondence ambiguity. We

pply this framework to the real data, producing detailed maps

howing the variation of cortical mass with shape across the hu-

an proximal femur. After discussing the biomechanical implica-

ions of our findings, we draw some conclusions in Section 4 . 

. Methods 

The context for this work is a pipeline of processes that en-

bles the characterization and statistical analysis of cortical bone

rom clinical CT images. Although the pipeline can be applied to

ny bone with cortical and trabecular compartments, in this work

e focus exclusively on the human proximal femur. An overview of

he pipeline is presented in Fig. 2 . Each stage is described in more

etail in the following sections. 

.1. Cortical bone mapping 

Cortical bone mapping ( Treece et al., 2010; 2012; Treece and

ee, 2015 ) is a technique that estimates the cortical thickness (CTh,

m), cortical bone mineral density (CBMD, mg/cm 

3 ) and cortical

ass surface density (CMSD = CTh × CBMD, mg/cm 

2 ) at thou-

ands of locations distributed over the proximal femoral surface.

he most accurate and precise estimates are for CMSD ( Treece and

ee, 2015 ), which is one of the reasons why we focus on this prop-

rty in the present work. The other reason is that it is likely to play

 significant role in local fracture resistance, accounting as it does

or both the amount of cortex (CTh) and the mineralization of said

ortex (CBMD). 

The starting point for cortical bone mapping is an approximate

egmentation of the proximal femur, represented by a triangular

esh with ∼ 10 4 vertices ( Fig. 2 , step 1). At each vertex, the CT

ata is sampled along a line passing perpendicularly through the

ortex (step 2). A model (step 3, red straight lines), that accounts

or the imaging blur, is fitted to the data (step 3, cyan curve) so as

o minimize the differences between the blurred model (step 3, red

urve) and the data. This is repeated at all vertices. The resulting

istributions of CTh, CBMD and CMSD can be visualised as texture

aps on the femoral surface (in step 4, red is low CMSD while

lue is high CMSD). Software to perform the initial segmentation

nd cortical bone mapping is available for free download. 1 

.2. Spatial registration and the parameterization of shape 

For a cohort of size n , cortical bone mapping results in n tex-

ure distributions like the one in Fig. 2 , step 4, each expressed on a

ifferent triangular mesh (since each individual femur has a differ-

nt shape and size). Before we can compare these distributions and

est how they depend on various regressors, we must first express

ach distribution on a common mesh. To this end, a canonical fe-

ur with 5580 vertices (step 5, red) is rotated, translated and non-

igidly deformed until it aligns with each individual femur (step 5,

reen). The choice of the surface registration algorithm, and the

mplications for the subsequent statistical analysis, are the main

ocus of this paper. Once aligned, the surface texture is mapped

rom the individual to the canonical femur and smoothed (step 6).

he canonical surface mesh (which was constructed by averaging

http://www.mi.eng.cam.ac.uk/~rwp/stradwin
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Fig. 2. Cortical bone mapping (1–4), spatial registration (5–6) and statistical parametric mapping (7–8). (For interpretation of the references to colour in the text, the reader 

is referred to the web version of this article.) 
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f  

T  
he shapes of several hundred individuals), and software to per-

orm the registration, mapping and smoothing, are available for

ree download. 2 

Following registration, the n sets of deformed canonical ver-

ex coordinates are standardized for location, orientation and scale

sing Procrustes analysis ( Goodall, 1991 ). This involves translating

ach specimen to a common origin, scaling to unit centroid size,

nd then rotating to minimize the sum of the squared distances

etween the vertices of each specimen and the undeformed canon-

cal mesh. We then rescale each specimen’s vertex coordinates by

ts centroid size, 3 and use principal component analysis to build a

oint-based, statistical shape model from the resulting n sets of co-

rdinates. Let X i be the 16,740-element vector formed by concate-

ating the coordinates of individual i , and let ˆ X = 

1 
n 

∑ n 
i =1 X i . Then

he principal modes of shape variation are the eigenvectors m i 

f the sample covariance matrix 1 
n −1 

∑ n 
i =1 (X i − ˆ X )(X i − ˆ X ) T . Shape

odels of this nature are the standard way to obtain compact

hape descriptors of individual femurs, which may be represented

ccording to X i ≈ ˆ X + 

∑ k 
i =1 S i m i . For example, setting k = 3 pro-

uces a 3-element shape vector [ S 1 S 2 S 3 ] accounting for the three

ost significant modes of shape variation observed in the popula-

ion. We shall refer to S i as the shape coefficients . 

.3. Statistical parametric mapping 

Finally, we use SPM, as implemented in the SurfStat package

 Worsley et al., 2009 ), to fit a general linear model (GLM) to the
2 www.mi.eng.cam.ac.uk/ ∼ahg/wxRegSurf . 
3 This allows us to study both size and shape simultaneously. In the formal ter- 

inology of morphometrics, we are therefore considering the form of the specimen, 

ather than just its shape . 

