
Institute for Visualization and Interactive Systems (VIS)
Socio-Cognitive Systems (SKS)

University of Stuttgart
Pfaffenwaldring 5a
D–70569 Stuttgart

User-defined transfer functions
to improve pointing performance

in graphical user interfaces

S.M. Hasanul Banna

Course of Study : INFOTECH

Examiner : Jun.-Prof. Dr. Niels Henze

Date of Submission : May 12, 2017

CR-Classification : H.5.2

Abstract

Pointing at a target is the most fundamental and frequent task in graphical user
interfaces (GUIs). Pointing devices like the mouse is the most popular and cheap-
est input devices for current desktop computers and the touchpad or trackpad is
the best match between performance and demand of pointing devices for laptop
computers. Due to the widespread and frequent use of pointing devices, even a
small improvement in pointing performance can have a large effect on a system’s
usability.

The physical movement of a mouse or dragging motion of a finger on a touchpad is
translated into the movement of a pointer on the graphical display through so-called
transfer functions. Transfer functions are actually the only pointing facilitation
technique available to all users in modern days operating systems. Despite the
importance of transfer functions, very little is known about the nature of the optimal
transfer functions.

Pointer acceleration (PA) is the default behavior on the Microsoft Windows and
Apple macOS operating systems. It dynamically manipulates the Control-Display
(CD) gain between the input device and the pointer as a function of the device’s
velocity. This mechanism has been implemented in modern desktop user interfaces
and increases the CD gain as the user’s hand or finger velocity increases. Previous
work showed that the default functions of Windows, Apple macOS and Xorg (the
X.Org Foundation server) have shown better performance compared to a constant
CD gain. Apple macOS has the improvised performance for small target widths but
reduces performance for covering the long distances. Current knowledge on velocity
based transfer functions relies on evaluations of basic functions and adapting the
CD gain in discrete or continuous ways using low-order polynomials. The internal
details and design rationales of the transfer functions that we all use are mostly
unknown.

The aim of this thesis is to gain a deeper understanding of the optimal transfer
functions and to assess them based on natural interaction with the system using
a user-driven approach. The implementation part of the thesis is divided into two
desktop applications, one is for recording all raw mouse and pointer movement as
well as recording contextual information to understand a transfer function. The
other implementation part of the thesis is to enable the user to define their own
transfer functions. Users can customize existing default transfer functions and use
them to control the pointer. These two applications are used to conduct a study
that collects user device information and as well as user-defined transfer functions.
Finally, we identify interesting transfer function for touchpads and mice.

3

Acknowledgement

Foremost, I would like to thank Jun.-Prof. Dr. Niels Henze for not only giving me
the opportunity to do my master’s thesis in the Socio-Cognitive Systems group of
the Institute for Visualization and Interactive Systems, University of Stuttgart but
also his enthusiasm, wisdom, cordial supervision and valuable advice that helped me
a lot throughout my thesis. I am earnestly grateful to my professor for the fruitful
discussions, providing significant guidelines for solving difficult problems in an easier
way, important corrections throughout the writing of my thesis and educating me
how to be able to write.

I also want to thank the people who work at this department and who provided
instant support for any difficulty I faced.

I am very grateful to my father and mother for the continuous support starting from
the childhood to today. If not for their encouragement, care, love, passion, and their
assistance, I would not be here writing my master’s thesis. I am blessed to have my
beautiful wife and princess she is carrying, despite her pregnancy she supported me
to share my stress during the thesis period. I sincerely appreciate her support and
sacrifice.

Also, I would like to thank all survey participants and users of the application for
their willingness to participate in the survey and spend their time for the feed-
back.

Finally, I would like to finish by expressing my acknowledgment and love to all of
my friends for their support in all the ways during my master’s study.

5

Contents

1 Introduction 9

2 Related Work and Background 13
2.1 Introduction . 13
2.2 Pointing Devices . 14

2.2.1 Motion-tracking pointing devices 15
2.2.1.1 Mouse . 15

2.2.2 Position-tracking pointing devices 16
2.2.2.1 Touchpad . 16
2.2.2.2 Touchscreen . 16

2.2.3 Pressure-tracking pointing devices 17
2.2.3.1 Isometric Joystick 17

2.3 Fitt’s Law . 17
2.4 Constant Control Display Gain . 18
2.5 Pointer Acceleration . 19
2.6 Transfer Functions . 20

2.6.1 Windows Transfer Function 20
2.6.2 X.Org Foundation Server Transfer Functions 24
2.6.3 Apple OS X Transfer Functions 26

2.7 libpointig toolkit and EchoMouse . 28
2.7.1 EchoMouse . 28
2.7.2 libpointig . 29

2.8 Summary . 30

3 Concept of User-defined Transfer Function 31
3.1 Introduction . 31
3.2 Mouse Pointer Recorder . 32
3.3 User-defined Application Tool . 33

3.3.1 Defaults Transfer Function . 34
3.3.2 Interactive Graph . 34

3.4 Summary . 34

4 Design and Implementation 37
4.1 Introduction . 37
4.2 Mouse Logger . 37

7

Contents

4.2.1 Architecture and Requirements 37
4.2.2 Design . 38
4.2.3 Implementation . 39
4.2.4 Log File . 40

4.3 User-defined Transfer Function Tool 41
4.3.1 Architecture and Requirements 41
4.3.2 Design . 43
4.3.3 Implementation . 44

4.3.3.1 Notification and System Tray Icon 44
4.3.3.2 Load libpointing Data Points 44
4.3.3.3 Inside Calculation 45

4.3.4 Log File . 48
4.4 Summary . 48

5 Study for Interesting Transfer Function 49
5.1 Introduction . 49
5.2 Design Deployment . 49

5.2.1 Extended Graphical User Interface 50
5.2.2 Log File . 51
5.2.3 Google Sheets . 53

5.3 Participants . 54
5.4 Apparatus and Materials . 55
5.5 Procedure . 56
5.6 Result . 57
5.7 Discussion . 61
5.8 Summary . 67

6 Conclusion and Future Work 69

Bibliography 71

List of Figures 77

List of Tables 79

Abbreviations 81

A Appendix 83
A.1 Log File Screen Shot . 83
A.2 Class Diagram . 86
A.3 Google Sheets . 89
A.4 libpointing data points . 93
A.5 Trials and Feedbacks Activated Duration. 95
A.6 Interesting Transfer Function for Individual Participants. 96
A.7 Box Plot Diagram. 102
A.8 Interesting Transfer Functions. 105

8

1 | Introduction

Since the invention of graphical displays in the fifties-sixties, pointing at a target
has become the fundamental and frequent activities. Indirect control of a pointer
on the display, with a separate device, has been the most common mechanism of
pointing in graphical user interfaces (GUIs). After the appearance of graphical user
interfaces, the first pointing devices like the light pen, joystick, and mouse were
introduced and lead to more intuitive access of electrical resources.

Pointing devices can be classified according to the way an on-screen pointer is con-
trolled. Examples include according to a change of device’s movement,controlling,
positioning or resistance. Among all pointing devices, the mouse is the most popular
pointing device for desktop computers. As explained by Moggridge and Atkinson
[25], not only Douglas Engelbart and his colleagues (W. K. English, M. L. Berman)
invented it but also confirmed that it works best compared to a range of alternative
devices. Fifty years later, the mouse still provides a good match between human
performance and the demands of graphical desktop interfaces [13]. Considering the
pointing performance and usability, touchpad also offers a similar match for a laptop
computer.

The physical movement of a mouse is translated into the movement of a pointer on
the graphical display through so-called transfer functions. The goal of the function is
to improve pointing performance by providing more stable and intuitive control over
devices. A transfer function that matches the properties of an input device is known
as an appropriate mapping. For force sensing input devices, such as joysticks and
trackpoints, the transfer function should be a force-to-velocity function. Other ap-
propriate mappings include position-to-position for the touchscreens of smartphones
and tablets, as well as velocity-to-velocity functions for mice. The important fact is
that the relation between pointer and device has to be hardware - independent and
is described using standard length and time units (e.g. meters).

These transfer functions can be divided into three types, constant gain (linear),
discrete gain increase (discrete non-linear) and continuous gain (continuous non-
linear) [9]. For linear transfer functions, the term Control Display (CD) gain is
commonly used to refer to the scale factor between the pointing control device
and the visual pointer. For linear transfer functions, the CD gain is constant but
nonlinear transfer functions dynamically manipulates the CD gain as a function of
the device’s velocity and is called Pointer Acceleration (PA).

9

1. Introduction

When the velocity of the control device is high the CD gain is high and when the
velocity of the control device is low the CD gain is low. PA is the default behavior
on the Microsoft Windows XP/Vista and macOS operating systems. Discrete gain
change showed no advantage in overall movement time over constant gain, which
was the finding of Jellinek and Card [15]. Moreover, continuous gain significantly
degraded (increased) movement time. This degradation in the nonlinear condition
was also seen as an increase in the average number of corrective submovements
and increased in effective target width compared with the constant gain condition.
Casiez et al. [7] found that pointing acceleration has a small performance advantage
over constant CD gain when selecting small targets or covering long distances.

Casiez and Roussel [6] conducted an experiment to describe and compare the transfer
functions of the different operating system. Their results showed that PA functions
had improved performance compared to a constant CD gain. They also found that
OS X had improved performance for small target widths but reduced performance
for larger ones compared to Windows and Xorg. The transfer functions of Microsoft
Windows, Apple OS X and Xorg (the X.Org Foundation server) are actually the only
pointing facilitation technique available to all users of these systems. But despite
the importance of transfer functions, very little is known about the nature of an
optimal transfer function and the internal details and design rationales are mostly
unknown.

This thesis will start with a detailed review of the related work, explaining how point-
ing facilitation research deals with optimal transfer functions and what is known
about them. Then it assesses the transfer functions based on natural interaction
with the system, using a user-driven approach. In the implementation part of the
thesis, we have developed two desktop application tools, one of them records point-
ing device and cursor information and another to enable users to define their own
transfer functions. By using this developed desktop application tools, a study has
been conducted during participants daily work to identify interesting use-defined
transfer functions for mouse and touchpad pointing devices.

10

Outline
The thesis is structured as follows:

Chapter 2 - Related Work and Background: In this chapter, we discuss basic
and background information regarding pointing devices and transfer functions. We
also present related work in the field of transfer functions according to different
pointing devices and operating systems.

Chapter 3 - Concept of User-defined Transfer Functions: Based on the pre-
vious chapter in this chapter, we present the concept for user-defined transfer func-
tions, the idea of desktop application tools and the concept of the user study.

Chapter 4 - Design and Implementation: In this chapter, we describe details
implementation of universal desktop mouse logger and user-defined desktop appli-
cation tool.

Chapter 5 - Study for Interesting Transfer Function: In this chapter, we
describe the deployment of the developed application for user study and details
description of the user study procedure. After that, present the user study result,
analyze the collected data and identify interesting transfer function.

Chapter 6 - Conclusion and Future Work: In this chapter, we summarize
conclusions that we can draw from our work and discuss future work.

11

2 | RelatedWork and Background

2.1 Introduction

Pointing transfer function is the general mechanism for pointing facilitation tech-
nique. This technique is used all of the modern operating systems. Millions of people
around the world used this transfer function on a daily basis. To understand this
pointing mechanism and technique, it is important to look at the prior researches
on other pointing facilitation technique and pointing devices.

Transfer functions are generally considered as control variables, that means they
may influence dependent variables or hold constant from one condition to another.
But there is no clear description of these control variables. However, the prior
literature on pointing facilitation shows that the details are often incomplete and
unclear.

Casiez and Roussel [6] conducted a controlled experiments to characterize and com-
pare pointing transfer functions. In their experiment, they found that default trans-
fer function used in Windows, macOS and Xorg outperformed a constant CD gain,
but they had also accepted that using constant CD gain function as a baseline to
compare with other techniques should have been prohibited unless clearly justi-
fied.

Unfortunately, many authors do not provide all the details while using a constant CD
gain or ratio as baseline or base technique. Their research on pointing facilitation
and the way of disabling the operating system’s transfer functions during their work
were not precisely characterized [6]. In the MacKenzie and Isokoski [21] research,
there is no way of knowing which transfer function was used, only written “an optical
USB Microsoft IntelliMouse with four buttons and a scroll wheel ... an experimental
software written in Java”.

Enforcing a hardware-independent transfer function even a constant gain is very
difficult with the current system. Wobbrock et al. [30] in Angle Mouse study has
acknowledged that “although some on-line documentation discusses pointer ballistics
in Windows, it does not contain sufficient information to establish the slider-to-gain
mapping”.

Most of the modern pointing devices conform to the Human Interface Devices (HID)

13

2. Related Work and Background

class of the USB standard. This class comes with a variety of equipment including
keyboards, mice, touchpads, joysticks, remote controls, barcode readers and volt-
meters. Among other devices, a pointing device description specifies for each axis
whether transmitted values are absolute or relative, linear or nonlinear, their byte
size, their logical range, the corresponding physical range and the unit system and
exponent used, also specifies the polling rate and polling intervals [3].

This chapter is organized as follows. First, we describe popular pointing devices
according to the common classification and basic terms. After that, we describe
details about most popular transfer functions in the modern operating systems.

2.2 Pointing Devices

A pointing device is an input human interface that allows a user to input continuous
or multi-dimensional data to a graphical user interface. It allows the user to control
and provide data to the graphical system using physical gestures like point, click,
drag and drop. The pointing devices can be divided into several characteristics like
direct vs. indirect input, absolute vs. relative movement, isotonic vs. elastic vs.
isometric, position control vs. rate control and degrees of freedom.

Figure 2.1: Generic block diagram of a pointing device (from [9]).

