
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Master Thesis No. 0838-007

Knowledge Capturing and Usage of
Evolving Cloud Application Topologies

Jhonny Vladimir Pincay Nieves

Course of Study: Infotech

Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: Santiago Gómez Sáez
Commenced: July 30, 2015
Completed: January 28, 2016

CR-Classification: C.2.4; D.2.8; D.2.11; H.3.3; I.5.3

Abstract

In the last few years, the advent of Cloud Computing has contributed to a considerable
increase of the number of service offerings from a variety of providers and every time more
applications are being partially or fully deployed in the cloud. Nowadays, experts invest
considerable time and effort towards taking the maximum advantage of the benefits that the
employment of cloud technologies brings. Such a wide spectrum of cloud offerings, however,
increase the number of complex tasks and aspects that must be taken into account when
distributing the components of an application such as the quality of service, adaptation to
market changes, etc. Furthermore, the distribution of the components and the configuration
of cloud resources may evolve over time and there is a lack of tooling support when it comes
to assist the developers in the decision-making tasks of selecting an appropriate application
distribution topology.

One of the methods that human-beings use to solve problems consists of recalling past
experiences and how they solved them at that time. Under this and other considerations
the Case-Based Reasoning paradigm was conceived, as a mechanism for solving tasks by
recalling past similar problems and adapting their solutions to new situations. This work aims
to develop the concepts and mechanisms that enable the capturing and usage of knowledge
that the evolution of a system brings along. Specifically, this thesis attempts to identify a set
of characteristics that accurately describe a cloud application and to define the models that
should be used to identify the cases solved in the past and whose solutions may be useful to
solve a new problem. To achieve this, the Case-Based Reasoning with Similarity Retrieval
approach is employed, to identify applications with similar characteristics, retrieve their
solutions and offer means to refine them in order to obtain a distribution topology that fulfills
the requirements of a given application. Furthermore, a prototypical implementation of the
approach of this thesis is executed and also employed to validate the concepts and principles
that this work follows.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation Scenario and Research Challenges 2
1.3 Outline . 4
1.4 List of Abbreviations . 5

2 Fundamentals 7
2.1 Cloud Computing . 7

2.1.1 Characteristics . 7
2.1.2 Service Delivery Models . 8
2.1.3 Deployment Models . 9

2.2 Cloud Application Topologies . 11
2.2.1 Enrichment of Cloud Application Topologies 13
2.2.2 Application Topology Languages and Frameworks 14

2.3 Case-Based Reasoning . 17
2.3.1 Case Structure . 19
2.3.2 CBR Cycle . 21
2.3.3 Task Hierarchy . 22

2.4 Similarity Analysis for Case-Based Reasoning 23
2.4.1 Traditional Similarity Measures . 25
2.4.2 The Local-Global Principle . 27
2.4.3 Enhancement of Similarity Measures 31
2.4.4 Similarity and Utility Functions . 32

2.5 Representational State Transfer (REST) . 33
2.5.1 RESTful Web Services . 34

3 Related Works 35
3.1 PatEvol: A Framework for Acquisition and Application of Software Architec-

ture Evolution Knowledge . 35
3.1.1 Purpose . 35
3.1.2 Approach and Results . 35

3.2 SMICloud: Framework for Comparing and Ranking Cloud Services 37
3.2.1 Purpose . 37
3.2.2 Approach and Results . 38

3.3 Parallel Cloud Service Selection and Ranking based on QoS History 40
3.3.1 Purpose . 40
3.3.2 Approach and Results . 40

3.4 Graph-Based Analysis and Prediction for Software Evolution 42

iii

Contents

3.4.1 Purpose . 42
3.4.2 Approach and Results . 43

3.5 Evolutionary Algorithm approach for for the Discovery of Software Architectures 45
3.5.1 Purpose . 45
3.5.2 Approach and Results . 46

4 Concept and Specification 49
4.1 Methodology . 49

4.1.1 Topology Modeling - Collection Functional Requirements Data 50
4.1.2 Non Functional Requirements - Data Collection 51
4.1.3 Similarity Measures Calculation . 55
4.1.4 Solution Selection and Adaptation . 56
4.1.5 Deployment, Monitoring and Knowledge Retrieval and Aggregation . 56

4.2 Formalizing Similarity . 57
4.2.1 Similarity of Functional Requirements 57
4.2.2 Similarity of Performance Metrics . 59
4.2.3 Similarity of Workload Characteristics 61
4.2.4 Application Similarity Calculation . 61

4.3 System Requirements . 63
4.3.1 Functional Requirements . 63
4.3.2 Non-Functional Requirements . 63

4.4 Use Cases . 64
4.4.1 Application Developer . 64
4.4.2 Domain Expert . 64
4.4.3 Use Cases Diagram . 65
4.4.4 Use Cases Description . 66

4.5 System Overview . 78

5 Design 81
5.1 Architectural Overview . 81
5.2 Non-functional Aspects Data Model . 82
5.3 Modeling Layout Design . 84

5.3.1 Performance Requirements Specification 84
5.3.2 Workload Characteristics Specification 84
5.3.3 Discovery of Similar Applications . 86

5.4 RESTful API . 89

6 Implementation 93
6.1 Modeling . 93
6.2 CBR - Similarity Analysis . 94

6.2.1 Web Service API . 94
6.2.2 Similarity Engine . 100
6.2.3 Knowledge Aggregator and Manager 102

6.3 Runtime . 102
6.3.1 Provisioning Engine and Monitoring Framework 102

iv

Contents

6.3.2 Pricing Knowledge and Cost Calculation Framework 103

7 Validation and Evaluation 105
7.1 Methodology . 105
7.2 Evaluation by Means of Case Study: MediaWiki Application 107

7.2.1 Test Cases Definition . 107
7.2.2 Case Retrieval Correctness Evaluation 109
7.2.3 System Behavior after Adaptation Evaluation 114
7.2.4 Domain Expert Operations Validation 116

8 Outcome and Future Work 117

Bibliography 119

v

Contents

vi

List of Figures

1.1 Some distribution topologies possibilities for the MediaWiki application [GALS14] 3
1.2 Representation of the approach followed in this work 4

2.1 Cloud computing delivery models including resources managed by the user
and examples of each one [ZCB10] . 9

2.2 Levels of elasticity and pay-per-use of the different cloud deployment models
[FLR+14] . 10

2.3 A web shop application topology [AGSLW14] 11
2.4 An extended version µ-topology of the web shop application [AGSLW14] . . . 13
2.5 Structure of a Blueprint according to [NLPVDH12] 15
2.6 The TOSCA concepts and their relations [NLPVDH12] 16
2.7 Components of a TOSCA Service Template [top13] 17
2.8 CBR problem-solving approach [Sta03] . 18
2.9 An example of an Attribute-Value case representation [Sta03] 20
2.10 The CBR process cycle according to [She03]. 22
2.11 Task decomposition of the processes of CBR [AP94] 23
2.12 A schema of similarity-based retrieval according to [Sta03] 24
2.13 An example of a similarity table [Sta03] . 28

3.1 Overview of the processes, activities and repositories of the PatEvol framework
[AJP13] . 37

3.2 Cloud computing AHP hierarchy as defined by [GVB11] 39
3.3 Overview of the calculations performed on the decision matrix used by the

approach proposed by [uRHH14] . 42
3.4 Overview of the system developed by [BINF12] 44
3.5 Sample mapping between classes to a tree structure, as suggested by [RRV15] 46

4.1 Cloud application topology enhanced life cycle - CBR Analysis 49
4.2 Processes of the different stages of the methodology [AGSLW14] 50
4.3 Representation of a Case in the proposed system. 51
4.4 Data model of the description of an application 52
4.5 Similarity calculation process. 56
4.6 Use Cases Diagram. 65
4.7 System Architecture Overview . 78

5.1 Architectural overview of the system. 81
5.2 Cloud application non-functional aspects data model 83
5.3 Performance specification layout . 85
5.4 Workload specification layout . 85
5.5 Discover similar applications layout . 87

vii

List of Figures

5.6 Refine application and cost calculation layout. In the refinement interface, the
white boxes represent the nodes of the depicted α-topology and the gray boxes
the γ-topology, together they conform the proposed µ-topology. 88

6.1 Winery Topology Modeler interface extended with the menu Similarity Analy-
sis added . 94

7.1 Evaluation methodology and task . 106
7.2 MediaWiki Application depicted as a topology 107
7.3 α-topology of the test case modeled in Perfinery 109
7.4 Specification of workload characteristics in Perfinery 110
7.5 Specification of Performance requirements of the category Resource Utilization

in Perfinery . 111
7.9 Part of the retrieved knowledge from an application 111
7.6 Performance Requirements currently added 112
7.7 Results of the similarity analysis . 112
7.8 View of two viable distributions retrieved through the similarity engine . . . 113
7.10 Refining a selected viable topology . 114
7.11 Cost calculation interface in Perfinery . 115
7.12 Retrieval of similar applications after a new case and solution have been

inserted into the knowledge base . 115
7.13 Body of the obtained response when invoking the REST function of retrieving

similarity tables in Postman . 116

viii

List of Tables

4.1 Application QoS performance metrics per category 53
4.2 Attribute-based characterization of the Workload of an application 55
4.3 Sample of a similarity table for type of application 58
4.4 Description of Use Case: Model Alpha Topology 66
4.5 Description of Use Case: Specify Performance Requirements 67
4.6 Description of Use Case: Specify Workload Characteristics 68
4.7 Description of Use Case: Specify Hard Constraints 69
4.8 Description of Use Case: Calculate Distribution Cost 69
4.9 Description of Use Case: View Model . 70
4.10 Description of Use Case: Refine Application . 70
4.11 Description of Use Case: Retrieve Deployment Package 70
4.12 Description of Use Case: Discover Similar Applications 71
4.13 Description of Use Case: Compute Similarity 72
4.14 Description of Use Case: Retrieve Viable Distribution 73
4.15 Description of Use Case: Store Adapted Solution 73
4.16 Description of Use Case: Persist Viable Distribution 74
4.17 Description of Use Case: Persist Knowledge . 75
4.18 Description of Use Case: Retrieve Knowledge 76
4.19 Description of Use Case: Update Knowledge 76
4.20 Description of Use Case: Retrieve Similarity Tables 77
4.21 Description of Use Case: Update Similarity Table 77

5.1 REST API summary . 89
5.2 Description of REST method: Discover Similar Applications 90
5.3 Description of REST method: Persist Knowledge 90
5.4 Description of REST method: Retrieve Knowledge 91
5.5 Description of REST method: Update Knowledge 91
5.6 Description of REST method: Retrieve Similarity Tables 92
5.7 Description of REST method: Update Similarity Table 92

6.1 Details of URIs supported by the CBR Engine 95
6.2 Mapping of existing attributes in the case base to Nefolog available attributes 103

7.1 Performance metrics for the MediaWiki test case 108

ix

List of Tables

x

List of Listings

6.1 Specification of non-functional characteristics and solution of an application
schema . 96

6.2 Workload schema . 97
6.3 Performance schema . 97
6.4 Solution schema . 99
6.5 Similarity table schema . 99
6.6 Workload similarity computation . 100
6.7 Single local similarity computation . 101
6.8 Global similarity computation . 102
6.9 Example of a Nefolog Candidate Search query string invoked from the CBR

framework . 104
6.10 Example of a Nefolog Cost Calculator query string invoked from the CBR

framework . 104

xi

1 Introduction

Conceived upon the principles of High Performance, Grid and Utility Computing [FZRL08,
GLZ+10] and considered a major breakthrough in its beginnings, the terms Cloud Computing
have become more than just buzzwords. Cloud Computing is without doubts an efficient way
to deliver on-demand resources and capabilities, which in conjunction with its pay-per-use
schema, caught a lot of attention and nowadays more and more systems are being migrated
to the cloud environment.

The massive expansion of the employment of cloud technologies has contributed to a signifi-
cant increment of service offerings from different providers and along with that, a raise of
the number of options and considerations that should be taken into account when migrating
partially or completely an application to an off-premise environment.

The expressed above has led to find appropriate methods to express the architecture of an
application in order to visualize all its components and proceed with their distribution without
overlooking details. One of them allows to describe cloud application topologies in terms
of typed-labeled graphs, whose nodes constitute the components of the application being
distributed and the edges depict the relations and interactions among them. Furthermore,
multiple applications may have similar functions, objectives, structures and therefore it is
reasonable to think that the components of a particular one can be reused for other application.
Under this thinking and taking into consideration the approach of expressing the distribution
of an application as a graph, nodes could be grouped with the objective of conforming
reusable sub-topologies and in that way an application can be described either defining its
complete stack of elements or in terms of sub-topologies [AGSLW14].

When depicting the topology of an application in terms of different independent sub-
topologies, a number of alternatives is going to be available [AGSLW14]. Those options
of distributions are known as viable topologies and the selection of the one that fulfills the
existing requirements and needs is a task that could be very complex and that the developers
have to face and deal with.

1.1 Problem Statement

Considering that nowadays a big number of clouds offerings from different vendors is
available in the market and the fact that the components of an application could be deployed in
a number of different ways, the task of selecting the most appropriate services and distribution
topology is not a straightforward one. Additionally, it is highly probable that an application
has to meet certain requirements of performance and workload, increasing even more the
complexity of the work of the developer since those two factors need special attention and
they may constitute crucial aspects when choosing a distribution topology.

1

1 Introduction

The performance and workload requirements may change over time and they could imply
changes in the configuration of resources and distribution of the application components in
order to satisfy these new needs. Market changes demand that the personal behind systems
that support different processes react adequately, therefore there is a need for developing the
concepts and tooling support to enable and allow a rapid response and adaptation to those
changes. Furthermore, the task of designing a topology could be cumbersome and demand a
lot of effort and even worse, selecting one that does not completely fulfill the requirements or
does not use the assigned resources adequately might cause economic losses, among other
issues.

Several works have been conducted towards providing tools that facilitate the decision
making process of selecting cloud providers such as PatEvol [AJP13] and SMICloud [GVB11].
Nevertheless, those frameworks consider only characteristics of the offerings of some cloud
providers and do not take into account the functional and non-functional requirements,
nor the evolution of a system and the aspects that produced those changes and therefore
they do not offer the necessary support when it comes to design an appropriate application
topology.

1.2 Motivation Scenario and Research Challenges

Human-beings tend to recall past experiences solving problems in order to face new ones
[She03], one example of this could be when visiting a doctor. If one is not feeling good, a
description of the symptoms is given to the specialist, he recalls past cases of people with the
same or similar manifestations and using them he may be able to provide a diagnose and a
treatment. Following this conception the paradigm of Case-Based Reasoning with Similarity
Retrieval was conceived, remembering past problems and solutions to solve a new situation
that have similar characteristics [AP94].

When designing the distribution of an application, plenty of deployment alternatives and
cloud offerings are going to be available. An example of this is shown in Figure 1.1, where
the components of a two-tier application, being in this case the well-known MediaWiki Ap-
plication, can be distributed in a number of different ways. Finding the optimal distribution,
that meets all the existing requirements is a problem of a considerable complexity. The
employment of Case-Based Reasoning with Similarity Retrieval can enhance the process of
deciding among the different deployment alternatives, since past solutions that have been
used to distribute applications with similar characteristics could be adopted as guidelines
and in that way it would be possible to reduce the time and complexity that choosing an
optimal application distribution takes.

Capturing the conditions that trigger changes in the distribution of an application can be
significantly beneficial when performing assessment for comparable applications. If such
changes along with the modifications performed to a topology are recorded, they could be
used to assist developers and application architects when they are facing a problem with
similar characteristics. The employment of Case-Based Reasoning makes sense in this scenario,
the aspects that produce changes in the distribution topology constitute requirements that an

2

1.2 Motivation Scenario and Research Challenges

Figure 1.1: Some distribution topologies possibilities for the MediaWiki application
[GALS14]

application should meet, meanwhile the resulting distribution is the solution to that problem;
therefore, those past experiences can be used to help developers in the tasks related to selecting
a viable distribution topology considering not only characteristics of cloud providers, but
also the requirements that certain solution accomplishes.

In order to achieve the purpose mentioned above, this thesis focuses on developing means
to capture and explode the necessary knowledge to infer and provide potential and valid
application distribution alternatives to developers and assist them in the tasks of selecting
and refining one appropriate solution that meets all the existing requirements and needs.

Figure 1.2 depicts the approach followed in the development of this work, it consists of
creating a knowledge base of past problems and their solutions, accessible to the user through
some interface, that also allows him to input a set of requirements and that returns a list of
possible solutions from where he can select one, refine it if necessary and store it together with
the specified characteristics in order to make them available when solving future problems.

3

1 Introduction

Figure 1.2: Representation of the approach followed in this work

1.3 Outline

The remaining of the present document is structured as follows:

Chapter 2 - Fundamentals: Key concepts and their descriptions as well as required technolo-
gies for this work are presented.

Chapter 3 - Related Works: Similar approaches to this thesis, their implementation, findings
and issues are described in this chapter.

Chapter 4 - Concept and Specification: The methodology employed in the conception of this
work is introduced here. Descriptions of the case representation, data model, use cases as
well as the similarity model are described and an overview of the system is analyzed.

Chapter 5 - Design: Details of the architecture of the system are presented, descriptions of
the supported data model, RESTful operations and layout design are also provided.

Chapter 6 - Implementation: Well-detailed information of the considerations taken while
implementing the different elements of the system are presented in this chapter.

Chapter 7 - Validation and Evaluation: A definition of the methodology used to perform
the validation of the system and the results of the evaluation by means of a case study are
presented.

Chapter 8 - Outcome and Future Work: The present work is summarized, the obtained
results analyzed and a description of future and possible enhancements is provided.

4

1.4 List of Abbreviations

1.4 List of Abbreviations

API Application Programming Interface

AWS Amazon Web Services

CBR Case-Based Reasoning

CB Case Base

CSMIC Cloud Service Measurement Index Consortium

CRUD Create, Read, Update and Delete

CSAR Cloud Service Archive

EC2 Elastic Cloud Compute

DAO Data Access Objects

GENTL GENeralized Topology Language

GUI Graphical User Interface

HATEOAS Hypermedia as the Engine of Application State

HPC High Performance Computing)

HTTP Hyper Text Transfer Protocol

IaaS Infrastructure as a Service

I/O Input/Output

JSON JavaScript Object Notation

JSP Java Server Pages

KPI Key Performance Indicators

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

MVC Model-View Controller

MCDM Multi Criteria Decision Making

NIST National Institute of Standards and Technology

POJO Plain Old Java Object

PaaS Platform as a Service

QoS Quality of Service

REST Representational State Transfer Protocol

RPC Remote Procedural Call

5

1 Introduction

RAM Random Access Memory

RDBMS Relational Database Management System

ROI Return of Investment

S3 Simple Storage Service

SaaS Software as a Service

SBA Service Based Application

SLA Service Level Agreement

SMI Service Measurement Index

SQL Structured Query Language

UML Unified Modeling Language

TOSCA Topology and Orchestration Specification for Cloud Applications

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

6

2 Fundamentals

This chapter presents the theoretical fundamentals in which this work is sustained, it in-
troduces basic concepts as well as the employed technologies to develop the proposed
solution.

2.1 Cloud Computing

The terms Cloud Computing has been around for quite some time by now and they refer to
the applications delivered as services over the Internet and also to the hardware, additional
software and the infrastructure that allows the delivery of those services [AJP13, AFG+10].
[FLR+14] has stated that Cloud Computing is the logical evolution of Information Technology
(IT), considering the current trends of IT outsourcing and division of work. They have
compared the nature of its service model as the act of renting a car, where there is a number
of different companies offering this service and where the users pay as they use the car.
According to [GLZ+10], there are more than twenty different definitions of cloud computing
and each one of them seem to only focus on certain aspects instead of providing a full
panorama of the technology. For them, cloud computing is based on other existing research
areas such as High Performance Computing (HPC), utility and grid computing and the
existence of a number of certain attributes that the cloud model has is what differentiates it
from the other technologies.

The National Institute of Standards and Technology (NIST), defines Cloud Computing as "A
model for enabling convenient, on-demand network access to a shared pool of configurable computing
resources (e.g. networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction. This cloud model
is composed of five essential characteristics, three service models, and four deployment models."
[BGPCV12].

2.1.1 Characteristics

The NIST enunciates the following characteristics of the cloud model [BGPCV12]:

• On-demand self-service: This attribute makes reference to the fact that computing capa-
bilities should be provided as required on an automatic fashion, without the need of
interaction between a user and the different provided services [BGPCV12].

• Broad network access: The resources provided by a cloud computing system must be
available over a high-speed network [FLR+14] and also must guarantee access to a broad
variety of clients that may be located on different geographical positions. Furthermore,

7

2 Fundamentals

a cloud server provider could have data centers around the globe in order to provide
high-availability of its services [ZCB10].

• Resource pooling: For the sake of dealing with a pay-per-use schema, cloud providers
employ large pool of IT resources that is shared among all their customers [FLR+14]. The
resource pooling is performed following a multi-tenancy model, where the resources
do not belong exclusively to one client, this means that the computing capabilities are
assigned and reassigned according to demands of the customers [BGPCV12].

• Rapid elasticity: This quality references the fact that resources and computing capabilities
are able to scale in or out rapidly, according to the demands of the customer [BGPCV12].
This helps to exploit capabilities of the economies of scale, which in the context of cloud
computing means that providers offer cloud resources to a large number of clients in
order to reduce the cost for individual customers [FLR+14].

• Measured service: Another term for this attribute could be pay-per-use and here we could
compare cloud resources, such as processing capabilities or storage, to an utility service
such as electricity or gas. This means that they are always available and the users pay
accordingly to the usage, which should be transparent for both the customer and the
provider [GLZ+10].

Additionally to the attributes mentioned above, [GLZ+10] considered that a cloud computing
model must be also service oriented, loose coupled, strong fault tolerant, easy to use, TCP/IP
based, have high security and virtualization features.

2.1.2 Service Delivery Models

According to the NIST, the different delivery models of cloud computing are [BGPCV12]:

• Cloud Software as a Service (SaaS): Access to applications running in the cloud is provided
to different users, which share IT resources. The features of self-service, rapid elasticity
and pay-per-use are normally granted to them [FLR+14]. It should be pointed that in
this model the user does not manage the underlying infrastructure and they may have
just access to punctual configurations.

Some major vendors of SaaS include SalesForce, Google and SAP Business by design
[ZCB10].

• Cloud Paltform as a Service (PaaS): In this delivery model the provision of platform layer
resources, such as operating system support and development framework, is granted to
the customer [ZCB10]. On the other hand, the client does not manage the underlying
infrastructure including networks, servers, etc. Nevertheless, they may have access to
hosting environment configurations [BGPCV12].

Some examples of providers using the PaaS model are Microsoft Windows Azure,
Google App Engine and the Force Platform [ZCB10].

8

2.1 Cloud Computing

• Cloud Infrastructure as a Service (IaaS): In this delivery model the provisioning of on-
demand infrastructural resources and capabilities is granted, usually in the form of
virtual machines [ZCB10]. Customers are able to deploy and run their own software,
including the operating system and applications of some other nature. The capabilities
provided to them include processing, network, storage and other computing resources
[BGPCV12].

Examples of vendors of IaaS are Amazon EC2, GoGrid and Rackspace [FLR+14].

