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Zusammenfassung

Geschäftsprozessmanagementsysteme (GPM) werden heute in vielen Un-
ternehmen aller Gröflenordnungen für den Entwurf, die Bereitstellung, die
Ausführung, das Monitoring sowie die Analyse von automatisierten Geschäfts-
prozessen eingesetzt. Über die Jahre hinweg haben sich GPM zu Plattformen
für komplexe dienst-orientierte Anwendungen entwickelt. Im Hinblick dar-
auf werden hohe Anforderungen an die Leistungsfähigkeit, wie zum Beispiel
Zuverlässigkeit oder Skalierbarkeit, gestellt, die es zu erfüllen gilt. Mit der
ständig wachsenden Anzahl der auf dem Markt verfügbaren GPM stehen
die Unternehmen vor der Herausforderung ein Produkt auszuwählen, das
für ihre Anforderungen und Geschäftsmodelle am besten geeignet ist.
Benchmarking ist eine etablierte Praktik für den Vergleich alternativer

Produkte und unterstützt zudem die kontinuierliche Weiterentwicklung
von Technologien durch die Fähigkeit zur Definition von klaren Zielen und
Zielwerten für das Messen und Bewerten von Leistungsdaten. Obwohl sich im
Bereich dienst-orientierter GPM Geschäftsprozessmodellierungssprachen wie
Web Services Business Process Execution Language (WS-BPEL) oder Business
Process Model and Notation 2.0 (BPMN 2.0) als Standards etabliert haben,
gibt es keinen mehrheitlich akzeptierten Standard Benchmark für dienst-
orientierte GPM. Eine mögliche Erklärung für dieses Defizit ist die inhärente
Komplexität der Architektur von GPM Systemen sowie die hohe Anzahl von
Parametern die deren Leistung beeinflussen können. Nichtsdestotrotz wird
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die Notwendigkeit eines Standard Benchmarks für GPM in der Literatur
vielfach bestätigt.

Das Ziel des BenchFlow Ansatzes ist die Entwicklung eines ersten Stan-
dard Benchmarks für die Bewertung und den Vergleich der Leistung von
BPMN 2.0 GPM. Zu diesem Zweck adressiert der Ansatz unterschiedliche Her-
ausforderungen, von logistischen Herausforderungen bei der Identifikation
repräsentativer Anwendungsfälle, bis hin zu technischen Herausforderungen
welche die spezifischen Charakteristiken einzelner GPM Systeme betreffen.

Die vorliegende Arbeit befasst sich mit einer Untermenge der vom Bench-
Flow Ansatz adressierten Herausforderungen. Der Schwerpunkt liegt dabei
auf der Definition einer repräsentativen Menge von Geschäftsprozessen und
den entsprechenden Daten, welche dem Benchmark als Eingabe übergeben
werden. Diese Menge von repräsentativen Geschäftsprozessen und den da-
zugehörigen Daten wird auch als Workload Mix des Benchmarks bezeichnet.
Im ersten Schritt wird in dieser Arbeit zunächst der theoretische Hinter-
grund für die Definition eines repräsentativen Workload Mixes vorbereitet.
Dies wird erreicht durch die Identifizierung der Grundkomponenten eines
Workload Modells für GPM Benchmarks sowie durch die Untersuchung des
Einflusses einzelner BPMN 2.0 Sprachstrukturen auf die Leistung eines GPM
mit der Einführung des ersten BPMN 2.0 Micro-Benchmarks. Für die Bestim-
mung eines repräsentativen Workload Mix werden im nächsten Schritt reale
Geschäftsprozesse gesammelt. Diese Menge wird dann hinsichtlich ihrer
statistischen Eigenschaften untersucht sowie mit einem Algorithmus zur
Identifikation und Extraktion der häufigsten Strukturmuster analysiert. Die ge-
fundenen Strukturmuster werden dann zur Generierung von synthetischen
Geschäftsprozessen benutzt, welche die Kerncharakteristiken der ursprüng-
lichen Menge widerspiegeln. Die vorgestellten Methoden werden in einer
Tool-Chain zur Unterstützung der Generierung eines Workload Mixes zusam-
men gebracht. Abschlieflend werden sie an einem konkreten Fallbeispiel
angewendet, in welchem aus einer Menge von Tausenden realen Prozessen
ein repräsentativer Workload Mix für die Verwendung in einem Benchmark
erzeugt wird. Es wird gezeigt, dass der erzeugte Workload Mix erfolgreich
angewendet werden kann, um das getestete GMP System zu belasten.
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Abstract

Nowadays, enterprises broadly use Workflow Management Systems (WfMSs)
to design, deploy, execute, monitor and analyse their automated business
processes. Through the years, WfMSs evolved into platforms that deliver
complex service oriented applications. In this regard, they need to satisfy
enterprise-grade performance requirements, such as dependability and scal-
ability. With the ever-growing number of WfMSs that are currently available
in the market, companies are called to choose which product is optimal for
their requirements and business models.

Benchmarking is an established practice used to compare alternative prod-
ucts and leverages the continuous improvement of technology by setting a
clear target in measuring and assessing performance. In particular, for ser-
vice oriented WfMSs there is not yet a widely accepted standard benchmark
available, even if workflow modelling languages such as Web Services Busi-
ness Process Execution Language (WS-BPEL) and Business Process Model
and Notation 2.0 (BPMN 2.0) have been adopted as the de-facto standards.
A possible explanation on this deficiency can be given by the inherent ar-
chitectural complexity of WfMSs and the very large number of parameters
affecting their performance. However, the need for a standard benchmark
for WfMSs is frequently affirmed by the literature.
The goal of the BenchFlow approach is to propose a framework towards
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the first standard benchmark for assessing and comparing the performance
of BPMN 2.0 WfMSs. To this end, the approach addresses a set of challenges
spanning from logistic challenges, that are related to the collection of a
representative set of usage scenarios, to technical challenges, that concern
the specific characteristics of a WfMS.
This work focuses on a subset of these challenges dealing with the def-

inition of a representative set of process models and corresponding data
that will be given as an input to the benchmark. This set of representative
process models and corresponding data are referred to as the workload mix
of the benchmark. More particularly, we first prepare the theoretical back-
ground for defining a representative workload mix. This is accomplished
through identification of the basic components of a workload model for WfMS
benchmarks, as well as the investigation of the impact of the BPMN 2.0 lan-
guage constructs to the WfMS’s performance, by means of introducing the first
BPMN 2.0 micro-benchmark. We proceed by collecting real-world process
models for the identification of a representative workload mix. Therefore,
the collection is analysed with respect to its statistical characteristics and
also with a novel algorithm that detects and extracts the reoccurring structural
patterns of the collection. The extracted reoccurring structures are then used
for generating synthetic process models that reflect the essence of the original
collection. The introduced methods are brought together in a tool chain
that supports the workload mix generation. As a final step, we applied the
proposed methods on a real-world case study, that bases on a collection of
thousands of real-world process models and generates a representative work-
load mix to be used in a benchmark. The results show that the generated
workload mix is successful in its application for stressing the WfMSs under
test.

12 Contents



C
h
ap

te
r 1

Introduction &
Problem Statement

ªThe beginning is the most
important part of the work...º

Plato

The importance of benchmarking is succinctly summarised by Hup-
pler [Hup09] by stating that ªthe computing industry is so vast and changes
so rapidly that new benchmarks are constantly required, just to keep upº.
Performance benchmarking is an established practice that helps to drive
the continuous improvement of technology by setting a clear standard in
measuring and assessing performance. For example, transaction processing
benchmarks were introduced since a long time [BBC+85] and recognised
as a key factor towards an enormous performance improvement of database
technology [DL08]. Despite the rapid evolution of benchmarks, a com-
prehensive standard benchmark targeting Service Oriented Architecture
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(SOA) middleware is not yet available1 and only recently there have been
some proposals for benchmarks of SOA middleware tools, as for example
SOABench [BBD10]. A possible explanation on this deficiency can be given
by the inherent architectural complexity of service oriented middleware
systems and the very large number of parameters affecting their perfor-
mance [PFR+15]. For example, the distributed nature of SOA middleware
systems hinders the measurements through instrumentation or monitoring
tooling [LGZ07] and introduces cross-cutting challenges concerning the
impact elimination of external, interacting components [PFR+15]. In this
work, we focus on the service oriented variety of Workflow Management
Systems (WfMSs), a type of middleware that enables the business process
automation and service composition. Similarly to the broad category
of SOA middleware, there is not yet an accepted benchmark for service
oriented WfMSs, even if standard business process modelling languages
such as Web Services Business Process Execution Language (WS-BPEL)
WS-BPEL [Org07] and Business Process Model and Notation 2.0 (BPMN 2.0)
(BPMN 2.0) [ISO13] are widely used in academia and industrial practice.
To this effect, in previous work [PFR+15] we identified a set of logistic
and technical challenges that need to be addressed when benchmarking
a service oriented WfMS. More specifically, the main identified challenges
are: (i) collecting real world process models, (ii) synthesising representative
process models to be used as input in the performance tests (i. e., benchmark
workload mix), (iii) defining general or domain-specific workload mix,
(iv) investigating the performance impact of workflow language features,
(v) designing the benchmark environment, (vi) assessing and selecting the
WfMSs to be tested, (vii) defining expressive Key Performance Indicators
(KPIs).

The rich expressiveness of the BPMN 2.0 [ISO13] language led to its wide
acceptance from the business and Information Technology (IT) as the de-
facto standard for the modelling and executing business processes. Thus, the
ªBenchFlow: A Benchmark for Workflow Management Systems" (BenchFlow)

1e. g., SPEC - SOA Benchmark (Subcommittee has been
dissolved.)http://www.spec.org/soa/
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approach1 aims at tackling the aforementioned challenges and providing a
framework towards the first standard benchmark WfMSs that are compliant
to BPMN 2.0.

The construction of a robust benchmark lies heavily on the definition of a
representative workload model [Fei15]. In other words, the artefacts issued
to the System Under Test (SUT) during the performance tests should stand
for different sets of characteristics. Only then they can reflect the interests
of the users that exploit the benchmark results [vKAH+15]. This work is
conducted within the scope of the BenchFlow approach and its principal
contribution is to introduce the Workload Mix Generation for Workflow
Management Systems (WINE4WfMSs) method that tackles challenges i, ii,
iii, iv, that related to the definition of the workload model.
The remainder of this section is structured as follows: Section 1.1 intro-

duces some terminology in the fields of Business Process Management (BPM)
and benchmarking; Section 1.2 describes the recognised challenges, defines
the research questions and maps them to the distinct contributions of this
work; Section 1.3 presents the peer-reviewed publications that resulted as an
outcome of this work; and Section 1.4 presents the structure of this thesis.

1.1. Terminology and Conventions

This chapter aims at introducing the basic terminology in the fields of Busi-
ness Process Management (BPM) (cf. Section 1.1.1) and benchmarking (cf.
Section 1.1.2).

1.1.1. Business Process Management

The Workflow Management Coalition Specification [Spe99] defines as a
workflow the ªcomputerized facilitation or automation of a business process,
in whole or partº. In other words, a workflow is the automation of a series of
business activities that are needed for achieving a goal. Information systems

1BenchFlow,
URL: http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php
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that support the definition of workflows and the provision of fast re-design
and re-implementation as the business needs change [GHS95] are called
Business Process Management Systems (BPMSs) [Kar95]. WfMSs appeared
during the '90s as the first generation of BPMSs that were workflow-based
technologies with the ability to assign tasks to the right employees at the
right time using the right information resources [Kar95]. In current practice,
the term BPMS is used to describe an information system that offers a wider
variety of management services, while the term WfMS can be considered as
more targeted on the re-engineering and automation of business processes.
In this work we use the term Workflow Management System (WfMS).

The definition of a workflow with a process modelling and execution lan-
guage [MTJ+10] is usually referred to in the literature as workflow model or
(business) process model. The definition of a process model is realised through
the utilisation of the WfMS's build-time components that are responsible for
providing the functions to define the user-specific constructs with respect to
a workflow language metamodel [LR00; Hol95]. For many years there was no
vendor-neutral definition language and each company chose to implement
their own form of definition languages on their WfMSs. WS-BPEL [Org07]
became an industry-accepted standard for executing processes over Web
Services Description Language (WSDL)-based web services. Later, it was
followed by the creation and industrial acceptance of the BPMN 2.0 stan-
dard [ISO13]. As our data shows a tendency for a broader adoption of the
BPMN 2.0 language [SRL+15], this work focuses on benchmarking WfMSs
that are compliant with the BPMN 2.0 language.

Another fundamental part of a typical modern WfMS architecture are the
runtime components, which are responsible for the process execution. More
specifically, they drive the interaction of the WfMS with external systems
(e. g., such as end-user clients, web services and other software applications),
which are orchestrated within a process model [LR00]. The main runtime
components of a WfMS are: a workflow engine, databases, applications
and IT tools [Hol95]. As the runtime components are responsible for the
process execution, they become the point of interest when investigating
WfMS performance. The workflow engine (sometimes also referred to as the
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workflow enactment services) implements both the runtime control functions
and the runtime interactions, in order to handle the execution of the process
models [Hol95]. In a SOA environment the workflow engine consists of the
following subcomponents: (i) the process navigator that is the core of the
workflow engine, and is responsible for navigating through the control flow of
the process models; (ii) the request interceptor acts like a gateway between
the clients requesting the execution of a web service and the navigator;
(iii) the service invoker manages the the invocation of web services that
arrive from the navigator; (iv) the inter-component communication layer is
used by the navigator, the request interceptor and the service invoker for
communication; (v) the transaction manager is responsible for the complete
processing that should happen under transactional control; and (vi) the
persistence manager that ensures the persistence and recovery of the process
execution state [Rol13].

In this work, we discuss the performance of WfMSs with the focus shifted
on the performance behaviour of the process navigator. Since BenchFlow is
a first effort to develop a comprehensive benchmark for BPMN 2.0 WfMSs,
we consider the analysis of the navigator's performance behaviour of major
importance before proceeding to the definition of more complex performance
measurements.

1.1.2. Benchmarking

Benchmarks are special types of performance tests that are used to compare
the performance of diverse software of hardware systems [SEH03]. As very
often benchmarks lead to significant improvements on the areas that they
are applied to [DL08], they are considered as a vital tool in experimental
computer science and research. Benchmarks are usually classified into two
categories: micro- and macro-benchmarks [Wal14]. Micro-benchmarks (also
known as synthetic, narrow spectrum, kernel or simple benchmarks) aim to
evaluate the performance of a very specific, fundamental part of a software
system. Contrariwise macro-benchmarks (also known as natural, application
or complex benchmarks) constitute larger, more complex environments that
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target to evaluate a wide set of performance influencing factors of a software
system [Wal14]. To do so, macro-benchmarks usually apply a realistic task-
sample for evaluating the systems under test [Wal14]. The performance
of a system is also dependent to the workload model, which is the set of
requests performed in a fixed time of period. Consequently, the definition of
reliable performance tests relies heavily on the definition of the workload
model they will use [Fei15]. In the case of WfMSs we define as workload
mix the part of the workload model that describes the process models to
instantiate during the performance tests and the intensities with which they
should be instantiated. As a first approximation, in the scope of this work,
we consider a workload mix as representative, when it reflects the essence of
the structural characteristics of a process models collection.

1.2. Problem Domain and Contributions

Benchmarking BPMN 2.0 WfMSs is complex as many different performance
affecting factors need to be taken into consideration [PFR+15]. Defining a
representative workload model is an inseparable part of the benchmarking
process. In previous work [PFR+15] we identified a set of logistic and techni-
cal challenges that emerge when building a benchmark for BPMN 2.0 WfMSs.
Initially, we focus on the challenges (prefixed by CH-) that are related to the
construction of a representative and reliable workload model. Afterwards,
we discuss the resulting research questions and how they are answered by
the contributions of this thesis. An overview of the major research questions
(prefixed by RQ-) and contributions (prefixed by C-) of this thesis is provided
in Table 1.1, while emerging secondary research questions and contributions
are presented in corresponding chapters, throughout this work.

Collecting real-world scenarios (CH-1): In order to come up with a bench-
mark that correctly reflects the usage of a WfMS in real world practice,
we need to collect as many process models representing real world sce-
narios as possible. In this way, we can have a real representation of the
applications that are built on workflow technology. Because ªprocess equals
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productº [Ley01] most companies and business organisations are not willing
to share their process models to protect their intellectual property and
competitive advantage. Hence, collecting real world scenarios can be a
very challenging task. This brings us to the following research question:
RQ-1: How to overcome obstacles in creating a collection of real-world
practice process models?

Towards addressing intellectual property and competitive advantage con-
cerns, we propose confidentiality agreements and a method to anonymise
process models, while maintaining their executional semantics. This resulted
in the following contribution:

C-1: An anonymisation method for process models (ªBPanonº) and the
obtained collection of process models.

Through this approach we managed to collect 14,167 process models,
expressed in diverse modelling languages. Some of the collected process
models were anonymised and some were reference process models (i. e.,
non-executable).
Capturing and determining WfMSs performance factors (CH-2): A perfor-

mance model is an abstract representation of the system that relates the
workload parameters with the system configuration and captures the main
factors that determine the system's performance. The results of the perfor-
mance tests should be analysed or predicted through the correlation of the
workload parameters to the system's configuration. Through this approach
we can capture and determine the main factors that affect the system's per-
formance [MAD99]. Consequently, in order to reflect the major performance
affecting factors the workload model should be designed with regards to
the architectural characteristics of the system under test. The related work
in benchmarking or performance testing of WfMSs reveals simplified ap-
proaches for the definition of utilised workload models [PFR+15]. Thus, the
challenge in this case is to identify the key decision points that should be
considered during the definition of a workload model for WfMSs, bringing
us to the following research question:
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RQ-2: What are the basic components of a workload model for WfMSs?

In this respect, we conduct a literature study on the state-of-art of stan-
dard middleware and custom WfMSs benchmarks and present the following
contribution:

C-2: A metamodel of the basic workload model components for WfMSs.

Identifying workflow language constructs that affect performance (CH-3):
The BPMN 2.0 language provides a large set of constructs, that express
iteration, parallelism, exception handling, interactions with external entities
and others. For defining meaningful process models as part of the workload,
we first investigate the performance impact of individual language constructs
on the WfMS's performance. In this way, we will be able to define the appro-
priate workload mix with respect to our research goals. For example, process
models with small size may be proven better candidates for throughput
experiments, while process models with more complex structures might be
more appropriate for response time tests. This raises the following question:

RQ-3: What is the impact of diverse BPMN 2.0 language constructs on the
process navigator's performance?

An answer to RQ-3 can be approached through the definition and execution
of experiments that target the fundamental components of a WfMS. The
goal of a micro-benchmark is to stress fundamental components of complex
systems [Wal14]. Hence, RQ-3 is addressed by the following contribution:

C-3: The first micro-benchmark for BPMN 2.0 WfMSs.

A similar approach was followed in the field of databases, when in 1989
Transaction Processing Performance Council (TPC) introduced the TPC A
benchmark which consists of a single, simple, update-intensive transaction
to the load system under test. The single transaction type provided a simple,
repeatable unit of work, and was designed to exercise the key components
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of an Online Transaction Processing (OLTP) system. Although TPC A micro-
benchmark is obsolete since 1995, it set cornerstone knowledge for the more
complex, and widely accepted TPC C benchmark [Tra92a; Fei15].