The main concept of pointing devices is the transformation of information sensed
by a physical device into the movement of the pointer on the visual screen. The
figure 2.1 shows the generic block diagram of a pointing device, the user manip-
ulates a physical property of the device (A), such as position which is sensed by
the transducer (B) and input as changes in an electrical quantity, such as voltage,
into a device microprocessor (C). In most modern pointing devices, the micropro-
cessor translates the signal from analog to digital by using an A-D converter. The
transducer and the microprocessor are usually packaged as part of the device, The
microprocessor may also compute a sophisticated transfer function which takes the
digitized signal and transforms it into displacement or velocity data. The pointing
device is usually connected to the main computer through a standardized connection
called a Port [9].

The microprocessor generates interrupts to signal that new data is available from
the pointing device. This data is read by specialized software in the main computer

14

2.2. Pointing Devices

known as the device driver (D), which generates pointing device events to that part
of the operating system responsible for graphics and windows management. This is
called the user-interface management system (UIMS) (E). The UIMS is responsible
for the graphics which finally creates cursor position and motion on screen (F)
[9].

Pointing devices can be classified into many classes but the most common classifica-
tion are motion, position and pressure tracking pointing devices. Few most popular
pointing devices from each classification are listing below.

2.2.1 Motion-tracking pointing devices

2.2.1.1 Mouse

Pointing devices which track the physical motion of the input device and trans-
late it into the virtual motion on the screen. The most common motion tracking
pointing device is the mouse. A computer mouse is an indirect, relative, isotonic,
position-control, translational input device with two degrees of freedom and three
states.

First Mouse, The inventors are overall recognized to be Douglas Engelbart and
Bill English. They presented their work in the year 1965, at the Stanford Research
Institute (Menlo park, California) [10]. The purpose of the research was one of
the first studies about human and computer interaction, in which pointing input
devices were confronted in order to find a way to simplify and improve computer
operation. Their solution to point and select on the computer screen is considered
to be the first mouse. The first mouse was a wooden case of about 5x7.5x10 cm.
The first mouse had two potentiometers which were perpendicularly placed and were
responsible for the movements in horizontal and vertical directions, with a button
to select text.

Ball Mouse, while the research on the first mouse was taking place, a European
evolution of the mouse appeared during the development of the TR440 Computer
[16]: the ball mouse, that simplified drawing simple vector graphics on the screen,
such as simple geometrical figures. In older mouse version the movements were
restricted to horizontal or vertical, the adoption of the ball instead brought more
liberty in the movements and permitted the user to move the mouse in any direc-
tion. This ball-mechanical mouse and particularly the Xerox-Model designed in the
seventies will be a fundamental part of commercial mice in the nineties.

Lisa Mouse, this Apple’s mouse is the first wide-used computer pointing-input
device, in this mouse, there is no substantial difference from the Xerox’s model,
except the cost 20 times less. This reduction of cost is an important step in the
diffusion of mice, thus it is bought by much more people than before during the
eighties.

15

2. Related Work and Background

Optical Mouse, the first optical mouse had been developed in 1981 at Palo Alto
from Richard F. Lyon [19]. The working principle of an optical mouse is simple,
a chip takes photos at every small step of time, and then compares the images to
recognize where the mouse is moving. Due to the use of this technology, an optical
mouse does not work on perfect or reflecting surfaces. An optical mouse needs
some pattern on the table to reconstruct the movement. A popular belief is that all
optical mice are laser mice. This is not the case: most of the optical mice are based
on an infrared LED and this perfectly explains the red light on the bottom of the
mouse. The most important advantages are that this device needs less maintenance
and has the higher lifetime, due to the fact that the mechanism is isolated, so that
dust and dirt cannot enter into the mouse. It is also lighter and cheaper than a ball
mouse.

2.2.2 Position-tracking pointing devices

2.2.2.1 Touchpad

A touchpad is an indirect, absolute, isometric, position-track input device with two
degrees of freedom and two states and a touch screen is a direct, absolute, isometric,
position-control input device with two degrees of freedom and two states. The
touchpad provides a competitive match with mouse and satisfies the need of human
performance and the demands of graphical user interfaces for the laptop. A touchpad
or trackpad is a flat surface that can detect finger contact. It is a stationary pointing
device. At least one physical button normally comes with the touchpad, but the user
can also generate a mouse click by tapping on the pad. Advanced features include
pressure sensitivity and special gestures such as scrolling by moving one’s finger
along an edge. It uses a two-layer grid of electrodes to measure finger movement:
one layer has vertical electrode strips that handle vertical movement, and the other
layer has horizontal electrode strips to handle horizontal movements [14].

2.2.2.2 Touchscreen

A touchscreen is a display device that allows the user to interact with a computer by
using their finger or some other helping instruments. The touchscreens are embedded
into the screen of the graphical display devices such as computer’s monitors and
smart gadgets. Users interact with the device by physically pressing items shown
on the screen, either with their fingers or some helping tool.

Resistive Touchscreens are the most common touchscreen technology. They are used
in high-traffic applications and are immune to water or other debris on the screen.
Resistive touchscreens are usually the lowest cost touchscreen implementation. Be-
cause they react to pressure, they can be activated by a finger, gloved hand, stylus
or other objects like a credit card.

16

2.3. Fitt’s Law

Surface Capacitive Touchscreens provide a much clearer display than the plastic
cover typically used in a resistive touchscreen. In a surface capacitive display, sensors
in the four corners of the display detect capacitance changes due to touch. These
touchscreens can only be activated by a finger or other conductive objects.

Projected Capacitive Touchscreens are the latest entry to the market. This technol-
ogy also offers superior optical clarity, but it has significant advantages over surface
capacitive screens. Projected capacitive sensors require no positional calibration and
provide much higher positional accuracy. Projected capacitive touchscreens are also
very exciting because they can detect multiple touches simultaneously [18].

2.2.3 Pressure-tracking pointing devices

2.2.3.1 Isometric Joystick

An isometric joystick is an indirect, relative, elastic, rate-control, translational input
device with two degrees of freedom and two states. In contrast to a 3D Joystick,
the stick itself doesn’t move or just moves very little and is mounted in the device
chassis. To move the pointer, the user has to apply force to the stick. Typical
representatives can be found on notebook’s keyboards between the "G" and "H"
keys. By performing pressure on the TrackPoint, the cursor moves on the display
[29].

Th are many more devices have been developed in different forms to catch particular
needs. For example, a joystick is a perfect choice for car racing game, but it is not
good for pointing. The touchpad or trackpad are not as intuitive as touchscreens.
The cost is the matter for most of the devices to perform more quickly and instinc-
tively. By far mouse is the most common and popular pointing device for graphical
user interface.

2.3 Fitt’s Law

Pointing device movements are very important for operating a graphical user in-
terface. The performance of the pointing devices often measures by the target hit
completion time and accuracy. In common scenario, if the target is further away or
smaller then it takes more time to hit. Fitts [11] research allows predicting the time
a human needs to point at a target of given size in a given distance. Fitts’ law states
that it takes more time to hit a target if the target is further away and it also takes
more time if the target is smaller. Fitts’ law also states that the target acquisition
time increases drastically if the target gets tiny. It is clear that an infinite small
target is impossible to hit, means it takes infinite time.

Fitts’ Law is a very successful experimental paradigm that has been widely applied
to the comparison, optimization and measuring the effectiveness and accuracy of

17

2. Related Work and Background

a pointing device. Fitts’ Law was first applied to the study of input devices by
Card et al. [5]; it is now a standard for device comparisons. Originally it is used
to model direct pointing where the hand taps physical objects. Fitts’ law is also
successfully used for indirect pointing where the control device and display pointer
are decoupled [21, 20]. The decoupling of control and display creates two different
spaces: the display space, where view a representation of the pointing action, and the
motor space, where to manipulate the control device. Given the intended target’s
width W and distance D, the total movement time T is predicted with the following
equation using MacKenzie’s[20] Shannon formulation:

T = a + b log2

(
D

W
+ 1

)
(2.1)

The constants a and b are empirically determined for the pointing technique and/or
device being used. The formulation of Fitts’s index of difficulty (ID) most frequently
used in the Human-Computer Interaction community is:

ID = log2

(
D

W
+ 1

)
(2.2)

Intuitively it shows that tasks become more difficult as a target moves farther away,
or as a target becomes smaller.

2.4 Constant Control Display Gain

The Control-Display (CD) Gain describes the unit free proportion that maps the
movements between in the control pointing device to the movements of the display
pointer [12]. The reciprocal is called the CD ratio [27]; For example, a hardware
mouse moves in another speed or distance than the cursor moves on the screen and
the measurement units have to be same in order to be meaningful (e.g. meters in-
stead of pixels). The CD gain refers to the scale factor of these two movements:

CDgain = Vpointer

Vdevice

(2.3)

If CD gain is 1, the display pointer moves at exactly the same distance and speed
as the control device; when CD gain is greater than 1, the display pointer moves
proportionality further and faster than the control device; and when CD gain is less
than 1, the display pointer moves slower, covering less distance than the control
device. The CD gain can be computed by taking the ratio of the pointer velocity to
device velocity (equation 2.3).

Quantization can become a problem if the maximum resolution of the control device
together with a high CD gain prevents every pixel from being addressable on the

18

2.5. Pointer Acceleration

display. The maximum CD gain that can be used without quantization problems is
calculated by dividing the resolution of the pointing device by the resolution of the
display using the same unit of measurement (e.g., DPI).

When CD gain is very low and/or the physical device movement area is constrained,
the device may need to be clutched to move the display pointer over a long distance.
Clutching is when a device is repositioned in motor space without affecting the
display pointer. The device movement area constraint may be a well-defined char-
acteristic of the device, such as the limited input area on laptop trackpads, or less
defined, such as the comfortable range of arm movement or unobstructed surface
space. The maximum area of unconstrained physical movement is called operating
range of the device.

However, a compromise has to be found with high gains it is easier to approach
a distant target, with low gains it takes longer. High gains hinder the selection
of targets, whereas low gains facilitate this process [24]. The operating systems
like Microsoft Windows, OS X and Xorg have implemented mechanisms in order to
adapt the CD gain to the user’s needs, e.g. the CD gain increases when the user’s
movement velocity increases [6].

2.5 Pointer Acceleration

Pointer Acceleration (PA) dynamically increases CD gain as the velocity of the
control device increases. This behavior is motivated by the optimized initial impulse
motor control model which is a hybrid of the iterative corrections model and the
impulse variability model [24].

The iterative corrections model [8, 17], attributes the law entirely to closed-loop
feedback control. This model states that the whole movement consists of a series
of discrete sub-movements, each of which takes the user closer to the target and is
triggered by feedback indicating the target which is not yet attained.

And the impulse variability model [28], attributes the law almost entirely to an initial
impulse delivered by the muscles, flinging the limb towards the target. The last part
of the movement time consists of the limb merely coasting towards the target.

It works as follows: an initial high-velocity ballistic movement is made in the direc-
tion of the target. If the ballistic movement ends on the target, the task is complete,
but if the movement undershoots or overshoots the target, a second lower velocity
corrective movement is used in the direction of the target. Successively slower cor-
rective movements are reapplied until the target is acquired (see figure 2.2).

Pointer Acceleration function f produces a CD gain G from the device motor space
velocity v [7].

G = f(v) (2.4)

19

2. Related Work and Background

Figure 2.2: Possible sequence(s) of submovements toward a target as described by
the optimized initial impulse model [26]. (a) is the case where a single movement
reaches the target. (b) and (c) are the more likely cases where the initial movement
under or over shoots the target, requiring subsequent corrective movements (from
[23]).

Pointer Acceleration is one of many techniques that influences the motor space
through which the device travels during target acquisition: High gain reduces the
motor distance during ballistic movement, and low gain increases the motor size of
the target during corrective action.

2.6 Transfer Functions

When the physical movement of the pointing devices is translated into the movement
of the pointer or cursor on the graphical user interface through a function. The
transfer function is a mathematical transformation that scales the data from an
input device and generates movements on screen. The general goal is to provide
more stable and more intuitive control of input device. A transfer function that
matches the properties of an input device is known as an appropriate mapping.

Here we will discuss most popular operating systems transfer functions such as
Windows, Xorg and macOS respectively:

2.6.1 Windows Transfer Function

Mouse acceleration in an operating system is an overlooked feature. But Microsoft
has introduced an effective design called the enhanced pointer precision. Without
the mouse data being altered in any way, the speed of the pointer is too high for cover
long distance but at the same time too low for effective pixel-precise navigation. No
matter what the mouse DPI(Dot per Inch) is, with the slider scales pointer speed

20

2.6. Transfer Functions

linearly increase or decrease. Microsoft has developed a transfer curve, in which slow
mouse movement would result in even slower pointer movement, subpixilation, which
allows every pixel to be pointed. Simultaneously, as the mouse speed increases, the
pointer speed would also increase according to the curve.

Windows (XP) had defined a transfer function that relates the actual velocity of the
mouse to the actual velocity of the pointer on the screen. Then an algorithm was
applied to that transfer function to calculate the transferred pointer data. Arbitrary
units of the mouse were transformed to physical units by taking the X or Y value of
the mouse called mickey and scaling it using the update rate of the mouse bus and
by the resolution of the pointing device [1]:

Vmouse = mickey ∗ BusUpdateRate

PointerResolution
(2.5)

The typical bus update rate for a USB mouse is 125 Hz, and the typical pointer
resolution is 400 mickey/inch. The typical range of a mickey size per packet that
coming from a mouse is between 0 and +50, though +127 is allowed in the packet
structure. To transfer the screen from arbitrary units to physical units the following
relationship was used [1] :

Vpointer = mickey ∗ ScreenUpdateRate

ScreenResolution
(2.6)

For example, a typical 17-inch monitor running at 1024 X 769 will have a reso-
lution of about 80 DPI and a refresh rate of about 75 Hz. The physical velocity
of the pointer on the screen is three times faster than the physical velocity of the
mouse.

When the physical units were established, the parent transfer function is constructed
based on a usability study. The parent transfer function is illustrated in the graph
on figure 2.3 (left).

Figure 2.3: Parent transfer function graph of Windows XP with five points, and
zoom view of four points are on the right side(from [1]).

