
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Diploma/Master/Student Thesis No. 0838-006

Persistence and Discovery of Reusable
Cloud Application Topologies

Hao Ding

Course of Study: INFOTECH

Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: Santiago Gómez Sáez
Commenced: 16th July, 2015
Completed: 15th January,2016

CR-Classification: C.2.4, D.2.11, D 2.8

Abstract

Due to the benefits introduced by the Cloud computing paradigm and the increase of available
Cloud services (VM- and non VM-oriented), in the last years the number of application
developers strongly supporting a partial or complete migration of application component
to Cloud environments has significantly increased. For example, it is possible to host the
application’s database off-premise (e.g. in a DBaaS solution) while keeping the remaining
components (presentation or business logic components) on-premise. However, the previous
application deployment is only one possible distribution alternative, and the existence of
further alternatives allows the generation of a wide variety of distribution combinations. In
addition, the challenges for application developers to efficiently select optimal strategy of
application’s deployment by considering evolving application performance with fluctuating
workload has increased rapidly. How to select, configure and deploy an application optimally
to satisfy functional and non-functional requirements of business and operation has been a
research area in both academic and industry domains.

In this Master thesis, basing on the approaches proposed in previous work, we first conduct a
research on existing approaches and technologies about how to persist, retrieve and build
typed graph-based Cloud application topologies leveraging the benefits introduced and
developed in graph databases and graph database technologies, respectively. Consequently,
we develop the core algorithms for persisting and discovering application topologies focusing
on their similar characteristics. Such conceptual models relate to the required structural
aspects representing the relationship between the application topologies, their performance
aspects, and their evolving workload. As a result of this thesis, a prototypical implementation
of a RESTful-based framework to support discovering and building reusable viable topologies
of Cloud application w.r.t. evolving functional and non-functional aspects is provided, e.g.
taking into account its performance, its corresponding profile and its corresponding evolving
workload.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivating Scenario . 3
1.3 Definitions and Conventions . 4
1.4 Outline . 5

2 Fundamentals 7
2.1 Graph-based Database . 7
2.2 Neo4j Graph Database System . 8
2.3 Graph Transformation Theory . 9
2.4 Cloud Computing . 10
2.5 Cloud Application Topology . 12

2.5.1 Optimal Distribution of Cloud Applications 12
2.6 TOSCA . 13
2.7 OpenTOSCA . 13
2.8 OpenTOSCA Winery Topology Modeling Environment 13
2.9 REST . 14

3 Related Works 17

4 Concept and Specification 21
4.1 Data Modeling . 21

4.1.1 Graph Database Modeling Notations 21
4.1.2 Type Graph with Inheritance Modeling 22
4.1.3 Modeling Example . 24

4.2 System Requirements . 29
4.2.1 Topology requirements . 30
4.2.2 Workload Requirements . 32
4.2.3 Performance(KPI) Requirements . 32

4.3 Use Case . 32
4.4 System Overview . 50

5 Design 51
5.1 System Architecture . 51
5.2 REST Interface Design . 53

5.2.1 Resource Identification . 53
5.2.2 Resource Representation . 54
5.2.3 Endpoint and Action Representation . 71

iii

Contents

5.3 Core Algorithm . 82
5.3.1 Viable Topology Discovery . 82
5.3.2 Similar Topology Matching . 83

6 Implementation 85
6.1 Implementation Environment . 85
6.2 Implementation Details . 86

6.2.1 RESTFul Interface . 87
6.2.2 Interpreter . 89
6.2.3 Data Access . 92
6.2.4 Business Logic . 93

7 Validation 97
7.1 Methodology . 97
7.2 Basic Elements . 100

7.2.1 NameSpace . 100
7.2.2 Relationship Type . 102

7.3 Alpha Topology . 104
7.3.1 Alpha Topology . 104
7.3.2 Similar Topology . 106

7.4 Gamma Topology . 108
7.4.1 Abstract Sub-Topology . 108
7.4.2 Concrete Node . 110
7.4.3 Instance Node . 113

7.5 Topology Enrichments . 116
7.5.1 Workload . 116
7.5.2 Performance . 119

7.6 Viable Distribution Topologies Discovery . 123

8 Outcome and Future Work 129

Bibliography 131

iv

List of Figures

1.1 Number of Visitors During a Day of Site PIWIK Forum 2
1.2 Page Load Time of Facebook Over last year . 2
1.3 Topology Model of MdediaWiki . 3

2.1 Neo4j Architecture . 9
2.2 Cloud Computing Layers . 11

4.1 Graph database notation . 22
4.2 Node Definition . 22
4.3 Node type tree . 24
4.4 γ-topology modeling . 25
4.5 α-topology modeling . 26
4.6 Performance Modeling . 27
4.7 Workload,KPI performing and viable history 29
4.8 Use Case Diagram . 33
4.9 System Overview . 50

5.1 System Architecture . 51
5.2 Work flow within Service Layer . 52
5.3 Resource Modeling . 53

6.1 Maven Module Dependency . 86
6.2 Class Diagram for the Viable Topology Discovery Component 94

7.1 Validation Scenario Overview . 98
7.2 Validation Sample Application . 99
7.3 Request for Persisting a NameSpace . 100
7.4 Response of the Request for Persisting a NameSpace 100
7.5 Retrieve one NameSpace By ID . 101
7.6 Retrieving all NameSpaces . 101
7.7 NameSpace in Database . 102
7.8 Request for Persisting a Relationship Type . 102
7.9 Response of the Request for Persisting a RelationshipType 103
7.10 Retrieve one RelationshipType By ID . 103
7.11 RelationshipType in Database . 103
7.12 Request and Response for Persisting an Alpha Topology 104
7.13 Retrieve one an Alpha Topology By ID . 105
7.14 Retrieve all Alpha Topologies . 105
7.15 Alpha Topology in Database . 106

v

List of Figures

7.16 Find Similar Alpha Topology-1 . 106
7.17 Find Similar Alpha Topology-2 . 107
7.18 Request and Response for Persisting an Abstract Sub-Topology 108
7.19 Retrieve one an Abstract Sub-Topology By ID 109
7.20 Abstract Sub-Topology in Database . 109
7.21 Request and Response for Persisting a Concrete Node 110
7.22 Retrieve a Concrete Node By ID . 111
7.23 Concrete Nodes for Alpha Topology . 111
7.24 Retrieving all Concrete Nodes . 112
7.25 Concrete Nodes in Database . 112
7.26 Request and Response for Persisting an Instance Node 113
7.27 Retrieve an Instance Node By ID . 113
7.28 Retrieve all Instance Nodes . 114
7.29 Instance Nodes in Database . 115
7.30 Instance Nodes linked to a Concrete Node . 115
7.31 Request and Response for Persisting a Workload 116
7.32 Retrieve a Workload By ID . 117
7.33 Retrieve all Workloads . 117
7.34 An Alpha Topology performs a workload . 118
7.35 An alpha topology retrieves all its Workloads 118
7.36 An Alpha Topology queries its Workloads . 119
7.37 Request and Response for Persisting a Performance 120
7.38 Retrieve a Performance By ID . 120
7.39 Retrieve all Performances . 121
7.40 An Alpha Topology performs a Performance 121
7.41 An alpha topology retrieves all its Performances 122
7.42 An Alpha Topology queries its Performances 122
7.43 Discover Viable Topologies . 123
7.44 Verify the generated Topology in Winery-1 . 124
7.45 Verify the generated Topology in Winery-2 . 124
7.46 Persist a Viable Topology . 125
7.47 Get all Viable Topologies of an Alpha Topology 126
7.48 Query Viable Topologies of an Alpha Topology 126
7.49 An Alpha Topology With its Viable Topologies, workloads and performances 127

vi

List of Tables

4.1 Use Case Description: Persist an abstract sub-topology 34
4.2 Use Case Description: Retrieve abstract sub-topology 34
4.3 Use Case Description: Persist a concrete node 35
4.4 Use Case Description: Delete a concrete node 35
4.5 Use Case Description: Retrieve concrete nodes 36
4.6 Use Case Description: Retrieve instance nodes refers to a concrete node . . . 36
4.7 Use Case Description: Persist an instance node 36
4.8 Use Case Description: Delete an instance node 37
4.9 Use Case Description: Retrieve instance nodes 37
4.10 Use Case Description: Persist Relationship Type 38
4.11 Use Case Description: Retrieve Relationship types 38
4.12 Use Case Description: Delete one Relationship type 38
4.13 Use Case Description: Find similar alpha topologies 39
4.14 Use Case Description: Discover All Viable Topologies for a given alpha topol-

ogy . 39
4.15 Use Case Description: Persist one viable topology for an application 40
4.16 Use Case Description: Persist one workload . 40
4.17 Use Case Description: Retrieve one workload 40
4.18 Use Case Description: Retrieve all workloads in database 41
4.19 Use Case Description: Delete one workload . 41
4.20 Use Case Description: Persist one performance 42
4.21 Use Case Description: Retrieve one performance 42
4.22 Use Case Description: Retrieve all performances in database 42
4.23 Use Case Description: Delete one performance 43
4.24 Use Case Description: Persist an alpha topology 43
4.25 Use Case Description: Retrieve an alpha topology 44
4.26 Use Case Description: Retrieve all alpha topologies 44
4.27 Use Case Description: Delete one alpha topology 44
4.28 Use Case Description: An alpha topology performs a performance 45
4.29 Use Case Description: Retrieve a performance of an alpha topology 45
4.30 Use Case Description: Retrieve all performances of an alpha topology 46
4.31 Use Case Description: Retrieve performances performing history of an alpha

topology . 46
4.32 Use Case Description: An alpha topology performs a workload 47
4.33 Use Case Description: Retrieve a workload of an alpha topology 47
4.34 Use Case Description: Retrieve all workloads of an alpha topology 48

vii

List of Tables

4.35 Use Case Description: Retrieve workloads performing history of an alpha
topology . 48

4.36 Use Case Description: Retrieve viable topology of an alpha topology 49
4.37 Use Case Description: Retrieve all viable topologies of an alpha topology . . 49

5.1 Resources for Topology Persistence and Discovery System 54
5.2 Allowed operations for abstract sub-topology resource 72
5.3 Allowed operations for concrete node resource 73
5.4 Allowed operations for instance node resource 74
5.5 Allowed operations for workload resource . 75
5.6 Allowed operations for performance(KPI) resource 76
5.7 Allowed operations for viable topology resource 77
5.8 Allowed operations for alpha topology resource 78
5.9 Allowed operations for alpha topology resource cont. 79
5.10 Allowed operations for relationship type resource 80
5.11 Allowed operations for namespace resource . 81

6.1 Development Tools List . 85

viii

List of Listings

5.1 XML schema for persisting an Alpha Topology 54
5.2 XML schema for retrieving Alpha Topologies 55
5.3 XML schema for abstract sub-Topology . 56
5.4 XML schema for retrieving viable topologies 58
5.5 XML schema for discovering similar alpha topologies 59
5.6 XML schema for performance . 60
5.7 XML presentation for performing performance(KPI) 67
5.8 XML presentation for persisting workload . 68
5.9 XML presentation for performing workload . 68
5.10 XML schema for retrieving concrete nodes . 69
5.11 XML schema for retrieving instance nodes . 70
5.12 XML schema for retrieving relationship type 70
5.13 XML schema for NameSpace . 71

6.1 Persist an Alpha Topology . 87
6.2 Delete an Alpha Topology . 88
6.3 Query Performed Workload History of Alpha Topology) 89
6.4 Create Static Unmarshaller Instance . 90
6.5 Create Static Marshaller Instance . 90
6.6 Well Annotated Workload Class . 91
6.7 Use Annotated Workload Class as Response 91
6.8 Get All labels of a Node . 92
6.9 Get All Instance Nodes of a Concrete node . 93
6.10 Combination Generation Algorithem . 94

ix

1 Introduction

Cloud computing has significantly changed the IT industry over the past few decades. It
makes the computing resource ’pay per use’ just like other normal utilities in daily life such
as water, gas and electricity [Rou16]. Cloud computing dramatically decreases the cost of
purchasing and maintaining IT hardware for both enterprises and individuals. In recent
years providers have provided various Cloud service basing on different pricing and capacity
model across different Cloud models. How to discover all potential application topologies
when the application is distributedly deployed and select the optimal one by considering
various criteria from different dimensions is a current research topic . In this section, we
introduce the problems that this thesis is targeting.

1.1 Problem Statement

IT industry has been shaped by the rapid development of the cloud computing paradigm
and services. Many Cloud service providers offer customizable services with respect to QoS,
price, access speed, storage capacity, etc across different Cloud computing models, so both
enterprises and individuals can select comparable service accordingly. For example, when
users want to select an optimal Cloud offering by considering OPEX(Operating expense)
especially, then the pricing model of service is sensitive to users. However, when users require
a relative bigger capacity or faster accessing speed of computing resource, they have to pay
more.

A number of approaches [VAL13, BBKL14] have provided decision support for users to
select from different Cloud offerings when deploying application in Cloud. However these
approaches do not consider the application topology. For example, an application topology
can be divided into two categories: application specific and application non-specific. With
the help of application topology description languages like TOSCA, each component of the
application topology – application specific or application non-specific – can be well described.
So instead of deploying the application as a whole stack on only one service provider, it
becomes possible for the application developer to explore the strategies of application’s
deployment – which Cloud offering to use to host which parts of the application stack. Then
it makes the distributed deployment of application and reusing the non-specific component
become possible.

When selecting and configuring application topology optimally, the price is not the only key
factor. For example, application performance is another important factor to be considered as
it determines the users’ experience.It can be easily imagined that a Web application with hun-
dreds of concurrent accessing or with millions of concurrent accessing under same physical

1

1 Introduction

environment behaves totally different.Another scenario is that when multiple applications
running on a same physical environment of the provider, the impact to each other can not be
predicted. Additionally the workload and performance of an application can change from
time to time. For example, the number of accessing of a Web application is significantly dis-
tinct during working hours and late night: figure 1.1 is provided by PIWIK1, which shows the
number of visitors who access site PIWIK forum during a day. In another example, figure 1.2
analyzes page load time of Facebook2 in year 2015. This analytics is made by GTmetirx3,which
provides analytics of site performance. It shows that the performance of website varies from
time to time with respect to various factors: users’ behaviors, special event and hardware
changing. So considering evolving workload and performance demands when selecting and
configuring the application distribution has an important meaning.

Figure 1.1: Number of Visitors During a Day of Site PIWIK Forum

Figure 1.2: Page Load Time of Facebook Over last year

1http://piwik.org/
2https://www.facebook.com/
3https://gtmetrix.com/

2

1.2 Motivating Scenario

1.2 Motivating Scenario

Figure 1.3 depicts the topology representation of an Web application MediaWiki. The applica-
tion is divided into two parts. The nodes in gray on the top is application specific part which
is a two tiers Web application. Other nodes of the application are application non-specific. As
showing in figure 1.3, the dash line indicates the possibilities of alternative deployment. For
example, the component Apache HTTP Server of the application can be deployed on different
service offerings: either on Azure4 or AWS5. In this case, the components of one application
can be distributedly deployed.

HOSTED_ON

ALT_HOSTED_ONMediaWiki App:
Web_App

MediaWiki App:
PHP_App

wikiDB:
SQL_DB

Apahche_PHP_Module:
PHP_Container

Apahche_PHP_Module:
PHP_Container

Apache_HTTP_Server:
Web_Server

Apache_HTTP_Server:
Web_Server

MySql:
SQL_RDBMS_Server

MySql:
SQL_RDBMS_Server

C
O

N
SI

ST
_O

F

CONSIST_OF

INTERACTS_WITH

Microsoft Cloud: Azure Amazon Cloud: AWS_EC2

Figure 1.3: Topology Model of MdediaWiki

When selecting optimal topology from
all discovered topologies, different criteria
should be taken into account such as secu-
rity, QoS and storage capacity. Furthermore,
as mentioned previously the performance
of the application is a key factor to be con-
sidered. The performance of the applica-
tion highly depends on the characteristics
of workload behavioral of its components.
For example, as showing in Figure 1.3, the re-
source demand, expected performance and
workload behavior for each component of
the application, like front-end, persistence
components of application specific and un-
derlying infrastructure like Web Server of ap-
plication non-specific should be considered
together to fulfill the overall requirements
when selecting and configuring the applica-
tion topology.

To resolve the problem discussed above,
[ASLW14] has proposed a framework which
can model, verify and automatically gener-
ate alternative scenarios for the distribution of an application. Then an optimal topology
among them can be selected with respect to various dimensions using different criteria. Bas-
ing on that, in [SAGF15] the concept of evolving performance and workload is established
and implemented to enrich an application topology.

To provide a comprehensive realization for above theory in the area of topology discovering
and enrichment with respect to optimal topology selection, a system is needed to persist the
relevant elements of topology mentioned above. This thesis focuses on how to model and
design a persistence framework using latest graph database for topology elements and its
enrichment. Graph database has native advantages when handling application topology as

4https://azure.microsoft.com/en-us/
5https://aws.amazon.com/

3

1 Introduction

topology itself is directed graph. Basing on the data model over persistence layer, besides the
algorithms which are developed in the business logic layer for the implementation of optimal
topology and similar topologies discovery, this thesis also researches on how to deal with
topology enrichments and its retrieve,its querying and the evolutionary aspect of discovered
topology and enrichments.

1.3 Definitions and Conventions

The following list contains abbreviations which are used in this document.

API Application Programming Interface

Capex Capital Expenditure

CRUD Create, Read, Update and Delete

DBMS Database Management System

DOM Document Object Model

HTTP Hypertext Transfer Protocol

IaaS Infrastructure-as-a-Service

JAXB Java Architecture for XML Binding

JAX-RS Java API for RESTful Web Services

JSON JavaScript Object Notation

JVM Java Virtual Machine

NIST National Institute of Standards and Technology

NoSQL Not only Structured Query Language

OPEX Operating Expense

PaaS Platform-as-a-Service

POJO Plain Old Java Object

RDBMS Relational Database Management System

RJE Remote Job Entry

SaaS Software-as-a-Service

SOA Service-Oriented Architecture

SQL Structured Query Language

TOSCA OASIS Topology and Orchestration Specification for Cloud Applications

URI Uniform Resource Identifier

4

1.4 Outline

VPN Virtual Private Network

XML eXtensible Markup Language

QoS Quality of Service

1.4 Outline

The remaining of this thesis structures as follows:

• Fundamentals, Chapter 2: introduces and provides the necessary background, tech-
nologies, and products used in this thesis.

• Related Works, Chapter 3: reviews the development and discusses state of art of the
studying area of this thesis so to locates the position of our work.

• Concept and Specification, Chapter 4: discusses the concepts established in this thesis
for the usage of design, implementation and validation, requirements of system are
analyzed here and a system overview is provided.

• Design, Chapter 5: provides a general introduction on the system architecture, proposes
algorithm for the implementation.

• Implementation, Chapter 6: provides implementation details basing on the design
principles in the form of coding.

• Validation, Chapter 7: design a real scenario basing on a sample application to test the
prototype of system.

• Outcome and Future Work, Chapter 7: provides a conclusion of the work done in this
thesis and analyze the merit and demerit of the work so that an extension can be done
basing on this thesis in the future.

5

1 Introduction

6

2 Fundamentals

2.1 Graph-based Database

Graph, is an object which consists of two sets called its vertex set and its edge set. The
elements of the vertex are called vertices and the elements of the edge set are called edges.
Vertex set is a finite nonempty set, and the element of edges is two-elements subsets of
vertex.[Tru13] [Gar85]

Graph are nowadays uses as the basis for the description of information. The most intuitive
examples of graph are social network like Facebook and Twitter.More than that, Gartner 1

has provided five graphs in the world of business - social, intent, consumption, interest and
mobile. In fact, most of the real world data and relationships among them can be modeled by
graph model. That is how Graph Database comes.

Graph database management system(henceforth graph database),is an online database man-
agement system with Create, Read, Update, and Delete (CRUD) methods that expose a
graph data model. Graph databases are generally built for use with transactional (OLTP)
systems.[RWE15] The most popular form of graph model is labeled property graph,a labeled
property graph graph has the following characteristics:[RWE15]

1. It contains nodes and relationships.
2. Nodes contain properties (key-value pairs).
3. Nodes can be labeled with one or more labels.
4. Relationships are named and directed, and always have a start and end node.
5. Relationships can also contain properties.

The power of Graph Database is obvious.First, the query speed of graph database is faster
than relational database. [VMZ+10] has done some researches for comparing relational
database and graph database. It uses Neo4j and MySQL for structure type queries and
full-text character searches. The result shows that graph database did better at the structural
type queries than the relational database. In full-text character searches, the graph databases
performed significantly better than the relational database: the speed of graph database is
five times faster than relational database. Second, the overhead of graph database is smaller.
Compared to the overhead of relational database when it is struggling with highly connected
domains, such as Join Table,Foreign Key and very costly Reciprocal Queries, graph database
can decrease the execution time when querying and remain relatively constant when dataset
gets bigger. Besides, Graph database is naturally additive, meaning it can add new kinds of

1Five Graphs Deliver a Sustainable Advantage: https://www.gartner.com/doc/2081316

7

http://www.facebook.com
http://www.twitter.com
https://www.gartner.com/doc/2081316
https://en.wikipedia.org/w/index.php?title=Junction_table&redirect=no
https://en.wikipedia.org/wiki/Foreign_key

2 Fundamentals

relationship, nodes, labels without disturbing existing queries.This characteristics reduces the
maintenance and risk of database.

There are already some mature and well known graph database systems in industry. For
example, FlockDB 2 is created and used by Twitter, it is much simpler than other graph
databases as it only focus on fewer problems such as traversal. OrientDB 3 is an open source
NoSQL database management system written in Java. It provides multi-models: Graph,
Document, Key/Value, and Object models. So OrientDB can be as a replacement for a
product in any of these categories. [Ori] ArangoDB is a NoSQL database developed by
triAGENS GmbH.4 It supports multi-model as well and graph data is stored together and
queried with a common language. The most popular graph database system in industry is
Neo4j, which is an open-source graph database implemented in Java and accessible from
software written in other languages. Cypher is a declaration language which is used to query
data of database. In this thesis, We mainly focus on Neo4j graph database system. All chapters
in the following like concept, design and implementations are based on Neo4j.

2.2 Neo4j Graph Database System

Neo4j is developed by Neo Technology,Inc. Neo4j is an open-source graph database imple-
mented in JAVA, it is a transactional, ACID-compliant database.

Neo4j support scalability, high availability and fault-tolerance requirements in order to deal
with OLTP workload.[VB14] The query language of Neo4j is Cypher. Cypher5 is a declarative
database query language, it tells database what data is asked by declaring the pattern.

There are three editions of Neo4j: Community, Enterprise, and Government. The Community
edition is free but it can only run on only one node due to this edition does not support
clustering.