(  

l  

3  

s  

u  

s  
 sets of registered texture ( Fig. 2 , step 7), the aim being to ex-

lain the texture at each vertex in terms of regressors of interest

e.g. shape) and also confounding regressors (e.g. age). For exam-

le, a GLM explaining the surface texture in terms of the first three

hape coefficients would take the form 

 j = β0 , j + 

3 ∑ 

i =1 

βi, j S i + ε j (1) 

here y j is the surface texture at vertex j , β i , j are the model coef-

cients and ε j is the residual error. For concision, and in common

ith many statistics packages, we will henceforth refer to GLMs

sing the more compact model formula, which is 1 + 

∑ 3 
i =1 S i for

he example in Eq. (1) . F or t -statistics can be calculated at each

ertex, to test whether the surface texture depends significantly

n the regressors, with random field theory furnishing the corre-

ponding p -values, corrected for multiple comparisons to control

he overall image-wise chance of false positives. The coefficients

f the GLM (step 8, top) can be masked to highlight those re-

ions where the effect is statistically significant, for example with

 < 0.05 (step 8, bottom). 

.4. Synthetic data 

To investigate the performance of different approaches to sur-

ace registration, we processed synthetic data through the pipeline.

he data was generated using the Blender 3D modelling suite

Blender Foundation, Blender Institute BV, Amsterdam, Nether-

ands). Starting with the canonical femur mesh, we used standard

D animation techniques to model ± 20 ° variations in the neck-

haft angle. Fig. 3 (a) and (b) show the internal Blender armature

sed to achieve this bending motion. We chose to study bending

ince neck-shaft angle varies significantly in modern human popu-

http://www.mi.eng.cam.ac.uk/~ahg/wxRegSurf
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Fig. 3. Synthetic femur data. (a) and (b) show the canonical femur mesh at the 

± 20 ° extremes of bending. Also shown is the internal armature used to define 

the bending motion. The two “bones” of the armature are hinged where they join, 

with the mesh “skinned” to the bones. As the armature bends, the mesh vertices 

are dragged to their new positions by their respective bones. (c) shows the two 

patches at the superior (S) and inferior (I) femoral neck, where the surface texture 

was modulated to simulate typical effects. CMSD varies with neck-shaft angle at S, 

and with gender at I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Sample size, age, weight and height for the human cohort. The values are given as 

mean ± standard deviation (range). 

n Age (years) Weight (kg) Height (cm) 

Females 125 76.8 ± 7.4 (53–98) 66.4 ± 11.1 (40–96) 158.1 ± 6.7 (141–175) 
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lations ( Gilligan et al., 2013 ), but poses a major challenge to surface

registration algorithms. Unless the deformation is constrained by

known homologies ( Bookstein, 1991 ), or posed explicitly in terms

of known articulations (e.g. Horaud et al., 2009 ), a registration al-

gorithm will not explain the motion in Fig. 3 (a) and (b) as a local

deformation at the neck-shaft junction inducing rigid body rota-

tion of the head with respect to the shaft. Most registration ob-

jective functions permit affine transformations without penalty, so

the motion would instead be modelled as a global shear followed

by small, local deformations to bring the surfaces into close align-

ment. 

The synthetic data comprised 41 “male” subjects with neck-

shaft angles uniformly distributed in the range −20 ◦ to +20 ◦ at

1 ° intervals, and 41 “female” subjects with the same shapes as the

males. The surface texture of each subject was set initially to the

mean CMSD of a real human cohort, as shown in Fig. 11 (a). To

model fixed effects, the CMSD was reduced by 10% in females and

increased by 10% in males at the inferior femoral neck patch in

Fig. 3 (c). In both the males and the females, the CMSD was re-

duced by 1% per 1 ° increase in neck-shaft angle at the superior

femoral neck patch in Fig. 3 (c): hence, compared with the canoni-

cal shape, the +20 ◦ individuals had 20% less CMSD at the superior

femoral neck, while the −20 ◦ individuals had 20% more CMSD. Fi-

nally, realistic noise was added to each individual’s surface texture,

by choosing a set of residuals ε j ( Eq. (1) ) at random from a large

collection of GLMs fitted to real human data, and adding the resid-

uals to the synthetic surface texture. 

2.5. Real data 

We also studied real human data drawn from two retrospec-

tive case-control studies of hip fracture in women. The Regional

Thinning of the Femoral Neck Cortex in Hip Fracture (FEMCO) study

recruited 161 women in the UK, 50 of whom were healthy vol-

unteers attending Addenbrooke’s Hospital, Cambridge. The Study of

Hip Joint in Trauma recruited 150 women in the Czech Republic,
5 of whom were healthy volunteers attending Homolka Hospital,

rague. The QCT scans were performed on a variety of machines,

ll including a calibration phantom (five-compartment, Mindways

nc., Austin, TX, USA at Cambridge; two-compartment, Siemens AG,

rlangen, Germany at Prague). Combining the two sets of controls

roduces a sample size of 125. The FEMCO and Prague data were

eadily available to the authors, having previously been analysed

n fracture case-control studies, and must therefore be viewed as a

onvenience sample. Demographics for the subjects can be found

n Table 1 . Informed consent was obtained from all participants. 

