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Abstract
Propositional satisfiability (SAT) is one of the most fundamental problems in computer science.
The worst-case hardness of SAT lies at the core of computational complexity theory. The average-
case analysis of SAT has triggered the development of sophisticated rigorous and non-rigorous
techniques for analyzing random structures.

Despite a long line of research and substantial progress, nearly all theoretical work on random
SAT assumes a uniform distribution on the variables. In contrast, real-world instances often
exhibit large fluctuations in variable occurrence. This can be modeled by a scale-free distribution
of the variables, which results in distributions closer to industrial SAT instances.

We study random k-SAT on n variables, m = Θ(n) clauses, and a power law distribution
on the variable occurrences with exponent β. We observe a satisfiability threshold at β =
(2k−1)/(k−1). This threshold is tight in the sense that instances with β 6 (2k−1)/(k−1)−ε for
any constant ε > 0 are unsatisfiable with high probability (w. h. p.). For β > (2k−1)/(k−1) + ε,
the picture is reminiscent of the uniform case: instances are satisfiable w. h. p. for sufficiently
small constant clause-variable ratios m/n; they are unsatisfiable above a ratio m/n that depends
on β.
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1 Introduction

Satisfiability of propositional formulas (SAT) is one of the most researched problems in
theoretical computer science. SAT is widely used to model practical problems such as bounded
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37:2 Bounds on the Satisfiability Threshold for Power Law Distributed Random SAT

model checking, hardware and software verification, automated planning and scheduling, and
circuit design. Even large industrial instances with millions of variables can often be solved
very efficiently by modern SAT solvers. The structure of these industrial SAT instances
appears to allow a much faster processing than the theoretical worst-case of this NP-complete
problem. It is an open and widely discussed question which structural properties make a
SAT instance easy to solve for modern SAT solvers.

Random SAT. For modeling typical inputs, we study random propositional formulas. In
random satisfiability, we have a distribution over Boolean formulas in conjunctive normal
form (CNF). The degree of a variable in a CNF formula is the number of disjunctive clauses
in which that variable appears either positively or negatively. Two interesting properties
of random models are its degree distribution and its satisfiability threshold. The degree
distribution F (x) of a formula Φ is the fraction of variables that occur more than x times
(negated or unnegated). A satisfiability threshold is a critical value around which the
probability that a formula is satisfiable changes from 0 to 1.

Uniform random SAT. In the classical uniform random model, the degree distribution is
binomial. On uniform random k-SAT, the satisfiability threshold conjecture [1] asserts if Φ is
a formula drawn uniformly at random from the set of all k-CNF formulas with n variables
and m clauses, there exists a real number rk such that

lim
n→∞

Pr{Φ is satisfiable} =
{

1 m/n < rk;
0 m/n > rk.

A well-known result of Friedgut [20] establishes that the transition is sharp, even though
its location is not known exactly for all values of k (and may also depend on n). For k = 2,
the critical threshold is r2 = 1 [13, 16, 22]. Recently, Coja-Oghlan and Panagiotou [15]
gave a sharp bound (up to lower order terms) with rk = 2k log 2 − 1

2 (1 + log 2) ± ok(1).
Ding, Sly, and Sun [18] derive an exact representation of the threshold for all k > k0,
where k0 is a large enough constant. Explicit bounds also exist for low values of k, e.g.,
3.52 6 r3 6 4.4898 [23, 24, 17], and numerical estimates using the cavity method from
statistical mechanics [28] suggest that r3 ≈ 4.26.

Other random SAT models. In the regular random model [10], formulas are constructed
at random, but the degree distribution is fixed: each literal appears exactly bkm2n c or b

km
2n c+ 1

times in the formula. Similarly, Bradonjic and Perkins [11] considered a random geometric
k-SAT model in which 2n points are placed at random in [0, 1]d. Each point corresponds to
a unique literal, and clauses are formed by all k-sets of literals that lie together within a ball
of diameter Θ(n−1/d). Again, this model has a binomial variable distribution.

Power law random SAT. Recently, there has been a paradigm shift when modeling real-
world data. In many applications, it has been found that certain quantities do not cluster
around a specific scale as suggested by a uniform distribution, but are rather inhomoge-
neous [14, 30]. In particular, the degree distribution in complex networks often follows a
power law [29]. This means that the fraction of vertices of degree k is proportional to k−β ,
where the constant β depends on the network. To mathematically study the behavior of
such networks, random graph models that generate a power law degree distribution have
been proposed [9, 26, 2, 31].
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Figure 1 Illustration of our asymptotic results for the power law satisfiability threshold location
when n → ∞ (left) compared with empirical results for randomly generated power law 3-SAT
formulas on n = 106 variables checked with the SAT solver MiniSAT (right). The timeout was set
to one hour.

While there has been a large amount of research on power law random graphs in the past
few years [32], there is little previous work on power law SAT formulas. Nevertheless, the
observation that quantities follow a power law in real-world data has also emerged in the
context of SAT [10]. As all aforementioned random SAT models assume strongly concentrated
degree distributions, it was conjectured that this property might be modeled well by random
formulas with a power law degree distribution.