Figure 2.1 depicts the different cloud delivery models, the resources that the user is able to
manage in each layer and some examples of major providers.

Figure 2.1: Cloud computing delivery models including resources managed by the user
and examples of each one [ZCB10]

2.1.3 Deployment Models

According to the NIST definition, there are four major deployment models of cloud computing
which are [BGPCV12]:

• Private cloud: In a private cloud model the IT infrastructure is provisioned exclusively
to a single organization which may have different units [BGPCV12]. This is done with
the objective of providing high levels of privacy trust and security, ensuring also a good
and elastic use of a static pool of resources [FLR+14].

This approach is the one offering the highest degree of control for an organization,
nevertheless it may resemble the traditional server farms and may not offer the benefit
of cost saving as in other delivery models [ZCB10]. A company offering tools to
establish and manage private clouds is VMware, there are other several open source
software options which support this delivery model such as Eucalyptus, OpenNebula
and OpenStack [FLR+14].

9

2 Fundamentals

• Community cloud: In this model the use of the cloud infrastructure is provided to an
exclusive community of organizations that may share similar interests and trust each
other [BGPCV12]. Technologies that allow the creation of community clouds are the
same ones used to create private clouds, but in this case the users accessing it can belong
to different organizations [FLR+14].

• Public cloud: In this deployment model, IT resources and computing capabilities are
provided to a very large number of users, with the objective of allowing elastic use of
a static resource pool [FLR+14]. Public clouds offer several advantages such as the no
need of investment and maintenance of infrastructure as well as possible lower tariffs,
considering that the resource pool is shared with a big number of other users. On the
other hand, there may be some issues regarding security and control over data which
could be really important in specific scenarios [ZCB10].

Some examples of vendors offering their services in public cloud model are Amazon
EC2, Google App Engine and Microsoft Windows Azure [FLR+14].

• Hybrid cloud: A hybrid cloud is a combination of public, community and private clouds
and it tries to take advantage of the benefits of the mentioned types while addressing
their limitations [ZCB10]. In other words, the goal is to obtain a homogeneous hosting
environment with high levels of data control and security [FLR+14].

Big challenges that this approach presents are related to the specification of which
components should be public, which ones should be private and how should they com-
municate and interact [ZCB10], but once these challenges are overcome, a organization
will count with a highly reliable IT cloud infrastructure.

Figure 2.2: Levels of elasticity and pay-per-use of the different cloud deployment models
[FLR+14]

One aspect that should be considered is that each of the delivery models will present different
levels regarding elasticity and costs and depending on the business needs, these may be
influential factors when deciding which model should be adopted. Figure 2.2 shows the level
of elasticity and pay-per-use of the deployment models mentioned above.

10

2.2 Cloud Application Topologies

2.2 Cloud Application Topologies

Multi-tired distributed applications and applications running in the cloud are composed
of different elements interacting between them [Reu13]. An application topology can be
defined as a typed labeled graph whose nodes represent the components of the application
and the edges their different relations, dependences and interactions [Gan15]. [AGSLW14]
had provided the following formal definition for the term application topology:

An application topology is a labeled graph G = (NL, EL, s, t) where N is a set of nodes, E is a set of
edges, L a set of labels, and s, t the source and target functions s, t : EL → NL. The topology graph is
called typed, if the label set L contains only elements < name : type > (for nodes) and < type > (for
edges), in which case the graph is denoted by T.

This approach has been widely adopted for several topology description languages and
frameworks such as the Topology and Orchestration Specification for Cloud Applications
(TOSCA), Cloud Blueprints and CloudML. The MOCCA framework also employs this graph-
based topology approach in order to provide a concrete description of the architecture of an
application and its components [AGSLW14, Reu13].

Figure 2.3: A web shop application topology [AGSLW14]

An example of a cloud application topology can be observed in the Figure 2.3. The described
architecture corresponds to a web shop, its different tiers, components and relations between
them are depicted as well as the type of server where they are deployed. When denoting or
describing an application through a topology there may be a number of different possibilities,

11

2 Fundamentals

an application topology offers just a limited view of all the possible distributions across the
cloud solutions [AGSLW14].

Cloud applications have components that are specific to its functional requirements, but there
may be also components that can be reused or shared by similar applications. [AGSLW14]
in their work introduced the definition of type graph with inheritance, with the objective of
modeling and exploring the possibilities previously stated:

A type graph with inheritance TGI is a triple (TG, I, A) consisting of a type graph TG = (N, E, s, t)
(with a set of nodes N, a set of edges E and a target function s, t : E → N), an inheritance graph I
sharing the same set of nodes N, and a set NA ⊆ N, called abstract nodes. For each node nεI the
inheritance clan relation is defined by clan(n)I = {n′εN|∃pathn′ → nεI} where nεclan(n)I (i.e.
the path of the length 0 is included).

In that sense TGi is a graph whose nodes and edges are types and edges that indicate
inheritance or subtype relation type are allowed between nodes. The concept of abstract
nodes are used to call generic classes like e.g. operating system, nodes that have only
inheritance relations with other nodes. By employing the clan morphism relation clan(n)I

is possible to navigate through the inheritance-types edges in TGi graphs and considering
the application topology as a graph morphism over TGi, will produce a number of typed
topology graphs depending on the existence of sibling nodes in inheritance relations with
abstract nodes. Based on this, the concept of viable topology was built [AGSLW14]:

A typed topology T is viable with regards to a type graph with inheritance TGI , if and only of
all elements of T are labeled over the elements of TGi , for example there exists a graph morphism
m : TGI → T which uses the inheritance clan relation.

This definition leads to considering the web shop topology, depicted in Figure 2.3, as a viable
topology under the TGi graph of Figure 2.4 , this topology contains the same elements as
well as relations of Figure 2.3 and additionally it includes more types and subtypes that
were not included before and with that an alternative version could be generated. The
morphism m that converts TGI to T can follow a top-down schema, which means that the
viable topology T can be generated from a type graph with inheritance TGI . A bottom-up
schema is also possible, meaning that the graph TGI can be also abstracted from a particular
typed topology T. Following this reasonings, the definitions presented bellow were also
introduce by [AGSLW14]:

The type graph with inheritance TGI for a viable application topology T is called µ-topology. The
application-specific sub-graph of a µ-topology is denoted by α-topology and by γ-topology the non
application-specific and reusable sub-graph of a µ-topology.

In the Figure 2.3 an example of a µ-topology can be observed, the upper part until the dotted
line corresponds to the α-topology and the lower part is its γ-topology. It should be pointed
that this distinction depends exclusively of the functional nature of the application and the
border between them can change according to the application profile and future needs. It is
also possible to generate a set of viable topologies υ for a determined application, given the
α-topology and some generic γ-topology, that can constitute a standard or template topology

12

2.2 Cloud Application Topologies

Figure 2.4: An extended version µ-topology of the web shop application [AGSLW14]

in a determined context. The results could be assessed by a programmer through some
method in order to get the best possible distribution, given requirements of an application.

2.2.1 Enrichment of Cloud Application Topologies

Additional information such as privacy, costs, Quality of Service (QoS), among other non-
functional characteristics, are often attached to the application topology. This additional
information is called topology annotations and they are useful to find out information regarding
interoperability, management, discoverability, billing, metering, etc. [Reu13, Gan15]. As
described by [DKVR09] , annotations are an effective way to provide a higher level of detail
of the microscopic structure of the elements of the graph and their relations and therefore, it
is possible to obtain an increase of the description accuracy at the macroscopic level.

According to [Reu13], depending on the usage given to the topology annotations, they can be
classified as follows:

• Discovery: The annotations used to indicate or describe offerings or requirements of
the topology and its elements are known as discovery annotations. Examples of these
descriptions can be desired QoS or functional interface requirements [Reu13].

13

2 Fundamentals

• Provision and Management: When an annotation provides information and descriptions
regarding the resources needed by an application, the steps that have to be completed
to deploy or to execute administration tasks for example, are known as provision and
management annotations. They are mostly used to automate the tasks mentioned above
[Reu13].

• Design support: As its name suggests, this kind of annotations provide support when
deciding about the design of a new application topology or the modification of an
existing one to adapt it to new environment conditions. They are also very useful in the
work of identifying errors or an unfavorable design of a topology [Reu13].

Additionally, if the level of automation in the processing of the information captured in
annotations is considered, another classification is possible. If they are entirely processed by
machines, they are called automatic processing annotations. In the case that it is intended
that the annotations are processed by humans, the type will be human processing and if there
is a combination of both, which means that the annotations are processed by machines and
also with some human input, then they belong to the group of hybrid processing [Reu13].

2.2.2 Application Topology Languages and Frameworks

Application topology languages are used to represent and describe the elements and relations
of the components of a topology, most of them in a graphical fashion. It is also possible to
include in the representations the non-functional properties, specified by the annotations
[Gan15] some examples include Blueprints [PvdH11], TOSCA [top13] and GENTL [ARSL14].
Furthermore, there also frameworks that support the automatic deployment of composite
applications in the cloud such as Cafe and MOCCA [Reu13]. Descriptions of Cloud Blueprints
and TOSCA are provided below:

Cloud Blueprints

Cloud Blueprints is an approach that aims to provide flexibility to service-based application
(SBA) developers when it comes to customization, since most SaaS, PaaS and IaaS offerings
are monolithic solutions that practically leave no options for syndicating the services from
multiple Saas, Pass, or IaaS vendors and cases where this is the way to go are very likely to
appear. Basically a Blueprint is an abstract description of a cloud offering that may cross the
different cloud computing levels (SaaS, PaaS, IaaS) [NLPVDH12].

The exposed above is achieved by employing a so-called Blueprint Template, that allows
to specify and formalize an architecture that combines offerings from different vendors
[Reu13].

According to [NLPVDH12], a blueprint has the following structure, depicted also in the
Figure 2.5:

14

2.2 Cloud Application Topologies

• Basic properties: They are descriptions that allow to identify the blueprint such as an
unique ID, version, etc.

• Offering: Description of the different cloud offerings, they may include QoS, elasticity
characteristics, etc.

• Implementation Artifacts: The necessary elements to implement the offerings such as
binary and configuration files.

• Resource requirements: This corresponds basically to the required resources to correctly
deploy the implementation artifacts.

• Virtual architecture: Description of the architecture to be implemented by the devel-
opers. This is defined by the interactions and dependences of the different offerings,
implementation artifacts and resources.

• Policy: Policies essentially describe all the rules and constraints that must be followed
by all the elements of the blueprint.

Figure 2.5: Structure of a Blueprint according to [NLPVDH12]

As a result a graph where the nodes are the different parts of the blueprint and the edges
correspond to the links and dependences between them is obtained, this is the application
topology and it is a representation of the virtual architecture. Reusability is an really important
aspect for the blueprint approach, that is why the obtained topologies can be deployed to a
repository and could be employed by other developers as base of the architecture of similar
applications [Reu13].

Topology and Orchestration Specification for Cloud Applications (TOSCA)

TOSCA is a standard developed by OASIS, its core specification provides a language that
allows to describe service components and their relationships using a so-called Service Topology.
It also provides means for describing management procedures that create or modify services
using orchestration processes. Topologies and orchestration descriptions can be combined
in a service template that describes the elements that are necessary to keep, in order to
perform deployments in different environments [top13]. TOSCA also grants capabilities to

15

2 Fundamentals

automatically deploy composite application, manage them and performing tasks such as
scaling and backing up [BBKL14a].

A core concept of TOSCA is the Topology Template, also known as the topology model of a
service, it basically defines its structure by describing its components and relationships and
also well-defined declarations of its management capabilities. Another important concept of
TOSCA are the Management Plans which provides higher-level management tasks that are
used to create and terminate the service and administrate it during the whole system lifetime
[BBKL14a, top13].

Figure 2.6 provides a TOSCA-based description of an hypothetical application and how the
TOSCA concepts relate.

Figure 2.6: The TOSCA concepts and their relations [NLPVDH12]

As previously mentioned, TOSCA employs a service template where the information of the
topology of a service as well as the orchestration of its processes are combined in order to
provide the required definitions for interoperable deployment of cloud services [Reu13]. The
different components of the service template are depicted in the Figure 2.7 and are described
bellow [top13]:

• Node type: It defines the properties of a component of a service and the operations that
exists to manipulate such a component, it is possible to reuse the node type definitions
too. One example of a property defined on the node types could be the IP address of an
instance of this type.

• Node template: This component references a node type and adds constraints and
restrictions to it, for example the number of times that a component can occur. Following
the example of the previous point, in this case the node template can specify a range of
IP addresses for the instances.

• Relationship type: It specifies semantics and properties of a relationship.

16

2.3 Case-Based Reasoning

• Relationship template: This component specifies how the relationships among nodes in a
topology occur, this means that here the elements that certain relationship connects, its
direction and constraints are defined.

• Topology template: A graph is formed when considering elements of the service as nodes
and their relationships as edges. This graph is represented by the topology template as
a set of nodes and relationship templates.

• Plans: They are defined as process models and for the sake of their specification an
appropriate language, like BPEL or BPMN, should be used . Plans basically describe
the management aspects of the service instances and they provide guidelines when
creating and terminating them.

Figure 2.7: Components of a TOSCA Service Template [top13]

TOSCA also makes use of Policy Types and Policy Templates to describe and specify non-
functional behaviors and QoS of a node type and a node template respectively [Reu13].

The services and cloud applications in TOSCA are packaged in a Cloud Service Archive
(CSAR) file, which contains a hierarchical list of folders. Inside the folders several files are
located and they specify and implement the different templates, nodes and relationships of
the service [top13].

2.3 Case-Based Reasoning

Case-Based Reasoning (CBR) is a problem solving paradigm first formalized in the 80s, when
it emerged as one alternative to solve problems of medical decision-making systems. This

17

2 Fundamentals

approach basically uses the knowledge acquired from previous experiences in order to try
to solve new problems with similar characteristics. This reasoning comes from the fact that
human-beings almost all the time solve problems by remembering past experiences (cases)
and adapting them to the new conditions they are facing [RAS+14]. In other words CBR
states that similar problems are best solved with similar solutions [She03].

As previously exposed, the main idea of the CBR paradigm is learning from the experience of
previous similar experiences. According to [She03], the most important point of CBR lies in
the term similar which means that not necessarily a fully identical problem had to be solved
in the past, but one with some characteristics in common. Another important aspect of CBR
is that it is an incremental-sustained learning approach, this means that new experiences
obtained when solving a problem are retained and they can be used immediately when facing
new situations [AP94].

According to [She03], "CBR is a technique for managing and using knowledge that can be organized
as discrete abstractions of events or entities that are limited in time and space", those abstractions
are the so-called cases. In the field of software architecture, cases are denoted by vectors of
features that correspond for example to number of interfaces, size, development method,
etc. Systems that solve problems following this approach normally make use of a repository
where all the cases are stored and when a new problem arises, the cases and their solutions
are retrieved, some analysis are conducted and finally one or several alternatives to solve the
problem are proposed.

Figure 2.8: CBR problem-solving approach [Sta03]

Figure 2.8 shows in a nutshell how the problem-solving approach of CBR works. In the
coming chapters, details about how the CBR paradigm is employed to find solutions from
past experiences are provided.

CBR offers different advantages in comparison with other knowledge management techniques
[She03]:

1. Many problems related to knowledge codification and elicitation are avoided.

2. Failed cases are also handled, this allows to identify high risk situations.

18

2.3 Case-Based Reasoning

3. Helps to deal with problems that are part of poorly understood domains because the
solutions obtained by CBR are based on past experiences, which is not followed by
other hypothesized models.

4. Supports collaboration, in the sense that users using this method to deal with a situation
are willing to accept solutions from others and they may collaborate with their found
solution as well.

2.3.1 Case Structure

Traditionally a case is only constituted of a problem and a solution part. Nevertheless, a
broader structure can also be employed in order to use the cases in a more extensive sense.
Considering this, two components of cases can be identified [Sta03]:

• Characterization: This part has the necessary information that will help to determinate
if a case can or cannot be reused in a certain situation.

• Lesson: Basically this part consists only of additional information that might be useful
to reuse. This part can also be empty, meaning that only the characterization part is
enough to reuse a case.

Making an analogy to the traditional approach of CBR, the characterization part is the problem
while the lesson part corresponds to the solution. Furthermore, there are more concepts and
formalisms used to describe the components stated above. [Sta03] proposed the use of an
Attribute-Value based representation of cases, whose basic elements are the attributes and are
defined as follows:

"An attribute A is a pair (Aname, Arange) where Aname is an unique label out some name space and
Arange is the set of valid values that can be assigned to the attribute, also called the value range. Further,
anameεArange ∪ {unde f ined} denotes the current value of a given attribute A identified by the label
Aname".

If there exist attribute values that are unknown or irrelevant, it is possible to use the special
value of unde f ined. The value range can contain a collection of elements of a basic type,
for example numeric integer, numeric real, symbolic, dates and times. It is also possible to
assign a valid rage of values per each attribute, by following one of the undermentioned
alternatives:

• Specifying only a basic value type, for example by defining an attribute type as integer,
its range of valid values is be taken.

• Specifying intervals for numeric types for example integer values of the interval [0,100].

• Explicitly defining or enumerating the allowed values, in the case of symbolic types an
enumeration of colors can be use red, blue, green.

19

2 Fundamentals

It is possible now to formally define case characterization and lesson part [Sta03]:

"A case characterization model is a finite, ordered list of attributes D = (A1, A2, ..., An) with n > 0.
D̂ denotes the space of case characterization models"

"A lesson model is a finite, ordered list of attributes L = (A1, A2, ..., An) with n ≥ 0. L̂ denotes the
space of lesson models"

The concepts stated above allow to introduce a formal description of a case using the attribute-
value representation [Sta03]:

"A case model is a pair C = (D, L) = ((A1, A2, ..., An), (An+1, An+2, ..., Am)ε D̂ x L̂ with m ≥ n.
Ĉ is used to denote the space of case models."

"A case according to a given case model C ε Ĉ is a pair c = (d, l) where d = (a1, a2, ..., an) with n > 0
and l = (an+1, an+2, ...am) with m ≥ n are vectors of attribute values and aiεAirange ∪ {unde f ined}
is the value of the attribute Ai. Further, the vector d is called the case characterization and the vector l
is called the lesson of c"

"The set of all valid cases according to a given case model C ε Ĉ is the case space Cc of C. Moreover, the
symbol DD denotes the case characterization space according to a case characterization model DεD̂
and the symbol LL denotes the lesson space according to a lesson model LεL̂"

As example of a case model could be a class in the field of object-oriented programming,
being an instance of that class a single case. Since a CBR system has a number of cases, it is
necessary to define the concept of Case Base too [Sta03]:

"A case base CB for a given case model C is a finite set of cases {c1, c2, ..., cm} with ci ε CC."

There is also a special kind of cases called queries:

"Given a case model C ε Ĉ, a query is a special case q = (d, l) ε CC with an empty lesson part l"

Figure 2.9: An example of an Attribute-Value case representation [Sta03]

20

2.3 Case-Based Reasoning

An illustration of the definitions introduced in this section are presented in the Figure 2.9.
There, the case base is constituted of different kinds of computers, they are described on terms
of a set attributes and values such as CPU-type, CD-rive, etc. and that correspond to the char-
acterization model. The lessons are the IDs of the products that meet certain technical properties.
When a user inputs into the system the desired set the properties that a computer he is looking
for should meet, he is giving values to the attributes that form the characterization model, the
CBR system processes that information and looks for similar cases in the knowledge base and
returns the lesson of the products that meet the depicted characteristics.

2.3.2 CBR Cycle

[AP94] has identified four processes that constitute the CBR technique, they are also known
as the R4 model:

• Retrieve similar cases.

• Reuse the information and previous knowledge used to solve that problem.

• Revise, check and adapt the proposed solution to fit the new problem.

• Retain the problem and the new found solution.

Figure 2.10 illustrates the different processes of the CBR approach and their interactions.
A new problem has to be codified into a vector of features or characteristics as first step,
those features are the key to retrieve and find the similar cases and their solutions. Once an
appropriate solution for the problem is found, it can be reused and revised to adapt it to the
current situation. An important process is to retain the new solved case in order to enrich the
knowledge base and make it available in the future.

A real life example of application of CBR, proposed by [She03], is the prediction of the
number of resources to allocate in the development of a software project; experience in the
administration of previous projects is the key to predict the future effort in this new situation.
A case is a software component and as example of features we could have the programming
language, time frame to develop it, number of interfaces, among others. The features can be
of different types such as categorical, discrete or continuous.

The choice of features is arbitrary and the election of the best ones that characterize the
problems depends on the problem context and domain. After a new case (target case) arises
and it has been described in terms of a feature vector, similar cases from the knowledge base
have to be retrieved and also the known effort values which will serve as base to predict
the new value for the target case. The value predicted may be modified and adapted by an
expert or by the application of rules. Once the process has been completed and the true-effort
value is found, it must be added to the knowledge base so it can grow and adapt to new
tendencies.

21

2 Fundamentals

Figure 2.10: The CBR process cycle according to [She03].

2.3.3 Task Hierarchy

The R4 model previously described provides a general overview of the different processes
that CBR follows. Furthermore, those processes can be decomposed in a set of different tasks
and activities which describe the detailed mechanism that help to achieve the desired goals.

This task-oriented model follows the principle that a system description can be done from
three different perspectives: Tasks, methods and domain knowledge model. The definition
and objectives of the different tasks are determined by the system goals and tasks are executed
by using or applying a set of methods. At the same time, the employed methods need
information about the general domain of the problem as well as information of the current
context [She03].

Based on the reasoning stated above, a division of tasks of the four processes of CBR was
conceived. Figure 2.11 shows the decomposition of the CBR approach in tasks. the words
in bold indicate the name of a task which is split in more low-level tasks that need to be
completed in order to complete the top-level task. Dotted lines denote a relation between a
task and a method, the methods specify an algorithm that access knowledge and controls

22

2.4 Similarity Analysis for Case-Based Reasoning

Figure 2.11: Task decomposition of the processes of CBR [AP94]

the execution of a task. At the same time, the methods depicted in the picture could contain
further functions or sub-methods necessary to complete the one in the higher level. It should
be pointed that a task may be solved just by one method or by a combination of them, not
necessarily all of them need to be completed in an specific order, this mostly depends on the
domain of the problem. Additionally, no control tasks structures are depicted since the actual
control must be specified and be part of the solving problem method [AP94].

2.4 Similarity Analysis for Case-Based Reasoning

Case-based reasoning theory makes a high frequent use of the word similar and this is really a
key term in this topic. Given an input case, it is expected that the most similar cases are the
ones retrieved, therefore the key question at this time is how to determinate them. In order to
achieve that, it is necessary to count with a metric that indicates the degree of similarity and
based on that the retrieval of the similar cases should performed. This metric is known as
Similarity Measure and according to [Sta03] it could be defined as follows:

23

2 Fundamentals

"A similarity measure is a function SIM = DxD −→ [0, 1]"

This means that any similarity measure must be a function whose range of results are between
0 and 1, where 0 indicates that two cases are completely different whereas 1 their equality.
Figure 2.12 describes the process of retrieving cases using similarity measures. Given a query
q, a case base CB and a similarity measure SIM, similarity values between q and the cases
contained in CB have to be calculated in order to identify a list of cases retrieved by a retrieval
mechanism and ordered by the value of their similarity measures. The number retrieved
cases will depend on the maximal desired number of cases and a value specifying a similarity
threshold that defines the minimum similarity that a case c must meet in order to be part of
the retrieved list of cases.