.6. Locally affine registration 

The locally affine registration algorithm of Feldmar and Ay-

che (1996) finds a nonrigid transformation of surface M 1 to bring

t into alignment with surface M 2 . Associated with each vertex k

f M 1 is a set of neighbouring vertices N k , where each member

f N k lies withing a distance d of vertex k . The starting point for

he algorithm is an approximate alignment computed using the it-

rative closest point approach of Besl and McKay (1992) . This ap-

roximate alignment is parameterized by a single, global transfor-

ation matrix: we use a similarity transform, comprising rotation,

ranslation and isotropic scaling, as shown in Fig. 4 (b). There fol-

ows an iterative process to compute the additional, local displace-

ent of each vertex k on M 1 . At iteration i , every vertex on M 1 

s paired with its closest neighbour on M 2 . Then, for each vertex

 on M 1 , the rigid transformation R k , i is found that minimizes

he summed squared distances between the transformed vertices

n N k and their partners on M 2 . The local displacement of ver-

ex k is then set to a proximity-weighted average of all the rigid

ransformations R k , i within N k . At iteration i + 1 , the closest neigh-

ours and consequent rigid transformations R k,i +1 are recomputed,

nd so on, until convergence. d is the algorithm’s only parameter,

ts effect being to regularise the amount of allowable deformation.

maller values of d permit more deformation and closer alignment

f the two surfaces, while larger values of d favour smooth dis-

lacement fields over alignment accuracy. We shall refer to this

lgorithm using the acronym LAD (locally affine deformation). We

et the parameter d to 15 mm for all the shape-driven LAD exper-

ments in this paper. 

LAD is an uncomplicated example of a class of shape-driven

egistration algorithms that apply local, nonrigid transformations

n top of a global rigid or affine alignment. More sophisticated ex-

mplars have been developed within a robust mathematical frame-

ork to guarantee diffeomorphic deformations ( Joshi and Miller,

0 0 0; Beg et al., 2005 ). A common limitation of all such ap-

roaches is that they are sensitive to the initial, global alignment

 Ashburner, 2007 ). This is evident in Fig. 4 (c), where there is ob-

ious tangential misalignment at the truncated femoral shaft and

lso at the fovea capitis (compare the arrows, drawn in identi-

al positions, in Fig. 4 (c) and (h)), caused by incorrect proximity-

riven vertex correspondences that have their origins in Fig. 4 (b). 

Nevertheless, the simple LAD algorithm serves our illustrative

urposes well. For d ≥ 15 mm, we never observed any surface fold-

ng. Moreover, it is straightforward to modify the LAD algorithm to

ncorporate an element of texture-driven registration. After initial

AD convergence, further iterations may be performed with ver-

ices on M 1 paired not with their nearest neighbours on M 2 , but

nstead with the vertex on M , within a reasonable search range
2 
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Fig. 4. Registrations of the canonical femur (red) to the synthetic +20 ◦ specimen (green). The dots are the surface sliding semilandmarks used in the TPS and TPS-LM 

algorithms: they also serve to reveal tangential deformation of the surface. For clarity, the target surface (green) is not shown in (c)–(h), since it is almost coincident with 

the registered canonical surface (red). The arrows are drawn at identical locations in (c)–(h), highlighting obvious registration discrepancies. Close examination of the dots 

in (c)–(h) reveals significant variation in the tangential alignment computed by the various registration algorithms. The perfect registration in (h) was obtained using the 

LAD algorithm, but with correct one-to-one vertex correspondences instead of proximity-based correspondences. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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we used 3mm), that has the most similar texture. This has the ef-

ect of modifying the initial LAD registration to reduce the dissim-

larity between the aligned texture fields. We refer to this variant

sing the acronym LAD-TEX- d , where d is the parameter (in mm)

sed to define the LAD vertex neighbourhoods. By varying d , we

an control how much extra deformation to allow: large values of

 imply a smooth displacement field, whereas small values of d

llow more deformation. Texture-driven algorithms of this nature

ave been recommended for the registration of textured surfaces

 Sidorov et al., 2011; Lin et al., 2016 ). 

Fig. 4 (d) and (e) show the canonical mesh, textured with the

ohort average CMSD of Fig. 11 (a), registered to the synthetic

emale +20 ◦ specimen using the LAD-TEX algorithm with d =
0 mm and d = 15 mm respectively. Had the two texture fields

een identical, the LAD-TEX algorithm would have brought them

nto perfect alignment. But the textures differ at both of the

atches in Fig. 3 (c) and also by virtue of the added noise. While

he fovea capitis is now better aligned (arrows), attempting to align

he different textures at the inferior femoral neck has resulted in

bvious registration errors at the truncated shaft. 