Neo4j has two deployment solutions: embedded mode and server mode.Embedded mode
means that the database is inside the application and in the same JVM as the application.
So the access to database is fast by Java API and Cypher query language. The limitation
is that in this way the database is locked by the JVM process, other application can not
access the database. With server mode, accessing database is available only by REST API
provided by Neo4j, Java API is off limits. It means many applications can access Neo4j by
different programming language but with a slower access speed comparing to embedded
mode. [Fro14]

Up to November 2015, Neo4j ranks number one and is the most popular graph database.[de15]

2https://en.wikipedia.org/wiki/FlockDB
3http://orientdb.com/
4http://de.triagens.com/
5http://neo4j.com/developer/cypher-query-language/

8

2.3 Graph Transformation Theory

Figure 2.1: Neo4j Architecture

Figure 2.1 is the architecture of Neo4j graph
database system. There are four main kinds
of primitives in Neo4j: nodes, relationships,
relationship type and properties. At the bot-
tom of the architecture, primitives of Neo4j
are stored in disk as records. To optimize
the writing and reading speed, Neo4j uses
caches. As showing in figure, one type of
caches is the file buffer cache. This layer
caches the Neo4j data in the same format as
it is represented on the durable storage me-
dia. At the top of the architecture is database
API and another type of cache: object cache.
The object cache caches individual nodes
and relationships and their properties in a
form that is optimized for fast traversal of
the graph. There are two categories of object
caches. One is reference cache. It holds as
much of JVM heap memory to as it can to
hold primitives. Another object cache is high-performance cache which is used to provide
fast speed query. [Neo16]

2.3 Graph Transformation Theory

Graph transformation, is a well-known mechanism to generate new graph from an original
graph algorithmically. It is originally evolved to deal with non-linear structures and was
first time proposed in late sixties for the usage of image recognition,translation of diagram
languages.[PR69]

Graph is playing a very important role in dealing with complicated problem, particularly in
computer science.A variety of visual notations have been proposed in the area of visualization
for software engineering,for example, data and control flow diagram, function block diagram,
UML description language and cloud application topology. These diagrams can be treated as
graphs directly. The procedure of graph generating, interpreting and evolving makes graph
transformation theory involved.

As described in [Hec06], the basic approach of graph transformation is to represent the reality
in real world by modeling and extract the concrete object,rule and behavior by generalization.
The PacMan example in [Hec06] make a good explanation on instance graph and type
graph,here quoting it directly:’A fixed type graph TG represents the type (concept) level and
its instance graphs the individual snapshots. This distinction is a recurring pattern, like in
class and objects, data base schema and states, XML schema and documents, etc.’

Basing on above definitions,[BEDL+03] proposes the definition of Type Graph with Inheri-
tance (TGI).

9

2 Fundamentals

Definition 1 (Type Graph with Inheritance) A type graph with inheritance is a triple(TG,I,A) consist-
ing of a type graph TG=(N,E,s,t) (with a set N of nodes, a set E of edges, a source and a target function
s,t: E→ N), an inheritance graph I sharing the same set of nodes N, and a set A ⊆ N,called abstract
nodes. For each node n in I the inheritance clan is defined by clanI(n)={n ∈ N|∃path n′ →∗ n in I}
where path of length 0 is included, i.e. n ∈ clanI(n).

TGI extends node of type graph to concrete node and abstract node, abstract node has only
inheritance relations with other nodes.TGI can be transformed to ordinary type graph by
graph transformation theory, so it can be seen as a convenient notation for ordinary type
graphs.

Graph morphism, which is another important definition in graph theory. A graph morphism
is a mapping between two graphs that respects their structure. More concretely it maps
adjacent vertices to adjacent vertices. [BEDL+03] propose the definition of clan morphism:

Definition 2 (Clan Morphism) Given a type graph with inheritance(TG,I,A), type’:G →TG is a
clan-morphism, if for all e ∈ GE holds:

type′N ◦ sG(e) ∈ clanI(sTG ◦ type′E(e)) and

type′N ◦ tG(e) ∈ clanI(tTG ◦ type′E(e)).

Cloud application topology uses above definition and special notation to represent the
structure of application,so graph transformation theory can be performed on topology as
well.

2.4 Cloud Computing

Cloud computing, also known as ’on-demand computing’ has significantly changed the IT
service over the past few decades years. Cloud computing means storing and accessing data
and application over Internet instead of users own PCs, laptops or servers at house. It makes
companies or persons to consume computing resources as a utility, just like water, gas and
electricity. It reduces CAPEX and OPEX for computing resource users: the cost for purchasing
hardware and the cost to run and maintain them.

The history of cloud computing can be traced back to the seventies. In the mid-1970s, IBM
developed and released its VM Operating System to provide time-sharing system know
as RJE. In the 1990s, some important telecommunication company offered VPN service to
enterprise user. VPN can provide comparable good quality of service with a low cost. It
is the prototype of cloud computing. After that scientist and industry starting focusing on
the theory development of cloud computing. Since 2000, cloud computing has come into
existence. In early 2008, NASA released the first open source software OpenNebula for
deploying private and hybrid clouds. In Feb 2010 Microsoft released its cloud computing
platform ’Windows Azure’. In July 2010, Rackspace Hosting and NASA jointly launched an

10

2.4 Cloud Computing

open-source cloud-software initiative known as OpenStack. In 2012, Oracle announced the
Oracle Cloud. [wik16]

Figure 2.2: Cloud Computing Layers

The definition of cloud computing model
is defined by NIST in [MG11]. This cloud
model is composed of five essential charac-
teristics (On-demand self-service, Broad net-
work access, Resource pooling, Rapid elastic-
ity, Measured Service); three service models
(Cloud Software as a Service (SaaS), Cloud
Platform as a Service (PaaS), Cloud Infras-
tructure as a Service (IaaS)).

The five essential characteristics of cloud
computing model are:

• On-demand self-service: Users can customize and provision computing resource such
as server time, server capacity without human interaction with service provider.

• Broad network access: Services can be accessed through standard mechanisms by user
with different client. (PC, Mobile Phone. . .)

• Resource pooling: The resource of providers are in a pool to serve multiple consumers
using a multi-tenant model. Users has no knowledge about the resource location.

• Rapid elasticity: Computing resource can be provisioned and released, in some cases
automatically.

• Measured service: Computing resource is automatically controlled and optimized.
Transparency of usage of computing resource is provided for both the provider and
users.

Figure 2.2 is the layers of cloud computing service model defined by NIST.

• Software as a Service (SaaS): Users can access the application running on cloud infras-
tructures from various clients, for example, a Web Browser. The users do not concern
about underlying cloud infrastructure including network, servers, operating systems or
storage.

• Platform as a Service (PaaS).: PaaS provides users computing platforms so users can
deploy its own created application or required application. PaaS typically includes
operating system, programming language execution environment, database, web server
etc.

• Infrastructure as a Service (IaaS): IaaS is a self-service models for accessing, monitoring,
and managing remote data-center infrastructures, such as compute (virtualized or bare
metal), storage, networking, and networking services (e.g. firewalls).

11

2 Fundamentals

2.5 Cloud Application Topology

Cloud computing is starting a revolution in how applications are design and realized.It is not
simply outsourcing the computing resource to external provider any more. Today’s applica-
tions are totally different, the application itself is becoming more and more complicated,the
number of users is unknown, so it is a hard to predict the load.From cloud service customers’
perspective,operational expenditure(OPEX) is the very important factor to be considered.By
comparing the service quality factor(price,QoS,etc), the requirement to deploy application
components to different cloud service providers and making application portable is increased.
From service providers’ perspective, management of offered service is one of the biggest cost
today, how to make the service automatically,dynamically and self-maintained is the key
point.

In [ASLW14], the definition of application topology is given:

Definition 3 (Application Topology) An application topology is a labeled graph G = (NL, EL, s, t)
where N is a set of nodes, E is a set of edges, L a set of labels, and s,t the source and target functions s,t:
EL → NL. The topology graph is called typed, if the label set L contains only elements <name:type>
(for nodes) and <type> (for edges), in which case the graph is denoted by T.

2.5.1 Optimal Distribution of Cloud Applications

To deal with issues discussed above, lots researches focus on providing a unified topology
description language like TOSCA,Blueprint,etc. On the other hand, how to dynamically and
optimally discover possible application topologies is another hot topic. [ASLW14] proposes
definition of viable topology and α,γ and µ-topology for the usage of discovering cloud
topology.

Definition 4 (Viable Topology)A typed topology T is viable w.r.t a type graph with inheritance TGI ,
iff all elements of T are labeled(typed) over the elements of TG, i.e. there exists a graph morphism m:
TGI → T which uses the inheritance clan relation.

Definition 5 (α,γ and µ-topology) The type graph with inheritance TGI for a viable application
topology T is called its µ-topology. We denote by α-topology the application-specific sub-graph of
a µ-topology,and by γ-topology the non application-specific (and therefore reusable) sub-graph of a
µ-topology.

By separating application topology into α,γ-topology, the topology itself is divided into
two parts logically: one part is application specific which can not be reused, the other part
is application non-specific which can be reused.To find all possible viable topology of an
application is to discover all application non-specific topology.

12

2.6 TOSCA

2.6 TOSCA

Topology and Orchestration Specification for Cloud Applications (TOSCA) is an OASIS
standard language to describe a topology of cloud based web service.TOSCA is used to
substantially enhance the portability of cloud applications and the IT services that comprise
them running on complex software and hardware infrastructure.[OAS15a]

TOSCA can define the structure of cloud service,the structure is defined by a topology —- a
graph of typed nodes and directed typed edges.TOSCA uses Extensible Markup Language
(XML) to describe component of topology, properties(ability,policy,requirement,plan,constraint)
of component and relationships among them.It also provides the portability for an application
deploying on any TOSCA complied cloud, migrating of existing application to cloud and
dynamically choosing of multi-cloud provider.

The participants of TOSCA includes most of famous IT companies like Cisco,SAP,IBM,INTEL.
TOSCA is widely used and has been accepted by many cloud service provider as cloud service
description language.

2.7 OpenTOSCA

OpenTOSCA is an open source ecosystem. The key task of Open TOSCA are to operate
management operations, run plans, and manage state.[BBH+13]

The OpenTOSCA ecosystem consists of three components[Uni15]:

1. OpenTOSCA Container, a TOSCA runtime environment. It consists of three components
which are Implementation Artifact Engine (IAE), Plan Engine (PE) and Controller. As
TOSCA has defined an Artifact that is executed on the target node, so IAE is used
to deploy all ImplementationArtifacts contained in CSAR files fully automated and
provides them this way for management plans.PE is used to implement management
plans using different work-flow languages such as BPEL or BPMN. Plans invoke the
management operations provided by ImplementationArtifacts. Controller is used to
control all other components.

2. Winery, a graphical modeling TOSCA tool which is presented in the next section.
3. Vinothek, a Web-based Self-Service Portal that hides the technical details of TOSCA

Runtimes and provides end users a simple graphical interface to provision Cloud
applications on demand.

2.8 OpenTOSCA Winery Topology Modeling Environment

Winery[KBBL13a] as mentioned above, is a web based graphical modeling tool supporting
the modeling and creation of TOSCA-based applications.It provides HTML5 based web GUI
for topology developer to model the topology of cloud application. The Topology Elements

13

2 Fundamentals

Manager, Topology and Plan Modeler,BPMN4TOSCA plan modeler and Repositories are the
major components of Winery (see 5.1).

TOSCA defines 45[KBBL13a] elements for cloud application topology. Winery separates them
into two category: one is related to visualization like relationship template ,node template,
which is used by topology modeler; the other one is related to define TOSCA reusable artifacts
and configuration like node type and relationship type.Topology elements manager provides
management for the second part of elements.Right now Winery use local file system as the
repository. This repository provides REST interface to winery element manager and topology
modeler. The repository can save reusable TOSCA elements and export existing TOSCA
element to CSAR format or import CSAR file into winery. A GUI is implemented with JAVA
and HTML5 for user to interact winery.

TOSCA is extended and enhanced gradually. [SAGF15] extends winery to PERFinery by
providing workload and performance repository which can enrich topology.

2.9 REST

REST stands for Representational State Transfer, which is a lightweight web service archi-
tecture proposed by Dr.Roy Fielding in his PhD thesis in 2000 [Fie00]. REST has following
principles:[Bur13]

1. Addressable resources: Every entity in real world which is abstracted and represented
as data in REST is a resource, which should be addressable through a URI(Uniform
Resource Identifier).

2. A uniform,constrained interface:when talking about REST, although it is non-protocol
specific, usually mean REST over HTTP. Previous technologies like SOAP only take
HTTP as a transport protocol.REST uses well predefined HTTP native method like
PUT,GET,DELETE,POST to manipulate resource.

3. Representation-oriented: it means using different representations to interact with ser-
vice. A resource referenced by URI can have different format. For example, HTML for
browser, JSON for JavaScript and XML for JAVA.

4. Communicate statelessly: it means server is stateless. Server does not save any client
session data, instead it only stores the state of resource.

5. Hypermedia As The Engine Of Application State(HATEOAS): As REST is stateless,
REST uses embedding hyper links to other service in the response of server as the engine
of application state. For example, when buying a book on Amazon, when customer
decides to buy a book, before the credit card is charged,customer is asked to fill addition
forms. The server guides customer what to do next by each link it provides to the
browser. This is how HATEOAS works: server sends back new actions for each request
from client, it tells what the client can do and where to go, it makes the transition of
application state.

14

2.9 REST

Now REST has become very popular for web service development. Major frameworks for
different programming language with REST have started appear. For example, Java API for
RESTful Web Services(JAX-RS) which is defined in JSR 311, is the standard for REST with
JAVA. Currently there are three implementations: Jersey, RESTlet and RestEasy.

REST also has been accepted by industry. Mainstream Web 2.0 service providers like
Google,Yahoo,Facebook,Twitter have used REST architecture to develop resource-oriented
web service. It can be predicted that REST will be the trend of web service architecture in the
future.

15

2 Fundamentals

16

3 Related Works

Cloud model is defined in NIST definition of cloud computing [MG11]. It is composed of
three service models: SaaS,PaaS and IaaS. There are lots of studies focus on these three areas
for providing cloud-based application development.

Some original studies focus on low-level(IaaS) cloud issues such as scalability and load bal-
ance.For example, in [RMVG+10], an abstract layer called ’Claudia’ is proposed to provide an
friendly interface which is not too close to the infrastructure layer, so that SPs can reduce their
administration burden during the whole service life-cycle.Then it is found there is limitation
of each providers with respect of capabilities at their delivery level.Besides that,customization
and extension ability is another issue for the user of cloud service.So there is a need to involve
every possible SaaS,PaaS and IaaS providers for one comprehensive service at a higher level
like application level.In this case,it is necessary to go across the three cloud service models
to create a Service-based Application(SBA).For example,[LK09] proposes a systematic way
to develop high-quality cloud SaaSs. Design criteria of SaaS is defined and commonality is
taking into account for reusability.In [Mie10], Cafe(composite application framework) appli-
cations is proposed.It provides a whole life-cycle for user to select application provider(can
be PaaS,Iaas) and customize the application, finally it is automatically deployed across dif-
ferent providers.In [TSB10], a Service Oriented Cloud Computing Architecture(SOCCA) is
proposed.It aims at the issue that different cloud service provider has its own interpretation
of cloud computing. With SOCCA different clouds can inter-operate with other ones. This
architecture tries to provide a cloud service across different cloud service models and support
cloud provider information publishing, dynamic SLA Negotiation and multi-tenancy archi-
tecture by a layer named "Cloud Borker Layer". But as mentioned in the paper, the limitation
is that at that time there is no powerful modeling language to support developments for
multiple platforms so that a service package can be re-deployed on a different cloud.

To track the issues, cloud modeling language is needed so that cloud application could be well
described and interpreted by different cloud service provider. In this case, cloud application
migrating and distributed deploying will not be an armchair strategist.

Amazon cloud service [Ama] provides a template based service description language for
user to customize the needed cloud service.But the limitation is obvious: user is tied to only
one cloud service provider. In [ARB12], a service specification language based on Unified
Service Description Language is proposed to describe both technical and business aspects which
includes the capabilities and non-functional characteristics of services.By extending USDL to
USDL-SLA[LM12], it can enable attaching guaranteed service states and actions.[BPM12] also
propose a cloud modeling language named CloudML,it is provided as Domain-Specific Lan-
guage (DSL).CloudML focus on the area of software deployment of a cloud service, propose
a component based approach to model software deployment across different clouds service

17

3 Related Works

provider.Some other specification modeling language like Open Virtual Format(OVF) [BCJ]
which defines the standard for packaging and distribution information in IaaS layer. Microsoft
Azure provides an ad-hoc XML format language on PaaS level[Wil12]. The limitations of
above languages focus on a specified layer and does not provide automatic deployment.
Topology and Orchestration Specification for Cloud Applications (TOSCA) is defined in
[TOS], which is an OASIS standard to describe the components, relationships of cloud service
and manage them. TOSCA stays on the level of SaaS, it can provide the ability to automati-
cally deploy application by the definition of capability and requirements pairs.[NLPVDH12]
proposes uniform specification language called ’BluePrint’ for cloud services description. It
aiming at providing cloud service developer to publish, query and compose cloud service. In
[ARSL14], The Generalized Topology Language (GENTL) is proposed aiming to identify the
optimal distribution of an application in the cloud, potentially across offerings and providers.
It also support mapping to other topology language like TOSCA and Blueprints.

With above modeling language supported, the process of application distribution can be
automatically executed. For example,in [ARB12], a 5-staged process is defined to dynamically
distribute topology orchestration. It transforms application topology into multiple service
deployment requests and request dependencies based on an existing and valid specification in
the first stage named ’Request Handling and Scheduling’. In the second stage ’Infrastructure
Preparation’, it configures the infrastructure with details like IP address. This approach is
implemented in GEYSERS project[EPN+11].

Furthermore, with the help of topology modeling language, cloud-based service application
developer can explore which cloud offering to use to host which parts of the application stack.
However, when developing application topologies,developers always facing ’reinventing
the wheel’ problems.A similar solution may be created for different application by different
developers for many times. So how to reuse existed application topologies or components of
the topologies become a more crucial problem.

In [BS14] and [BS13], the author proposed TOSCA based method to find the matching node
types then to decide whether it can be reused in another service template. This approach
resolve it by substituting a node type by a service template, and is the first one to clearly
categories the matching level of a node type. Based on that, [SBB+15],a method named
’TOSCA-MART’ is proposed to enable deriving and reusing existing TOSCA solutions.The
developers can also specify and customize components from a repository in their own
applications.

When cloud application topology or part of it can be reused, another topic how to discover
it automatically. There are may several possible topology components can be reused, how
to generate all possible topology and how to find the one which meet some functional and
non-functional requirement.

[BFL+12] proposes Enterprise Topology Graph (ETG), which is a graph-based model for
enterprise topologies capturing all entities of enterprise IT and their logical, functional, and
physical relationships. ETG is influenced by TOSCA, it generalize TOSCA concepts to extend
application models towards the representation of enterprise topology instances. An ETG
composes of Node types, Edge types, entities and properties which is key-value-pair to

18

represent properties of entity. To discover topologies the essential algorithm is searching.
Based on ETG, VF2 algorithm [CFSV04] is adopted and optimized. VF2 algorithm is a
famous sub graph isomorphism algorithm for matching large graphs.Basing on [BFL+12],
in [BBKL13], the author proposed a plug-in method for iteratively retrieving application
topology. This approach basing on Enterprise Topology Graph (ETG) repository, which
represents the level of abstraction required for the desired field of application. Another
approach is proposed in [ASLW14], in this paper it provides a formal definition for cloud
application topology. By separating an application topology into two parts: application
specific part(α-topology) and non-specific part(γ-topology), a theory to discover all possible
application topologies is established. The author proposed a method to find a optimal
distribution as well.To track the issue of lack of insight into application non-functional
requirement, [SAGF15] proposes a method to enrich topology by evolving workload and
KPI.

This Master thesis bases on the approach proposed in [ASLW14] and [SAGF15]. We design
and implement a framework to persist application topology and its enrichment. Business
logic is implemented over the persistence layer for potential application topologies discovery
and relevant operation of topology enrichments.

19

3 Related Works

20

4 Concept and Specification

In this chapter, we establish the concept and specification to describe database model of
application topology and its enrichments. The concept and specification are followed during
design,implementation and validation phases. As described in previous sections, topology
is a directed graph. So Graph database has inherent ability and advantage to present graph.
Modeling Cloud application topology based on a graph database is the key step for further
work. Once the data model is established, requirements of system are analyzed and rele-
vant use cases are provided. By following use cases, we provide an overview of Topology
Persistence and Discovery system and its components. This system can store, retrieve and
query α,γ and viable topologies of an application, discover potential viable topologies for an
α topology as described in [ASLW14] and find similar topologies for a given α topology. In
addition, the system supports operations of evolving workload and performance defined in
[SAGF15], which includes storing,retrieving and querying and performing them to enrich a
selected topology.

In the first part of this chapter we model each entity which is persisted in database and provide
the example. In the second part,we specify the functional and non-functional requirements
the system must fulfill. In the third part,a list of use cases are provided. Finally basing on
previous models and definitions, an system overview is presented.

4.1 Data Modeling

Database model determines the logical structure of a database and fundamentally determines
in which manner application topology and its enrichments can be stored, organized, and
manipulated. As graph database is used in the system, so first a brief introduction of modeling
method of graph database is presented. Currently there exists no standard way to present
graph database model, mostly it is presented by a real example. So following this convention,
we design, establish and present the data models of each elements of application topology
and relationships among them.

4.1.1 Graph Database Modeling Notations

There are four building blocks that will be used in the remaining of this section to present
data model.

1. Nodes: nodes are used to represent entities. Every node can contain multiple properties
to describe entity.

21

4 Concept and Specification

2. Relationships: relationship defines the relationship among nodes. It has a name and a
direction, which can contain properties as well.

3. Properties: properties are named values where the name is a string. Property is used to
describe the characteristics of nodes or relationships.

4. Labels: labels assign roles or types to nodes. Every node can have zero or more labels
attached, which are used to group nodes.

Figure 4.1 shows the notations which are used in this paper to represent node, node with
property, node with property and label, relationship respectively.

NODE
NAME: VALUE

(Property)
NAME: VALUE

(Property)

RELATIONSHIP_NAME

LABEL

Figure 4.1: Graph database notation

4.1.2 Type Graph with Inheritance Modeling

Type Graph with Inheritance(TGI) is explored in [BEDL+03]. Basing on that,to verify and
automatically generate alternative scenarios for the distribution of an application across
Cloud offerings, a new concept viable topology in paper [ASLW14] is proposed as discussed in
previous section.

For the usage of modeling α,γ and viable topologies in graph database, first node is defined as
following:

Node Definition for Data Modeling Node_Type
Name:String

ID:String
Type:String

Specification: String(optional)
Level:String(optional)

Topology_Type
Type

Figure 4.2: Node Definition

In Figure 4.2, a node which represents a
typed node used in TGI modeling is defined.
It consists of three labels and a set of proper-
ties:

22

4.1 Data Modeling

Label definition

Topology _Type is used to denote which topology does this node belong to: α ,γ or µ.

Type is used to denote what type this node is. For example, in Figure 4.3, the node type on the
very top is WEB_SERVER , which indicates this node is an entity typed of WEB_SERVER.

Node _Type is used to denote what node type this node is. The value of node type can be one
of the following:

1. abstractNode: indicate this node is an abstract node.Abstract node represents one
category of service with common general characteristics, from which concrete node(the
node which is labeled concreteNode) with more specific properties, requirements and
capabilities can be extended.

2. concreteNode: indicate this node is a concrete node. Concrete node is a reusable entity
that defines the type of one or more instance node.

3. instanceNode: indicate this node is an instance node.Instance node is an instance of a
concrete node(like Object to Class),it specifies the occurrence of a concrete node as a
component of a service and it can has specific requirements and capabilities.

4. abstractSubTopologyIndex: indicate this node is an index of an abstract sub-Topology.
It contains the specification of the abstract sub-topology and from this node all other
abstract nodes can be retrieved and accessed.