To address this conjecture, and to help close the gap between the structure of uniform
random and industrial instances, Ansótegui, Bonet, and Levy [6] recently proposed a power-
law random SAT model. This model has been studied experimentally [6, 7, 4, 5], and
empirical investigations found that (1) indeed the constraint graphs of many families of
industrial instances obey a power-law and (2) SAT solvers that are constructed to specialize
on industrial instances perform better on power-law formulas than on uniform random
formulas. To complement these experimental findings, we contribute with this paper the
first theoretical results on this model.

Our results. We study random k-SAT on n variables and m = Θ(n) clauses. Each clause
contains k = Θ(1) different, independently sampled variables. Each variable xi is chosen
with non-uniform probability pi and negated with probability 1/2. A formal definition can
be found in Section 2. We first study sufficient conditions under which the resulting k-SAT
instances are unsatisfiable. Assume a probability distribution ~p on the variables where pi is
non-decreasing in i ∈ {1, . . . , n}. If the k most frequent variables are sufficiently common,
we prove in Section 3 the following statement:

I Theorem 1.1. Let Φ be a random k-SAT formula with probability distribution ~p on the
variables (c.f. Definition 2.1), with k > 2 and m

n = Ω(1). If pn−k+1 = Ω(( logn
n )1/k), then Φ

is w. h. p. unsatisfiable.

Our focus are power law distributions with some exponent β. Theorem 1.1 implies that
power law random k-SAT formulas with β = 2k−1

k−1 − ε for an arbitrary constant ε > 0 are
unsatisfiable with high probability1, cf. Corollary 3.1.

1 We say that an event E holds w. h. p., if there exists a δ > 0 such that Pr[E] > 1−O(n−δ).
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37:4 Bounds on the Satisfiability Threshold for Power Law Distributed Random SAT

In Section 4 we show that something similar holds for the clause-variable ratio m
n , i.e.

power law random k-SAT formulas with m
n bigger than some constant are unsatisfiable with

high probability. Although this already follows from basic observations, we derive a better
bound on the value of the constant.

I Theorem 1.2. Let Φ be a random k-SAT formula with probability distribution ~p on the
variables (c.f. Definition 2.1), with k > 2 and r = m

n . Φ is unsatisfiable w. h. p. if

(
1− 1

2k
)r [ n∏

i=1

[
2−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m]] 1

n

< 1.

In Section 5 we prove the following positive result, which complements our picture of the
satisfiability landscape:

I Theorem 1.3. Let Φ be a random k-SAT formula whose variable probabilities follow a
power law distribution (c.f. Definition 2.2). If the power law exponent is β > 2k−1

k−1 + ε for
an arbitrary ε > 0, Φ is satisfiable with high probability if mn is a small enough constant.

Together our main theorems prove that random k-SAT instances whose variables follow
power law distributions do not only exhibit a phase transition for some clause-variable ratio
r = m

n , but also around the power law exponent β = 2k−1
k−1 . Figure 1 contains an overview of

our results. To prove these statements, we borrow tools developed for the uniform random
SAT model. Note, however, that many of their common techniques like the differential
equation method seem difficult to apply to non-uniform distributions; as removing a variable
results in a more complex rescaling of the rest of the distribution. It is therefore crucial to
perform careful operations on the formulas that leave the distribution of variables intact. To
this end, we use techniques known from the analysis of power law random graphs.

Clause length. We focus on power law variable distributions but fix the length of every
clause to k > 2. Power law models have also been proposed in which clause length is
distributed by a power law as well [6, 7]. As long as there is a constant minimum clause
length kmin > 2, our results can be extended to this case in the following way.

If the clause lengths are distributed as a power law, there will appear Θ(n) clauses of
length kmin, and all other clauses are of larger size. In that case, Theorems 1.1 and 1.3 are
directly applicable to the linear number of clauses with size kmin (obtaining different hidden
constants); and we have that the formula is satisfiable with high probability if β > 2kmin−1

kmin−1 +ε
and m/n is a small enough constant. On the other hand, the formula is unsatisfiable with
high probability, if β 6 2kmin−1

kmin−1 − ε. Consequently, the satisfiability of the formula does
(asymptotically) not depend on the second power law.

2 Definition of the Model and Preliminaries

We analyze random k-SAT on n variables and m = Θ(n) clauses, where k > 2. The constant
r := m

n is called clause-variable ratio or constraint density. We denote by x1, . . . , xn the
Boolean variables. A clause is a disjunction of k literals `1 ∨ . . . ∨ `k, where each literal
assumes a (possibly negated) variable. Finally, a formula Φ in conjunctive normal form is a
conjunction of clauses c1 ∧ . . . ∧ cm. We conveniently interpret a clause c both as a Boolean
formula and as a set of literals. Following standard notation, we write |`| to refer to the
indicator of the variable corresponding to literal `. We say that Φ is satisfiable if there exists
an assignment of variables x1, . . . , xn such that the formula evaluates to 1.
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I Definition 2.1 (Random k-SAT). Let m,n be given, and consider any probability distribu-
tion ~p on n variables with

∑n
i=1 pi = 1. To construct a random SAT formula Φ, we sample

m clauses independently at random. Each clause is sampled as follows:
1. Select k variables independently at random from the distribution ~p. Repeat until no

variables coincide.
2. Negate each of the k variables independently at random with probability 1/2.