Automating the generation of a realistic workload mix for different use case
scenarios (CH-4): In order to keep our measurements accurate we need to
create realistic workload scenarios [Fei15]. As workflow-based applications
are present in various types of application domains [LR97], it is challenging
to select a sufficiently large subset of domains and synthesise a domain-
independent workload. This brings us to the following research question:

RQ-4: How to derive a representative and meaningful workload mix for both
general and domain specific benchmarks?

In order to address this research question we propose the five-phase Work-
load Mix Generation for Workflow Management Systems (WINE4WfMSs)
method for automating the creation of the workload mix with respect to
user-defined criteria. The WINE4WfMSs method forms the following contri-
bution:

C-4: The Workload Mix Generation for Workflow Management Systems
(WINE4WfMSs) method.

An overview of the WINE4WfMSs method is shown in Figure 1.1. The
WINE4WfMSs method starts with a collection of real world BPMN 2.0 process
models out of which we derive a representative workload mix. As the process
models of the original collection might not follow the BPMN 2.0 standard
and⁄or might be incomplete or invalid, in the first phase (phase 1) of the
WINE4WfMSs method we clean the original collection. Moreover, in phase 1
we apply statistical analysis on the collection, in order to extract relevant
structural information (i. e., size of process models, number of gateways,
number of events, etc.).
The collected process models may not contain textual or behavioural

information, as some of the collected process models were provided in an
anonymised format, or as reference process models. Thus, in terms of a
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Figure 1.1.: Overview of the WINE4WfMSs method

similarity analysis we can only detect and extract structural similarities that
exist in the original collection (phase 2). The structural pattern to search is
not known beforehand, thus this challenge can be mapped to the problem
of pattern discovery without candidate generation, a variance of the subgraph
isomorphism [YH02]. This leads to the following research question:

RQ-5: How to detect reoccurring BPMN 2.0 structures in a process models
collection?

In order to tackle RQ-5 we introduce the Reoccurring Structures Detec-
tion (RoSE) method that detects and extracts reoccurring structures (i. e.,
structural similarities) in a collection of BPMN 2.0 process models and cal-
culates metadata regarding the frequency of occurrence. With this regards
we present the following contribution:

C-5: The Reoccurring Structures Detection (RoSE) method.

The reoccurring structures detected by the RoSE method and correspond-
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ing metadata are stored in ªReoccurring Structuresº and ªReoccurring Struc-
tures Metadataº as shown in Figure 1.1. Having this information stored, we
may now proceed to define a method for generating representative process
models out of the discovered reoccurring structural patterns (phase 3).

RQ-6: How to synthesise a representative BPMN 2.0 process model?

Through the utilisation of the statistical analysis (phase 1), theoretical and
experimental data derived from C-1 and C-2 and the detected reoccurring
structural patterns, we define a set of criteria that are given as input in a
method that generates the representative process models.

C-6: Representative BPMN 2.0 process model generation method.

At this point, the generated process models can be used as part of the
workload mix. For completing the definition of the workload mix in phase 4
we define the workload mix classes, i. e., the intensity with which the in-
stances of a process model are instantiated when executing the workload
mix. In order to represent real world conditions, for defining the workload
mix classes we need to identify the percentage to which a generated pro-
cess model reflects the original collection. Finally, in phase 5 we define the
behaviour of the workload mix's process models, e. g., the probability with
which the control flow will follow specific execution paths in the process
model.
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Table 1.1.: Research questions and contributions overview

1.3. Publications

The contributions answering the research questions introduced in Section 1.2
resulted in peer-reviewed publications, which are presented in Table 1.2
as contribution ± publication correspondence and in the following list in
inverted chronological order:

1. V. Ferme, M. Skouradaki, C. Pautasso, F. Leymann, and A. Ivanchikj.
ªPerformance Comparison Between BPMN 2.0 Workflow Management
Systems Versions.º In: International Workshop on Business Process
Modeling, Development and Support. BPMDS '17. Springer, 2017

2. M. Skouradaki, V. Andrikopoulos, O. Kopp, and F. Leymann. ªRoSE:
Reoccurring Structures Detection in BPMN 2.0 Process Model Collec-
tions.º In: On the Move to Meaningful Internet Systems: OTM 2016
Conferences. Springer Nature, 2016, pp. 263±281

3. M. Skouradaki, T. Azad, U. Breitenbücher, O. Kopp, and F. Leymann.
ªA Decision Support System for the Performance Benchmarking of
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Workflow Management Systems.º In: Advanced Summer School of
Service Oriented Computing. SummerSOC '16. IBM Research Division,
2016, pp. 41±58

4. M. Skouradaki, V. Andrikopoulos, and F. Leymann. ªRepresentative
BPMN 2.0 Process Model Generation from Recurring Structures.º In:
International Conference on Web Services. ICWS '16. Institute of Electri-
cal & Electronics Engineers (IEEE), June 2016, pp. 468±475

5. V. Ferme, A. Ivanchikj, C. Pautasso, M. Skouradaki, and F. Leymann.
ªA Container-centric Methodology for Benchmarking Workflow Man-
agement Systems.º In: International Conference on Cloud Computing
and Services Science. CLOSER '16. Springer, 2016

6. M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, and A. van Hoorn.
ªMicro-Benchmarking BPMN 2.0 Workflow Management Systems with
Workflow Patterns.º In: Advanced Information Systems Engineering.
Ed. by S. Nurcan, P. Soffer, M. Bajec, and J. Eder. CAISE '16. Springer
International Publishing, 2016, pp. 67±82

7. M. Skouradaki and F. Leymann. ªDetecting Frequently Recurring
Structures in BPMN 2.0 Process Models.º In: Advanced Summer School
of Service Oriented Computing. SummerSOC '15. IBMResearch Division,
2015

8. M. Skouradaki, K. Görlach, M. Hahn, and F. Leymann. ªApplication of
Sub-Graph Isomorphism to Extract Reoccurring Structures from BPMN
2.0 Process Models.º In: International Symposium on Service-Oriented
System Engineering. SOSE '15. Institute of Electrical & Electronics
Engineers (IEEE), Apr. 2015, pp. 11±20

9. M. Skouradaki, V. Ferme, F. Leymann, C. Pautasso, and D. H. Roller.
ªBPELanon: Protect Business Processes on the Cloud.º In: Interna-
tional Conference on Cloud Computing and Service Science. CLOSER '15.
Lisbon, Portugal: SciTePress, May 2015, pp. 241±250

10. M. Skouradaki, D. H. Roller, F. Leymann, V. Ferme, and C. Pautasso.
ªOn the Road to Benchmarking BPMN 2.0 Workflow Engines.º In:
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ACM/SPEC International Conference on Performance Engineering. ICPE
'15. Austin, Texas: Association for Computing Machinery ACM, 2015,
pp. 301±304

11. M. Skouradaki, D. Roller, C. Pautasso, and F. Leymann. ªBPELanon:
Anonymizing BPEL Processes.º In: Central European Workshop on
Services and their Composition. ZEUS '14. 2014, pp. 9±15

In order to support the openness of data, the results derived under the
scope of this work are provided to the Benchmark for Conformance and Per-
formance of Workflow Engines (PEaCE) interactive dashboard [BMHW16].
PEaCE is a collaborative effort among the Distributed Systems Group at Uni-
versity of Bamberg, the Institute of Architecture of Application Systems at
University of Stuttgart, the Faculty of Informatics at Università della Svizzera
Italiana, and the Software Engineering Research Group of the University of
Karlstad to present data derived by performance and conformance bench-
marking on WS-BPEL and BPMN 2.0 WfMSs. Furthermore, it is a common
research effort that has resulted in organisation of the ª1st International
Workshop on Performance and Conformance of Workflow Enginesº held
in conjunction with the 5th European Conference on Service-Oriented and
Cloud Computing (ESOCC '16).
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ACM/SPEC International Conference on Performance Engineering. ICPE '15. Austin, Texas:
Association for Computing Machinery ACM, 2015, pp. 301±304

C-2: A metamodel of basic workload model components for WfMS.
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Management Systems.º In: Advanced Summer School of Service Oriented Computing. Summer-
SOC '16. IBM Research Division, 2016, pp. 41±58
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Springer, 2016

C-3: Micro-benchmark
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CAISE '16. Springer International Publishing, 2016, pp. 67±82
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Institute of Electrical & Electronics Engineers (IEEE), June 2016, pp. 468±475
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1.4. Thesis Structure

The remainder of this work is structured as follows:
Chapter 2: Background & Related Work
This chapter covers fundamental concepts and related work from two
major research fields: performance benchmarking and BPM. In the area
of benchmarking we overview existing standard benchmarks on diverse
middleware applications, state-of-art custom benchmarks on WfMSs and
methodologies and approaches on workload modelling. In the area of BPM
we review existing work in the diverse research areas that intersect with
the contributions of this thesis. More particularly, we focus on the areas of
process model anonymisation, process models collections and repositories,
methods of process models decomposition, structural similarities, and
generation.

Chapter 3: Collecting Real-World Process Models
In this chapter we address the challenge of collecting real world practice
process models. That corresponds to the first research question RQ-1: ªHow
to overcome obstacles in creating a collection of real-world practice process
models?". We propose and describe a method that anonymises the process
models while maintaining their executional semantics. This method is after-
wards used to foster the sharing of the process models. We then describe the
composition of the obtained process models collection. The anonymisation
method as well as the obtained collection of real-world practice process
models cover contribution C-1: ªAn anonymisation method for process
models(ªBPanonº) and the obtained collection of process models.º.

Chapter 4: Defining Meaningful Workload
This chapter targets to address the second identified research question RQ-2:
ªWhat are the basic components of a workload model for WfMSs?º. For this
we first identify the key components of a WfMS benchmark and proceed by
identifying the basic components of the workload model (C-2: ªA conceptual
metamodel of the basic workload model components for WfMSs.º).
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Chapter 5: Micro-benchmarking BPMN 2.0 Workflow Management
Systems
This chapter addresses research question RQ-3 ªWhat is the impact of
the diverse BPMN 2.0 language constructs on the process navigator's
performance?º. To answer this question we define and execute the first
micro-benchmark of BPMN 2.0 WfMSs (C-3: ªThe first micro-benchmark for
BPMN 2.0 WfMSsº) and conduct a thorough analysis of the results.

Chapter 6: Reoccurring Structures Detection (RoSE)
This chapter addresses research question RQ-5: ªHow to detect reoccurring
BPMN 2.0 structures in a process models collection?º. More particularly, we
define a novel algorithm to detect and extract the reoccurring structures
in a collection of process models without the usage of textual semantics.
The structural similarities of the collection are identified without knowing
a subgraph to search before hand. This challenge belongs to the problem
category of pattern discovery without candidate generation that is a subclass
of the subgraph isomorphism problem. The proposed method forms contri-
bution C-5: ªThe RoSE methodº.

Chapter 7: Generating BPMN 2.0 Process Models
This chapter addresses research question RQ-6: ªHow to synthesise a repre-
sentative BPMN 2.0 process model?º. To address this question we introduce
a (semi-) automated method that follows user defined constraints and gen-
erates a process model out of discovered reoccurring structural patterns (as
discussed in the previous chapter). The proposed method is mapped to con-
tribution C-6: ªRepresentative BPMN 2.0 process model generation methodº.

Chapter 8: A Process and Toolchain for Workload Mix Generation
This chapter presents the five phase WINE4WfMSs method (C-4: ªThe
WINE4WfMSs methodº) and the architecture of a toolchain that supports it
method. The architecture is designed with respect to well defined design
patterns on various architectural styles (e. g., cloud computing, distributed
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applications, etc.). To this effect, we discuss the applied architectural styles
and selected design patterns, as well as architectural facts and implementa-
tion details for each component separately.

Chapter 9: Deriving a Workload Mix - A Real World Case Study
This chapter brings together the methods and contributions addressed in
previous chapters with the goal to answer research question RQ-4: ªHow to
derive a representative and meaningful workload mix for both general and
domain specific benchmarks?º. We apply stepwise all presented methods to
a real world case study to derive a representative workload mix with regards
to a given real world practice process models collection. We then provide
this workload mix to execute a macro-benchmark for BPMN 2.0 WfMSs and
overview the results.

Chapter 10: Conclusions and Outlook
This chapter summarises this work and discusses answers to research
questions, as well as its identified limitations. It also provides an outlook on
research opportunities that can be based on this work.
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ªThose who cannot remember the
past are condemned to repeat it.º

G. Santayana

This chapter focuses on two major research areas: performance bench-
marking (Section 2.1) and Business Process Management (BPM) (Sec-
tion 2.2). Viera et al. [VMSS12] define as benchmark a tool that contributes
towards the evaluation and comparison of competitive systems or compo-
nents. This is done with respect to well defined objectives, such as for
example performance, dependability or security. In addition to complet-
ing its functional goal, a benchmark should satisfy the following require-
ments [vKAH+15]:

Relevance: The benchmark's behaviour and the behaviour that is important
to the consumers of the benchmark's results should be closely correlated.
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Reproducibility: The benchmark should produce similar and comparable
results every time it is executed with the same configuration.

Fairness: The benchmark should allow the different configurations to
compete to their full potential without introducing overhead or limitations.

Verifiability: The benchmark results should provide confidence of its ac-
curacy.

Usability: The benchmark should be easily deployable and executable to
the users' test environments.

A benchmark can be constructed and published under a standard or cus-
tom scope. Typically, standard benchmarks are published by established
consortia after being verified by academic and industrial partners. In princi-
ple, standard benchmarks satisfy the aforementioned requirements, and thus
they are considered more trustworthy by practitioners. The two most promi-
nent consortia for performance benchmarking are the Standard Performance
Evaluation Corporation (SPEC)1 and TPC2. However, standard performance
benchmarks are not available for all middleware systems. For example, in the
case of WfMSs, a standard benchmark is not yet available [SRL+15]. Conse-
quently, practitioners apply custom benchmarks for evaluating their systems.
These custom benchmarks might not necessarily satisfy the aforementioned
properties, and therefore the emerging results might be unreliable or biased.
Before proceeding with the development of a standard complex bench-

mark one needs to understand the individual characteristics of the workload.
The workload of a system can be described as the set of inputs that arrive to a
system from its environment during a specific period of time. It is simulated
by a workload model that is a representation of the real workload, used for
testing purposes [EM06]. Hence, one needs to carefully design the work-
load model, as it has a decisive role on the emerging results [Fei15]. One
important part of the workload model are the basic workload components,
which are an abstract type of requests that arrive to the system from the

1SPEC, URL: https://www.spec.org
2TPC, URL: https://www.tpc.org
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environment [EM06]. For example, a transaction or a Hypertext Transfer
Protocol (HTTP) request can be seen as a basic workload component. In
Section 1.1 we defined as workload mix the basic workload component that
describes the process models to instantiate during the performance tests and
the intensities with which they should be instantiated (see Section 4.2). A
way to thoroughly comprehend the impact of the individual workload com-
ponents to the system's performance is to execute a micro-benchmark which
targets the specific performance evaluation of atomic operations [WH13].
Due to the lack of a standard benchmark for WfMSs and for the purposes of
constructing a robust and reliable benchmark we need to consider all these
aspects during the workload modelling phase.
For purposes of modelling the workload mix for benchmarking WfMSs

we have to look across diverse areas of BPM with the intention to derive
the necessary information and construct structurally representative process
models to be included in the workload mix. We firstly focus on business pro-
cess anonymisation, a method to obfuscate the critical information of process
models, while maintaining their structural and executional semantics (cf.
Section 3.1). The method is applied for fostering process model sharing.
More particularly, through the application of this method we collect a set
of diverse process models which are stored in process model collections or in
more complex scenarios in process model repositories. The collected process
models are analysed with regards to diverse research areas for deriving a
structurally representative workload mix. Business process models decom-
position is the process of dividing a complete process model into logically
diverse fragments with the goal to redistribute them to different execution
and controlling partners [KKL07]. It is accepted to have an important role
in the re-usability of process models [STK+10; ELtHF11]. To this effect, we
adapt the idea of business process model decomposition to our needs. The
objective at this point is to create fragments that originate from detected
process models structural similarities. The fragments are then re-used for
generating representative business process models. The approach of process
model generation is also a recognised research area with multiple applica-
tion scenarios and focuses on the generation of process models that satisfy

1.4 | Thesis Structure 33



specific declarative constraints [MMB16].
The remainder of this chapter is structured as follows: Section 2.1 pro-

vides an overview on related work regarding middleware benchmarking and
Section 2.2 focuses on areas of BPM that are related to this work.

2.1. Benchmarks

Section 2.1.1 provides an overview of selected up-to-date standard bench-
marks for middleware systems; Section 2.1.2 discusses related work in cus-
tom benchmarks for WfMSs performance and Section 2.1.3 reviews existing
work in workload modelling.