5. alphaTopologyIndex: indicate this node is an index of an alpha topology. It contains the
specification of the alpha topology and from this node all other instance nodes belong
to the alpha topology can be retrieved and accessed.

6. µ-topology: represent a viable topology which contains information such as which
application it belongs to,created time, whether it is obsolete, etc.

7. workload: indicate this node is a workload node. It contains the evolving workload
information.

8. performance: indicate this node is a performance node. It contains the evolving perfor-
mance information.

9. requirement: indicate this node is a requirement node. It contains the requirements of
service of the node.

10. capability: indicate this node is a capability node. It contains the capabilities of service
of the node.

11. RelationshipType: save the type of relationship, whose instance is used to connect
nodes.

23

4 Concept and Specification

Refers_to

REFINED_AS REFIEND_AS

WEB_SERVER

name: WEB_SERVER
id:WEB_SERVER

abstractNode
γ

Apache_HTTP_Server

name:apache_http_server
id:apache_http_server

concreteNode
γ

name:ibm_webSphere
Id:ibm_webSphere

IBM_WebSphere
concreteNode

γ

name:apach_http_server_instance
Id:apach_http_server_instance

Apache_HTTP_Server

instanceNode
γ

Figure 4.3: Node type tree

Property definition

1. name:This attribute stores name of the entity.

2. id:This attribute stores identification of the entity .

3. type:This attribute stores type of the entity.

4. specification: This attribute stores topology description described by topology descrip-
tion language. For example, if TOSCA is used to describe topology, then this attribute
should save TOSCA definition in a STRING format.

5. level: This attribute stores the level information of the node.For example, if the node is
the root node of the topology, the value of this attribute will be root.

4.1.3 Modeling Example

Node type tree

Figure 4.3 depicts the modeling for one Cloud service: Web Server.In this example, two
concrete nodes Apache_HTTP_Server and IBM_WebSphere refine abstract node WEB_SERVER.
Node Apache_HTTP_Server_instance instantiates concrete node Apache_HTTP_Server . The
abstract nodes, their refined concrete nodes and their instance nodes compose node type
tree.The relationships defined in the following table connect abstract,concrete and instance
nodes.Node type tree is used for modeling γ-topology in the following.

Relationship Type Description
REFINED AS connect abstract node with concrete node.
REFERS TO connect one instance node to a concrete node.

24

4.1 Data Modeling

γ-topology modeling

Figure 4.4 models a γ-topology.A γ-topology composes of different node type trees and
relationships which connect them.

Taking abstract node with property Name:ApachePHPModule for example, this node is refined
by one concrete node with property Name:ApachePHPModule, which has a capability node
and is referred by an instance node.Then this abstract node connect to another abstract node
Name:ApacheWebserver with relationship HOSTED_ON.

γ

name:ApachePHP
Module

concreteNode

Name:ApachePHPModule
Type:ApachePHPModule

Level: root

abstractNode

Name:ApacheWebserver
Level:1

H
O

ST
ED

_O
N

Name:WindowsVM
Level:2

H
O

STED
_O

N

H
O

STED
_O

N

Name:WindowsAzure
Level:leaf

HOSTED_ON

H
O

ST
ED

_O
N

H
O

ST
ED

_O
N

abstractNode

abstractNode

abstractNode

Re
fin

ed
_a

s

γ

name:ApacheWeb
server

concreteNode

Refin
ed_as

γ

name:UbuntuVM

concreteNode

Refined_as

γ

name:AmazonEC2

concreteNode

Refin
ed_as

γ

name:WindowsAz
ure

concreteNode

Refined_as

γ

name:WindowsV
M

concreteNode

Refined_as

γ

name:MySQLServer

concreteNode

Refined_as

γ

name:ApachePHP
Module

instanceNode

Refers_to

γ

name:ApacheWeb
server

instanceNode

Refers_to

γ

name:UbuntuVM

instanceNode

R
efers_to

γ

name:AmazonEC2

instanceNode

R
efers_to

Name:MySQLServer
Level: root

abstractNode

Name:UbuntuVM
Level:2

abstractNode

Name:AmazonEC2
level: leaf

abstractNode

γ

name:WindowsV
M

instanceNode

Refe
rs_

to

γ

name:WindowsAz
ure

instanceNode

Re
fe

rs
_t

o

γ

name:MySQLServer

instanceNode

Refers_to

name:MySQLContai
nerRequirement

capability

HAS_Capability

name:ApacheModu
leContainerRequire

ment

capability

HAS_Capability

Figure 4.4: γ-topology modeling

α-topology modeling

Figure 4.5 models an α-topology which comes from MediaWiki application in Figure 1 of
[SAGF15].An α-topology model composes of instance nodes and relationships which connect
instance nodes together. An index node labeled by alphaTopologyindex connects all α-topology
nodes with relationship INCLUDES, the index node is used to retrieve all nodes of α-topology
and save characteristics of an α-topology.

25

4 Concept and Specification

Name: MediaWiki_WebApp
id:MediaWiki_WebApp

Type:MediaWiki_WebApp
Level:root

CONSIST_OF CONSIST_OF

INTERACTS_WITH

MediaWiki_WebApp

instanceNode

alphaTopologyName:MediaWiki_WebApp
alphaTopologyID:MediaWiki_WebApp

Specification: the specification of topology
Specification type: xml

INCLUDES

INCLUDES

IN
C

LU
D

ES

alphaTopologyIndexα

Name: WikiDB_MySQLDB
id:WikiDB_MySQLDB

Type:WikiDB_MySQLDB
Level:leaf

WikiDB_MySQLDB

instanceNode

α

Name: MediaWiki_PHPApp
id:MediaWiki_PHPApp

Type:MediaWiki_PHPApp
Level:leaf

MediaWiki_PHPApp

instanceNode

α

Figure 4.5: α-topology modeling

Topology Enrichment - Performance Indicators Modeling

In [SAGF15], an application performance is partitioned in two correlated groups: Operational
Requirements and Business Requirements.These two groups can be defined and estimated by
the usage of Metrics.

Figure 4.6 models performance demand specification. The node in the center labeled by
performance is the performance index node from which all performance attributes can be
retrieved.

26

4.1 Data Modeling

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

HAS_
TI

M
E_

BEH
AVIO

U
R

HAS_TIM
E_BEHAVIO

UR

H
AS

_S
CA

LA
BI

LI
TY

ID
Sp

ec
if

ic
at

io
n

St
ar

t_
ti

m
e

En
d

_t
im

e

p
er

fo
rm

an
ce

p
er

fo
rm

an
ce

H
A

S_
SC

A
LA

B
IL

IT
Y

H
A

S_
SC

A
LA

B
IL

IT
Y

HAS_
SC

ALA
BI

LI
TY

HAS_SCALA
BILI

TY

re
so

u
rc

e_
p

ro
vi

si
o

n
in

g_
ti

m
e

re
so

u
rc

e_
p

ro
vi

si
o

n
in

g_
ti

m
e

d
ep

lo
ym

en
t_

ti
m

e
d

ep
lo

ym
en

t_
ti

m
e

re
so

u
rc

e_
re

le
as

e_
ti

m
e

re
so

u
rc

e_
ac

q
u

is
it

io
n

_t
im

e

V
m

_s
ta

rt
u

p
_t

im
e

V
m

_s
ta

rt
u

p
_t

im
e

M
in

, M
ax

A
vg

,
st

HAS_
AVAILA

BILI
TY

HAS_AVAILABILITY

HAS_AVAILABILITY HAS_AVAILA
BILI

TY

cl
o

u
d

_r
es

o
u

rc
e_

u
p

ti
m

e

cl
o

u
d

_s
er

vi
ce

_u
p

ti
m

e

m
ea

n
ti

m
e_

re
p

ai
r

m
ea

n
ti

m
e_

b
et

w
ee

n
_f

ai
lu

re
s

H
A

S_
C

A
P

A
C

IT
Y

H
A

S_
C

A
P

A
C

IT
Y

H
A

S_
CA

PA
CI

TY

H
AS

_C
AP

AC
IT

Y

HAS_CAPACITY HAS_CAPACITY
HAS_

CA
PA

CI
TY

p
ro

ce
ss

o
r_

sp
ee

d

n
u

m
b

er
_p

ro
ce

ss
o

rs

b
an

d
w

it
h

b
an

d
w

it
h

m
em

o
ry

_a
llo

ca
ti

o
n

_v
m

m
em

o
ry

_a
llo

ca
ti

o
n

_v
m

st
o

ra
ge

_s
iz

e
st

o
ra

ge
_s

iz
e

n
u

m
b

er
_v

m
n

u
m

b
er

_v
m

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
st

M
in

, M
ax

A
vg

,
stM

in
, M

ax
A

vg
,

st

M
in

, M
ax

A
vg

,
st

H
A

S_
TI

M
E_

BE
H

A
VI

O
U

R

H
A

S_
TI

M
E_

B
EH

A
V

IO
U

R

H
A

S_
TI

M
E_

B
EH

A
V

IO
U

R

H
A

S_
TI

M
E_

B
EH

A
V

IO
U

R

HAS_
RES

O
URCE_

UTI
LI

ZA
TI

O
N

HAS_RESOURCE_UTILI
ZATIO

N

HAS_RESOURCE_UTILIZATION

HAS_RESOURCE_UTILI
ZATIO

N

HAS_RESOURCE_UTILIZATION

HAS_RESOURCE_UTILIZATION

b
ac

ku
p

_t
im

e

p
ro

ce
ss

in
g_

ti
m

e
p

ro
ce

ss
in

g_
ti

m
e

av
g_

re
ad

_s
p

ee
d

av
g_

re
ad

_s
p

ee
d

av
g_

m
ig

ra
ti

o
n

_t
im

e
av

g_
m

ig
ra

ti
o

n
_t

im
e

av
g_

w
ri

te
_s

p
ee

d
av

g_
w

ri
te

_s
p

ee
d

la
te

n
cy

la
te

n
cy

n
et

w
o

rk
_u

ti
liz

at
io

n
n

et
w

o
rk

_u
ti

liz
at

io
n

re
sp

o
n

se
_t

im
e

re
sp

o
n

se
_t

im
e

th
ro

u
gh

p
u

t
th

ro
u

gh
p

u
t

M
in

, M
ax

A
vg

,
st

H
A

S_
TI

M
E_

BE
H

A
V

IO
U

R

H
A

S_
TI

M
E_

B
EH

A
V

IO
U

R
H

A
S_

TI
M

E_
B

EH
A

V
IO

U
R

cp
u

_u
ti

liz
at

io
n

cp
u

_u
ti

liz
at

io
n

n
u

m
b

er
_v

m
_p

er
se

rv
er

n
u

m
b

er
_v

m
_p

er
se

rv
er

vm
_u

ti
liz

at
io

n
vm

_u
ti

liz
at

io
n

d
is

k_
u

ti
liz

at
io

n
d

is
k_

u
ti

liz
at

io
n

m
em

o
ry

_u
ti

liz
at

io
n

m
em

o
ry

_u
ti

liz
at

io
n

io
_o

p
er

at
io

n
s

io
_o

p
er

at
io

n
s

Fi
gu

re
4.

6:
Pe

rf
or

m
an

ce
M

od
el

in
g

27

4 Concept and Specification

Topology Enrichment - Workload Behavior Modeling

In [SAGF15], an application workload is proposed.It plays a role in provisioning of new
or re-configuration of existing Cloud resources for Cloud applications, estimation of the
necessary resources and analysis of the application behaviors.

In Figure 4.7, the node labeled by workload models the workload.

Topology enriched by performance and Workload modeling

Topology can be enriched by evolving performance and workload. Figure 4.7 models how
an α topology perfomr workload and performance . When a workload profile or a per-
formance demand needs to be performed by an α topology, a relationship is established
between the topology index node and workload or performance node with relationship PER-
FORM_WORKLOAD or PERFORM_PERFORMANCE. The attributes start_time and end_time
indicate the valid period of workload or performance.

As showing in Figure 4.7, one alpha topology index node can perform multiple workloads
and performances.

Dynamically Viable (µ) Topology Retrieving

To discovery all viable topologies,first we give the definition of abstract sub-topology. As
showing in figure 4.4, an abstract sub-topology(node with color of darkest gray) is the topol-
ogy which consists of all abstract nodes and relationships which connect them. An abstract
sub-topology describes basic non-specific structure of an application.Each abstract node can
have concrete nodes which refine the abstract node with more specific properties,requirement
and capability. Finally each concrete node can have instance nodes which represent the real
Cloud service with much more details.

Compared to the number of concrete node and instance node, the number of abstract node
is relatively small and the structure is stable once abstract sub-topology is established.As
instance nodes represent one kind of service from Cloud services provider, it may vary more
often(e.g:capability, price,configuration,etc.).So it can be added or deleted by maintaining the
relationship to its parent node without affecting the application structure.In this way, the data
model can be easily maintained and extended.

For a given α-topology, to explore all possible viable topologies,there are several steps to
process:

1. For a given α-topology,find all leaf nodes.

2. For each leaf node of the α-topology,find all requirements.

3. For each γ-topology, check if the capability of the root nodes of the γ-topology fulfill
the requirements.

28

4.2 System Requirements

4. For a qualified γ-topology, traversing the abstract node of the abstract sub-topology.For
each abstract sub-topology , retrieve all its leaf nodes(instance nodes) by traversing the
node type tree.

5. Then the combinations of all instance nodes basing on the abstract sub-topology struc-
ture can establish all possible viable topologies.

Topology History Retrieving

Once one viable topology is selected, it should be stored for the usage of topology evolution
observation. To achieve this, a new node labeled by mu-topology in the database is created
and the new generated viable topology specification will be saved in this node.So this node
will record the whole viable topology and other information like created date, whether it is
obsolete as showing in Figure 4.7.

INCLUDES

INCLUDES

IN
CLU

DES

α

α
α

alphaTopologyIndex
PERFORM_PERFORMANCE

PE
RF

O
RM

_W
O

RK
LO

AD

ID
PATTERN
ARRIVAL

BEHAVIORAL
AVG_USERS

AVG_TRANSACTIONS
START_TIME
END_TIME

workloadworkload

ID
Specification
Start_time
End_time

performanceperformance

alphaTopologyName
alphaTopologyId

Obsolete
startDate
endDate

specification

HAS_M
UTOPOLOGY mutopologymutopology

Figure 4.7: Workload,KPI performing and viable history

4.2 System Requirements

In this section, basing on previous data model, detail requirements of the system from the
perspective of functional and non-functional are provided. The requirements are divided into
two categories: topology requirements and requirement of topology enrichments. They are
presented in details in the following sections.

29

4 Concept and Specification

4.2.1 Topology requirements

In [ASLW14], the definition of viable topology is proposed for reusing application topology.
The topologies of an application are categorized as α-topology, γ-topology and µ-topology
from the perspective of topology functionality and re-usability.

Following are the requirements which topology persistence and discovery system should
fulfill.

General Requirements

1. The persistence of application topologies should not be coupled to a concrete specifica-
tion. It should be designed and provided in a generic manner. This means system can
persist topology which is described by any kind of topology description language(e.g.
TOSCA,GENTL).

2. The Cloud application specification which describes a component(e.g. concretenode,
instancenode) should be persisted as a string with component together. For example,
in previous section exists a property specification in concrete node, then this attribute
should save NodeType definition if TOSCA is used as the Cloud application description
language.

3. Some parameters should be extracted from specification for particular usage, e.g. service
matching. For example, if TOSCA is selected, then requirements of α-topology and
capabilities of γ-topology should be extracted and persisted respectively.

Following are the requirements for each kind of topology:

α-topology requirements

α-topology is application specific topology. It describes the application’s characteristic so it
can not be re-used. For an α-topology, following requirements should be fulfilled:

1. An α-topology can be persisted in database no matter by which topology specification
it is described. When it is persisted, the requirements of the component of the topology
should be extracted and persisted separately.

2. An α-topology can be deleted. Once it is deleted, its index node and requirement nodes
should be deleted as well.

3. An α-topology can be retrieved in the format of its specification, e.g. if the α-topology is
described by TOSCA, when this α-topology is retrieved, it should be in the format of
TOSCA.

4. An α-topology can be enriched with a workload performed for a concrete time interval
of the application production’s phase.

5. At one time an α-topology can perform multiple workloads.

30

4.2 System Requirements

6. Workloads of one α-topology has performed can be queried and retrieved by time
interval or ID.

7. An α-topology can be enriched with a performance(KPI) performed for a concrete time
interval of the application production’s phase.

8. At one time an α-topology can perform multiple performances(KPIs).

9. Performance of one α-topology can be queried and retrieved by time interval or ID.

γ-topology requirements

γ-topology is application non-specific.It contains multiple Cloud service from different Cloud
service providers.γ-topology is dynamic as it can change from time to time. For an γ-topology,
following requirements should be fulfilled:

1. γ-topology can be persisted as modeled in 4.4 . The creating order of a γ-topology
is: abstract sub-topology→ concretenodes→ instancenodes. Once it is persisted, the
capabilities of the root node of γ-topology should be extracted and persisted separately.

2. An γ-topology can be quired and retrieved in different levels and manners. For example,
an abstract sub-topology can be retrieved as a whole entity. For each concrete node of
the abstract sub-topology, its linked instancenodes can be retrieved separately .

3. γ-topology can be extended and modified on the level of concretenode and instancenode.
As concretenode represents one kind of Cloud service, when adding a new concretenode
to an existing abstract sub-topology and linking intancenodes to the concretenode, the
γ-topology is extended and modified.

4. When a concretenode of abstract sub-topology is deleted, its linked insancenodes should
be deleted as well.

5. When an instancenode of concretenode is deleted, there should be no impact on con-
cretenode.

viable-topology(µ-topology) requirements

Viable topology(µ-topology) can be explored by α and γ topology, so the operation of µ-
topology is basing on the existence of α and γ topology.

1. For a given α-topology,all possible viable topologies can be discovered as candidates
according to γ-topology stored in database.

2. User can select one of the candidate of viable topologies and persist it for further
processing.

3. At one time one application(α-topology) can have only one viable topology.

4. The viable topology of one application can be re-discovered and re-selected, persisted.

31

4 Concept and Specification

5. The discovering and selecting history of viable topologies of one application can be
queried and retrieved.

4.2.2 Workload Requirements

Workload plays a role in provisioning of new or re-configuration of existing Cloud resources
for Cloud applications, estimation of the necessary resources and analysis of the application
behaviors.That means, workload defines the application behavior. The requirements of
workloads are listed below:

1. Workload can be persisted, deleted and queried. A workload should be persisted with
a concrete time interval to indicate the valid period of this workload. When a workload
is deleted, if it is performed by one or more α-topologies, the perform relationships are
deleted as well. A workload can be queried and retrieved by its ID or by α-topology
which performs it.

2. A workload can be performed as the enrichments by different α-topologies.

4.2.3 Performance(KPI) Requirements

KPI evaluates and analyzes the performance of the application.The requirements of KPIs are
listed as below:

1. Performance can be persisted, deleted and queried. A performance should be persisted
with a concrete time interval to indicate the valid period of this workload. When a
performance is deleted, if it is performed by one or more α-topologies, the perform
relationships are deleted as well. The performance can be queried and retrieved by its
ID or by α-topology which performs it.

2. A performance can be performed by different α-topologies.

4.3 Use Case

In this section, use cases of the operations performed on topology, performance and workload
are presented. The user of system is topology developer who performs CRUD operations on
the level of node, relationship, topology, performance and workload. An overview of the set
of use cases for the developers is presented in Figure 4.8. Following the figure the set of use
cases are described in details.

32

4.3 Use Case

Viable Topology Persistence and Discovery System

Cloud

Application

Developer

<Concrete Node>
Persist/Delete/Retrieve concrete

Node

<Relationship Type>
Persist/Delete/Retrieve Topology

Relationship Type

<Viable Topology>
Discover Viable Topologies for a

given Alpha Topology

<Viable Topology>

Select one viable Topology

<<extend>>

<Viable Topology>

Retrieve Application

Deployment Evolution

<Workload Profile>
Persist/Retrieve/Delete Workload

Profile

<Workload Profile>
Topology perform a workload

profile

<Requirement KPI>

Persist/Retrieve/Delete

KPI Requirements

<Requirement KPI>
Topology perform a

requirement KPI

<Alpha Topology>
Persist/Retrieve/Delete an

Alpha Topology

<Viable Topology>

Retrieve viable

Topology

<Abstract Sub-Topology>

Persist/Retrieve an resuable
abstract subtopology

<Instance Node>
Persist/Retrieve/Delete an

Instance Node

<Topology Similarity>
Retrieve similar Topology

<Workload Profile>
Query workload profile

evolving history for a topology

<Requirement KPI>

Query requirement KPI

evolving history for a

topology

<NameSpace>
Persist/Retrieve/Delete

nameSpace

Figure 4.8: Use Case Diagram

33

4 Concept and Specification

Name Persist an abstract sub-topology

Goal The developer wants to persist an abstract sub-topology

Actor Developer

Pre-Condition -

Post-Condition The abstract sub-topology is stored in database successfully

Post-Condition in
Special Case

The abstract sub-topology is not stored successfully

Normal Case 1. The developer persist an abstract sub-topology.

Special Cases 1. abstract sub-topology with same ID already existed.

a) The system shows an error message.

Table 4.1: Use Case Description: Persist an abstract sub-topology.

Name Retrieve abstract sub-topology

Goal The developer wants to retrieve abstract sub-topologies

Actor Developer

Pre-Condition The abstract sub-topology already exists

Post-Condition The abstract sub-topologies are retrieved successfully

Post-Condition in
Special Case

The abstract sub-topologies are not retrieved

Normal Case 1. The developer retrieves abstract sub-topologies.

Special Cases 1. The abstract sub-topology does not exist.

a) The system shows an message.

Table 4.2: Use Case Description: Retrieve abstract sub-topology.

Name Persist a concrete node

Goal The developer wants to persist a concrete node with a specific type of abstract
node

Actor Developer

Pre-Condition abstract node with the type indicated by concrete node is existed

Post-Condition The node is persisted successfully and linked to an abstract node, ability and
requirement nodes are created if concrete node has

34

4.3 Use Case

Post-Condition in
Special Case

The node is not persisted successfully

Normal Case 1. The developer persists a concrete node with specific type.

Special Cases 1. The node is not persisted.

a) The system shows a message.

Table 4.3: Use Case Description: Persist a concrete node.

Name Delete a concrete node

Goal The developer wants to delete a concrete node

Actor Developer

Pre-Condition The node already exists

Post-Condition The node is deleted successfully,all its relationship,linked instance
nodes,capability nodes and requirement noes are deleted as well

Post-Condition in
Special Case

The node is not deleted successfully

Normal Case 1. The developer delete a concrete node by its database ID.

Special Cases 1. The node does not exist.

a) The system shows an error message.

Table 4.4: Use Case Description: Delete a concrete node.

Name Retrieve concrete nodes

Goal The developer wants to retrieve concrete nodes

Actor Developer

Pre-Condition The concrete nodes already exist

Post-Condition The concrete nodes are retrieved successfully

Post-Condition in
Special Case

The concrete nodes are not retrieved successfully

Normal Case 1. The developer retrieve concrete nodes.

Special Cases 1. The node does not exist.

a) The system shows an error message.

35

4 Concept and Specification

Table 4.5: Use Case Description: Retrieve concrete nodes.