.7. Registration using sliding semilandmarks 

The sliding semilandmark algorithm, originally developed for

lanar morphometry ( Bookstein, 1991, 1997 ) and subsequently ex-

ended to surfaces ( Gunz et al., 2005 ), is a mainstay of the geo-

etric morphometrics community. The method requires a set of

oint landmarks on surface M 1 and a matching set on surface

 2 . The landmarks fall into three categories: homologous points

hat are known to correspond on the two surfaces (e.g. the cen-

re of the fovea capitis), points on corresponding curves (e.g. the

inea aspera) and points that lie on the surfaces but are otherwise

ndistinguished. The sliding semilandmark algorithm finds the thin
late spline (TPS) that warps the landmarks on M 1 so that they

lign perfectly with their partners on M 2 . In so doing, it recon-

gures the landmarks on M 2 so as to minimize the TPS bending

nergy. Curve-based landmarks are allowed to slide in one dimen-

ion, tangentially to their curves, while surface-based landmarks

re allowed to slide in two dimensions, tangentially to the surface.

hese sliding landmarks are often referred to as semilandmarks.

omologous point landmarks are true landmarks and are not al-

owed to slide. 

While homologous point and curve landmarks generally need

o be located by an expert ( Gunz and Mitteroecker, 2013 ), surface-

liding semilandmarks can be distributed automatically, at evenly

paced locations on the meshes, and are sufficient to align the two

urfaces. We used a total of 476 such semilandmarks, the dots in

ig. 4 . We shall refer to this automatic registration method using

he acronym TPS. 

We also placed homologous point and curve landmarks on

istinguished features of the proximal femur that are read-

ly identified in low resolution, clinical CT images. Following

armon (2007) , we located point landmarks at the centre of the

ovea capitis, the posterosuperior point on the intertrochanteric

rest and the deepest point of the trochanteric fossa. These points

re especially easy to identify when the surface rendering is

haded with the local Gaussian curvature, as in Fig. 5 . We added a

urve landmark at the periosteal projection of the calcar femorale,

hich is readily apparent in the CT data, as shown at the right

f Fig. 5 . We added further curve landmarks around the bound-

ries of the femoral head and the lesser trochanter, defined by the

ntersection of the surface with the best-fit planes that partition

reas of positive and negative Gaussian curvature (i.e. blue-to-red

ransitions in Fig. 5 ). We added a final curve landmark around the

emoral shaft at the level of the lesser trochanter, defined by the

ntersection of the surface with the plane that passes through the
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Fig. 5. Point and curve landmarks used in the TPS-LM registration algorithm. Most of these landmarks are placed manually or semi-automatically with reference to the 

Gaussian curvature of the mesh. In the rendering on the left, Gaussian curvature is shown on a red–blue scale, with blue representing positive values and red representing 

negative values. The calcar femorale are traced manually on the green mesh (bottom right), the resulting curve is projected back into the original CT data (top right), and 

the curve is then edited on the green mesh until the projections align well with the calcar in the CT data. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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centre of the segmented lesser trochanter and whose normal is

parallel to the shaft, the shaft direction being estimated automati-

cally as the best mutual perpendicular to the triangles at the distal

end of the mesh. 

While none of these landmarks would pass the most stringent

test of true biological homology (the so-called Type I landmarks of

Bookstein, 1991 ), they serve our purpose in that their locations are

ostensibly unbiased by the gross shape of the specimen. For exam-

ple, neck-shaft angle and femoral neck length do not obviously in-

fluence the location of any of these landmarks. They therefore play

a potential role in removing systematic misregistration effects that

depend on gross shape. We shall refer to their use in the sliding

semilandmark algorithm using the acronym TPS-LM. 

In Fig. 4 (g), the TPS-LM registration is virtually indistinguishable

from the ground-truth perfect registration in Fig. 4 (h). In contrast,

the automatic TPS algorithm in Fig. 4 (f) shows evidence of shear-

ing at the truncated femoral shaft. This is unsurprising, since affine

transformations incur no TPS bending energy penalty ( Gunz et al.,

2005 ), so are preferred to bending in the absence of homologous

landmark constraints. 

3. Experiments, results and discussion 

3.1. Synthetic data 

3.1.1. Shape-texture variance trade-off

We registered the canonical femur mesh, textured with the

mean CMSD in Fig. 11 (a), to the 82 synthetic specimens using

the six different registration algorithms introduced in Section 2 .
ig. 6 (a) shows the post-registration texture misalignment, quan-

ified as the root mean square discrepancy between the canon-

cal CMSD and each individual’s CMSD, and expressed as a per-

entage of the mean CMSD. When perfectly aligned, this discrep-

ncy is around 15%, since there is noise and also systematic tex-

ure variation depending on gender and shape. The LAD-TEX-30

lgorithm performed as expected, finding imperfect alignments

hat nevertheless reduce the mean texture discrepancy to around

2%. The LAD-TEX-15 algorithm was able to introduce further lo-

al shape deformation and achieve a mean texture discrepancy of

round 9%. 