Figure 2.12: A schema of similarity-based retrieval according to [Sta03]

According to the research work conducted by [LZM98], there are two major case retrieval
approaches:

• Distance-based or computational methods: Which employs some concept to determinate
the distance between an input case and a number of cases and the most similar one is
determined through the evaluation of such a distance.

• Representational approach: Also known as indexing and where the similar case is coded
into the structure of the knowledge base itself and the cases are connected by indexing
structures, the indexing structures can be traversed to look for the similar case.

Several studies have been conducted in this area and therefore there is a wide range of different
approaches, they can belong to one of the groups stated above or even be a combination of
them [LZM98, Sta03].

24

2.4 Similarity Analysis for Case-Based Reasoning

2.4.1 Traditional Similarity Measures

One of the most widely used similarity measures by CBR systems is the inverse of weighted
normalized Euclidian distance or the equivalent Hamming distance. The inverse of the Euclidian
distance is given by the expression 2.1 while the the Hamming distance is given by the
Equation 2.2, where a weight wi is normalized since it denotes the importance of the ith
element, i = 1, 2, ..., n being n the total number of attributes in the cases [MB02].

SIM(X, Y) = 1− DIST(X, Y) = 1−
√

Σi w2
i dist2(xi, yi) (2.1)

SIM(X, Y) = 1− DIST(X, Y) = 1− Σi wi dist(xi, yi) (2.2)

The normalized dist(xi, yi) is represented as in the Equation 2.3.

dist(xi, yi) =
|xi − yi|

|maxi −mini|
(2.3)

The values of maxi and mini correspond to the maximum and minimum values of the ith
attribute. From the same equation can be observed that if xi = yi, dist(xi, yi) = 0; otherwise
dist(xi, yi) = 1. From the Equations 2.1 and 2.2 when DIST = 0, the value of the similarity
SIM reaches its maximum possible value that is 1 and that means that two cases are identical.
On the other hand if DIST = 1, the value of the similarity is its minimum 0, indicating that
two cases are completely different.

According to [She03], other widely used approach based on nearest neighbor principles is the
one described by the Equation 2.4. As in the previous method, the features must first be
standardized with the objective of not considering the influence of the units chosen.

SIM(C1, C2, P) =
1√

ΣjεP Feature_dissimilarity(Cj, C2j)
(2.4)

Where P is the set of n features, C1 and C2 are cases and the Feature_dissimilarity, which is a
functions that expresses how different the cases are and can take the following values:

Feature_dissimilarity(C1j, C2j) =


(C1j − C2j)

2 if the features are numeric

0 if the features are categorical and C1j = C2j

1 if the features are categorical and C1j 6= C2j

Another frequently used similarity measure is based on the ratio mode and was proposed by
Tversky in 1977 [LZM98]. It is presented in the Equation 2.5.

25

2 Fundamentals

SIM(X, Y) =
α × common

α × common + β × di f f erent
(2.5)

Where common and di f f erent denote the number of attributes whose values are classified
as similar or dissimilar respectively, between the old case and the input case. If the value of
similarity between them is above some threshold, then they are classified as similar, otherwise
they are dissimilar. α, β represent the weights for common and di f f erent respectively.

In 1993, Sebag and Schoennauer proposed a similarity measure based on rules. Consider Ω as
a problem domain, given two cases X and Y in Ω, the similarity between them SIM(X, Y)
is considered to be the number of rules that are fired by both or by none of X and Y. Each
rule Ri learned from the case base is assigned a weight w(Ri) depending upon the number of
training examples it covers, therefore the similarity is defined as in the Equation 2.6.

∀ X, Y ε Ω SIM(X, Y) = Σi w(Ri) (2.6)

There are several situations where case matching is not a symmetrical operation. Taking that
in account Weber proposed the use of the contrast model, where the similarity between a new
case X and a target case Y is given by the Equation 2.7 [LZM98].

SIM(X, Y) = θ f (X ∩Y)− α f (X−Y)− β f (Y− X) (2.7)

The intersection (X ∩Y) denotes the set of attributes that are common to X, Y; (X−Y) and
(Y − X) are complement sets that describe the attributes observed only in the target case
and in the base case respectively, while θ, α, β represent weighting parameters that assign a
different degree of importance to each term. f corresponds to an operation or algorithm that
computes the matching score of the relate sets of attributes.

According to [She03], there are many other similarity measure techniques and they include
the following:

• Manually guided induction: An expert identifies key features in a manual fashion.

• Template retrieval: In this case the user inputs values or ranges for a subset of a problem
description and all the cases that match are retrieved.

• Specificity preference: Cases that match exactly the desired features have more preference
than those that do not.

• Frequency preference: Cases that have been retrieved the most in the past are given a
higher preference.

• Object-oriented similarity: Since there may be situations where comparison between cases
with different structures need to be performed, this approach proposes to represent the
cases as collection of objects where each object has a set of feature and value pairs and
organized in a hierarchy.

26

2.4 Similarity Analysis for Case-Based Reasoning

• Fuzzy similarity: This method uses concepts like at-least-as-similar and just-noticeable-
difference.

The measures mentioned above present different disadvantages. For example symbolical
or categorical features might be problematic, even though some of them attempt through
different methods to solve those deficiencies, they tend to follow a Boolean approach. This
means that the features either match or not, without considering middle points. Another
contra point is the fact that they do not take into account information that can be derived from
the structure of the data and this can provoke that higher order relationships are not fully
considered. In the case of object oriented similarity, that helps in situations where the cases
present different structures, it is necessary to take in account intra- and inter-object similarity.
Intra-object similarity is based on common properties, nevertheless the differences between
two cases may reside in their class structure rather than in their shared features, therefore it is
necessary to take into account the inter-object similarity. Other difficulties of these metrics are
related to validation and the fact that in general their approaches are more complex and not
so intuitive as an Euclidean distance calculation [She03].

2.4.2 The Local-Global Principle

The representation of a case could be very complex. For example, a problem can be described
in terms of attributes whose values can have different types and because of that the similarity
measures presented above may not be enough to obtain good results, since they can be
used when a set of numeric characteristics is available. An approach that allows to tackle the
previously described issue is known as the Local-Global Principle, which basically states that the
computation of the similarity can be decomposed on a local and a global part [GG15, Sta03].

The local part comprises the calculation of local similarities between single attribute values
and the global part consists on the aggregation of all those individual local similarity values,
in order which is performed to obtain an unique global similarity measure which helps in the
task of determining whether two cases are similar or not. This decomposition simplifies the
problem of having attribute values of different types, since a particular similarity measure
can be used for a specific data type and using that is also possible to define well-structured
measures for very complex case representations [Sta03].

Local Similarity Measures

Local similarity measures are used to take advantage of very low and detailed data that
describes a case, they allow to take into consideration the influence of every single attribute
when determining the similarity of two cases. In CBR systems, local similarity measures
are defined according to the data type of an attribute [Sta03]. A formal definition of local
similarity measure is presented below and it corresponds to a general one, in practice the
representation of a local similarity measure depends on the basic value type of the attribute
[Sta03].

27

2 Fundamentals

"A local similarity measure for an attribute A is a function simA : Arange × Arange −→ [0, 1], where
Arange is the value range of A."

Local Similarity Measures for Discrete Value Types

Is a common situation that CBR systems have to deal with attributes whose values are in
categorical and discrete ranges. According to [Sta03], the only possible way to represent local
similarity for that kind of attributes is through the use of a lookup table, better known as
Similarity Table.

"Let A be a symbolic attribute with the range Arange = (v1, v2, ..., vn). A n× n-matrix with entries
si,jε[0, 1] representing the similarity between the query value q = vi and the case value c = vj is called
a similarity table for Arange"

A similarity table is a very powerful representation for symbolic data types, since is possible
to assign values for every single combination of attribute values and in this way is also
possible to increase the knowledge quality of the CBR System. On the other hand, having
similarity values per each single combination may increase the necessary effort to maintain
consistency among all the entries of the table. This approach can be also used for discrete
value types where the value range is defined by an explicit enumeration of a finite set of
values.

Figure 2.13 shows an example of a similarity table defined for different types of cases of
personal computers following some criteria, the main diagonal of the matrix has only values
of 1 since they express the similarity of two cases that are equal.

Figure 2.13: An example of a similarity table [Sta03]

Local Similarity Measures for Numeric Value Types

The similarity table approach is not suitable in this case since the values that the attributes
can take is infinite, the approach followed in this situation is based on the difference of the
two values being compared and is known as Difference-Based Similarity Function, a formal
definition is presented below [Sta03].

"Let A be a numeric attribute with the corresponding value range Arange. Under a difference-based
similarity function we understand a function simA : R −→ [0, 1] that computes a similarity value
simA(δ(q, c)) = s based on some difference function δ : Arange × Arange −→ R"

Some of those difference functions include the so called linear difference δ(q, c) = c− q and
the logarithmic difference:

28

2.4 Similarity Analysis for Case-Based Reasoning

δ(X, Y) =


ln(X)− ln(Y) for X, Y ε R+

−ln(−X) + ln(−Y) for X, Y ε R−

unde f ined else

The difference-based similarity functions follow the assumption that a decrease of the similar-
ity measure implies an increase of the difference between two values, therefore the correct
selection and application of them is crucial to obtain high quality results. Some functions
typically used by CBR systems are threshold, linear, exponential and sigmoid and their
models are presented below [Sta03]:

Threshold function:

sim(δ(q, c)) =

{
1 δ(q, c) < Θ

0 δ(q, c) ≥ Θ

Linear function:

sim(δ(q, c)) =


1 δ(q, c) < min
max− δ(q, c)
max−min

min ≥ δ(q, c) ≥ max

0 δ(q, c) > max

Exponential function:

sim(δ(q, c)) = eδ(q,c).α

Sigmoid function:

sim(δ(q, c)) =
1

e
δ(q, c)− θ

α + 1

This approach is a very convenient way to model similarity of numerical values and it fits
in most all domains. However, depending on the problem and specific needs, it may be
necessary to define own functions in order to fulfill the distinct conditions of a problem
domain. This is not an easy task but it might be necessary to do it if a high quality of results
is the objective and the typical difference functions cannot satisfy this demand [Sta03].

29

2 Fundamentals

Global Similarity Measures

Global similarity measures are used to aggregate all the previously computed local similarity
values and obtain an unique value that depicts the similarity between two cases. A formal
definition is presented below [Sta03].

Let D = (A1, A2, ..., An) be a characterization model, ~w be a weight vector and simi be a local
similarity measure for the attribute Ai. A global similarity measure for D is a function Sim :
DD ×DD −→ [0, 1], of the following form:

Sim(q, c) = π(sim1(q.a1, c.a1), ..., simn(q.an, c.aa), ~w)

Where π : [0, 1]2n −→ [0, 1] is called aggregation function that must fulfill the following
properties:

• ∀~w : π(0, ..., 0, ~w) = 0

• π is increasing monotonously in the arguments representing local similarity values.

The aggregation functions can be very complex, like the ones presented in Section 2.4.1, or
very simple as the ones presented below [Sta03], once again the selection of the function
depends mostly on the problem domain.

Weighted average aggregation:

π(sim1, ..., simn, ~w) =
n

∑
i=1

wi.simi

Mikownski aggregation:

π(sim1, ..., simn, ~w) = (
n

∑
i=1

wi.simp
i)

1
p

Maximum aggregation:

π(sim1, ..., simn, ~w) = maxn
i=1(wi.simi)

Minimum aggregation:

π(sim1, ..., simn, ~w) = minn
i=1(wi.simi)

30

2.4 Similarity Analysis for Case-Based Reasoning

2.4.3 Enhancement of Similarity Measures

There are some techniques that can be used in order to improve the results obtained by
applying any of the similarity measure models previously presented [LZM98].

Case Typicality

When collecting cases to form a case base is usual that some cases contain more information
that others and according to [LZM98], cases with more knowledge are more typical cases in
the case space. The Equation 2.8 proposed by Agre considers this case typicality:

DIST(X, Y) = Wy × Dist(X, Y) (2.8)

In the equation presented above, DIST(X, Y) corresponds to the distance between a new
case X and an old case Y without taking into account the case typicality; Wy represents the
weight of the old case Y and that weight is calculated as the reciprocal of the typicality, which
indicates that if more than one case is found, the one preferred is the more typical. Normally
the case typicality is calculated by an expert or by obtaining the average distance between
some test case and selected typical cases [LZM98].

Transforming Attributes

Another possible situation when comparing attributes of a case is that its measures come
expressed in different scales, this requires the application of transformation in order to have
all the problems expressed in equivalent units and later apply CBR. To tackle this issue,
Wess and Globing proposed the transformation of a simple symbolic learning algorithm into
an equivalent case-based variant. Symbolic learning approaches denote concepts learned
explicitly and case-based approaches describe concepts by a pair (CB, SIM), being CB the
case base and SIM a measure of similarity. An important aspect of this approach is to identify
relevant and irrelevant attributes. An attribute is classified as relevant if it is part of the target
concept X = (x1, ..., xn). The value of a function fi is f i(yi) = 1 if xi = yi and fi(yi) = 0
otherwise [LZM98].

The functions fi are combined in one f : U −→ {0, 1}n, f [(x1, ..., xn)] = [f1(x1), ..., fn(xn)].
The distance between two cases X and Y is given by a metric called city-block and is defined
as in 2.9.

DIST(x, Y) = | fi(x1)− f1(y1)|+ ... + | fn(xn)− fn(yn)| (2.9)

The functions f i are learned by an algorithm through selected positive and negative cases.
When the concepts are learned, both the function fi and the CB can be used for classification.

31

2 Fundamentals

Missing Attributes

Is highly probable that a new case or a stored case will contain missing or null attributes,
therefore there are methods that help handling such situations in order to not affect the
similarity measurement. The calculation method presented in 2.10 was proposed by Agre
and it helps to measure the distance of an attribute with missing values [LZM98]:

dist2(xi, yi) =
1
Li
× (1− 1

Li
) (2.10)

Li represents the number of possible values of the ith attribute. Ricci and Avesani proposed
the model presented in 2.11 to compute the similarity of two cases X and Y for a normalized
attribute i with missing values.

SIM(xi, yi) = 0.5; i f xi or yi is unknown (2.11)

Other approach proposed by Surna and Vanhoof stated that the distance of both missing
values is dist(xi, yi) = 0 and in the case that one is known and the other is not, the distance
must be 1. It should be pointed that deciding the value of similarity for two cases with
missing attributes also depends on the problem domain and could be defined by experts in
order to obtain the most coherent results.

2.4.4 Similarity and Utility Functions

As introduced in Section 2.3, CBR basically consists of retrieving past cases and solutions
and use that knowledge in order to solve a new problem with similar characteristics. A key
question arises, how useful are the retrieved cases in the task of providing alternatives of solution to a
problem? and without doubts this is something critical because if at the end of the day the
retrieved solutions are not helpful or are inaccurate, then there is not point in using a CBR
system . This leads to introduce the concept of utility [Sta03, BRS+01].

"A function u : DD ×CC −→ R is called utility function on the case space CC"

In essence, an utility function assigns a real value to a case C and a characterization D, which
represents the utility of c with respect to d. In other words is a measure that indicates how
useful is a case stored in the case base to solve a new case or problem. The value of a utility
function depends on the particular situation and it is also possible that a number of different
utility function exists, this conducts to define the concept of preference relation induced by utility
function.

"Given a characterization d, a utility function u(x) induces a preference relation �u
d m on the case

space CC by ci �u
d cj if and only if u(d, ci) ≥ u(d, cj)."

32

2.5 Representational State Transfer (REST)

The utility of the cases as well as the underlying utility function could be affected by several
factors [HZ11, Sta03]:

• The domain of the application and current situation.

• The knowledge contained in the CBR system.

• Preference of users.

The points mentioned above are only a few of the many aspects that could affect to utility
functions, moreover the main problem is that they are partially known and cannot be calcu-
lated beforehand. That is why similarity measures are hugely important for CBR, they allow
to approximate the utility of a case and therefore the performance and effectiveness of a CBR
system relies almost entirely on the quality of the similarity measures used to retrieve cases.
A case base can contain really useful cases but if they are not retrieved, because the similarity
measures do not approximate the utility values adequately, then the results provided by such
a system will be simply insufficient and unreliable [Sta03].

2.5 Representational State Transfer (REST)

REST is the abstract architecture of the web, is an abstraction of the architectural elements
within a distributed hypermedia system [Fie00]. The core idea behind REST is to apply
the web architectural style to more sophisticated interactions without caring on details
of component implementation and protocol syntax, but focusing on the roles that each
component of a system plays and the constraints between their interactions [RR08].

Among the characteristics of the web architecture are [RR08]:

• Interaction with Uniform Resource Identifier (URI) addressable resources.

• A determined number of generic interactions.

• It uses an standardized data format.

• Stateless interactions.

• Context is fully understandable from messages.

The key elements of REST are [RR08]:

• The resources, which are identified by an URI.

• The representations of those resources, which can be of different types such as HTML,
XML, CSS, etc.

• The interactions, that must be held by protocols that understand URIs and their repre-
sentations. Two examples are the HTTP and FTP protocols.

33

2 Fundamentals

Web services that follows all the principles of the REST architectural style are called RESTful
and the considerations that must be taken into account when developing them are presented
in the following section.

2.5.1 RESTful Web Services

Integrating application components require that those component employ communication
mechanism, one of them is the use of an Application Program Interface (API). The API
exposes the set of operations that a client could use in order to interact with a service and
those interactions can be designed by following the principles of the REST architectural style.
A web API that has been designed following the REST style, is called a REST API [RR08].

As previously mentioned, one of the key components of a REST API are the resources and in
order to access them a URI must be available meanwhile the actions performed over those
resources are made through some protocol like HTTP. In order to correctly design the URIs,
some rules need to be followed and are presented as follows [Mas11]:

• A slash separator(/) must be used to indicate hierarchical relationships and they cannot
be used to name resources.

• Lowercase letters should be preferred when naming URI paths.

• File extensions should not be included in URIs. Methods used by HTTP to specify
formats should be employed.

• When describing resources, a singular noun should be used for name of documents, a
plural noun for collection names and for store names.

• Create, retrieve, update and delete (CRUD) function names should be avoided in URIs.

• The query string component of a URI may be used to filter collections or stores.

• GET and POST methods should not be used to tunnel other methods.

• GET must be used to retrieve a resource, PUT must be used to insert and update a
resource, POST only to create a resource and DELETE to remove a resource.

• The HTTP location response header must indicate the URI of a newly created resource.

• Custom HTTP headers must not be used to change the behavior of standard HTTP
methods.

34

3 Related Works

This chapter presents previous approaches and proposal of solutions for the task of capturing
and using knowledge of application topology architectures. A total of five works are dis-
cussed, from each of them the purposes, methodologies and obtained results are presented.
Among the analyzed frameworks are PatEvol [AJP13] which employs concepts of software
repository mining and software evolution, SMICloud [GVB11] that based on a set of user
specifications returns a list of possible cloud services where he can deploy an specific ap-
plication and an evolutionary algorithm approach for discovering software architectures.
Furthermore, analysis of similarities and differences of the design and implementations of
those approaches with the ones accounted in this work are also analyzed.

3.1 PatEvol: A Framework for Acquisition and Application of Software
Architecture Evolution Knowledge

3.1.1 Purpose

The Patter-Driven Architecture Evolution (PatEvol) framework, is a proposal developed
by researchers of the Dublin City University and it aims to unify the concepts of Software
Repository Mining and Software Evolution in order to enable a continuous acquisition and
application of architecture evolution knowledge, to address frequent changes in software
architectures in a systematically fashion [AJP13].

The software repository mining process is used to capture knowledge, specifically evolution-
centric knowledge, through the analysis of post-mortem evolution histories, meanwhile
software evolution concepts are used to enable the employment and application of the
discovered knowledge. Furthermore, the PatEvol framework intents to support the reuse
of discovered knowledge to enable knowledge application that facilitates the process of
evolution-off-the shelf in software architectures

3.1.2 Approach and Results

The authors of this research work have mainly focused on these points:

• Knowledge acquisition: Achieved through the use of architecture evolution mining which
is a sub-domain of software repository mining and enables the extraction of not obvious
predictive information.

• Knowledge application: Achieved with architecture evolution which refers to the mapping
among the problem-solution views and the application of discovered solutions.

35

3 Related Works

PatEVol was defined as a conceptual framework that describes a set of processes and activities
that allows the discovering and reusing of evolution knowledge. The processes of the
framework basically point what has to be done and the activities indicates how to do it. The
processes and activities defined by the researchers where:

1. Acquisition of Evolution Knowledge: As mentioned before, this process consists on
architecture evolution mining application which in this context is aimed to employ a
set of automated methods for extraction of architecture change instances from log files
that are the main source of knowledge. The change logs should be formalized through
a notation and the one chose by the authors was a graph-based notation. Activities
conducted in this process are:

a) Taxonomical classification of architecture change and operational dependencies, this
activity basically consists on categorizing the different changes of an architecture
over the time. This classification can be based on the complexity, dependency, etc.
of the changes.

b) Discovery of architecture evolution patterns, after completing the previous activity
a taxonomical classification of architecture changes is obtained and observing he
frequency of the changes among some other techniques, allows to identify some
frequently occurring changes that may represent evolution patterns.

c) Template-based specification of evolution patterns, in this activity a catalog of archi-
tecture evolutions patterns is created, this allows to share and reuse the evolution
patters.

2. Application of Evolution Knowledge: This is defined as the systematic implementation of
architectural changes to modify an existing architecture. Since most applications tend to
evolution over time, the use of discovered knowledge comes very handy to complement
and guide the evolution execution. Activities conducted in this process are:

a) Specification of architecture evolution, the source architecture, constraints and the
elements that need to be modified, added or removed to reach the desired evolution
have to be specified as first step.

b) Selection of architecture change patterns, As result of the previous activity, a document
specifying the architectural changes is defined, in this activity the pattern catalog is
queried in order to provide a solution based on the evolution context. According to
the authors, this is not an easy process and they suggested the use of a methodology
Question-Opinion-Criteria to achieve the desired effects.

c) Pattern-based evolution of Architectures, consists on the usage of the obtained pattern
in the architectural change execution.

The authors also suggested not to overlook the role of the repositories, since they are the main
source of knowledge and storage of identified patterns. Figure 3.1 shows a schema of all the
process and activities performed as well as the repositories used by the PatEvol framework.
As conclusions, the researchers claimed that PatEvol allows to explode architecture change
logs, provides support for pattern specification and instantiation, provides also an evolution

36

3.2 SMICloud: Framework for Comparing and Ranking Cloud Services

Figure 3.1: Overview of the processes, activities and repositories of the PatEvol framework
[AJP13]

application framework that enables pattern reuse and also the discovery of evolution patterns
to continuously feed the catalogs.