Observe that by setting pi = 1
n for all i, we obtain again the uniform random SAT model.

One can show (see full version [21]) that for power law distributions, the probability to
sample a specific clause c is

(1 + o(1)) k!
2k
∏
`∈c

p|`|. (1)

Power law Distributions. In this paper, we are mostly concerned with distributions pi that
follow a power law. To this end, we define two models: A general model to capture most
power law distributions (which is harder to analyze), and a concrete model that gives us one
instance of ~p depending only on n that can be used to compute precise leading constants. We
use the general model to derive some asymptotic results; and the concrete model to compare
with the uniform random SAT model and for the experiments.

Before we define these two models, let us establish the concept of a weight wi of a
variable xi. The weight gives us (roughly) the expected number of times the variable appears
in the formula. That is,

pi := wi∑
j wj

.

Thus, fixing the weights ~w = (w1, . . . , wn) also fixes the probability distribution ~p. It
is important to distinguish between the initial distribution of variables ~p and modified
distributions that may arise as a result of stochastic considerations. For instance, the
smallest-weight variable in a clause is clearly not distributed according to ~p (except in 1-SAT).
To avoid confusion, we identify a variable with its weight, as the weights stay fixed throughout
the analysis. For convenience, we further assume W. l. o. g. that the variables are ordered
increasingly by weight, i. e. for i 6 j we have wi 6 wj . Note that our definition of power law
ensures that for β > 2, we have

∑
j wj = Θ(n).

We are now ready to define the two models.

I Definition 2.2 (General Power Law). Let the weights ~w := w1, . . . , wn be given, and let W
be a weight selected uniformly at random. We say that ~w follows a power law with exponent
β, if w1 = Θ(1), wn = Θ(n

1
β−1 ), and for all w ∈ [w1, wn] it holds

F (w) := Pr[W > w] = Θ(w1−β) (2)

Whenever we need the explicit constants bounding the distribution function, we refer to
them by α1, α2 as in

α1w
1−β 6 F (w) 6 α2w

1−β . (3)

We point out that Definition 2.2 assumes a deterministic weight sequence; but it can be
easily generalized to also support randomly generated weights.

For the concrete model, we define the weights as follows.

ESA 2017



37:6 Bounds on the Satisfiability Threshold for Power Law Distributed Random SAT

I Definition 2.3 (Concrete Power Law). Given a power law exponent β, we call ~w the concrete
power law sequence, if

wn−i+1 := (ni )
1

β−1 . (4)

One can check that for these concrete weights, it holds n · F (w) = bnw1−βc, so in a sense,
they are a canonical choice for producing a power law weight distribution.

It remains to show that using a power law distribution in Definition 2.1 indeed results in
a power law distribution of variable occurrences. Ansótegui et al. [7] provide a proof sketch
for this fact, we prove it rigorously in the full version [21] of the paper.

I Theorem 2.4. Let Φ be a random k-SAT formula that follows an arbitrary power law distri-
bution with exponent β (c.f. Definition 2.2) and m = Θ(n). Then, there are dmin = Θ (wmin)
and dmax = Θ (wmax), such that for all dmin 6 d 6 dmax w. h. p. it holds that

N>d = Θ(n · d1−β),

where N>d is the number of variables that appear at least d times in Φ.

To analyze power law distributions, we often make use of the following result of Bringmann,
Keusch, and Lengler [12, Lemma B.1], which allows replacing sums by integrals.

I Theorem 2.5 ([12]). Let f : R → R be a continuously differentiable function, and let
F>(w) := Pr[W > w]. Then, for any 0 6 w 6 w̄,

∑
i∈[n],w6wi6w̄

1
nf(wi) = f(w) · F (w)− f(w̄) · F>(w̄) +

∫ w̄

w

f ′(w) · F (w) dw.

Using this theorem, the following corollary can be shown (see full version [21]):

I Corollary 2.6. Let the variables wi be power law distributed with exponent β > 2, and
define W>w :=

∑
i∈[n] : wi>w wi. Then, W>w = Θ(nw2−β).