2.1.1. Standard Middleware Benchmarks

Standard benchmarks for performance, as discussed previously, are mainly
published by two vendors: SPEC [Sta95] and TPC [Tra92a]. Both consortia
aim at collecting a valuable and straightforward set of metrics for producing
reliable tests that are easy to employ and provide insightful and verifiable
results to the marketplace. SPEC focuses on diverse systems that play a
dominant role in the market, while TPC focuses on defining transaction
processing and database benchmarks1. The following sections summarise
the most relevant, non-obsolete benchmarks published by these vendors.
SPEC ® JMS 2007 [Sta07] provides a benchmark for assessing the per-

formance of Message Oriented Middleware (MOM) servers based on the
Java Message Service (JMS). MOM is a technology that finds application
in many sectors, such as supply chain management, stock trading, online
auctions, etc. Furthermore, MOM uses the point-to-point paradigm that
is considered as a core component for state-of-art software architectures
and technology, such as SOA [Erl05] and Enterprise Application Integra-
tion (EAI) [HW04]. Nevertheless, message-based applications go through
issues regarding scalability and performance, while prominent companies
usually require a high message throughput. For this reason the underlying

1As stated by the vendors themselves
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MOM is expected to perform and scale in a steady manner [Sta07]. Thus,
the SPEC ® JMS 2007 benchmark aims to provide standard workload and
metrics that can be used for an in-depth performance analysis of all the un-
derlying components of JMS-based MOM platforms. This benchmark offers
workload scalability by allowing users to increase the number of queues
and topics (destinations). The SPEC ® JMS 2007 benchmark is developed
with respect to an application scenario which models a supply chain for a
supermarket. The supermarket is represented as a distributed company that
depends on diverse units with different roles for accomplishing its business
goals. For example, points of sales, distribution centres and suppliers are
different participants of this scenario. This scenario allows a clear speci-
fication of interactions that stress various features of JMS servers, as for
example the publish⁄subscribe vs. peer-to-peer communication or different
message types. This application scenario also allows workload with different
scalability aspects. For example, one can either increase the number of
supermarkets or the number of products offered by the supermarket. The
macro-benchmark discussed in Chapter 9 is similar to the macro-benchmark
SPEC ® JMS 2007 [SKBB09] produced and maintained by SPEC. The former
targets to the evaluation of the performance and scalability of JMS-based
messaging middleware. Although this is a macro-benchmark, we consider
it similar to our work as we could see messaging middleware an ancestor
of WfMS [Obe06]. Moreover, the workload of SPEC ® JMS 2007 maintains
the following characteristics: realistic scenarios, exercise all platform fea-
tures, minimise influence of other components, non-limited scalability and
configurability. These characteristics are also set as requirements for our
macro-benchmark (cf. Chapter 9).
SPECjbb ® 2015 [Sta15] provides performance measurements for the

latest Java application features. It is applicable to all organisations that are in-
terested in measuring JVM-hosting server performance. The SPECjbb ® 2015
also uses as application scenario a supermarket company that relies on IT
infrastructure to deal with point-of-sale requests, online purchases and data-
mining operations. Also in this application scenario the supermarket depends
on diverse units (i. e., headquarters, points of sales, suppliers) for completing
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various business goals. During the execution of the application scenario a
component of the workload model injects requests to the SUT by driving the
system's load. The requests can either be synchronous or asynchronous and
are executed by another component of the workload model that simulates
the different roles of the application scenario. The metrics provided by the
benchmark are a pure throughput and a throughput under Service Level
Agreement (SLA) metric. The benchmark is configurable, thus it supports
the users to stress diverse layers of the SUT (i. e., system stack, operating
system and application layers). Since the benchmark is recently updated
(2015) it also supports benchmarking systems running on virtualised or
cloud environments.
SPEC has also introduced a group that focuses on benchmarking SOA

infrastructures [Sta10]. However, publicly available information on their
progress is still not available at the time of writing this manuscript.
TPC-C [Tra92b] is a benchmark targeting OLTP systems. Although this

is not the first benchmark of TPC that targets OLTP systems ([TPC94a;
TPC94b]), it is considered as a more comprehensive and improved version
of the previously published benchmarks. A fundamental reason for its dom-
inance among practitioners is that the defined workload model expresses
multiple transaction types, executed against a database with a rather com-
plex schema [TPK+13]. Overall, the TPC-C benchmark verifies a SUT as
production-ready and with sufficient recovery capabilities, if the database
supports the Atomicity, Consistency, Isolation, Durability (ACID) properties.
The application scenario of the TPC-C benchmark models a wholesale

parts supplier (company) that operates a number of warehouses and their
corresponding sales regions. However, this benchmark is not restricted to a
specific business area, but targets different market sectors. The workload
model includes five concurrent transactions of different types and complexity,
and a database containing nine different types of tables with a wide range of
record and population sizes. Four of the tables can grow and shrink by insert
and delete operations, four of the tables can scale with respect to the number
of the warehouses, and one table is of fixed size. The defined transactions
are based on realistic scenarios such as: entering and delivering orders,
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recording payments, checking the status of orders, and monitoring the level
of stock at the corresponding warehouse. The benchmark also covers the
aspect of scalability as the company expands and new warehouses are added
to the model. The expansion of the company is done in a controlled manner
by satisfying certain consistency requirements. The defined metric of the
TPC-C benchmark is transactions per minute (tpmC).

TPC-E [TPC15] is the ancestor of TPC-C and is also an OLTP benchmark.
The TPC-E benchmark models a brokerage house firm, but can be generalised
to current OLTP systems. The main target of the benchmark is a central
database that executes transactions associated to the company's customer
accounts. It contains a more complex database schema that consists of
thirty three tables out of which nine are of fixed size, thirteen are scaling
with respect to the customer's size and eight are growing with a greater
growth rate than this of TPC-C. The tables are populated with pseudo-
realistic looking data and, in contrast to TPC-C, the benchmark starts with
an empty table that grows during its execution. Despite the usage of the
pseudo-realistic data the TPC-E benchmark has been found to use the same
random Input⁄Output (I⁄O) access pattern as this of TPC-C [CAA+11]. The
workload model of TPC-E introduces a transaction mix of ten workload
mix transactions of various types and complexity. Moreover, it contains
two additional transactions that are executed at different times additionally
to the regular workload mix. To increase complexity of the transactions
this benchmark introduces dependencies among each other as well as long-
running transactions. The TPC-E benchmark uses the metric of transactions
per second (tpsE). The increased complexity of TPC-E has caused a slower
adaptation compared to its predecessor (TPC-C) [TPK+13].

2.1.2. Workflow Management Systems Benchmarks

When it comes to evaluating the performance of complex systems, such as
modern service oriented middleware [GGKS02], there is a lot of work done
that focuses on different architectural layers [HZ06], as for example, the
storage layer [Gra92; TZJW08; Cha95] or the middleware layer [BCM+05].
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Despite the widely recognised need for introducing a standard benchmark
for WfMSs [WLR+09; RvdAH07] that will enable the performance evalua-
tion of different research prototypes and commercial products in meaningful
conditions, one is still not available [SRL+15]. To the best of our knowledge,
BenchFlow is the first benchmark that explicitly targets evaluating the per-
formance of BPMN 2.0 WfMSs [SRL+15]. The presented work is built under
the scope of the BenchFlow approach, and targets to tackle open research
challenges introduced by the complex nature of BPMN 2.0 WfMSs [PFR+15].
For the sake of completeness, in the following we are looking at previous
efforts at benchmarks for service oriented middleware.

SOABench [BBD10] can be seen as an initial step to provide a performance
assessment and comparison framework of service oriented middleware sys-
tems. It features the automatic generation and execution of testbeds. The
evaluation of the proposed framework is based on testing two open source
and one proprietary WfMSs supporting the WS-BPEL language. More specif-
ically, four different simple workloads are defined for experiments. These
express basic control flow structures of the WS-BPEL language (i. e., Sequen-
tial, Flow without Synchronisation Dependency, Flow with Dependencies,
While). Each defined workload is addressed with respect to four different
loads that span from low to high system loading. The defined metric is lim-
ited to response time for all the executed experiments. Sliver [HHGR06] is a
WS-BPEL WfMS for mobile devices. In order to evaluate its performance the
authors test the Sliver engine against twelve WS-BPEL control flow patterns.
The performance of the Sliver WfMS is measured with respect to three differ-
ent infrastructures (PC, PDA and phone) and compared to one more WfMS
(i. e., ActiveBPEL) on a PC infrastructure. Also in this case, the examined
metric is the response time of the WfMS. Both approaches contain simple
workload models, thus they may be characterised as micro-benchmarks for
WS-BPEL WfMSs.

Informatica [Act11] executed an internal benchmark, in order to evaluate
their work and inform the prospective customers. For the performance tests
four workload mixes are used, and the load is variable with a request rate of
maximum 50 clients. Although the configuration of the infrastructure under-
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lying the WS-BPEL engine is described in detail, results on the performance
tests of ActiveVOS are not further discussed. Dit et al. [DES08] define a
simple synthetic process as the workload mix for benchmarking WS-BPEL
WfMSs. The workload model is based on the simulation of real world traffic
conditions in order to better define the end-users that characterise it. For
the performance tests a two phase workload mix is defined that implements
a WS-BPEL correlation. The SUT is the ActiveBPEL engine1 and the experi-
ments run for 2 minutes in total during which they simulate 2000 clients.
The defined metrics are success⁄failure rate, response times and round-trip
delays.
SWoM [Rol13] and FACTS [LLHX10] conduct load performance tests to

stress open source WfMSs. SWoM [Rol13] defines a workload mix of four
simple WS-BPEL processes. One of the injected WS-BPEL processes contains
also the invocation of external services, which are continuously called by
the testing clients. Each experiment executed 24,000 instances and lasted
in total approximately 40 minutes. The load emulates 30 clients, whose
think time for subsequent requests was adjusted to run with respect to the
CPU load keeping it in between of 50% and 60%. Similarly, the FACTS
framework focuses on building fault handling logic in WS-BPEL and executes
load tests for evaluating the proposed approach. The FACTS framework is
evaluated with a workloadmix of seven fault-tolerant process models invoked
1,000 times. At the end the response time of the invocations is reported.
Strauch et el. [SALM12; SASL13] propose the design and realisation to
enable multi-tenancy in Enterprise Service Bus (ESB). This approach is later
on extended by Hahn et al. [HSA+14] towards the design and realisation
of a multi-tenant service composition engine. All of the aforementioned
approaches base their experiments on a workload adapted from the Adroit
benchmark [Adr16]. More specifically, the generated workload for the
evaluation experiments consists of 1 KB SOAP over HTTP messages which
are issued to the SUT with a variable load burst rate. The measured metrics
are latency and resource utilisation. All the aforementioned approaches

1Active endpoints, Active BPEL Server, URL: http://www.activevos.com/content/
developers/education/sample_active_bpel_admin_api/doc/index.html
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utilise external web service invocation through their workload mixes but do
not discuss how to ensure reliability of the measurements [PFR+15]. The
reliable performance evaluation of web service interactions constitutes an
additional challenge [PFR+15] which is outside the scope of this work and
the BenchFlow framework [FIP15].
The performance evaluation of WfMSs also finds application on the area

of scientific WfMSs which aim at supporting the scientists towards the use
of scientific applications [SK10]. For instance, Gómez Sáez et al. [GAH+15]
conduct a performance evaluation between different deployments of a long-
running scientific workflow being deployed on different cloud providers. The
performance evaluation results are analysed with respect to the performance
and cost trade-off. A tool for performance analysis of scientific workflows
deployed on distributed and grid execution environments is proposed by
Prodan et al. [PF08]. The tool is built on a conceptual model that classifies
the different types of overhead introduced by a workflow. The classification
is derived empirically and is evaluated against two real world workflow
applications. This approach can be seen as complementary to the one we
propose in Chapter 5 to discover the impact of BPMN 2.0 language constructs
to the BPMN 2.0 WfMS navigator's performance.

The need for a common framework for the fair and reliable evaluation of
WfMSs has frequently been discussed in the literature [KKL06; RvdAH07;
LMJ10]. In previous work [PFR+15] we conducted an extensive analy-
sis to define the open research challenges that should be tackled by such
a framework and later on [SRL+15] we proposed an abstract methodol-
ogy on how to tackle some of these challenges. As discussed in Chapter 1,
this work focuses on addressing the workload mix related challenges while
Ferme et al. [FIP15] propose the BenchFlow framework for an automatic
and reliable calculation of performance metrics for BPMN 2.0 WfMSs. Ferme
et al. [FIP15] provide also a proof-of-concept evaluation of the proposed
framework by executing a simple workload mix and conducting performance
tests on two open source WfMSs. Ferme et al. [FIP+16] describe a bench-
marking methodology using a container-centric architecture to realise the
BenchFlow framework and tackle challenges regarding the reproducibility
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of the experiments and the isolation of the performance measurements.
Finally, the proposed methodology and framework are enhanced with a
set of expressive performance metrics and are utilised for estimating the
cost of executing business processes on diverse cloud providers [FIP16].
Focusing also on the cloud, Rosinosky et. al. [RYC16] propose a framework
for benchmarking WfMSs hosted in the cloud. In contrast to the BenchFlow
framework, the proposed approach does neither include the generation of
representative workload mix nor discusses how to tackle fundamental chal-
lenges that are introduced during the design of reliable WfMS benchmarking
environments [PFR+15].

The framework BPEL Engine Test System (betsy) was initially proposed for
investigating the conformance of WfMSs to the WS-BPEL language standards
by Harrer et al. [HLW12; HRW14] and was afterwards extended for the
BPMN 2.0 language [GHL+15; GHLW16; GHL16]. Research with the betsy
system reveals a plethora of inconsistencies between the business process
language standards and emerging WfMSs. These results, as well as previous
results derived from performance tests, need to be considered during the
definition of representative workload mix for benchmarking WfMSs. For this
purpose, the results derived from betsy or BenchFlow performance tests can
be collected and presented on an interactive dashboard [BMHW16].
Mendes et al. [MBM09] apply several micro-benchmarks on event pro-

cessing systems to answer fundamental questions on their performance con-
cerning scalability and bottlenecks. Another micro-benchmark is introduced
by Angles et al. [APDL13] based on social networks to define the best candi-
dates for macro-benchmarks, and Waller and Hasselbring [WH13] propose
a micro-benchmark for measuring the overhead of application-level monitor-
ing. The proposed micro-benchmark identifies three causes of monitoring
overhead, and sets the basis for a reliable macro-benchmark. Regarding
WfMSs, the already cited works of Biancully et al. [BBD10], Hackmann
et al. [HHGR06] and Roller [Rol13] introduce micro-benchmarks for WS-
BPEL WfMSs. Röck et al. [RHW14; RH14] conduct a systematic review
on approaches that test the performance of WS-BPEL WfMSs, and stress
the need for improvement on WfMSs baseline tests. To the extent of our
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knowledge the micro-benchmark we proposed in previous work [SFP+16] is
the first micro-benchmark for BPMN 2.0 WfMS. This work aims at exploiting
the micro-benchmark results to derive a complex, representative, synthetic
workload mix that will be provided to the BenchFlow approach for a more
extensive performance evaluation.
To sum up, the goal of the BenchFlow approach, and consequently this

work, is the creation of a benchmark that differs from the related work in
terms of: (i) the number of WfMSs to be compared, (ii) the complexity
and diversity of the workload mix, (iii) the number of the executed perfor-
mance tests, and (iv) the number of performance metrics that will be taken
into consideration, and their aggregation into a meaningful performance
indicator.

2.1.3. Workload Modelling

Feitelson [Fei15] stresses the significance of defining a representative work-
load model, as a non-representative one may produce misleading results.
Various methods and techniques have been proposed in the literature for de-
riving the workload model [EM06] and most of them usually follow the same
general methodology [KHSB12]. The need to use real data for the definition
of the workload is also highlighted [Fei15]. The sophisticated architecture
of WfMSs [LR00] requires an initial focus shift on the definition of a repre-
sentative workload mix. By following the literature guidelines [Fei15], we
collect real world practice process models (cf. Chapter 3) and utilise graph-
based data mining [PJMR14] (cf. Chapter 6), graph generation [VMZ+10]
(cf. Chapter 7), descriptive statistics, measuring popularity and cluster-
ing [EM06] for defining a representative workload mix (cf. Chapter 9). In
the following we discuss how such techniques have been used for workload
modelling purposes in the literature.

Traces of real scientific workflow executions as well as performance statis-
tics are publicly available [Pegb]. Using these data as a basis one can derive
synthetic scientific workflows based on statistics and use them for bench-
marking purposes [Pega]. Ramakrishnan and Gannon [RG08] published
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scientific workflow structures along with runtime and data statistics for many
real workflow applications. As similar data were not publicly available for
BPMN 2.0 real world practice business processes these approaches were
not applicable for this work. Nevertheless, the need for synthetic realistic
process models for WfMSs benchmarking purposes is affirmed by the litera-
ture [JCD+13]. Gupta [Gup14] also recognises the need for a benchmark
to allow the user to specify different sizes and other structural parameters
of the participating components. However, to the extent of our knowledge,
this is the first time that synthetic process models generated from reoccur-
ring structural patterns, are proposed as representative workload mix for
benchmarking WfMSs.
In the area of big and linked data the generation of realistic graphs for

benchmarking purposes is also well established. The graph-based work-
load has already been used in benchmarking applications that model data
as graphs. An IBM's benchmark [DKSU11] proposes the metric of ªstruc-
turedenessº of real data. The proposed approach combines the metrics
of ªstructuredenessº and size for generating data models of the Resource
Description Framework (RDF). The proposed method covers a broader spec-
trum of the ªstructuredenessº of the data models and is proved to be more
expressive than the already used metrics. Similarly, our method combines
structural information of the process models, along with size and other
statistical information for deriving synthetic process models, that reflect
the structural characteristics of a process model's collection. Vicknair et
al. [VMZ+10] compare the performance of a graph to a relational database.
The workload of the benchmark is separated to structural and data queries.
The structural queries refer to the storage of data provenance information
stored as Directed Acyclic Graph (DAG), while the data queries use payload.
The used data sets contain artificial provenance information. Our work also
focuses on the structural characteristics of process models, while data are
generated with normal distribution functions.

Dominiguez-Sal et al. [Dom+10] make a survey on high performance com-
puting scalable graph analysis benchmarks. For this, they utilise a Recursive
Matrix (R-MAT) algorithm [CZF04], which generates non-attributed directed
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graphs. The graphs can represent real networks with respect to specific pa-
rameters such as degree distribution and diameter. The XGDBench [DS12]
targets stressing exascale clouds, i. e., computing systems capable of at least
one billion calculations per second (exaFLOPS). The benchmark is based on
the multiplicative Attribute Graph Model (MAG) [KL12] for the generation
of synthetic graphs. The generated graphs are compliant with analytics, and
thus statistically interesting. Moreover, in contrast to the synthetic graphs of
the R-MAT algorithm [CZF04] the generated graphs are attributed. Generally,
the MAG algorithm is found to outperform the R-MAT [CZF04] algorithm.
Bader and Madduri [BM06] summarise three approaches of graph genera-
tors. One of these approaches (SSCA#2 graph generator) aims to produce
graphs that are in turn used for benchmarking purposes. Although the appli-
cation field and method differs, this approach has the same motivation goal
as ours. On the whole, the aforementioned works have different application
fields from ours, which focuses on the synthetic graph (i. e., BPMN 2.0 busi-
ness process models) generation from reoccurring structures. The synthetic
business process models are then used for benchmarking purposes.

2.2. Business Process Management

In the following, Section 2.2.1 focuses on related work on anonymisation
and other approaches regarding the protection of process models privacy;
Section 2.2.2 presents related work in process models collections and reposi-
tories; Section 2.2.3 introduces techniques on process models decomposition;
Section 2.2.4 studies techniques that detect similarities between process
models; and Section 2.2.5 addresses existing approaches in process models
generation.