PatEvol makes use of a knowledge base created from log files and categorizes them in order
to obtain patterns that indicate how certain software architecture evolves. In contrast with
this thesis, the knowledge that forms our case base comes from descriptions of applications
and their solutions depicted as a set of characteristics. When trying to find a solution for a
new application instead of looking for patterns, mathematical models are applied to find
similar problems and their solutions. Moreover, PatEvol was designed to capture and apply
knowledge of software architectures, meanwhile this thesis aims to use the knowledge of
distribution of components, not focusing on details of software implementation.

3.2 SMICloud: Framework for Comparing and Ranking Cloud Services

3.2.1 Purpose

This work conducted by [GVB11] aims to assist users in the tasks of evaluating and selecting
cloud providers though the use of a framework. Service Measurement Index (SMI), which

37

3 Related Works

consist of a set of Key Performance Indicators (KPI’s) that provide a standard method for
measuring and comparing a business service and defined by the Cloud Service Measurement
Index Consortium (CSMIC) [GVB11], were employed and extended in this approach to let
users compare the different cloud offerings, according to their priorities and considering a
range of dimensions. Basically, SMICLoud is a decision support system that takes as input
user specifications and application requirements and it returns a list of cloud services where
the customer can deploy the application.

Among the challenges faced by the researchers were how to measure the variety of SMI
attributes, since those attributes may change over time and without the existence of precise
measurement model for each attribute, it resulted very difficult to compare them . Another
challenge was how to rank the cloud services based on those SMI attributes since there are
two types of QoS requirements: Functional and non-functional and some of them are very
hard to measure because of the nature of the cloud services. Furthermore, the task of selecting
the service that best suits all functional and non-functional requirements was a big problem
for them, considering the presence of multiple criteria and the interdependences among
them.

3.2.2 Approach and Results

The first issue previously mentioned, was tackled by using historical values and combining
them with offered values by cloud providers in order to get the real value of an attribute.

The second issue led the authors to categorize it as a Multi Criteria Decision Making (MCDM)
problem and adopt the Analytical Hierarchical Process (AHP) approach to solve it, since each
parameter has influence depending on its priority, and this is a based ranking mechanism
that among other things assigns weights to features considering interdependence between
them.

As previously mentioned, the developed framework was based on SMI and using them
SMICloud proposed an holistic view of QoS that a customer needs to consider when selecting
a cloud service provider:

• Accountability

• Agility

• Assurance of service

• Cost

• Performance

• Security and Privacy

• Usability

38

3.2 SMICloud: Framework for Comparing and Ranking Cloud Services

Figure 3.2: Cloud computing AHP hierarchy as defined by [GVB11]

Ranking the cloud services is one of the most important features of this framework and it
was computed considering the requirements of the customer and features of cloud services.
The ranking mechanism employed by the authors was based on AHP because it provides a
flexible way to solve problems with multi-attribute characteristics. To overcome the ranking
problem, the researchers decomposed it into four phases:

1. Hierarchy structure for Cloud Services based on SMI KPIs: Figure 3.2 shows the hierarchy
developed by the authors of this work. First level corresponds just to the goal of the
analysis, second layer contains QoS attributes previously described and the bottom
most layer presents the cloud services and the QoS attributes that they have.

2. Computation of relative weights of each QoS and service: The use of weights to indicate
the importance of a service was necessary in order to compare two cloud services. The
authors considered two types of weight:

• User assigned weight: The user assigns weights to the attributes based on a scale
provided by the AHP system.

• Arbitrary user assigned weights: Customers can give weight values in their own
scale.

3. Relative value-based weights for ranking cloud services: Since the data type of the attributes
may have a variety of forms, the researchers developed a ranking model where the
dimensional units must be of the same type. An specific model has to be applied
depending on the data type and the user must specify if the attribute is essential or
not. As a result, a matrix of NxN where N is the number of registered services is
obtained and the relative ranking of a service, given an specific attribute, is determined
by calculating the eigenvector of the matrix.

39

3 Related Works

4. Aggregation of relative ranking for each SMI attribute: This step takes into consideration
the weights of each attribute and is executed for all of them. As result, the final ranking
of the cloud services is obtained.

As final part of this work, the authors applied the designed framework to a real case situation
and according to them the results obtained were good and concluded that the framework
effectively faces key issues such as ranking cloud services when having different dimensional
units of various QoS attributes and that SMICloud represents a significant next step towards
accurate QoS measurement.

SMICloud offers a solid methodology when it comes to choose cloud providers that satisfy
QoS requirements of applications. It employs a set of metrics and the MCDM approach to find
the candidates that better suit the business needs. Both SMICloud and this thesis, define a set
of metrics which are the factors deciding which solution to pick. Nevertheless, SMICloud
only offers support when selecting an offering, not when it comes to choosing an appropriate
distribution of components among the different providers, which is one of the aspects that
the present work attempts to support.

3.3 Parallel Cloud Service Selection and Ranking based on QoS
History

3.3.1 Purpose

The purpose of the work developed by [uRHH14] was to assist users in the task of selecting a
cloud service provider, but not only considering real-time QoS characteristics but also the
historical QoS performance of the services . The authors considered indispensable to take into
consideration the QoS history of a service, because the capturing employing only real-time
data may lead to select a service at one local maxima performance and therefore it may not be
the most appropriate. On the other hand, there are approaches that consider the history of the
QoS but they execute just an average calculation that is not enough to capture the frequent
variation of the performance of the cloud services.

Considering the facts previously stated, this approach takes into account the multitude of
available cloud services, variations in QoS performance, variation of price and also the user’s
criteria to rank the service and help them to choose the most suitable.

3.3.2 Approach and Results

In order to tackle the problem of selecting a cloud service, considering the historical perfor-
mance as well as a number of criteria, the MCDM method was employed. The performance
of a service in different time slots was considered, the MCDM process in one particular time
slot is independent of others and is executed in parallel. The obtained individual results are

40

3.3 Parallel Cloud Service Selection and Ranking based on QoS History

later combined using an aggregation method that will help to obtain an overall service rank
in the total time period.

The MCDM methods used to rank the services were the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) and Elimination and Choice Expressing Reality
(ELECTRE). In the TOPSIS method, the services are ranked on the basis of the Euclidean
distance, previously introduced in Section 2.4.1, of a possible solution with the ideal and
the a anti-ideal one, being the closest alternative to the ideal solution and farthest from the
anti-ideal the one selected. The ELECTRE method on the other hand determines the pairwise
dominance relationship between alternatives.

The architecture of the developed framework relies on integrated QoS information collected
from multiple sources such as service specification, a monitoring system and feedback from
existing cloud service users. It consists of several modules described bellow:

• Cloud service discovery: Searches for cloud environments and their specification. Addi-
tionally, it looks for new services and keeps the data up to date.

• Cloud service monitory: This module collects QoS data by means of execution of a
benchmark test.

• QoS information repository: Stores data collected by the service discovery and monitoring
modules as well as information from users.

• MCDM cloud service selection module: This module employs the information stored in
the QoS repository and the criteria from the users in order to perform a multi-criteria
analysis on this information and obtain a ranking of the services.

The period of time when the QoS is observed was divided in two parts: pre-interaction and
post-interaction phase, additionally a time spot was defined and it corresponds to the period
of time when the selection of the cloud service has to be made. The pre-interaction phase
is the period before the time spot and the post-interaction corresponds to the period after
and here the real-time QoS is monitored in order to determinate if the selected service truly
satisfies the needs of the application. In order to perform the MCDM selection process, several
steps need to be completed.

1. The pre-interaction phase is divided into different time-slots. Criteria C1, C2, C3, ...Cn

are selected by the user and retrieved by the MCDM method from the QoS repository.

2. Since the QoS criteria may not by equally important, the system allowed to input a
weight wc1, wc2, wc3, ...wcn per each criterion.

3. The data of the QoS of all available services form a decision matrix and MCDM criteria
is applied to get a top service per each time slot.

4. This system also considered as influential the freshness of the data in a determined time
slot, and therefore each time slot got a weight assigned and the slot that is closest to the
selected time slot gets the highest weight value of 1.0 while the older gets lower value
until a minimum of 0.4 is reached.

41

3 Related Works

5. An aggregation process is performed as last step, obtaining as a result a service rank in
the pre-interaction phase that is the mean to help the user to make a decision.

An overview of the decision matrix used by the MCDM process as well as of the steps
mentioned above are depicted in the Figure 3.3.

Figure 3.3: Overview of the calculations performed on the decision matrix used by the
approach proposed by [uRHH14]

The aggregations were performed following the TOPSIS and ELECTRE methods. Experimen-
tal validations of the framework were also performed and the data was obtained from five
Amazon EC2 IaaS cloud services during 300 days. The obtained results allowed the authors
to conclude that the proposed approach was effective and capable of capturing variations
in performance of the services, giving more importance to the most recent data but without
discarding older information.

In a similar way as SMICloud, presented in the previous section, this approach provides
support to select a cloud provider based on QoS characteristics, not only considering values
at some point in time but also taking into account the measures in several time slots in the
past. In this sense this approach is similar to the ones followed by this thesis, since both of
them consider the historic information of QoS metrics. However, this approach is limited only
to rank cloud offerings from different providers and does not help in the task of selecting a
possible distribution of application components in the cloud.

3.4 Graph-Based Analysis and Prediction for Software Evolution

3.4.1 Purpose

This work was conducted by researchers of the University of California. It basically consisted
on identifying whether a graph-based method, through the use of an accurately constructed
graph model of a software system, can help in the tasks mentioned bellow [BINF12]:

42

3.4 Graph-Based Analysis and Prediction for Software Evolution

• Improvement of software maintenance by identifying which are the components that
need to be debugged, tested or refactored first.

• Prediction of the defect count of an upcoming release, based on historical records of
previous releases.

Furthermore, the goals of this study were to demonstrate that by deriving information of a
set of different graph metrics and topological analysis it is possible to understand how the
software evolves, how to construct predictors for software engineering metrics as well as the
points exposed bellow:

1. Topological analysis of software-based graphs can reveal properties about software
processes.

2. Graph metrics capture significant events in the software life cycle

3. Graph metrics can be used to estimate bug severity, prioritize maintenance effort and
predict defect-prone releases.

3.4.2 Approach and Results

In order to achieve the goals of this work, the authors needed to define the methodology
on how to build the graph of a system and select the graph metrics to use. Regarding
the graph construction, the source of information for its composition were the source code
repository where the commit logs, historic source code versions, patches and source code-
based developer interactions were stored. The bug tracking of a system constituted another
source of data of bug records and bug fixing-developer interactions.

With the information obtained from the two sources mentioned above, three graphs were
made:

1. Source Code-Based Graphs: This graph helped to capture information regarding function
calls, in other words caller-callee relationships.

2. Module Collaboration Graph: This one showed information regarding the communication
between modules.

3. Developer Collaboration Graph: This graph was built to understand how developers
collaborated and communicated as the software was evolving. Two kinds of subgraphs
were also derived, a bug-developer collaboration graph and a commit-based developer
collaboration graph which basically helped to trace the behavior of the developers.

The exposed above is illustrated in the Figure 3.4, where the data sources and the obtained
graphs are clearly identifiable. It should be pointed that for the sake of this work, eleven
popular open source applications were studied, including Firefox, Blender, VLC, etc. Common
characteristics of them are that they have a long release history, a considerable size, a large
number of users reporting bugs and a large number of developers solving and patching
them.

43

3 Related Works

Figure 3.4: Overview of the system developed by [BINF12]

The chosen metrics as well as the software engineering concepts employed by the users
were:

• Average degree

• Clustering coefficient

• Node rank

• Graph diameter

• Assortativity

The metrics mentioned above provided an overview of a single software release, in order to
find out how a program structure changes over time further metrics were necessary. These
metrics basically captured the number of changes in edges between two graphs and they were
the edit distance and the modularity ratio. The researchers proceeded then to calculate all the
selected metrics for the first and last releases of all of the systems they were studying and
proceeded to analyze them to find out if they really can detect non-obvious pivotal moments
in a program evolution and if there were evolution trends across all the programs they studied.
After analyzing the results, they concluded that graph metrics are good measures that can
reveal events in software evolution.

In order to accomplish the bug severity objective of this work, the authors proceeded to use
the metric Node Rank to identify critical functions and modules that when buggy are most
likely to span high-severity bugs. The hypothesis they managed to prove were:

• Functions and modules of higher Node Rank will be prone to bugs of higher severity.

• Modules with higher Modularity Ratio have lower associated maintenance effort.

44

3.5 Evolutionary Algorithm approach for for the Discovery of Software Architectures

• An increase in edit distance in bug-based developer-collaboration graphs will result in
an increase in defect count.

At the end of this work, the researchers concluded that graph-based metrics effectively
can capture and describe the structure and evolution of software products and processes.
Furthermore, they can also help to predict bug severity and identify components that need
higher effort in order to reduce the number of bugs of high severity of future releases.

The Graph-Based Analysis conducted in this research provides support when designing the
architecture of a software system, similar to the approach followed by this thesis, even more
considering that the distribution topologies are in the end directed graphs. Nevertheless, the
Graph-Based Analysis is targeted to the structures used to implement the software of certain
system and not to give support when designing the distribution of components, unlike this
thesis aims.

3.5 Evolutionary Algorithm approach for for the Discovery of Software
Architectures

3.5.1 Purpose

Since in the last few years the combination of meta-heuristic approaches and software engi-
neering have converged into a problem domain called Search Based Software Engineering
(SBSE) and being Evolutionary Computation (EC) the most widely used heuristic in the field
of assisting software engineers in the improvement of their architectural designs, the authors
of this work propose the use of EC as a search technique to extract the underlying software
architecture of a system [RRV15].

This research work aimed to answer the following questions:

• Can a single Evolutionary Algorithm (EA) help the software engineer to identify an
initial candidate architecture of a system at a high level of abstraction?

• How does the configuration of the algorithm influence both the evolutionary perfor-
mance and the quality of the returned solution?

As determined by the authors of this work, the identification of architectural models is
required during early stages of software conception, when requirements are still changing or
the developers are asked to check the correctness of their designs. At this stage, source code
artifacts are still not available, therefore the use of other sources of information to discover
the intended architecture is necessary and an initial class diagram may be a good starting
point for the architecture discovery.

45

3 Related Works

3.5.2 Approach and Results

The approach proposed by the authors consists on taking class diagrams of a system as the
artifacts to abstract the software architecture and encode them using a tree structure. Once
that is done, apply a genetic operator and use definitions like cohesion and coupling to guide
and validate the search.

One crucial aspect of using evolutionary algorithms is the representation of the input informa-
tion, in this case the authors proposed the use of a tree structure in order to represent classes
and their relationships. To construct the tree some definitions were introduced: A component
is a cohesive group of classes, a directed relationship between classes belonging to different
models are considered as a candidate interface and a connector is the linkage between a pair
of interfaces interconnecting different components.

Figure 3.5 shows an hypothetical example of how to represent classes and components in a
tree structure.

Figure 3.5: Sample mapping between classes to a tree structure, as suggested by [RRV15]

Two important aspects were the initial population and the fitness function. The initial
population corresponded to the early versions of the class diagram of the system, while
for the fitness function the strength and independence of the inner functionality of each
component was considered, thus the fitness function was calculated as an aggregation of
rankings. These rankings belonged to a specific metric related to desirable characteristics of
the architectural design. Among those metrics were:

• Intra-modular coupling density, which helped to determinate trade-offs between cohe-
sion and coupling.

• External ranking penalty, that basically applies a penalty if some relations are not
specified through interfaces. The optimal value of this metric was 0.

• Groups/component ratio, that specifies the ratio between the elements of a component
and the total number of components in the whole architecture.

The fitness function was defined as the aggregation of those metrics, being the lowest values
the best ones.

46

3.5 Evolutionary Algorithm approach for for the Discovery of Software Architectures

Genetic operators were also defined, they allowed the creation of new solutions from other
ones, they facilitate the tasks of exploring design alternatives. In this case, five mutations
were considered and they resembled the transformation that software architects do during
the discovery process. The operations were add, split, remove a component, merge two
components and move a class. The definition of those genetic operators allowed to define
a mutation operator, which consisted of a probabilistic roulette built for each parent and
composed of the mutation procedures that can be applied to them. Once the roulette is
completed, a mutation procedure is selected and if the resulting individual does not satisfy
the constraints, a new generation is produced until a valid individual is obtained. All the
steps previously described led finally to the definition of the EA.

The authors conducted several experiments and defined some tests to define how accurate
their approach was. The results showed that this attempt was relatively good in the task of
discovering good solutions in the majority of the problem instances they used to experiment.
Nevertheless, they also evidenced some contradictions between metrics, specially for systems
of high complexity but they considered that the results were acceptable in general, since the
solutions obtained were composed of well-connected groups of classes and components that
correctly matched the intended architecture, even though the result may not be the optimal
one. As final toughs, the researchers considered that this approach can be extended to other
scenarios, such as service oriented architectures, by including in the models factors like cost
and response time and that the inclusion of opinions from experts in the evolutionary search
may improve results.

This approach based on evolutionary algorithms is focused to discover software architectures,
it assists developers when designing the architecture of a system in a similar way as the
present thesis attempts. However, the support provided by this work is limited to software
structures and not to distribution of components in the cloud.

47

3 Related Works

48

4 Concept and Specification

The main focus of this chapter is to present the methodology and conceptual foundations for
a system that allows the capturing and usage of knowledge of evolving cloud application
topologies. The specification of the system is described and the concept of its design is
explained.

4.1 Methodology

The usage of case-based reasoning techniques in the design and execution of cloud appli-
cations enables the possibility for handling existing problems and solving new ones with
similar characteristics. The purpose of this work is to create a knowledge base by gathering
and collecting data from applications that are running in the cloud and employing the CBR
approach in a system that assists the application architects and developers when selecting
viable distribution alternatives for a new application.

Figure 4.1: Cloud application topology enhanced life cycle - CBR Analysis

During the early stages of a system distribution design, a developer possesses a set of
functional requirements as well as non-functional requirements, e.g. performance needs,
business rules and workload characteristics, of an application system. The developer can use
all this information and input it into the proposed system in order to get similar cases from a
knowledge base as well as their distributions topologies. Based on the results, the developer
can pick one of the past solutions and adapt it to the current situation. Moreover, the adopted
topology is recorded in the knowledge base and its performance in runtime is monitored,
in this way the case base is enriched with more solutions every time the system is used and
more accurate characteristics describing the past applications are obtained.

49

4 Concept and Specification

The actions described above can be expressed in terms of different stages which are depicted
in the Figure 4.1. These stages represent the step-by-step process that our methodology
follows. It starts with the modeling of the topology, followed by the similarity analysis and
the provisioning of resources and runtime phase. Moreover, these phases can be modeled as
a cycle since the needs and requirements of applications that are running may change and
therefore a new distribution of their elements might be necessary. Each of the stages of the
life cycle has different processes. they are presented in the Figure 4.2 and explained in detail
in the sections bellow.

Figure 4.2: Processes of the different stages of the methodology [AGSLW14]

4.1.1 Topology Modeling - Collection Functional Requirements Data

The first stage of the methodology consists of gathering data from running systems in order
to conform the knowledge base of the system. The problems are described through a series
of features that include performance metrics and workload characteristics, meanwhile the
solutions correspond to the distribution of components of the application that produce those
QoS values, in other words the µ-topology.

Recalling the cycle of the CBR paradigm presented Section 2.3.2, one of its important aspects
is the Retain process, which consisted on retaining the characteristics of the new problem and
its solution and that is the reason why data is collected after the selected topology is running.
This allows to enrich the case base and therefore the quality of the results. Furthermore,

50

4.1 Methodology

obtaining metrics that describe the behavior of the deployed application allows to evaluate
its performance and to improve the quality of the features describing a certain problem.

4.1.2 Non Functional Requirements - Data Collection

Case Representation

In this work, a case corresponds to a cloud application and its distribution. Its characterization
is given by a set of different features, which can be of one of the types presented bellow:

• Functional requirements

• Non-functional requirements

Those characteristics are the ones that allow to describe the past cases and the desired features
of the application to be deployed, they are also used to perform similarity analysis and
retrieve possible solutions for the new case. A viable distribution topology, depicted through
a µ-topology, representing the distribution of components of some application corresponds
to the lesson or solution and they are retrieved if the features of a given problem match the
ones of the application it represents. Figure 4.3 shows a diagram of the structure of the case
representation in the proposed approach.

Figure 4.3: Representation of a Case in the proposed system.

As previously presented, different sets of characteristics have to be considered in order
to describe an application. Following this, the data model depicted in the Figure 4.4 is
proposed.

The functional characteristics are typically depicted through the specification of the cloud
application’s topology. Its different nodes and their type and the relations among them are the
elements describing the main functional features that a concrete application has. In the case of
the Non-functional characteristics different aspects should be considered, these characteristics
describe the workload and the performance of the application and they are presented in the
remaining of this section.

51

4 Concept and Specification

Figure 4.4: Data model of the description of an application

QoS Performance Categories and Metrics

There is a number of different metrics describing the performance aspects of an application
and they depend on its type. According to the works conducted by [CS09] and [Gan15],
the performance specification can be described in terms of multiple performance metrics
categories and at the same time those categories contain a number of different performance
metrics. Furthermore, a performance metric that belongs to a category contains different per-
formance metric values, a monitoring resource, several analytical indicators and a threshold
limiting the value range of the metric.

The analytical indicators provide information about different index attributes and their
values. An index has a name and a measurement unit e.g. measurement accuracy, measurement
time interval, level of confidence, etc. which provide different informations regarding the
measurement of the metrics [ADC10, FRL13].

For the purposes of this study only statistical analytical indicators are employed to describe the
different metrics. The indicators to be considered when describing performance characteristics
of a case are:

52

4.1 Methodology

• Minimum and maximum values

• Mean value

• Standard deviation value

[Gan15] also proposed a taxonomy for performance metrics categories and performance
metrics that are important to consider. From this taxonomy, only the ones that are applicable
to cloud applications and that we consider relevant to perform the assessment of similarity
were extracted. The units of each one of them were also defined and they are shown in the
Table 4.1.

Metric Category Metric Unit

Time
Behaviour

Response Time Milliseconds
Throughput Requests per second

Processing Time Milliseconds
Read Speed Revolutions per minute
Write Speed Revolutions per minute

Resource Migration Time Seconds
Latency Milliseconds

Backup Time Seconds

Capacity

Bandwidth Megabits per Second
Processor Speed Gigahertz

Storage Size Gigabyte
Memory Allocation to VM Gigabyte

Number of VM Integer value
Number of Processors Integer value

I/O Operations Real value

Resource
Utilization

Network Utilization Percentage
Memory Utilization Percentage

Disk Utilization Percentage
CPU Utilization Percentage
VM Utilization Percentage

Number of VM per Physical Server Integer value

Scalability
and
Elasticity

Resource Acquisition Time Seconds
Resource Provisioning Time Seconds

Deployment Time Seconds
Resource Release Time Seconds

VM Startup Time Seconds

Availability

Cloud Service Uptime Percentage
Cloud Resources Uptime Percentage

Mean Time Between Failures Hours
Mean Time to Repair Hours

Table 4.1: Application QoS performance metrics per category

53

4 Concept and Specification

Workload Characteristics

[CS93] defines the workload of a system as the set of all input service requests to the system.
There are different techniques that can be used to analyze the workload characteristics in
terms of workloads parameters. According to [Gan15] there are two main types of such
techniques:

• Static techniques: They characterize features of workload that do not change over time.
Some examples are:

– Statistical description

– Single-parameter histogram

– Multi-parameter histogram

– Principal component analysis

– Clustering technique

• Dynamic techniques: They characterize dynamic behavior of workload that changes over
time. Among these techniques are:

– Markov model:

– User-behaviour graph:

Furthermore, there are applications whose resource usage over a period of time follows some
patterns also known as usage pattern. According to [FLR+14], the resource usage pattern can
be classified into five categories:

1. Continuously Changing Workload: This pattern is used to group workloads that show a
continuous growth or decline.

2. Once-in-a-lifetime Workload: This type of pattern suggests that IT resources are equally
used over the time, but strong peaks can occur and they happen once in a long time
frame.