Hence,
∑
j wj = W>w1 = Θ(n) and therefore pi = Θ(win ). Finally, we denote by V

the random variable describing the weight of a SAT variable chosen according to a power
law distribution pi, that is, Pr[V = w] =

∑
i pi · 1[wi = w], where 1 denotes the indicator

variable of the event. Note that this is not equivalent to W , since there is a subtle difference
in the two random processes: W is a random variable drawn uniformly at random from
w1, . . . , wn, whereas V is a random variable drawn from the same set, but with the non-
uniform distribution p1, . . . , pn. Hence, by Corollary 2.6,

Pr[V > w] = Θ(w2−β). (5)

3 Small Power Law Exponents are Unsatisfiable

For small power law exponents, one can show that they result in formulas that are unsatisfiable
(for large n) for all constant clause-variable ratios. The rationale behind this is that large
variables with weight Θ(wn) appear polynomially often together in a clause. For constant k,
they thus appear in all 2k configurations (negated and non-negated), making the formula
trivially unsatisfiable. Theorem 1.1, already stated in the introduction, gives a sufficient
condition on the variable distribution to make a random k-SAT formula unsatisfiable.
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I Theorem 1.1. Let Φ be a random k-SAT formula with probability distribution ~p on the
variables (c.f. Definition 2.1), with k > 2 and m

n = Ω(1). If pn−k+1 = Ω(( logn
n )1/k), then Φ

is w. h. p. unsatisfiable.

Proof. Recall that pi is without loss of generality increasing in i. Consider the k largest
variables n− k+ 1, . . . , n. We call Ei the event that clause i consists of these variables. Then,

Pr[Ei] = Ω(pkn−k+1) = Ω( logn
n ).

Since each clause is drawn independently at random, we obtain by a Chernoff bound (see
for example Theorem 1.1 in [19]) that with high probability, the total number of clauses
consisting of these variables is

|E| :=
m∑
i=1

1[Ei] = Ω(logn).

In other words, the number of clauses in which the k largest variables appear together
increases as a logarithm in n. Since in each of these clauses, the literals appear negated
or non-negated with constant probability 1/2, we have that all 2k possible combinations of
negated and non-negated literals appear in the formula with probability at least

1− 2k · ( 2k−1
2k )|E| = 1− n−Ω(1)

by the union bound. Since all 2k combinations cannot be satisfied at once, the resulting
formula is unsatisfiable. J

By applying Theorem 1.1 to a power law distribution on the variables, we obtain the following
power law threshold for unsatisfiability.

I Corollary 3.1. Let Φ be a random k-SAT formula that follows an arbitrary power law
distribution fulfilling Definition 2.2. If the power law exponent is β 6 2k−1

k−1 − ε for an
arbitrary ε > 0, Φ is unsatisfiable with high probability.

Proof. Observe that from β = 2k−1
k−1 − ε it follows k = β−1

β−2 − ε
′ for some constant ε′. By

setting nF (w) 6 k we obtain that the largest k variables all have weight Θ(wn) = Θ(n
1

β−1 ).
Consequently, when β > 2,

(pn−k)k = Θ(n−k
β−2
β−1 ) = Θ(n−1+ε′ β−2

β−1 ) = ω( logn
n ),

and the statement follows from Theorem 1.1. For the case where β 6 2, one can show
using Theorem 2.5 that

∑
i wi = Θ(n

1
β−1 ), and therefore pn−k = Ω(1). Again, the statement

follows from Theorem 1.1. J

4 Large Clause-Variable Ratios are Unsatisfiable

It is a well-known result that random SAT on any probability distribution will result in
unsatisfiable formulas if the clause-variable ratio is high. This follows from the probabilistic
method: The expected number of assignments that satisfy a formula is 2n(1− 2−k)m. This is
independent from the variable distribution as long as each variable is negated with probability
1/2. Hence, if the clause-variable ratio exceeds ln(2)/ ln( 2k

2k−1 ), the resulting formula will be
unsatisfiable with high probability. This constant is rather large, however: In the case of
k = 3 this yields an upper bound on the clause-variable ratio of ≈ 5.191. For the concrete
power law distribution in Definition 2.3, the true threshold is much smaller. In fact, it
appears to be below the satisfiability threshold for uniform random SAT.

Let us restate the main result, which will be proven with the Single Flip Method [25].

ESA 2017
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Table 1 Numerical upper bounds on the density threshold obtained from the Single-Flip Method
(cf. Theorems 1.2 and 4.2). Empty fields indicate unsatisfiability for all constant densities by
Theorem 1.1. To the best of our knowledge, the bounds for uniform random SAT with k > 4 are the
currently best known numerical upper bounds. For k = 3 the best known unconditional numerical
upper bound is 4.4898 [17].

power law distribution with exponent β uniform
dist.

k 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

3 3.48 3.71 3.87 3.99 4.08 4.67
4 7.87 8.42 8.78 9.04 9.23 9.37 10.23
5 16.27 17.75 18.64 19.21 19.61 19.90 20.11 21.33
7 67.21 75.74 79.81 82.09 83.49 84.42 85.07 85.54 87.88

10 619.28 662.48 680.93 690.36 695.77 699.12 701.34 702.88 708.94

I Theorem 1.2. Let Φ be a random k-SAT formula with probability distribution ~p on the
variables (c.f. Definition 2.1), with k > 2 and r = m

n . Φ is unsatisfiable w. h. p. if

(
1− 1

2k
)r [ n∏

i=1

[
2−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m]] 1

n

< 1.