Name Retrieve instance nodes refers to a concrete node

Goal The developer wants to retrieve instance nodes refer to a concrete node

Actor Developer

Pre-Condition The instance nodes already exists

Post-Condition The instance nodes are retrieved successfully

Post-Condition in
Special Case

The instance nodes are not retrieved successfully

Normal Case 1. The developer retrieve instance nodes refers to a concrete node.

Special Cases 1. The concrete node does not exist.

a) The system shows an error message.

Table 4.6: Use Case Description: Retrieve instance nodes refers to a concrete node.

Name Persist an instance node

Goal The developer wants to persist an instance node

Actor Developer

Pre-Condition Concrete node with the type indicated by instance node is existed

Post-Condition The node is persisted successfully and linked to a concrete node

Post-Condition in
Special Case

The node is not persisted successfully

Normal Case 1. The developer persists an instance node with specific type.

Special Cases 1. The node is not persisted.

a) The system shows a message.

Table 4.7: Use Case Description: Persist an instance node.

Name Delete an instance node

Goal The developer wants to delete an instance node

Actor Developer

Pre-Condition The node already exists

Post-Condition The node is deleted successfully,all its relationships are deleted as well

36

4.3 Use Case

Post-Condition in
Special Case

The node is not deleted successfully

Normal Case 1. The developer delete an instance node by its ID.

Special Cases 1. The node does not exist.

a) The system shows an error message.

Table 4.8: Use Case Description: Delete an instance node.

Name Retrieve instance nodes

Goal The developer wants to retrieve instance nodes

Actor Developer

Pre-Condition The instance nodes already exist

Post-Condition The instance nodes are retrieved successfully

Post-Condition in
Special Case

The instance nodes are not retrieved successfully

Normal Case 1. The developer retrieve instance nodes.

Special Cases 1. The instance nodes does not exist.

a) The system shows an error message.

Table 4.9: Use Case Description: Retrieve instance nodes.

Name Persist Relationship Type

Goal The developer wants to persist a relationship type

Actor Developer

Pre-Condition There is no same relationship type in database existing in database already

Post-Condition The relationship type is persisted successfully

Post-Condition in
Special Case

The relationship type is not persisted successfully

Normal Case 1. The developer persist a relationship type .

Special Cases 1. A same relationship type exists already.

a) The system shows an error message.

37

4 Concept and Specification

Table 4.10: Use Case Description: Persist Relationship Type.

Name Retrieve Relationship types

Goal The developer wants to retrieve relationship types

Actor Developer

Pre-Condition The relationship types exists already

Post-Condition The relationship types are retrieved successfully

Post-Condition in
Special Case

The relationship types are not retrieved successfully

Normal Case 1. The developer retrieves relationship types.

Special Cases 1. The relationship type does not exist.

a) The system shows a message.

Table 4.11: Use Case Description: Retrieve Relationship types.

Name Delete one Relationship type

Goal The developer wants to delete a relationship type

Actor Developer

Pre-Condition The relationship type exists already

Post-Condition The relationship type is deleted successfully

Post-Condition in
Special Case

The relationship type is not deleted successfully

Normal Case 1. The developer deletes a relationship type.

Special Cases 1. The relationship type does not exist.

a) The system shows an error message.

Table 4.12: Use Case Description: Delete one Relationship type.

Name Find similar alpha topologies

Goal The developer wants to find all similar alpha topologies for a given alpha topol-
ogy

Actor Developer

Pre-Condition Alpha topologies exist in database already

38

4.3 Use Case

Post-Condition Similar alpha topologies are founded successfully

Post-Condition in
Special Case

No similar alpha topologies are founded

Normal Case 1. The developer found similar alpha topologies .

Special Cases 1. There are no similar alpha topologies in the database.

a) The system shows a message.

Table 4.13: Use Case Description: Find similar alpha topologies.

Name Discover All Viable Topologies for a given alpha topology

Goal The developer wants to discover all viable topologies for a given alpha topology

Actor Developer

Pre-Condition The Gamma Topology is established with correct abstract sub-topology, concrete
nodes,instance nodes and relationship type in database already

Post-Condition Viable Topologies are discovered successfully

Post-Condition in
Special Case

Viable Topology is not discovered

Normal Case 1. The developer discovers all viable Topologies for a given alpha topology.

Special Cases 1. Viable Topology is not discovered.

a) The system shows a message.

Table 4.14: Use Case Description: Discover All Viable Topologies for a given alpha topology .

Name Persist one viable topology for an application

Goal The developer wants to persist one viable topology for an application

Actor Developer

Pre-Condition At least one Viable topology is discovered in the previous step

Post-Condition Viable Topology is persisted successfully

Post-Condition in
Special Case

Viable Topology is not persisted

Normal Case 1. The developer persist one viable topology for an application.

39

4 Concept and Specification

Special Cases 1. Viable Topology is not persisted.

a) The system shows one message.

Table 4.15: Use Case Description: Persist one viable topology for an application.

Name Persist one workload

Goal The developer wants to persist one workload

Actor Developer

Pre-Condition There is one workload with same ID existed in database already

Post-Condition workload is persisted successfully

Post-Condition in
Special Case

workload is not persisted successfully

Normal Case 1. The developer persists one workload.

Special Cases 1. One same workload already exists.

a) The system shows a message.

Table 4.16: Use Case Description: Persist one workload.

Name Retrieve one workload

Goal The developer wants to retrieve one workload

Actor Developer

Pre-Condition The workload already exists

Post-Condition workload is retrieved successfully

Post-Condition in
Special Case

workload is not retrieved successfully

Normal Case 1. The developer retrieves one workload.

Special Cases 1. The workload to be retrieved does not exist.

a) The system shows a message.

Table 4.17: Use Case Description: Retrieve one workload.

Name Retrieve all workloads in database

Goal The developer wants to retrieve all workloads in database

40

4.3 Use Case

Actor Developer

Pre-Condition Workload already exists

Post-Condition All workloads are retrieved successfully

Post-Condition in
Special Case

workload is not retrieved successfully

Normal Case 1. The developer retrieves all workloads.

Special Cases 1. No workload is retrieved.

a) The system shows a message.

Table 4.18: Use Case Description: Retrieve all workloads in database.

Name Delete one workload

Goal The developer wants to delete a workload

Actor Developer

Pre-Condition The workload exists already

Post-Condition The workload is deleted successfully

Post-Condition in
Special Case

The workload is not deleted successfully

Normal Case 1. The developer deletes a workload.

Special Cases 1. The workload does not exist.

a) The system shows an error message.

Table 4.19: Use Case Description: Delete one workload.

Name Persist one performance

Goal The developer wants to persist one performance

Actor Developer

Pre-Condition There is one performance with same ID existed in database already

Post-Condition performance is persisted successfully

Post-Condition in
Special Case

performance is not persisted successfully

Normal Case 1. The developer persists one performance.

41

4 Concept and Specification

Special Cases 1. One same performance already exists.

a) The system shows a message.

Table 4.20: Use Case Description: Persist one performance.

Name Retrieve one performance

Goal The developer wants to retrieve one performance

Actor Developer

Pre-Condition The performance already exists

Post-Condition Performance is retrieved successfully

Post-Condition in
Special Case

Performance is not retrieved successfully

Normal Case 1. The developer retrieves one performance.

Special Cases 1. The performance to be retrieved does not exist.

a) The system shows a message.

Table 4.21: Use Case Description: Retrieve one performance.

Name Retrieve all performances in database

Goal The developer wants to retrieve all performances in database

Actor Developer

Pre-Condition Performance already exists

Post-Condition All performances are retrieved successfully

Post-Condition in
Special Case

Performance is not retrieved successfully

Normal Case 1. The developer retrieves all performances.

Special Cases 1. No performance is retrieved.

a) The system shows a message.

Table 4.22: Use Case Description: Retrieve all performances in database.

Name Delete one performance

Goal The developer wants to delete a performance

42

4.3 Use Case

Actor Developer

Pre-Condition The performance exists already

Post-Condition The performance is deleted successfully

Post-Condition in
Special Case

The performance is not deleted successfully

Normal Case 1. The developer deletes a performance.

Special Cases 1. The performance does not exist.

a) The system shows an error message.

Table 4.23: Use Case Description: Delete one performance.

Alpha Topology Use Cases

Name Persist an alpha topology

Goal The developer wants to persist an alpha topology

Actor Developer

Pre-Condition -

Post-Condition The alpha topology is stored in database successfully

Post-Condition in
Special Case

The alpha topology is not stored successfully

Normal Case 1. The developer persist an alpha topology.

Special Cases 1. Alpha topology with same ID already existed.

a) The system shows an error message.

Table 4.24: Use Case Description: Persist an alpha topology.

Name Retrieve an alpha topology

Goal The developer wants to retrieve an alpha topology by ID

Actor Developer

Pre-Condition The alpha topology already exists

Post-Condition The alpha topology is retrieved successfully

Post-Condition in
Special Case

The alpha topology is not retrieved

43

4 Concept and Specification

Normal Case 1. The developer retrieves an alpha topology.

Special Cases 1. The alpha topology does not exist.

a) The system shows an message.

Table 4.25: Use Case Description: Retrieve an alpha topology.

Name Retrieve all alpha topologies

Goal The developer wants to retrieve all alpha topologies

Actor Developer

Pre-Condition Alpha topology already exists

Post-Condition All alpha topologies are retrieved successfully

Post-Condition in
Special Case

No alpha topology is retrieved

Normal Case 1. The developer retrieves all alpha topologies.

Special Cases 1. No alpha topology exists.

a) The system shows a message.

Table 4.26: Use Case Description: Retrieve all alpha topologies.

Name Delete one alpha topology

Goal The developer wants to delete an alpha topology

Actor Developer

Pre-Condition The alpha topology exists already

Post-Condition The alpha topology is deleted successfully

Post-Condition in
Special Case

The alpha topology is not deleted successfully

Normal Case 1. The developer deletes an alpha topology.

Special Cases 1. The alpha topology does not exist.

a) The system shows an error message.

Table 4.27: Use Case Description: Delete one alpha topology.

44

4.3 Use Case

Name An alpha topology performs a performance

Goal The developer wants to perform a performance for an alpha topology

Actor Developer

Pre-Condition The performance and alpha topology already exists

Post-Condition The performance is performed successfully

Post-Condition in
Special Case

The performance is not performed successfully

Normal Case 1. The developer makes an alpha topology performing a performance .

Special Cases 1. When performing performance , the performance does not exist.

a) The system shows an error message.

2. When performing performance ,the alpha topology does not exist.

a) The system shows an error message.

Table 4.28: Use Case Description: An alpha topology performs a performance.

Name Retrieve a performance of an alpha topology

Goal The developer wants to retrieve a performance of an alpha topology by ID

Actor Developer

Pre-Condition The alpha topology already exists, the performance has been performed

Post-Condition The performance is retrieved successfully

Post-Condition in
Special Case

The performance is not retrieved

Normal Case 1. The developer retrieves a performance of an alpha topology.

Special Cases 1. The performance to be retrieved does not exist.

a) The system shows an error message.

2. The alpha topology does not exist.

a) The system shows an error message.

Table 4.29: Use Case Description: Retrieve a performance of an alpha topology.

Name Retrieve all performances of an alpha topology

Goal The developer wants to retrieve all performances of an alpha topology

Actor Developer

45

4 Concept and Specification

Pre-Condition The alpha topology already exists

Post-Condition The performances are retrieved successfully

Post-Condition in
Special Case

The performances are not retrieved

Normal Case 1. The developer retrieves all performances of an alpha topology.

Special Cases 1. No performance has been performed by the alpha topology.

a) The system shows a message.

2. The alpha topology does not exist.

a) The system shows an error message.

Table 4.30: Use Case Description: Retrieve all performances of an alpha topology.

Name Retrieve performances performing history of an alpha topology

Goal The developer wants to retrieve all performances of an alpha topology over a
period of time

Actor Developer

Pre-Condition The alpha topology already exists

Post-Condition The performances are retrieved successfully

Post-Condition in
Special Case

The performances are not retrieved

Normal Case 1. The developer retrieves all performances of an alpha topology over a period
of time.

Special Cases 1. No performance has been performed by the alpha topology.

a) The system shows a message.

2. No performance has been performed by the alpha topology for a given
period of time.

a) The system shows a error message.

3. The alpha topology does not exist.

a) The system shows an error message.

Table 4.31: Use Case Description: Retrieve performances performing history of an alpha topology.

Name An alpha topology performs a workload

Goal The developer wants to perform a workload for an alpha topology

46

4.3 Use Case

Actor Developer

Pre-Condition The workload and alpha topology already exists

Post-Condition The workload is performed successfully

Post-Condition in
Special Case

The workload is not performed successfully

Normal Case 1. The developer makes an alpha topology performing a workload .

Special Cases 1. When performing workload , the workload does not exist.

a) The system shows an error message.

2. When performing workload ,the alpha topology does not exist.

a) The system shows an error message.

Table 4.32: Use Case Description: An alpha topology performs a workload.

Name Retrieve a workload of an alpha topology

Goal The developer wants to retrieve a workload of an alpha topology by ID

Actor Developer

Pre-Condition The alpha topology already exists, the workload has been performed

Post-Condition The workload is retrieved successfully

Post-Condition in
Special Case

The workload is not retrieved

Normal Case 1. The developer retrieves a workload of an alpha topology.

Special Cases 1. The workload to be retrieved does not exist.

a) The system shows an error message.

2. The alpha topology does not exist.

a) The system shows an error message.

Table 4.33: Use Case Description: Retrieve a workload of an alpha topology.

Name Retrieve all workloads of an alpha topology

Goal The developer wants to retrieve all workloads of an alpha topology

Actor Developer

Pre-Condition The alpha topology already exists

Post-Condition The workloads are retrieved successfully

47

4 Concept and Specification

Post-Condition in
Special Case

The workloads are not retrieved

Normal Case 1. The developer retrieves all workloads of an alpha topology.

Special Cases 1. No workload has been performed by the alpha topology.

a) The system shows a message.

2. The alpha topology does not exist.

a) The system shows an error message.

Table 4.34: Use Case Description: Retrieve all workloads of an alpha topology.

Name Retrieve workloads performing history of an alpha topology

Goal The developer wants to retrieve all workloads of an alpha topology over a period
of time

Actor Developer

Pre-Condition The alpha topology already exists

Post-Condition The workloads are retrieved successfully

Post-Condition in
Special Case

The workloads are not retrieved

Normal Case 1. The developer retrieves all workloads of an alpha topology over a period
of time.

Special Cases 1. No workload has been performed by the alpha topology.

a) The system shows a message.

2. No workload has been performed by the alpha topology for a given period
of time.

a) The system shows a error message.

3. The alpha topology does not exist.

a) The system shows an error message.

Table 4.35: Use Case Description: Retrieve workloads performing history of an alpha topology.

Name Retrieve viable topology of an alpha topology

Goal The developer wants to retrieve valid viable topology of an alpha topology over
a period of time

Actor Developer

48

4.3 Use Case

Pre-Condition The alpha topology already exists

Post-Condition The viable topology is retrieved successfully

Post-Condition in
Special Case

The viable topology is not retrieved

Normal Case 1. The developer retrieves the valid viable topology of an alpha topology over
a period of time.

Special Cases 1. No viable topology was discovered of the alpha topology.

a) The system shows a message.

2. No viable topology is existed for a given period of time.

a) The system shows a error message.

3. The alpha topology does not exist.

a) The system shows an error message.

Table 4.36: Use Case Description: Retrieve viable topology of an alpha topology.

Name Retrieve all viable topologies of an alpha topology

Goal The developer wants to retrieve all viable topology(valid and obsolete) of an
alpha topology

Actor Developer

Pre-Condition The alpha topology already exists

Post-Condition The viable topology is retrieved successfully

Post-Condition in
Special Case

The viable topology is not retrieved

Normal Case 1. The developer retrieves all viable topology(valid and obsolete) of an alpha
topology.

Special Cases 1. No viable topology was discovered of the alpha topology.

a) The system shows a message.

2. The alpha topology does not exist.

a) The system shows an error message.

Table 4.37: Use Case Description: Retrieve all viable topologies of an alpha topology.

49

4 Concept and Specification

4.4 System Overview

In Figure 4.9, topology persistence and discovery system with two main parts is presented.
From bottom to top,the first part is the storage for topologies, workloads and performances.
As topology itself is a graph,more than that, topology can be enriched by evolving workloads
and KPIs ,so a graph database is used to speed up the accessing.

The second part of the system is topology persistence and discovery framework which
provides interfaces for external users to perform CRUD and other particular operations of
topologies,workloads and performances. Topology developer can use existing topology mod-
eling framework to access topology persistence and discovery system for persisting,retrieving
and discovering topology. Then topology is provided to topology provisioning system for
further processing.

Topology
Developer

Topology Topology Workload Workload KPI KPI

Graph Database

Topology
Modeling

Framework

Modeling Environment Execution Environment

Topology
Provisioning

Engine

Cloud Service

Cloud Service

Topology
Persistence and

Discovery

Framework

Figure 4.9: System Overview

50

5 Design

5.1 System Architecture

In this chapter the topology persistence and discovery system is designed. This system
provides a unified persistence for cloud application topology complied to different specifica-
tions and offers unified interfaces to perform operations on topologies,performance(KPI) and
workloads.

Figure 5.1 presents the architecture of topology persistence and discovery system. This is a
three-layered system which consists of REST Interface layer, business logical layer and data
storage layer. In the following the three layers are described in details from the perspective of
designing, respectively:

Cloud
Service

Cloud
Service

Cloud
Service

Cloud
Service

Cloud
Service

Cloud
Service

Repository REST Interface

TOSCA
Importer

TOSCA
Exporter

Topology
Persistence and

Discovery
Framework Client

Topology Discovery and Persistence
Framework REST Interface

Topology
Interpreter

Database
Domain

Topology
Service

Workload
Service

Performance
Service

DAO

Topology Workload Performance

GRAPH DATABASE

Type,Template
and Artifact
Mangement

GUI

Topology
Modeler

GUI

BPMN4TOSCA
Plan Modeler

GUI

Topology
Provisioning

Engine

Winery
Topology Discovery

 and
Persistence Framework

Local File System

Artifacts Template Types

Modeling Environment Execution Environment

Figure 5.1: System Architecture

51

5 Design

1. Graph Database Layer: This layer is persistence layer. Topology and its enrichments are
persisted in graph database as modeled in Chapter 4.

2. Service Layer: There are six sub-modules in service layer which can be divided into four
categories described as following. Figure 5.2 shows the work flow within service layer.

a) Interpreter: This module is used to parse representation of workload,performance
and topologies comes from topology modeler. The Interpreter extracts useful
information which is interested by service logic module and passes this information
to it; on the other hand, this module translates the data from database when
performing operations on it, and sends it back to Topology Modeler with per-
defined XML presentation.

b) Business Logic(Topology,Workload, Performance): The real business logic mod-
ule.There are three sub-modules: topology logic, workload logic and perfor-
mance(KPI) logic. Each sub-module accepts the data comes from Interpreter
and process it according to the requirement described in previous chapter.

c) Database Domain: After data is processed by service module, data is transformed
to database domain as the data models designed in Chapter 4. The data format of
domain is the one which graph database can easily persist, modify and retrieve.

d) DAO: Data Access Object module, is a standard module which is used in many
application design. DAO plays a role to access database. All operations of database
are implemented in this module.By separating business logic and physical opera-
tion of database, DAO module can be reused in further for application extending.

3. REST Interface Layer: REST interface layer provides Restful API to outside world. Details
of this layer are presented in following section REST Interface Design.

T
o

p
o

l
o

g
y
&

W
o

r
k

l
o

a
d

&
K

P
I

I
n

t
e

r
p

r
e

t
e

r

D
a

t
a

b
a

s
e

D

o
m

a
i
n

D
a

t
a

A

c
c

e
s
s

O

b
j
e

c
t
(
D

A
O

)

Topology

Description

DATABASE

T
o

p
o

l
o

g
y

M

o
d

e
l
e

r

Topology

Workload

Performance

Business

Logic

Service Layer

Figure 5.2: Work flow within Service Layer

52

5.2 REST Interface Design

5.2 REST Interface Design

In this section, we design the REST API. The three steps of designing RESTful API described
in [VB15] is followed,which are: resource identification,resource representation,endpoint
identification and action identification.

5.2.1 Resource Identification

By analyzing requirements listed in section 4.2,here we first identify the resource.

Alpha

Topology

Viable

Topology

Concrete

Node

Instance

Node

WorkloadPerformance(KPI)

0…*

0…*
0…*

1…*

1
Abstract

Sub-Topology

Relation Type

1…*0…*

Similar

Topology

0…*

Namespace

1… *

1… *

1… *

1… *

1… *

1… *

Figure 5.3: Resource Modeling

Figure 5.3 models the resource entity used in the REST API and relationship to other re-
sources.

1. An alpha topology is composed of instance nodes and can perform multiple KPIs or
Workloads.

2. An abstract sub-topology is composed of abstract nodes1 and relation type which define
the relations among abstract nodes. Each abstract node can be refined by concrete node
and each concrete node can be referred by instance node as described in 4.1.2

3. A viable topology is discovered by giving alpha topology and depends on correspond-
ing abstract sub-topology with its linked concrete nodes and instance nodes.

4. By giving an alpha topology, its similar topologies can be retrieved.

1abstract sub-topology is not fine grained to the level of abstract nodes for REST resource,but it does for database
modeling, refer to 4.1.3

53

5 Design

5. Namespace provides the mapping between URL and prefix which are used by other
entities.

As discussed above, table 5.1 lists all resource used in REST API.

Resource Description
AlphaTopology alpha topology resource
AbstractSubTopology abstract sub-topology resource
ViableTopology viable topology resource
SimilarTopology similar topology resource
Performance(KPI) performance(KPI) resource
Workload workload resource
ConcreteNode concrete node resource
InstanceNode instance node resource
RelationshipType relationship type resource
Namepsace namespace resource

Table 5.1: Resources for Topology Persistence and Discovery System

5.2.2 Resource Representation

The next step in the REST API design process is to define resource representations. REST
APIs typically support multiple formats such as HTML, JSON, and XML. As TOSCA is the
topology description language we are using in implementation part, so here we choose XML
as preferred format for resource representation.

Alpha Topology Resource Representation

As showing in list 5.1, this is a XML schema when persisting an alpha topology modeled in
4.1.3. Within root element AlphaTopologyTemplate there are three elements:

1. specificationType: indicate the format of the specification. For instance, if TOSCA is
chose, then the specificationType is xml.

2. specification: the real topology description specification is wrapped here. Within it the
sub-element Definitions extends TOSCA tDefinitions. Here ServiceTemplate defined in
TOSCA should be used for an alpha topology resource representation.