3. Periodic Workload: Peaks of utilization of IT resources happen in a periodically fashion.

4. Static Workload: In this pattern, the utilization of IT resources happens in a approximately
flat manner over the time, this means that the use of resources is relatively constant.

5. Unpredictable Workload: As the name suggests, the use of IT resources cannot be predicted
or approximated to some behavior.

For the purposes of this work, only a set of attributes describing the workload behavior of a
system and the pattern characterization are considered, such attributes are presented in the
Table 4.2.

54

4.1 Methodology

Attribute Values

Pattern
Continuously changing, once in
a lifetime, periodic, static, unpre-
dictable

Arrival Rate Distribution
Normal, logarithmic, gamma, uni-
form

Behavioral Model
Normal, logarithmic, gamma, uni-
form

Average Number of Users Integer value
Average number of transactions Integer value
Time Interval Interval value

Table 4.2: Attribute-based characterization of the Workload of an application

4.1.3 Similarity Measures Calculation

This stage of the methodology is without doubts the most important. As it has been presented
in previous sections of this work, a not appropriate definition of similarity measures will
lead to a retrieval of cases that are no useful for a determined situation. Therefore, this
section presents the procedures that are followed to calculate the similarity between two
cases, considering that their structure not only consists of a big set of attributes as presented
in Section 4.1.2.

There are a series of elements that need to be considered when depicting the requirements of
a determined system. One of them correspond to the description of functional requirements,
which are given through the α−topology of the application and since it can be represented as
a labeled graph, the use of graph similarity makes sense. This technique is used to compare
the given α−topology with the α−topologies of the cases contained in the knowledge base
and retrieve a subset of viable topologies that are in some grade similar to the current case.

The described above is not enough to claim that the obtained subset contains a proper solution,
but the use of non-functional requirements allows to further refine the results obtained at this
point. As presented Section 4.1.2, the non-functional characteristics are given in this proposal
on terms of a number of performance metrics and workload characteristics, which can be
expressed in most cases as attribute-value pairs and therefore a number of different similarity
measures can be applied in this situation.

The selection of the similarity measures depends basically on the nature of the values of
the different attributes, for example similarity measures that use numeric values cannot be
applied to other types. Calculations of similarity are performed between each attribute of
the current case and the ones describing a past case, these calculations correspond to the
measurement of local similarities and per each attribute a value of similarity is obtained as
result. It is necessary now to perform an aggregation of all the obtained values by performing
a global similarity calculation and after this process, single values of similarity are obtained
per each case and the ones with higher values correspond to the most similar.

55

4 Concept and Specification

This process allows to extract once more a subset of the elements obtained when performing
the graph similarity. Figure 4.5 presents a summarized view of the different steps executed
when calculating the similarity between two cases.

Figure 4.5: Similarity calculation process.

4.1.4 Solution Selection and Adaptation

As a result of the application of the similarity analysis several topologies are obtained. In this
stage, the developer makes a selection a topology distribution, which basically is the one that
meets the desired requirements. The selected topology may not be identically used and it
might require adaptations in order to effectively fulfill all the needs and requirements.

The actions previously described correspond to the revise process of the CBR cycle. The retain
process is also performed in this stage since the changes executed by the application architects
are going to produce a new solution, and retaining this new solution allows the enrichment
of the case base and a possible improvement of the quality of the results.

4.1.5 Deployment, Monitoring and Knowledge Retrieval and Aggregation

Given a determinate system, it will be ideally deployed according to the topology previously
obtained. Such a system is going to be running and its performance can be observed. This
information is very important because it allows to the developer to evaluate if the adopted
distribution effectively meets all the needs and requirements. If the application is performing
in a non-desired way, it will conduct to the developer to perform changes in the topology
naturally.

Such changes and actions have a high relevancy and it is necessary to capture them in the
case base, because of that this part of the methodology aims to capture those changes, the
metrics describing the QoS of the modified application and it that way have a record of the

56

4.2 Formalizing Similarity

evolution of the performance of the system and use that information to possibly provide
more accurate results.

4.2 Formalizing Similarity

This section presents the approaches and models employed to conduct the similarity anal-
ysis. Since the chosen attributes have different nature and types, it is necessary to use the
appropriate similarity measures, otherwise the results returned by te system might not be
accurate enough. The sections bellow present in detail the different approaches employed to
determine whether two applications are similar or not.

4.2.1 Similarity of Functional Requirements

As introduced in Section 4.1.1, the functional requirements of an application are represented
through the specification of its topology, which implies the definition of the different nodes
types and their relationships.

In the case base, the functional characteristics of the different solutions are depicted in terms
of their µ-topology, which is composed of α- and γ-topology. Therefore, two aspects must be
considered when deciding if two application have comparable functional requirements.

• Structure of the α−topology

• The node type definition

The similarity among two topologies can be analyzed through the usage of graph similarity
techniques. This approach lets us determinate if the application that is being analyzed and
the topology of another application have the same distribution or not. For example, if the
developer has depicted a two-tier application as its α−topology, through the execution of
graph similarity is possible to discard all the cases that correspond to three-tiers applications
and only consider the ones that fit a two-tier structure.

Further filtering consists of determining whether the node types conforming the selected
topologies are similar or not. This is not an easy task, since there are plenty of services
in the market and new ones are launched everyday and there are not means to effectively
compare them. Trying to answer the question how similar are Ubuntu Server and 10.0 and
Windows Server 2012? is an example of the previously exposed. There might be ways to do
this for example by comparing their characteristics, the programming languages they support,
through the evaluation of other developers, etc., but there is not a single way to approach
them to a particular model, given the huge amount of services and the aspects that should be
considered.

In order to mitigate this the approach of similarity tables is adopted. At the beginning the
table will contain values of 1 and 0, following the Is equal? similarity model, which indicates
that if two node types are equal the similarity value is 1 and 0 otherwise. Nevertheless, the

57

4 Concept and Specification

Web
Shop

e-
Commerce

Rich In-
ternet

Mobile
Backend

Customer
Relation-
ship

News
Feed

Email

Web
Shop

1 0 0 0 0 0 0

e-
Commerce

0 1 0 0 0 0 0

Rich In-
ternet

0 0 1 0 0 0 0

Mobile
Backend

0 0 0 1 0 0 0

Customer
Relation-
ship

0 0 0 0 1 0 0

News
Feed

0 0 0 0 0 1 0

Email 0 0 0 0 0 0 1

Table 4.3: Sample of a similarity table for type of application

developed system has to provide the means for experts to modify the values of similarity
according to their knowledge and in this way the similarity measures can be enriched and
the model could reach a knowledge-intensive status.

After applying the approach of similarity table, a similarity value is obtained per each node
of the topology. These values represent a set of of local similarities, to obtain an unique result
representing the global similarity the Minkowski aggregation model, presented in Section
2.4.2, is applied with equal weight value for all the local similarity measures and with the
parameter p = 1 as recommended by [MC11] in these cases. Table 4.3 presents an example of
a similarity table that follows the approach described previously, in this case the compared
node types correspond to the type of application. The names of the different columns and
rows correspond to examples of application types, each cell represent the similarity value
among two types. When comparing two nodes, one of type Web Shop and other of type Mobile
Backend, it is enough just to look for the correspondent column and row to find out the value,
in this case is 0; if both of them were of the same type then the result would have been 1.

Algorithm number 1 illustrates the process of the calculation of similarity of node types
between a query and a case of the knowledge base. In order to obtain an accurate result is
assumed that the query and case received by the function have a similar structure and their
comparison can be performed in a sequential order.

58

4.2 Formalizing Similarity

Algorithm 1 Node types similarity calculation

1: function CALCULATENODETYPEPERFORMANCESIMILARITY(queried_app,case)
2: queryNodeTypes← GETNODETYPES(queried_app)
3: caseNodeTypes← GETNODETYPES(case)
4: similarityTable← GETSIMILARITYTABLE()
5: localSimilarityList← CREATELIST

6: for i← 0, SIZE(queryNodeTypes) do
7: queryNode← GETNODE(queryNodeTypes, i)
8: caseNode← GETNODE(caseNodeTypes, i)
9: localSimilarity← RETRIEVESIMILARITY(similarityTable, queryNode, caseNode)

10: ADD(localSimilarityList, localSimilarity)
11: end for
12: nodeTypeSimilarity← COMPUTEMINKOWSKIAGGREGATION(localSimilarityList)
13: return nodeTypeSimilarity
14: end function

4.2.2 Similarity of Performance Metrics

As presented in Section 4.1.2, the different metrics describing performance characteristics of
an application are expressed in terms of statistical analytical indicators and in this work the
ones considered are:

• Minimum and maximum values

• Mean value

• Standard deviation value

Contrasting with the previous problem of comparing node types, in this case the computation
of similarity is easier since the mentioned indicators are numeric and continue values. The
local similarity principle is used to calculate the similarities among the statistical descriptors
and the global similarity principle is used to aggregate the local similarity values and get an
unique value per each metric.

Since a similarity value per each metric is obtained, once again the global similarity princi-
ple is applied in order to obtain a measure depicting the degree of similarity between the
descriptions provided by the application developer and the cases stored in the knowledge
base.

To calculate the local similarities, a difference-based function is used, that indicates that the
bigger the absolute difference between two values, the smaller the value of the similarity. The
base function used to compute the difference-based local similarity is given by the exponential
model presented in 4.1.

59

4 Concept and Specification

SIM(X, Y) = e|δ(X,Y)|.α (4.1)

Where α = −1 and δ(X, Y) is a difference function and can take the following values:

δ(X, Y) =


ln(X)− ln(Y) for X, Y ε R+

−ln(−X) + ln(−Y) for X, Y ε R−

X−Y if X=0 or Y=0

unde f ined if any of the values is not specified

If the difference function δ(X, Y) takes the special value of undefined because at least one of
the measures is not specified, then that parameter is not considered when computing the
global similarity. Furthermore, the exponential base function was chosen because it offers
better results for both continuous and discrete values [Sta03] and the statistical descriptors
here employed as attributes could be of any of those types.

The value of the global similarity is calculated as in the case of the functional requirements,
using the Minkowski aggregation model. The algorithm 2 presents how the similarity
calculation process is performed given a new query and a retrieved case from the knowledge
base.

Algorithm 2 Performance metrics similarity calculation.

1: function CALCULATEPERFORMANCESIMILARITY(queried_app,case)
2: queryMetrics← GETPERFORMANCEMETRICS(queried_app)
3: globalSimilarityList← CREATELIST

4: for each metric ε queryMetrics do
5: queryMetricDescriptors← GETDESCRIPTORS(metric)
6: caseMetric← GETMETRIC(case, metric)
7: localSimilarityList← CREATELIST

8: for each descriptor ε queryMetricDescriptors do
9: caseMetricDescriptor ← GETDESCRIPTOR(caseMetric, descriptor)

10: di f f erence ← COMPUTEDIFFERENCE(descriptor, caseMetricDescriptor)
11: localSimilarity← eˆ(abs(di f f erence) ∗ −1)
12: ADD(localSimilarityList, localSimilarity)
13: end for
14: globalSimilarityMetric← COMPUTEMINKOWSKIAGGREGATION(localSimilarityList)
15: ADD(globalSimilarityList, globalSimilarityMetric)
16: end for
17: per f ormanceSimilarity← COMPUTEMINKOWSKIAGGREGATION(globalSimilarityList)
18: return per f ormanceSimilarity
19: end function

60

4.2 Formalizing Similarity

4.2.3 Similarity of Workload Characteristics

Table 4.2 presented the list of characteristics that the present approach employs to describe
the workload of an application. The difference of these attributes and the ones describing the
performance requirements lies in the fact that they can be of numeric or categorical nature.
The procedure to calculate the similarity between two sets of workloads characteristics,
consists of the use of similarity tables for attributes of categorical type e.g. pattern, arrival rate
distribution and difference-based function for the numerical attributes e.g. average number
of users, average number of transactions per second. The similarity tables use also the Is
Equal? model, and the system will provide means to developers to update the values and add
further categories, similarly to the case of similarity tables for node types.

In other words the approach is a combination of the previous cases, employing a similarity
model based on the type of the attribute to calculate local similarities and aggregating them
through the use of the Minkowski aggregation model. Algorithm 3 presents the process
followed to make the computation of the similarity in this case.

Algorithm 3 Workload characteristics similarity calculation.

1: function CALCULATEWORKLOADSIMILARITY(queried_app,case)
2: queryWorkloadAtts← GETWORKLOADATTRIBUTES(queried_app)
3: localSimilarityList← CREATELIST

4: for each queryAttribute ε queryWorkloadAtts do
5: queryMetricDescriptors← GETDESCRIPTORS(metric)
6: caseAttribute← GETATTRIBUTE(case, queryAttribute)
7: attributeType← GETATTRIBUTETYPE(queryAttribute)
8: if attributeType = numeric then
9: di f f erence ← COMPUTEDIFFERENCE(queryAttribute, caseAttribute)

10: localSimilarity← eˆ(abs(di f f erence) ∗ −1)
11: else
12: similarityTable← GETSIMILARITYTABLE(queryAttribute)
13: localSimilarity← RETRIEVESIMILARITY(similarityTable, queryAttribute, caseAttribute)
14: end if
15: ADD(localSimilarityList, localSimilarity)
16: end for
17: workloadSimilarity← COMPUTEMINKOWSKIAGGREGATION(localSimilarityList)
18: return workloadSimilarity
19: end function

4.2.4 Application Similarity Calculation

In order to get a single value of similarity and finally determinate if two applications are
similar or not, the global similarity principle must be applied once more to the measures
previously obtained. The Minkowski aggregation model is applied to the similarity values
of functional characteristics, performance and workload, in this way an unique measure

61

4 Concept and Specification

between a query and a case is obtained. Algorithm number 4 illustrates how the process of
computation is executed.

Algorithm 4 Application similarity calculation.

1: function CALCULATEAPPLICATIONSIMILARITY(queried_app,case)
2: f unctionalSimilarity← CALCULATENODETYPESIMILARITY(queried_app, case)
3: per f ormanceSimilarity← CALCULATEPERFORMANCESIMILARITY(queried_app, case)
4: workloadSimilarity← CALCULATEWORKLOADSIMILARITY(queried_app, case)
5: localSimilarityList← CREATELIST

6: ADD(localSimilarityList, f unctionalSimilarity)
7: ADD(localSimilarityList, per f ormanceSimilarity)
8: ADD(localSimilarityList, workloadSimilarity)
9: applicationSimilarity← COMPUTEMINKOWSKIAGGREGATION(localSimilarityList)

10: return applicationSimilarity
11: end function

62

4.3 System Requirements

4.3 System Requirements

The CBR system for retrieval of cloud applications viable topologies, should provide ways to
offer the features presented bellow:

4.3.1 Functional Requirements

• Knowledge Base: The system requires a properly structured knowledge base containing
meaningful description of past cases and their respective solution.

• Specification of functional characteristics: The system should provide means to allow the
developer to specify the functional requirements of the application he is intending to
deploy in the cloud. This specification should be done by allowing the developer to
model the α-topology through some topology modeling tool.

• Specification of non-functional characteristics : The system should provide means to allow
the developer to specify non-functional requirements of the application he is intending
to deploy in the cloud. This specification should be done by allowing the developer
to input to the system characteristics of the required QoS, through the description of
performance metrics and workloads characteristics.

• Retrieval of similar applications and their topologies: Given the description of functional,
non-functional characteristics and constraints, the system should retrieve a list of
applications that have a high degree of similarity with the problem being described and
the respective solutions, which correspond to the different topology distributions.

• Administration and Maintenance of Similarity Measures: The system should provide
means to maintain similarity measure models in order to enrich them and make them
knowledge-intensive.

• Continuous Update of Knowledge: Changes performed to the obtained solution and the
different characteristics specified by the developer should be retained and stored in the
knowledge base.

• QoS Evolution Monitoring: Once the adopted solution has been deployed in the cloud,
the system should capture any changes in the distribution and all the QoS attributes
that the application had when the changes were made.

4.3.2 Non-Functional Requirements

• Usability: The system must allow to the users specify functional and non-functional
characteristics of the system they want to deploy in an easy and interactive manner.

• Consistency: The operations performed by the system must always behave in the same
way.

• Compatibility: The system should be compatible with a topology modeling tool.

63

4 Concept and Specification

• Performance: The system should perform efficiently and make computations in a reason-
able time.

• Documentation: The system should provide proper descriptions of its different functions
in order to facilitate the correct use of its functionalities.

4.4 Use Cases

There are two kind of actors in the system: The application developer, which is the main user
interacting with the system also domain experts.

The roles of the actors interacting with the system are described in the sections bellow:

4.4.1 Application Developer

• Describe system requirements: The developer describes the application he is intending to
deploy by depicting functional and non-functional characteristics, this means modeling
the α-topology and describing the QoS requirements respectively.

• Select a viable topology: Since the CBR system returns a set of different topologies, the de-
veloper must select one which is the proposed solution that better fits the requirements
of the application.

• Adapt proposed viable topology: Once a solution is picked, it might be necessary that
the developer performs changes to the distribution in order to fulfill completely the
requirements.

• Persist Knowledge: The developer can save all the description of characteristics and
modifications to the topology distributions he has performed and in that way enrich
and improve the quality of the knowledge base.

4.4.2 Domain Expert

In order to enrich knowledge of the CBR application and its similarity measures, the system
allows to domain experts to perform the next actions:

• Enrich similarity tables: An expert can retrieve and update the different similarity tables
that the system uses to get the values for local similarity of categorical attributes.

• Update Knowledge: An expert should be able to retrieve and update knowledge from the
case base in order to keep the information as accurate as possible.

64

4.4 Use Cases

4.4.3 Use Cases Diagram

Figure 4.6: Use Cases Diagram.

The proposed system has two boundaries that group the different use cases. The modeling
system boundary groups cases that can be performed through the use of a selected topology

65

4 Concept and Specification

modeling tool, the use cases that are depicted with dashed lines indicate that the use case is
being adapted or extended in order to use the already implemented functions of the modeling
tool in conjunction with the CBR system. Use cases drawn with a continuous line indicate
that they are built from scratch.

The CBR-Similarity boundary groups the use cases that only concern to this system. The
use cases diagram of the CBR system for retrieval of cloud applications viable topologies is
shown in the Figure 4.6

4.4.4 Use Cases Description

Use cases that are implemented from scratch are described in details in the use case tables
shown below while the ones that constitute an extension of the modeling tool are depicted in
terms of a description indicating the type of adaptation performed.

Name Model Alpha Topology

Goal The user wants to provide a description of the functional requirements of an
application through the model of the α-topology of an application.

Actor Application developer

Description User employs tools provided by a topology modeler software in order to depict
the α-topology of an application, this software is able to communicate with the
CBR system and send information in an understandable format for it.

Table 4.4: Description of Use Case Model Alpha Topology.

Name Specify Performance Requirements

Goal The user wants to provide a description of the performance requirements that
the application needs to meet.

Actor Application developer

Pre-Condition

1. The performance metrics characteristics are specified under common prop-
erties and are specific to an application.

Post-Condition

1. The performance metrics specification has been successfully added.

2. The performance metrics specification can be viewed as XML representa-
tion.

66

4.4 Use Cases

Post-Condition in Spe-
cial Case 1. The performance metrics specification cannot be added.

Normal Case 1. User selects Specify Performance Metrics.

2. An interface that allows the input of a series of metrics and their values is
rendered.

3. User fills in with the desired information.

4. User adds the specification to the system.

Special Cases 2a. Interface cannot be rendered.

a) System shows an informative error message.

4a. The performance metrics specification cannot be added.

a) System shows an informative error message.

Table 4.5: Description of Use Case Specify Performance Requirements.

Name Specify Workload Characteristics

Goal The user wants to provide a description of the workload that the application
must cope with.

Actor Application developer

Pre-Condition

1. The workload characteristics are specified under common properties and
are specific to an application.

Post-Condition

1. The workload characteristics specification has been successfully added.

2. The workload characteristics specification can be viewed as XML represen-
tation.

Post-Condition in Spe-
cial Case 1. The workload characteristics specification cannot be added.

67

4 Concept and Specification

Normal Case 1. User selects Specify Workload Characteristics.

2. An interface that allows the input of a series of attributes and their values is
rendered.

3. User fills in with the desired information.

4. User adds the specification to the system.

Special Cases 2a. Interface cannot be rendered.

a) System shows an informative error message.

4a. The workload characteristics specification cannot be added.

a) System shows an informative error message.

Table 4.6: Description of Use Case Specify Workload Characteristics.

Name Specify Hard Constraints

Goal The user wants to provide a description of hard constraints that the application
needs to meet.

Actor Application developer

Pre-Condition

1. The application hard constraints are specified under common properties
and are specific to an application.

Post-Condition

1. The user can use the provided information to estimate the cost of the ap-
plication he is intending to distribute and is able to change it and perform
new queries with it.

2. The application constraints specification can be viewed as a series of at-
tributes and values.

Post-Condition in Spe-
cial Case

-

Normal Case 1. User selects ’Distribution Cost’.

2. An interface that allows the input of a series of attributes and their values is
rendered.

3. User fills in with the desired information.

4. The user is able to use the specification in order to estimate the cost of the
distribution.

68

4.4 Use Cases

Special Cases 2a. Interface cannot be rendered.

a) System shows an informative error message.

Table 4.7: Description of Use Case Specify Hard Constraints.

Name Calculate Distribution Cost

Goal The user wants to obtain an estimation of the cost of the application he is in-
tending to deploy, given its functional, non-functional characteristics and hard
constraints.

Actor Application developer

Pre-Condition

1. The user has specified functional, non-functional characteristics and hard
constraints of the application.

Post-Condition

1. The user is capable the cost of the current distribution according to all the
characteristics he has provided.

Post-Condition in Spe-
cial Case 1. Cost estimations cannot be retrieved.

Normal Case 1. User selects ’Distribution Cost’.

2. The modeling tool contacts a cost calculation service, sends to it the descrip-
tions provided by the user and renders the received answer.

Special Cases 2a. Cost calculation service cannot be contacted

a) System shows an informative error message.

3a. Description of the cost cannot be rendered.

a) System shows an informative error message.

Table 4.8: Description of Use Case Calculate Distribution Cost.

69

4 Concept and Specification

Name View Model

Goal The user wants to visualize the schema of one of the proposed solutions.

Actor Application developer

Description User employs functionalities provided by the modeling tool to visualize the
different topology distributions suggested by the CBR System.

Table 4.9: Description of Use Case View Model.

Name Refine Application

Goal The user modifies one of the available suggested solutions by the system in order
to make it fit completely to the conditions of his problem.