2.2.1. Anonymisation of Process Models

Attempts for anonymisation can be found in various fields of computer
science such as network security (e.g., filtering, replacement, reduction
of accuracy [YWH+07]) and database systems (e.g., data generation, en-
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cryption [VP12], k-anonymity, l-diversity, and t-closeness [ARX12]). Data
anonymisation is an emerging topic also in cloud environments as ªdata
anonymisation can ease some security concerns, allowing for simpler demili-
tarised zone and security provisioning and enabling more secure cloud com-
puting" [Sed12]. Likewise, Zhang et. al. [ZLN+14] focus on data analysis
and propose a privacy-preserving framework based on MapReduce [DG08].
The proposed framework addresses the challenge of privacy retention of
data shared in public cloud infrastructures. Most of the existing approaches
discussing data anonymisation cannot be directly applied to the existing
process modelling languages as they are tightly coupled to the architecture
and principles of different technologies.
When it comes to business processes, privacy protection on the cloud

can be described by the following three objectives: know-how preserva-
tion, data confidentiality and trust verification [GMG13]. To this effect,
Goettelmann et al. [GMG13] propose a novel approach for protecting the
corporate assets that are compromised through the deployment of a business
process on the cloud. More particularly, the trusted deployment of a busi-
ness process on the cloud is a three-step approach: requirements definition,
business process remodelling and cloud selection. To this effect, Goettel-
mann et al. [GMG13] propose the anonymisation of business process tasks as
an additional step to the trusted-deployment process. Dave et al. [DKP+13]
suggest anonymisation techniques as a means to protect data on the cloud
and Strauch et al. [SBK+12] describe cloud data patterns to support the
data confidentiality on the cloud. However, exact details on how to con-
sistently anonymise the business process while maintaining its executional
semantics are not given in any of the aforementioned works. In follow up
work, Goettelmann et al. [GAYG15] suggest the fragmentation of a busi-
ness process and distribution of the individual fragments on multiple clouds.
Through this approach a single cloud provider cannot perceive the big pic-
ture of the know-how contained in critical business process fragments. To
strengthen this approach against a conspiracy of several malicious cloud
providers Nacer et al. [NGY+16] propose the obfuscation of the business
process through the injection of fake process fragments.
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In the field of BPM, and to the extent of our knowledge, at the time of
writing this thesis there exists no other approach that describes a compre-
hensive method to anonymise business processes expressed in the WS-BPEL
or BPMN 2.0 languages. Nevertheless, anonymised business processes are
already used in existing projects. For example, Kunze et al. [KLWW11]
anonymised business processes before publishing them in a large public
process model collection. However, the method followed to anonymise the
business processes is not discussed, and the business processes used are
not in an executable format. Bentounsi et al. [BBDA12] propose a method
to publish business processes on the cloud while maintaining privacy. This
approach is based on fragmenting the business process and sharing some
parts of it. The sensitive data of the client are anonymised but the context
of the fragment is preserved. Adopting this approach would not satisfy the
functional and non-functional requirements identified in Section 3.1, since
we endeavour to encourage the sharing of the complete business process
models while completely obfuscating any business information.

2.2.2. Process Models Collections and Repositories

A business process model repository is a location used for storage and re-
trieval of process knowledge (business rules, relationships, process elements,
etc.) [ML08; Ma12; LRvdA+11; Eli15; YDG12]. Consequently, a process
model repository can be seen as a successor of a process model collection,
which only offers the storage of the process models. Several and diverse
architectures are proposed as process model repositories, each one of them
offering different features [Eli15; YDG12]. Yan et al. [YDG12] conduct an
extensive literature review on existing process model repositories and iden-
tify the following driving forces for their usage: (i) storing and retrieving
business processes; (ii) storing business process models and their running
instances; and (iii) enabling process model re-usability. For this work, we
first examine existing process model collections for discovering publicly avail-
able process models. The storage, retrieval and re-usability of the collected
process models or parts of those (i. e., process fragments) [STK+10; YDG12]
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comprise fundamental requirements of this work, thus we study existing
solutions for process models repositories with respect to these objectives.
Although process model collections constitute an essential artefact for

practice and research, only few of them are publicly available [EKMW12].
The SAP reference model collection was published in 1997 and contains
604 Event-Driven Process Chain (EPC) process models focusing on the SAP
R⁄3 system. These process models are broadly used in diverse research
works [EKMW12] but are currently outdated and thus no longer available
online. As we will discuss further in Chapter 3 the IBM Academic Initiative
and the Business Process Management Academic Initiative (BPMAI) con-
stitute two main sources of thousands of publicly available process models.
Both collections have been considered in our research along with additional
process models derived from private collections. The private collections
of process models constitute a corporate asset for the companies [Ley01]
and were shared with us under confidentiality agreements. Hence, the full
collection of process models used in our research cannot be made publicly
available.
There are currently various process model repositories available, each of

them providing diverse functionalities [Eli15; YDG12] and⁄or performance
behaviour on information retrieval [Eli15; JWR+13]. Recent research on
existing process model repositories identified a set of limitations that hamper
the usability of process model repositories [Eli15]. These for example, are the
release of repositories under proprietary terms of usage, inefficient process
model retrieval mechanisms, the lack of goal orientation on the designed
process models and the difficulty to identify relationships and dependencies
between the process models. With respect to the identified deficiencies
Elias [Eli15] introduced a process model repository that can be used to view,
store, search and version process fragment or process model collections.
The architecture of the aforementioned repository is different from the
traditional three layers model that consists of a presentation layer, back-end
(business logic) layer and a data layer. It has five layers, one of which, is
the interoperability layer. The latter assists the user to easily exchange the
process models among diverse repositories by using a wrapper functionality,
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that translates the queries with regards to the called repository. The second
additional layer is a service layer that exposes the functionality provided by
the repository though web services and APIs. Furthermore, the proposed
solution allows the manual insertion of metadata information describing
the functional semantics of the process models (application area, process
type, resources received, resources provided, etc.). The inserted metadata
is then used for the retrieval of a process model that can be reused and
adapted to fit diverging business needs. Similarly, the prototype proposed in
this work exposes its functionalities as services to enable their integration
to other existing solutions (see Chapter 8). In our work, the metadata
is automatically extracted out of each process model and it describes the
structural composition of the process model. Process model re-usability is
then enabled through the (semi-) automatic generation of a process model
out of individual process fragments with respect to structural criteria (see
Chapter 7).

The Advanced Process Model Repository (APROMORE) [LRvdA+11] was
originally built as a process model repository and has currently extended
and enhanced functionalities as an online business analytics platform. It
offers a wide range of features, spanning from basic repository (i. e., fil-
tering process models, clone detection, querying, etc.) to process analytics
functionalities (i. e., behaviour based comparison of process models and
event logs, visual analysis of process performance, etc.). To this effect, an
intermediate canonical format is used that provides diverse possibilities on
process models analysis. In a similar manner, the PromniCAT [FHM14]
repository uses a uniform format to unite process models originating from
diverse process model languages and collections into a unique database.
However, performance analysis of WfMSs depends, among other factors, on
the underlying process model language that the WfMSs support [PFR+15].
Thus, intermediate formats could cause a loss of information that might
be impactful to the WfMS performance. For this reason we decided not
to use either PromniCAT or APROMORE for our research. Nevertheless,
the developed prototype follows a SOA, hence enabling the integration of
developed functionalities with third-party platforms. Signavio [EKMW12]
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is a tool for business process modelling and analysis. Its core components
are built on PromniCAT [FHM14] and Oryx [Ory08], a web-based process
model repository developed for browsing, creating, storing and updating
process models. It merely focuses on the modelling and correctness analy-
sis of business processes and has been used in our research for modelling
purposes only.
Vanhatalo et al. [VKL06] present a repository for process models that

may also be conceived as an eXtensible Markup Language (XML) repository
as the process models are serialised in XML before being stored in it. The
proposed approach takes as input process models serialised in XML and takes
care for their representation and retrieval as Eclipse Modeling Framework
(EMF) Java data objects. Other important characteristics of the proposed
repository are [VKL06]: (i) a data handler which serialises EMF data objects
to XML documents and de-serialises the XML documents back to EMF objects;
(ii) extensibility functionalities, by allowing the addition of new data type
models at a later point in time; and (iii) faster and easier data retrieval
through the exploitation of Object Constraint Language (OCL). The proposed
approach focuses mostly on retrieving, editing and storing WS-BPEL process
models, while our work centers the attention on Business Process Model and
Notation (BPMN) process fragments. Moreover, architectural differences
occur as Vanhatalo et al. [VKL06] use a file system as a repository, whereas
in this work relational databases are used for the storage of the process
fragments and its metadata respectively.
Seidita et al. [SCG06] introduce a process fragments repository that em-

phasises the design of a new process model for multi-agent systems and
Schumm et al. [SKLS10] propose a process fragments library called ªFrag-
mentoº, used for storing and managing process fragments. The process
fragments can be retrieved from these repositories through exploitation of
pre-inserted context-related metadata. Unlike these approaches, our work
aims at the automated calculation of structural metadata (cf. Chapter 7). This
metadata information, is then used for the synthesis of a new process model.
Similarly, a transformation step proposed by Schumm et al. [SKLS10] enables
the integration of process fragments into complete process models. The trans-

2.2 | Business Process Management 49



formation step may take place during design or deployment time and it might
cause behavioural or structural changes on the process model. The structure
of the composed process model might also slightly change in order to ensure
its consistent behaviour (e. g., avoid infinite waits) [SKLS10]. For this, the
authors also define the concept of ªregionsº in a process fragment, which
represent placeholders to indicate which places of a process fragment may
be customised. In the process models generation approach proposed in this
work, we exploit the regions concept introduced by Schumm et al. [SKLS10]
and customise it to the needs of our approach (see Chapter 7). Moreover,
similar to the transformation step proposed by Schumm et al. [SKLS10] our
approach might also lead to small changes on the final process model, for
ensuring conceptual and behavioural consistency. The architecture and im-
plementation of Fragmento is tightly coupled to WS-BPEL process modelling
language, while this work focuses on the BPMN 2.0 language and aims at
different objectives. Namely, these are the automatic calculation of structural
metadata and the retrieval of process fragments with respect to structural
metadata. Hence, we argue that the development of a new software solution
would lead to a more robust prototype.

2.2.3. Decomposition of Process Models

Process decomposition is frequently discussed in the literature [STK+10;
ELtHF11] and is accepted to have an important role in the re-usability of
process models. The concept of subprocess [RMD10] enables the reuse of
process models, by allowing the reuse of semantically complete process
model parts [Ma12]. The facilitation of reuse of arbitrary business process
model parts that cannot be expressed as self-contained business processes is
addressed through the introduction of process fragments [Ma12]. Overall,
process fragments are reusable, syntactically or semantically incomplete parts
of process models [Ma12]. Typically, process fragments are semantically
annotated with some functional semantics (process domain, process type,
etc.) or other requirements depending on the application domain. According
to Unger et al. [UEKL10] the definition of subprocesses is similar to that of
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process fragments in terms of re-usability. However, the two concepts reflect
a different conceptual context as subprocesses grant their instantiation,
execution and handling to the parent process [UEKL10].

The concept of process fragments may also be compared to this of libraries
in typical programming languages where one can reuse the provided func-
tionality without starting from scratch [SKK+11]. Eberle et al. [ELS+10]
introduce a process fragment modelling language based on the BPMN 2.0
standard, through which different process fragments can be composed and
reused at a later point in time. Schumm et al. [SLM+10] proposed two
methodologies for the creation of process fragments. The first one is a
top-down approach, in which a part of the process model is manually ex-
tracted from a bigger process model. This methodology is similar to selecting
a sub-graph of a complete graph. The second methodology is bottom-up
and a process fragment is built from scratch and designed to fulfil require-
ments with respect to some particular context. The approach proposed by
Schumm et al. [STK+10; SLM+10] considers only functional metadata
for semantically annotating the process fragment. Moreover, the semantic
annotation as well as the creation of the process fragment are manual pro-
cesses. In this work, we extend the original definition of process fragments to
Relevant Process Fragments (RPFs) (see Chapter 6) by shifting the focus on
the re-occurrence of a structural fragment in a collection of process models.
Furthermore, the RPFs are automatically extracted from the collection and
annotated with regards to its structural metadata.
Refined Process Structure Trees (RPSTs) are an automated technique

for fragmenting process models to regions [VVK08]. More specifically, Re-
fined Process Structure Tree (RPST) fragments the process models into
Single-Entry-Single-Exit (SESE) regions, out of which a hierarchical tree
representation can be constructed [VVK08; PVV11]. The process fragmenta-
tion in SESE regions has diverse applications, as for example, the usage of
process fragments to enable the refactoring of a process model [WRMR11]
or detecting matchings of process models [EDG+12; Dum+13]. As one of
this work's objectives is to discover reoccurring structures in a collection of
process models (cf. Chapter 6), the RPST technique has been extensively
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studied for possible suitability. However, in our case the derived fragmenta-
tion does not produce all the possible substructures that should be examined
as reoccurring. Therefore the RPST technique is not considered by our
approach.

Process decomposition serves also to the distributed execution of process
parts. For example, Khalaf [Kha08] partitions the original process into
process fragments with augmented information. These fragments can then be
executed in a distributed manner, while maintaining the execution semantics.
Similarly, towards a secure business process execution on (multi-) cloud
environments Goettelmann et al. [GAYG15] suggest the distributed execution
of individual process fragments on multiple clouds. Security issues may be
defeated through obfuscating the business processes by injecting fake process
fragments [NGY+16].

2.2.4. Identification of Structural Similarities of Process Models

Process model similarities is a major research stream that branches to three
directions: textual, behavioural and structural similarities [Dij+13; Len16].
Textual similarities approaches base their comparisons on the labels of pro-
cess elements (e. g., task labels, event labels, etc.), behavioural similarities ap-
proaches exploit the execution semantics of process models, and approaches
on structural similarities compare the textual semantics of process models,
as well as their topologies [DDG09; DDvD+11]. This section focuses on work
done with regards to the structural similarities of process models as this
is the most relevant for this work. The structural approaches presented by
Dijkman et al. [DDG09; DDvD+11] focus on the structural similarity metric
of Graph Edit Distance (GED). The GED between two graphs is defined as
the minimum amount of insertion, substitution or deletion operations that
one needs to perform for transforming one graph into the other [DDG09;
DDvD+11]. The GED similarity metric focuses on the textual semantics of
two process models' nodes for evaluating their similarity. Except for the fact
that textual information is required to execute the textual comparison, it was
also recognised to under-perform for process models with size> 20 [DDG09;
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Dum+09]. On the contrary, as discussed in Chapter 9 our approach does
not rely on textual semantics and has performed efficiently for application to
much bigger models (size> 100) where it has detected reoccurring structures
with 30≤ size≤ 51.

Breuker et al. [BDDS14] conducted an extensive research survey on the
performance of publicly available algorithms for frequent pattern matching
without candidate generation (i. e., without the usage of a constant struc-
tural pattern to be searched for). More particularly, Breuker et al. [BDDS14]
executed experiments in a collection of thousands of EPC process models
by using the Graph-based Substructure Pattern Mining (gSpan) [YH02]
and Graph ⁄ Sequence ⁄ Tree extractiON (GASTON) [NK05] algorithms
to discover frequently occurring structural patterns. The gSpan algorithm
introduces a novel labelling method that enables the easier sorting and
comparison of graphs. Hence, instead of searching graphs and testing for
isomorphism the gSpan algorithm constructs canonical Depth First Search
(DFS) codes which are equivalent only if the graphs are isomorphic. The
GASTON [NK05] algorithm relies on the observation that the most frequent
substructures are usually graphs without cycles. The GASTON algorithm
discovers all frequent subgraphs by using a level-oriented approach in which,
first simple paths are considered, then more complex structures and finally
cyclic graphs. The algorithm uses the ªquickstartº observation that the vari-
ous substructures are nested to each other. With respect to this observation
the algorithm organises its search space efficiently. The GASTON algorithm
is targeted for simple substructures, while for larger substructures more
advanced algorithms are suggested [NK05]. Similarly to our approach, the
experiments conducted by Breuker et al. [BDDS14] skipped the textual se-
mantics of the process models and executed comparisons only with respect
to the structural semantics of the process models. The experiments showed
a quick failure of both algorithms [BDDS14]. For our approach we adopted
existing techniques suggested initially by Ullmann [Ull76] and later on by
Valiente and Martínez [VM97] and customised them for the detection and
extraction of RPFs.
Querying of process models repositories for similarities also targets the
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detection of process models variants in a repository [Ma12; JWR+13].
Jin et al. [JWR+13] propose a method for efficient business process model
retrieval from process models repositories. To this effect, a first subset of
matching process models is retrieved through the exploitation of the graph
database indices. The set is then refined through the usage of an adapted
version of Ullmann's algorithm [Ull76], by discarding the models that do not
explicitly contain a pre-defined subgraph. Similarly to ours, the proposed
method allows the graph matching without the usage of textual semantics.
However, in the approach defined by Jin et al. [JWR+13] a pre-defined
graph is searched against the collection, while in our case the similarities
between the process models are detected without knowing a subgraph a
priori. Wang et al. [WJWW13] highlight the importance of querying process
models with respect to their graph structure and employ the gSpan algorithm
to query business process model repositories. The authors conclude that too
many different labels are used between business process models. This fact
leverages the necessity of the approach proposed in Chapter 6 as it does not
consider any labelling information for conducting a structural matching.
The APROMORE process model repository, discussed in Section 2.2.2,

is extensively used by the business process management community for
process models comparisons [LRvdA+11]. Among other features APRO-
MORE provides similarity search and pattern-based analysis functionalities
that are more relevant to the scope of this work (cf. Chapter 6). However,
similarity search indicates the percentage of similarity between two process
models, without indicating the exact regions of similarities for the process
models. Likewise, pattern based analysis is searching the existence of a
certain structural pattern in a collection of process models. In this work, we
aim at extracting the structural similarities of a collection of process models
without knowing a certain pattern beforehand (cf. Chapter 6). The features
offered by the current state of the APROMORE repository do not satisfy the
objectives of this work.
Hertis and Juric [HJ14] conduct an analysis similar to ours with a focus

on WS-BPEL. In order to detect the reoccurring structures in a collection of
thousands of WS-BPEL process models, they transform the process models
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to process trees. Afterwards, they apply tree mining algorithms to detect
and extract the reoccurring structures. Although the ultimate goal of their
work is similar to ours, the different nature of the BPMN 2.0 language does
not allow to apply the same tree mining techniques for similar structures
detection. Moreover, structural similarities are searched with respect to a
specific graph. A prototype for the comparison of BPMN 2.0 process models
is introduced by Pietsch and Wenzel [PW12]. In their approach they assume
that the compared process models are variants of the same process model
and heuristics based on textual semantics are used for identifying similarities
and differences. Although the approach seems very promising it is argued by
the authors that it might not be efficient to large, complex real world process
models. Overall, to the extent of our knowledge the approach introduced
in this work (Chapter 6) is the first complete approach that detects and
extracts structural similarities from a collection of BPMN 2.0 process models
by (i) relying solely on the structural information of the process models and
(ii) without using an a priori known graph pattern to search for.

2.2.5. Generation of Process Models

The (semi-)automated generation of synthetic process models is necessary
in the absence of available large collections of processes from the industry
or academia [YDG15]. In this work, we discuss the (semi-) automated
workload mix generation as one of the major challenges towards developing
a benchmark for WfMS. Generation in this context refers to the process
of discovering, extracting, selecting, and synthesising process fragments
into reference process models that resemble as much as possible realistic
models from practice. These non-executable reference process models can
be refined by the process modellers with implementations to make them
executable [Kha07].
Yan et al. [YDG15] propose a complete method for generating synthetic

process models. The method constructs gradually the graph of a synthetic
process model by exploiting the statistical properties and similarities of a
collection of thousands of real world process models. Moreover, the authors
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propose the usage of an RPST [VVK08] as a possible improvement of their
work. In Section 2.2.3, we argued that the RPST approach cannot be utilised
for our purposes and we have therefore introduced the concept of Relevant
Process Fragment (RPF)s (see Chapter 6). The method proposed in this
work, and the method of Yan et al. [YDG15] can be used complementarily
to each other to provide a complete solution of synthetic, representative,
executable process model generation.