The transfer function consists of five points. Four of the five points reside at the
lower end of the mouse velocity spectrum(figure 2.3[right]). The velocities that go

21

2. Related Work and Background

beyond the 4-inch limit are linearly extrapolated. These five coordinate pairs or
inflection points which form the acceleration curve are stored in the registry. These
registry keys are named SmoothMouseYCurve and SmoothMouseXCurve. The first
inflection point is always (0, 0). The curve is linearly extrapolated beyond the last
inflection point, which is to happen rarely as the physical velocity of the mouse has
to be over 40 inches per second [1].

Figure 2.4: Windows 10 configuration interface with default settings. Same setting
used by other old version of windows.

The slope of the first line segment yields a physical-to-screen gain of less than one
gain, providing the precision movement and ability to target every pixel on the
screen, or subpixilation. Subpixilation is when the user has to move the mouse
physically farther than the pointer moves on the screen, by giving a high degree
of precision and stability at low velocities. To achieve subpixilation, the divided
remainder mouse counts have to be preserved and added to the next counts. The
most important feature to note is that regardless of whether a fast or slow curve is
selected, the first set of points tends towards subpixilation, which means that the
user is always able to target every pixel on the screen regardless of the mouse speed
setting.

There are varieties of curves are extrapolated from the parent curve to yield a
transfer function with varying speed and acceleration properties. The user selects
one of these curves using the pointer speed slider in the mouse properties dialog box
(Pointer Options tab).

The transfer function is stored as a lookup table (figure 2.5). The points between the
stored values are interpolated. The number used to look up the mouse X and Y raw
input translated values are the vector magnitude of incoming X and Y magnitudes.
The Windows XP ballistics required the use of division with a remainder, fixed-
point (16.16) integer (SmoothMouseXCurve and SmoothMouseYCurve) math was
used. This is important for the subpixilation and the increased smoothness of the
pointer movement. Therefore, the maximum resultant number from two products
is 216(65536). While an overflow is possible. If an overflow ever becomes a problem
in the future, the fixed point constants in the ballistics code are easily changed to
support a 20.12 fixed-point format [1].

The following list summarizes the ballistic algorithm used in Windows XP from
archived paper ‘Windows Hardware Developer Center’ [1], in sequence:

22

2.6. Transfer Functions

Figure 2.5: Registry Editor- Mouse Lookup Table, Microsoft Windows 10; Version
1607, 2016.

1. When the system is started or the mouse speed setting is changed, the trans-
lation table is recalculated and stored. The parent values are stored in the
registry(Figure 2.5) and in physical units that are now converted to virtual
units by scaling them based on system parameters: screen refresh rate, screen
resolution, default values of the mouse refresh rate (USB 125 Hz), and de-
fault mouse resolution (400 dpi). Then the curves are speed-scaled based on
the pointer slider speed setting in the Mouse Properties dialog box (Pointer
Options tab)(see Figure 2.4).

2. Incoming mouse X and Y values are first converted to fixed-point 16.16 format.

3. The magnitude of the X and Y values are calculated and used to look up the
acceleration value in the lookup table.

4. The lookup table consists of six points (the first is [0,0]). Each point repre-
sents an inflection point, and the lookup value typically resides between the
inflections points, so the acceleration multiplier value is interpolated.

5. The remainder from the previous calculation is added to both X and Y, and
then the acceleration multiplier is applied to transform the values. The re-
mainder is stored to be added to the next incoming values, which is how
subpixilation is enabled.

6. The values are sent on to move the pointer.

7. If the feature is turned off (by clearing the Enhance pointer precision check
box underneath the mouse speed slider in the Mouse Properties dialog box
[Pointer Options tab]), the system works as it did before without acceleration.

23

2. Related Work and Background

All these functions are bypassed, and the system takes the raw mouse values
and multiplies them by a scalar set based on the speed slider setting.

When the pointer precision is turned off, if the mouse sends data that it has been
moved for example one unit to the right, the pointer speed slider at 6/11 (= no
scaling) the pointer will also move one unit to the right. This could be called as
one-to-one or 100% speed. Lower speeds (subpixelation) is achieved by delaying the
pointer movement until the mouse has sent enough units to the given direction. At
50% speed (scaling multiplier 0.5, pointer speed slider at 4/11), the mouse has to
send 2 counts to the right before the pointer moves one count. Here’s a list of the
effective scaling multipliers for each pointer speed slider setting:

Pointer
Speed

Mouse
Sensitivity

Position Multiplier Enhance
pointer precision Off

Position Multiplier Enhance
pointer precision On

1 1 0.03125 0.1
2 2 0.0625 0.2
3 4 0.25 0.4
4 6 0.50 0.6
5 8 0.75 0.8
6 10 1.00 1.0
7 12 1.50 1.2
8 14 2.00 1.4
9 16 2.50 1.6
10 18 3.00 1.8
11 20 3.50 2.0

Table 2.1: Windows mouse sensitivity when position multiplier enhance pointer
precision is off & on

In this above table default value, 6 means one pixel for one count, a 800 DPI mouse at
a 0.5 scaling multiplier behaves similarly to a 400 DPI mouse at 1.0 multiplier.

2.6.2 X.Org Foundation Server Transfer Functions

The pointer acceleration mechanisms currently used by Xorg were introduced in
2008. The source code for these mechanisms is publicly available as part of the Xorg
source tree1 and documentation for the design rationales and operating principles
are also available2, although a bit mystical.

The changes introduced by Xorg in 2008 notably aimed at facilitating the exploration
of transfer functions. The current architecture of the code supports 9 different
profiles implemented within the new predictable scheme and the older lightweight
scheme retained mostly for embedded scenarios. The profiles can be considered as

1https://cgit.freedesktop.org/xorg/xserver/tree/
2https://www.x.org/wiki/Development/Documentation/PointerAcceleration/

24

2.6. Transfer Functions

different transfer functions, although they share some common mechanisms and
code. Numerous configuration settings are associated with them but genericity and
flexibility have a price: not only is the Xorg code for pointer acceleration is much
larger than the one used on other systems but also it is far less readable [6].

The predictable scheme computes the euclidean distance corresponding to each dis-
placement reported by the device and divides it by the time elapsed since the pre-
vious one. This instantaneous velocity is stored in a short history list (n = 16 by
default) and it is used to maintain a better estimation of the real pointing device
velocity. Two adjustable settings also play an important part: acceleration, given as
a fraction, and threshold. The first one defines a high value for the (naive) CD gain
to be applied for displacements, considering a default low value of 1. The second one
defines the minimum velocity that needs to be achieved to switch from the low gain
to the high one. The active profile specifies how the estimated velocity will be used
to determine the actual CD gain within these constraints. All computations are
made with floating-point arithmetic. Remainders are preserved and never cleared
[6].

Figure 2.6: Ubuntu 12.04 mouse pointer configuration interface, same setting used
by others version.

Figure 2.6 shows the configuration interface available in the Pointer speed section
of the Mouse preferences application of Ubuntu 12.04. A help page says about the
first slider:

“Use the slider to specify the speed at which your mouse pointer will move on your
screen when you move your mouse". About the second: “Use the slider to specify
how sensitive your mouse pointer will be to the movements of your mouse".

The default profile used by Ubuntu (classic) and the relevant settings that can be
adjusted through this particular interface.

When the threshold is non-null, the classic profile implements a smooth transition
between the low and high gain values. The sliders shown in figure 2.6 only allow
such configurations. As the label indicates, the upper slider controls the acceleration
setting. When dragged, it feels like a continuous control but actually supports only
a predefined set of values:

3/10(slow) 4/10 5/10 6/10 7/10 8/10 9/10 10/10 1/1 3/2 2/1(default)
5/2 3/1 1/1 3/2 7/2 4/1 9/2 5/1 11/2 6/1(fast)

The bottom slider controls the threshold and actually feels like a discrete control.
The available values are:

25

2. Related Work and Background

1(low) 2 3 4 (default) 5 6 7 8 9 10(high)

In total, the interface shown in figure 2.6 thus gives access to 19 ∗ 10 = 190 config-
urations of the classic profile.

Figure 2.7: Xorg functions available in Ubuntu 10.10 through the interface shown
in Figure 2.6 (from [6]).

Figure 2.7 shows a plot of these 190 functions. As one would expect, the 90 functions
with an acceleration setting lesser or equal than 1, those labeled */10-*, correspond
to a naive constant gain of 1 (considering the 400 CPI and 96 PPI used for plotting
the curves). Note that this is the only naive constant gain achievable through the
interface is shown in figure 2.6 and that this interface does not allow to achieve a
unitless constant gain [6].

2.6.3 Apple OS X Transfer Functions

The source code for the internal parts of OS X that deal with pointing transfer func-
tions is publicly available as part of the IOHIDFamily project3, the main concerned
files being IOHIDSystem/IOHIPointing.cpp and IOHIDSystem/IOHIDSystem.cpp.
From the archived versions of this project, it seems that the current pointer acceler-
ation mechanisms first appeared in OS X 10.2, released in 2002. However, although
the source code is available, the design rationales and principles of operation of these
mechanisms are unknown. Figure 2.8 shows the related configuration interface, lo-
cated in the Mouse pane of the system preferences. From a user-perspective, the

3https://opensource.apple.com/source/IOHIDFamily/

26

2.6. Transfer Functions

acceleration mechanisms are badly documented and the tooltip associated to the
slider are misleading.

Figure 2.8: OS X 10.6.7 configuration interface for the mouse. A tooltip associated
to the slider says Drag to adjust how fast you want the pointer to follow the movement
of your mouse.

The code from IOHIDFamily responsible for pointer acceleration(mainly in IOHI-
Pointing.cpp) are similar to Windows. Each pointing device has an associated accel-
eration table provided by its driver (some also define a separate table for scrolling).
This table specifies one or more curves defined by a series of segments and a scale
level. The slider is shown in figure 2.8 allows users to specify a desired scale among
the following:

0(slow) 0.125 0.3125 0.5 0.6875(default) 0.875 1.0 1.5 2.0 3.0(fast)

The system interpolates between the curves provided by the driver to create one
that matches the desired scale and maps a vector magnitude to a CD gain value.
Then for each (dx, dy) displacement, it computes an approximation of the vector
magnitude using the same equation as Windows, uses the created curve to find the
right CD gain, applies it to (dx, dy), adds the previous remainders and returns the
integral part of the result after updating the remainders [6].

Figure 2.9: OS X 10.6.7 functions for mice (available through the interface shown
in Figure 2.8) and touchpads (from [6]).

27

2. Related Work and Background

The acceleration curves stored in device drivers are hardware-independent. When
it interpolates between them, the system takes the resolution of the input device
into account. However, it uses hardwired constants for the resolution of the display
(96 PPI) and the frequency of the input and output devices (67 Hz). A detailed
inspection of the drivers available on OS X 10.6.7 showed that several of them use
the same tables. There are two particular tables, one for mice and the other for
touchpads, that seem to be used by all such devices that rely on Apple’s drivers[6].
Figure 2.9 shows the curves of motor speed vs CD-gain associated to each slider
position shows in figure 2.8 for generic mice(left) and touchpads(right) [6].

2.7 libpointig toolkit and EchoMouse

2.7.1 EchoMouse

Casiez and Roussel [6] presented EchoMouse, a device to characterize the transfer
functions of any system. It is an electronic device that measures a system’s response
to pointing movements received from a HID equipment. It investigates the transfer
functions used by systems without spending too much time on their internals mech-
anism. They used it to send data in pointing space, then the response in display
space is observed. Repeating this procedure for sufficient numbers of points and
conditions to obtained the whole transfer function [6].

EchoMouse constructed by few devices like Microchip PIC (18LF14K50), STM32,
Arduino Leonardo. The simplest Echomouse can be built with Arduino Leonardo.
In the case of Arduino, EchoMouse receives the number of counts to move by serial
port and sends it by HID (as a simple mouse).

The main algorithm used to do that:

• Write mouse and display hardware settings (Resolution and update rate)

• For each available configuration of the mouse speed or acceleration in the
system:

– Perform the following for Npoints = 1 to 127:

∗ Move cursor position to the position (0, dispheight/2)

∗ Receive the Npoints by a serial port.

∗ Repeat this until cursor hit the border of the display (remember
Ntimes):

· Send this number by HID Mouse (usually only horizontal direc-
tion, since the transfer function is the same in both directions).

∗ Measure the Npixels / Ntimes corresponding to the Npoints.

– Measure the Npixels / Ntimes corresponding to the Npoints.

28

2.7. libpointig toolkit and EchoMouse

• At the end achieve full acceleration profile and plot the transfer function [6].

For each available configuration of the mouse speed or acceleration in the sys-
tem:

• Subpixel processing (how the remainders are handled in the system).

• Correlation between dx and dy. Since, the transfer functions are computed for
a single direction, when there are 2D motions, the gain of the transfer function
may take into account only the biggest, or a combination of the two. In many
cases, the gain is applied to the norm of the displacements (d =

√
(dx2 + dy2)).

• Rounding of the gains [6]

2.7.2 libpointig

libpointing is a toolkit developed by Casiez and Roussel to replicate and compare
the transfer function used by different operating systems. The gold of libpointing
are

• Directly accessing HID pointing devices to bypass the system’s transfer func-
tions.

• Replicate transfer functions of all different operating system like Windows, OS
X and Xorg.

• Run on different operating system’s platform and compare implemented trans-
fer functions with the genuine ones.

• Support comparisons between the replicated functions and other ones.

libpointing supports the use of URIs [22] to specify input and pointing devices,
display devices and transfer functions. The main features of the libpointing toolkit
are summarized below

Pointing devices
PointingDevice instances are created from URIs using the static create method of
that class. Other methods allow checking whether a device is active, to obtain
its resolution (in counts per inch), update frequency and URI, and to associate a
callback to it. The callback will be executed every time the device has a motion or
button event to report, passing it a timestamp, dx and dy values (in counts) and an
integer coding the buttons states.

Display devices
DisplayDevice instances are also created from URIs using a static create method.
Other methods allow obtaining the horizontal and vertical bounds (in pixels), sizes
(in inches or millimeters) and resolutions (in pixels per inch) as well as the refresh
rate and the URI of a particular display.