We then built statistical shape models using the six sets of ver-

ex displacements. Fig. 6 (b) shows the cumulative eigenvalues, re-

ecting the amount of shape variance embodied in the first 20

odes of the models. Taken together, Fig. 6 (a) and (b) show the

rade-off between attributing variance to texture or shape: with-

ut exception, as the post-registration texture variance decreases,

o the total shape variance increases. Note that the differences in

symptotic shape variance reflect mostly tangential surface defor-

ation, since all the registration algorithms bring the surfaces into

easonable normal alignment. 

Fig. 7 shows the first shape mode for each of the six mod-

ls. With perfect registration and also with the TPS-LM algo-

ithm, this mode (the only significant mode) captures the ground-

ruth bending deformation. In contrast, inspection of the truncated

haft reveals how the TPS and LAD algorithms interpret the mo-

ion as mostly shearing. The LAD-TEX algorithms introduce more

omplex deformations that reduce the post-registration texture

ariance. 
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Fig. 6. Registration performance indicators for the synthetic data. (a) shows the av- 

erage, post-registration root mean square texture discrepancy, expressed as a per- 

centage of the mean CMSD. (b) shows the cumulative eigenvalues (reflecting cumu- 

lative shape variance) of the statistical shape models for the first 20 shape modes. 

(For disambiguation of the lines in (b), the reader is referred to the colour web 

version of this article.) 
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.1.2. Statistical parametric mapping 

Figs. 8 and 9 show the results of SPM with the GLM 1 +
ender + 

∑ 3 
i =1 S i . Recall that the ground-truth texture varied by

0% with gender at the inferior femoral neck, and by 1% per 1 °
ariation in neck-shaft angle (which equates to 11.5% per standard

eviation) at the superior femoral neck. Since the sample size is

rbitrary, the p -masks in Figs. 8 and 9 provide nothing more than

 correspondingly arbitrary threshold for comparing the perfor-

ances of the registration algorithms. They do not reflect repli-

ability of the study, as would normally be the case. 

The key point to note from Fig. 8 is the success of the TPS, TPS-

M and LAD algorithms in recovering the correct dependence of

MSD on gender, despite the registration ambiguity and the differ-

nt ways the three algorithms have modelled the shape variation.

he reason for this is that these three algorithms are driven en-

irely by shape; so the way they resolve ambiguity in vertex cor-

espondence depends only on shape; so the ambiguity is mani-

ested only in the dependence of CMSD on shape, and not on gen-

er which is independent of shape. It would appear that statisti-

al analysis of surface texture can be insensitive to the choice of

egistration algorithm, as long as the regressor is independent of

hape (this would need to be demonstrated empirically), the reg-

stration algorithm is purely shape-driven, and the GLM includes

hape coefficients as confounding variables. This is a key finding of

his study. 

Quite different results are obtained by the LAD-TEX algorithm,

ince the vertex correspondences now depend on texture and

herefore gender. The results in Fig. 8 (e) and (f) conflate the true

ender effect with the LAD-TEX algorithm’s effort s to reduce the

exture variance by registering the males and females in systemat-
cally different ways. Note how this results in an attenuated, bipo-

ar gender effect that extends beyond the ground-truth patch at

he inferior femoral neck. 

Importantly, with the LAD-TEX algorithm, the difference be-

ween males and females is no longer confined to the surface

exture, but also embedded in the shape coefficients. Statistical

nalysis of the surface texture alone, as in Fig. 8 (e) and (f), is of

uestionable value. This phenomenon is well understood and has

een much discussed in the literature, particularly in the context

f voxel-based morphometry ( Ashburner and Friston, 2001; Book-

tein, 2001a,b ), an SPM variant for analysing anatomical shape. At

east one SPM workflow has evolved from using texture-driven

egistration ( Li et al., 2009 ) to purely shape-driven registration

 Carballido-Gamio et al., 2013a,b ). 

Unfortunately, there is no simple way of marginalising the cor-

espondence ambiguity when the regressor of interest depends on

hape. In Fig. 9 , there is no consensus regarding the relationship

etween CMSD and shape, with only the TPS-LM algorithm agree-

ng with the ground truth. At the other extreme, the LAD results in

ig. 9 (d) exhibit large areas of artefact, caused by tangential mis-

lignment of the texture field, with the misalignment depending

ystematically on shape ( Gee and Treece, 2014 ). The different reg-

stration algorithms have modelled the shape variation in different

ays, leading to different answers to the question “How does sur-

ace texture depend on shape?”

.1.3. Parsimonious modelling of shape and texture 

This begs the question: is it even feasible to construct joint

odels of texture and shape, and study their covariance, in an un-

mbiguous and automatic manner? What is it about the ground-

ruth solutions in Figs. 7 (a)–9 (a) that objectively signals their cor-

ectness compared with the other solutions? The literature points

o a response based on Occam’s law of parsimony: we seek the

ost parsimonious interpretation of the data, and we predicate

ur statistical analyses (e.g. how does surface texture depend on

hape?) on this principle. In this way, shape ambiguity is resolved

n an explicit and quantifiable manner: the correct solution is

he one that produces the most compact model, a model which

e also expect to have good specificity and ability to generalise

 Davies et al., 2010 ). 