As discussed in Section 2.2.3, process model decomposition is an approach
to easier and faster develop complete process models [SKK+11; SLM+10].
We utilise this concept for storing and querying RPFs, which are an extended
type of process fragments. The above approach bases on the textual semantics
of the stored process fragments, while our approach focuses on the structural
characteristics of the RPFs. Eberle et al. [ELS+10] present a formal model
for process fragments and corresponding operations for their composition.
In this work, we adopt the suggested methods for composing the process
fragments into process models and we extend the composition function in
order to stress the representativeness of the generated process model.
Business process consolidation is an approach to construct process

models out of process model collections that share common process frag-
ments [LDUD13]. La Rosa et al. [LDUD13] introduce a method to merge
variants of the same process model into a unique merged process model that
contains all variants. The merging applies a rule that calculates the union of
the edges of two graphs and merges these nodes for which the labels match
above a threshold. Zemni, Mammar and Hadj-Alouane [ZMH16] also focus
on process models consolidation to propose a mechanism that supports the
flexible merging of process fragments. The proposed approach is based on
the usage of path matrices [Ran91], i. e., matrices that indicate if there is a
path from one node to another. In the proposed approach the path matrices
are used to reflect the existence of a path between adjacent nodes of a node
based graph (i. e., process model). The merging mechanism exploits this
information into calculating and providing correct merging paths between
pairs of nodes (i. e., activities) of the business process models or fragments.
An interesting aspect of this approach is that it is afterwards validated
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against undesired behaviour that might occur during the merging process.
This is done by providing the process model designer with a mechanism to
pre-configure behavioural constraints. The merging techniques described
above could not be considered by our approach because; (i) we do not
consider any textual semantics in any of the methods we propose and (ii) the
goal of our method is not merging but combining process fragments to each
other to construct a complete, aggregated process model.
Kopp et al. [KLSU11] describe a method to autocomplete the process

fragments into complete process models. The background motivation of
the proposed approach is to enable the verification on BPMN 2.0 tools that
only support complete BPMN 2.0 processes and not process fragments. The
approach mainly focuses on the transformation of a process model to Petri-
Nets, the consistent addition of start events and gateways, and then the
re-transformation of the derived process model to BPMN 2.0. The method
relies on existing theorems [KtHvdA03; PGD10] to guarantee the soundness
of the derived process model. As already discussed in Section 2.2.2, the
performance analysis of WfMSs is also linked to the process modelling
language that the WfMSs support [PFR+15]. Therefore, also in this case,
the application of intermediate formats was not considered as an appropriate
approach for our purposes. The process fragments synthesising method
proposed in Chapter 7 follows the ideas presented by Kopp et al. [KLSU11]
to add BPMN 2.0 language constructs for a process model's autocompletion.
However, the rules we follow are adjusted in such way that the transformation
of the synthesized process model to an intermediary format is avoided.

2.3. Chapter Summary

In this chapter we discussed existing related work in research areas that
intersect with the application domain of this work. We first presented a
set of existing standard benchmarks in technologies that can be considered
akin to WfMSs. As a standard benchmark for WfMSs is not yet available,
we also showcased existing work on custom benchmarks for WfMSs. This
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work is part of the BenchFlow approach, that aims at introducing the first
standard benchmark for WfMSs. More particularly, we focus on defining a
novel method to derive representative workload mixes for benchmarking
WfMSs. With respect to this effort, we also studied related work in workload
modelling and characterisation techniques. As in the current efforts of
benchmarking WfMSs the process models used are arbitrarily defined, we
focused on related work for generating synthetic graph-based workloads.
Overall, in Section 2.1 we positioned our work at large, by showcasing its
necessity in the field of benchmarking WfMSs.
The method we specify for deriving a representative workload mix

(WINE4WfMSs) comprises of sub-methods, which can be separately ex-
amined as research contributions in the area of BPM. For deriving a
representative workload mix one needs to take into account real world
cases [Fei15]. As business processes comprise a corporate asset for the
companies, and in order to foster the process model sharing we propose
an anonymisation method that obfuscated process models, whilst keeping
their execution behaviour. With regards to this, we examined related work
for business processes anonymisation. The collected process models are
stored in process models collections or repositories, that offer the additional
advantage of process models querying and efficient retrieval [SKLS10;
LRvdA+11]. Our work use existing public collections of process models, but
does not use process model repositories as we show that the state-of-art is not
directly satisfying the objectives of this work. Nevertheless, as we show in
Chapter 8 we implement the defined methods by following a loosely coupled
design and allows the integration of developed the components to existing
works. Afterwards, the collected process models will be searched for existing
structural similarities and decomposed with respect to them (Chapter 6).
For this purpose, we also study the respective research areas of process
model decomposition and process model similarities. The main difference of
our work with respect to these areas, is that our approach detects structural
similarities without considering the textual or behavioural semantics of
process models. The detected structural similarities are then synthesised
back to structurally representative process models (cf. Chapter 7).

58 2 | Background & Related Work



C
h
ap

te
r 3

Collecting Real-World
Process Models

ªIn God we trust, all others must
bring data.º

W. E. Peming

Given the fact that the usage of a non-representative workload model may
lead to misleading results [Fei15], the identification of a representative work-
load presupposes the extended analysis of a collection of real world practice
process models. To this effect, in the context of the BenchFlow project we
proceeded in contacting diverse industrial and academic organisations to
request real world practice process models. As process models constitute
a corporate asset for the companies [Ley01] collecting them is a challeng-
ing task. Hence, this chapter introduces research question RQ-1: ªHow to
overcome obstacles in creating a collection of real-world practice process
models?º. In order to foster the sharing, while addressing the concerns of
the process models owners, we propose: (i) confidential agreements and
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(ii) a method to obfuscate process models and their deployment artefacts.
Through this method the process models are shared with the data that are
suitable for our research without revealing critical company information.
In previous works [SRPL14; SFL+15], we introduced a method to

anonymise processes described in the WS-BPEL language. In this work,
we extend the method for anonymising both WS-BPEL and BPMN 2.0
processes. More particularly, this chapter approaches contribution C-1: ªAn
anonymisation method for process models (ªBPanonº) and the obtained
collection of process modelsº by presenting:

(i) a method for anonymising WS-BPEL and⁄or BPMN 2.0 process models,
while maintaining their structural and behavioural semantics, and

(ii) the composition of the obtained process models into a collection.

The remainder of this chapter is structured as follows: Section 3.1 proposes
a method for anonymising process models described in the WS-BPEL or
BPMN 2.0 language, Section 3.2 describes the composition of the process
model collection and Section 3.3 summarises the chapter.

3.1. Anonymisation of Process Models

In this section, we propose a method to obfuscate process models focusing on
process modelling languages that allow web services orchestration, namely
WS-BPEL or BPMN 2.0. The proposed approach produces an anonymised
or a pseudonymised process model that maintains its executional and tim-
ing behaviour. Pseudonymisation is the technique of masking data, while
maintaining ways to reach back to its original data, therefore in pseudonymi-
sation the output of the executed process model can also be mapped back
to its original, non-anonymised version [Fed90]. This way, it allows pro-
cess model designers to trace bugs or inconsistencies found in anonymised
files and apply changes to the originals. On the contrary, anonymisation
edits critical data and makes it impossible to reach back to the original
version [SBK+12]. The proposed approach is designed with a focus on the
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process models, which means that the data and web services that interact
with them are simulated using stubs. However, our solution can be extended
or combined with already existing solutions for data [Sed12; ZLN+14] and
web services [DRS10] anonymisation to protect the company's information
to the maximum possible extent.

3.1.1. Process Model Anonymisation Requirements

The design of the anonymisation method must address the following initial
list of requirements identified during our work in various research projects,
and especially during our collaboration with industry partners. The main
requirement and purpose of the method is to provide:

R-1: PSEUDONYMISATION/ANONYMISATION:
Produce a process model that contains obfuscated textual semantics, while
it maintains an equivalent timing and executional behaviour. Moreover,
the end user of the application can select if the process model will be
pseudonymised or anonymised.

In order to fulfil the [R-1: PSEUDONYMISATION⁄ANONYMISATION]
requirement a set of subsequent requirements emerge. These can be divided
into groups with respect to their root cause requirements specific to the:
(i) use of XML language, (ii) business process modelling and (iii) anonymi-
sation methods.
More particularly, we recognised the following list of XML language re-

quirements:

R-2: NO INFO IN NAMES:
Sensitive information may appear in activity names, variable names, XML
Schema Definition (XSD) element names, etc. The name choice for these
attributes is usually descriptive and reflects the actual actions to which
they correspond, thus they reveal the process model's semantics.

R-3: NO INFO IN NAMESPACES:
The anonymised process model must not include namespace information
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with links to external web sites that reveal business information (back-
links).

R-4: NO INFO IN BACKLINKS:
The anonymised process model should not contain any backlink informa-
tion. Namely, it must not contain names (such as activity names, variable
names, message names, operation names, role names or XSD element
names) with backlinks to business information.

R-5: NO INFO IN XPATHS:
The anonymised process model should not contain sensitive information
in XPaths. Namely, it must not contain XPath expressions with backlinks
to business information. If no custom XPath functions are used, [R-5:
NO XPATH INFO] is a consequence of requirement [R-4: NO BACKLINK
INFO].

R-6: NO INFO IN DOCUMENTATION:
The resulting anonymised process model must not contain description
containers (comments and documentation), that reveal critical information
and semantics.

The process modelling nature-specific requirements are recognised as fol-
lows:

R-7: KEEP STRUCTURE & EXECUTABILITY
The anonymised process model should maintain its structural information
and executability.

R-8: KEEP RUNTIME
The anonymised process model must maintain an equivalent runtime.

Finally, the following requirements are related to the used anonymisation
method, especially focusing on the renaming of elements during the anonymi-
sation process:

R-9: PREVENT REVERSE ENGINEERING
The obfuscated names of the anonymised process model should prevent
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the reverse engineering to retrieve the original names. For example, if the
data are obfuscated with anagrams of the words, it is easy to retrieve the
original word.

R-10: AVOID NAME CONFLICTS
The names must be chosen in a way that conflicts will be avoided between
the original and resulting file. Namely, we should ensure that the names
we choose for the anonymisation are not already existent as names in the
original file. Otherwise, we will have a sequence of conflicts when trying
to separate the original and anonymised elements.

R-11: HUMAN READABLE NAMES
Human readable names must be chosen for the anonymised process model.
For example, let us assume that we apply Universally Unique Identifier
(UUID) as name choice for the anonymisation process. This action would
produce artifact names such as f81d4fae-7dec-11d0-a765 and lead to
a process model that is not human readable.

3.1.2. Method of Process Models Anonymisation

As business process models are typically represented as a collection of di-
verse artifacts, designing an anonymisation method that consistently fulfils
the aforementioned requirements is challenging. The artifact collection
of a WS-BPEL process should contain at the minimum a deployment de-
scriptor, one or more process definitions in WS-BPEL, WSDL files and XSD
files [Apa13a]. Provided the assumption that all parts of a process model
are specified in one single file, a BPMN 2.0 process is contained in a sim-
pler package, as the definition of a deployment descriptor is optional in
the state-of-art WfMSs [Apa13b] and WSDL files are included only if re-
quired by the underlying process model. Nevertheless, for the purposes
of defining the anonymisation method consistently we consider the most
complicated case, i. e., the existence of all possible artifacts in the package.
Figure 3.1 shows the considered artifacts of a business process package and
the ways a change during the anonymisation of one artifact influences the
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Figure 3.1.: Influence relations among the artifacts of a WS-BPEL or
BPMN 2.0 business process model for the anonymisation pro-
cess.

surrounding ones. This means that the target-artifact of the arrow (e. g.,
process model) is influenced by the origin-artifact (e. g., XSD). Therefore,
when the origin-artifact is changed the interconnected artifacts should be
accessed and changed as well. Consequently, the influence relations among
files increase the complexity of anonymisation, as small changes in a file may
lead to numerous subsequent changes to other business process artifacts.

The Business Process Anonymisation (BPanon) method [SRPL14; SFL+15]
starts by anonymising the surrounding artifacts and finally applies the subse-
quent changes to the process model. More specifically, as shown in Figure 3.1,
the XSD file can be seen as an ªinitialº artifact in the anonymisation process.
This is because it is not influenced by any other artifact and it contains
definitions referenced by the rest of business process artifacts. By initially
anonymising the definitions and then updating their references we achieve
a consistent anonymisation. Thus, in our process we start with anonymising
the XSD, continue with the WSDL and deployment descriptor, and we lastly
anonymise the process model which basically is a combination of references
to the rest of artifacts. The elements of the business process artifact files can
be divided into three groups:

Free Elements Group: elements that need to be anonymised, but are not
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bound to subsequent changes that occur in other files.

Externally Bounded Group: elements that are bound by the surrounding
artifacts and need to be updated when such an artifact is anonymised.

Internally Bounded Group: elements that need to be changed because they
are bound to other changed elements within the same file.

The anonymisation of the Free Elements Group is trivial, as it can be reduced
to string replacement. For example, documentation elements belong to this
group. However, the anonymisation of Externally Bounded Group and Inter-
nally Bounded Group are more complex tasks. For its implementation we need
a Registry of Alterations (referred to as regist r yO f Al terations), i. e., a reg-
istry of metadata that is created during the anonymisation of an artifact and
which logs all conducted changes. The regist r yO f Al terations contains at
least information about the element's type and the corresponding attributes
of the original and anonymised data. The original and anonymised data
are marked with the tags ªoldº and ªnewº to the regist r yO f Al terations
respectively.

The main idea of anonymisation is to scan the surrounding artifacts of the
business process package (i. e., XSD, Deployment Descriptor, WSDL, etc.)
to detect element attributes that might contain semantics that need to be
obfuscated, thereafter referred to as critical attributes. The critical attributes
are pre-stored as metadata information for both process modelling languages.
For example, in the case of WS-BPEL keywords such as ªpartnerLinkTypeº
or ªportTypeº are added in the set of critical attributes. As soon as a critical
attribute is anonymised a pair of (ªoldº,ªnewº) values is entered to the
regist r yO f Al terations.
As a next step we scan the business process model itself to detect references

of the obfuscated elements and update their value. In the following we dis-
cuss the anonymisation method, part of which is presented in Algorithm 3.1.
For simplicity reasons the Algorithm 3.1 focuses on the anonymisation of
WSDL files and underlying process model. Thus, the demonstrated algo-
rithm shows a part of the Externally Bounded Group anonymisation. For the
complete anonymisation of the business process artifacts (cf. Figure 3.1) a
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similar process needs to be followed.
The anonymisation method (see Algorithm 3.1) starts with the creation

of a metadata set that describes the interconnections of the business process
artifacts (Figure 3.1). From a technical point of view, this can be done by
parsing the <import> annotations at the beginning of the process model
file. The created metadata set, referred to as tableO f Re f erences in Algo-
rithm 3.1, shows the links between the process model and its WSDL files.
For the discovered WSDL files we edit the definitions of artifacts referenced
by the process model. To this effect, we parse each of the WSDL files regis-
tered in tableO f Re f erences and gradually anonymise the critical attributes
of their elements. In order to satisfy requirements regarding the human
readability the anonymisation procedure picks randomly a word from an
English Dictionary [Win00]. A word of a well known human language will
lead to more readable results instead of using random strings as Universally
Unique Identifiers (UUIDs). We then remove the chosen word from the
dictionary, in order to eliminate the name conflicts.
By maintaining a regist r yO f Al terations we apply the subsequent

changes to the process model file. The changes of the WSDL file are reflected
to the process model file by initially calling the findElementOfIntercon-
nection() function. This function returns the WSDL amended element
(changedElement) that has caused a subsequent change to the process
model file. For robust functioning the findElementOfInterconnection()
pre-supposes unique identifiers for the e.id elements. Then, the value
of the current element (c) is changed accordingly and we update the
regist r yO f Al terations for consistency. Finally, the tableO f Re f erences
and regist r yO f Al terations are destroyed if the method is set to anonymise.
If pseudonymisation is chosen instead, then these records are preserved and
persisted in order to allow the de-anonymisation of the model if necessary.

The complete BPanon method is realised as a component of the tool chain
shown in Chapter 8. In previous work [SFL+15] we conducted an evaluation
of the BPanon process and verified that we satisfy the specified requirements.
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Algorithm 3.1 Anonymisation process for an externally bounded group (case
of WSDL)

Input: m : the process model file to anonymise. The changes will be reflected
directly on it.

Input: anonymisation : a boolean variable. If set to true it indicates that
we are applying anonymisation otherwise pseudonymisation is applied.

Output: BPanon : a set that contains the anonymised process model (m) and
a set of anonymised WSDL files (W ′)
function BPanonWSDL(m)

Create tableO f Re f erences by parsing <import> elements of m
W ′← 0
W ′← {w : w ∈ tableO f Re f erences ∧ t ype(w) =WSDL}
for each (w ∈W ′) do

for each (element e ∈ w ) do
C ← getCriticalAttributes(e)
for each (c ∈ C) do

regist r yO f Al terations ← updateRegistryOfAlterations(
e.id, e.t ype, c.data, c.t ype, "old")

c.data← applyAnonymisation(c.data)
regist r yO f Al terations ← updateRegistryOfAlterations(

e.id, e.t ype, c.data, c.t ype, "new")
end for
W ′←W ′ ∪ {w}

end for
end for
// Reflect the changes on the process model file
for each (element e ∈ m) do

C ← getCriticalAttributes(e)
for each (c ∈ C) do

changedElement ← findElementOfInterconnection(
e.id, e.t ype, c.t ype)

regist r yO f Al terations ← updateRegistryOfAlterations(
e.id, e.t ype, c.data, c.t ype, "old")

c.data← getNewValueOfAttribute(
changedElement, c.data, regist r yO f Al terations)

regist r yO f Al terations ← updateRegistryOfAlterations(
e.id, e.t ype, c.data, c.t ype, "new")

end for
end for
if (anonymisation) then

delete tableO f Re f erences
delete regist r yO f Al terations

end if
BPanon← m∪W ′
return BPanon

end function

3.1 | Anonymisation of Process Models 67



3.2. Real-World Process Models Collection

As process models constitute a corporate asset for most companies [Ley01]
the industrial or academic organisations are reluctant to share them. To
foster the sharing of the process models we signed confidential agreements
with several of the partners, created tools that obfuscate the textual semantics
of the process models as discussed in the previous section, and executed
extensive searches on the web to discover openly available process model
collections. Without focusing on a specific modelling language we collected
14,167 process models.

More specifically, our collection, as of April 2016, contains: 1% WS-BPEL,
2% EPC, 4% Yet Another Workflow Language (YAWL), 14% Petri Net, and
79% BPMN models, out of which two thirds are expressed in the BPMN 2.0
language. The BPMN 2.0 models form the vast majority of the collection.
As we endeavour towards a workload model that represents the real world
practice, we consider the large set of collected BPMN 2.0 process model as
the most suitable for our purposes. Therefore, for this work we focus solely
on the BPMN 2.0 language.
The targeting subset of the real world process models contains 12, 624

BPMN 2.0 process models originating from the:

(i) IBM Industry Process and Service Models1,

(ii) the BPMN 2.0 standard,

(iii) the research by Pietsch et al. [PY14],

(iv) the Business Process Management Academic Initiative2 (BPMAI), and

(v) other research and industrial partners.