29

2. Related Work and Background

Transfer function
TransferFunction instances are created using a static create method from a URI, a
PointingDevice and a DisplayDevice. Other methods allow to obtain the URI of a
function, to clear its internal state and to apply it to dxin and dyin values (in counts)
with a timestamp to produce dxout and dyout values (in pixels). The toolkit provides
subclasses that correspond to different transfer functions. Care has been taken so
that all implementations are platform-independent.

Utilities
libpointing includes some test and debugging programs that allow listing the avail-
able devices and their characteristics, for example. The toolkit also includes a
transfer function plotting tool written in Python using matplotlib. This tool proved
quite useful as it provided visual confirmation of the implemented transfer func-
tion of the Windows, OS X, and Xorg functions matched the data collected using
EchoMouse.

The toolkit also includes an application that allows testing an arbitrary number of
transfer functions at the same time specified by their URI as command-line argu-
ments. The program creates an on-screen cursor (a small square) for each function,
a single pointing device being used to control all of them [6].

2.8 Summary

In this chapter, we have described details description about the pointing devices and
fundamental terms which help to understand how transfer function works. Later we
have discussed most used transfer functions of modern operating systems. As our
plan was to work on windows environment so we tried to retrieve the windows
transfer function and the inside mechanisms. We have to understand the windows
transfer function to deactivate the windows pointing function while our application
will be running. This chapter also talks about other transfer functions as the planned
application tools going to access them. The plan is to develop a pointing device data
logger which will record all the information regarding pointer and pointing devices
and an application to allow the user to define their own transfer function. By the
studies of the prior work of Casiez & Roussel, we have gathered knowledge about
libpointing and EchoMouse. After being familiar with the libpointing repository and
EchoMouse device, our work becomes easier to deploy the basic concept about how
to replicate modern transfer functions.

30

3 | Concept of User-defined Trans-
fer Function

3.1 Introduction

Buxton stated “one of the things that I see most neglected is any consideration
of when to use relative vs absolute control and varying, including when and how
to effectively and dynamically switch from one to the other, and when and how to
dynamically adjust CD ratio [4].”

Figure 3.1: Application Process Diagram.

Pointer acceleration is the default transfer function of Microsoft Windows and Apple
macOS operating system. It dynamically changes the control CD gain between
actual velocity of the pointing device to the actual velocity of the pointer on the
screen. An algorithm calculates the transferred pointer data of the transfer function.
The physical meaning of the function is achieved by converting the arbitrary values
to physical units.

31

3. Concept of User-defined Transfer Function

A good idea to enact a transfer function is to use a device, which is not attached to
the system pointer mechanism and an API or software that provides access to its
raw data. As an example, Blanch et al. [2] used the absolute coordinates of a Puck
on a Wacom tablet as input for their Semantic pointing techniques.

The figure 3.1 is the process diagram of the planned desktop application tool. The
basic plan is to collect the pointing device raw input data(i.e. mickey) and then
convert the arbitrary transferred raw data to meaningful physical data. After that,
the application has to compute motor velocity (speed of the physical device motion
or finger dragging effects) from the physical movement raw data. There is a lookup
table for the popular operating system transfer functions. The table contains dif-
ferent ranges of visual velocity (pointer speed on the display) values according to a
range of motor velocity values. The corresponding visual velocity is selected from
the table and then calculated the CD-gain. The calculated CD-gain is used to com-
pute the visual displacements. Finally, visual displacements are converted to pixel
displacements on the screen.

For the user-defined approach, there is an interactive graph section, where users can
drag the transfer function curve by the mouse dragging option and move the knot
up and down on the curve to define their own transfer function. The manipulated
data points are converted to visual velocity data and from the visual velocity data,
CD-gain has been calculated. At the end, visual displacements are converted to
pixel displacements on the screen.

3.2 Mouse Pointer Recorder

The Idea is to develop a desktop application tool which will be run in the background
and will record all the pointing device activities. The application will collect other
relevant information from the system to understand an optimal transfer function.
Then the application will write all the information immediately into the log file. The
application will start each time automatically to collect all the necessary information
without interfering the regular work. A separate setting option will be available for
the users to change the file destination.

The plan is to retrieve all the raw information of the input pointing devices as well as
to collect all the necessary information of the display devices in order to understand
a pointing transfer function of any operating system. To uniquely identify each input
stream, timestamp has been used for each input line. The application tool will write
each unique input stream in the text file immediately. It will generate the new log
file when the user starts it for the first time. Each time when the application starts
it will create a new log file.

To collect the raw input information from the pointing devices, first of all, the
application will ensure that the input data are from pointing devices. The type of
the devices depends on the position data such as absolute and relative. For example,
mouse provides the relative position and touchpad provides the absolute position.

32

3.3. User-defined Application Tool

Application tool also collects the input devices button’s information and button’s
raw data whenever a user clicks on the devices. The application will retrieve the
data only when the user moved or touched the devices.

The mouse movement provides the displacements values called Last Mouse Raw
Input on the operating range XY coordinates. When the user moves the physical
mouse on the mouse pad (operating range), the system will record displacements
values and also the screen cursor position at the same time. The pointer position is
an arbitrary pixel value depended on the display resolution and the control devices.
The input device position unit is called mickey depend on the pointing device res-
olution, called DPI(dot per Inch), actually CPI(count per Inch). These arbitrary
values are converted to the physical value by dividing screen update rate and system
BUS update rate respectively.

All the retrievable information from the pointing devices are listed as Raw Mouse
Flags, Button Flags, Button Data, Raw Buttons and Last position of device on the
XY coordinates operating range. All others retrievable information from the operat-
ing system are Screen Resolution, Screen Boundary, foreground running applications
and programs information.

3.3 User-defined Application Tool

The simplest way to define a transfer function is to directly map the pointing in-
put device raw values to the output display pointer(cursor) values. In this case,
it will be the mouse movement raw input displacement values (x,y) and the dis-
play pointer(cursor) position values (x,y) on the system display. The problem is
that mouse raw input displacements values are arbitrary values with different units
compare to pointer displacements values on the screen.

After collecting the raw data, the first step will convert the both units to similar
stander units. For example, the control space and display space collected data units
length will be meter and the time will be same units (millisecond or nanosecond).
Now if we map physical device movement to the cursor movement then it will be
one-to-one mapping. It means if the mouse moves one centimeter on the operating
range then the cursor has to move one centimeter on the display and the CD-gain
will be one.

It is known that all the popular operating system use non-linear continuous transfer
function as their sole pointing facilitations. The CD gain is changing accordingly
to the change of input device’s velocity. It means CD gain will increase when the
device moves faster and CD gain will decrease when the device moves slower.

33

3. Concept of User-defined Transfer Function

3.3.1 Defaults Transfer Function

To define the existing operating system’s transfer functions, there will be a graph-
ical user interface where the user can select a function from the selection box and
after that apply the selected transfer function to the system cursor. For better
presentation, there will be a plot section to plot the selected transfer function.

The plan is to use the transfer function data points from the libpointing toolkit,
which are generated by the EchoMouse pointing device developed by Casiez and
Roussel [6]. In their published research named ‘No more Bricolage! Methods and
Tools to Characterize, Replicate and Compare Pointing Transfer Functions’, they
used EchoMouse pointing device and libpointing toolkit to replicate all the popular
operating systems transfer functions such as Windows, Linux, macOS etc.

There will be file structure system at the application backend, where all the transfer
functions data points will be stored from libpointing repositories and organized by
the name of the different operating system and their default setting. The applica-
tion will load particular transfer function file from the corresponding data folder,
according to the selected transfer function name and pointer speed setting.

the total number of selected transfer functions will be highly dependents on the
collected data point sets of the libpointing toolkit.

3.3.2 Interactive Graph

The main objective of this thesis is to implement an application tool, which will
allow the user to define their own transfer function. To fulfill this objective we have
planned to introduce a technique to manipulate a range of data points in a convenient
way. Our plan to use interactive graph system to manipulate the data points by
the user interaction with the graph. In the interactive graph, the user can change
the plotted curve by dragging the knot up and down on the curve with the help of
mouse dragging option. By moving the knot from one place to another the line will
move, the curve of the graph will change and data will be manipulated. After that,
the application will use the customized data to define new transfer function and by
this way, the user can define their own transfer function.

There will be saved and load option for the user-defined transfer functions. The
user could save the manipulated data sets into a text file and also could load it for
applying to the system pointer. There will be a feature to apply the newly defined
transfer function directly to the cursor.

3.4 Summary

The collected data points from the libpointing toolkit make the work easier to repli-
cate existing transfer functions and interactive plot graph idea helps to define user’s

34

3.4. Summary

own transfer function. Windows operating system also uses predefined transfer
function curve with 5 inflection points in the lookup table and others points linearly
extrapolated beyond the last inflection point. Similarly, the planned application
tool will use collected data points from the prior research as a lookup table. The
interactive graph curve system will have 6 knots, (the first pair will be [0,0] like win-
dows) which will represent 6 data points on the transfer function curve. Therefore,
the application will use spline interpolation to convert those 6 data points to 127
data points. Because of each replicated transfer function from the libpointing toolkit
has 127 data points. The HID specification defines a simple boot report format
for the pointing devices mice and that format uses only one byte per axis [3]. It
represents -127 to +127. The transfer function data points stored in the lookup
table(text file) are absolute values of motor speed upon the corresponding visual
speed from the range 0 to 127. The Appendix table A.1 shows a set of data points
for the windows transfer function when pointer speed is 6 and the enhance pointer
precession is checked.

35

4 | Design and Implementation

4.1 Introduction

To implement our basic concept, first of all, we try to retrieve the raw input values
from the pointing devices and then write the retrieved data into a log file. For the
purpose of data retrieve and store into the file, we developed a desktop application
tool called Mouse Logger. We have developed another separate application called
User-defined Transfer Function Tool to allow the user to define their own transfer
function. In the User-defined Transfer Function Tool, the user can select different
types of transfer functions of the recent operating systems and also can customize
their own transfer function. This application tool is the main implementation part
of this thesis and at the end, some features are added to collect user’s devices
information and feedbacks to conduct a user study. This chapter includes separate
details description of the both desktop application tools.

4.2 Mouse Logger

Mouse logger is a universal mouse recorder, it records mouse movement, mouse raw
data and pointer position on the screen. The aim is to collect as many information as
possible to understand the pointing transfer function of the operating system and the
whole pointing facilitation mechanism. The application will run in the background
without any interface and all the setting can be changed from the system tray
icon.

4.2.1 Architecture and Requirements

Figure 4.1 is about the simple architecture of the Mouse Logger application. It
shows that application collects data from the input devices and write it into a text
file. The data flows in one direction. The objective of the application is very simple,
it collects information about the input-output devices and stores it into the log
file. Each time when the application starts, it creates a new log file in the user’s
documents folder. The created file name contains current timestamp. Every time

37

4. Design and Implementation

Figure 4.1: The simple architecture of the MouseLogger Tool.

when a new file is created, the application always checks the existence of the old
files. The backup process of the application searches the old file and moves it into
the backup folder. The application registers itself in the system startup list when it
starts for the first time. By default application will write the log files in text format
but the user can change the file format into comma-separated values (CSV).

This application developed on .Net(dot net) Framework 4.5.2 so it will run only in
Windows environment and minimum version requires Windows 8.

4.2.2 Design

The Graphical User Interface (GUI) (figure 4.2) mainly contains the file location
path where the log file is saved. By default, it creates a log file in the user’s docu-
ments folder but the user can change the file destination.

The application starts with a notification message (figure 4.3 (left)) showing that
the application is running and the setting could be changed from the system tray
icon. The application system tray icon has right mouse click option, a strip menu
will appear after the click with the options (figure 4.3(right)) pause, change file path
and close the application. The application interface will appear on the screen by the
click of the Change Text Path menu item or double click on the application system
tray icon. User has to pause the application before changing any setting. After
clicking on the Pause button, the user can change the file destination by creating a
new file. The application will write log data into the newly created file.

The user can choose the file format from text or CSV, by default the log data will
write in text file but there is a checkbox option labeled CSV. If the checkbox option
is checked then the file will be written in CSV format. The application registers
itself in the system startup program list when it is started for the first time. There
is a Clear Apps from Startup button in the bottom left corner of the application
for removing the application from the startup program list. At the center of the
application, there is a big multiline text box as a status box, whenever changes are
made by the application it shows as a feedback. Consequently, user can check the
status during the application running time. At the upper right corner, there is a
Hide button to hide the whole application and run it in the background.

38

4.2. Mouse Logger

Figure 4.2: The screenshot of the Mouse Recorder Application Tool.

4.2.3 Implementation

The class Form.cs contains all the graphical code, Win32 APIs1 function decla-
rations, User32.dll2 library functions, mouse events and device information func-
tions.

The Form.cs class usedWin32 APIs to collect display devices and cursor information
data. There is a message filter interface to declare the global mouse events class.
All types of mouse events are defined in the mouse event class. There are also
extended mouse events classes to provide additional information about mouse click
and movement actions. The application mainly used mouse events for the input
pointer devices movement information and click events for taking data whenever
the user clicked on the mouse buttons. These global mouse events help to record
the cursor position information whenever the application run in the foreground as
well as the background.

There is a PreFilterMessage function in the Form.cs class and this function execute
each time when the input pointing devices are moved or touched. PreFilterMessage
function always checks the pointing devices ID(Identification number) and the type
of the input devices. The application starts taking raw input data from the pointing

1https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx.
2http://www.pinvoke.net/default.aspx/user32.getwindowrect

39

4. Design and Implementation

Figure 4.3: The pop-up notification message (Left) and System Tray Icon right click
menu options (Right).

devices only when the input device type match. The application starts polling
information every time when any events occur such as device move, button click,
wheel scroll etc.