There have been attempts to build statistical shape models un-

er minimum description length (MDL) optimality criteria, orig-

nally considering only plane contours ( Davies et al., 2002 ) but

ater encompassing also surfaces ( Heimann et al., 2005; Davies

t al., 2010 ). There has been some preliminary work at extending

he paradigm to cover appearance as well as shape ( Baker et al.,

0 04; Marsland et al., 20 08 ). Myronenko and Song (2010) de-

cribe a way of registering textures so as to minimize the com-

lexity of the residual, rather than the residual itself. However,

DL model building is computationally and theoretically challeng-

ng. The search space of possible models is vast, reflecting the

yriad permutations of correspondences between thousands of

esh vertices across hundreds or thousands of specimens. A fur-

her difficulty is to formulate a robust, information-theoretic ob-

ective function. The synthetic femur experiment and the 1D ex-

mple in Fig. 1 demonstrate that this is not just a matter of select-

ng the model with the fewest shape modes, or the lowest overall

hape variation, or the lowest texture variation. Instead, the cost

unction needs to account for the number of modes and also the

nformation content of the modes, allowing for correlations be-

ween neighbouring vertices ( Thodberg, 2003 ). A further consid-

ration is the degree of parsimony achievable by boundary point

epresentations followed by Euclidean principal component analy-

is, compared with alternatives such as medial descriptors followed

y principal geodesic analysis ( Fletcher et al., 2004 ). 
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Fig. 7. The first mode of the statistical shape models, ± 3 standard deviations. Red is +3 standard deviations, green is −3 standard deviations. The ± 3 standard deviation 

range exceeds the ±√ 

3 standard deviation range of the uniform distribution from which the data was generated, but the extrapolated range better illustrates the differences 

between the various models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. SPM analysis of the relationship between CMSD and gender. The GLM fitted was 1 + Gender + 

∑ 3 
i =1 S i . The maps show the percentage increase in CMSD for males 

compared with females, masked to highlight regions where the effect is statistically significant at the 5% level. The significance test was based on the extent of connected 

clusters exceeding an uncorrected p -value threshold of 0.001. 
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Notwithstanding the significant theoretical and practical diffi-

culties, it is by no means clear that meaningful statistical infer-

ence can follow from automatic, parsimony-driven modelling. For

example, consider the perfect and TPS solutions in Figs. 6–9 . Which

interpretation of the data is more parsimonious? Both models in-

volve just one significant shape mode. The shape variance embod-
ed by this mode is less in the TPS solution than in the perfect

olution, since the shearing motion in Fig. 7 (c) involves, on aver-

ge, less vertex displacement than the bending motion in Fig. 7 (a).

e might therefore favour the TPS model. Set against this is the

reater complexity of the texture variation in Fig. 9 (c) compared

ith Fig. 9 (a): two effect regions versus one. Choosing between
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Fig. 9. SPM analysis of the relationship between CMSD and shape. The GLM fitted was 1 + Gender + 

∑ 3 
i =1 S i . The maps show the percentage increase in CMSD per standard 

deviation increase in S 1 , masked to highlight regions where the effect is statistically significant at the 5% level. The significance test was based on the extent of connected 

clusters exceeding an uncorrected p -value threshold of 0.001. 
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hese two models based on information parsimony appears to be

alanced on a knife-edge, and yet they lead to different and incom-

atible deductions about the population: either the femurs differ

n shape through bending, and the CMSD depends on the degree of

ending at the superior femoral neck; or the femurs differ in shape

hrough shearing, and CMSD depends on the degree of shearing at

he superior femoral neck and the lateral femoral shaft. 

.1.4. Geometric morphometric image analysis 

We would argue that neither of these interpretations can be

eemed to be “correct” unless the registration is constrained by

nown, axiomatic homologies. We therefore lend our voice to the

rgument of Gunz and Mitteroecker (2013) , who say, when dis-

ussing automatic, “homology-free” registration algorithms: 

... the point homology across specimens, which is “enforced”

by the experienced morphometrician measuring semilandmarks

on curves and surfaces manually, is no longer guaranteed. As

a result, sample averages and variances may be meaningless

and biologically not interpretable. If one aims to go beyond the

mere discrimination of groups and tries to identify the biolog-

ical factors underlying shape differences, the time spent digi-

tizing curves and surfaces as semilandmarks is almost always

worthwhile. 

We conclude, therefore, that only the TPS-LM algorithm has a

ole to play in analysing the variation of CMSD with shape. The

ombination of landmark-based registration with statistical shape

nd appearance modelling has been styled Geometric Morphometric

mage Analysis (GMIA) and applied to the analysis of planar shapes

nd images ( Mayer et al., 2014, 2017 ). This paper describes the first

xtension of GMIA to the domain of textured surfaces. It must be

tressed that GMIA is no panacea: manual landmarking requires

oth expertise and time, and there remains the question of how

o interpret the data in the barren regions between landmarks. We

hall return to this point in the next section. 