BPMAI requires a set of user-defined criteria for provisioning a collection
of process models. Thus, the following selection filters were used for deriving
the BPMAI collection: (i) BPMN or BPMN 2.0 processes, (ii) all languages

1IBM, Industry Models,
URL: http://www-01.ibm.com/software/data/industry-models/

2BPMAI, URL: http://bpmai.org/
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available (English, German, etc.), (iii) 100% connectedness, (iv) any size
available, (v) any date available.
The serialisation format of both the IBM Process and Service Models, as

well as the BPMAI process models were not compliant with the BPMN 2.0
standard [ISO13]. Thus, extra editing was required in order to normalise
the models to be compliant with the BPMN 2.0 standard serialisation. The
IBM process models included custom IBM namespaces, which needed to
be replaced with standard namespaces. Similarly, the elements that ad-
dressed these namespaces needed to be edited. To this end, we realised
a normaliser that transforms the custom serialised process models to their
standard equivalents. This step is also represented as a component of the
toolchain presented in Chapter 8. The resulting model collection, including
the application of the anonymization process to it as discussed in the previous
section, is presented in more detail in Chapter 9 as part of the case study
used for the evaluation of this work.

3.3. Chapter Summary

The definition of a representative workload requires the analysis of multiple,
diverse, real word practice process models. Nevertheless, the confidential
nature of the real world process models makes their collection a challenging
endeavour. In this chapter, we discussed the BPanon method that targets
the anonymisation of WS-BPEL and BPMN 2.0 business processes. The
anonymisation of a business process can be complex due to the numerous
artefacts that comprise it and their underlying dependencies. For conducting
a consistent anonymisation of a business process one needs to know the
critical elements to anonymise, and the dependencies between the included
artefacts, in order to track down the sequences of changes that need to be
applied.
The proposed method is applied for the collection of real world process

models. This attempt resulted in the collection of 14,167 process models
described in diverse process modelling languages (see C-1). An analysis on
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the collection indicates that BPMN 2.0 is the dominant process modelling
language of the collection (79%), thus the rest of this work shifts the focus
on BPMN 2.0 language.
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Lies, Damned Lies and Benchmarks

D. R. Moscato

Among other factors, a benchmark's reliability depends heavily on the
definition of its workload model, as failing to derive a representative one
might produce misleading results [VMSS12; Fei15]. The complexity of
deriving a representative workload model for software systems is frequently
discussed in the literature [CMT00; Alm02; EM06; KHSB12].
In order to support practitioners towards the definition of a robust work-

load model, Kounev et al. [KHSB12] summarise an abstract methodology.
However, despite the existence of a general methodology, the parameters of
the workload model (workload mix, load functions, and test data) vary de-
pending on the objective of the test type (e.g., load test, stress test, soak test)
and the System Under Test (SUT) [Mol14]. In order to increase the quality
of our workload model's design (see research question RQ-2: ªWhat are the
basic components of a workload model for WfMSs?º), we primarily need to
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get an in-depth knowledge of related existing benchmarks. To this effect,
in Chapter 2 we studied standardised benchmarks, that were published by
industry-accepted consortia such as SPEC [Sta95] and TPC [Tra92a], as well
as state-of-art custom benchmarks that target to measure the performance
of WfMSs. This study leads to the identification of components that play a
key role when designing a new WfMSs benchmark.

Having identified the components of a WfMSs benchmark, we afterwards
delve into the definition of a metamodel of the basic workload model compo-
nents for WfMSs (see contribution C-2: ªA metamodel of the basic workload
model components for WfMSs.º)). To sum up, the original scientific contri-
butions of this chapter are to:

(i) identify the components that are relevant for the design of new WfMS
benchmarks and their underlying dependencies;

(ii) identify the basic components for a workload model for WfMSs bench-
marking and their interactions.

The results of the aforementioned contributions are published in [FIP+16;
SAB+16].

The remainder of this chapter is structured as follows: Section 4.1 describes
the components that need to be defined when designing a new WfMSs
benchmark and their dependencies; Section 4.2 identifies the basic workload
components for WfMS benchmarking and their underlying interactions and
Section 4.3 summarises the chapter.

4.1. Key Components of a Workflow Management System
Benchmark

In the following subsections we identify the key components of a WfMS
benchmark (see Section 4.1.1) and discuss existing dependencies on the
design phase (Section 4.1.2).
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4.1.1. Identifying the Key Components of a Workflow Management System
Benchmark

Before proceeding to the design of a benchmark one should first identify
the individual underlying artefacts. After studying the design of relevant
standard middleware benchmarks [Tra92b; TPC15; Sta15; Sta07], as well
as custom benchmarks for WfMSs [SFP+16; BBD10; DES08; Act11; Rol13;
IC07] we extracted the key components of a benchmark. Due to the fact that
all studied benchmarks have similar domains of application, their structure is
common in many aspects. Thus, the identified components are derived from
common information, while concepts that were not common in all studied
benchmarks are not included. The identified components and their underly-
ing relations are organised as a conceptual model shown in Figure 4.1.

The experiment can be considered as the orchestrator of the overall bench-
mark, as it is responsible for stressing the benchmarked system (SUT) with
respect to the definition of a meaningful workload model. As SUT we refer to
the individual system that is deployed and benchmarked during an experi-
ment, and its benchmark-related attributes are the hardware configuration
of its comprising artefacts, the product's name (i. e., Camunda1, Apache
Active MQ2, etc.), as well as its software license, and the version of the
benchmarked SUT. Keeping information on the systems license, is important
to ensure the legality of results publication. As a widely accepted guideline, a
representative benchmark should follow hardware configurations similar to
the consumer environment [Hup09]. The workload model of an experiment
can be described as the group of components that are used for stressing
the SUT. The components of a workload model for WfMSs are extensively
discussed in Section 4.2.
Each experiment is repeated for a predefined number of rounds and

lasts for a specific time (i. e., duration). If for some reason the SUT stops
responding, then the experiment times out after a predefined amount of time
(i. e., time-out duration). The warm-up time takes place at the beginning of

1Camunda, URL: https://camunda.org
2Apache, Apache Active MQ, URL: http://activemq.apache.org
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Figure 4.1.: Metamodel of a benchmark's components

the experiment and refers to the time that the system needs for initialisation
before reaching a stable running state. Likewise, ramp-up time is called
the time that the experiment driver need to reach the maximum level of
workload. The durations of the warm up and the ramp-up times are usually
excluded from the measurements of the experiment. Experiments might
also stress the SUT's ability to scale the workload (i. e., scalability). Hence,
an experiment also contains information on the scalability property that is
being stressed (e. g., horizontal or vertical scalability [Sta07]).

At the end of the benchmarking procedure the experiments produce raw
data. As suggested by research guidelines the raw data should be published
online in order to foster reproducibility. Thus, the raw data are linked to
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their location of publication. Finally, the raw data are analysed in order to
derive meaningful metrics. One of the characteristics of a good benchmark
is the usage of meaningful and understandable metrics [Hup09]. Therefore,
the selection of the metrics plays an important role in the design of the
benchmark.

Each benchmark is characterised by its name, the consortium that proposed
it, an indicator that shows if it is widely accepted and adopted as a standard
benchmark and a type. Based on their nature, benchmarks can be categorised
into different types (e. g., synthetic benchmark, application benchmark,
micro⁄toy benchmarks, etc.). Various benchmarks focus on addressing the
performance of different types of systems. Each system has a specific type, as
for example a Java Server, Workflow Management System, etc. Each system
has a set of factors or components whose performance affect the performance
of the overall system (i. e., performance factors).
The application scenario of a benchmark describes a specific business

model along with tasks that should be fulfilled (realised in the workload
model). Thus, its design is dependent to the type of benchmark that we
construct or apply. As the benchmark should be reachable and suitable for
a large number of clients [Hup09], its application scenario should define
concepts with respect to the area in which the benchmark will be applied.
Moreover, it must contain and utilise the most widely used components
and configurations of the SUT [MA01]. Finally, the application scenario
should stress different functionalities that are offered by the underlying
technology [SKCB07].

4.1.2. Model of Dependencies

The identified design dependencies between the aforementioned benchmark
components are shown in Table 4.1. When a component of a row influences
the design of a component in a column, then the corresponding table cell
is marked with an ªXº. Components that do not affect the design of any
other component (e. g., workload model) or are not affected by any other
component (e. g., system) are omitted from the rows or columns of Table 4.1
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Application
Scenario

± ± ± ± X

Benchmark X X ± ± ±

Experiment ± ± ± ± X

Metric ± ± X ± X

System X ± X X X X

System Under
Test (SUT)

± ± ± ± X

Table 4.1.: Components dependencies of a WfMS benchmark design

respectively.
The system component affects decisions regarding the application scenario,

the experiment, the metric, the SUT and the workload model. More particu-
larly, the application scenario is strongly dependent to the system as it needs
to demonstrate a representative use case of the system's usage. The design
of the experiments is also inseparable from the system, as the benchmarking
infrastructure that executes them, and the workload model they execute
should be compliant to the system. The system plays also a big role in the
definition of the metrics to be computed, as these should be interesting,
relevant and representative of the system's performance [Hup09]. Lastly,
the SUT must be compliant with the defined system type (e. g., WfMS).

The application scenario affects the design of the workload model, as the
workload model needs to define tasks that are relevant to the application
scenario. Likewise, the metric's design will affect the design of the workload
model in order to be representative and drive to relevant raw data. Moreover,
the implementation and behaviour of the workload model components are
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influenced by the experiment (e. g., load test, stress test, soak test) [Mol14].
Finally, the workload model is also affected by the system and the SUT, as
its definition, design and behaviour should be compliant to the SUT's type.
The benchmark's goal as well as historical data on existing benchmarks

affect the design of the application scenario and experiments. This is because
data derived from applied practices provide information on best practices
or detected pitfalls [FLH+17]. For instance, it is likely that a benchmark
applied on a system for the very first time will not identify all the performance
affecting factors in its initial design, or might design experiments that are
not considering all the possible pitfalls for reliable measurements. For this
reason TPC [Tra92a] and SPEC [Sta95] propose iterative processes for
benchmark submission and maintenance [Poe12]. Moreover, the design of
an experiment should follow the definition of the metrics and target to the
execution of performance tests that will produce meaningful raw data as
well as the characteristics of the system that is being benchmarked.

In general, in Table 4.1 we observe that the system has a core role as it
represents the overall goal of the benchmark and therefore the benchmark's
design is centred on it. On the contrary, the workload model seems to be
the artifact whose design is affected the most by the surrounding compo-
nents. What is more, the workload model plays an important role to the
benchmark's execution and its design affects heavily the derived results and
quality of the benchmark. Hence, designing a meaningful workload model
is a critical task during a benchmark's design. In the following section we
discuss the components of a workload model for WfMSs and their underlying
interactions.

4.2. Identifying the Basic Workload Components

The workload model components for WfMSs and their interactions are
presented in Figure 4.2. As we showed in Figure 4.1 (Section 4.1.1) the
workload model of WfMSs consists of load function, clients, the workload
mix, probabilistic data generators and test data. The load function describes
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Figure 4.2.: Basic components of workloadmodel forWfMSs and interactions

how the workload is issued to the SUT, i. e., the number of requests that
will be executed against the SUT per time unit. The requests are made
in the form of clients which are created by the load function and in their
turn instantiate requests to the SUT [FIP+16]. In the case of WfMSs, these
requests are process instances that correspond to the specification of a process
model.

For their instantiation and execution process instances require and produce

78 4 | Defining Meaningful Workload



test data, respectively. The test datamay relate, for example, to the evaluation
of conditions or persistent data required for completing a task. Namely, they
determine the execution behaviour of the workload mix (cf. Figure 4.2). In
this regards, probabilistic data generators are responsible for generating the
test data that are needed as input for the process instance's execution (cf.
Chapter 7).

The workload mix of WfMSs is comprised of process instances and test data
that determine the behaviour of each process instance. Moreover, we define
as workload class the pair of process model and corresponding intensity,
with which each process model participates in a workload mix (i. e., the
number of instances of a process model created in a workload mix). In this
regard the workload mix is the set of workload classes of a performance
test and the execution behaviour of the underlying process models. The
underlying process models reflect a diverse applications, ranging from simple
to complex processes. To keep the benchmark manageable it is essentially
impractical to construct a benchmark that includes any possible scenario.
Hence, the workload mix should comprise of a small but meaningful number
of representative process models [PFR+15]. Hence, in order to ensure a well-
defined and representative workload mix [Fei15], the process models that
comprise it should comply with the following characteristics: (i) stress the
performance of the WfMS, (ii) contain language features that are supported
by the tested WfMS [GHL+15], (iii) be representative of process models
used in real world practice and (iv) be in-line with the targeted performance
metrics and tests. Therefore, in this work we propose the WINE4WfMSs
method to parametrically define the workload mix (cf. Chapter 8). To this
end, the user of the benchmark can define different workload mixes for
diverse application scenarios, e. g., domain-specific or customer-specific.
To summarise, the load functions are used to create clients that in turn

instantiate process models defined in the workload mix. Before executing
the benchmark on the SUT we should deploy all the process models of the
workload mix on the tested WfMS and make them ready for execution. The
process instances are instantiated and executed using the test data which
are produced by probabilistic data generators.
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4.3. Chapter Summary

In this chapter we focused on the conceptual aspects of a WfMS benchmark.
Through a literature study on state-of-art standard middleware and custom
WfMS benchmarks we recognised the basic components of a WfMS bench-
mark and their underlying interactions (cf. Section 4.1). In order to develop
a new benchmark or to apply an existing benchmark on a WfMS, practi-
tioners need to comprehend and analyse the design of existing benchmarks.
Through this analysis, they are able to learn from historical data and adopt
successful practices. As this is a time consuming task, we have gathered the
information derived by our analysis into a knowledge base, and offer it as
a Decision Support System for WfMSs Benchmarking, that is implemented
as part of the tool chain presented in Chapter 8. Other historical data and
results derived by conformance and performance benchmarking on WfMSs
can be found on the ªPEaCEº Interactive Dashboard [BMHW16]. The aim of
these initiatives is to support practitioners with future decisions concerning
the construction of WfMS benchmarks.
In Section 4.2 we identified the basic workload components for bench-

marking WfMSs and their underlying interactions. The sophisticated nature
of WfMSs requires a flexible definition of the workload model, as the perfor-
mance testing goals might differentiate from general to domain or customer
specific [PFR+15]. Thus, the remainder of this work focuses on defining the
methods for deriving a parametric and structurally representative workload
mix for WfMSs.
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BPMN 2.0 Workflow

Management Systems

ªEverything must be made as
simple as possible. But not
simpler.º

A. Einstein

Before defining a complex workload mix for BPMN 2.0 WfMSs informa-
tion regarding the individual impact of the BPMN 2.0 language constructs
on the WfMS performance is required (see RQ-3). As discussed in Chap-
ter 2, the goal of micro-benchmarks is to stress fundamental components
of a system, as for example, single operations or narrow aspects of more
complex systems [WH13]. For the purposes of our work, we consider a
micro-benchmark as suitable means to investigate the performance evalua-
tion of the commonly used BPMN 2.0 modelling constructs. In general, the
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workflow patterns defined by van der Aalst et al. [VTKB03] can be seen as
the minimum set of concepts and constructs that should be implemented by
any workflow language [VTKB03]. In our context and given the complexity
of the BPMN 2.0 language, we focus on the basic control-flow workflow
patterns that apply onto the core of the BPMN 2.0 language. Hence, by
using the basic control-flow workflow patterns we implicitly assume that
these are the simplest and most frequent atomic operations that a WfMS
executes. This chapter is based on the work presented in [SFP+16] and its
main contribution is to introduce the first micro-benchmark for BPMN 2.0
WfMSs process navigator. The micro-benchmark is based on the sequence
flow, exclusive choice and simple merge, explicit termination, parallel split
and synchronization, and arbitrary cycle control-flow workflow patterns.
Similar efforts for different systems [MBM09; APDL13; BBD10] have re-

vealed fundamental bottlenecks and have therefore been proven beneficiary
to improve the tested systems. The main goal of this work is to enable further
research in the performance engineering of BPMN 2.0 WfMSs by examining
three state-of-the-art open-source WfMSs and providing a first insight on
those BPMN 2.0 language factors that affect the WfMSs performance. More
particularly, we aim at answering the research question RQ-3: ªWhat is
the impact of the diverse BPMN 2.0 language constructs on the process
navigator's performance?º.
For this purpose, we implement the selected workflow patterns through

specifying a corresponding BPMN 2.0 process model for each one of them. We
then enact two sets of experiments to three open-source BPMN 2.0 WfMSs.
The workload model of the experiments builds on the conceptual metamodel
presented in Section 4.2. The first set of experiments aims to execute a large
load of process instances for each workflow pattern and to investigate the
behaviour of the WfMSs. The workload mix of each experiment consists of
process instances executing only one workflow pattern. The second set of
experiments aims to stress the WfMSs during the execution of a uniformly
distributed workload mix of all workflow patterns. Thus, the workload mix
of these experiments contains process instances of all workflow patterns. We
use the benchmarking environment BenchFlow [FIP15] to obtain raw data
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and calculate the throughput, process execution time and resource utilisation
metrics. The results show bottlenecks on architectural design decisions,
wasteful resource utilisation, and load limits for specific workflow patterns.

To summarise, the main contribution of this chapter is to provide the
first micro benchmark for BPMN 2.0 WfMSs (see contribution C-3 ªThe first
micro-benchmark for BPMN 2.0 WfMSsº):

(i) analyse the effect of selected core BPMN 2.0 language constructs on
the WfMS performance;

(ii) define meaningful candidate constructs for BPMN 2.0 complex bench-
marks and

(iii) present findings of the emerging results for the selected WfMSs.

The remainder of this chapter is structured as follows: Section 5.1 presents
the workflow patterns that participate in the workload mixes of the exper-
iments and Section 5.2 describes the micro-benchmark experiments. A
discussion of the results and most important findings is provided in Sec-
tion 5.3, in Section 5.4 discusses possible threats to validity and Section 5.5
concludes this chapter.
Additional supplementary material of the raw data and aggregated met-

rics can be found at: http://benchflow.inf.usi.ch/results/2015/
caise-microbenchmark.tgz, as well as, at the PEaCE interactive dash-
board: https://peace-project.github.io.

5.1. BPMN 2.0 Specification of Workflow Patterns

Before proceeding to more complex performance measurements that will
also include external interactions, we consider it important to understand the
performance behaviour of the WfMS fundamental components. As discussed
in Chapter 1, the process navigator of a WfMS is responsible for driving the
execution of the tasks of each process instance with respect to the semantics
of the underlying process model language [LR00]. Therefore, when external
interactions are not taken into account, we consider the process navigator
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to be mostly accountable for the performance of a WfMS. To this effect and
in order to stress the process navigator's performance, we design processes
which only make use of script tasks. These processes are fully automated
and only use embedded application logic that is co-located with the engine.
Thus, the process navigator is the responsible component for their execution.
In this regard, we design the process models of the workload mixes and their
corresponding behaviours with respect to the following constraints:

(i) we maximise the simplicity of the process model implementing the
workflow pattern;

(ii) we drop the interactions with external systems. All tasks are imple-
mented as script tasks, while human tasks and Web service invocations
are excluded. This way we stress mainly the process navigator, since
script tasks are fully automated and only use embedded application
logic that is co-located with the engine;

(iii) we assume that most script tasks are empty. Only the ones required
to implement the workflow pattern semantics contain the minimal
amount of code and produce the minimum amount of data to do so;

(iv) we assume equal probability of passing the control flow to any outgoing
branch of the gateways;

(v) as per the BPMN 2.0 standard [ISO13, p. 434 ± 435], the exclusive
choice is combined with the simple merge workflow pattern (EXC

shown in Figure 5.2) and the parallel split is combined with the syn-
chronisation workflow pattern (PAR shown in Figure 5.3).