The class named MouseInputRAWData, where all the raw information are declared
and a method are also defined. This class returns the device IDs and input device
type. When the input device is moved or touched it checks the device type, if it is
mouse then returns a string value mouse after that application start polling pointer
position values (x,y) by the global mouse events. The application also collects data
like the name of the currently running foreground program, virtual screen width,
virtual screen height.

At the same time PreFilterMessage method collects the pointing device’s last raw
values in x direction and last raw values in y direction on the operating range. The
operating range of the device is the maximum of unconstrained physical movement
area. It is the displacement of the physical mouse movements or the finger dragging
effect on the touchpad. Application collects mouse extra information, which are
additional information for the mouse events. Mouse ButtonFlags is the flag for the
event. RawMouseFlags indicate the state. MouseFlags value 0 meansMoveRelative;
Relative to the last position, MouseFlags value 1 means MoveAbsolute; Absolute
positioning, MouseFlags value 2 means VitualDesktop; coordinate data is mapping
to a virtual desktop, MouseFlags value 4 means AttributesChanged; Attributes for
the mouse have changed. ButtonData actually contains the delta amount, when the
mouse is moved. RawButtons, contains raw button data.

The application also collects some other calculated values such as mouse vector
distance, cursor vector distance, velocity of the pointing device and velocity of the
cursor. After that, the application calculates CD-Gain for each collected raw input
value of the pointing device for each unique Timestamp.

4.2.4 Log File

The first attribute of the log file is (see figure A.1) Timestamp, the format of
the Timestamp is year-month-date-hour-minute-second-millisecond. The second at-
tribute is the DateTime ticks, a single tick represents one hundred nanoseconds or

40

4.3. User-defined Transfer Function Tool

one ten-millionth of a second. There are 10,000 ticks in a millisecond or 10 million
ticks in a second. After that x/y values of the pointer on display screen are there,
next value is the foreground application name and then the virtual resolution of the
current system display. This virtual resolution is the height and width of the virtual
screen so if the current system has multiple extended displays then it will show the
total height and width of the system screen. Next value is a point decimal num-
ber, which is the vector distance from the previous cursor position to the current
position. Next attribute is the last raw mouse motion values x/y in the direction
of x-axis and y-axis respectively. Other values are mouse additional information,
mouse button flags, mouse button raw data, mouse flags, mouse raw button values,
next decimal values indicates the distance of previous raw mouse motion to current
mouse motion. The very last value is the CD-Gain for each unique timestamp.

4.3 User-defined Transfer Function Tool

A user-driven approach used to assess the system’s transfer functions based on
natural interaction. We developed a desktop application tool for the users to choose
a specific transfer function from the selection list and select different pointer speed.
Afterward, users can apply that function to the system cursor. The user also can
declare their own transfer function by the help of the interactive transfer function
curve.

4.3.1 Architecture and Requirements

Figure 4.4 shows the simple architecture of the user-defined application, which is
similar to the mouse logger application.

Figure 4.4: The simple Architecture of the User-defined Transfer Functions Tool.

The desktop application tool collects raw input data from the input devices and

41

4. Design and Implementation

calculates the physical mouse motion velocity from the raw data. After that, It
retrieves the corresponding visual velocity of the pointer from the stored data points
sets. At the end calculate the CD-Gain and replace the current cursor position
according to the CD-Gain. The application also has interactive graph curve option,
where a user can customize all the existing operating system’s transfer functions
and defines their own new transfer function.

Figure 4.5: The screenshot of the User-defined Transfer Function tool main interface.

The application requirements are same as mouse logger application tool. It devel-
oped on .Net framework 4.5.2, and used Win32 APIs for access User32.dll library
functions. In addition, the application also used Google Sheets APIs 3 to collect user
device’s information and feedbacks remotely from the user machine for user study
purpose.

3https://developers.google.com/sheets/api/guides/concepts

42

4.3. User-defined Transfer Function Tool

4.3.2 Design

The application starts with a notification message (see figure 4.8(left)) that the
application setting could be changed from the system tray icon. The system tray
icon has right mouse click options (see figure 4.8(right)). The right mouse click
strip menu contains three options, first one, application view option, where a user
can view the whole application interface. The second option, apply the currently
selected transfer function to the pointer and third application terminate.

Figure 4.6: The screenshot of the selection combo box.

The application main interface (see figure 4.5) contains a file menu, which has open,
save and reset system’s transfer function options. It has a selection box(see figure
4.6), where a user can select a transfer function from the list. The application
retrieves the folder name from the selected transfer function name. It also has a
speed trackbar according to the default operating system’s pointer setting. It takes
the value of the trackbar whenever the user changes the value. After that combining
this trackbar value with the folder name, the application generates a file destination
path and searches data points in the stored file. If the application successfully
collects data point set from the generated file then it plots the transfer function in
the interactive graph plot section. Now user can apply this transfer function to the
system’s cursor by simply clicking on the Apply or Ok buttons.

Figure 4.7: The Application main menu (Left: File Save and Open Option, Right:
Feedback Option).

In the interactive graph option, the user can simply move the knot up and down
on the curve to move the curve position and generate a new transfer function for
the user-defined option. There are six knots on the curve and the user can hold
any one at a time to move up or down direction by the mouse dragging option.
After that, the modified selected transfer function could be directly applied to the
system’s cursor by simply clicking on the apply or ok buttons. If the user clicks on

43

4. Design and Implementation

the ok button then the transfer function will be applied to the system cursor and
the whole application will be invisible.

The application also has saved and load options. User can save their customized
transfer function curve from File > Save option(see figure 4.7(left)). When a user
clicks on the Save menu item, the application will request the user to create a file at
their desired location. After that, the modified data points will be saved under the
filename at the selected destination. The user can also load the saved file from File
> Open option. By this feature, the user can save their favorite transfer functions
and move it from one machine to another.

There is a feedback item (see figure 4.7(right)) in the main menu to show feedback
dialog box and activate/deactivate user study mode. The cancel button action will
remove all the applied transfer function setting from the cursor and reset the cursor
to default operating system setting. If the user applied any worst mapping transfer
function to the pointer which is so fast or too slow for operating the pointer. For
that, there is a hot shortcut key to reset the application to the default operating
system setting by pressing Ctrl+R keys on the keyboard.

4.3.3 Implementation

4.3.3.1 Notification and System Tray Icon

To implement the notification (see figure 4.8(left)) feature we have used Tulpep
Notification Popup Window4 package downloaded from NuGet Gallery.

Figure 4.8: Start notification message (Left) and System Tray Icon right click menu
options (Right).

4.3.3.2 Load libpointing Data Points

In the research work of Casiez and Roussel [6], they presented EchoMouse a device
to characterize the transfer functions of any system, and libpointing a toolkit to
replicate and compare the transfer functions used by Windows, OS X and Xorg.
The application takes all the transfer functions data points sets and stores them in
a file structure system (see figure 4.9).

4https://www.nuget.org/packages/Tulpep.NotificationWindow/

44

4.3. User-defined Transfer Function Tool

Figure 4.9: File structure system of the libpointing data points.

The application loads data points from the file when the user selects a particular
transfer function and also plots the curve in the interactive graph section. Each
default transfer function has a folder by its own name and inside the folder, there
are files according to their default pointer setting. For example, Windows operating
system has two folders named Windows-EPP and Windows-NoEPP. According to
Windows mouse properties panel, Windows-EPP abbreviates Windows enhanced
pointer precision. There are eleven files inside the Windows-EPP folder named
from f1 to f11 for representing all the different transfer functions of Windows at
different pointer speed setting when enhanced pointer precision is enable.

Data points are represented as comma separation values of 127 rows and 2 columns
inside each function file. First column of integer values represents the motor speed
(also known as physical mouse velocity) and second column decimal fraction values
represents the cursor speed (also named as virtual pointer velocity). Each transfer
function file contains 127 different pairs of values which are motor speed and cor-
responding visual speed. The Table A.1 shows full set of data points of Windows
transfer function when pointer speed is 6 and enhance pointer precision is checked
on.

4.3.3.3 Inside Calculation

The main algorithm of the user-defined transfer function tool listed below :

45

4. Design and Implementation

• When the user clicks on the Apply button, the application retrieves the input
device type.

• If the input device is pointing device then it starts polling mouse X and Y
values in a time interval.

• For each different X and Y values, the application calculates the norm of the
displacements d =

√
dx2 + dy2

• This norm of the displacements consider as mouse speed

• Now if the user customized interactive transfer function curve then application
calculates pointer speed from the modified curve data points else the applica-
tion retrieves pointer speed from the stored file according to the mouse speed.

• Calculates the CDgain = Speedpointer/Speeddevice

• Retrieves the pointer current position and applied the CDgain to calculate new
position

• Verify and convert new position values to display pixel values (x,y)

• Set the calculated pixel values to the system pointer

• Go back to the first step

When user moves(mouse) or touches(touchpad) the pointing devices, the application
polling raw input values from the input devices. After that, it checks whether the
input data coming from pointing device by checking the device types. If input data
are coming from pointing devices then application starts recording input raw data
in a millisecond of the time interval. The application calculates the motor speed
for each input values from the last input raw value. The last input raw value is
the displacement of the input device on the operating range. The norm of the
displacements is d,

d =
√

dx2 + dy2 (4.1)

The method GetVisualSpeed with motor speed parameter calculates the visual speed
values from the motor speed. The motor speed are declared as an integer in the
stored data points file but calculated norm of the displacements values are always
fractional decimal values. For this reason, the application takes two integer values
x, the floor value of the motor speed and x + 1, the ceiling value of motor speed.
Now the visual speed Vspeed1 and Vspeed2 have been retrieved from the stored data
points sets respectively for two motor speeds. If Vspeed1 is equal to Vspeed2 then return
Vspeed1 as visual speed or else application calculates the visual speed by the following
equation

Vspeed = (1− fractionsV alue) ∗ Vspeed1 + fractionsV alue ∗ Vspeed2; (4.2)

Here fractionsValue is the fractional part of the decimal motor speed value.

46

4.3. User-defined Transfer Function Tool

If the user moves the interactive graph curve, the application calls GetVisualSpeed-
FromGraph method with motor speed parameter. When the user moves the knot
the transfer function graph curve bent according to the knot movement by the help
of curve spline interpolation function and the data points of the graph has been
changed. The interactive graph provides 6 knots which represent 6 pairs of data
points on the curve. Therefore, the application executes getDataPointsFromGraph
method with user chart parameter. This method takes the position of 6 knots as new
data points and calculates 127 data points by the help of our Spline Interpolation
class. The Interpolation class generates 121 unknown data points from this 6 known
data points. The GetVisualSpeedFromGraph function calculates the visual speed
from the motor speed when all the 127 data points are available. This calculation
is same like previous technique and the method returns visual speed as a function
return value.

The application calculates the CDgain when it gets visual speed for the corresponding
motor speed. To calculates the visual speed of the cursor on the X and Y direction
we have used following equations

xvisual−speed = Raw.Input.LastX ∗ CDgain; (4.3)

yvisual−speed = Raw.Input.LastY ∗ CDgain; (4.4)

When the visual speed in X and Y direction are calculated, the application converts
those speed values to pixel points on the screen by the following equations

x0 = System.Windows.Forms.Cursor.Position.X + xvisual−speed; (4.5)

y0 = System.Windows.Forms.Cursor.Position.Y + yvisual−speed; (4.6)

Therefore, the current X and Y position of the cursor on the screen have been
taken and then added visual speed with them. The application considers this visual
speed as the calculated visual displacements of the cursor on the screen. This
calculated (x0, y0) values have been checked whether the values are in between the
virtual screen boundary or not. If the values are in the display boundary range
then application converts (x0, y0) values into an integer for fits as screen pixel values
and replaces the current cursor position to the calculated position. If the calculated
values exceed the maximum display boundary values then the application takes
the maximum display resolution values. In other cases, the current cursor position
remains unchanged.

47

4. Design and Implementation

4.3.4 Log File

The user-defined application tool generates four log files in the system’s user docu-
ment folder, two of them for feedback information which we will discuss in the next
chapter and others two are application log file. One for recording all the changes
made by the user and other is for customized transfer function data points sets.
When the application runs for each time it creates a log file (see figure A.2) with
current timestamp in the name and all the information are written in it. When-
ever the user selects any transfer function from the selection box, log file writes
the name of the transfer function and after that start writing all other information.
The recorded data in the log file start from the timestamps, then inputs raw values
of pointing devices in X and Y directions, after that motor speed of the physical
motion of the input device, and then the visual speed of the pointer, next value is
the calculated CD-Gain, at the end X0 and Y0 current pixel position of cursor on
the screen.

The figure A.3 shows another log file for the interactive graph system when the
user manipulates the curve data points and applies the customized transfer func-
tion to the cursor, the application writes whole new customized transfer function
data points into the log file. Each time when the user changes the curve and ap-
plies it, application appends new transfer function data points sets in the log file
immediately.

4.4 Summary

We have developed Mouser logger application tool to collect as many information
as possible for the pointer and pointing input devices and after that write them into
the log file. But there are different input devices with different device identification
number and they varied according to the operating systems and input devices types.
Different participants machines return different input devices identification numbers.
In the initial plan, it was hard to recognized pointing devices by the device ID. After
that, we have used input device type to recognize pointing devices. There are also
some delay and buffering issues during the log files writing.

The user-defined transfer function tool, where the user can select transfer function
from the selection option and customize the function to make their own transfer
function is the main implementation part of this thesis. The total number of existing
operating system’s transfer functions are limited according to the availability of
libpointing data points sets. There are some other features such as collecting user
demographic information, user input-output devices information and remote data
transfer from the user’s machine to Google Sheet. Which we will discuss in the next
chapter.

48

5 | Study for Interesting Transfer
Function

5.1 Introduction

In this chapter, we will discuss how the user study is conducted by the developed
desktop application tool to identify interesting transfer function. The detail of the
user study step by step starting from design, method, result, discussion and so
on. The chapter begins with the design deployment of the application and the
details description about participants, apparatus, procedure and after that present
the result of the study. Finally, analyze the result to identify interesting transfer
function for touchpad and mouse.