Actor Application developer

Description User employs tools provided by the topology modeler software in order to
modify a distribution returned by the CBR system and make it fit to all the
requirements.

Table 4.10: Description of Use Case Refine Application.

Name Retrieve Deployment Package

Goal The user wants to a deployment package of the application.

Actor Application developer

Description User employs functionalities provided by the modeling tool to download a de-
ployment package of the topology that meets the requirements of the application
he is intending to deploy.

Table 4.11: Description of Use Case Retrieve Deployment Package.

Name Discover Similar Applications

Goal The user wants to retrieve a list of applications and their solutions that could
fulfill the specified set of requirements. The user also wants to see indicators that
inform him about how similar his application and the ones in the knowledge
base are.

Actor Application developer

70

4.4 Use Cases

Pre-Condition

1. The users has specified a set of functional and/or non-functional charac-
teristics of an application and they are successfully received by the CBR
engine.

Post-Condition

1. A list of similar applications, similarity measures and possible topologies
solutions are displayed to the user.

Post-Condition in Spe-
cial Case 1. No results are shown.

Normal Case 1. User selects ’Discover Similar Applications’.

2. The modeling tool contacts the similarity engine and sends all the functional
and non-functional characteristics the user has specified.

3. The CBR engine receives the information, processes it and obtains a list of
similar problems from the knowledge base.

4. Once a list of similar application is obtained, the CBR engine retrieves their
respective viable topology distributions and sends them to the modeling
tool.

5. The modeling tool renders the answer sent by the CBR engine and the user
obtains a list of possible solutions for the problem he has described and he
can inspect all of them and check the value of the similarity measure.

Special Cases 2a. The CBR Engine cannot be reached.

a) System shows an informative error message.

3a. The CBR Engine cannot retrieve the solutions of the applications.

a) System shows an informative error message.

4a. Answer of the CBR cannot be rendered.

a) System shows an informative error message.

Table 4.12: Description of Use Case Discover Similar Applications.

Name Compute Similarity

Goal In order to discover similar applications, the computation of different similarity
measures of the characteristics of a given problem and the ones stored in a
knowledge base should be performed

Actor Application developer

71

4 Concept and Specification

Pre-Condition

1. The users has specified a set of functional and/or non-functional charac-
teristics of an application and they are successfully received by the CBR
engine.

Post-Condition

1. Similarity measures of non-functional characteristics, per each similar
application are returned.

Post-Condition in Spe-
cial Case 1. Similarity measure computation cannot be performed.

Normal Case 1. The CBR engine contacts a system where different viable topologies are
stored and sends to it the functional characteristics of an application pro-
vided by the user.

2. A list of applications with similar functional characteristics is obtained.

3. Non-functional characteristics of the applications previously obtained are
retrieved and computations are performed in order to obtain similarity
measures

4. A list of applications with the respective similarity values is returned.

Special Cases 1a. Is not possible to reach the system containing functional requirements
description of applications.

a) System shows an informative error message.

3a. The Similarity measures cannot be obtained.

a) System shows an informative error message.

Table 4.13: Description of Use Case Compute Similarity.

Name Retrieve Viable Distribution

Goal Given an application the retrieval of its viable topology distributions needs to be
performed

Actor Application developer

Pre-Condition

Post-Condition

1. Information describing a viable topology distribution is returned.

72

4.4 Use Cases

Post-Condition in Spe-
cial Case 1. Retrieval cannot be performed.

Normal Case 1. The CBR engine queries the knowledge base in order to get descriptions of
the solutions of a determinate application.

Special Cases 1a. Information cannot be retrieved.

a) System shows an informative error message.

Table 4.14: Description of Use Case Retrieve Viable Distribution.

Name Store Adapted Solution

Goal The user wants to store in the CBR case base the solution he has adapted and its
characteristics.

Actor Application developer

Pre-Condition

1. The user has performed changes to the topology he has selected and wants
to save it. along with its characteristics to the system.

Post-Condition

1. The user receives a confirmation message.

Post-Condition in Spe-
cial Case 1. The topology and its characteristics cannot be saved.

Normal Case 1. User selects the option ’Save Solution to Case Base’.

Special Cases 1a. It is not possible to store the new case and its solution. returned.

a) System shows an informative error message.

2a. It is not possible to continue with the next step.

a) System shows an informative error message.

Table 4.15: Description of Use Case Store Adapted Solution.

73

4 Concept and Specification

Name Persist Viable Distribution

Goal The user wants to store in the system the mu−topology he has modeled in order
to enrich the case base

Actor Application developer

Pre-Condition

1. The user has redefined a proposed viable topology and has stored it in he
repository employed by the modeling tool

Post-Condition

1. The user obtains a confirmation message.

Post-Condition in Spe-
cial Case 1. The user is not able to persist the topology distribution.

Normal Case 1. User selects an option that allows him to persist the distribution.

2. An interface is rendered where he fills required informations.

3. User proceeds to save the changes he has performed.

4. The modeling tool sends the information to the CBR system and it is stored

Special Cases 2a. No interface is rendered.

a) System shows an informative message.

4a. The modeling tool is not able to reach the CBR engine and it is not possible
to store the changes.

a) System shows an informative message.

Table 4.16: Description of Use Case Persist Viable Distribution.

Name Persist Knowledge

Goal The user wants to store in the system the characteristics of the application he has
described.

Actor Application developer

Pre-Condition

1. The user has previously persisted a viable distribution and has provided
description of non-functional characteristics.

74

4.4 Use Cases

Post-Condition

1. The user obtains a confirmation message.

Post-Condition in Spe-
cial Case 1. The user is not able to persist the knowledge of the application.

Normal Case 1. User selects an option that allows him to persist the knowledge of the
application he has described.

2. The modeling tool sends the data to the CBR system.

3. The information is stored.

Special Cases 2a. The modeling tool is not able to reach the CBR engine and it is not possible
to store the changes.

a) System shows an informative message.

3a. It is not possible to store the provided information in the CBR System .

a) System shows an informative message.

Table 4.17: Description of Use Case Persist Knowledge.

Name Retrieve Knowledge

Goal The user wants to retrieve the characteristics of a determined application.

Actor Domain expert, Application developer

Pre-Condition

1. The user has retrieved IDs of applications that are similar to a current
problem from the system.

Post-Condition

1. The user obtains the knowledge and characteristics of an applications that
were used to perform the similarity analysis.

Post-Condition in Spe-
cial Case 1. The user is not able to see any information.

Normal Case 1. User requests the knowledge of an specific application.

75

4 Concept and Specification

Special Cases 1a. No results are returned.

a) System shows an informative message.

Table 4.18: Description of Use Case Retrieve Knowledge.

Name Update Knowledge

Goal The user wants to update the information of an application stored in the knowl-
edge base.

Actor Domain expert

Pre-Condition

1. The user has retrieved knowledge of an specific application.

Post-Condition

1. The user obtains a confirmation message.

Post-Condition in Spe-
cial Case 1. The user is not able to update the data.

Normal Case 1. User requests to update the knowledge and characteristics of a determined
application.

Special Cases 1a. It is not possible to delete the information.

a) System shows an informative error message.

Table 4.19: Description of Use Case Update Knowledge.

Name Retrieve Similarity Tables

Goal The user wants to visualize the similarity tables employed by the system.

Actor Domain expert

Pre-Condition

1. The system is up and running.

Post-Condition

1. The user obtains a list of the similarity tables used by the system.

76

4.4 Use Cases

Post-Condition in Spe-
cial Case 1. The user is not able to see any similarity table.

Normal Case 1. The user retrieves the similarity tables employed by the system.

Special Cases 1a. No results are returned.

a) System shows an informative message.

Table 4.20: Description of Use Case Retrieve Similarity Tables.

Name Update Similarity Table

Goal The user wants to add more rules to one similarity measures table.

Actor Domain expert

Pre-Condition

1. A similarity table has been retrieved.

Post-Condition

1. Changes to the similarity table are saved.

Post-Condition in Spe-
cial Case 1. Is not possible to save changes into the system.

Normal Case 1. The user makes a request to modify a similarity table.

2. An interface is rendered and the user fills in with the desired information.

3. The user saves the performed changes.

Special Cases 2a. No interface is rendered.

a) System shows an informative error message.

4a. It is not possible to save changes into the system.

a) System shows an informative error message.

Table 4.21: Description of Use Case Update Similarity Table.

77

4 Concept and Specification

4.5 System Overview

Figure 4.7: System Architecture Overview

Our methodology has several phases which require a system constituted of several environ-
ments and tooling support, as depicted in Figure 4.1 presents. An user access the system
through a topology modeler tool in order to model the α-topology of the application he
is intending to deploy and also making use of knowledge related to the performance and
workload with the objective of providing an accurate description of the application to be
deployed.

Once all the required characteristics have been collected, they are processed by a similarity
engine, which is the component performing the different similarity calculations and aggrega-
tions using past cases and solutions stored in a knowledge base. This component returns a
list of the possible solutions for the current problem, ranked accordingly to the results of the
similarity computation.

The incurred costs of a deployed application can be estimated through the use of a pricing
framework. This framework receives characteristics of the application profile as well as
hard constraints to perform a cost estimation of the application running in different cloud
providers.

As it has been previously mentioned, in CBR systems something really important is to

78

4.5 System Overview

keep improving and enriching the knowledge base, because of that and once a proposed
distribution topology has been used deployed with the help of a provisioning engine, a
monitoring framework is in charge of collecting and recording metrics of the performance and
workload of that system. Since a indefinite number of values may be captured, a knowledge
capturing component is the responsible element of filtering the relevant information and
recording it in the knowledge base, in this way the case base will not be populated with
non-relevant data that might deteriorate the quality of results instead of improving them.

Figure 4.7 presents a schema of the different components that conform the proposed system,
the elements are grouped according to the phase of the life cycle of the methodology just for
illustration purposes.

79

4 Concept and Specification

80

5 Design

Based on the concepts and specifications proposed in the previous chapter, this one presents
in detail the architecture of a system capable of capturing and using knowledge of evolving
cloud application topologies through the employment of CBR techniques. First, an overview
of the architecture of the framework and its different components and interfaces is provided.
Subsequently, design considerations of the non-functional aspects of the data model as well
as of the modeling layout are presented. The chapter finishes defining the functions that a
RESTful API that allows the control of the framework via HTTP requests supports.

5.1 Architectural Overview

Figure 5.1: Architectural overview of the system.

The representational architectural model employed to express the system is a three-layer
architectural representation, being the layers the Presentation Layer, Business Layer and the
Data Layer. Each one of them are constituted by a number of components that are necessary to
accomplish the objectives of this work. Figure 5.1 shows such representation, which support
the different phases of the life cycle presented in Section 4.1 are used in this diagram to
illustrate the different systems that are accomplishing the tasks and functions in each stage.

The functions of the modeling phase are executed through a modeling tool system and

81

5 Design

it should provide functionalities to graphically depict the architecture of an application,
have elements that allow to export and import deployment packages and components for
managing the different elements that should be stored when saving the application model.

The CBR framework is also depicted in terms of three layers, the application layer contains a
component that allows the communication with other entities the system, the web service
API and is used to send the different characteristics that describe an application to the com-
ponents of the engine, among other functionalities. The business layer contains elements
that constitute the logical implementation of the application. In this proposal the similarity
engine logic is composed of two similarity computation engines. The Functional Require-
ments Processor is the component responsible of computing graph similarity between the
given α−topology and the topologies stored in the knowledge base. The Non-functional
Requirements Component has a similar function as the other element but in this case taking
into account requirements of QoS. The similarity engine also interacts with the components
of knowledge aggregator and knowledge manager which are the ones reaching with the data
layer. Furthermore, the similarity engine processes the result provided by the functional
and non-functional requirements processing components, retrieves and ranks the obtained
solutions and shows in the first positions the topologies that are more appropriate to solve a
current situation.

The Data Layer refers to the persistence means that the system uses. One of them corresponds
to the performance knowledge, this is a database containing the description of different
µ-topologies of applications that are running and also it stores data of different metrics
and descriptions of the other non-functional characteristics. The application knowledge
persistence unit saves the different topologies that are used by the CBR engine to determinate
similarity of functional characteristics.

In the runtime phase three other system are employed. The first one is the Provisioning Engine
which helps the developers in the task of deploying an application to the cloud and providing
the resources that it needs. The pricing and Cost Calculator Framework returns estimation of
incurred costs of applications when running in offerings of different cloud providers. The
Monitoring Framework is responsible of updating the knowledge of applications that are
deployed in different clouds in order to enrich the knowledge base of the CBR System. It
must be pointed that the implementations of these three systems is not part of the focus of
this work.

5.2 Non-functional Aspects Data Model

From the data model representation of an application presented in the section 4.1.2, the
components that correspond to the non-functional characteristics and the viable topology
distribution, were implemented following a relational database design an it is shown in
Figure 5.2.

The entity-relationship model, depicts that the description of an application consists of one
QoS Specification and one Viable Topology. One QoS Specification could correspond to more than

82

5.2 Non-functional Aspects Data Model

Figure 5.2: Cloud application non-functional aspects data model

83

5 Design

one application and a Viable Topology distribution too. One QoS Specification entry consists of a
Workload and a Performance description and they could also be part of other QoS Specifications.
A Performance specification is composed of a set of performance Metric Descriptors that belong
to a determinate Metric and a Metric Category.

Regarding the functional characteristics, represented by the α- and γ-topologies, since they
are not handled directly by the CBR system but for an external service, they are represented
in terms of a service template which basically consists of a XML representation of the node
types and relationships of the distribution topology of the application.

5.3 Modeling Layout Design

The interfaces employed to get the information from the developer should be integrated in a
smooth way to the modeling tool user interface in order to make them look as one more part
of the environment. To achieve that, a new option to the main menu of the topology modeler
and it has the name Similarity Analysis, when pressed it displays the following options :

• Performance Requirements

• Workload Characteristics

• Discover Similar Applications

5.3.1 Performance Requirements Specification

When the user selects the option Performance Requirements a panel is rendered and the current
information about the performance is displayed, if no characteristics have been specified then
the XML is displayed empty. Buttons that allow to add metrics according to a determined
category are also displayed, when the user selects one of then a new panel with a series of
fields is rendered; here the developer can specify per each metric the different descriptors
(minimum, maximum, mean and standard deviation), once the desired fields are filled in he
can add them by pressing the button Add or discard the changes by selecting Cancel.

If Add was pressed, then the panel containing the specification in XML format is reloaded to
reflect the new changes. The developer can make this process the number of times he wishes
per each metric category. The exposed above is illustrated in Figure 5.3.

5.3.2 Workload Characteristics Specification

The specification of workload characteristics works in the same way as in the case of the
performance specification. When the user selects the option Workload Characteristics, a panel
containing the description of the workload of the application is rendered and it is empty
if it is the first time that is being rendered or no characteristics have been specified. If the
developer selects the button Specify Workload Characteristics, a new panel is rendered with

84

5.3 Modeling Layout Design

Figure 5.3: Performance specification layout

some fields where the user can describe the workload requirements of the application he is
intending to deploy.

Figure 5.4: Workload specification layout

If certain field is allowed to have only a small set of values it is rendered as a combo box,
otherwise the input field is displayed as a text box. Once the user has filled the desired
information, he must press the button Add to effectively assign the specification to the
application. If this process is completed successfully, then the panel containing the form
closes and the characteristics he has specified are rendered in the first panel. The previously
explained is illustrated in Figure 5.4.

85

5 Design

5.3.3 Discovery of Similar Applications

Once the user has modeled an alpha topology of some application and has specified charac-
teristics of workload and performance, he is able to retrieve similar applications and their
solutions. In order to invoke the services of the CBR framework, the option Discover Similar
Applications should be selected. A panel containing a table and two buttons is rendered, the
table is empty at the first time but it is filled when the user uses the button Discover Similar
Apps.

This button starts the actions required to send all the provided specifications to a service of
the CBR framework, as an answer the list of similar applications, as well as the obtained
similarity values, is rendered in the panel. If the user clicks on any cell under the column
called ID, he will be able to visualize the viable topology of that particular application. When
selecting the option view under the column Knowledge, a panel rendering the workload and
performance characteristics of the respective application will be displayed. If the user selects
the option view under the column Offering, a service that looks for candidate providers and
offerings according to the specified characteristics of the application is called, the different
options are rendered in a new panel and when the user selects one of them, he is able to
see details regarding costs and characteristics of that particular offering. The descriptions
provided above are illustrated in Figure 5.5.

There is one more column called µ-topology, if the developer selects the option Refine under
this column, he is redirected to a new page where he is able to clearly visualize the α-topology
he has depicted merged with the γ-topology of the viable distribution of the application he
is inspecting. In this page the developer is also able to change nodes and elements of the
distribution in order to make the proposed solution totally fit all the requirements.

The user is also able to save this new µ-topology to the repository of the modeling tool and
the knowledge of the application to the CBR Engine. To accomplish this an option called
Persist Topology and Knowledge is provided and when the user selects it, a panel is rendered
where the user can input the name of the new distribution topology and store it and the given
knowledge, in both cases and informative message of the result of the process is returned.

Furthermore, the developer may also request estimation costs for this new topology, this can
be done by selecting the option Distribution Cost, immediately a panel with some fields is
rendered and he is able to fill information regarding hard constraints and the application
profile, used to request the cost information to an external service, and once the button
Estimate Cost is pressed the respective information is rendered in the same panel. The user
can perform changes to the different criteria and request estimations the times he considers
necessary. Figure 5.6 illustrates the descriptions previously provided.

86

5.3 Modeling Layout Design

Figure 5.5: Discover similar applications layout

87

5 Design

Figure 5.6: Refine application and cost calculation layout. In the refinement interface, the
white boxes represent the nodes of the depicted α-topology and the gray boxes
the γ-topology, together they conform the proposed µ-topology.

88

5.4 RESTful API

5.4 RESTful API

The REST API makes possible the control of the whole system via HTTP requests. A summary
of the supported operations in the REST API is shown in Table 5.1.

Name Description

Discover Similar Applications

This methods computes and returns local and
global similarity measures between an applica-
tion described through a set of characteristics
and applications stored in a knowledge base.
Based on the results of the similarity measures,
a set of possible solutions for the current prob-
lem or µ-topologies is also returned.

Persist Knowledge
This method records in the knowledge base
the characteristics of an application as well as
the URI of the modeled µ-topology.

Retrieve Knowledge This method returns the characteristics of a
specific application given an id.

Update Knowledge
This method updates the attribute values of
an application in the knowledge base, given
an id.

Retrieve Similarity Tables This method returns a list of similarity tables
used by the system.

Update Similarity Table This method updates the similarity values
stored in a specific similarity table.

Table 5.1: REST API summary

Further descriptions of the different methods of the RESTful API are presented in the remain-
ing of this section.

89

5 Design

Method Discover Similar Applications

Description This methods computes the similarity of an application with others stored in a
knowledge base, given a set of characteristics.

HTTP Request POST /application-discoverability

URI params -

Query params

• Workload and performance characteristics serialized in XML format.

Post params -

Response Returns a JSON object with the values of local workload and performance similar-
ity per each similar application discovered and the URIs of their /mu−topologies.

Error responses • 500 Internal Server Error

• 400 Bad Request

• 404 Not Found

Table 5.2: Description of REST method Discover Similar Applications.

Method Persist Knowledge

Description This method records the characteristics of an application as well as the URI of
the modeled solution in the knowledge base.

HTTP Request POST /application-knowledge

URI params -

Query params

• Workload, performance characteristics and URI of the modeled µ-topology
serialized in XML format.

Post params -

Response 201 Created

Error responses • 500 Internal Server Error

• 400 Bad Request

• 404 Not Found

Table 5.3: Description of REST method Persist Knowledge.

90

5.4 RESTful API

Method Retrieve Knowledge

Description This methods retrieves non-functional characteristics of an application given an
identifier.

HTTP Request GET /application-knowledge/{id}

URI params

• ID: Identification of an application object.

Query params -

Post params -

Response Returns a set of the characteristics of the application in JSON format.

Error responses • 500 Internal Server Error

• 400 Bad Request

• 404 Not Found

Table 5.4: Description of REST method Retrieve Knowledge.

Method Update Knowledge

Description This methods updates the non-functional characteristics of an application given
an identifier.

HTTP Request PUT /application-knowledge

URI params -

Query params

• Application ID, workload, performance characteristics and URI of the
modeled µ-topology serialized in XML format.

Post params -

Response 200 OK.

Error responses • 500 Internal Server Error

• 400 Bad Request

• 404 Not Found

Table 5.5: Description of REST method Update Knowledge.

91

5 Design

Method Retrieve Similarity Tables

Description This methods retrieves the similarity tables used by the system.

HTTP Request GET /similarity-tables

URI params -

Query params -

Post params -

Response Returns a list of all the similarity tables employed by the CBR system in JSON
format.

Error responses • 500 Internal Server Error

• 400 Bad Request

• 404 Not Found

Table 5.6: Description of REST method Retrieve Similarity Tables.

Method Update Similarity Table

Description This methods updates the entries of a similarity table.

HTTP Request PUT /similarity-table

URI params -

Query params

• Similarity table ID and table entries new values serialized in XML format.

Post params -

Response 200 OK

Error responses • 500 Internal Server Error

• 400 Bad Request

• 404 Not Found

Table 5.7: Description of REST method Update Similarity Table.

92

6 Implementation

This chapter presents details of the prototypical implementation of this thesis, taking into
account the design considerations presented in the previous chapter. As explained in Chapter
4, the proposed methodology follows different stages which were also considered when
realizing the designs and once again are employed to illustrate the different components of
the implementation of the this prototype.

6.1 Modeling

As previously presented in Figure 5.1 the modeling stage makes use of a modeling tool
system. As also pointed in Chapter 5, an existing system is adapted in order to provide the
user interface that gets data from the user and contact the similarity analysis framework.
The topology modeling tool should allow the developer to depict and visualize a graph-
based application topology and also to add characteristics to each of its component such
as requirements, capabilities, policies, among others. The selected tool for the prototypical
implementation is Perfinery, which is an OpenTOSCA Winery extension that allows the
creation of TOSCA-based application models through a web interface.

Winery is a web-based graphical modeling tool that allows the depiction of application
topologies and management plans, its main components are: [Gan15]:

• Type, template and artifact management

• Topology modeler

• BPMN4TOSCA plan modeler

• Repository with storage systems

The type, template and artifact management are the components managing the node, relation-
ship types and templates, etc. A graph-based visual topology is created through the use of the
topology modeler component which employs node and relationship templates contained in a
so-called service template. It also allows to attach relationship constraints, deployment arti-
facts and policies to the nodes and relationships of a depicted distribution template [KBBL13].
Perfiney extends Winery in order to allow the users to specify workload and performance
characteristics of the different components of a distribution topology through the use of policy
templates [Gan15], among other features.

For the purposes of this work the topology modeler is the only component that is being
extended, furthermore the approach followed for Perfinery of using policies to specify work-
load and performance characteristics is not used because the requirements employed by the
CBR system are the ones belonging to the whole application, not to individual components.

93

6 Implementation

Additionally, the characteristics added by the developer are used for information purposes in
this approach and should not be part of the service template of the application as Perfinery
does.