For defining the process models of the workload mixes we focus on the
basic control flow and structural workflow patterns [WvdAD+06]. The
process models designed for our experiments are shown in Figures 5.1 to 5.5.
In the rest of this section we shortly present the process models of the micro-
benchmark's workload mixes and their behaviour, and define hypotheses
concerning their expected performance.
Sequence Flow (SEQ) ± This process model executes two consecutive

empty script tasks representing the simplest structure with which a process
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Empty
Script 1

Empty
Script 2

Figure 5.1.: SEQ ± Sequence flow workflow pattern [SFP+16]

model may express a sequence of tasks. Due to the structural simplicity
of this workflow pattern, we assume that each WfMS will preserve similar
execution times throughout the experiments (HYP1).

x = 1 or 2

Empty
Script 1

Empty
Script 2

x == 1

x == 2

Figure 5.2.: EXC ± Exclusive choice and simple merge workflow pat-
terns [SFP+16]

Exclusive Choice and Simple Merge (EXC) ± The Exclusive Choice and
Simple Merge workflow patterns are implemented in BPMN 2.0 using exclu-
sive gateways and conditional sequence flows (e. g., x == 1 and x == 2 in
Figure 5.2) [ISO13, p. 435]. In the defined process model the first script
task randomly generates the number 1 or 2 following a uniform probability,
and assigns it to variable x . The generated numbers define if the upper or
the lower branch is chosen by the execution flow based on the specified con-
ditions. In both cases an empty script task is executed. The generation of the
random number and⁄or the evaluation of the conditions emerging from the
exclusive choice are expected to have an impact on the performance (HYP2).
Parallel Split and Synchronisation (PAR) ± The Parallel Split and Syn-

chronisation workflow pattern uses the BPMN 2.0 parallel gateway [ISO13,
p. 434]. This process model executes in parallel two empty script tasks. As
parallelism is generally demanding in processing power we expect this to
reflect on the performance measurements (HYP3).
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Empty
Script 1

Empty
Script 2

Figure 5.3.: PAR ± Parallel split and synchronisation workflow pat-
terns [SFP+16]

Empty
Script 1

Wait 5
Sec

Figure 5.4.: EXT ± Explicit termination workflow pattern [SFP+16]

Explicit Termination (EXT) ± This process model executes two branches
concurrently. According to the BPMN 2.0 language semantics when one of
these branches ends it will also terminate the rest of the executing branches
and the overall execution of the process instance will be interrupted. Then,
the process instance execution is marked as completed successfully. The
ªEmpty Script 1º is an empty script task, while the ªWait 5 Secº task waits
for five seconds. The value of five seconds was chosen to guarantee that the
lower branch will be slower than the upper one. As the ªEmpty Script 1º
task is the fastest, we expect that the process instance will be completed
with the completion of the path containing ªEmpty Script 1º, and then the
terminate event will interrupt the ªWait 5 Secº task. The structures of the
PAR and EXT process models are alike, although they represent different
concepts and workflow patterns. We assume that the concurrent execution
of tasks will impact the performance in a similar manner (HYP4).
Arbitrary Cycle (CYC) ± Arbitrary cycles are not expressed through any

specific, individual BPMN 2.0 construct but through a combination of ex-
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x = 1 or 2
i = 0

i = 5

i++

i < 10

i >= 10

Empty
Script

x == 2

x == 1

Figure 5.5.: CYC ± Arbitrary cycle workflow pattern [SFP+16]

clusive gateways that form a cyclic structure that has at least two entries
or two exits [VTKB03]. The CYC workflow pattern is implemented with
two entry points at the second exclusive gateway, and starts by a script task
that randomly generates the integer number x = 1 or x = 2 following a
uniform probability and initializes a variable i = 0. With respect to the value
of x variable the upper or the lower branches are followed (like the EXC

workflow pattern shown in Figure 5.2). The lower branch executes a script
task that assigns value 5 to variable i (script taskªi = 5º in Figure 5.5), while
the upper branch executes an empty script task (script task ªEmpty Scriptº
task in Figure 5.5) and then increases the variable i (script task ªi ++º in
Figure 5.5). This path will be followed until variable i == 10. To have a
different but deterministic behaviour of the branches we implemented the
script task of the lower branch to set i = 5 (as shown in Figure 5.5). In
this case the loop (cycle) will be repeated fewer times, until i == 10. The
CYC workflow pattern represents a slightly more complex structure than the
aforementioned process models. Therefore, this workflow pattern might be
more appropriate for revealing performance bottlenecks due to the usage of
sequential or nested exclusive gateways (HYP5).

5.2. Experiments

For the micro-benchmark we define the following six workload mixes:
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Workload Mixes 1-5 issue a large load to the WfMSs and investigate their
behaviour for individual workflow patterns (SEQ, EXC, EXT, PAR, CYC).
Thus, each workload mix consists of workload classes that correspond to
exactly one of the aforementioned workflow patterns. Consequently, each
class constitutes of a workflow pattern participating with 100% intensity
in the corresponding workload mix.

Workload Mix 6: emulates the performance behaviour during the concur-
rent execution of diverse workflow patterns (MIX). More particularly, we
test if the performance of a workflow pattern is affected when it is executed
concurrently with other types of workflow patterns. For this purpose, we
inject a mix of five workload classes, each one containing instances of a
workflow pattern distributed with a uniform intensity of 20% for each.

All workload mixes are executed three times for each WfMS to verify that
there is a comparable behaviour between the executions. In some cases a
WfMS did not sustain the predefined load. Then we re-execute the experi-
ments with a lower load and observe the WfMS behaviour for this execution.

Following the work of Ferme et al. [FIP15; FIP16] who define meaningful
metrics for benchmarking WfMSs, for each workload mix we calculate the
following metrics:

Process Instance Duration: Time difference between the start and the com-
pletion of a process instance. In our experiments the duration is calculated
in seconds (sec).

Resource Utilisation: CPU utilisation (calculated in percentage (%)) and
memory utilisation calculated in (megabyte (MB)).

# Process Instances: The absolute number of executed process instances
by the WfMS per benchmark run. Process instances are also abbreviated
as pi.

Throughput: The number of executed process instances per time unit.
Throughput is calculated with Equation (5.1):

Throughput =
#ProcessInstances

T ime
(5.1)
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The resulting throughput unit is #pi/s.

Details about the experiments set up as well as the identified load functions
are discussed in detail in [SFP+16].

5.3. Evaluation

The experiments described in Section 5.2 are executed against three WfMSs.
Since, out of the three benchmarked WfMSs only Camunda [Cam13] con-
sented to the publication of the results, for the rest of this chapter the other
two WfMSs are referred to as WfMS A and WfMS B. In the following we
summarise the results for each workload mix and discuss the most important
findings. A more detailed analysis of the results is available in [SFP+16].
For each workload mix and each WfMS, we present the duration in mil-

liseconds (ms, Figures 5.6 and 5.9), the CPU utilisation in percentage (%,
Figure 5.7), and the mean amount of RAM that was allocated by the WfMS
in megabytes (MB, Figure 5.8). For the duration of the experiments for
each workload mix and for each WfMS we calculate also relevant statis-
tics [MR03] shown in Table 5.1. More specifically, Table 5.1 presents the
mean with Confidence Interval (CI) 95%, mode, min, max, Standard Devia-
tion (Sd) and quartiles (Q1, Q2, Q3) of the average data collected during the
maximum load (#cl ients) each WfMS could sustain. Sometimes the WfMS
failed to handle the maximum load (i. e., 1,500 concurrent clients), leading
to the execution of new experiments with reduced load. These cases are also
presented in Table 5.1. Table 5.1 also provides the aggregated metrics (see
Section 5.2) regarding (i) the total number of completed process instances
for each WfMS, (ii) the total duration (seconds) for each experiment, and
(iii) the average throughput expressed in completed process instances per
second (#pi/s).
Workload Mix 1 (Sequence Flow Workflow Pattern, SEQ) ± As seen in
Figure 5.6 this workload mix has resulted in the shortest duration times
for all WfMSs. The short duration of this workload mix is also followed by
low average CPU usage for all three WfMSs (Figure 5.7). Moreover, this
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SE
Q

A. 0.39± 0.01 0 0 561 1.70 0 0 1 1,500 781,736 540 1,447.66

B. 6.39± 0.43 6 4 82 1.21 6 6 7 1,500 35,516 561 63.31

C. 0.74± 0.01 1 0 682 2.29 0 1 1 1,500 786,664 540 1,456.79

EX
C

A. 0.48± 0.01 0 0 485 2.07 0 0 1 1,500 775,455 540 1,436.03

B. 9.30± 0.05 9 6 131 2.11 9 9 10 1,500 27,805 567 49.04

C. 0.85± 0.01 1 0 627 2.51 0 1 1 1,500 765,274 540 1,417.17

EX
T

A. 14.10± 0.06 10 5 858 13.45 10 11 14 1,500 770,229 540 1,426.35

B.
2,622.00±

237.68
11 8 5,047 2,500.44 13 5,012 5,016 1,500 1,703 4,498 0.38

C. 0.40± 0.01 0 0 74 1.03 0 0 1 1,500 784,614 539 1,455.68

PA
R

A. 13.29± 0.06 8 4 456 11.99 9 10 13 1,500 772,013 540 1,429.65

B. 10.06± 0.06 10 7 145 2.22 9 10 10 1,500 27,718 567 48.89

C. 0.70± 0.01 1 0 691 2.10 0 1 1 1,500 773,883 540 1,433.12

C
YC

A. 6.23± 0.13 2 0 478 18.68 1 2 3 800 347,770 540 644.02

B. 39.36± 0.40 50 25 146 9.52 30 43 47 1,500 8,695 646 13.46

C. 3.06± 0.04 2 0 353 4.43 2 2 3 600 177,770 542 327.99

M
IX

A. 8.16± 0.07 0 0 663 14.65 1 2 12 1,500 758,659 541 1,402.33

B. 540.02± 122.3 11 6 5,195 1,525.27 10 12 38 1,500 2,392 1,343 1.78

C. 1.22± 0.02 0 0 434 4.21 0 1 1 1,500 575,210 542 1,061.27

WfMS A: A.,WfMS B: B.,Camunda: C.

Table 5.1.: Process instance duration and experiment execution statis-
tics [SFP+16]

workload mix resulted in the highest throughput for all WfMSs under test
(see Table 5.1).
Workload Mix 2 (Exclusive Choice & Simple Merge Workflow Patterns,
EXC) ± The random number generation and the evaluation of conditions
implemented by the process models of this workload mix, seem to have
no important impact on duration, as Figure 5.6 shows that the resulting
duration values are similar to those of the SEQ workflow pattern. Concerning
the CPU (Figure 5.7) and RAM (Figure 5.8) utilisation, we observe a slight
increase when compared to the SEQ workflow pattern.
Workload Mix 3 (Explicit Termination Workflow Pattern, EXT) ± As dis-
cussed in Section 5.1, the EXT workflow pattern executes concurrently an
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Figure 5.6.: Mean duration (ms) per workflow pattern [SFP+16]

empty script and a script that implements a five seconds wait. According
to the BPMN 2.0 execution semantics, the branch of EXT that finishes first
terminates the rest of process instance's running branches. Considering this,
we implemented the EXT workflow pattern so that the fastest branch (empty
script) will complete first, interrupt the slower script on the other branch
and terminate the process instance execution. The execution behaviours
of WfMS A and Camunda were compliant with the aforementioned design.
The resource utilisation of these two WfMSs increased for this workflow
pattern (cf. Figures 5.7 and 5.8). At this point, we also observe a notable
difference on the performance of the two WfMSs as EXT constitutes the
slowest workflow pattern for WfMS A and the fastest for Camunda.

The duration results of WfMS B for the EXT workflow pattern are dispro-
portionally high when compared to those of WfMS A and Camunda. We
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Figure 5.7.: Mean CPU (%) usage per workflow pattern [SFP+16]

thoroughly examined this situation and observed that during the process
instance executions WfMS B follows a pseudo-parallel (sequential) execution
of each path, with an average percentage of 52.23% of executing the waiting
script first and 47.77% for executing the empty script first. Since the com-
pletion of the waiting script lasts for five seconds, every time it is chosen for
execution it adds a five seconds overhead and leads to a very high average
duration time. Later in this section, we endeavour to explain in more detail
this behaviour of WfMS B. With regards to the resource utilisation we notice
a very low average usage of CPU (cf. Figure 5.7) and a mean RAM usage (cf.
Figure 5.8) similar to the rest of the workflow mixes.
Workload Mix 4 (Parallel Split & Synchronization Workflow Patterns,
PAR) ± There is an increase in the duration times for WfMS A and WfMS B,
while Camunda handles parallelism much faster (cf. Figure 5.6). Although
WfMS B seems faster by looking the duration results, we should take into
consideration that it has a total execution of 27, 718 process instances in 567

seconds, while WfMS A executed 772, 013 process instances in 540 seconds.
For both WfMS B and Camunda keep the resource utilisation values in the
same range to this resulting from the execution of the rest of workload mixes
(cf. Figures 5.7 and 5.8). For WfMS A the values of utilised resources are
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Figure 5.8.: Mean RAM (MB) usage per workflow pattern [SFP+16]

relatively higher than these obtained from the rest of workflow patterns (cf.
Figures 5.7 and 5.8).
Workload Mix 5 (Arbitrary Cycle Workflow Pattern, CYC) ± The perfor-
mance of this workload mix cannot be directly compared to workload mixes 1
± 4, as it implements a higher number of language constructs and composes
a more complex process model structure. The number generation and the
script to increase the variable value (see Figure 5.5) implemented by the CYC

workflow patterns are expected to introduce an additional overhead on the
performance. Moreover, the duration of this workflow pattern is dependent
on the generated number as it determines whether 10 or 5 cycles will be
executed. During the execution of this workload mix, Camunda showed con-
nection timeout errors for a load greater than 600 clients, with a connection
timeout limit set on 20 seconds. Hence, we reduced the load to 600 clients
and repeated the experiments for the other two WfMSs. Thus, the load for
the results shown in Figure 5.6, Figure 5.7 and Figure 5.8 for this workload
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Figure 5.9.: Mean duration (ms) per workflow pattern in MIX [SFP+16]

mix correspond to 600 clients. On the contrary, Table 5.1 shows the results
for the maximum load each WfMS could sustain, i. e., 800 clients for WfMS A,
1500 for WfMS B and 600 for Camunda. The mean CYC execution duration
is higher than the rest of the workload mixes (cf. Figure 5.6). Concerning
resource utilisation, WfMS B and Camunda remain stable and comparable
to the rest of the workload mixes (cf. Figures 5.7 and 5.8). WfMS B remains
also on the same range of mean RAM usage, while we observe an increase for
Camunda (cf. Figure 5.8). In this workload mix WfMS A also demonstrated
an increased resource utilisation (cf. Figures 5.7 and 5.8).
Workload Mix 6 (MIX) ± This workload mix instantiates simultaneously all
workflow patterns (see Figures 5.1 to 5.5) with an intensity of 20% for each
participating workflow pattern. Figure 5.9 presents the individual duration
times of the workflow patterns during their concurrent, uniform execution
on the MIX workload mix. As seen in Figure 5.9, all workflow patterns have
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little increase in their duration times when compared to their execution in
the individual workload mixes. Nevertheless, a quick overview of the MIX

statistics indicates that they are the aggregated mean duration times of the
individual workflow patterns (cf. Figure 5.9). The throughput of the MIX

workload mix is slightly lower for all WfMSs, although WfMS A maintained
it on the same range as its previous values (cf. Table 5.1).

In the rest of this section we discuss the most important findings emerging
from the executed experiments. As already discussed, WfMS B showcased
some peculiarity in its behaviour. This was also noticed by Bianculli et
al. [BBD10] who executed performance experiments on a WS-BPEL version
of WfMS B. According to the documentation of WfMS B calls to the execu-
tion server through its Representational State Transfer (REST) Application
Programming Interface (API) are blocked until the process instance com-
pletes its execution. In our experiment the clients request the instantiation
of a process model, and wait for the completion of the instantiation before
creating a new one. However, in the case of WfMS B the clients wait for
the entire execution of a process instance to finish, before requesting the
instantiation of a new one. This fact introduces a high overhead on the
performance, and causes delays that deteriorate the performance.
In order to further investigate this, we conducted a scalability test to

analyse the WfMS behaviour under diverse load intensity levels. As discussed
in [SFP+16] the throughput remained stable even if the clients increased.
This fact indicates that: (i) it is pointless to increase the number of clients
and target to the execution of more process instances and (ii) the fact that
WfMS B is the only WfMS under test using a synchronous REST API does
not impact the comparability of the results.

Another emerging issue for discussion concerning WfMS B is its inconsis-
tent behaviour during the execution of workload mix 3 (EXT). According
to the expected execution of the EXT workflow pattern the path with the
empty script interrupts the execution of the path with 5 seconds wait and
the process instance execution completes gracefully. However, according
to its documentation, WfMS B dedicates a single thread to the parallel exe-
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cution of the scripts, leading to a pseudo-parallel (serial) execution of the
parallel paths. Consequently, data evidence that in about 50% of the cases
the fast execution path (empty script) is chosen to be executed first, while
in the remaining of the executions the longer execution path (5 seconds
waiting script) was executed first. In the cases where the longer execution
path is chosen the execution needs to wait for 5 seconds until this branch
is completed. This explains the very high duration of the EXT as half of the
executions lasted for 5 seconds.
We proceed by drawing some conclusions regarding the overall perfor-

mance of all WfMSs under test. The fact that WfMS B executed sequentially
all the initiated process instances leads to a higher response time and a lower
actual executed load with respect to the other two WfMSs. This behaviour is
also directly reflected by the results in which WfMS B demonstrates in higher
duration values for all workflow patterns and much lower CPU and memory
utilisation, which is an immediate consequence of the low throughput. Ca-
munda resembles WfMS A architecturally as Camunda was originally a fork of
WfMS A. However, as evidenced by the executed experiments the behaviour
of the two WfMSs is not identical and leads to some interesting conclusions.
Although WfMS A executed slightly better than Camunda for the SEQ and
EXC workflow patterns, Camunda also kept the duration values low for all
tested workload mixes. WfMS A seems to be impacted by parallelism and
resulted in high duration values and resource utilisation for all workload
mixes that included parallelism (i. e., EXT, PAR, and MIX). On the contrary,
Camunda performed stable for the workload mixes with parallelism, thus
we may safely conclude that the performance of Camunda is not affected
by parallelism. During the execution of the MIX workload mix WfMS A kept
the same throughput and executed a rather constant number of process
instances as those executed for each individual workflow pattern workload
mix. Concerning the derived results on the resource utilisation WfMS B and
Camunda demonstrated a more stable behaviour, while WfMS A showed
an increase when it was more stressed. In general, we may conclude that
Camunda performed better and more stable for all metrics when compared
to WfMS A and WfMS B.
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Last but not least, regarding the formulated hypotheses points (see Sec-
tion 5.1), all WfMSs performed similarly good and stable in the execution of
the SEQ workload mix (cf. HYP1). SEQ had also the highest throughput for
all tested WfMSs. As speculated in HYP2, the generation of a random number
and⁄or the condition evaluation seem to have an impact on the performance
(see EXC in Section 5.1). Regarding parallelism, the hypothesis that the PAR

and EXT workflow patterns will have a similar impact on the performance
(HYP3, HYP4) hold primarily for WfMS A and Camunda. Our HYP4 and HYP5

for parallelism and complex structures having an impact on the performance
seems to hold for WfMS A, while for Camunda no conclusions can be drawn
with respect to this point.