5.2 Design Deployment

The application has added some additional features for user study purpose. The
extended features are notification message box, feedback form, and Google spread-
sheet. Google spreadsheet is used as a database to collect user study informa-
tion.

Figure 5.1: Feedback options in the main menu.

The application has a link in the main menu to go to the feedback dialog box
and also has an option to activate or deactivate user study mode(figure 5.1). To
request the participants to provide feedback in appropriate time with a convenient
way, a pop-up notification message will appear in regular interval of time while any
transfer function is active. The intention is to get the most effective feedback in

49

5. Study for Interesting Transfer Function

an appropriate time. Initial thought was to only write the feedback log file in the
user’s document folder, but later idea has been changed and added Google Sheets to
collect user feedback information remotely from the user’s computer.

5.2.1 Extended Graphical User Interface

An information dialog box (figure 5.2) will appear when the participant starts the
application for the first time. This dialog box will take demographic information
to describe and divide participants into different groups. This form also collects
feedback about pointing devices information from the participants. The collected
information is age, sex, and profession from the demographic information. The
application tries to estimate participants preferable pointing devices by asking the
question like how often they used mouse and touchpad.

Figure 5.2: Demographic information dialog box.

A pop-up notification message (figure 5.3) will appear each 5 minutes interval during
application running time. The notification message will only pop-up when partic-
ipants used any transfer function to the cursor. This notification is a graphical
control element that communicates to the participant without forcing them to react
to the notification immediately. The notification message shows a question like ‘Do
you like currently active transfer function?’. The notifications usually disappear af-
ter 20 seconds. If the participants wish to provide feedback they can do it anytime
from the Feedback link in the main menu.

50

5.2. Design Deployment

Figure 5.3: Pop-up notification message box reminds the participants for providing
feedback about the currently activated transfer function.

If participant clicks on the Answer button on the pop-up notification or on the
Feedback Form link from the main menu a questionnaire dialog box will appear (see
figure 5.4). The feedback questionnaire form has six Likert scale questions with a
choice of answers set.

Each question has a statement and the participants asked to evaluate by giving it a
quantitative value of an objective dimension, with a level of agreement or disagree-
ment. The format of our five-level Likert item are:

1. Strongly disagree

2. Disagree

3. Neutral

4. Agree

5. Strongly agree

The 6th question is an optional comment for any kind of opinion regarding the
application or transfer function. When the participant clicks on the Submit button
application submits the feedback to the Google Sheets and also write information in
the log file on the local machine.

5.2.2 Log File

When application starts for the first time, it will create a userInfos.txt (see figure
5.5) text file with the user identification number(ID) in the user’s documents folder.
Which is the unique identification number for the user generated by the combination
of timestamps (yyyyMMddHHmmssffff). For example, 201703252203531593. This
user ID will never be changed until the user deleted the userInfos text file from their
local machine. If the user deletes this file from the user’s documents folder then
the application will again generate this file with the new user ID and consider the
participants as a new user. If participant clicks submit button on the UserInfos
dialog box then this file will write rest of the information from the dialog box
information, otherwise, it will write only the user ID. If this file misses all the

51

5. Study for Interesting Transfer Function

Figure 5.4: Feedback questionnaire dialog box for user study purpose.

require information then UserInfos dialog box will appear each time whenever the
application starts.

The application generates another log file (see figure 5.6) when a participant submits
any feedback. This log file writes all the questions and answers immediately after
submission including timestamps. The question contains sufficient information to
identify a specific transfer function, such as the name and speed of the particular
transfer function, the corresponding answer is separated by comma separation in
each line. If the participant provides more feedback then next set of data will
append into the same file.

52

5.2. Design Deployment

Figure 5.5: User Information text file.

Figure 5.6: Feedback log file.

5.2.3 Google Sheets

The Google Sheets is introduced as data storage for this application. Google spread-
sheet is used to collect data remotely from the user’s machine. The figure 5.7 shows
extended architecture of the application. There are separated two tables for collect-
ing all the necessary and sufficient data for evaluating a transfer function. One table
is for feedback and other is for the trail. Figure 5.8 show the Entity-Relationship
(ER) model between two table.

The feedback table contains timestamp as a primary key, userID as a foreign key
and other 12 attributes. The application collects user pointing devices information,
display devices information, demographic information and feedback question-answer
sets. The application also collects each transfer functions activated time for each
trial and the whole customized transfer function as a data points set. When a
participant submits the feedback by clicking the Submit button on the feedback
form, all the collected information have been uploaded to the Google spreadsheets.
The application never records any kind of data that can individually identify any
participants.

The backend data storage contains another table for the trial, which is similar to
the previous table with the primary key timestamp, foreign key userID and other
11 attributes. Almost all of the attributes are same as the previous table except
selected transfer function name and speed attributes. Therefore, this table is not for
feedback so it does not have feedback question and answer columns. The information
is inserted into this table at the end of a trial when a participant clicks on the Cancel

53

5. Study for Interesting Transfer Function

Figure 5.7: The application architecture after adding Google spreadsheet.

button. The aim is to retrieve all the trials information for a particular participant
in the certain environment. Later it will help us to analyze the pointing transfer
function of the system. The userID is the foreign key for the both tables, so a link
can be made between this two tables by the foreign key. There could be more than
one feedback from one particular and also more than one customized entry in the
trial table. The database table entity relation is many to many.

googlesheets.cs and googlesheetsCustomData.cs classes contain all the code for imple-
menting this remote data backup features. Google APIs and Google APIs Sheets v4
packages used for this purpose. Google APIs Core and Google APIs Auth packages
also used for authorizing the access of the Google Sheet. The Google Sheet is identi-
fied by the sheet ID. There is a unique sheet ID for each google document. There is
an access token json file named client-secret.jso for accessing the google sheets. The
class has a constructor with all the necessary parameter. All the uploading data are
passed as a list of array parameter of the constructor and appended them to the
Google Sheets. Information is appended by Google API append service request and
values are inserted into the table as like user entered values.

5.3 Participants

In 3 weeks of the study period, in total there were 140 trials and 57 feedbacks. There
were 23 unique user entries in the both tables, so a total number of participants was
23. These 23 participants completed at least one trial. So we can state that 23
participants took part in the study there 20 were males and 3 were females. The
average age of the participants was 28.83 (SD: 3.16). The participants were mainly
students (19 out of 23) with different subjects. The other 3 of them worked as
employees in the information technology profession and an academic person.

54

5.4. Apparatus and Materials

Figure 5.8: GoogleSheets tables and Entity-Relationship (ER) model.

5.4 Apparatus and Materials

Most of the participants preferred to use a mouse as a pointing device, 16 out of
23 participants used a mouse ‘multiple times per day’, 5 participants used a mouse
‘multiple times per week’ and 2 used a mouse ‘multiple time per month’.

For a touchpad pointing device, 12 out of 23 participants mentioned that they used
a touchpad ‘multiple times per day’, 4 mentioned that they used one ‘multiple times
per week’, 6 used one ‘multiple time per month’ and one participant never used a
touchpad.

There were 5 participants were common they stated that they used a touchpad
and a mouse multiple times per day. The application retrieved the input pointing
devices information during the application running time and found that 4 out of this
common 5 participants have both a mouse and a touchpad as a pointing device. The
application collects input pointing device IDs and device description information for
retrieving the pointing devices. The collected information states that 15 out of 23
participants have USB Input Device (which considered as a mouse device) along
with a pointing device touchpad. There were 15 participants which have a mouse
and a touchpad both pointing devices in their machine during the application using
time and rest of the 8 participants only have a touchpad or trackpad as pointing
device attached to their machine.

55

5. Study for Interesting Transfer Function

Figure 5.9: Mouse vs Touchpad pointing devices statistic from participants feedback
response(left) and form collected devices information(right).

The application also tried to collect display devices information, for that it col-
lects physical screen size, physical screen resolution, logical screen resolution, virtual
screen resolution and pixel DPI of (x,y) from the participant’s display devices. From
the collected information we can state that minimum display device screen resolu-
tion is 1280x720 and maximum resolution is 3840x1200. There were 6 participants
out of 23 have used extended multiple displays because their logical resolution was
not same as virtual resolution.

The figure 5.9 shows separated input pointing devices statistic for feedback responses
and collected device information. The retrieved pointing devices information were
almost same as participants feedback response.

5.5 Procedure

For the user study purpose, the application download link was provided on a website1

and invited people to download and made trials on their machine. The application
download link was posted on the social network platform and requested people to
participant in the user study. The details instruction of the user study’s procedure
was written on the website page, starting from how to download the application to
submit the feedback. There was a short video tutorial2 and it was linked to the
download web page to help participants for completing the user study task.

The task for the participants was simple, there was no separate work for the user
study. The participants were instructed to do their regular work with their computer

1https://smhasanulbanna.wordpress.com/user-defined-transfer-functions-tool/
2https://goo.gl/B50vJN

56

5.6. Result

but before that, they just start and run our application tool. The participant can se-
lect any transfer function from the selection box or define their own transfer function
by the help of interactive graph. Once the application runs, a pop-up notification
message appears every 5 minutes and ask the participant to provide feedback on the
currently activated transfer function. The important part of the task was to change
and try few new transfer functions to experience better pointing performance. For
this reason, the participants were instructed to try few different transfer functions
by defining their own transfer functions and after that requested them to provide
feedback based on their experience. The participants were requested to perform the
same task multiple times with different customized transfer functions.

We always administered the participants during the study period for encouraging
them to try new transfer function and also to remind them for making more trials
and feedbacks. The participants were always connected during the whole user study
period and assisted over the phone or text message in case of any help.

5.6 Result

In total there were 140 (M: 6.087, SD: 5.49) trails from 23 participants during the
3 weeks of study period. There were 114 (M: 4.96, SD: 4.86) trials out of 140 trails
were the user-defined customized transfer functions, that means participants were
tried to define their own transfer function and the other 26 (M: 1.13, SD: 2.47) trials
were existing operating systems transfer functions (see figure 5.10).

Figure 5.10: Total collected trials group by user-defined customized transfer func-
tions and existing operating system’s transfer functions.

57

5. Study for Interesting Transfer Function

Figure 5.11: Total number of collected trials, feedbacks, marked agreed feedbacks
and customized feedbacks.

There were 57 (M: 2.48, SD: 2.37) feedbacks response out of 140 trails shown in
figure 5.11. Where 39 out of 57 (M: 1.69, SD: 2.19) feedbacks were evaluated as
the level of agreement by the participants and they have selected positive response
upon the question statement ‘The selected transfer function fits my needs.’. There-
fore, we consider that the following transfer functions fulfill participants pointing
performance demand. There were 22 out of 39 (M: 0.96, SD: 2.01) feedbacks were
evaluated ‘Strongly agree’ and 17 out of 39(M: 0.74, SD:0.51) feedbacks were evalu-
ated ‘Agree’ against that feedback question statement. There were 27 out of 39 (M:
1.174, SD: 1.58) positively evaluated feedbacks were user-defined customized trans-
fer function and rest of the 12 (M: 0.52, SD: 1.04) were existing operating system’s
transfer functions.

Figure 5.12 shows the statistic of the total trails and feedbacks group by pointing
devices, there were 116 (M: 7.25, SD: 6.13) trails from 16 participants, who used
a mouse as their most preferable pointing device and others 24 (M:3.43, SD:2.14)
trails from 7 participants who used a touchpad as their main pointing device. There
were 48 (M:3, SD:2.68) feedbacks provided by the mouse pointing device and only
9 (M:1.28, SD:0.52) feedbacks were from the touchpad.

The total time for the 140 trails was 9579.28 seconds(see figure A.9) and the average
activated duration for each trails was 68.42 (SD:167.44) seconds. The total time for
the 57 feedbacks was 7580,13 seconds(see figure A.10) and average activated duration
for each transfer function during feedback was 132.98 (SD:224.24) seconds.

To identify the interesting transfer function, we have studied each of the trial and
feedback provided by the participants. The evaluation parameters totally depend

58

5.6. Result

on the participant’s feedback response and transfer function activation time. The
agreed feedback responses were evaluated and those transfer functions were consid-
ered as an interesting transfer function for the individual participant. The longest
activated trial transfer function also considered as an interesting transfer function
for the individual participant as participants used that transfer function for the
longest period of time. Figure 5.13 shows all the transfer functions of the top 3
participants, the agreed function is plotted in green color and the longest activated
functions is plotted in red color.

Figure 5.12: Total collected trials and feedbacks group by pointing devices.

Appendix A.6 presents a list of plotted graph of all the transfer functions tried by
the participants, who has provided at least five trials and one feedback. Each figure
(for example figure A.11) shows all the tried transfer functions of an individual
participant and the agreed transfer function plotted in green color and the longest
activated transfer functions plotted in red color.

59

5. Study for Interesting Transfer Function

(a) Participant No. 19

(b) Participant No. 21

(c) Participant No. 12

Figure 5.13: Interesting Transfer Function for individual participants (agreed trans-
fer function plotted in green and longest activated function plotted in red).

60

5.7. Discussion

5.7 Discussion

Now to find out the interesting transfer function from the overall user study result,
we have decided to take the agreed response transfer functions and the longest trial
transfer functions as our evaluated parameters. Therefore, the identified interesting
transfer function will be based on feedback response and trial activation duration.
The collected trails and feedbacks are from two different pointing device such as
mouse and touchpad. So Finally we have decided to identify four interesting transfer
function, such as

1. Interesting transfer function for mouse based on participant’s feed-
back:

To identify this transfer function we have considered all the ‘Agreed’ and ‘Strongly
agreed’ evaluated feedbacks provided by the mouse pointing device. After that, we
have selected those transfer function’s curve and took six pairs of data points from
each transfer function curve according to the knot position of our interactive graph
system. We have generated a box diagram(see figure 5.14a) from those collected six-
knot data points sets. After selecting all the median values from the generated box
diagram, we have drawn the interesting transfer function(see figure 5.14b) through
the median values by the help of Spline Interpolation function. Figure 5.14 shows
the graphs of the interesting transfer function for the mouse based on participant’s
feedback response. More details and statistic of the box plot diagram is given in the
appendix A.21.