3. nodelevel: indicate the level of each node.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://docs.
oasis-open.org/tosca/ns/2011/12" elementFormDefault="qualified"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12" version="1.0
">

2 <xs:element name="documentation" type="tDocumentation"/>
3 <xs:element name="AlphaTopologyTemplate">

54

5.2 REST Interface Design

4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name="specificationType" type="xs:string" />
7 <xs:element name="specification">
8 <xs:complexType>
9 <xs:sequence>

10 <xs:element name="tns:Definitions">
11 <xs:complexType>
12 <xs:complexContent>
13 <xs:extension base="tDefinitions"/>
14 </xs:complexContent>
15 </xs:complexType>
16 </xs:element>
17 </xs:sequence>
18 </xs:complexType>
19 </xs:element>
20 <xs:element name="nodelevel">
21 <xs:complexType>
22 <xs:sequence>
23 <xs:element name="node" maxOccurs="unbounded" minOccurs="0">
24 <xs:complexType>
25 <xs:sequence>
26 <xs:element type="xs:string" name="level"/>
27 </xs:sequence>
28 <xs:attribute type="xs:string" name="id" use="required"/>
29 </xs:complexType>
30 </xs:element>
31 </xs:sequence>
32 </xs:complexType>
33 </xs:element>
34 </xs:sequence>
35 </xs:complexType>
36 </xs:element>
37 </xs:schema>

Listing 5.1: XML schema for persisting an Alpha Topology

List 5.2 presents XML schema when retrieving alpha topologies. The element Definitions is
defined in TOSCA specification, the schema of which can be found at [Oas15b]. The attribute
DatabaseId is the system generated ID of alpha topology.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://docs.
oasis-open.org/tosca/ns/2011/12" elementFormDefault="qualified"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12" version="1.0

55

5 Design

">
2 <xs:element name="AlphaTopologList">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element maxOccurs="unbounded" minOccurs="0" name="specification"

nillable="true">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element ref="tns:Definitions"/>
9 </xs:sequence>

10 <xs:attribute name="DatabaseId" type="xs:long" use="required"/>
11 </xs:complexType>
12 </xs:element>
13 </xs:sequence>
14 </xs:complexType>
15 </xs:element>

Listing 5.2: XML schema for retrieving Alpha Topologies

Abstract Sub-Topology Resource Representation

As showing in list 5.3, this is a XML schema when persisting an abstract sub-topology as
modeled in 4.1.3. Within the root element AbstractSubTopology, there are two sub-elements:

1. AbstractNode: define the abstract nodes of abstract sub-topology.

2. RelationshipOfAbstractNode: define the relationships among abstract nodes.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://docs.
oasis-open.org/tosca/ns/2011/12" elementFormDefault="qualified"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12" version="1.0
">

2 <xs:element name="AbstractSubTopology">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element name="AbstractNode" maxOccurs="unbounded" minOccurs="0">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element type="xs:byte" name="level"/>
9 </xs:sequence>

10 <xs:attribute type="xs:string" name="name" use="optional"/>
11 <xs:attribute type="xs:string" name="id" use="optional"/>
12 <xs:attribute type="xs:string" name="type" use="optional"/>
13 </xs:complexType>

56

5.2 REST Interface Design

14 </xs:element>
15 <xs:element name="RelationshipOfAbstractNode" maxOccurs="unbounded"

minOccurs="0">
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element name="SourceElement">
19 <xs:complexType>
20 <xs:simpleContent>
21 <xs:extension base="xs:string">
22 <xs:attribute type="xs:string" name="ref" use="optional"/>
23 </xs:extension>
24 </xs:simpleContent>
25 </xs:complexType>
26 </xs:element>
27 <xs:element name="TargetElement">
28 <xs:complexType>
29 <xs:simpleContent>
30 <xs:extension base="xs:string">
31 <xs:attribute type="xs:string" name="ref" use="optional"/>
32 </xs:extension>
33 </xs:simpleContent>
34 </xs:complexType>
35 </xs:element>
36 </xs:sequence>
37 <xs:attribute type="xs:string" name="type" use="optional"/>
38 </xs:complexType>
39 </xs:element>
40 </xs:sequence>
41 <xs:attribute type="xs:string" name="name"/>
42 <xs:attribute type="xs:string" name="id"/>
43 </xs:complexType>
44 </xs:element>
45 </xs:schema>

Listing 5.3: XML schema for abstract sub-Topology

Viable Topology Resource Representation

When persisting a viable topology, tServiceTemplae defined in TOSCA specification is used
directly here, the schema locates at [Oas15b].

List 5.4 presents XML schema when retrieving viable topologies:

1. alphaTopologyId: indicate alpha topology ID of this viable topology.

57

5 Design

2. alphaTopologyName:indicate alpha topology name of this viable topology.

3. alphaTopologyNameSpace: indicate alpha topology namespace of this viable topology.

4. definitions: real topology description specification is wrapped here. Here ServiceTemplate
defined in TOSCA is directly used for a viable topology resource representation.

5. obsolete: indicate whether this viable topology is currently used.

6. createDate: indicate the create data of this viable topology.

7. endDate: if this viable topology is obsolete, this attribute saves the ended date.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://docs.
oasis-open.org/tosca/ns/2011/12" elementFormDefault="qualified"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12" version="1.0
">

2 <xs:element name="ViableTopologyList">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element maxOccurs="unbounded" minOccurs="0" name="

viableTopologyWithDababaseID" nillable="true">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element form="unqualified" name="viableTopology">
9 <xs:complexType>

10 <xs:sequence>
11 <xs:element name="alphaTopologyId" type="xs:string"/>
12 <xs:element name="alphaTopologyName" type="xs:string"/>
13 <xs:element name="alphaTopologyNameSpace" type="xs:string"/

>
14 <xs:element ref="tns:Definitions"/>
15 <xs:element name="obsolete" type="xs:string"/>
16 <xs:element name="createDate" type="xs:string"/>
17 <xs:element name="endDate" type="xs:string"/>
18 </xs:sequence>
19 </xs:complexType>
20 </xs:element>
21 </xs:sequence>
22 <xs:attribute name="databaseId" type="xs:long" use="required"/>
23 </xs:complexType>
24 </xs:element>
25 </xs:sequence>
26 </xs:complexType>
27 </xs:element>
28 </xs:schema>

58

5.2 REST Interface Design

Listing 5.4: XML schema for retrieving viable topologies

Similar Topology Resource Representation

As showing in list 5.5, this is a XML schema when querying all similar alpha topologies for a
given alpha topology. Within root element SmilarAlphaTopologyList , exist the list of matching
similar alpha topology founded by system.

1. specification: specification wraps TOSCA definition for one alpha topology, the attribute
alphaTopologyId indicate the alpha topology id in database .

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://docs.
oasis-open.org/tosca/ns/2011/12" elementFormDefault="qualified"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12" version="1.0
">

2 <xs:element name="SmilarAlphaTopologyList">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element maxOccurs="unbounded" minOccurs="0" name="specification"

nillable="true">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element ref="tns:Definitions"/>
9 </xs:sequence>

10 <xs:attribute name="alphaTopologyId" type="xs:long" use="required"/
>

11 </xs:complexType>
12 </xs:element>
13 </xs:sequence>
14 </xs:complexType>
15 </xs:element>
16 </xs:schema>

Listing 5.5: XML schema for discovering similar alpha topologies

Performance(KPI) Resource Representation

As showing in list 5.6, this is the XML schema of performance proposed in [Nie16], which
represents performance(KPI) modeled in 4.6. The root element is Performance. The attributes
endTime and startTime indicate the valid time period of this performance. Like element
response time, for each element there are four sub-elements inside, they are min,max,avg,st.

59

5 Design

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
2 <xs:element name="Performance">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element name="time_behaviour">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element name="response_time">
9 <xs:complexType>

10 <xs:sequence>
11 <xs:element name="min" type="xs:short"/>
12 <xs:element name="max" type="xs:short"/>
13 <xs:element name="avg" type="xs:short"/>
14 <xs:element name="st" type="xs:short"/>
15 </xs:sequence>
16 </xs:complexType>
17 </xs:element>
18 <xs:element name="throughput">
19 <xs:complexType>
20 <xs:sequence>
21 <xs:element name="min" type="xs:short"/>
22 <xs:element name="max" type="xs:short"/>
23 <xs:element name="avg" type="xs:short"/>
24 <xs:element name="st" type="xs:short"/>
25 </xs:sequence>
26 </xs:complexType>
27 </xs:element>
28 <xs:element name="processing_time">
29 <xs:complexType>
30 <xs:sequence>
31 <xs:element name="min" type="xs:short"/>
32 <xs:element name="max" type="xs:short"/>
33 <xs:element name="avg" type="xs:short"/>
34 <xs:element name="st" type="xs:short"/>
35 </xs:sequence>
36 </xs:complexType>
37 </xs:element>
38 <xs:element name="avg_read_speed">
39 <xs:complexType>
40 <xs:sequence>
41 <xs:element name="min" type="xs:short"/>
42 <xs:element name="max" type="xs:short"/>
43 <xs:element name="avg" type="xs:short"/>
44 <xs:element name="st" type="xs:short"/>

60

5.2 REST Interface Design

45 </xs:sequence>
46 </xs:complexType>
47 </xs:element>
48 <xs:element name="avg_write_speed">
49 <xs:complexType>
50 <xs:sequence>
51 <xs:element name="min" type="xs:short"/>
52 <xs:element name="max" type="xs:byte"/>
53 <xs:element name="avg" type="xs:byte"/>
54 <xs:element name="st" type="xs:byte"/>
55 </xs:sequence>
56 </xs:complexType>
57 </xs:element>
58 <xs:element name="avg_migration_time">
59 <xs:complexType>
60 <xs:sequence>
61 <xs:element name="min" type="xs:byte"/>
62 <xs:element name="max" type="xs:byte"/>
63 <xs:element name="avg" type="xs:byte"/>
64 <xs:element name="st" type="xs:byte"/>
65 </xs:sequence>
66 </xs:complexType>
67 </xs:element>
68 <xs:element name="latency">
69 <xs:complexType>
70 <xs:sequence>
71 <xs:element name="min" type="xs:byte"/>
72 <xs:element name="max" type="xs:byte"/>
73 <xs:element name="avg" type="xs:byte"/>
74 <xs:element name="st" type="xs:byte"/>
75 </xs:sequence>
76 </xs:complexType>
77 </xs:element>
78 <xs:element name="backup_time">
79 <xs:complexType>
80 <xs:sequence>
81 <xs:element name="min" type="xs:byte"/>
82 <xs:element name="max" type="xs:byte"/>
83 <xs:element name="avg" type="xs:byte"/>
84 <xs:element name="st" type="xs:byte"/>
85 </xs:sequence>
86 </xs:complexType>
87 </xs:element>
88 </xs:sequence>

61

5 Design

89 </xs:complexType>
90 </xs:element>
91 <xs:element name="capacity">
92 <xs:complexType>
93 <xs:sequence>
94 <xs:element name="bandwith">
95 <xs:complexType>
96 <xs:sequence>
97 <xs:element name="min" type="xs:byte"/>
98 <xs:element name="max" type="xs:byte"/>
99 <xs:element name="avg" type="xs:byte"/>

100 <xs:element name="st" type="xs:byte"/>
101 </xs:sequence>
102 </xs:complexType>
103 </xs:element>
104 <xs:element name="processor_speed">
105 <xs:complexType>
106 <xs:sequence>
107 <xs:element name="min" type="xs:byte"/>
108 <xs:element name="max" type="xs:byte"/>
109 <xs:element name="avg" type="xs:byte"/>
110 <xs:element name="st" type="xs:byte"/>
111 </xs:sequence>
112 </xs:complexType>
113 </xs:element>
114 <xs:element name="storage_size">
115 <xs:complexType>
116 <xs:sequence>
117 <xs:element name="min" type="xs:byte"/>
118 <xs:element name="max" type="xs:byte"/>
119 <xs:element name="avg" type="xs:byte"/>
120 <xs:element name="st" type="xs:byte"/>
121 </xs:sequence>
122 </xs:complexType>
123 </xs:element>
124 <xs:element name="memory_allocation_vm">
125 <xs:complexType>
126 <xs:sequence>
127 <xs:element name="min" type="xs:byte"/>
128 <xs:element name="max" type="xs:byte"/>
129 <xs:element name="avg" type="xs:byte"/>
130 <xs:element name="st" type="xs:byte"/>
131 </xs:sequence>
132 </xs:complexType>

62

5.2 REST Interface Design

133 </xs:element>
134 <xs:element name="number_vm">
135 <xs:complexType>
136 <xs:sequence>
137 <xs:element name="min" type="xs:byte"/>
138 <xs:element name="max" type="xs:byte"/>
139 <xs:element name="avg" type="xs:byte"/>
140 <xs:element name="st" type="xs:byte"/>
141 </xs:sequence>
142 </xs:complexType>
143 </xs:element>
144 <xs:element name="number_processors">
145 <xs:complexType>
146 <xs:sequence>
147 <xs:element name="min" type="xs:byte"/>
148 <xs:element name="max" type="xs:byte"/>
149 <xs:element name="avg" type="xs:byte"/>
150 <xs:element name="st" type="xs:byte"/>
151 </xs:sequence>
152 </xs:complexType>
153 </xs:element>
154 <xs:element name="io_operations">
155 <xs:complexType>
156 <xs:sequence>
157 <xs:element name="min" type="xs:byte"/>
158 <xs:element name="max" type="xs:byte"/>
159 <xs:element name="avg" type="xs:byte"/>
160 <xs:element name="st" type="xs:byte"/>
161 </xs:sequence>
162 </xs:complexType>
163 </xs:element>
164 </xs:sequence>
165 </xs:complexType>
166 </xs:element>
167 <xs:element name="resource_utilization">
168 <xs:complexType>
169 <xs:sequence>
170 <xs:element name="network_utilization">
171 <xs:complexType>
172 <xs:sequence>
173 <xs:element name="min" type="xs:byte"/>
174 <xs:element name="max" type="xs:byte"/>
175 <xs:element name="avg" type="xs:byte"/>
176 <xs:element name="st" type="xs:byte"/>

63

5 Design

177 </xs:sequence>
178 </xs:complexType>
179 </xs:element>
180 <xs:element name="memory_utilization">
181 <xs:complexType>
182 <xs:sequence>
183 <xs:element name="min" type="xs:byte"/>
184 <xs:element name="max" type="xs:byte"/>
185 <xs:element name="avg" type="xs:byte"/>
186 <xs:element name="st" type="xs:byte"/>
187 </xs:sequence>
188 </xs:complexType>
189 </xs:element>
190 <xs:element name="disk_utilization">
191 <xs:complexType>
192 <xs:sequence>
193 <xs:element name="min" type="xs:byte"/>
194 <xs:element name="max" type="xs:byte"/>
195 <xs:element name="avg" type="xs:byte"/>
196 <xs:element name="st" type="xs:byte"/>
197 </xs:sequence>
198 </xs:complexType>
199 </xs:element>
200 <xs:element name="cpu_utilization">
201 <xs:complexType>
202 <xs:sequence>
203 <xs:element name="min" type="xs:byte"/>
204 <xs:element name="max" type="xs:byte"/>
205 <xs:element name="avg" type="xs:byte"/>
206 <xs:element name="st" type="xs:byte"/>
207 </xs:sequence>
208 </xs:complexType>
209 </xs:element>
210 <xs:element name="vm_utilization">
211 <xs:complexType>
212 <xs:sequence>
213 <xs:element name="min" type="xs:byte"/>
214 <xs:element name="max" type="xs:byte"/>
215 <xs:element name="avg" type="xs:byte"/>
216 <xs:element name="st" type="xs:byte"/>
217 </xs:sequence>
218 </xs:complexType>
219 </xs:element>
220 <xs:element name="number_vm_perserver">

64

5.2 REST Interface Design

221 <xs:complexType>
222 <xs:sequence>
223 <xs:element name="min" type="xs:byte"/>
224 <xs:element name="max" type="xs:byte"/>
225 <xs:element name="avg" type="xs:byte"/>
226 <xs:element name="st" type="xs:byte"/>
227 </xs:sequence>
228 </xs:complexType>
229 </xs:element>
230 </xs:sequence>
231 </xs:complexType>
232 </xs:element>
233 <xs:element name="scalability">
234 <xs:complexType>
235 <xs:sequence>
236 <xs:element name="resource_acquisition_time">
237 <xs:complexType>
238 <xs:sequence>
239 <xs:element name="min" type="xs:byte"/>
240 <xs:element name="max" type="xs:byte"/>
241 <xs:element name="avg" type="xs:byte"/>
242 <xs:element name="st" type="xs:byte"/>
243 </xs:sequence>
244 </xs:complexType>
245 </xs:element>
246 <xs:element name="resource_provisioning_time">
247 <xs:complexType>
248 <xs:sequence>
249 <xs:element name="min" type="xs:byte"/>
250 <xs:element name="max" type="xs:byte"/>
251 <xs:element name="avg" type="xs:byte"/>
252 <xs:element name="st" type="xs:byte"/>
253 </xs:sequence>
254 </xs:complexType>
255 </xs:element>
256 <xs:element name="deployment_time">
257 <xs:complexType>
258 <xs:sequence>
259 <xs:element name="min" type="xs:byte"/>
260 <xs:element name="max" type="xs:byte"/>
261 <xs:element name="avg" type="xs:byte"/>
262 <xs:element name="st" type="xs:byte"/>
263 </xs:sequence>
264 </xs:complexType>

65

5 Design

265 </xs:element>
266 <xs:element name="resource_release_time">
267 <xs:complexType>
268 <xs:sequence>
269 <xs:element name="min" type="xs:byte"/>
270 <xs:element name="max" type="xs:byte"/>
271 <xs:element name="avg" type="xs:byte"/>
272 <xs:element name="st" type="xs:byte"/>
273 </xs:sequence>
274 </xs:complexType>
275 </xs:element>
276 <xs:element name="vm_startup_time">
277 <xs:complexType>
278 <xs:sequence>
279 <xs:element name="min" type="xs:byte"/>
280 <xs:element name="max" type="xs:byte"/>
281 <xs:element name="avg" type="xs:byte"/>
282 <xs:element name="st" type="xs:byte"/>
283 </xs:sequence>
284 </xs:complexType>
285 </xs:element>
286 </xs:sequence>
287 </xs:complexType>
288 </xs:element>
289 <xs:element name="availability">
290 <xs:complexType>
291 <xs:sequence>
292 <xs:element name="cloud_service_uptime">
293 <xs:complexType>
294 <xs:sequence>
295 <xs:element name="min" type="xs:byte"/>
296 <xs:element name="max" type="xs:byte"/>
297 <xs:element name="avg" type="xs:byte"/>
298 <xs:element name="st" type="xs:byte"/>
299 </xs:sequence>
300 </xs:complexType>
301 </xs:element>
302 <xs:element name="cloud_resource_uptime">
303 <xs:complexType>
304 <xs:sequence>
305 <xs:element name="min" type="xs:byte"/>
306 <xs:element name="max" type="xs:byte"/>
307 <xs:element name="avg" type="xs:byte"/>
308 <xs:element name="st" type="xs:byte"/>

66

5.2 REST Interface Design

309 </xs:sequence>
310 </xs:complexType>
311 </xs:element>
312 <xs:element name="meantime_between_failures">
313 <xs:complexType>
314 <xs:sequence>
315 <xs:element name="min" type="xs:byte"/>
316 <xs:element name="max" type="xs:byte"/>
317 <xs:element name="avg" type="xs:byte"/>
318 <xs:element name="st" type="xs:byte"/>
319 </xs:sequence>
320 </xs:complexType>
321 </xs:element>
322 <xs:element name="meantime_repair">
323 <xs:complexType>
324 <xs:sequence>
325 <xs:element name="min" type="xs:byte"/>
326 <xs:element name="max" type="xs:byte"/>
327 <xs:element name="avg" type="xs:byte"/>
328 <xs:element name="st" type="xs:byte"/>
329 </xs:sequence>
330 </xs:complexType>
331 </xs:element>
332 </xs:sequence>
333 </xs:complexType>
334 </xs:element>
335 </xs:sequence>
336 <xs:attribute name="id" type="xs:string"/>
337 <xs:attribute name="startTime" type="xs:string"/>
338 <xs:attribute name="endTime" type="xs:string"/>
339 </xs:complexType>
340 </xs:element>
341

342 </xs:schema>

Listing 5.6: XML schema for performance

An alpha topology can be enriched by performing a performance(KPI), following XML schema
showing in list 5.7 is used.The element id is database ID of performance(KPI) persisted in
database. With the URL in table 5.8, an alpha topology can perform KPI.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
2 <xs:element name="PerformPerformanceID">
3 <xs:complexType>

67

5 Design

4 <xs:sequence>
5 <xs:element name="id" type="xs:long"/>
6 </xs:sequence>
7 </xs:complexType>
8 </xs:element>
9 </xs:schema>

Listing 5.7: XML presentation for performing performance(KPI)

Workload Resource Representation

As showing in list 5.8, this is the XML schema of workload modeled in figure4.7,which
is proposed in [Nie16]. The root element is Workload, the attributes endTime and startTime
indicate the valid time period of this workload.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
2 <xs:element name="Workload">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element name="pattern" type="xs:string"/>
6 <xs:element name="arrival" type="xs:string"/>
7 <xs:element name="behavioral" type="xs:string"/>
8 <xs:element name="avg_users" type="xs:short"/>
9 <xs:element name="avg_transactions" type="xs:short"/>

10 </xs:sequence>
11 <xs:attribute name="id" type="xs:string"/>
12 <xs:attribute name="startTime" type="xs:string"/>
13 <xs:attribute name="endTime" type="xs:string"/>
14 </xs:complexType>
15 </xs:element>
16 </xs:schema>

Listing 5.8: XML presentation for persisting workload

An alpha topology can be enriched by performing a workload, following XML representation
showing in list 5.9 is used. The element id is database ID of workload persisted in database.
With the URL in table 5.8, an alpha topology can perform workload.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
2 <xs:element name="PerformWorkloadID">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element name="id" type="xs:long"/>

68

5.2 REST Interface Design

6 </xs:sequence>
7 </xs:complexType>
8 </xs:element>
9 </xs:schema>

Listing 5.9: XML presentation for performing workload

Concrete Node Resource Representation

When persisting a concrete node, tNodeType defined in TOSCA specification is used directly
here. The schema locates at [Oas15b].

List 5.10 presents XML schema when retrieving concrete nodes. Concrete nodes are wrapped
within element ConcreteNodeList. Attribute DatabaseId indicates the concrete node ID generated
by database.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://docs.
oasis-open.org/tosca/ns/2011/12" elementFormDefault="qualified"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12" version="1.0
">

2 <xs:element name="ConcreteNodeList">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element maxOccurs="unbounded" minOccurs="0" name="specification"

nillable="true">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element ref="tns:Definitions"/>
9 </xs:sequence>

10 <xs:attribute name="DatabaseId" type="xs:long" use="required"/>
11 </xs:complexType>
12 </xs:element>
13 </xs:sequence>
14 </xs:complexType>
15 </xs:element>
16 </xs:schema>

Listing 5.10: XML schema for retrieving concrete nodes

Instance Node Resource Representation

When persisting an instance node, tNodeTemplate defined in TOSCA specification is used
directly here. The schema locates at [Oas15b].

69

5 Design

List 5.11 presents XML schema when retrieving instance nodes. Instance nodes are wrapped
within element InstanceNodeList. Attribute DatabaseId indicates the instance node ID generated
by database.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://docs.
oasis-open.org/tosca/ns/2011/12" elementFormDefault="qualified"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12" version="1.0
">

2 <xs:element name="InstanceNodeList">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element maxOccurs="unbounded" minOccurs="0" name="specification"

nillable="true">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element ref="tns:Definitions"/>
9 </xs:sequence>

10 <xs:attribute name="DatabaseId" type="xs:long" use="required"/>
11 </xs:complexType>
12 </xs:element>
13 </xs:sequence>
14 </xs:complexType>
15 </xs:element>
16 </xs:schema>

Listing 5.11: XML schema for retrieving instance nodes

RelationshipType Resource Representation

When persisting a relationshipType, tRelationshipType defined in TOSCA specification is used
directly here. The schema locates at [Oas15b].