The topology modeler component is implemented using Java and Java Server Pages (JSP)
technologies, its web interface makes use of HTML5 and Javascript. The same technologies
are employed to extend the web interface and invoke the services of the CBR Framework, the
new functionalities are implemented in a way that they look like another part of the system.
This extension consists of adding the menu Similarity Analysis to the main bar, the panels that
are rendered when selecting options of the new menu option follow the same design and
style principles of the existing functionalities, the refine topology interface described in the
Figure 5.6 also follows these considerations. Figure 6.1 shows an overview of the Winery
Topology Modeler interface with the menu option Similarity Analysis added to it.

Figure 6.1: Winery Topology Modeler interface extended with the menu Similarity Analysis
added

6.2 CBR - Similarity Analysis

The system executing the processes held on the similarity analysis phase is the CBR framework
which is the one receiving data from the modeling tool, processing it and returning a list
of similar applications and solutions. Updating and retaining knowledge in the different
storing entities are also functions that the CBR framework must deal with. Details about
implementation of the main components of this system are presented bellow.

6.2.1 Web Service API

The web service API that allows accessing the main functions of the CBR engine is imple-
mented using the Java-based framework Spring. This is a high-level web framework that
allows the development of RESTful applications, among other functionalities. Spring is a

94

6.2 CBR - Similarity Analysis

URI Parameters Response Content

POST
/application-
discoverability

List of IDs of similar
applications and
specification of
non-functional
characteristics in XML
format.

List of objects, with fields:
appId
workloadSimilarity
performanceSimilarity
globalSimilarity
url

POST /application-knowledge

Specification of non-
functional characteris-
tics of the application
and URI of solution in
XML format

Status message

GET
/application-
knowledge/{id}

ID of the application

workload:
id
pattern
arrival_rate
behavioral_model
avg_usr_number
avg_transactions_second
time_interval

List of metric descriptors lmet-
ricd:

id
min
max
mean
st_deviation

PUT /application-knowledge

Application ID and
specification of non-
functional charac-
teristics and viable
distribution URI in
XML format.

Status message

GET
/similarity-tables

-

List of similarityTable objects,
containing a list of tableEntry
objects:

id
column_name
row_name
similarity_measure

PUT /similarity-table

Similarity table ID and
table entries new values
serialized in XML for-
mat.

Status message

Table 6.1: Details of URIs supported by the CBR Engine

95

6 Implementation

lightweight container that offers a number of advantages when it comes to complexity and
portability since it only needs a servlet container to execute. The main components of Spring
include the BeanFactory which offers the basic functionality of managing Java beans of any
nature and the ApplicationContext, which adds more advanced and specialized functionality
to the BeanFactory [AA05].

Database entities are represented as Plain Old Java Objects (POJO) and Data Access Objects
(DAO) to interact with the persistence media. Spring also makes uses of a class called
controller to map the requesting URLs to a service and return an answer accordingly.

Table 6.1 shows a list of the URIs of the services provided by the CBR Framework, the
parameters that the service expects and details of the returned answer.

As shown in some entries of the Table 6.1, several of the supported functions of the CBR
Framework API need to receive information of the non-functional characteristics and solu-
tions of the application in XML format, therefore a XML schema needs to be defined. Listing
6.1 shows the main structure of the XML schema employed when discovering similar applica-
tions, the main element is SimilarityData and is formed by a sequence of four other elements:
SimilarApps, Workload , Performance and Solution. The element SimilarApps is a complex type
formed by a series of simple types called app_id whose values represent the IDs of similar
applications but only considering the functional requirements.

1 <xs:schema attributeFormDefault="unqualified" elementFormDefault="

qualified" xmlns:xs="http://www.w3.org /2001/ XMLSchema">

2 <xs:element name="SimilarityData">

3 <xs:complexType >

4 <xs:sequence >

5 <xs:element name="SimilarApps">

6 <xs:complexType >

7 <xs:sequence >

8 <xs:element type="xs:string" name="app_id"/>

9 </xs:sequence >

10 </xs:complexType >

11 </xs:element >

12 <xs:element name="Workload">

13 <xs:complexType >

14 ...

15 </xs:complexType >

16 </xs:element >

17 <xs:element name="Performance">

18 <xs:complexType >

19 ...

20 </xs:complexType >

21 </xs:element >

22 <xs:element name="Solution">

23 <xs:complexType >

24 ...

25 </xs:complexType >

26 </xs:element >

96

6.2 CBR - Similarity Analysis

27 </xs:sequence >

28 </xs:complexType >

29 </xs:element >

30 </xs:schema >

Listing 6.1: Specification of non-functional characteristics and solution of an application
schema

The schema shown above is similar to the ones employed when persisting and updating
knowledge but instead of using the type SimilarApps, a single element called App whose
content is the ID of an application must be used.

The complex type Workload contains a sequence of simple types that correspond to the
attributes defined previously in Table 4.2, the schema structure is shown in Listing 6.2

1 <xs:element name="Workload">

2 <xs:complexType >

3 <xs:sequence >

4 <xs:element type="xs:string" name="pattern"/>

5 <xs:element type="xs:string" name="arrival"/>

6 <xs:element type="xs:string" name="behavioral"/>

7 <xs:element type="xs:string" name="avg_users"/>

8 <xs:element type="xs:string" name="avg_transactions"/>

9 </xs:sequence >

10 </xs:complexType >

11 </xs:element >

Listing 6.2: Workload schema

In the case of the type Performance, it is formed by a sequence of complex types whose element
represent a metric category, for example Time Behavior. The metric category type is conformed
of another complex type that corresponds to an specific metric, followed by single types that
depict the minimum, maximum, mean and standard deviation values. Due to space reasons,
only a part of the schema is shown in Listing 6.3, nevertheless it illustrates the main parts of
the mentioned schema. The categories and metrics that give name to the different types are
the ones that are specified in Table 4.2.

1 <xs:element name="Performance">

2 <xs:complexType >

3 <xs:sequence >

4 <xs:element name="time_behaviour">

5 <xs:complexType >

6 <xs:sequence >

7 <xs:element name="response_time">

8 <xs:complexType >

9 <xs:sequence >

10 <xs:element type="xs:string" name="min"/>

11 <xs:element type="xs:string" name="max"/>

97

6 Implementation

12 <xs:element type="xs:string" name="avg"/>

13 <xs:element type="xs:string" name="st"/>

14 </xs:sequence >

15 </xs:complexType >

16 </xs:element >

17 <xs:element name="throughput">

18 <xs:complexType >

19 <xs:sequence >

20 <xs:element type="xs:string" name="min"/>

21 <xs:element type="xs:string" name="max"/>

22 <xs:element type="xs:string" name="avg"/>

23 <xs:element type="xs:string" name="st"/>

24 </xs:sequence >

25 </xs:complexType >

26 </xs:element >

27 ...

28 </xs:sequence >

29 </xs:complexType >

30 </xs:element >

31 <xs:element name="capacity">

32 <xs:complexType >

33 <xs:sequence >

34 <xs:element name="bandwith">

35 <xs:complexType >

36 <xs:sequence >

37 <xs:element type="xs:string" name="min"/>

38 <xs:element type="xs:string" name="max"/>

39 <xs:element type="xs:string" name="avg"/>

40 <xs:element type="xs:string" name="st"/>

41 </xs:sequence >

42 </xs:complexType >

43 </xs:element >

44 ...

45 </xs:sequence >

46 </xs:complexType >

47 </xs:element >

48 ...

49 </xs:sequence >

50 </xs:complexType >

51 </xs:element >

Listing 6.3: Performance schema

The complex type Solution is formed by a sequence of simple types, the element called
name identifies the solution, view_url references the URI that has to be used to display the
solution in the modeling tool, meanwhile the data contained in the elements dist_url_host,
dist_url_nsmuand dist_url_muid is used to build the URI of the site where the refinement of
the topology takes place. Listing 6.4 shows the schema for this type.

98

6.2 CBR - Similarity Analysis

1 <xs:element name="Solution">

2 <xs:complexType >

3 <xs:sequence >

4 <xs:element type="xs:string" name="name"/>

5 <xs:element type="xs:string" name="view_url"/>

6 <xs:element type="xs:string" name="dist_url_host"/>

7 <xs:element type="xs:string" name="dist_url_nsmu"/>

8 <xs:element type="xs:string" name="dist_url_muid"/>

9 </xs:sequence >

10 </xs:complexType >

11 </xs:element >

Listing 6.4: Solution schema

When using the operation of update similarity table an object serialized in XML format also
should be passed as parameter, Listing 6.5 shows the employed XML schema. The main
element is called SimilarityTable and it must have an attribute id, that makes reference to the
identification of the table in the knowledge base, this element is followed by a sequence of a
complex type named TableEntry which represents the different cells in the table and is formed
by simple elements that reference a column, row and the similarity value that should be
stored the given position.

1 <xs:schema attributeFormDefault="unqualified" elementFormDefault="

qualified" xmlns:xs="http://www.w3.org /2001/ XMLSchema">

2 <xs:element name="SimilarityTable">

3 <xs:complexType >

4 <xs:sequence >

5 <xs:element name="TableEntry">

6 <xs:complexType >

7 <xs:sequence >

8 <xs:element type="xs:string" name="column"/>

9 <xs:element type="xs:string" name="row"/>

10 <xs:element type="xs:string" name="value"/>

11 </xs:sequence >

12 </xs:complexType >

13 </xs:element >

14 </xs:sequence >

15 <xs:attribute type="xs:byte" name="id"/>

16 </xs:complexType >

17 </xs:element >

18 </xs:schema >

Listing 6.5: Similarity table schema

99

6 Implementation

6.2.2 Similarity Engine

The similarity engine is the component that computes the local and global similarity measures
between a given problem and the cases stored in the knowledge base. The engine is compound
of two elements, as previously shown in Figure 5.1:

• Functional requirements processing

• Non-functional requirements processing

For the implementation of the functional requirements processing component an external
service is used. This service receives a depicted α-topology expressed as a service template
and serialized in XML format. The requirement is done from the topology modeling tool, the
external service performs the functional similarity computation trough the employment of
a graph similarity method that considers the structure of the graphs, node and relationship
types and returns a list of similar application IDs. The service is called Pertos and it is part
of the work conducted by [Din16] 1, the functions that are being used are the ones that
allow to perform the actions previously depicted, following the instructions provided in the
documentation of Pertos.

It should be pointed that the database employed by the service performing the graph similarity
is the one named as Application Knowledge in Figure 5.1 and there is consistency between the
IDs of the applications stored in that database and the ones that are saved in the persistence
unit called Performance Knowledge, where information about the non-functional characteristics
of the applications is stored.

The processing of the non-functional requirements is implemented in Java and it basically
consists on computing local similarity for every single attribute of workload and performance,
following the algorithms defined in Sections 4.2.2 and 4.2.3.

Listing 6.6 shows the Java implementation of the computation of the workload similarity, it
makes use of a function called computeSingleLocalSimTable which returns the similarity value
of two attributes given their values and the respective similarity table.

1 public static float computeLocalWorkloadSim (Workload workloadCase ,

Workload workloadQuery ,

2 TreeMap <Integer ,List <TableEntry >> lTables) throws Exception{

3

4 float sim =-1;

5 ArrayList <Float > lSimList = new ArrayList <Float >();

6

7 lSimList.add(computeSingleLocalSimTable(workloadCase.getPattern (),

8 workloadQuery.getPattern (),lTables.get(1)));

9 lSimList.add(computeSingleLocalSimTable(workloadCase.getArrival_rate

(),

10 workloadQuery.getArrival_rate (),lTables.get (2)));

1To be published

100

6.2 CBR - Similarity Analysis

11 lSimList.add(computeSingleLocalSimTable(workloadCase.

getBehavioral_model (),

12 workloadQuery.getBehavioral_model (),lTables.get (3)));

13 lSimList.add(computeSingleLocalSim(workloadCase.getAvg_usr_number (),

14 workloadQuery.getAvg_usr_number ()));

15 lSimList.add(computeSingleLocalSim(workloadCase.

getAvg_transactions_second (),

16 workloadQuery.getAvg_transactions_second ()));

17 sim = GlobalSimilarity.computeSingleGlobalSimilarity(lSimList);

18 return sim;

19

20 }

Listing 6.6: Workload similarity computation

To compute the similarity between two metrics it is necessary to calculate the values of local
similarity per each metric descriptor, add them to a list and them aggregate them through the
application of the global similarity measure. Listing 6.7 shows details of the implementation
of the function that makes the computation of local similarity.

1 public static float computeSingleLocalSim(Float caseCB , Float query){

2 float difference = 0;

3 float similarity =-1;

4 if (caseCB != null && query != null && caseCB != UNDEFINED && query

!= UNDEFINED) {

5 if (caseCB > 0 && query > 0){

6 difference = (float) (Math.log(caseCB) - Math.log(query));

7 }

8 else if(caseCB < 0 && query < 0){

9 difference = (float) (-1*(Math.log((caseCB *-1))) + Math.log((

query *-1)));

10 } else if (caseCB == 0 || query == 0) {

11 difference = caseCB - query;

12 }else{

13 difference = -1;

14 }

15

16 if(difference != -1){

17 similarity = (float) Math.exp(-1* (Math.abs(difference)));

18 }

19 }

20

21 return similarity;

22 }

Listing 6.7: Single local similarity computation

All the local similarities values of attributes are aggregated in order to obtain a single value of
similarity of workload and performance; these values are once more aggregated in order to

101

6 Implementation

obtain an unique value of global similarity, in both cases the employed algorithm is the one
presented in Listing 6.8.

1 public static float computeSingleGlobalSimilarity(List <Float >

localSimList) {

2 float acum = 0;

3 int cont = 0;

4 for (int i = 0; i < localSimList.size(); i++) {

5 if (localSimList.get(i) != -1)

6 cont ++;

7 }

8 if (cont != 0) {

9 float weight = 1.0f / cont;

10 for (int j = 0; j < localSimList.size(); j++) {

11 if (localSimList.get(j) != -1) {

12 cont ++;

13 acum = acum + (weight * localSimList.get(j));

14 }

15 }

16 return ParserXML.round(acum , 2);

17 }

18 return -1;

19 }

Listing 6.8: Global similarity computation

6.2.3 Knowledge Aggregator and Manager

These two components are implemented as the data services and data access classes that need
to be created as part of the Spring programming environment. As their names point, their
functions are in the frame of data administration, access and preparation for the similarity
analysis.

6.3 Runtime

6.3.1 Provisioning Engine and Monitoring Framework

The provisioning process takes place when deploying a modeled application to the cloud
and assigning the requested resources to it. The provisioning engine is not part of the
implementation of this work, nevertheless in a real scenario the use of one is very important.
One example of this is Vinothek, which is part of the OpenTOSCA environment and allows
users to provision cloud instances through the use of a web interface [BBKL14b].

As it has been mentioned in previous chapters, the use of a framework that monitors and pe-
riodically registers metric measures of applications that are running in the cloud is necessary

102

6.3 Runtime

Attribute CBR Framework Nefolog
CPU Cores Number of Processors cpuCores
CPU SPeed Processor Speed cpuSpeed
I/O Performance I/O Operations io

RAM
Memory Allocation to
VM

memory

Local Disk Storage Size storage
Bandwith Bandwith bandwith

Transactions
Average number of
transactions

transactions

Table 6.2: Mapping of existing attributes in the case base to Nefolog available attributes

to update and maintain the information that is stored in the knowledge base. The implemen-
tation of such a framework is not part of this work as well, however the employment of one
is crucial in order to enrich the stored cases and therefore the quality of the results of the CBR
Framework.

6.3.2 Pricing Knowledge and Cost Calculation Framework

When distributing applications in the cloud and considering that nowadays there is a number
of providers, having an estimation of the monthly cost of a running application that meets all
existing requirements is without doubts really useful. The present work does not implement
a pricing knowledge and cost calculation framework but it uses the services of one existing
called Nefolog.

Nefolog is a decision support system that provides cloud candidate offerings search and cost
calculation functionalities, exposed through a RESTful API. The candidate search function-
ality is performed considering the requirements and specifications of the application and
comparing them to the data stored in its knowledge base, meanwhile the cost calculation is
done by applying cost models to the different candidate offerings [XAo13].

The services of Nefolog are being invoked in the current implementation when discovering a
list of similar applications for a given description, this was previously presented in the Figure
5.5. Nefolog defines a number of different parameters that should be provided in order to
determinate the offerings that suit the current conditions. Not all of these parameters are
considered in this work, since not all of them are present in the case base, therefore a mapping
of the existing attributes of the applications saved in the case base with the equivalent ones in
Nefolog is performed, this mapping is presented in Table 6.2.

The Nefolog attributes shown in Table 6.2 used in conjunction with the attribute service type
and filled with the information of a particular application stored in the knowledge base, are
employed to build the necessary query strings to obtain the candidate offerings that could
fulfill the existing requirements. An example of the use of one query string is presented in the
code snipped 6.9.

103

6 Implementation

1 ../ nefolog/candidateSearch?servicetype=application&cpuCores =9& cpuSpeed

=1500& io=moderate&memory =15& storage =600& bandwidth =400& transactions

=5000& media=json

Listing 6.9: Example of a Nefolog Candidate Search query string invoked from the CBR
framework

Nefolog requires a configuration of particular offering and a set of other attributes in order
to estimate the costs of a distribution in the cloud. Since the candidate search functionality
provides configuration identifications of the offerings, they can be used to perform the cost
calculation query. In the case of the attributes, the ones that Nefolog defines are mostly
different from the ones that are used for the candidate search, therefore the only that can
be employed when estimating costs of an existing solution in the case base are the storage
size, the number of transactions, I/O operations and virtual machines. The code snipped
presented in 6.10 shows a sample of the use of query string from the CBR engine in this
situation.

1 ../ nefolog/costCalculator?configid =32&GB=600& Transactions =5000& Server

=13

Listing 6.10: Example of a Nefolog Cost Calculator query string invoked from the CBR
framework

The disadvantage of only considering few attributes when performing the cost calculator
query is that the obtained result might not be as accurate as it could be. In order to face this
situation, the implemented prototype allows the user to add more attributes to the Nefolog
query through the definition of an application profile and hard constraints when he is in the
stage of refining an application and in this way the calculations returned by the decision
support system could reach higher levels of accuracy. The user can define the location zone
of the infrastructure as a constraint and also select the attributes he considers necessary to
perform the estimations. The different fields as well as the available location zones were
obtained from the documentation of the Nefolog Service [XAo13].

104

7 Validation and Evaluation

This chapter presents the methodology employed to verify the validity of the results provided
by the developed prototype as per the specifications and designs considerations presented in
Chapters 4 and 5.

7.1 Methodology

The methodology employed to evaluate the prototypical implementation of this work consists
of three main parts, which are presented below and that have been conceived based on the
proposals of [WL01]:

• Test cases definition

• Case retrieval correctness evaluation

• System behavior after adaptation evaluation

The test cases definition is composed of two tasks: The first one consists of defining the full
set of functional and non-functional characteristics as well as the application profile that
the test case should have. In the second one, the characteristics that the cases stored in the
knowledge base must meet in order to effectively measure the correctness of the system
have to be established. In this set of cases there should be elements whose characteristics are
approximately equal to an application used to test the system, cases with a minor degree of
equality and cases that are completely different. At this point is obvious that the expected
result from the system is the set of cases which have certain degree of similarity with the test
application.

The tasks that belong to the case retrieval correctness evaluation are the ones that are helping
to determinate if the functionalities offered by the prototype are working properly and if
the CBR Framework returns the expected results. The first two tasks consist of modeling
the α-topology of the previously defined test application and entering all its non-functional
characteristics through the employment of the modeling tool Perfinery.

Third task entails the invocation of the discover similar application service of the CBR Frame-
work whereas the fourth is the selection and refinement of a solution. Once changes to the
proposed topology have been performed, the next step is to persist the viable distribution
and its knowledge to the system, which constitutes the fifth task. If all the previous steps
were successfully completed, then it is possible to proceed with the last task which consists of
analyzing the obtained results, this means to examine which cases where returned when dis-
covering the similar applications and compare them with the expected results. Furthermore,
verifications of the calculations of the different similarity measures are carried out.

105

7 Validation and Evaluation

Last process of the methodology consists of verifying and evaluating the behavior of the
system once a new case, from the previous tasks, is added to the case base. This process has
been called system behavior after adaptation evaluation and it basically involves the repetition of
tasks of the previous part with exception of the adaptation and storage of the new solution.
The premise at this stage is that if the developer models the exact application that he modeled
before and inputs in the system the same non-functional characteristics, the application and
the solution that he previously depicted is returned with a 100% degree of similarity, besides
the other similar applications that already exist in the case base.

After finishing all the set of defined tasks, it is possible to determinate whether the system
is behaving as expected or not. Figure 7.1 shows a summary of the three process of the
evaluation methodology as well as the tasks that need to be performed in each stage.

Figure 7.1: Evaluation methodology and task

106

7.2 Evaluation by Means of Case Study: MediaWiki Application

Additionally, the functions of Retrieve and Update Similarity Tables, which are performed by a
domain expert, are evaluated by employing the REST API client Postman1, this two operations
are performed and the details of their responses are observed to determinate if they are the
ones expected.

7.2 Evaluation by Means of Case Study: MediaWiki Application

7.2.1 Test Cases Definition

The methodology described above is executed by taking the MediaWiki Application (Wikipedia)
as case study. MediaWiki is a highly known web application implemented in PHP, makes use
of a MySQL database and that is distributed as a two-tier application and they constitute the
functional requirements for the test case. A representation of the expressed above is shown in
Figure 7.2.

Figure 7.2: MediaWiki Application depicted as a topology

The workload characteristics of the test case are presented below whereas the performance
requirements in Table 7.1, part of the data has been obtained from [UPVS09] and [wik15] and
used where applicable:

• Pattern: Continuously changing

• Arrival rate distribution: Normal

• Behavioral model: Normal

• Average number of users: 2000

• Average number of transactions: 10000

• Time period: 30 days

As previously established in Section 4.1, the knowledge base is populated with a number of
cases that have the following characteristics and based on the ones defined for the test case:

1Postman website: https://www.getpostman.com/

107

7 Validation and Evaluation

Metric Minimum Maximum Mean St. Deviation
Response Time (ms) 100 800 450 494.97

Throughput (request/sec) 2 3 2.5 0.71
Processing Time (ms) 100 800 450 494.97

Read Speed (revolutions/min) 7200 7200 7200 0.00
Write Speed (revolutions/min) 7200 7200 7200 0.00
Resource Migration Time (sec) 60 120 90 42.43

Latency (ms) 100 480 290 268.70
Backup Time (sec) 120 300 210 127.28
Bandwidth (Mbps) 100 600 350 353.55

Processor Speed (GHz) 8.8 12.8 10.8 2.83
Storage Size (GB) 500 500 500 0.00

Memory Allocation to VM (GB) 5 5 5 0.00
Number of VM 1 5 3 2.83

Number of Processors 4 4 4 0.00
I/O Operations 5000 8000 6500 2121.32

Network Utilization (%) 60 100 80 28.28
Memory Utilization (%) 60 100 80 28.28

Disk Utilization (%) 40 100 70 42.43
CPU Utilization (%) 60 100 80 28.28
VM Utilization (%) 60 100 80 28.28

Number of VM per Physical Server 1 5 3 2.83
Resource Acquisition Time (sec) 60 120 90 42.43

Resource Provisioning Time (sec) 60 120 90 42.43
Deployment Time (sec) 30 120 75 63.64

Resource Release Time (sec) 30 60 45 21.21
VM Startup Time (sec) 30 60 45 21.21

Cloud Service Uptime (%) 99 100 99.5 0.71
Cloud Resources Uptime (%) 99 100 99.5 0.71

Mean Time Between Failures (hour) 48 48 48 0.00
Mean Time to Repair (hour) 1 1 1 0.00

Table 7.1: Performance metrics for the MediaWiki test case

108

7.2 Evaluation by Means of Case Study: MediaWiki Application

• One application that has the same α-topology and characteristics slightly different to
the test case, the assigned ID is 1.