2. Interesting transfer function for mouse based on participant’s trial
duration:

To identify this interesting transfer function we have selected the longest trial for
each participant. There are 15 out of 23 participants used a mouse as a pointing
device, so we took 15 transfer function curves. After that, we have selected six pairs
of data points from that 15 transfer function curves, according to the knot position
of our interactive graph system. Then we have generated a box diagram(see figure
5.15a) from those collected six-knot data points sets. After that, we have selected
all the median values from the generated box diagram and plotted the interesting
transfer function(see figure 5.15b) through the medians by the help of Spline Inter-
polation function. Figure 5.15 shows the graphs of the interesting transfer function
for the mouse based on trial activation time. More details and statistic of the box
plot diagram is given in the appendix A.23.

3. Interesting transfer function for touchpad based on participant’s feed-
back:

To identify this interesting transfer function we followed that same procedure of the
Mouse interesting transfer function based on participant’s feedback response but this
time we considered those response provided by the touchpad. Figure 5.16a shows
the box plot diagram for this case and figure 5.16b shows the interesting transfer
function drawn through the median values of the box diagram. Figure 5.16 shows

61

5. Study for Interesting Transfer Function

the interesting transfer function for the touchpad based on participant’s feedback
response. More details and statistic of the box plot diagram is given in the appendix
A.22.

4. Interesting transfer function for touchpad based on participant’s trial
duration:

To identify this interesting transfer function we followed the same procedure which
we used for the Mouse interesting transfer function based on participants trial dura-
tion but the only difference is that this time we have considered those trials provided
by the touchpad. Figure 5.17a shows the box plot diagram for this case and figure
5.17b shows the interesting transfer function drawn through the median values of the
box diagram. Figure 5.17 shows the interesting transfer function for the touchpad
based on trial activation time. More details and statistic of the box plot diagram is
given in the appendix A.24.

62

5.7. Discussion

(a) Box Plot Diagram

(b) Interesting transfer function draw through the median values

(c) Interesting Transfer Function

Figure 5.14: The interesting transfer function for the mouse based on participant’s
feedback response.

63

5. Study for Interesting Transfer Function

(a) Box Plot Diagram

(b) Interesting transfer function draw through the median values

(c) Interesting Transfer Function

Figure 5.15: The interesting transfer function for the mouse based on participant’s
trial activation time.
64

5.7. Discussion

(a) Box Plot Diagram

(b) Interesting transfer function draw through the median values

(c) Interesting Transfer Function

Figure 5.16: The interesting transfer function for the touchpad based on partici-
pant’s feedback response.

65

5. Study for Interesting Transfer Function

(a) Box Plot Diagram

(b) Interesting transfer function draw through the median values

(c) Interesting Transfer Function

Figure 5.17: The interesting transfer function for the touchpad based on partici-
pant’s trial activation time.
66

5.8. Summary

5.8 Summary

In total there were 140 trails and 57 feedbacks from 23 participants within 3 weeks
of user study period, which was not a poor response at all but our acceptation
was little more. The participant’s involvements with the application and the total
number of user-defined transfer functions were quite impressive. In total 114 new
transfer functions were collected from the user study. The initial plan was to identify
interesting transfer function for each participant. Later the plan was changed and
the interesting transfer functions are identified from the overall user study statistic
for mouse and touchpad. As we know that these two pointing devices are the
best match for human needs and pointing performances for the graphical interface.
The identification of the interesting transfer functions is totally depended on the
participant’s activities and feedback response.

67

6 | Conclusion and FutureWork

There are million of people all over the world using pointing device without any
sort of technical knowledge how the inside mechanism work. They have no idea
about the pointing performance and evaluating parameters. People just relied on
the arbitrary satisfaction after changing the pointer setting of their computer. The
public documentations of the pointing technique from most of the modern operating
system is obscure. Therefore, this thesis presents a detailed description of the most
important pointing transfer functions to gain a deeper understanding of the optimal
transfer function. We have also described some popular pointing devices. The idea
of the thesis begins with the implementation of collecting raw input data of the
pointing devices. After that, we have tried to make a mouse recorder which will
record all the raw information from any pointing devices. The recorder also records
all the necessary and sufficient information related to the pointer on the display to
understand a pointing transfer function.

During the progress of the thesis, the main idea was buildup. The main objective
of the thesis is to assess the pointing transfer function based on natural interaction
with the system using a user-driven approach. To implement this part we have
developed an application tool where a user can select a transfer function from the
selection box and define their own transfer function. To replicate all the existing
modern transfer functions we have used data points sets from the libpointing toolkit
repository and that makes our implementation easier.

The challenging part was to find out an innovative and convenient way to manipulate
a range of data points for defining user own transfer function, which also needs
to be relevant in sense of pointing transfer function curve. For this reason, we
have introduces an interactive graph system, where a user can define their own
transfer function by just a mouse drag. The complete desktop application tool is
the contribution of our thesis.

After finishing the implementation part, a user study was conducted to identify
interesting transfer function. The interesting transfer functions are identified based
on participants feedback response and trials duration for the mouse and touchpad
pointing devices. Finally, we have identified four interesting transfer function, two of
them are based on participants feedback response and others two of them are based
on trial activation time. The identified transfer functions contain basic characteristic
such as when pointing device velocity is high the cursor moves faster and when the

69

6. Conclusion and Future Work

pointing device velocity is low the cursor moves slower.

Future work, the idea could be deployed in different perspectives and the desktop
tool could be extended by integrating additional features. One idea could be to
observe the user’s pointing devices input behavior and cursor movements behavior
over a period of time and then propose an optimal transfer function without requiring
feedback from the users. The comparison between different transfer functions could
be another option. There are others options such as evaluating or measuring the
performance of the optimal transfer function based on accuracy, precision, target hit
prediction time and difficulty level and so on. Most of the time users have no idea
about the pointing performance measurement and the evaluating parameter such as
accuracy, precision, target hit time and difficulty level. They relied only on their
tentative experience. Therefore, if the user could see the evaluations in parameters
of the selected transfer function after changing any pointer setting then it will help
them to improve their pointing performance in graphical user interfaces.

70

Bibliography

[1] Pointer ballistics for windows xp. Archived white paper, Windows Hardware
Developer Center, Oct. 2002.

[2] Renaud Blanch, Yves Guiard, and Michel Beaudouin-Lafon. Semantic pointing:
improving target acquisition with control-display ratio adaptation. pages 519–
526, 2004.

[3] Universal Serial Bus. Device class definition for human interface devices (hid).
Version, 1:1996–2001, 2001.

[4] William Buxton, Mark Billinghurst, Yves Guiard, Abigail Sellen, and Shumin
Zhai. Human input to computer systems: theories, techniques and technology.
Manuscrito de livro em andamento, sem editora, 2002.

[5] Stuart K Card, William K English, and Betty J Burr. Evaluation of mouse,
rate-controlled isometric joystick, step keys, and text keys for text selection on
a crt. Ergonomics, 21(8):601–613, 1978.

[6] Géry Casiez and Nicolas Roussel. No more bricolage!: methods and tools to
characterize, replicate and compare pointing transfer functions. In Proceedings
of the 24th annual ACM symposium on User interface software and technology,
pages 603–614. ACM, 2011.

[7] Géry Casiez, Daniel Vogel, Ravin Balakrishnan, and Andy Cockburn. The
impact of control-display gain on user performance in pointing tasks. Human–
Computer Interaction, 23(3):215–250, 2008.

[8] ERFW Crossman and PJ Goodeve. Feedback control of hand-movement and
fitts’ law. The Quarterly Journal of Experimental Psychology, 35(2):251–278,
1983.

[9] Sarah A. Douglas and Anant Kartik Mithal. The Ergonomics of Computer
Pointing Devices. Springer-Verlag London Limited, 1997.

[10] D.C. Engelbart, W. K. English, and B. Huddart. Computer-aided display con-
trol Final report. NASA Technical Documents, 1965.

71

Bibliography

[11] Paul M Fitts. The information capacity of the human motor system in con-
trolling the amplitude of movement. Journal of experimental psychology, 47(6):
381, 1954.

[12] CB Gibbs. Controller design: Interactions of controlling limbs, time-lags and
gains in positional and velocity systems. Ergonomics, 5(2):385–402, 1962.

[13] Ken Hinckley and Daniel Wigdor. Input technologies and techniques. The
human-computer interaction handbook: fundamentals, evolving technologies and
emerging applications, pages 151–168, 2002.

[14] Denis Howe. Free on-line dictionary of computer, 1985. URL http://foldoc.
org/trackpad.

[15] Herbert D Jellinek and Stuart K Card. Powermice and user performance. pages
213–220, 1990.

[16] Eike Jessen, Dieter Michel, and Heinz Voigt. Structure, technology, and devel-
opment of the aeg-telefunken tr 440 computer. IEEE Annals of the History of
Computing, 32(3):30–39, 2010.

[17] Steven W Keele. Movement control in skilled motor performance. Psychological
bulletin, 70(6p1):387, 1968.

[18] Steve Kolokowsky and T Davis. Touchscreens 101: Understanding touchscreen
technology and design. Cypress Semiconductor Corp. California, 2009.

[19] Richard F. Lyon. The Optical Mouse, and an Architectural Methodology for
Smart Digital Sensors. Xerox, Palo Alto Research Center, 1981.

[20] I Scott MacKenzie. Fitts’ law as a research and design tool in human-computer
interaction. Human-computer interaction, 7(1):91–139, 1992.

[21] I Scott MacKenzie and Poika Isokoski. Fitts’ throughput and the speed-
accuracy tradeoff. pages 1633–1636, 2008.

[22] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource iden-
tifier (uri): Generic syntax. 2005.

[23] Michael McGuffin and Ravin Balakrishnan. Acquisition of expanding targets.
pages 57–64, 2002.

[24] David E Meyer, Richard A Abrams, Sylvan Kornblum, Charles E Wright, and
JE Keith Smith. Optimality in human motor performance: Ideal control of
rapid aimed movements. Psychological review, 95(3):340, 1988.

[25] Bill Moggridge and Bill Atkinson. Designing interactions. volume 14. MIT
press Cambridge, MA, 2007.

[26] David A Rosenbaum. Human motor control. 1991.

72

http://foldoc.org/trackpad
http://foldoc.org/trackpad

Bibliography

[27] Mark S Sanders and Ernest J McCormick. Human factors in engineering and
design. 1987.

[28] Richard A Schmidt, Howard Zelaznik, Brian Hawkins, James S Frank, and
John T Quinn Jr. Motor-output variability: A theory for the accuracy of rapid
motor acts. Psychological review, 86(5):415, 1979.

[29] Miika Silfverberg, I Scott MacKenzie, and Tatu Kauppinen. An isometric joy-
stick as a pointing device for handheld information terminals. 2001:119–126,
2001.

[30] Jacob O Wobbrock, James Fogarty, Shih-Yen Sean Liu, Shunichi Kimuro, and
Susumu Harada. The angle mouse: target-agnostic dynamic gain adjustment
based on angular deviation. pages 1401–1410, 2009.

73

List of Figures

2.1 Generic block diagram of a pointing device (from [9]). 14
2.2 Possible sequence(s) of submovements toward a target as described

by the optimized initial impulse model [26]. (a) is the case where a
single movement reaches the target. (b) and (c) are the more likely
cases where the initial movement under or over shoots the target,
requiring subsequent corrective movements (from [23]). 20

2.3 Parent transfer function graph of Windows XP with five points, and
zoom view of four points are on the right side(from [1]). 21

2.4 Windows 10 configuration interface with default settings. Same set-
ting used by other old version of windows. 22

2.5 Registry Editor- Mouse Lookup Table, Microsoft Windows 10; Ver-
sion 1607, 2016. 23

2.6 Ubuntu 12.04 mouse pointer configuration interface, same setting
used by others version. 25

2.7 Xorg functions available in Ubuntu 10.10 through the interface shown
in Figure 2.6 (from [6]). 26

2.8 OS X 10.6.7 configuration interface for the mouse. A tooltip associ-
ated to the slider says Drag to adjust how fast you want the pointer
to follow the movement of your mouse. 27

2.9 OS X 10.6.7 functions for mice (available through the interface shown
in Figure 2.8) and touchpads (from [6]). 27

3.1 Application Process Diagram. 31

4.1 The simple architecture of the MouseLogger Tool. 38
4.2 The screenshot of the Mouse Recorder Application Tool. 39
4.3 The pop-up notification message (Left) and System Tray Icon right

click menu options (Right). 40
4.4 The simple Architecture of the User-defined Transfer Functions Tool. 41
4.5 The screenshot of the User-defined Transfer Function tool main in-

terface. 42
4.6 The screenshot of the selection combo box. 43
4.7 The Application main menu (Left: File Save and Open Option, Right:

Feedback Option). 43

75

List of Figures

4.8 Start notification message (Left) and System Tray Icon right click
menu options (Right). 44

4.9 File structure system of the libpointing data points. 45

5.1 Feedback options in the main menu. 49
5.2 Demographic information dialog box. 50
5.3 Pop-up notification message box reminds the participants for provid-

ing feedback about the currently activated transfer function. 51
5.4 Feedback questionnaire dialog box for user study purpose. 52
5.5 User Information text file. 53
5.6 Feedback log file. 53
5.7 The application architecture after adding Google spreadsheet. 54
5.8 GoogleSheets tables and Entity-Relationship (ER) model. 55
5.9 Mouse vs Touchpad pointing devices statistic from participants feed-

back response(left) and form collected devices information(right). . . 56
5.10 Total collected trials group by user-defined customized transfer func-

tions and existing operating system’s transfer functions. 57
5.11 Total number of collected trials, feedbacks, marked agreed feedbacks

and customized feedbacks. 58
5.12 Total collected trials and feedbacks group by pointing devices. 59
5.13 Interesting Transfer Function for individual participants (agreed trans-

fer function plotted in green and longest activated function plotted
in red). 60

5.14 The interesting transfer function for the mouse based on participant’s
feedback response. 63

5.15 The interesting transfer function for the mouse based on participant’s
trial activation time. 64

5.16 The interesting transfer function for the touchpad based on partici-
pant’s feedback response. 65

5.17 The interesting transfer function for the touchpad based on partici-
pant’s trial activation time. 66

A.1 Mouse Logger log file screen shot (partial). 84
A.2 Screen shot of user-defined application tool’s log file(partial). 85
A.3 Screen shot of interactive user-defined transfer function graph’s log

file(partial). 86
A.4 Base class diagram of Mouse Logger application tool. 87
A.5 Base class diagram of User-defined transfer function application tool. 88
A.6 Screen short of Google sheets - customized transfer functions. 90
A.7 Screen short of Google sheets - User defined transfer function feed-

back[part 1]. 91
A.8 Screen short of Google sheets - User defined transfer function feed-

back[part 2]. 92
A.9 Trails transfer function activated time. 95
A.10 Feedback transfer function activated time. 95