.2. Real data 

We registered the canonical surface using the TPS-LM algorithm

o 173 proximal femurs segmented from the real CT data. CMSD

as estimated for each specimen, smoothed with an approximately
0mm full-width-half-maximum filter (in order to ensure compat-

bility with the Gaussian random field theory that underpins SPM)

nd then mapped onto the registered canonical femur. Both left

nd right femurs were available for 48 of the subjects: for these,

he mapped data was averaged on the canonical mesh. Taken to-

ether with the 77 sets of unilateral data, the end result was

25 sets of mapped data from 125 individuals. We then built sta-

istical shape models using the TPS-LM vertex displacements. Fi-

ally, statistical analysis was performed using SPM with the GLM

 + Age + 

∑ 6 
i =1 S i . 

Fig. 10 shows the first three modes of the statistical shape

odel, and Fig. 11 (c)–(f) show the regions where CMSD varies sig-

ificantly with age and shape. While many of these effects have

een predicted and observed by other researchers ( Machado et al.,

014; Ripamonti et al., 2014 ), albeit in terms of bone mineral den-

ity at broad regions of interest, the apparent increase in CMSD

ith increasing neck-shaft angle at the calcar femorale is a new

nding and therefore warrants greater scrutiny. Homology in this

rea is enforced by curve landmarks only: hence, the alignment

long the trajectory of the calcar femorale is relatively uncon-

trained and determined in the most part by the minimum bend-

ng energy criterion of the TPS-LM algorithm. Might this effect be

 systematic misregistration artefact, akin to the arbitrary shape

ffects demonstrated with the synthetic data in Fig. 9 ? 

We offer two reasons why this is most likely a real, physiolog-

cal effect and not a misregistration artefact. Firstly, in the syn-

hetic data experiments, the TPS-LM algorithm did not introduce

ny significant artefacts at the calcar region in response to bend-

ng: see Fig. 9 (b). A more rigorous argument uses the TPS-LM al-

orithm to quantify what systematic misregistration along the tra-

ectory of the calcar femorale would look like. In a new set of

ynthetic experiments, the canonical femur with the mean CMSD

exture was registered to a population of identical femurs with

dentical textures, but with the calcar landmarks changed from

urve landmarks to point landmarks. These point landmarks were

hen systematically displaced along the calcar trajectory by vary-

ng amounts, inducing precisely the systematic misregistration we

re trying to rule out in Fig. 11 (e). Fig. 11 (b) shows the results of

his experiment: systematic misregistration would cause a bipolar

MSD effect at the calcar region, with its focus adjacent to the

emoral head, and not the monopolar effect in Fig. 11 (e), with its
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Fig. 10. The first three shape modes of TPS-LM registered human data, ± 3 standard deviations. Red is +3 standard deviations, green is −3 standard deviations. The three 

modes account for 65% of the shape variation observed in the population. It is apparent that S 1 corresponds roughly to femur size, S 2 to neck-shaft angle and S 3 to gracility. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. SPM analysis of the human data. The GLM fitted was 1 + Age + 

∑ 6 
i =1 S i . The maps in (c)–(f) show the percentage increase in CMSD per year of age and per standard 

deviation increase in S i , i ∈ { 1 . . . 3 } , masked to highlight regions where the effect is statistically significant at the 5% level. The significance test was based on the extent of 

connected clusters exceeding an uncorrected p -value threshold of 0.001. For comparison with (e), the map in (b) shows, for the synthetic data, the percentage increase in 

CMSD per millimeter misregistration along the calcar femorale. (For interpretation of the references to colour in the text, the reader is referred to the web version of this 

article.) 
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focus closer to the lesser trochanter. We believe that this sort of

detailed analysis is essential before confirming any systematic de-

pendence of surface texture on shape. 

Similar considerations lend support to the authenticity of the

other effects in Fig. 11 (c)–(f). The S 2 and S 3 effects at the superior

femoral neck are reasonably well constrained by the homologous

point landmark at the trochanteric fossa and the curve landmark at

the boundary of the femoral head. Observe how the CMSD gradi-

ent is roughly perpendicular to the neck-head boundary, so misreg-

istration tangential to the curve landmark will not induce signifi-

cant effects at the superior femoral neck. The S 3 effect, covering a

large part of the proximal femur, is almost entirely monopolar and

so cannot be explained by smooth, systematic misregistration. Al-

though the finer details remain uncertain, particularly in those re-

gions some distance away from the nearest landmark, there is un-

doubtedly a widespread increase in CMSD with increasing gracility.