List 5.12 presents XML schema when retrieving relationshipTypes. RelationshipTypes are
wraped within element RelationshipTypeList. Attribute DatabaseId indicates the ID of relation-
shiptype generated by database.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://docs.
oasis-open.org/tosca/ns/2011/12" elementFormDefault="qualified"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12" version="1.0
">

2 <xs:element name="RelationshipTypeList">
3 <xs:complexType>
4 <xs:sequence>

70

5.2 REST Interface Design

5 <xs:element maxOccurs="unbounded" minOccurs="0" name="specification"
nillable="true">

6 <xs:complexType>
7 <xs:sequence>
8 <xs:element ref="tns:Definitions"/>
9 </xs:sequence>

10 <xs:attribute name="DatabaseId" type="xs:long" use="required"/>
11 </xs:complexType>
12 </xs:element>
13 </xs:sequence>
14 </xs:complexType>
15 </xs:element>
16 </xs:schema>

Listing 5.12: XML schema for retrieving relationship type

NameSpace Resource Representation

As showing in list 5.13, this is XML schema of namespace resource. Namespaces are used for
providing uniquely named elements and attributes in an XML document. They are defined in
a W3C recommendation.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
2 <xs:element name="NameSpace">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element name="prefix" type="xs:string"/>
6 <xs:element name="namespaceurl" type="xs:anyURI"/>
7 </xs:sequence>
8 <xs:attribute name="id" type="xs:string"/>
9 </xs:complexType>

10 </xs:element>
11 </xs:schema>

Listing 5.13: XML schema for NameSpace

5.2.3 Endpoint and Action Representation

A REST endpoint provides way to map a URI and HTTP method for accessing a resource. In
this section, totally 45 endpoints for each resource is presented.

71

5 Design

H
T

T
P

M
ethod

R
esource

U
R

I
Input

Success
R

esponse
Error

R
esponse

D
escription

PO
ST

/topology/abstractsubtopology

B
od

y:abstract
su

b-top
ology

as
described

in
5.3

Statu
s:201

Body:em
pty

Status:500
P

ersists
new

abstract
su

b-
topology

G
ET

/topology/abstractsubtopology/{ id}
Body:Em

pty
Statu

s:200
B

od
y:alp

ha
topology

Status:404

R
etrieve

an
abstract

su
b-

top
ology

by
database

ID

G
ET

/topology/abstractsubtopology
Body:Em

pty
Statu

s:200
B

od
y:alp

ha
topology

list
Status:404

R
etrieve

all
abstract

su
b-

topologies

Table
5.2:A

llow
ed

operations
for

abstractsub-topology
resource

72

5.2 REST Interface Design

H
T

T
P

M
et

ho
d

R
es

ou
rc

e
U

R
I

In
pu

t
Su

cc
es

s
R

es
po

ns
e

Er
ro

r
R

es
po

ns
e

D
es

cr
ip

ti
on

PO
ST

/c
on

cr
et

en
od

e/
{t

yp
e }

B
od

y:
co

nc
re

te
no

d
e

as
d

e-
sc

ri
be

d
in

5.
2.

2

St
at

u
s:

20
1

Bo
dy

:e
m

pt
y

St
at

us
:5

00
C

re
at

es
ne

w
co

nc
re

te
no

de

G
ET

/c
on

cr
et

en
od

e/
{i

d }
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
B

od
y:

co
nc

re
te

no
de

St
at

us
:4

04
R

et
ri

ev
e

on
e

co
nc

re
te

no
d

e
by

da
ta

ba
se

ID

G
ET

/c
on

cr
et

en
od

e
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
B

od
y:

co
nc

re
te

no
de

Li
st

St
at

us
:4

04
R

et
ri

ev
e

al
l

co
nc

re
te

no
de

s

G
ET

/
co

nc
re

te
no

d
e/
{c

on
cr

et
eN

od
eI

d }
/i

ns
ta

nc
en

od
e/
{i

ns
ta

nc
eN

od
eI

d }
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
B

od
y:

in
st

an
ce

no
de

St
at

us
:4

04

R
et

ri
ev

e
in

-
st

an
ce

no
d

e
w

hi
ch

re
fe

rs
to

th
is

co
nr

et
en

-
od

e

G
ET

/
co

nc
re

te
no

d
e/
{c

on
cr

et
eN

od
eI

d }
/i

ns
ta

nc
en

od
e

Bo
dy

:E
m

pt
y

St
at

u
s:

20
0

B
od

y:
in

st
an

ce
no

de
lis

t
St

at
us

:4
04

R
et

ri
ev

e
al

l
in

st
an

ce
no

de
s

w
hi

ch
re

-
fe

r
to

th
is

co
nr

et
en

od
e

D
EL

ET
E

/c
on

cr
et

en
od

e/
{i

d }
N

/A
St

at
us

:2
02

St
at

us
:5

01
D

el
et

e
a

co
n-

cr
et

e
no

d
e

by
da

ta
ba

se
ID

Ta
bl

e
5.

3:
A

llo
w

ed
op

er
at

io
ns

fo
r

co
nc

re
te

no
de

re
so

ur
ce

73

5 Design

H
T

T
P

M
ethod

R
esource

U
R

I
Input

Success
R

esponse
Error

R
esponse

D
escription

PO
ST

/instancenode

B
od

y:instance
nod

e
as

d
e-

scribed
in

5.2.2

Statu
s:201

Body:em
pty

Status:500
C

reatesnew
in-

stance
node

G
ET

/instancenode/{ id}
Body:Em

pty
Statu

s:200
Body:instancerete
node

Status:404
R

etrieve
one

instance
nod

e
by

database
ID

G
ET

/instancenode
Body:Em

pty
Statu

s:200
B

od
y:instance

node
List

Status:404
R

etrieve
allin-

stance
nodes

D
ELET

E
/instancenode/{ id}

N
/A

Status:202
Status:501

D
elete

a
in-

stance
node

by
database

ID

Table
5.4:A

llow
ed

operations
for

instance
node

resource

74

5.2 REST Interface Design

H
T

T
P

M
et

ho
d

R
es

ou
rc

e
U

R
I

In
pu

t
Su

cc
es

s
R

es
po

ns
e

Er
ro

r
R

es
po

ns
e

D
es

cr
ip

ti
on

PO
ST

/w
or

kl
oa

d
Bo

dy
:w

or
kl

oa
d

as
de

sc
ri

be
d

in
5.

8

St
at

u
s:

20
1

Bo
dy

:e
m

pt
y

St
at

us
:5

00
C

re
at

es
ne

w
w

or
kl

oa
d

G
ET

/w
or

kl
oa

d/
{i

d }
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
Bo

dy
:w

or
kl

oa
d

St
at

us
:4

04
R

et
ri

ev
e

on
e

w
or

kl
oa

d
by

da
ta

ba
se

ID

G
ET

/w
or

kl
oa

d
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
B

od
y:

w
or

kl
oa

d
Li

st
St

at
us

:4
04

R
et

ri
ev

e
al

l
w

or
kl

oa
ds

D
EL

ET
E

/w
or

kl
oa

d/
{i

d }
N

/A
St

at
us

:2
02

St
at

us
:5

01
D

el
et

e
a

w
or

kl
oa

d
by

da
ta

ba
se

ID

Ta
bl

e
5.

5:
A

llo
w

ed
op

er
at

io
ns

fo
r

w
or

kl
oa

d
re

so
ur

ce

75

5 Design

H
T

T
P

M
ethod

R
esource

U
R

I
Input

Success
R

esponse
Error

R
esponse

D
escription

PO
ST

/perform
ance

Body:perform
ance

as
d

escribed
in

5.6

Statu
s:201

Body:em
pty

Status:500
C

reates
new

perform
ance

G
ET

/perform
ance/{ id}

Body:Em
pty

Statu
s:200

Body:perform
ance

Status:404
R

etrieve
one

p
erform

ance
by

database
ID

G
ET

/perform
ance

Body:Em
pty

Statu
s:200

Body:perform
ance

List
Status:404

R
etrieve

all
perform

ances

D
ELET

E
/perform

ance/{ id}
N

/A
Status:202

Status:501
D

elete
a

p
er-

form
ance

by
database

ID

Table
5.6:A

llow
ed

operations
for

perform
ance(K

PI)resource

76

5.2 REST Interface Design

H
T

T
P

M
et

ho
d

R
es

ou
rc

e
U

R
I

In
pu

t
Su

cc
es

s
R

es
po

ns
e

Er
ro

r
R

es
po

ns
e

D
es

cr
ip

ti
on

G
ET

/
d

is
co

ve
ry

to
p

ol
og

y/
{a

lp
ha

To
po

lo
gy

ID
}

Bo
dy

:E
m

pt
y

St
at

u
s:

20
0

B
od

y:
vi

ab
le

to
po

lo
gy

lis
t

St
at

us
:4

04
d

is
co

ve
r

al
l

vi
ab

le
to

p
ol

o-
gi

es
by

an
al

ph
a

to
po

lo
gy

da
ta

ba
se

ID
PO

ST
/v

ia
bl

et
op

ol
og

y
B

od
y:

vi
ab

le
to

p
ol

og
y

as
de

sc
ri

be
d

in
??

St
at

u
s:

20
1

Bo
dy

:e
m

pt
y

St
at

us
:5

00
P

er
si

st
a

d
is

-
co

ve
re

d
vi

ab
le

to
p

ol
og

y,
th

e
vi

ab
le

to
p

ol
-

og
y

w
ill

be
au

to
m

at
ic

al
ly

lin
ke

d
to

co
rr

es
p

on
d

-
in

g
al

p
ha

to
po

lo
gy

Ta
bl

e
5.

7:
A

llo
w

ed
op

er
at

io
ns

fo
r

vi
ab

le
to

po
lo

gy
re

so
ur

ce

77

5 Design

H
T

T
P

M
ethod

R
esource

U
R

I
Input

Success
R

esponse
Error

R
esponse

D
escription

PO
ST

/topology/alphatopology

B
od

y:alp
ha

top
ology

as
d

escribed
in

4.5

Statu
s:200

Body:em
pty

Status:501
P

ersist
an

al-
pha

topology

G
ET

/topology/alphatopology/{ id}
Body:Em

pty
Statu

s:200
B

od
y:alp

ha
topology

Status:404
R

etrieve
one

alpha
topology

by
database

ID

G
ET

/topology/alphatopology
Body:Em

pty
Statu

s:200
B

od
y:alp

ha
topology

List
Status:404

R
etrieve

all
al-

pha
topologies

D
ELET

E
/topology/alphatopology/{ id}

N
/A

Status:202
Status:501

D
elete

an
al-

p
ha

top
ology

by
database

ID

G
ET

/
top

ology/
alp

hatop
ology/

{ alphaTopologyID
} /

viabletop
ology

/{ viableTopologyID
}

Body:Em
pty

Statu
s:200

B
od

y:viable
topology

Status:404

R
etrieve

one
viable

top
ol-

ogy
generated

accord
ing

to
an

alp
ha

topology

G
ET

/
top

ology/
alp

hatop
ology/

{ alphaTopologyID
} /viabletopology

Body:Em
pty

Statu
s:200

B
od

y:viable
topology

list
Status:404

R
etrieve

all
viable

top
olo-

gies
generated

accord
ing

to
an

alp
ha

topology

G
ET

/
top

ology/
alp

hatop
ology/

{ alphaTopologyID
} /

viabletop
ology

/?from
={ tim

eStam
p} &

to={ tim
eStam

p}
Body:Em

pty
Statu

s:200
B

od
y:viable

topology
list

Status:404

qu
ery

viable
top

ologies
generated

ac-
cord

ing
to

an
alpha

topology
for

a
given

tim
e

period

Table
5.8:A

llow
ed

operations
for

alpha
topology

resource

78

5.2 REST Interface Design

H
T

T
P

M
et

ho
d

R
es

ou
rc

e
U

R
I

In
pu

t
Su

cc
es

s
R

es
po

ns
e

Er
ro

r
R

es
po

ns
e

D
es

cr
ip

ti
on

PO
ST

/
to

p
ol

og
y/

al
p

ha
to

p
ol

og
y

/
{a

lp
ha

To
po

lo
gy

ID
}

/p
er

fo
rm

an
ce

Bo
dy

:p
er

fo
rm

an
ce

id
as

d
es

cr
ib

ed
in

5.
7

St
at

u
s:

20
1

Bo
dy

:e
m

pt
y

St
at

us
:5

01

A
n

al
p

ha
to

p
ol

og
y

p
er

fo
rm

s
a

pe
rf

or
m

an
ce

G
ET

/
to

p
ol

og
y/

al
p

ha
to

p
ol

og
y/

{a
lp

ha
To

po
lo

gy
ID
}/

p
er

fo
rm

an
ce

?f
ro

m
=
{t

im
eS

ta
m

p }
&

to
=
{t

im
eS

ta
m

p }
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
Bo

dy
:p

er
fo

rm
an

ce
lis

t
St

at
us

:4
04

qu
er

y
an

d
re

tr
ie

ve
al

l
p

er
fo

rm
an

ce
of

an
al

p
ha

to
p

ol
og

y
p

er
-

fo
rm

ed
du

ri
ng

a
gi

ve
n

ti
m

e
pe

ri
od

G
ET

/
to

p
ol

og
y/

al
p

ha
to

p
ol

og
y/

{a
lp

ha
To

po
lo

gy
ID
}/

pe
rf

or
m

an
ce

Bo
dy

:E
m

pt
y

St
at

u
s:

20
0

Bo
dy

:p
er

fo
rm

an
ce

lis
t

St
at

us
:4

04

R
et

ri
ev

e
al

l
p

er
fo

rm
an

ce
s

of
an

al
p

ha
to

p
ol

og
y

pe
rf

or
m

ed

PO
ST

/
to

p
ol

og
y/

al
p

ha
to

p
ol

og
y

/
{a

lp
ha

To
po

lo
gy

ID
}

/w
or

kl
oa

d

B
od

y:
w

or
kl

oa
d

id
as

d
es

cr
ib

ed
in

5.
9

St
at

u
s:

20
1

Bo
dy

:e
m

pt
y

St
at

us
:5

01

A
n

al
p

ha
to

p
ol

og
y

p
er

fo
rm

s
a

w
or

kl
oa

d

G
ET

/
to

p
ol

og
y/

al
p

ha
to

p
ol

og
y/

{a
lp

ha
To

po
lo

gy
ID
}/

w
or

kl
oa

d
?f

ro
m

=
{t

im
eS

ta
m

p }
&

to
=
{t

im
eS

ta
m

p }
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
B

od
y:

w
or

kl
oa

d
lis

t
St

at
us

:4
04

qu
er

y
an

d
re

tr
ie

ve
al

l
w

or
kl

oa
d

s
of

an
al

ph
a

to
po

l-
og

y
pe

rf
or

m
ed

du
ri

ng
a

gi
ve

n
ti

m
e

pe
ri

od

G
ET

/
to

p
ol

og
y/

al
p

ha
to

p
ol

og
y/

{a
lp

ha
To

po
lo

gy
ID
}/

w
or

kl
oa

d
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
B

od
y:

w
or

kl
oa

d
lis

t
St

at
us

:4
04

R
et

ri
ev

e
al

l
w

or
kl

oa
d

s
of

an
al

p
ha

to
p

ol
og

y
pe

rf
or

m
ed

Ta
bl

e
5.

9:
A

llo
w

ed
op

er
at

io
ns

fo
r

al
ph

a
to

po
lo

gy
re

so
ur

ce
co

nt
.

79

5 Design

H
T

T
P

M
ethod

R
esource

U
R

I
Input

Success
R

esponse
Error

R
esponse

D
escription

PO
ST

/relationshiptype

Body:relationship
typ

e
as

d
e-

scribed
in

5.2.2

Statu
s:201

Body:em
pty

Status:500
p

ersist
a

new
relationship
type

G
ET

/relationshiptype/{ id}
Body:Em

pty
Statu

s:200
Body:w

orkload
Status:404

R
etrieve

one
relation-

ship
typ

e
by

database
ID

G
ET

/relationshiptype
Body:Em

pty
Statu

s:200
Body:relationship
type

List
Status:404

R
etrieve

all
relationship
types

D
ELET

E
/relationshiptype/{ id}

N
/A

Status:202
Status:501

D
elete

a
rela-

tionship
typ

e
by

database
ID

Table
5.10:A

llow
ed

operations
for

relationship
type

resource

80

5.2 REST Interface Design

H
T

T
P

M
et

ho
d

R
es

ou
rc

e
U

R
I

In
pu

t
Su

cc
es

s
R

es
po

ns
e

Er
ro

r
R

es
po

ns
e

D
es

cr
ip

ti
on

PO
ST

/n
am

es
pa

ce
Bo

dy
:n

am
es

pa
ce

as
de

sc
ri

be
d

in
5.

13

St
at

u
s:

20
1

Bo
dy

:e
m

pt
y

St
at

us
:5

00
p

er
si

st
a

ne
w

na
m

es
pa

ce

G
ET

/n
am

es
pa

ce
/
{i

d }
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
Bo

dy
:n

am
es

pa
ce

St
at

us
:4

04
R

et
ri

ev
e

on
e

na
m

es
p

ac
e

by
da

ta
ba

se
ID

G
ET

/n
am

es
pa

ce
Bo

dy
:E

m
pt

y
St

at
u

s:
20

0
B

od
y:

na
m

es
p

ac
e

ty
pe

Li
st

St
at

us
:4

04
R

et
ri

ev
e

al
l

na
m

es
pa

ce
s

D
EL

ET
E

/n
am

es
pa

ce
ty

pe
/
{i

d }
N

/A
St

at
us

:2
02

St
at

us
:5

01

D
el

et
e

a
na

m
es

p
ac

e
ty

p
e

by
d

at
ab

as
e

ID

Ta
bl

e
5.

11
:A

llo
w

ed
op

er
at

io
ns

fo
r

na
m

es
pa

ce
re

so
ur

ce

81

5 Design

5.3 Core Algorithm

In this section, two algorithms: discovering potential viable topologies based on abstract
sub-topology and finding similar topology are proposed.

5.3.1 Viable Topology Discovery

Algorithm 1 is composed of two parts: the first part as showing in algorithm 1. In this
algorithm, a box is a container which contains elements of type T (like List<T> in Java). T
represents generic type. By using recursion, it finds all combinations of elements with type T.
Each time one element is selected from one box,neither the number of elements in one box nor
the number of boxes is unknown. For instance, If there are two boxes which contain elements
of type T, and T is String, box1: "A","B" and box2: "C","D". Then all possible combinations
will be AC, AD, BC and BD.

Algorithm 1 Generate all combination

function GENERATECOMBINATION(boxes, oneCombination)
oneBox = boxes[0] . the first box in boxes
for element : all elements in oneBox do

newBoxes = boxes
newBoxes.remove(oneBox)
if boxes.size()>1 then

GENERATECOMBINATION(newBoxes, oneCombination.add(element))
else

oneCombination.add(element)
allCombinations.add(oneCombination) . the final result

end if
end for

end function

As discussed in previous chapter 4.1.3, γ-topology is a directed graph and the abstract
sub-topology we are using to model γ-topology is directed graph as well.

Let G = (V, E) and v ∈ V. The in-degree of v is denoted deg−(v) and its out-degree is denoted
deg+(v). A vertex node with deg−(v) = 0 is called a root, as it is the origin of each of its
incident arrows.Similarly, a vertex with deg+(v) = 0 is called a leaf.

First we get all possible paths from one root node to each leaf node, then we get all combina-
tions of the path of each root node, so each combination is a possible abstract sub-topology.
For example, as the model example in Figure 4.4,for root node ApachePHPModule, there are
two paths to reach leaf nodes WindowsAzure and AmazonEC2:

1. ApachePHPModule->ApacheWebserver->WindowsVM->WindowsAzure

2. ApachePHPModule->ApacheWebserver->UbuntuVm->AmazonEC2

82

5.3 Core Algorithm

for root node MySQLServer, there are one path to reach leaf node AmazonEC2:

1. MySQLServer->UbuntuVm->AmazonEC2

So there are two possible abstract sub-topologies:

1. ApachePHPModule->ApacheWebserver->WindowsVM->WindowsAzure and
MySQLServer->UbuntuVm->AmazonEC2

2. ApachePHPModule->ApacheWebserver->UbuntuVm->AmazonEC2 and
MySQLServer->UbuntuVm->AmazonEC2

Algorithm 2 finds all possible abstract sub-topologies by using combination discovery in
algorithm 1:

Algorithm 2 Generate All abstract Topologies

1: allRootNodesO f Topology = getAllRootNodesOfTopology();
2: allLea f NodesO f Topology = getAllLeafNodesOfTopology();
3: for oneRootNode : all Nodes in allRootNodesO f Topology do
4: for oneLea f Node : all Nodes in allLea f NodesO f Topology do
5: path = one path from oneRootNode to oneLea f Node
6: allPathsForOneRootNode.add(path)
7: end for
8: PathBoxesO f AllRootNodes.add(allPathsForOneRootNode)
9: end for

10: GENERATECOMBINATION(PathBoxesO f AllRootNodes, oneCombination)

Once we get the abstract sub-topologies, for each abstract node we get all combinations of
its concrete node by iterating using algorithm 1, then we do the same thing to retrieve all
combinations of instance node. Finally all viable topologies can be discovered.

5.3.2 Similar Topology Matching

In current version we only provide algorithm to check if two alpha topologies are equal. Equal
means that two alpha topologies are isomorphic:

Definition 6 (Isomorphic Graphs) Two graphs which contain the same number of graph vertices
connected in the same way are said to be isomorphic. Formally, two graphs G and H with graph
vertices Vn={1, 2, ..., n} are said to be isomorphic if there is a permutation p of Vn such that u,v is in
the set of graph edges E(G) iff {p(u), p(v)} is in the set of graph edges E(H).2:

Basing on the definition, we design an algorithm to judge if two topologies are equal. First
we get all paths from each root node to each leaf node. Then we can check if each path of
topology.1 has exactly same paths in topology.2 and vice versa as defined in definition.

2http://mathworld.wolfram.com/IsomorphicGraphs.html

83

5 Design

Algorithm 3 Compare two topologies if same

1: function IFTWOTOPOLOGIESSAME(topology1,topology2)
2: allPathFromEachRootNodeToEachLea f NodeO f Topology1 = getAllPathesOfTopol-

ogy();
3: allPathFromEachRootNodeToEachLea f NodeO f Topology2 = getAllPathesOfTopol-

ogy();
4: for onepath : all paths in allPathFromEachRootNodeToEachLea f NodeO f Topology1 do
5: if Exists one same path as onepath in
6: allPathFromEachRootNodeToEachLea f NodeO f Topology2 then
7: move the same path out of allPathFromEachRootNodeToEachLea f NodeO f Topology2
8: Break;
9: else

10: return f alse
11: end if
12: end for
13: return true
14: end function

84

6 Implementation

In this chapter, basing on the concepts established and REST API designed in previous chap-
ters, the details of implementation of topology persistence and discovery system prototype
are presented here. In the first section, an overview of tools used for implementation is
presented; in the second section, some code snippets are listed for better explanation of the
implementation details.

6.1 Implementation Environment

As described previously, topology is a directed graph, and a graph database has instinctive
ability to handle a graph structure, so graph database is the best option to use for implemen-
tation.