The following is a corollary from this theorem:

I Corollary 4.1. Let Φ be a random k-SAT formula that follows Definition 2.1 with k > 2,
r = m

n and ‖~p‖22 = o(1). With high probability, Φ is unsatisfiable if

(
1− 1

2k
)r (2− exp

(
−
(

k

2k − 1r
)

(1 + o(1))
))

< 1.

The proof can be found in the full version [21] of the paper. Interestingly, the above
corollary gives the same inequality as the Single-Flip Method for uniform random SAT [25].
This shows that the uniform distribution resembles a worst-case for this method; and all
other distributions can only improve this bound.

If ~p follows a power law distribution as in Definition 2.3, we can derive the following
theorem, which gives an upper bound independent of n.

I Theorem 4.2. Let Φ be a random k-SAT formula with k > 2 and r = m
n that follows a

power law distribution fulfilling Definition 2.3. Let further N ∈ N+ be any constant. If the
power law exponent is β > 2, then Φ is w. h. p. unsatisfiable if(1− 1

2k
)r 2 1

N

N−1∏
l=1

[
2− exp

(
− (1 + o(1)) r k

2k − 1
β − 2
β − 1

(
N

l

) 1
β−1
)] 1

N

 < 1.

The bound from this Theorem improves as N →∞. As this expression is rather terse,
we also numerically determine in Table 1 the smallest constant r such that the formula
is unsatisfiable. We compare these values to the upper bounds for uniform random SAT
obtained from the Single-Flip Method.

In the remainder of this section, we show Theorem 1.2 and defer the proof of Theorem 4.2
to the full version of the paper [21].
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I Definition 4.3 (Single-Flip Property). For a random formula Φ a truth assignment A has
the single-flip property iff A satisfies Φ and every assignment A′ obtained from A by flipping
exactly one zero to one does not satisfy Φ.

Let NSF be the number of truth assignments with the single-flip property for Φ. As
argued in [25], such an assignment exists if Φ is satisfiable. From Markov’s Inequality, we
thus know Pr[Φ satisfiable] 6 E [NSF ] .

In the following, we derive a bound on E [NSF ]. Using the non-uniform birthday paradox
from [3] we can show that the probability of choosing a clause c is at most

k!
2k ·

∏
`∈c p|`|

1− 1
2k

2‖~p‖22
.

To bound the number of assignments with the single-flip property, we use the following result.

I Lemma 4.4 ([25]). The expected number of assignments with the single-flip property is

E [NSF ] =
(
1− 1

2k
)m ∑

assignment A
Pr[A single-flip | A satisfying].

Proof. Note that for a certain truth assignment A, the probability of choosing a clause which
is not satisfied by A is 1/2k. Therefore, the probability that A is a satisfying assignment for
Φ is exactly

(
1− 1

2k
)m. J

We next bound the probability that a satisfying assignment A has the single-flip property.

I Lemma 4.5. For a satisfying assignment A = (a1, a2, . . . , an) ∈ {0, 1}n it holds that

Pr[A single-flip | A satisfying] 6
∏

i: ai=0
1−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m.

Proof. For a satisfying assignment A to have the single-flip property, all assignments Ai
obtained by flipping a bit ai = 0 of A must not satisfy Φ. To fulfill this property for Ai,
we have to choose at least one clause which contains X̄i and k − 1 other variables with
appropriate signs so that Ai does not satisfy the clause. Let Si(c) denote the event that a
clause c is satisfied by A, but not by Ai. Then,

Pr[Si(c)] =
k! · pi

∑
J∈Pk−1([n]\{i})

∏
j∈J pj

2k
(
1− 1

2k
2‖~p‖22

) 6
k · pi

2k
(
1− 1

2k
2‖~p‖22

)
since

∑
J∈Pk−1([n]\{i})

∏
j∈J pj 6

‖~p‖k−1
1

(k−1)! . The probability of choosing a clause not satisfied
by Ai under the condition that A is satisfying is then

Pr[Si(c) | A sat] = Pr[Si(c) | A satisfies c] 6 k · pi
2k − 1

1(
1− 1

2k
2‖~p‖22

)
as the probability of choosing a clause which is satisfied by any assignment is exactly 2k−1

2k .
For a fixed assignment Ai we conclude

Pr[Ai unsat | A sat] = 1−
(
1− Pr[Si(c) | A sat]

)m
6 1−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m . (6)
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Algorithm 1 Clause Shrinking Algorithm
Input: k-SAT formula Φ; weight distribution ~w

1: for all c ∈ Φ do
2: `1 ← argmin`∈c{w|`|}
3: `2 ← argmin`∈c\{`1}{w|`|}
4: c← (`1 ∨ `2)
5: Solve Φ using any polynomial time 2-SAT algorithm

It remains to find the joint probability that all single-flipped assignments Ai for 1 6 i 6 n

with ai = 0 are not satisfying. We show this using a correlation inequality by Farr [27].
The sets of clauses which are not satisfied by the Ai’s are pairwise disjoint as each clause
in the set for Ai has to contain X̄i, whereas each clause in the set for Aj (j 6= i) can not
contain X̄i. In the context of the correlation inequality from [27] we set V = {1, 2, . . . ,m},
I = {i ∈ {1, 2, . . . , n} | ai = 0}, Xv = i iff the v-th clause is satisfied by A, but not by Ai,
and Fi the “increasing” collection of non-empty subsets of V . The application of the Theorem
then directly yields

Pr[A single-flip | A sat] = Pr[
⋂

i: ai=0
Ai unsat | A sat]

6
∏

i: ai=0

[
1−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m]. J

Combining Lemmas 4.4 and 4.5 we get that the expected number of assignments with
single-flip property is at most

E [NSF ] 6
(
1− 1

2k
)m ∑

I⊆{1,2,...,n}

∏
i∈I

[
1−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m]

=
(
1− 1

2k
)m n∏

i=1

[
2−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m].