• One application with the same α-topology and characteristics with more differences
than the previous case, the assigned ID is 2.

• One application with the same α-topology and characteristics with an even higher
degree of difference than the other two cases, the assigned ID is 3.

• One application with very similar non-functional characteristics but a different α-
topology, the assigned ID is 4.

• A number of applications with notorious differences of functional and non-functional
characteristics. The IDs of these cases start from 5.

7.2.2 Case Retrieval Correctness Evaluation

Figure 7.3: α-topology of the test case modeled in Perfinery

Tasks for this stage are performed on a machine with Ubuntu version 14.04, hosting both the
modeling tool and the CBR Framework service, the knowledge base deployed on MySQL
server version 5.5.44 and employing the browser Mozilla Firefox version 35.0.1.

First step of this stage of the evaluation process consists of modeling an α-topology that
represents the functional requirements of the test case. To achieve this the modeling tool
Perfinery is accessed through the defined web browser, on the main page a new service
template is created by clicking on the button Add new with the name New_Media_Wiki.
Afterwards, the topology editor is accessed and the creation of the nodes that correspond to
the types defined in Section 7.1 and with names that start with the prefix Alpha is performed
and then saved. The result of this task is presented in Figure 7.3.

Next step is the definition of non-functional requirements. At first the workload characteristics
are input by selecting the option Workload Characteristics from the menu Similarity Analysis
and by filling in the form that is displayed when clicking on the button Specify Workload
Characteristics. Figure 7.4 shows the correspondent form with the test data. After adding

109

7 Validation and Evaluation

them when selecting the option Add, the workload information is displayed as XML format,
confirming that the process was successful.

Figure 7.4: Specification of workload characteristics in Perfinery

Subsequently the performance characteristics are entered by selecting Performance Require-
ments from the Similarity Analysis menu. In the displayed panel each of the buttons that shows
the forms to specify the metrics is selected and they are added by clicking on the option
Add. Figure 7.5 shows the form with the different values of the metrics corresponding to
the category of Resource utilization, whereas the picture 7.6 shows part of the XML with the
recently added values which indicates that the process was successful, in a similar way than
in the workload characteristics specification process.

Now one of the most important tasks takes place, the retrieval of similar application and
their solutions. Once the functional and non-functional characteristics have been defined,
the option Discover Similar applications from the menu Similarity Analysis is selected and
then the services of the Similarity Engine are invoked. After waiting for a few moments an
answer containing a list of applications, their similarity values and several other options is
returned. Manual calculations are performed and the values returned by the CBR system are
the expected ones. At this point is also possible to examine the retrieved viable distribution by
clicking on the link under the column ID. Figure 7.8 shows the topologies for the applications
with ID 1 and 2, it is possible to appreciate the differences that their distributions have. Figure
7.7 shows the values obtained of the similarity analysis.

When selecting any of the options of view under the column Distribution Cost, the Nefolog
service is invoked and candidate offerings for the particular solution of the specified applica-
tion is shown as well as an estimation of the monthly costs. Furthermore, the knowledge of
every retrieved application can be inspected by clicking on the corresponding link under the
column Knowledge and invoking the services of the CBR Framework as it can be observed in

110

7.2 Evaluation by Means of Case Study: MediaWiki Application

Figure 7.5: Specification of Performance requirements of the category Resource Utilization
in Perfinery

Figure 7.9, where a part of the workload and performance characteristics of the application 3
is displayed.

Figure 7.9: Part of the retrieved knowledge from an application

111

7 Validation and Evaluation

Figure 7.6: Performance Requirements currently added

Figure 7.7: Results of the similarity analysis

The adaptation of the solution is now performed, this is achieved by clicking on the link
refine under the column Mu-topology. A new tab is opened and there the previously modeled
α-topology is rendered together with the γ-topology of the selected viable distribution, it is
possible to clearly identify them since the α-topology is colored in yellow and the γ-topology
in green, as shown in Figure 7.10.

A node of the topology has been modified for purposes of the evaluation, it corresponds to
the server hosting the application and the database, the node of type Amazon EC2 is replaced
by one of type Physical server. The performance and workload characteristics entered in the
previous task can also be displayed here when selecting the corresponding options under
Similarity Analysis.

Additionally, it is possible to invoke the Nefolog candidate offerings search and cost estima-
tions service in the current interface. This is done by clicking on the button Distribution Cost,
a new panel is rendered and the options of candidate offerings are loaded in a select box,
according to the workload and performance characteristics previously defined. It is possible
to specify constraints and characteristics of the application profile using the interface. In the

112

7.2 Evaluation by Means of Case Study: MediaWiki Application

Figure 7.8: View of two viable distributions retrieved through the similarity engine

current case the restriction is that the application must be located in Oregon and that it will
have a load of 20000 queries per month and must have 5 servers, when pressing the button
Estimate Cost the Nefolog service is invoked one more time and the cost of the infrastructure
for a 10-months period is displayed. Figure 7.11 present the interface employed to estimate
the cost of the distribution.

It is possible now to store the refined solution to the knowledge base, to perform this the
option Persist Topology and Knowledge is selected and a new panel where is possible to give a
name to the new solution is rendered. In this case the viable topology is named as NewWiki
and it is added to the repository by selecting the option Save Topology, a confirmation message
is obtained and immediately is possible to persist the non-functional characteristics by clicking
on the button Persist Knowledge, a new confirmation message is obtained. Since everything
went fine, now the new solution is added to the repository of Perfinery and to the knowledge
base.

The results provided by the CBR framework have been accurate. It was expected that the
applications with IDs 1,2 and 3 were the ones returned, in that order and that was the result
obtained. As it was shown in Figure 7.7, the global similarity value for the application 1 was
0.893, for the one with ID 2 was 0.591 and for the application 3 the computed value was 0.364
and this allows to confirm that the similarity measures that are being employed are working
in a proper manner. Furthermore and as it was previously mentioned, the similarity values
computation was also executed using other software and obtaining the same outcomes.

Another important aspect that should be mentioned is the fact that the options offered by
the similarity engine are integrated on a smooth way into Perfinery and they appear to
be one of the original functionalities of the system, as it can be observed in the series of
figures presented in this chapter. Additionally, it was corroborated that the retrieval and
storage of the knowledge as well as the visualization of the solutions were correctly executed,
confirming once more that the system is behaving as required.

113

7 Validation and Evaluation

Figure 7.10: Refining a selected viable topology

7.2.3 System Behavior after Adaptation Evaluation

The objective of this stage is to verify that the system behaves correctly after a new case
and its solution have been added to the knowledge base. The first two tasks of this phase
included the modeling of the α-topology and definition of non-functional requirements, the
described application had exactly the same characteristics than the one previously depicted.
Subsequently the retrieval of similar applications task takes place, obtaining the results
presented in Figure 7.12.

The application with the highest similarity value is the one whose ID is number 10 and it
corresponds to the one previously described, its similarity value is 1 whereas the applications
with IDs 1 to 3 are returned in the same order and with values of similarity as was expected.
A simple inspection of the distribution confirms that the system is returning the solution that
was also previously refined. In this way, it is possible to conclude that the system behaves
satisfactorily and that the design approaches of the present work offer consistent and accurate
results.

114

7.2 Evaluation by Means of Case Study: MediaWiki Application

Figure 7.11: Cost calculation interface in Perfinery

Figure 7.12: Retrieval of similar applications after a new case and solution have been
inserted into the knowledge base

115

7 Validation and Evaluation

7.2.4 Domain Expert Operations Validation

As indicated in Section 7.1, the evaluation of the operations of Retrieve and Update Similarity
Tables are performed using the REST API client Postman. Details of the executed requirements
and responses are shown below:

• Retrieve Similarity Tables:

– URL: ../SimilarityEngine/similarity-tables

– Method: GET

– Status code: 200 OK. The response contains the list of similarity tables of the system
and their entries in JSON format as shown in Figure 7.13.

• Update Similarity Tables:

– URL: ../SimilarityEngine/similarity-table

– Method: PUT

– Parameters: A similarity table with their entries and respective similarity values
depicted in XML format with the value of the first entry modified.

– Status code: 200 OK. It was verified that the correspondent value in the database
was updated by retrie

Figure 7.13: Body of the obtained response when invoking the REST function of retrieving
similarity tables in Postman

116

8 Outcome and Future Work

The expansion and advent of the Cloud Computing paradigm has brought a number of
benefits but also challenges. Nowadays, it is not just about having an application deployed
and running in the cloud but also fully exploiting the advantages that the cloud technologies
offer. This is not a trivial task and requires a considerable amount of effort.

The components of an application can be deployed in a variety of ways among different
offerings. Nevertheless, there is a lack of support when it comes to assist the developers in
the task of selecting the right cloud services to host the different application components and
that fulfill their requirements. Therefore, this work aims to provide the necessary support to
application developers in the tasks of designing the topology of one application to partially
or fully deploy it in the cloud. In order to implement such a tool, the Case-Based Reasoning
with Similarity Retrieval paradigm was employed.

To achieve the objectives of this thesis, it was necessary to perform an analysis of the state
of the art. Moreover, basic concepts, theories, models and relevant technologies used or
extended in the scope of this work are explained and described in Chapter 2. Analysis of
previous and ongoing researches with similar objectives as the ones of this thesis were also
conducted. Two examples of the studied solutions are SMICloud and PatEvol, their strengths,
weaknesses and the challenges that their designs implied were evaluated in order to learn
from them, as Chapter 3 presents. The analysis of the state of the art and the study of the
existing solutions allowed us to develop the concepts and the methodology that guides the
entire development of this thesis. Chapter 4 describes them as well as the characteristics of
the knowledge of the applications that is captured, how that knowledge should be used to
identify potential viable topologies and the guidelines that the design of the solution must
follow.

Subsequently, the architecture of the proposed system was designed focusing on its com-
ponents, their interactions and the set of operations that a user can perform. All these
considerations were presented in Chapter 5 and using them alongside with the specifications
introduced in Chapter 4, it was possible to proceed with a prototypical implementation of the
system. The different functionalities of the CBR Framework were exposed through a RESTful
API and details about the use of the functions, data format of parameters and returned
answers are described in detail in Chapter 6 as well as implementation considerations of
the different algorithms for computing the similarity measures. Furthermore, details of the
modification of the Perfinery modeling tool as well as of the usage of the Nefolog service
were also depicted.

It was necessary to define a methodology to validate the implemented prototype, which is
presented in Chapter 8. An evaluation by means of a case study was performed and the
obtained results allowed us to conclude that the use of the CBR approach, with the similarity
measures that were defined in this work, can effectively assist to the application developers

117

8 Outcome and Future Work

in the decision making process of choosing a viable topology. However, the quality of the
results depends not only on a good selection of characteristics and similarity measures but
also on the quality of the cases of the knowledge base, therefore the formation of the case
base is a task that should be performed with a high level of meticulousness and detail.

In the future, the system could also offer means to allow to developers or experts define their
own similarity measures and weighting of attributes, which will provide higher levels of
flexibility to the system. Currently, the ranking of the solutions is executed in terms of the
result of the similarity computations, it would be also possible to use utility functions to rank
them and in that way the applications and solutions appearing on higher positions are not
only the ones that mathematically are the most similar, but also the ones that have been useful
and have met the needs of other users. The integration with a monitoring system and the
implementation of knowledge aggregator components give place to further enrichment of
the knowledge base since more information about performance and workload metrics could
be captured and therefore an improvement of the quality of the results might be possible. It
would be also feasible to integrate the system with a provisioning engine such as Vinothek,
part of the OpenTOSCA environment, in this way it would be possible to facilitate to the
developers the tasks of instantiating the applications in the cloud and consequently a better
support in the whole design process of application topologies could be provided.

118

Bibliography

[AA05] J. Arthur and S. Azadegan. Spring Framework for rapid open source J2EE
Web Application Development: A case study. In Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, 2005 and First ACIS
International Workshop on Self-Assembling Wireless Networks. SNPD/SAWN 2005.
Sixth International Conference on, pages 90–95. IEEE, 2005.

[ADC10] M. Alhamad, T. Dillon, and E. Chang. Conceptual SLA framework for cloud
computing. In Digital Ecosystems and Technologies (DEST), 2010 4th IEEE Inter-
national Conference on, pages 606–610. IEEE, 2010.

[AFG+10] M. Amburst, A. Fox, A. Griffith, R. Katz, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia. A view of Cloud Computing. Communications of the
ACM, 53:50–58, 2010.

[AGSLW14] V. Andrikopoulos, S. Gómez Sáez, F. Leymann, and J. Wettinger. Optimal
distribution of applications in the cloud. In Advanced Information Systems
Engineering, pages 75–90. Springer, 2014.

[AJP13] A. Ahmad, P. Jamshidi, and C. Pahk. A framework for Acquisition and
Application of Software Architecture Evolution Knowledge. ACM SIGSOFT
Software Engineering Notes, 38:1–7, 2013.

[AP94] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. AI communications, 7(1):39–59,
1994.

[ARSL14] V. Andrikopoulos, A. Reuter, S. G. Sáez, and F. Leymann. A GENTL Approach
for Cloud Application Topologies. In Service-Oriented and Cloud Computing,
pages 148–159. Springer, 2014.

[BBKL14a] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. TOSCA: Portable Auto-
mated Deployment and Management of Cloud Applications. In Advanced Web
Services, pages 527–549. Springer, New York, January 2014.

[BBKL14b] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann. Vinothek-A Self-Service
Portal for TOSCA. In ZEUS, pages 69–72, 2014.

[BGPCV12] L. Badger, T. Grance, R. Patt-Corner, and J. Voas. Cloud Computing Synopsis
and Recommendations, 2012.

[BINF12] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos. Graph-based
analysis and prediction for software evolution. In Proceedings of the 34th
International Conference on Software Engineering, pages 419–429. IEEE Press,
2012.

119

Bibliography

[BRS+01] R. Bergmann, M. M. Richter, S. Schmitt, A. Stahl, and I. Vollrath. Utility-
oriented matching: A new research direction for case-based reasoning. In
Professionelles Wissensmanagement: Erfahrungen und Visionen. Proceedings of the
1st Conference on Professional Knowledge Management. Shaker, 2001.

[CS93] M. Calzarossa and G. Serazzi. Workload characterization: A survey. Proceedings
of the IEEE, 81(8):1136–1150, 1993.

[CS09] A. Chhabra and G. Singh. Knowledge-Based Modeling Approach for Perfor-
mance Measurement of Parallel Systems. International Arab Journal of Informa-
tion Technology (IAJIT), 6(1), 2009.

[Din16] H. Ding. Persistence and Discovery of Reusable Cloud Application Topologies.
Master’s thesis, University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, 2016.

[DKVR09] X. Dimitropoulos, D. Krioukov, A. Vahdat, and G. Riley. Graph annotations
in modeling complex network topologies. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 19(4):17, 2009.

[Fie00] R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, 2000.

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. Cloud Comput-
ing Patterns. Springer, 2014.

[FRL13] S. Frey, C. Reich, and C. Lüthje. Key performance indicators for cloud comput-
ing SLAs. In The Fifth International Conference on Emerging Network Intelligence,
EMERGING, pages 60–64, 2013.

[FZRL08] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing
360-degree compared. In Grid Computing Environments Workshop, 2008. GCE’08,
pages 1–10. Ieee, 2008.

[GALS14] S. Gómez, V. Andrikopoulos, F. Leymann, and S. Strauch. Design Support
for Performance Aware Dynamic Application (Re-)Distribution in the Cloud.
IEEE Transactions on Services Computing, 8(2):225–239, December 2014.

[Gan15] K. Ganguly. Performance Aware Cloud Application Topology Enrichment.
Master’s thesis, University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, 2015.

[GG15] T. Gabel and E. Godehardt. Top-Down Induction of Similarity Measures Using
Similarity Clouds. In Case-Based Reasoning Research and Development, pages
149–164. Springer, 2015.

[GLZ+10] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong. The characteristics of cloud
computing. In Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on, pages 275–279. IEEE, 2010.

120

Bibliography

[GVB11] S. K. Garg, S. Versteeg, and R. Buyya. SMICloud: A framework for comparing
and ranking cloud services. In Utility and Cloud Computing (UCC), 2011 Fourth
IEEE International Conference on, pages 210–218. IEEE, 2011.

[HZ11] N. Hurley and M. Zhang. Novelty and diversity in top-n recommendation–
analysis and evaluation. ACM Transactions on Internet Technology (TOIT),
10(4):14, 2011.

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery–a modeling tool
for TOSCA-based cloud applications. In Service-Oriented Computing, pages
700–704. Springer, 2013.

[LZM98] T. W. Liao, Z. Zhang, and C. R. Mount. Similarity measures for retrieval in
case-based reasoning systems. Applied Artificial Intelligence, 12(4):267–288, 1998.

[Mas11] M. Masse. REST API design rulebook. " O’Reilly Media, Inc.", 2011.

[MB02] B. Mougouie and R. Bergmann. Similarity assessment for generalizied cases
by optimization methods. In Advances in Case-Based Reasoning, pages 249–263.
Springer, 2002.

[MC11] J. M. Merigó and M. Casanovas. A new Minkowski distance based on induced
aggregation operators. International Journal of Computational Intelligence Systems,
4(2):123–133, 2011.

[NLPVDH12] D. K. Nguyen, F. Lelli, M. P. Papazoglou, and W.-J. Van Den Heuvel. Blueprint-
ing approach in support of cloud computing. Future Internet, 4(1):322–346,
2012.

[PvdH11] M. P. Papazoglou and W.-J. van den Heuvel. Blueprinting the cloud. IEEE
Internet Computing, (6):74–79, 2011.

[RAS+14] R. G. Rocha, R. R. Azevedo, Y. C. Sousa, E. d. A. Tavares, and S. Meira. A
case-based reasoning system to support the global software development.
Procedia Computer Science, 35:194–202, 2014.

[Reu13] A. Reuter. An extensible application topology definition and annotation framework.
PhD thesis, University of Stuttgart, 2013.

[RR08] L. Richardson and S. Ruby. RESTful web services. " O’Reilly Media, Inc.", 2008.

[RRV15] A. Ramírez, J. Romero, and S. Ventura. An approach for the evolutionary
discovery of software architectures. Information Sciences, 305:234–255, 2015.

[She03] M. Shepperd. Case-based reasoning and software engineering. In Managing
Software Engineering Knowledge, pages 181–198. Springer, 2003.

[Sta03] A. Stahl. Learning of knowledge-intensive similarity measures in case-based reasoning.
PhD thesis, Universität Kaiserslautern, 2003.

121

Bibliography

[top13] Topology and Orchestration Specification for Cloud Applications Version
1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.

html, November 2013.

[UPVS09] G. Urdaneta, G. Pierre, and M. Van Steen. Wikipedia workload analysis for
decentralized hosting. Computer Networks, 53(11):1830–1845, 2009.

[uRHH14] Z. ur Rehman, O. K. Hussain, and F. K. Hussain. Parallel cloud service selection
and ranking based on QoS history. International Journal of Parallel Programming,
42(5):820–852, 2014.

[wik15] Wikipedia Statistics German. https://stats.wikimedia.org/EN/

TablesWikipediaDE.htm, 2015.

[WL01] S. Weibelzahl and C. U. Lauer. Framework for the evaluation of adaptive CBR-
systems. In Proceedings of the 9th German Workshop on Case-Based Reasoning,
pages 254–263. Citeseer, 2001.

[XAo13] M. Xiu, V. Andrikopoulos, and others. The Nefolog & MiDSuS Systems for
Cloud Migration Support. Universität Stuttgart, Fakultät Informatik, Elektrotech-
nik und Informationstechnik, Germany, Technical Report, 8, 2013.

[ZCB10] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18, 2010.

All links were last followed on January 28, 2016

122

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://stats.wikimedia.org/EN/TablesWikipediaDE.htm
https://stats.wikimedia.org/EN/TablesWikipediaDE.htm

- Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references that
the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

Stuttgart, January 28, 2016 ——————————————–
Jhonny Vladimir Pincay Nieves

	Introduction
	Problem Statement
	Motivation Scenario and Research Challenges
	Outline
	List of Abbreviations

	Fundamentals
	Cloud Computing
	Characteristics
	Service Delivery Models
	Deployment Models

	Cloud Application Topologies
	Enrichment of Cloud Application Topologies
	Application Topology Languages and Frameworks

	Case-Based Reasoning
	Case Structure
	CBR Cycle
	Task Hierarchy

	Similarity Analysis for Case-Based Reasoning
	Traditional Similarity Measures
	The Local-Global Principle
	Enhancement of Similarity Measures
	Similarity and Utility Functions

	Representational State Transfer (REST)
	RESTful Web Services

	Related Works
	PatEvol: A Framework for Acquisition and Application of Software Architecture Evolution Knowledge
	Purpose
	Approach and Results

	SMICloud: Framework for Comparing and Ranking Cloud Services
	Purpose
	Approach and Results

	Parallel Cloud Service Selection and Ranking based on QoS History
	Purpose
	Approach and Results

	Graph-Based Analysis and Prediction for Software Evolution
	Purpose
	Approach and Results

	Evolutionary Algorithm approach for for the Discovery of Software Architectures
	Purpose
	Approach and Results

	Concept and Specification
	Methodology
	Topology Modeling - Collection Functional Requirements Data
	Non Functional Requirements - Data Collection
	Similarity Measures Calculation
	Solution Selection and Adaptation
	Deployment, Monitoring and Knowledge Retrieval and Aggregation

	Formalizing Similarity
	Similarity of Functional Requirements
	Similarity of Performance Metrics
	Similarity of Workload Characteristics
	Application Similarity Calculation

	System Requirements
	Functional Requirements
	Non-Functional Requirements

	Use Cases
	Application Developer
	Domain Expert
	Use Cases Diagram
	Use Cases Description

	System Overview

	Design
	Architectural Overview
	Non-functional Aspects Data Model
	Modeling Layout Design
	Performance Requirements Specification
	Workload Characteristics Specification
	Discovery of Similar Applications

	RESTful API

	Implementation
	Modeling
	CBR - Similarity Analysis
	Web Service API
	Similarity Engine
	Knowledge Aggregator and Manager

	Runtime
	Provisioning Engine and Monitoring Framework
	Pricing Knowledge and Cost Calculation Framework

	Validation and Evaluation
	Methodology
	Evaluation by Means of Case Study: MediaWiki Application
	Test Cases Definition
	Case Retrieval Correctness Evaluation
	System Behavior after Adaptation Evaluation
	Domain Expert Operations Validation

	Outcome and Future Work
	Bibliography