Neo4j ranks number one in the area of graph database and has become more popular in
both scientific and industry area. Furthermore,it provides native Java API and traversing
framework. With above reason Neo4j graph database is the database we use for the persistence
of topology and related entities. As discussed in 2.2, there are two deployments solutions of
Neo4j: embedded database and remote server. Embedded mode means that the database is
inside the application and in the same JVM as the application. Considering current usage
scenario,topology modeler(winery) is the only user of our framework; furthermore, for better
using native Java API and speed up the accessing, embedded mode is our choice.

Currently there are many frameworks support REST web service development over Java, like
RestEasy, Restlet and Jersey, which three frameworks are the implementation of Java API for
RESTful Web Services (JAX-RS). We choose Jersey as framework for our REST web service
development .

We use Eclipse, a mature and popular integrated development environment(IDE) as the
development environment. To better manage project, we use Maven to manage project and
plug-in. Following table lists the main tools and version are used for implementation.

Tools Version Description
Maven 3.3.3 project comprehension and management.
Neo4j 2.7.1 graph database.
Jersey 2.22.1 REST Web service Java framework.
Eclipse 4.4.2 integrated development environment.
JDK 1.7 Java development kit.

Table 6.1: Development Tools List

85

6 Implementation

For logically and functionally differentiating services model and the possibility of reusing
code in the future, We use Maven to divide our framework into five sub-modules as showing
in Figure 6.1. The dependency relationship means a module dependency on another module
or a plug-in dependency on another module in the build process.

1. web resource: provides web service using Jersey.

2. service: provides business logic.

3. interpreter: parses representation of workload,KPI and topologies to database domain
and vice versa.

4. domain: format of entity persist in database.

5. dao: Data Access Object, handle the interaction with database.

WEB_RESOURCE

SERVICE INTERPRETER

DOMAIN

DAO DEPENDS_ON

Figure 6.1: Maven Module Dependency

6.2 Implementation Details

In this section the details of implementation are presented. We follow previous division of
modules and explain the implementation of them one by one. Typical and important code
snippets are directly listed here as there is no more straightforward way than code itself can
do the explanation better.

86

6.2 Implementation Details

6.2.1 RESTFul Interface

Since Java Platform Standard Edition(Java SE) 5, JAX-RS is introduced to simplify the devel-
opment of web service clients and endpoints according to REST architectural pattern. Since
Java Platform Enterprise Edition(Java EE) 6, JAX-RS has become an official part of Java.

As one implementation of JAX-RS, the latest major version of Jersey is 2.0 which was released
in May 2013. Jersey Mainly uses Java annotation 1 to map a Java Object as a web service, it
contains following basic annotations[wik15c] which are used in our implementations:

1. @Path specifies the relative path for a resource class or method.

2. @GET, @PUT, @POST, @DELETE and @HEAD specify the HTTP request type of a
resource.

3. @Produces specifies the response Internet media types (used for content negotiation).

4. @Consumes specifies the accepted request Internet media types.

5. @PathParam binds the method parameter to a path segment.

6. @QueryParam binds the method parameter to the value of an HTTP query parameter.

Here we take endpoint and URL designed in table 5.8 for example to present the detail
implementation for alpha topology web resource.

Simple URI

Code snippet 6.1 shows how to persist an alpha topology with the URI pattern ’/topology/al-
phatopology/’. Annotation @Path defines the root path of this web resource, @POST and
@Consumes accept XML format media whose schema defined in listing 5.1 and pass the input
stream to Service layer of back-end; after the alpha topology is persisted successfully, the
newly created alpha topology ID is built in the response and sent back.

1 @Path("topology/alphatopology")
2 public class AlphaTopologyResource {
3 @POST
4 @Consumes("application/xml")
5 public Response createAlphaTopology(InputStream is) throws IOException {
6 AlphaTopology alphaTopology = null;
7 try {
8 AlphaTopologyTransformer transformer = new AlphaTopologyTransformer(is);
9 alphaTopology = transformer.getDomainType();

10 } catch (InputWrongType e) {
11 e.printStackTrace();

1An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added
to Java source code.2[wik15a]

87

6 Implementation

12 }
13 AlphaTopologyService service = new AlphaTopologyService();
14 Node alphaTopologyIndex = service.AddAlphaTopology(alphaTopology);
15 return Response.created(URI.create(("/alphatopology/")+alphaTopologyIndex.

getId())).build();
16 }
17 ...
18 }

Listing 6.1: Persist an Alpha Topology

URI with Parameters

Code snippet 6.2 shows how to delete an alpha topology with URI pattern:
’/topology/alphatopology/{alphaTopologyID}’. Annotation @PathParam accepts the pa-
rameter ’alphaTopologyID’ in URI and passes it to service layer.

1 @Path("topology/alphatopology")
2 public class AlphaTopologyResource {
3 @DELETE
4 @Consumes("application/xml")
5 @Path("{alphaTopologyId}")
6 public String deleteAlphaTopologyById(InputStream is,@PathParam("

alphaTopologyId") long alphaTopologyId) throws JAXBException{
7 AlphaTopologyService service = new AlphaTopologyService();
8 if(service.deleteAlphaTopologyById(alphaTopologyId)){
9 return "delete alphaTopology ID:"+alphaTopologyId+" "+"from database

Successfully!";
10 }
11 else{
12 throw new WebApplicationException(Response.Status.NOT_IMPLEMENTED);
13 }
14 }
15 ...
16 }

Listing 6.2: Delete an Alpha Topology

URI for Query

Code snippet 6.3 shows how to query workload history of an alpha topology with pattern:
’/topology/alphatopology/ {alphaTopologyID}/workload ?from={timeStamp}& to={timeStamp}’.

88

6.2 Implementation Details

Annotation @GET and @Produces generate XML format media which contains workload
list.

1 @Path("topology/alphatopology")
2 public class AlphaTopologyResource {
3 @GET
4 @Produces("application/xml")
5 @Path("{alphaTopologyId}/workload")
6 public WorkloadList getWorkloadsHistory(@PathParam("alphaTopologyId") long

alphaTopologyId,@QueryParam("from") String from,@QueryParam("to") String
to) throws JAXBException{

7 AlphaTopologyService service = new AlphaTopologyService();
8 WorkloadList workloadHistoryList =service.queryWorkloadHistory(

alphaTopologyId, from, to);
9 return workloadHistoryList;

10

11 }
12 ...
13 }

Listing 6.3: Query Performed Workload History of Alpha Topology)

6.2.2 Interpreter

In this section, the implementation of Interpreter module is presented. Interpreter module
is used to transform XML presentation of workload,KPI and topologies designed in section
5.2.2 to domain and vice versa.

There are several approaches for parsing XML in Java. We choose two approaches in our
implementation due to particular requirements.

JAXB Approach

Java Architecture for XML Binding (JAXB), is an annotation framework that maps Java classes
to XML and XML schema.JAXB is not part of JAX-RS,but it provides a very convenient way
for Java developers to play with XML. As mentioned before, there are two opposite process,
one is unmarshalling which deserializes XML data into newly created Java Class, the other is
marshalling which serializes Java Class back into XML data.

In fact, Jersey has implemented a built-in JAXB support which can directly handle marshaling
and unmarshalling without importing extra JAXB library. The reason of creating a separate
module for handling XML parsing particularly is that the whole input stream should be
saved as an attribute ’specification’ sometimes.As mentioned before, topology persistence

89

6 Implementation

and discovery framework is not specification specific, it requires the system extracting useful
information from the specification but without losing others. So the whole specification
should be saved. Alpha Topology, concrete node, instance node, relation type and viable
topology are defined and presented by TOSCA specification, these entities need save the
whole specification as a string value.

As JAXB consumes lots of resource during initializing phase, so the Marshaller and Unmar-
shaller instance should be static, following code snippet shows how to create them. Once
they are created, they can be used by interpreter to parse XML.

1 public static Unmarshaller createUnmarshaller() {
2 try {
3 return JAXBSupport.context.createUnmarshaller();
4 } catch (JAXBException e) {
5 throw new IllegalStateException(e);
6 }
7 }

Listing 6.4: Create Static Unmarshaller Instance

1 public static Marshaller createMarshaller(boolean
includeProcessingInstruction) {

2 Marshaller m;
3 try {
4 m = JAXBSupport.context.createMarshaller();
5 m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
6 m.setProperty("com.sun.xml.bind.namespacePrefixMapper", JAXBSupport.

prefixMapper);
7 if (!includeProcessingInstruction) {
8 m.setProperty(Marshaller.JAXB_FRAGMENT, Boolean.TRUE);
9 }

10 } catch (JAXBException e) {
11 throw new IllegalStateException(e);
12 }
13 return m;
14 }

Listing 6.5: Create Static Marshaller Instance

Jersey Built-in Approach

JAX-RS specification requires implementations to automatically support the marshalling and
unmarshalling of classes which are annotated with JAXB XML annotation like @XmlRootEle-

90

6.2 Implementation Details

ment, @XmlType and @XmlElement. By default, the creation of JAXB Context instances
Unmarshaller and Marshaller in previous approach, is also managed by Jersey. So once the
Java class is well annotated, without additional effort the built-in JAXB can be used.

Workload, performance, abstract sub-topology and namespace, these entities are defined and
used by framework only, so they are using Jersey built-in JAXB to parse XML.

Code Snippet 6.6 is Workload class which is well annotated with JAXB XML annotations.It
can be used directly as the response of web service as listed in code Snippet 6.7.

1 @XmlAccessorType(XmlAccessType.FIELD)
2 @XmlType(name = "", propOrder = {
3 "pattern",
4 "arrival",
5 "behavioral",
6 "avgUsers",
7 "avgTransactions"
8 })
9 @XmlRootElement(name = "Workload")

10 public class Workload {
11

12 @XmlElement(required = true)
13 protected String pattern;
14 @XmlElement(required = true)
15 protected String arrival;
16 @XmlElement(required = true)
17 protected String behavioral;
18 @XmlElement(name = "avg_users")
19 protected short avgUsers;
20 @XmlElement(name = "avg_transactions")
21 protected short avgTransactions;
22 @XmlAttribute(name = "id")
23 protected String id;
24 @XmlAttribute(name = "startTime")
25 protected String startTime;
26 @XmlAttribute(name = "endTime")
27 protected String endTime;
28 ...
29 }

Listing 6.6: Well Annotated Workload Class

1 @GET
2 @Produces("application/xml")
3 @Path("{id}")

91

6 Implementation

4 public Workload getWorkload(@PathParam("id") String id) throws IOException {
5 Workload workload = null;
6 WorkloadService service = new WorkloadService();
7 workload = service.get(id);
8 if(workload==null) {
9 throw new WebApplicationException(Response.Status.NOT_FOUND);

10 }
11 return workload;
12 }

Listing 6.7: Use Annotated Workload Class as Response

6.2.3 Data Access

Data access object (DAO) is an object that provides an abstract interface to some type
of database or other persistence mechanism. By mapping application calls to the persis-
tence layer, DAO provide some specific data operations without exposing details of the
database.[wik15b]

Neo4j Graph database provides two approaches to access database in embedded mode. One
approach is using Java native API when the data operations is relatively simple. When things
become complicated, it is suggested using Cypher directly.

For example, Node is the basic element in graph database. With native Java API, a Node can
get its label, property, in-degree, out-degree and so on.For example, code snippet 6.8 shows
how to get all labels of a Node by using native Java API.

1 public Iterator<Label> getNodeLabelById(long id){
2 Iterator<Label> labelIterator = null;
3 try (Transaction tx = db.beginTx();){
4 Node node = getNodeById(id);
5 labelIterator = node.getLabels().iterator();
6 }
7 return labelIterator;
8 }

Listing 6.8: Get All labels of a Node

For more complicated data operations, Cypher is to be considered. Cypher is Neo4j query
language, it is defined in the official document of Neo4j as follows:’Cypher is a declarative,
SQL-inspired language for describing patterns in graphs. It allows us to describe what we
want to select, insert, update or delete from a graph database without requiring us to describe
exactly how to do it.’

92

6.2 Implementation Details

For example, code snippet 6.9 shows how to get all instance nodes which refers to a concrete
node. The variable ’query’ stores Cypher as a String. The ’MATCH’ clause is used to specify
the patterns which Neo4j will search in the database.

1 public List<Node> getInstanceNodes(Node concreteNode) {
2 List<Node> instanceNodes = new ArrayList<Node>();
3 String query = "MATCH (a)-[r:REFERS_TO]->(b) WHERE id(b)="+ concreteNode.

getId()+" "+"RETURN a";
4 try (Transaction tx = db.beginTx();Result result = db.execute(query);)
5 {
6 while (result.hasNext())
7 {
8 Map<String,Object> row = result.next();
9 for (String key : result.columns())

10 {
11 Node instanceNode= (Node) row.get(key);
12 instanceNodes.add(instanceNode);
13 }
14 }
15 tx.success();
16 }
17 return instanceNodes;
18 }

Listing 6.9: Get All Instance Nodes of a Concrete node

6.2.4 Business Logic

The real business logic stays at service layer. It accepts the domain object from interpreter
layer and calls the DAO layer to handle data. From functionality perspective, service layer
contains three sub-service module: topology service, workload service and performance
service. Topology service provides functionality of viable topology and similar topology
discovery . In this section, we focus on the implementation details of topology discovery.

There are several main classes which work together to discover viable topologies in database.
Figure 6.2 is a simple class diagram which describes the relationship of these classes.

93

6 Implementation

AbstractSubTopology

Explorer

Combination
GammaTopology

Explorer

MuTopologyExplorer
AbstractSubTopology

Searcher

Figure 6.2: Class Diagram for the Viable Topology Discovery Component

In section 5.3, the core algorithms is proposed for generating combination and discovering
abstract sub-topology. Code snippet 6.10 presents the details implementation of the algorithm
1 in 5.3,which is in the class Combination.

1

2 private void generateCombinations(List<List<T>> Boxes, List<T>
oneCombinationResult) {

3 List<T> ElementlistOfOneBox = Boxes.get(0);
4 List<T> tempResultForStack = new ArrayList<T>(oneCombinationResult);
5 combinationResultStack.push(tempResultForStack);
6 for(T oneElement : ElementlistOfOneBox) {
7 List<List<T>> newBoxes = new ArrayList<List<T>>(Boxes);
8 newBoxes.remove(ElementlistOfOneBox);
9 if(Boxes.size() > 1) {

10 oneCombinationResult.add(oneElement);
11 generateCombinations(newBoxes, oneCombinationResult);
12 oneCombinationResult.clear();
13 List<T> restultFromStack = (List<T>) combinationResultStack.pop()

;
14 for(T oneData: restultFromStack){
15 oneCombinationResult.add(oneData);

94

6.2 Implementation Details

16 }
17 oneCombinationResult.remove((oneCombinationResult.size()-1));
18 } else {
19 oneCombinationResult.add(oneElement);
20 List<T> tempResult = new ArrayList<T>(oneCombinationResult);
21 combinationsResults.add(tempResult);
22 T lastElement = ElementlistOfOneBox.get(ElementlistOfOneBox.size

()-1);
23 if(oneElement.equals(lastElement)){
24 }
25 else{
26 oneCombinationResult.remove(oneElement);
27 }
28 }
29 }
30 }

Listing 6.10: Combination Generation Algorithem

Then this algorithm can be used by other object. AbstractSubTopology can use it iteratively
finding all abstract sub-topologies. GammaTopology can use it iteratively finding all linked
concrete nodes and instance nodes. Finally MuTopologyExplorer will connect the gamma
topology with alpha topology to create a viable topology.

95

6 Implementation

96

7 Validation

In this chapter, we validate the implementation to check if topology persistence and discovery
framework fulfill functional and non-functional requirements as previously described. We
start from the scratch to fill a blank graph database with necessary data, step by step to
perform operations for topologies and its enrichments, verify REST API and check the
corresponding response. The sample of Neo4j database in this section can be retrieved in
Bitbucket.1

7.1 Methodology

Figure 7.1 simulate the scenario of validation. TOSCA topology elements like Service Template,
Node Type, Node Template, Relationship Type and corresponding XML Namespace used by
topology modeler(Winery) are persisted in database with correct order as indicated by white
arrow. Solid arrow shows the necessary data which is used by database entities.

The validation process is divided into five steps:

1. Basic Elements: In this step RelationType and NameSpace from Winery are persisted in
database. These two elements are the necessary components of other entities, so they
should be persisted and verified first.

2. Alpha Topology: In TOSCA, a Topology is defined by ServiceTemplate. So in this step,
ServiceTemplate of an Alpha Topology from Winery is used. Once there are more than
one alpha topologies existed in database, discovering of similar alpha topologies can be
verified.

3. Gamma Topology: To establish a gamma topology, abstract sub-topology, concrete node
and instance node should be persisted one by one in this step.

4. Topology Enrichment: Alpha Topology is application specific, so somehow it represents
an application. An application can be enriched by evolving workloads and performance.
In this step, the operations for the enrichments are validated.

5. Viable Topology: Based on previous steps, viable topology can be discovered in this
step.

1https://shmily1140@bitbucket.org/shmily1140/pertos-sample.git

97

7 Validation

Topology Modeler
(Winery)

Validation Scenario

Step 1: Basic Elements

Relationship
Type

Operation list

· Persist
· Retrieve
· Delete

NameSpace

Operation list
· Persist
· Retrieve
· Delete

Operation list
· Persist
· Retrieve
· Delete
· Query
· Perform workload

Step 4: Topology Enrichment

Workload Performance

Operation list
· Persist
· Retrieve
· Delete
· Query
· Perform performance

Step 5: Viable Topology

Viable
Topology

Operation list
· Discovery
· Persist
· Query

Step 2: Alpha Topology

Alpha
Topology

Similar
Topology

Operation list
· Discover

 Operation list
· Persist
· Retrieve
· Delete

TOSCA Service Template

Name Space And
 TOSCA Relationship Type

TOSCA Service Template
 & Node Type

& Node Template

Data Flow
Data moves through the labeled
arrow with the name of the data

WorkFlow

Abstract
Sub-Topology

Concrete Node Instance Node

Step 3: Gamma Topology

Operation list
· Persist
· Retrieve

Operation list
· Persist
· Retrieve
· Delete
· Retrieve Linked

Instance Node

Operation list
· Persist
· Retrieve
· Delete

Figure 7.1: Validation Scenario Overview

98

7.1 Methodology

We use following three tools to do the validation:

1. Postman2: a Restful API testing tool which can create and send HTTP request using
powerful GUI, write test cases to validate response data, response times and response
messages.

2. Neo4j Browser3: the default Neo4j server which has a powerful, customizable data
visualization tool based on the built-in D3.js library.It looks like a lightweight IDE
through which user can write Cypher to query database directly.

3. Winery4: topology modeler which can visualize TOSCA based topology service tem-
plate.

HOSTED_ON

ALT_HOSTED_ON

P

W

Performance Requirement

Workload SpecificationMediaWiki App:
Web_App

MediaWiki App:
PHP_App

wikiDB:
SQL_DB

Apahche_PHP_Module:
PHP_Container

Apahche_PHP_Module:
PHP_Container

Apache_HTTP_Server:
Web_Server

Apache_HTTP_Server:
Web_Server

MySql:
SQL_RDBMS_Server

MySql:
SQL_RDBMS_Server

LinuxOS:
Virt_Ubuntu_OS

LinuxOS:
Virt_Ubuntu_OS

WindowsOS:
Virt_Win_OS

WindowsOS:
Virt_Win_OS

WindowsAzure:
WindowsAzure

WindowsAzure:
WindowsAzure

AWS_EC2:
AWS_EC2

AWS_EC2:
AWS_EC2

C
O

N
SI

ST
_O

F

CONSIST_OF

INTERACTS_WITH

P W

α-Topology - Application Specific

γ- Topology - Application non-Specific

Figure 7.2: Validation Sample Application

The results in the form of screenshot for each
step are checked by Postman first to verify
if the REST API, HTTP request and HTTP
response are the ones as expected. Then
Neo4j Browser is used to verify if the data in
Graph database is correct with respect to cor-
responding REST API. For viable Topology,
Winery is used to verify generated TOSCA
Service Template.

Figure 7.2 is the topology of sample applica-
tion MediaWikidApp which we are going to
validate in the following. The nodes of alpha
topology are marked in gray, which is appli-
cation specific. The bottom half is gamma
topology, which is application non-specific.
From the figure we can know that for this
application exists two potential topologies:
the node Web_ Server can either hotsed_ on a
virtual windows OS or a virtual Ubuntu OS.
Moreover, the application is enriched by one
performance and one workload notated with
dark gray circle in figure. It should be clear
that actually the performance and workload
are not performed directly on the node Web_
App. Instead, it should be performed on the
alphaTopologyIndex node as modeled previ-
ously. In the following sections we follow
the steps designed above to validate our sys-
tem from the scratch.

2https://www.getpostman.com/
3http://neo4j.com/developer/guide-neo4j-browser/
4http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php

99

7 Validation

7.2 Basic Elements

In this section, the validation of basic elements are presented.

7.2.1 NameSpace

As TOSCA is represented by XML which uses namespace to uniquely identify named elements
and attributes. Winery has a component to specially save namepsaces, so to be consistent
with Winery, the namespace used by Winery should be saved in system as well.

Figure 7.3 shows persisting a namespace element.

Figure 7.3: Request for Persisting a NameSpace

System accepted the request and created namespace. In the headers of response, location
field save the newly created resource with id 2 as showing in Figure 7.4.

Figure 7.4: Response of the Request for Persisting a NameSpace

To verify if the namespace is persisted successfully, Figure 7.5 shows getting the namespace by
ID which equals 2. The result shows the retrieved namepsace is the one we just persisted.

100

7.2 Basic Elements

Figure 7.5: Retrieve one NameSpace By ID

More necessary namespaces are persisted as well which can be validated by retrieve all
namespace as showing in Figure 7.6.

Figure 7.6: Retrieving all NameSpaces

101

7 Validation

Finally we check the namespaces persisted in database to see if it is consistent as showing in
Figure 7.7.

Figure 7.7: NameSpace in Database

7.2.2 Relationship Type

In TOSCA, a Relationship Type is a reusable entity that defines the type of one or more
Relationship Templates between Node Templates. When building gamma topology and
viable topology, Relationship Type are used, so it should be persisted first as basic elements
as well.

First, we persist relationship type by HTTP method POST as showing in Figure 7.8

Figure 7.8: Request for Persisting a Relationship Type

HTTP location headers of the response contains the newly created relationship type with ID
29 as showing in figure 7.9.

102

7.2 Basic Elements

Figure 7.9: Response of the Request for Persisting a RelationshipType

To verify if Relationship Type is truly persisted, we can retrieve the relationship type with
ID 29 as showing in Figure 7.10. The body of response contains the same one as we just
persisted.

Figure 7.10: Retrieve one RelationshipType By ID

Finally we take a look at the relationship type in database, as we only use Relationship Type
CONSIST OF in our validation, so only one relationship type is persisted.

Figure 7.11: RelationshipType in Database

103

7 Validation

7.3 Alpha Topology

Alpha Topology is the application specific part. As showing in Figure 7.12 first we persist
one alpha topology. In the location headers of response contains the newly created alpha
topology with ID 50.

7.3.1 Alpha Topology

Figure 7.12: Request and Response for Persisting an Alpha Topology

Then we retrieve this alpha topology using ID 50 to check if this alpha topology is persisted
successfully as showing in Figure7.13

104

7.3 Alpha Topology

Figure 7.13: Retrieve one an Alpha Topology By ID

More alpha topologies are persisted as well. As showing in Figure 7.14, all alpha topologies
in database are retrieved. The TOSCA definition is wrapped in element specification.