This establishes Theorem 1.2.

5 Conditions for Satisfiability

In this section, we provide a complementary result to Theorems 1.1 and 4.2 proving that if
β > 2k−1

k−1 + ε and the clause-variable ratio r = m
n does not exceed some small constant, then

a random k-SAT formula with exponent β is satisfiable with high probability. Let us first
restate the main result:

I Theorem 1.3. Let Φ be a random k-SAT formula whose variable probabilities follow a
power law distribution (c.f. Definition 2.2). If the power law exponent is β > 2k−1

k−1 + ε for
an arbitrary ε > 0, Φ is satisfiable with high probability if mn is a small enough constant.

We show this statement by constructing an algorithm that satisfies Φ w. h. p. if the
clause-variable ratio is small. Algorithm 1 contains a formal description. The main idea is to
shrink all clauses to size 2 by selecting the literals with smallest weight in each clause; and
then running any well-known (polynomial time) 2-SAT algorithm (e. g. [8]).

In the following, we seek to establish that Algorithm 1 will find a satisfying assignment
(for small constraint densities) with high probability. To this end, we first analyze the
probability distribution of a clause c after it has been shrunk.
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I Lemma 5.1. Let `1, `2 be the selected literals of an arbitrary clause c ∈ Φ in Algorithm 1.
Then,

Pr[|`1| = i, |`2| = j] + Pr[|`1| = j, |`2| = i] 6 O( 1
n2 (wiwj)1− 1

2 (k−2)(β−2)).

Proof. W. l. o. g., we assume that wi 6 wj . Then, Pr[|`1| = j, |`2| = i] = 0 by the definition
of Algorithm 1. For the event |`1| = i, |`2| = j to happen, all other k− 2 literals in the clause
must be of larger weight. By Equations (1) and (5),

Pr[|`1| = i, |`2| = j] = 1
2 ·
(
k

2

)
· (1 + o(1)) · pi · pj · Pr[V > wj ]k−2

= Θ( 1
n2 ) · wiw1−(k−2)(β−2)

j

6 O( 1
n2 ) · (wiwj)1− 1

2 (k−2)(β−2).

The last statement holds since wi 6 wj . J

Having derived a bound on the probability distribution of a shrunk clause, it is possible to
compute the probability that the resulting 2-SAT formula is satisfiable. We use that the
clauses are sampled independently. To avoid confusion, we write Φ′ and c′, whenever we
talk about the shrunk formula and clauses. To upper bound the probability of Φ not being
satisfiable, we look at so-called bi-cycles in Φ′.

I Definition 5.2. A bi-cycle of length l is a sequence of l + 1 clauses of the form

(u, `1) ,
(¯̀1, `2) , . . . , (¯̀l−1, `l

)
,
(¯̀
l, v
)
,

where `1, . . . , `l are literals of distinct variables and u, v ∈
{
`1, . . . , `l, ¯̀1, . . . , ¯̀

l

}
.

Chvatal and Reed [13, Theorem 3] show that if the formula Φ′ is unsatisfiable, it must
contain a bi-cycle. Consequently, by upper bounding the probability that a bi-cycle appears,
we immediately obtain an upper bound on the probability that Φ′ and henceforth Φ is
unsatisfiable.

I Theorem 5.3 (Chvatal and Reed [13]). Let Φ′ be any 2-SAT formula. If Φ′ contains no
bi-cycle, it is satisfiable.

Before we are able to prove the main Theorem, we need the following auxiliary Lemma, the
proof of which can be found in the full version of the paper [21].

I Lemma 5.4. Let β = δ + 1 + ε for some ε > 0. For all 1 6 l 6 n, there is a constant c
with ∑

S⊆[n] :
|S|=l

∏
i∈S

wδi 6 nl · cl 1
l! .

We are now able to show Theorem 1.3. As discussed above, we do this by upper bounding
the probability that a bi-cycle appears in Φ′. To this end, we calculate the expected number
of bi-cycles in Φ′, observe that it is poly(n)−1, and apply Markov’s inequality. This yields
that w. h. p., Φ′ and thus Φ are satisfiable.
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Proof of Theorem 1.3. We calculate the expected number of bi-cycles in Φ′. First, we fix a
set S ⊆ [n] of l > 2 variables to appear in a bi-cycle. Let XB denote the random variable
counting how many times a specific bi-cycle B with the variables from S appears in F . Then

E [XB ] 6
(

m

l + 1

)
(l + 1)! · Pr[u ∨ x1] Pr[x̄l ∨ v] ·

l−1∏
i=1

Pr[x̄i ∨ xi+1].