The age and S 1 regressors are largely independent of non-isotropic

shape deformation and are therefore deemed reliable. The S 1 ef-

fect has also been confirmed in a larger cohort of males ( Gee et al.,

2015 ). 
.2.1. Biomechanical interpretation 

The S 2 effect has not previously been described at this level of

etail, and therefore warrants biomechanical interpretation. Of par-

icular interest is the blue patch in Fig. 11 (e), where CMSD is ob-

erved to increase in subjects with steeper femoral necks. As can

e seen in Fig. 12 , the dense, vertically orientated calcar femorale

s situated at the convergence of multiple trabeculae whose func-

ion is to transmit load from the body, via the weight-bearing

emoral head to the femoral shaft, the calcar acting as an inter-

al compression buttress ( Harty, 1957 ). This buttress, which has

imilar material properties to cortical bone ( Li and Aspden, 1998 ),

outes compressive load away from the lesser trochanter, which is

eft to transmit the large tensile and shear forces from the iliopsoas

uring hip flexion. The calcar joins the femoral cortex at precisely

he blue patch in Fig. 11 (e). That this patch is critical to transmis-

ion of force has been confirmed by attaching strain gauges to ca-

averic femurs before and after surgical disruption of the calcar

 Zhang et al., 2009 ). The blue patch can therefore be explained as

 lifelong functional adaptation to variations in calcar loading that

epend on the steepness of the femoral neck. Our results suggest
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Fig. 12. Anatomy of the proximal femur, with section exposing the calcar femorale. Adapted from Gray (1913) , Figs. 176 and 182, retrieved 7 June 2017 from archive.org/ 

details/anatomydescript00gray . 
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ncreased calcar loading with steeper femoral necks, though we

re unaware of any biomechanical simulations or measurements to

upport this hypothesis. 

The red patches in Fig. 11 (e) are more straightforward to

xplain. 4 The bending moment across a steep (coxa valga)

eck is less than across a small-angle (coxa vara) neck, so

unctional adaptation in the form of structural optimisation

referentially increases cortical bone in smaller angled necks.

oo et al. (2004) used finite element analysis to assess the ef-

ect of reducing the femoral neck angle, observing increased von

ises stress in regions aligned with the red patches in Fig. 11 (e).

achado et al. (2014) used similar modelling to predict increased

emoral neck bone mineral density in small-angle necks, while

ipamonti et al. (2014) observed precisely this phenomenon in a

opulation of 315 males. 

Similarly, the near global decrease in CMSD in stouter, less

racile femurs (the S 3 effect in Fig. 11 (f)) reflects bone’s intrinsic,

volutionary structural optimisation whereby as the neck diameter

ncreases, the same section modulus can be maintained with less

ortical bone ( Bahari et al., 2012; Rivadeneira et al., 2007 ). 

.3. Homology-free registration 

The proximal femur represents a challenging domain for sur-

ace registration. Apart from the general lack of distinguished

eatures, especially anteriorly, there is also the arbitrary trunca-

ion at the shaft that makes registration in this area particularly

ifficult. We have argued that explicit landmarking is the only

ay to resolve these ambiguities and proceed with meaningful

hape-texture analysis, but this begs the question as to whether

omology-free registration might be feasible with less challenging

urfaces. For example, when analysing lumbar vertebrae, a state-
4 These are the only patches in Fig. 11 that do not survive the inclusion of scan- 

ing site (Cambridge vs. Prague) in the GLM, though they do remain significant at 

he 7% level. This is because site happens to be weakly correlated with S 2 ( ρ = 

 . 18 ), and SPM identifies only those effects that can be uniquely attributed to any 

articular regressor. Since a biomechanical explanation is far more plausible than 

ny other cause, and entirely consistent with the work of Machado et al. (2014) , 

ipamonti et al. (2014) and Voo et al. (2004) , we chose to omit site from the GLM in 

his instance. More generally, we acknowledge the limitations of inferential statis- 

ics in exploratory contexts such as this. 

A

 

t  

T  

i  

s  

m  

t

f-the-art, homology-free algorithm (e.g. Boyer et al. (2011) ) would

eliably align the various processes and pedicles, without the need

or manual labelling. While this would most likely provide a rea-

onable basis for the statistical analysis of shape and texture, it

ould not enable the sort of sensitivity analysis we propose in

ig. 11 (b). We therefore acknowledge a role for homology-free al-

orithms only inasmuch as they might automatically (and paradox-

cally) establish point and curve homologies, but we maintain that

he homologies need to be explicit, not implicit, when analysing

he dependence of surface texture on shape. This is not to dis-

ount the considerable value of homology-free methods in other

ontexts. 

. Conclusions 

Statistical analysis of the relationship between surface texture

nd shape is sensitive to nuances of the surface registration algo-

ithm, and therefore of questionable value unless correspondences

re established explicitly using landmarks. We have presented a

andmarking scheme for the human proximal femur, where all the

andmarks can be identified in clinical CT data. Although there re-

ains uncertainty in those regions of the surface some distance

rom the nearest landmark, we have suggested some heuristics for

uthenticating the statistical effects where possible. This holistic

pproach has revealed hitherto unreported dependencies between

ortical mass and bone shape in the human proximal femur. We

lso observed how, when the regressor of interest is independent

f shape, the analysis can be streamlined through the use of an

omology-free registration algorithm, as long as said algorithm is

urely shape-driven. 
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