76

List of Figures

A.11 Interesting Transfer Function for Participants User9(best fits marked
green and longest activated trial marked red). 97

A.12 Interesting Transfer Function for Participants User10(best fits marked
green and longest activated trial marked red). 97

A.13 Interesting Transfer Function for Participants User11(best fits marked
green and longest activated trial marked red). 98

A.14 Interesting Transfer Function for Participants User12(best fits marked
green and longest activated trial marked red). 98

A.15 Interesting Transfer Function for Participants User15(best fits marked
green and longest activated trial marked red). 99

A.16 Interesting Transfer Function for Participants User19(best fits marked
green and longest activated trial marked red). 99

A.17 Interesting Transfer Function for Participants User20(best fits marked
green and longest activated trial marked red). 100

A.18 Interesting Transfer Function for Participants User21(best fits marked
green and longest activated trial marked red). 100

A.19 Interesting Transfer Function for Participants User22(best fits marked
green and longest activated trial marked red). 101

A.20 Interesting Transfer Function for Participants User23(best fits marked
green and longest activated trial marked red). 101

A.21 Box plot graph for mouse interesting transfer function based on agreed
feedback response. 102

A.22 Box plot graph for touchpad interesting transfer function based on
agreed feedback response. 103

A.23 Box plot graph for mouse interesting transfer function based on trial
activated time. 104

A.24 Box plot diagram statistics for the mouse interesting transfer function
based on trial activated time. 105

A.25 Interesting transfer function for mouse based on agreed feedback re-
sponse. 106

A.26 Interesting transfer function for touchpad based on agreed feedback
response. 106

A.27 Interesting transfer function for mouse based on trial activated time. . 107
A.28 Interesting transfer function for touchpad based on trial activated time.107

77

List of Tables

2.1 Windows mouse sensitivity when position multiplier enhance pointer
precision is off & on . 24

A.1 Windows Transfer Function data points set when EPP on and Speed 6. 94
A.2 Box plot diagram statistics for the mouse interesting transfer function

based on agreed feedback response. 102
A.3 Box plot diagram statistics for the touchpad interesting transfer func-

tion based on agreed feedback response. 103
A.4 Box plot statistics for mouse interesting transfer function based on

trial activated time. 104
A.5 Box plot diagram statistics for the touchpad interesting transfer func-

tion based on trial activated time. 105

79

Abbreviations

GUIs Graphical User Interfaces
CD Control Display
PA Pointer Acceleration
OS Operating System

USB Universal Serial Bus
HID Human Interface Devices
A-D Analog-to-digital
UIMS User Interface Management System
LED Light Emitting Diode
LCD Liquid Crystal Display
DPI Dot Per Inch
PIC Peripheral Interface Controller
URI Uniform Resource Identifier

API Application programming interface
CPI Count per Inch

CSV Comma separated value
GUI Graphical User Interface
EPP Enhanced pointer precision

UI User Interface
ER Entity-Relationship

81

A | Appendix

A.1 Log File Screen Shot

83

A. Appendix

Figure A.1: Mouse Logger log file screen shot (partial).

84

A.1. Log File Screen Shot

Figure A.2: Screen shot of user-defined application tool’s log file(partial).

85

A. Appendix

Figure A.3: Screen shot of interactive user-defined transfer function graph’s log
file(partial).

A.2 Class Diagram

86

A.2. Class Diagram

Figure A.4: Base class diagram of Mouse Logger application tool.

87

A. Appendix

Figure A.5: Base class diagram of User-defined transfer function application tool.

88

A.3. Google Sheets

A.3 Google Sheets

89

A. Appendix

Figure A.6: Screen short of Google sheets - customized transfer functions.

90

A.3. Google Sheets

Figure A.7: Screen short of Google sheets - User defined transfer function feed-
back[part 1].

91

A. Appendix

Figure A.8: Screen short of Google sheets - User defined transfer function feed-
back[part 2].

92

A.4. libpointing data points

A.4 libpointing data points

93

A. Appendix

Motor
Speed(m/s)

Visual
Speed(m/s)

Motor
Speed(m/s)

Visual
Speed(m/s)

Motor
Speed(m/s)

Visual
Speed(m/s)

0 0 43 96.67 85 212.22
1 0.58 44 99.43 86 214.97
2 1.31 45 102.18 87 217.72
3 2.18 46 104.93 88 220.47
4 3.07 47 107.68 89 223.22
5 4.22 48 110.44 90 225.97
6 5.56 49 113.18 91 228.73
7 6.88 50 115.93 92 231.47
8 8.22 51 118.69 93 234.23
9 9.55 52 121.43 94 236.97
10 10.88 53 124.19 95 239.73
11 12.21 54 126.94 96 242.48
12 13.54 55 129.69 97 245.23
13 14.87 56 132.44 98 247.98
14 16.9 57 135.19 99 250.73
15 19.65 58 137.94 100 253.48
16 22.4 59 140.69 101 256.23
17 25.16 60 143.45 102 258.99
18 27.9 61 146.19 103 261.73
19 30.65 62 148.95 104 264.49
20 33.41 63 151.7 105 267.23
21 36.16 64 154.44 106 269.99
22 38.9 65 157.2 107 272.74
23 41.66 66 159.95 108 275.49
24 44.41 67 162.7 109 278.24
25 47.16 68 165.45 110 280.99
26 49.91 69 168.2 111 283.74
27 52.67 70 170.96 112 286.5
28 55.41 71 173.7 113 289.24
29 58.16 72 176.46 114 292
30 60.92 73 179.2 115 294.74
31 63.66 74 181.96 116 297.5
32 66.42 75 184.71 117 300.25
33 69.17 76 187.46 118 303
34 71.92 77 190.21 119 305.75
35 74.67 78 192.96 120 308.5
36 77.42 79 195.71 121 311.25
37 80.17 80 198.46 122 314
38 82.92 81 201.22 123 316.76
39 85.68 82 203.96 124 319.5
40 88.42 83 206.72 125 322.26
41 91.18 84 209.46 126 325
42 93.93 127 327.76

Table A.1: Windows Transfer Function data points set when EPP on and Speed 6.
94

A.5. Trials and Feedbacks Activated Duration.

A.5 Trials and Feedbacks Activated Duration.

Figure A.9: Trails transfer function activated time.

Figure A.10: Feedback transfer function activated time.

95

A. Appendix

A.6 Interesting Transfer Function for Individual
Participants.

96

A.6. Interesting Transfer Function for Individual Participants.

Figure A.11: Interesting Transfer Function for Participants User9(best fits marked
green and longest activated trial marked red).

Figure A.12: Interesting Transfer Function for Participants User10(best fits marked
green and longest activated trial marked red).

97

A. Appendix

Figure A.13: Interesting Transfer Function for Participants User11(best fits marked
green and longest activated trial marked red).

Figure A.14: Interesting Transfer Function for Participants User12(best fits marked
green and longest activated trial marked red).

98

A.6. Interesting Transfer Function for Individual Participants.

Figure A.15: Interesting Transfer Function for Participants User15(best fits marked
green and longest activated trial marked red).

Figure A.16: Interesting Transfer Function for Participants User19(best fits marked
green and longest activated trial marked red).

99

A. Appendix

Figure A.17: Interesting Transfer Function for Participants User20(best fits marked
green and longest activated trial marked red).

Figure A.18: Interesting Transfer Function for Participants User21(best fits marked
green and longest activated trial marked red).

100

A.6. Interesting Transfer Function for Individual Participants.

Figure A.19: Interesting Transfer Function for Participants User22(best fits marked
green and longest activated trial marked red).

Figure A.20: Interesting Transfer Function for Participants User23(best fits marked
green and longest activated trial marked red).

101

A. Appendix

A.7 Box Plot Diagram.

Figure A.21: Box plot graph for mouse interesting transfer function based on agreed
feedback response.

0.00 24.00 48.00 72.00 96.00 120.00
Upper whisker 0.00 84.00 194.90 289.41 388.36 494.00
3rd quartile 0.00 62.24 152.17 229.56 336.00 420.00
Median 0.00 45.80 113.14 176.46 243.01 308.50
1st quartile 0.00 44.41 110.44 154.83 242.48 308.50
Lower whisker 0.00 18.49 75.22 71.00 192.41 240.00
Nr. of data points 29.00 29.00 29.00 29.00 29.00 29.00

Table A.2: Box plot diagram statistics for the mouse interesting transfer function
based on agreed feedback response.

102

A.7. Box Plot Diagram.

Figure A.22: Box plot graph for touchpad interesting transfer function based on
agreed feedback response.

0.00 24.00 48.00 72.00 96.00 120.00
Upper whisker 0.00 83.16 201.72 319.49 437.41 555.30
3rd quartile 0.00 55.97 187.65 265.18 335.72 394.25
Median 0.00 47.15 138.98 177.06 243.07 308.50
1st quartile 0.00 31.57 85.42 135.63 176.59 226.59
Lower whisker 0.00 13.71 55.71 75.30 97.07 123.40
Nr. of data points 8.00 8.00 8.00 8.00 8.00 8.00

Table A.3: Box plot diagram statistics for the touchpad interesting transfer function
based on agreed feedback response.

103

A. Appendix

Figure A.23: Box plot graph for mouse interesting transfer function based on trial
activated time.

0.00 24.00 48.00 72.00 96.00 120.00
Upper whisker 0.00 49.29 113.23 244.27 243.01 308.50
3rd quartile 0.00 46.00 113.18 203.65 242.99 308.50
Median 0.00 44.41 110.44 176.46 242.48 308.50
1st quartile 0.00 36.42 99.32 157.01 242.48 274.25
Lower whisker 0.00 28.14 86.83 137.56 242.48 240.00
Nr. of data points 15.00 15.00 15.00 15.00 15.00 15.00

Table A.4: Box plot statistics for mouse interesting transfer function based on trial
activated time.

104

A.8. Interesting Transfer Functions.

Figure A.24: Box plot diagram statistics for the mouse interesting transfer function
based on trial activated time.

0.00 24.00 48.00 72.00 96.00 120.00
Upper whisker 0.00 83.16 335.20 319.49 340.35 431.90
3rd quartile 0.00 62.00 262.98 278.92 320.28 370.20
Median 0.00 48.10 201.72 247.41 243.13 308.50
1st quartile 0.00 46.07 145.36 176.54 242.48 308.50
Lower whisker 0.00 44.41 110.44 176.46 132.78 308.50
Nr. of data points 7.00 7.00 7.00 7.00 7.00 7.00

Table A.5: Box plot diagram statistics for the touchpad interesting transfer function
based on trial activated time.

A.8 Interesting Transfer Functions.

105

A. Appendix

Figure A.25: Interesting transfer function for mouse based on agreed feedback re-
sponse.

Figure A.26: Interesting transfer function for touchpad based on agreed feedback
response.

106

A.8. Interesting Transfer Functions.

Figure A.27: Interesting transfer function for mouse based on trial activated time.

Figure A.28: Interesting transfer function for touchpad based on trial activated time.

107

Declaration

I hereby declare that the work presented in this thesis is entirely my own and that
I did not use any other sources and references than the listed ones. I have marked
all direct or indirect statements from other sources contained therein as quotations.
Neither this work nor significant parts of it were part of another examination pro-
cedure. I have not published this work in whole or in part before. The electronic
copy is consistent with all submitted copies.

Stuttgart, 12.05.2017 (S.M. Hasanul Banna)

	Introduction
	Related Work and Background
	Introduction
	Pointing Devices
	Motion-tracking pointing devices
	Mouse

	Position-tracking pointing devices
	Touchpad
	Touchscreen

	Pressure-tracking pointing devices
	Isometric Joystick

	Fitt's Law
	Constant Control Display Gain
	Pointer Acceleration
	Transfer Functions
	Windows Transfer Function
	X.Org Foundation Server Transfer Functions
	Apple OS X Transfer Functions

	libpointig toolkit and EchoMouse
	EchoMouse
	libpointig

	Summary

	Concept of User-defined Transfer Function
	Introduction
	Mouse Pointer Recorder
	User-defined Application Tool
	Defaults Transfer Function
	Interactive Graph

	Summary

	Design and Implementation
	Introduction
	Mouse Logger
	Architecture and Requirements
	Design
	Implementation
	Log File

	User-defined Transfer Function Tool
	Architecture and Requirements
	Design
	Implementation
	Notification and System Tray Icon
	Load libpointing Data Points
	Inside Calculation

	Log File

	Summary

	Study for Interesting Transfer Function
	Introduction
	Design Deployment
	Extended Graphical User Interface
	Log File
	Google Sheets

	Participants
	Apparatus and Materials
	Procedure
	Result
	Discussion
	Summary

	Conclusion and Future Work
	Bibliography
	List of Figures
	List of Tables
	Abbreviations
	Appendix
	Log File Screen Shot
	Class Diagram
	Google Sheets
	libpointing data points
	Trials and Feedbacks Activated Duration.
	Interesting Transfer Function for Individual Participants.
	Box Plot Diagram.
	Interesting Transfer Functions.