The factor
(
m
l+1
)
(l + 1)! counts the possible positions of B in F . By Lemma 5.1,

E [XB ] 6 ml+1 ·
(
c1
n2

)l+1 ·

(
w|u|w|v|

∏
i∈S

w2
i

)1− 1
2 (k−2)(β−2)

for some suitable constant c1. Now let XS denote the random variable counting how many
times any bi-cycle with the variables from S appears in F . There are l! permutations of the
l variables; and 2l combinations of literals on l variables. Similarly, literals u and v have 4
possible sign combinations. Thus,

E [XS ] 6 ml+1 · l! · 2l ·
(
c1
n2

)l+1 · 4
(∑
i∈S

w
1− 1

2 (k−2)(β−2)
i

)2∏
i∈S

w
2−(k−2)(β−2)
i .

To estimate the sum, we upper bound wi 6 wn for all sets up to a certain size l0, which we
will determine later. We set δ := 2− (k − 2)(β − 2) and define α(l) as

(∑
i∈S

w
δ/2
i

)2

6 α(l) :=


O(l2), if δ 6 0,
l20 · wδn, if δ > 0 and l 6 l0,

O(n2), otherwise.

Now let X denote the random variable counting the number of bi-cycles that appear in F .

E [X ] 6
n∑
l=2

2l+2 ·ml+1 · l! · ( c1
n2 )l+1 · α(l)

∑
S⊆[n]
|S|=l

∏
i∈S

wδi .

Since δ + 1 = 2 − (k − 2)(β − 2) + 1 < β by our assumption β > 2k−1
k−1 + ε, we can apply

Lemma 5.4. Using r := m/n, we obtain that the right-hand side is at most

E [X ] 6
n∑
l=2

2l+2 ·ml+1 · l! · ( c1
n2 )l+1 · α(l) · nl · cl 1

l! 6
1
n

n∑
l=2

cl2 · rl · α(l), (7)

for some suitable constant c2. Since r is a small enough constant we thus have c2 · r < 1. If
δ 6 0, we are finished, since then

1
n

n∑
l=2

cl2 · rl · α(l) 6 1
n

n∑
l=2

(c2 · r)l · l2 6 O( 1
n ).

Otherwise, if δ > 0, we choose l0 := −4 · ln−1(c2r) ln(n), which ensures (r · c2)l = O(n−4) for
all l > l0. For l = 2, . . . , l0, equation (7) sums up to at most

1
n

l0∑
l=2

(c2r)l · l20 · wδn = O(log3(n) · n1−k β−2
β−1 ),
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where we substituted wn = Θ(n
1

β−1 ) and δ = 2 − (k − 2)(β − 2). Since β > 2k−1
k−1 + ε, the

exponent 1− k β−2
β−1 < −ε

′ is negative, and we thus have

E [X ] 6 1
n

n∑
l=2

cl2r
lα(l) 6 O(log3(n) · n−ε

′
) +O( 1

n ),

which proves the Theorem by Markov’s inequality. J

6 Discussion of the Results

In this work, we have shown that with high probability, a power law random k-SAT formula
is satisfiable, if β > 2k−1

k−1 + ε and the clause-variable ratio is not too large; and that it is
unsatisfiable if β 6 2k−1

k−1 − ε, or if the clause-variable ratio is too large. Here, we give a few
observations following these results.

First, as explained in Section 1 our results translate directly to the model where clause
lengths are power law distributed. This observation might help to explain a phenomenon that
arose in [7]: The authors experimentally observed that a random-sat formula with double
power law distribution (both variables and clause lengths are drawn from a power law) can
be solved extremely fast by MiniSAT. Although the formula was of length 5 · 105, MiniSAT
already gave an answer after 4 seconds! Using our results, we are now able to provide a
potential explanation for this phenomenon: Disregarding the double power law distribution,
the smallest clause length kmin occurring in their generated formulas is one. Thus, there will
be Θ(n) clauses of length one and by Theorem 1.1 the formula is likely unsatisfiable.

Second, we observe a sharp threshold in the sense of Friedgut [20] (for small constraint
densities r) for β at the point 2k−1

k−1 . In contrast, it is unclear whether such a sharp threshold
exists (and can be analytically derived) for fixed β but variable r. Considering however, that
decades of research were dedicated to the same question in the uniform case—an arguably
simpler model—it is unlikely that we obtain a satisfying answer any time soon; at least for
all k. As in the uniform model, however, it might be more tractable to get sharp thresholds
for k →∞.

References
1 Dimitris Achlioptas, Amin Coja-Oghlan, and Federico Ricci-Tersenghi. On the solution-

space geometry of random constraint satisfaction problems. Random Structures & Algo-
rithms, 38(3):251–268, 2011.