Figure 7.14: Retrieve all Alpha Topologies

Figure 7.15 is the screenshot of all alpha topologies in database. The nodes in red color is

105

7 Validation

node template and the one in yellow is alpha topology index.

Figure 7.15: Alpha Topology in Database

7.3.2 Similar Topology

As showing in Figure 7.15, alpha topology with ID 50 is same as the one with ID 71. The
remaining three are different with each other.First we try to find a similar topology for alpha
topology with ID 50, in the response the definition of similar alpha topology with ID 71 is
wrapped in element specification as showing in Figure 7.16.

Figure 7.16: Find Similar Alpha Topology-1

Then we try to find similar topology for alpha topology with ID 82, the response with status
code ’404 Not Found’ indicates there is no similar topology in database as we expected.

106

7.3 Alpha Topology

Figure 7.17: Find Similar Alpha Topology-2

107

7 Validation

7.4 Gamma Topology

In this section we validate the precess to establish a reusable gamma topology by persisting
abstract sub-topology, concrete nodes and instance nodes step by step.

7.4.1 Abstract Sub-Topology

First we persist an abstract sub-topology as showing in Figure7.18.

Figure 7.18: Request and Response for Persisting an Abstract Sub-Topology

After persisting it, we try to retrieve it by ID 94 as showing in Figure 7.19.Figure 7.20 is the
screenshot of the newly created abstract sub-topology, the nodes in gray are abstract nodes
and the node in yellow is abstract sub-topology index.

108

7.4 Gamma Topology

Figure 7.19: Retrieve one an Abstract Sub-Topology By ID

Figure 7.20: Abstract Sub-Topology in Database

109

7 Validation

Figure 7.21: Request and Response for Persisting a Concrete Node

7.4.2 Concrete Node

After abstract sub-topology is persisted successfully, concrete node can be added for each
type of abstract node. Figure 7.21 shows persisting a concrete node for abstract node type
AphachePHPModule.The location headers of the response contains ID of the newly created
concrete node. Figure 7.22 verifies retrieving the concrete node persisted in previous step
with ID 64.

.

110

7.4 Gamma Topology

Figure 7.22: Retrieve a Concrete Node By ID

Next step we add concrete nodes for each type of abstract sub-topology, then we verify the
result by retrieving all concrete nodes in the database as showing in Figure 7.24.

As defined in TOSCA specification, the relationship between node templates is established
by verifying requirements and capabilities pairs of concrete node. So for the leaf nodes of
alpha topology, we add two concrete node type, each of which contains one requirements as
showing in Figure 7.23.Finally we check the data in database as showing in Figure 7.25. The
nodes in dark pink are concrete nodes, the two on top with two capabilities in green.

Figure 7.23: Concrete Nodes for Alpha Topology

111

7 Validation

Figure 7.24: Retrieving all Concrete Nodes

Figure 7.25: Concrete Nodes in Database

112

7.4 Gamma Topology

7.4.3 Instance Node

Figure 7.26: Request and Response for Persisting an Instance Node

Figure 7.27: Retrieve an Instance Node By ID

113

7 Validation

Figure 7.28: Retrieve all Instance Nodes

Figure 7.26, 7.27 and 7.28 shows persisting and retrieving instance nodes. One thing should
be mentioned here is that when persisting instance node, system checks the Node Type of
instance node and links the instance node to concrete node automatically. In Figure 7.29, the
nodes in red are instance nodes. Up to now, gamma topology is established. we can use this
reusable topology to discover viable topologies which is validated in next section. Another
useful API is validated here as well. As showing in Figure 7.30, this API can provide all
instance nodes which are linked to a concrete node (here ID:64).

114

7.4 Gamma Topology

Figure 7.29: Instance Nodes in Database

Figure 7.30: Instance Nodes linked to a Concrete Node

115

7 Validation

7.5 Topology Enrichments

In this section topology enrichments are validated.

7.5.1 Workload

Figure 7.31, 7.32 and 7.33 show persisting and retrieving workloads. Figure 7.34 shows an
alpha topology performs a workload. Figure 7.35 and Figure 7.36 show an alpha topology
retrieves and queries its performed workloads.

Figure 7.31: Request and Response for Persisting a Workload

116

7.5 Topology Enrichments

Figure 7.32: Retrieve a Workload By ID

Figure 7.33: Retrieve all Workloads

117

7 Validation

Figure 7.34: An Alpha Topology performs a workload

Figure 7.35: An alpha topology retrieves all its Workloads

118

7.5 Topology Enrichments

Figure 7.36: An Alpha Topology queries its Workloads

7.5.2 Performance

Figure 7.37, 7.38 and 7.39 show persisting and retrieving performances. Figure 7.40 shows an
alpha topology performs a performance. Figure 7.41 and Figure 7.42 show an alpha topology
retrieves and queries its performed performances.

119

7 Validation

Figure 7.37: Request and Response for Persisting a Performance

Figure 7.38: Retrieve a Performance By ID

120

7.5 Topology Enrichments

Figure 7.39: Retrieve all Performances

Figure 7.40: An Alpha Topology performs a Performance

121

7 Validation

Figure 7.41: An alpha topology retrieves all its Performances

Figure 7.42: An Alpha Topology queries its Performances

122

7.6 Viable Distribution Topologies Discovery

7.6 Viable Distribution Topologies Discovery

Figure 7.43 shows the process of discovering viable topology for an alpha topology. Here
we try to find all viable topologies for alpha topology with ID 50. There are two discovered
topologies in the example. TOSCA definition is wrapped in element specification.

To validate if the discovered viable topologies are correct, we use Winery to model the
topology. Figure 7.44 and Figure 7.45 are the screenshot of the modeling result for our
discovered viable topologies. The result are the same as we expected. The topology structure
is decided by abstract sub-topology, and the combination of instance nodes linked to each
concrete node compose the final viable topologies.

In the next step, we select one viable topology as the one to be deployed. First we persist
it in the database as showing in Figure 7.46. Once the viable topology is persisted, system
links the viable topology to the alpha topology automatically and relevant attributes are set
like create date, obsolete and so on. In the example, we persist a second viable topology. It
means the topology developer wants another viable topology to be deployed, so the first
one is obsolete. Figure 7.47 shows the result when trying to get viable topology history of
an alpha topology. The viable topology with databaseID 95 is the first one persisted, once
the second viable topology is persisted, it became an obsolete viable topology, so the attribute
obsolete is set to Yes.

Figure 7.43: Discover Viable Topologies

123

7 Validation

Figure 7.44: Verify the generated Topology in Winery-1

Figure 7.45: Verify the generated Topology in Winery-2

124

7.6 Viable Distribution Topologies Discovery

Figure 7.46: Persist a Viable Topology

Besides retrieving all history of viable topologies for an alpha topology, the history can be
queried. Figure 7.48 shows querying viable topology by providing timestamps as parameters.r
Figure 7.49 shows the data in database. The two nodes linked to alpha topology with ID 50
are viable topologies.

Figure 7.49 is the full picture in database of all above operations. Up to now, viable topologies
for an alpha topology with ID 50 are discovered and persisted, workloads and performances
are persisted and performed by the same alpha topology. Through this validation, we design
a process and simulate a scenario that how a topology developer works with topology
persistence and discovery system. The REST API and data modeling work as we expected.

125

7 Validation

Figure 7.47: Get all Viable Topologies of an Alpha Topology

Figure 7.48: Query Viable Topologies of an Alpha Topology

126

7.6 Viable Distribution Topologies Discovery

Figure 7.49: An Alpha Topology With its Viable Topologies, workloads and performances

127

7 Validation

128

8 Outcome and Future Work

The topology description language makes distributed deployment of cloud application across
different service providers possible. When selecting and deciding an optimal application
topology, various criteria from different dimensions should be taken into account. Both
consumers and application developers will benefit more if they can decide which component
of the application hosts on which service offering by considering evolving workload and
performance. Basing on this scenario researches are conducted on discovering all potential
application topologies and selecting the optimal one by taking into account overall aspects
of application. Following the approaches proposed in [ASLW14] and [SAGF15], this Master
thesis implements a RESTful-based framework which supports discovering and building
reusable Cloud application viable topologies w.r.t evolving aspects of application.

In Chapter 2, the necessary background, related technologies and products using in this thesis
are presented. In particular we provide a brief introduction of Graph database, which has
native advantages when resolving graph problem compared to relational database. The most
popular Graph database in industry is Neo4j which is selected and used in the implementation
phase of this thesis.

In Chapter 3 we conduct literature researches which reviews the development of Cloud
computing theory, especially in the area of application topology description and discov-
ering. Some approaches are already proposed for decision making of optimal topologies
like [BBKL14] and [VAL13], however these approaches ignore distributed deployment of
application. In contrast, some approaches like [BFL+12] only takes into account automatically
discovering topology but without considering other criteria: performance, security, QoS etc.
So an overall and comprehensive approach is needed. By comparing with other solutions
and tracing the latest progress, finally the approach proposed in [ASLW14] and [SAGF15] is
used as theoretical foundation of this thesis.

Basing on the researches in Chapter 2 and Chapter 3, in Chapter 4 we provide the necessary
data models to support the definition of application topologies: α, γ, µ - topology and
associated enrichments. Compared to relational database modeling approaches like UML,
there is no standard way to represent data model of Graph database. So we use four basic
elements: Node, Label, Relationship and Property to model topology and its enrichments by
using sample application MediaWikiApp. Furthermore, we establish concepts for the purpose
of better modeling. For instance, we propose the concept of node type tree to model typed
Graph with inheritance. Basing on this concept, γ-topology is splitted into three components:
abstract sub-topology, concrete node and instance node. The intention of design of γ-topology
is to make it easily extensible and maintainable: the structure of an application(abstract
sub-topology) is relatively stable compare to its concrete implementation(instance nodes): the
configuration, price, capacity etc. is various and changed from time to time. In the rest of this

129

8 Outcome and Future Work

Chapter, the functional and non-functional requirements the system must fulfill are described.
After analyzing the requirements, providing an overview of the system, and specifying the
necessary use cases, we move to the design of the prototype in chapter 5.

In the fifth Chapter, we design a RESTful framework capable of persisting and discovering
application specific and independent topologies. For such a purpose, we first identify the
resource and model relationships among them. Then we design representation of each
resource using XML schema. Finally we define the endpoint and action of the resource. We
divide service layer into six sub-modules which are responsible for business logical like
topology enrichments and interpreter. The core algorithms designed for topology discovery
and similar topology matching are presented in the rest of this chapter.

The implementation and validation of the system is introduced in Chapters 6 and 7. We use
several technologies. For instance, Maven is used to manage the whole project and split the
project into five sub-projects. RESTFful API is developed under Jersey framework . When
handling XML representation of topology and other topology enrichments, Jersey embedded
approach, JAXB and DOM are adopted. To separate data access and business logic, a reusable
data access object(DAO) is designed for database accessing. To validate our prototype system,
we design a scenario of five steps with a sample application from scratch for validating.
Finally, the validation result shows that the prototype of topology persistence and discovery
system fulfill the requirement as expected.

The research in this thesis serves as the foundations for enabling the persistence and retrieval
of reusable application topologies leveraging Graph database technologies. Furthermore,
this thesis provides a approach how to use Graph database to resolve application topology
problems. With the help of Graph database, topology discovery algorithm are designed using
recursive and topology theory. Topology persistence and discovery system can be extended
to support various topology description languages in the future. In addition, this system
can be integrated with other systems – topology modeler and provision system to build a
comprehensive Cloud application topology development ecosystem. More business logic can
be developed by reusing the DAO sub-module of service layer. It can be predicted that the
combination of Graph database and Cloud application topology will become the focus of
academic research in the near future.

130

Bibliography

[Ama] A. Amazon. Cloud Formation. Amazon Web Services. AWS CloudFormation.
Available online: http://aws.amazon.com/de/cloudformation.

[ARB12] A.-F. Antonescu, P. Robinson, and T. Braun. Dynamic topology orchestration
for distributed cloud-based applications. In Network Cloud Computing and
Applications (NCCA), 2012 Second Symposium on, pages 116–123. IEEE, 2012.

[ARSL14] V. Andrikopoulos, A. Reuter, S. G. Sáez, and F. Leymann. A GENTL Approach
for Cloud Application Topologies. In Service-Oriented and Cloud Computing,
pages 148–159. Springer, 2014.

[ASLW14] V. Andrikopoulos, S. G. Sáez, F. Leymann, and J. Wettinger. Optimal distribu-
tion of applications in the cloud. In Advanced Information Systems Engineering,
pages 75–90. Springer, 2014.

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, and
S. Wagner. OpenTOSCA – A Runtime for TOSCA-based Cloud Applications.
In 11th International Conference on Service-Oriented Computing, LNCS. Springer,
2013.

[BBKL13] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. Automated Discovery
and Maintenance of Enterprise Topology Graphs. In Proceedings of the 6th IEEE
International Conference on Service Oriented Computing & Applications (SOCA
2013), pages 126–134. IEEE Computer Society, December 2013.

[BBKL14] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. chapter TOSCA: Portable
Automated Deployment and Management of Cloud Applications, pages 527–
549. Springer, New York, January 2014.

[BCJ] H. Bruneliere, J. Cabot, and F. Jouault. Combining model-driven engineering
and cloud computing. In Modeling, Design, and Analysis for the Service Cloud-
MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th European
Conference on Modelling Foundations and Applications-ECMFA 2010).

[BEDL+03] R. Bardohl, H. Ehrig, J. De Lara, O. Runge, G. Taentzer, and I. Weinhold. Node
type inheritance concept for typed graph transformation. Technische Universität
Berlin, Fakultät IV-Elektrotechnik und Informatik, 2003.

[BFL+12] T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm. Formalizing
the Cloud through Enterprise Topology Graphs. In Proceedings of 2012 IEEE
International Conference on Cloud Computing. IEEE Computer Society Conference
Publishing Services, June 2012.

131

Bibliography

[BPM12] E. Brandtzæg, M. Parastoo, and S. Mosser. Towards a domain-specific language
to deploy applications in the clouds. In 3rd International Conference on Cloud
Computing, GRIDs, and Virtualization, pages 213–218, 2012.

[BS13] A. Brogi and J. Soldani. Matching cloud services with TOSCA. In Advances in
Service-Oriented and Cloud Computing, pages 218–232. Springer, 2013.

[BS14] A. Brogi and J. Soldani. Reusing cloud-based services with TOSCA. In
E. Plödereder, L. Grunske, E. Schneider, and D. Ull, editors, 44. Jahrestagung
der Gesellschaft für Informatik, INFORMATIK 2014, volume 232 of LNI, pages
235–246. GI, 2014.

[Bur13] B. Burke. RESTful Java with JAX-RS 2.0. O’Reilly Media, 2013.

[CFSV04] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism
algorithm for matching large graphs. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 26(10):1367–1372, 2004.

[de15] db engines. DB-Engines Ranking of Graph DBMS. http://db-engines.com/
en/ranking/graph+dbms, 2015. [(L1) – (General Deployment Options)].

[EPN+11] E. Escalona, S. Peng, R. Nejabati, D. Simeonidou, J. Garcia-Espin, J. Ferrer,
S. Figuerola, G. Landi, N. Ciulli, J. Jimenez, et al. GEYSERS: a novel architecture
for virtualization and co-provisioning of dynamic optical networks and IT
services. In Future Network & Mobile Summit (FutureNetw), 2011, pages 1–8.
IEEE, 2011.

[Fie00] R. T. Fielding. Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, Irvine, 2000.

[Fro14] S. FrobberOfBits. Neo4j Embedded vs Server mode. http://stackoverflow.
com/questions/24925800/neo4j-server-vs-embedded-mode, 2014. [(L1) –
(General Deployment Options)].

[Gar85] C. Gary. Introductory Graph Theory, 1985.

[Hec06] R. Heckel. Graph transformation in a nutshell. Electronic notes in theoretical
computer science, 148(1):187–198, 2006.

[KBBL13a] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery – Modeling
Tool for TOSCA-based Cloud Applications. In 11th International Conference on
Service-Oriented Computing, LNCS. Springer, 2013.

[KBBL13b] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery–a modeling tool
for TOSCA-based cloud applications. In Service-Oriented Computing, pages
700–704. Springer, 2013.

[LK09] H. J. La and S. D. Kim. A systematic process for developing high quality saas
cloud services. In Cloud computing, pages 278–289. Springer, 2009.

[LM12] T. Leidig and C. Momm. USDL service level agreement, 2012.

132

http://db-engines.com/en/ranking/graph+dbms
http://db-engines.com/en/ranking/graph+dbms
http://stackoverflow.com/questions/24925800/neo4j-server-vs-embedded-mode
http://stackoverflow.com/questions/24925800/neo4j-server-vs-embedded-mode

Bibliography

[MG11] P. Mell and T. Grance. The NIST definition of cloud computing. 2011.

[Mie10] R. Mietzner. A method and implementation to define and provision variable
composite applications, and its usage in cloud computing. 2010.

[Neo16] Neo4j. Caches in Neo4j. http://neo4j.com/docs/2.2.0-M03/
configuration-caches.html#_file_buffer_cache, 2016. [(L1) – (Java
API for RESTful Web Services)].

[Nie16] J. V. P. Nieves. Master Thesis No. 0838-007 - Knowledge Capturing and
Usage of Evolving Cloud Application Topologies. Master’s thesis, University
Stuttgart, Germany, 2016.

[NLPVDH12] D. K. Nguyen, F. Lelli, M. P. Papazoglou, and W.-J. Van Den Heuvel. Blueprint-
ing approach in support of cloud computing. Future Internet, 4(1):322–346,
2012.

[OAS15a] OASIS. TOSCA. https://www.oasis-open.org/committees/tosca/charter.
php, 2015. [(L1) – (TOSCA Overview)].

[Oas15b] Oasis. TOSCA Schema. http://docs.oasis-open.org/tosca/TOSCA/v1.0/
os/schemas/TOSCA-v1.0.xsd, 2015. [(L1) – (TOSCA)].

[Ori] OrientDB.

[PR69] J. L. Pfaltz and A. Rosenfeld. Web grammars. In Proceedings of the 1st interna-
tional joint conference on Artificial intelligence, pages 609–619. Morgan Kaufmann
Publishers Inc., 1969.

[RMVG+10] L. Rodero-Merino, L. M. Vaquero, V. Gil, F. Galán, J. Fontán, R. S. Montero,
and I. M. Llorente. From infrastructure delivery to service management in
clouds. Future Generation Computer Systems, 26(8):1226–1240, 2010.

[Rou16] M. Rouse. cloud computing definition. http://searchcloudcomputing.
techtarget.com/definition/cloud-computing, 2016. [(L1) – (Cloud Com-
puting)].

[RWE15] I. Robinson, J. Webber, and E. Eifrem. Graph Databases: New Opportunities for
Connected Data. O’Reilly Media, 2015.

[SAGF15] S. G. Sáez, V. Andrikopoulos, K. Ganguly, and L. Frank. Enriching Cloud
Application Topologies with Evolving Performance & Workload Models. IAAS,
University of Stuttgart, 2015.

[SBB+15] J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, and A. Brogi. TOSCA-MART:
A Method for Adapting and Reusing Cloud Applications. 2015.

[TOS] Topology and Orchestration Specificatoin for Cloud Application Versioin 1.0.

[Tru13] R. Trudeau. Introduction to Graph Theory. Dover Books on Mathematics. Dover
Publications, 2013.

133

http://neo4j.com/docs/2.2.0-M03/configuration-caches.html#_file_buffer_cache
http://neo4j.com/docs/2.2.0-M03/configuration-caches.html#_file_buffer_cache
https://www.oasis-open.org/committees/tosca/charter.php
https://www.oasis-open.org/committees/tosca/charter.php
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/schemas/TOSCA-v1.0.xsd
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/schemas/TOSCA-v1.0.xsd
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing

Bibliography

[TSB10] W.-T. Tsai, X. Sun, and J. Balasooriya. Service-oriented cloud computing
architecture. In Information Technology: New Generations (ITNG), 2010 Seventh
International Conference on, pages 684–689. IEEE, 2010.

[Uni15] UniStuttgart. OpenTOSCA. http://www.iaas.uni-stuttgart.de/
OpenTOSCA, 2015. [(L1) – (OpenTOSCA)].

[VAL13] Z. S. Vasilios Andrikopoulos and F. Leymann. Supporting the Migration of
Applications to the Cloud through a Decision Support System. In Proceedings
of the 6th IEEE International Conference on Cloud Computing (CLOUD 2013), June
27-July 2, 2013, Santa Clara Marriott, CA, USA, pages 565–572. IEEE Computer
Society, 2013.

[VB14] R. Van Bruggen. Learning Neo4j. Community Experience Distilled. Packt
Publishing, 2014.

[VB15] B. Varanasi and S. Belida. Spring REST. Apress, 2015.

[VMZ+10] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A comparison
of a graph database and a relational database: a data provenance perspective.
In Proceedings of the 48th annual Southeast regional conference, page 42. ACM,
2010.

[wik15a] wikipedia. annotation. https://en.wikipedia.org/wiki/Java_annotation,
2015. [(L1) – (Java annotation)].

[wik15b] wikipedia. Data access object. https://en.wikipedia.org/wiki/Data_
access_object, 2015. [(L1) – (Data Access Object)].

[wik15c] wikipedia. JAX-RS. https://en.wikipedia.org/wiki/Java_API_for_
RESTful_Web_Services, 2015. [(L1) – (Java API for RESTful Web Services)].

[wik16] wikipedia. Cloud Computing. https://en.wikipedia.org/wiki/Cloud_
computing, 2016. [(L1) – (Cloud Computing)].

[Wil12] B. Wilder. Cloud architecture patterns: using microsoft azure. " O’Reilly Media,
Inc.", 2012.

All links were last followed on January 14, 2016

134

http://www.iaas.uni-stuttgart.de/OpenTOSCA
http://www.iaas.uni-stuttgart.de/OpenTOSCA
https://en.wikipedia.org/wiki/Java_annotation
https://en.wikipedia.org/wiki/Data_access_object
https://en.wikipedia.org/wiki/Data_access_object
https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references that
the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

Stuttgart, January 14, 2016 ——————————–
(Name)

	Introduction
	Problem Statement
	Motivating Scenario
	Definitions and Conventions
	Outline

	Fundamentals
	Graph-based Database
	Neo4j Graph Database System
	Graph Transformation Theory
	Cloud Computing
	Cloud Application Topology
	Optimal Distribution of Cloud Applications

	TOSCA
	OpenTOSCA
	OpenTOSCA Winery Topology Modeling Environment
	REST

	Related Works
	Concept and Specification
	Data Modeling
	Graph Database Modeling Notations
	Type Graph with Inheritance Modeling
	Modeling Example

	System Requirements
	Topology requirements
	Workload Requirements
	Performance(KPI) Requirements

	Use Case
	System Overview

	Design
	System Architecture
	REST Interface Design
	Resource Identification
	Resource Representation
	Endpoint and Action Representation

	Core Algorithm
	Viable Topology Discovery
	Similar Topology Matching

	Implementation
	Implementation Environment
	Implementation Details
	RESTFul Interface
	Interpreter
	Data Access
	Business Logic

	Validation
	Methodology
	Basic Elements
	NameSpace
	Relationship Type

	Alpha Topology
	Alpha Topology
	Similar Topology

	Gamma Topology
	Abstract Sub-Topology
	Concrete Node
	Instance Node

	Topology Enrichments
	Workload
	Performance

	Viable Distribution Topologies Discovery

	Outcome and Future Work
	Bibliography