2 William Aiello, Fan Chung, and Linyuan Lu. A random graph model for power law graphs.
Experimental Mathematics, 10(1):53–66, 2001.

3 Dan Alistarh, Thomas Sauerwald, and Milan Vojnović. Lock-free algorithms under stochas-
tic schedulers. In 34th Symp. Principles of Distributed Computing (PODC), pages 251–260,
2015.

4 Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and Jordi Levy. The fractal
dimension of SAT formulas. In 7th Intl. Joint Conf. Automated Reasoning (IJCAR), pages
107–121, 2014.

5 Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and Jordi Levy. On the clas-
sification of industrial SAT families. In 18th Intl. Conf. of the Catalan Association for
Artificial Intelligence (CCIA), pages 163–172, 2015.

6 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. On the structure of industrial SAT
instances. In 15th Intl. Conf. Principles and Practice of Constraint Programming (CP),
pages 127–141, 2009.

ESA 2017



37:14 Bounds on the Satisfiability Threshold for Power Law Distributed Random SAT

7 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Towards industrial-like random SAT
instances. In 21st Intl. Joint Conf. Artificial Intelligence (IJCAI), pages 387–392, 2009.

8 Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979.

9 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286:509–512, 1999.

10 Yacine Boufkhad, Olivier Dubois, Yannet Interian, and Bart Selman. Regular random
k-SAT: Properties of balanced formulas. J. Automated Reasoning, 35(1-3):181–200, 2005.

11 Milan Bradonjic andWill Perkins. On sharp thresholds in random geometric graphs. In 18th
Intl. Workshop on Randomization and Computation (RANDOM), pages 500–514, 2014.

12 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. arXiv preprint arXiv:1511.00576, 2015.

13 Václav Chvatal and Bruce Reed. Mick gets some (the odds are on his side). In 33rd Symp.
Foundations of Computer Science (FOCS), pages 620–627, 1992.

14 Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM Review, 51(4):661–703, 2009.

15 Amin Coja-Oghlan and Konstantinos Panagiotou. The asymptotic k-SAT threshold. Ad-
vances in Mathematics, 288:985–1068, 2016.

16 Wenceslas Fernandez de la Vega. Random 2-SAT: results and problems. Theoretical Com-
puter Science, 265(1-2):131–146, 2001.

17 Josep Díaz, Lefteris M. Kirousis, Dieter Mitsche, and Xavier Pérez-Giménez. On the
satisfiability threshold of formulas with three literals per clause. Theoretical Computer
Science, 410(30-32):2920–2934, 2009.

18 Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
47th Symp. Theory of Computing (STOC), pages 59–68, 2015.

19 D.P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009.

20 Ehud Friedgut. Sharp thresholds of graph properties, and the k-SAT problem. J. ACM,
12(4):1017–1054, 1999.

21 Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, Thomas Sauerwald, and Andrew M.
Sutton. Bounds on the satisfiability threshold for power law distributed random SAT. arXiv
preprint arXiv:1706.08431, 2017.

22 Andreas Goerdt. A threshold for unsatisfiability. J. Computer & System Sciences,
53(3):469–486, 1996.

23 Mohammad Taghi Hajiaghayi and Gregory B. Sorkin. The satisfiability threshold of random
3-SAT is at least 3.52. Technical Report RC22942, IBM, October 2003.

24 Alexis C. Kaporis, Lefteris M. Kirousis, and Efthimios G. Lalas. The probabilistic analysis
of a greedy satisfiability algorithm. Random Structures & Algorithms, 28(4):444–480, 2006.

25 Lefteris M Kirousis, Evangelos Kranakis, Danny Krizanc, and Yannis C Stamatiou. Approx-
imating the unsatisfiability threshold of random formulas. Random Structures & Algorithms,
12(3):253–269, 1998.

26 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Phys. Rev. E, 82:036106, Sep 2010.

27 Colin McDiarmid. On a correlation inequality of Farr. Combinatorics, Probability & Com-
puting, 1(02):157–160, 1992.

28 Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. Analytic and algorithmic solution of
random satisfiability problems. Science, 297(5582):812–815, 2002.

29 M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):pp.
167–256, 2003.



T. Friedrich, A. Krohmer, R. Rothenberger, T. Sauerwald, and A.M. Sutton 37:15

30 Mark EJ Newman. Power laws, pareto distributions and Zipf’s law. Contemporary physics,
46(5):323–351, 2005.

31 Bo Söderberg. General formalism for inhomogeneous random graphs. Phys. Rev. E,
66(6):066121, 2002.

32 Remco van der Hofstad. Random graphs and complex networks. Available at www.win.tue.
nl/~rhofstad/NotesRGCN.pdf, 2011.

ESA 2017

www.win.tue.nl/~rhofstad/NotesRGCN.pdf
www.win.tue.nl/~rhofstad/NotesRGCN.pdf

	Introduction
	Definition of the Model and Preliminaries
	Small Power Law Exponents are Unsatisfiable
	Large Clause-Variable Ratios are Unsatisfiable
	Conditions for Satisfiability
	Discussion of the Results