Overall, the results designate that sequential workflows (i. e., SEQ) may
be used for discovering the maximum throughput of the WfMSs. Process
models using parallelism (i. e., PAR and EXT) are more suitable for drawing
conclusions regarding the throughput and resource utilisation, while more
complex structures (i. e., CYC) are better candidates for stressing the WfMSs
in terms of resource utilisation. Finally, the concurrent execution of different
process models does not seem to have an important impact on the WfMS
performance.

These conclusions are considered in Chapter 9, in which we design a more
complex and representative workload mix for a WfMS macro-benchmark.

5.4. Threats to Validity

External validity refers to the extend to which the experimental results can
be generalised to other situations [WR+00]. The small number of tested
WfMSs leads to an uncertainty degree on the drawn conclusions. For this
reason, it constitutes a thread to external validity. For safer deductions, the
evaluation of more WfMSs is needed.

Construct validity describes the extend to which the experiments measure
what they claim to or should be measuring [WR+00]. The fact that the
conducted performance tests utilise simple workload models constitutes
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a threat to the construct validity. Notwithstanding the micro-benchmark
by construction does not correspond to real world practice conditions, we
consider it fundamental for the purposes of our work. By exploiting the
derived knowledge and using it as a basis we may afterwards proceed to the
definition of more complex workload mixes (cf. Chapter 9).

Another threat to the external and construct validity is that our load driver
could not generate more than 1, 500 concurrent clients. This number does
not correspond to real world practice situations, where more clients appear in
practice. Nevertheless, the issued load can be compared to this of previously
applied custom WfMS benchmarks (e. g., [DES08]).

The BenchFlow environment [FIP15; FIP+16] does not model the network
latency, and this parameter is ignored during our tests. It also uses different
dedicated networks for the interactions of the WfMS with the DBMS and
of the clients with the WfMS [FIP15; FIP+16]. This is a potential threat to
external and construct validity. To ensure conclusion validity, we used multi-
ple statistical metrics like absolute counts, means, medians, and standard
deviations (Table 5.1).

5.5. Chapter Summary

In this chapter we showcased a micro-benchmark for BPMN 2.0 WfMSs. The
micro-benchmark is based on the BPMN 2.0 representation of basic control
flow patterns, which are reoccurring concepts and structures shared by any
workflow language. To the extent of our knowledge this is the first attempt
to investigate the impact of BPMN 2.0 language constructs on the WfMSs
performance. For the execution of the benchmark we used the BenchFlow
benchmarking environment [FIP15], on which we issued a load of more than
one thousand clients initiating process instance executions. Among other
interesting observations, our results revealed important bottlenecks due to
architectural design decisions for WfMS B, that resource utilisation can be
a potential issue for WfMS A and load bottlenecks during the execution of
the arbitrary cycle workload mix for Camunda. Consequently, despite the
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simplicity of the micro-benchmark we argue that it is a potentially suitable
choice for benchmarking fundamental behaviour of complexWfMS executing
in real world practice.
Regarding individual workflow patterns we observed that the sequential

workflow pattern revealed the maximum throughput for all of the examined
WfMSs. Parallelism (i. e., explicit termination and parallel pattern) affected
two of the three WfMSs in terms of throughput and resource utilisation.
More complex structures, such as arbitrary cycles, also seem to impact the re-
source utilisation, thus they can be better candidates for stressing the WfMS.
Finally, the mix execution helped us to conclude that there are no adverse
performance effects when executing different workflow patterns concurrently.
However, we did observe a slight increase on individual performance metrics
when compared to the homogeneous experiments with individual patterns.
The above results provide the first insights on which constructs constitute
meaningful candidates for building more complex benchmarks. For instance,
a test aiming to measure the throughput or resource utilisation of the WfMS
should preferably choose complex, parallel structures. In Chapter 9 we
exploit the conclusions of this work to define a more complex and repre-
sentative workload mix that is afterwards used for macro-benchmarking
BPMN 2.0 WfMS.
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Reoccurring Structures
Detection (RoSE)

ªA problem well put is half-solved.º

J. Dewey

Business process model similarities is a topic frequently discussed in the
literature [Dij+13; BDDS14] (see also Section 2.2.4 for a more extensive
discussion on the subject). It finds application in multiple scenarios, as for
example to facilitate the comparison or integration of business processes,
to inspect the validity of process models, to adjust the process models to
different target groups [BDDS14]; to detect and refactor duplicates (clones)
in process model repositories [Dum+13; EDG+12]; to detect different
versions of the same process model [PW12] or to generate process model
collections [YDG15]. In Chapter 3, we described a collection of 12, 624
BPMN 2.0 business process models used in real world practice. These can
be analysed for deriving representative process models that will then be
used for the workload mix. Given the existence of anonymised and reference
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models in the original collection, our analysis must therefore exploit solely
the structural information of the process models (Objective 1). Hence, we need
to apply a structural analysis on the collection and determine reoccurring
structures. This chapter aims to address research question RQ-5: ªHow to
detect reoccurring BPMN 2.0 structures in a process models collection?º.
Objective 1 can generally be reduced to the very well known challenge of
subgraph isomorphism [Ull76], which is discussed as NP-complete in the
literature [GN95]. However, as well-structured BPMN 2.0 process models
are special types of graphs, i. e., Series Parallel Graphs [GR15], the challenge
of subgraph isomorphism can be solved in polynomial time [GN95]. The
reduction to polynomial complexity indicates the feasibility of developing
and applying a technique that targets BPMN 2.0 process models.

Although many existing approaches are solving the subgraph isomorphism
problem [Ull76; CFSV04; GN95; VM97], they assume a given graph whose
occurrence is searched in a larger graph. In our case, however, there is no
known subgraph to be searched for. Instead, we need to identify and extract
it based on the case of structural similarity between a set of business process
models (Objective 2). To this end, and in order to target both of the defined
objectives, we are reaching the challenge of frequent pattern discovery with-
out candidate generation which can be seen as a variant of the subgraph
isomorphism problem [YH02]. Breuker et al. [BDDS14] have applied an
extensive research on the performance of publicly available algorithms for
frequent pattern matching without candidate generation. More particularly,
Breuker et al. [BDDS14] conducted experiments for the gSPAN [YH02] and
Gaston [NK05] algorithms to discover frequently occurring patterns in a
collection of thousands of EPC process models. In the experiments, the
textual semantics were omitted and the comparison is applied only with
respect to the structural semantics of the process models (cf. Objective 1). In
this case, the authors reported quick failure of both algorithms when applied
to a collection of 2,200 process models.
We exploit, adapt and combine well established techniques to propose

a novel approach for the efficient detection of reoccurring structural pat-
terns in a process models collection. The proposed approach focuses on
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BPMN 2.0, however it may be generalized to any process modelling language,
by adapting the proposed formal model. More particularly, the contributions
of this chapter are to bring together and extend previous work presented
in [SGHL15; SL15; SAKL16] and to introduce:

(i) a formal model of our approach;

(ii) a novel algorithm for detecting and extracting reoccurring structures
(i. e., structural similarities) from a collection of BPMN 2.0 process
models and calculating metadata regarding their frequency of appear-
ance; and

(iii) the proof of completeness of the aforementioned algorithm.

The above contributions form contribution C-5: ªThe Reoccurring Structures
Detection (RoSE) methodº.

The remainder of this chapter is structured as follows: Section 6.1 provides
a representative example of reoccurring structures detection between two
process models; Section 6.2 presents the formal model of our approach;
Section 6.3 explains the algorithm that detects and extracts the reoccurring
structures from the process models collection and presents the proof of
completeness of the aforementioned algorithm; and Section 6.4 summarises
the contributions of the chapter and presents an outlook for future work.

6.1. Representative Example

For detecting structural similarities, our approach focuses on acyclic
BPMN 2.0 process models and handles them as special types of graphs.
Textual or behavioural semantics of the process models are not used in our
approach. Figure 6.1 shows two examples of BPMN 2.0 process models for
which we detect the reoccurring structures. The presented process models
are very similar to each other and a quick observation leads to the detection
of many reoccurring structures. Figure 6.2 shows some of such reoccurring
structures in the process models of Figures 6.1a and 6.1b. The demonstrated
structures in Figure 6.2 are only some of the possible results and not the
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Figure 6.1.: BPMN 2.0 example process models [SAKL16]
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Figure 6.2.: Reoccurring structures in the process models of Figure 6.1
[SAKL16]

complete set of reoccurring structures between these two process models.
Focusing on the reoccurring structures shown in Figure 6.2a and Figure 6.2b
we observe that the only difference between these two structures is their
starting point. Namely, the structure of Figure 6.2a begins with a start event,
while the structure of Figure 6.2b with an exclusive gateway. As seen in
Figure 6.2a and Figure 6.2b, both of these structures constitute maximal
common reoccurring structures between the compared models that stem
from the corresponding participating starting points (i. e., SE1 and SE1′
matched to SE1′′ and EG1, and EG1′ matched to EG1′′ respectively). In other
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words, there are no larger common structures between models A and B in
Figure 6.1 stemming from these starting points. Moreover, the elements of
the structures in Figure 6.2a and Figure 6.2b can be reached through the
starting points SE1′′ and EG1′′ by any common graph traversal algorithm
(e. g., DFS). For the discovered structures we also calculate statistics meta-
data regarding their frequency of appearance. In particular, we calculate:
(i) how many times a structure has been detected in a collection and (ii) in
how many models the reoccurring structure appears. With respect to these
metadata both the structures shown in Figure 6.2a and Figure 6.2b appear
one time in the collection of Figure 6.1 and in both (i. e., two) process
models.

In order to satisfy the purposes of our approach not all possible reoccurring
structures are to be considered. For example, the structure of Figure 6.2c
is comprised of two BPMN 2.0 elements connected with each other, and
appears in both models of Figure 6.1. Since this structure is a minimalistic
building block for any BPMN 2.0 model we consider it of no particular
structural interest and exclude it from our results. Another more complex
structure that is not considered by our approach is shown in Figure 6.2d.
In this case, all the BPMN 2.0 elements of this structure can be mapped to
exactly one BPMN 2.0 element of either Figure 6.2a or Figure 6.2b. However,
the structure cannot exactly be characterized as reoccurring, because not
every element of the structure in Figure 6.2d is connected to a starting point.
For the purposes of this work we focus only on identifying the non-trivial,
reoccurring structures of maximum size which contain exactly one starting
point, out of which we can reach any other element of the process model
by any common graph traversal algorithm. An indirect consequence of this
design decision is that BPMN 2.0 collaboration elements are not supported
by our approach, since this would demand more than one starting points.

6.1 | Representative Example 105



6.2. Formal Model

A BPMN 2.0 model can be seen as a directed, attributed graph G =
(V , E) [GR15] with n = |V | vertices (denoting the activities) and m = |E|
edges (denoting the sequence flow connectors). For this work, we assume
the sets V and E to be partially ordered sets ( (V ,≤), (E,≤) ), where the
partial order is defined by the order in which the vertices and edges would
be visited by a DFS traversal. The set La contains element types from the
BPMN 2.0 set as described by the BPMN 2.0 ISO standard [ISO13]. Type of
a vertex vi is called the function type : V → La that assigns an element from
a set La to each vi ∈ V.
Zur Muehlen and Recker [MR08] showed that most of the BPMN 2.0

elements are not actually applied in practice. Throughout the years BPM
has matured, leading to the adoption of more features by programmers
and IT specialists. Nevertheless, business process modellers still seem re-
luctant to apply more complex constructs and apply only a subset of the
language [All16]. As we will show in Chapter 9 our collection (Chapter 3)
also reflects a subset of the BPMN 2.0 language. Moreover, a preliminary
statistical analysis of our collection has indicated that approximately a 12%
of the contained process models contain cyclic structures. Hence, since
our approach targets the detection of the most commonly reoccurring struc-
tures of a BPMN 2.0 collection, the proposed approach supports the most
commonly discovered BPMN 2.0 elements [MR08], while it does not sup-
port cyclic graphs. More particularly, we consider the elements of the set
La = Evt∪Gt∪Act only, where:

Evt: is the set of all event types as defined in the BPMN 2.0 standard
(e. g., start event, end event, etc.)

Gt: is the set of all gateways types in the BPMN 2.0 standard (e. g., parallel
gateway, exclusive gateway, complex gateway, etc.)

Act: is the set of all task types (e. g., manual task, script task, service task,
etc.) in the BPMN 2.0 standard, call activities and subprocesses.

The concept of checkpoints introduces areas for investigation in a process
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model, as the Evt and Gt elements of BPMN 2.0 are those differentiating the
models structurally. In other words, without event (Evt) and gateway (Gt)
elements, process models consist only of activity (Act) elements and this is
not of any particular structural interest.

Definition 1 (Checkpoints)
Let Lch = La \Act be the set of all BPMN 2.0 element types excluding all activity
types. We define as checkpoints the set of vertices of graph G, VG

ch ⊂ V for which
it holds VG

ch = {v|t ype(v) ∈ Lch}.
For example, the checkpoints of the models presented in Figure 6.1 are

vertices VModelA
ch = {SE1, EG1, EG2, EE2} and VModelB

ch = {SE1′, EG1′, EG2′, EE2′}.
Following on, and for any directed edge e = (u, v) ∈ E, we say that e is

outgoing from u and incoming to v. Likewise, we call u the source vertex of e
and v the target vertex of e. The functions incoming : V → ℘(E) and outgoing :

V → ℘(E) are defined accordingly. A vertex v ∈ V is called a source when
incoming(v) = 0 and a sink when outgoing(v) = 0. In our case we assume
that any graph has a unique source, i. e., |{v ∈ V | incoming(v) = 0}| = 1. In
the following, we denote the source vertex of a graph G as vG

src.

Definition 2 (Path)
A path of length k, k ∈ !+ from a vertex u to a vertex w, denoted as u 3→ w, is
a sequence of edges e1, ..., ek ∈ E for which it holds:

1. The target vertex of each edge is the source of its succeeding edge.

2. The edges within a path are pairwise distinct (ei ̸= ei for i ̸= j).

3. The source vertex of the first edge of the path (e1) is the startpoint of the
path (u), and the target vertex of the last edge of the path (ek) is the
endpoint of the path (w).

For example, the sequence of edges (α,ε,ζ,κ) is a path of length 4, from
vertex SE1 to vertex EE2 in the process model of Figure 6.1a. The existence
of a path u 3→ w denotes reachability from u to w with any common graph
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traversal algorithm. Hence, through determining the reachability of a process
model's paths, we are able to identify if a process model is source connected.

Definition 3 (Source connectivity)
A graph G is called source connected if there exists a path from its source vG

src

to any other vertex v ∈ V.

For example, the graph presented in Figure 6.2d is not source connected,
because the vertex T4′′ cannot be reached from the source vertex SE1′′.
Definition 4 (Checkpoint-subgraph)
We call a source connected subgraph H of G a checkpoint-subgraph iff vH

src ∈ VG
ch.

The function µ : VG
ch→ CG

ch maps a checkpoint of a graph G to the set CG
ch of all

checkpoint-subgraphs of G starting at that checkpoint.

It can be seen that all subgraphs shown in Figure 6.2, except for Figure 6.2d,
are a subset of the checkpoint-subgraphs of the models shown in Figure 6.1.

Moving now to the definitions of graph and subgraph isomorphism for our
formal model we are using these provided by Valiente [Val02].

Definition 5 (Graph isomorphism [Val02])
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection
M ⊆ V1 × V2 such that, for every pair of vertices (vi , v j) ∈ V1 and {wi , w j} ∈ V2

with (vi , wi) ∈ M and (v j , w j) ∈ M , (vi , v j) ∈ E1 ⇐⇒ (wi , w j) ∈ E2. In such a
case, M is a graph isomorphism of G1 to G2 and we denote it as G1 ∼ G2.

Definition 6 (Subgraph isomorphism [Val02])
A subgraph isomorphism of the graph G1 = (V1, E1) into a graph G2 = (V2, E2)
is an injection M ⊆ V1×V2 such that, for every pair of vertices (vi , v j) ∈ V1 and
{wi , w j} ∈ V2 with (vi , wi) ∈ M and (v j , w j) ∈ M , (wi , w j) ∈ E2 if (vi , v j) ∈ E1.
In such a case, M is a subgraph isomorphism of G1 into G2 and we denote
G1
∼= G2.

In the following we adjust the definitions of common subgraph isomor-
phism and maximum common subgraph isomorphism provided by Fernán-
dez et al. [FV01] to be consistent with the formal model of our approach.
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Definition 7 (Common Subgraph Isomorphism (CSI))
A graph C is a common subgraph isomorphism of two graphs G1 and G2 if
there exist subgraphs C1 ⊂ G1 and C2 ⊂ G2 such that C ∼= C1

∼= C2.

In other words, a subgraph isomorphism of two graphs is a CSI when its
structure has an one-to-one mapping in both graphs. For example, the graphs
in Figures 6.2a to 6.2d constitute different common subgraph isomorphisms
of the two graphs G1 (Model A) and G2 (Model B) presented in Figure 6.1.
In principle, we are interested in the largest possible graph that stems from
a specific starting point, so for this purpose we define:

Definition 8 (Maximum Common Subgraph Isomorphism (MCSI))
A CSI C = (VC , EC) of two graphs G1 and G2 is a maximum common subgraph
isomorphism iff ∄C ′ = (VC ′ , EC ′)≜ (G1, G2) such that |VC ′ |> |VC |.
It therefore follows that the graph shown in Figure 6.2a is the MCSI of the
models shown in Figure 6.1. Bringing now the above definitions together,
we have:

Definition 9 (Common checkpoint-subgraph)
If two graphs Gch1 ∈ CG1

ch and Gch2 ∈ CG2

ch are checkpoint-subgraphs of graphs G1

and G2, respectively, then any C ≜ (Gch1, Gch2), is called common checkpoint-
subgraph. We then define the set- (CG1

ch ,CG2

ch ) as the set containing all MCSIs
of the common checkpoint-subgraphs of two graphs G1, G2.

We are now ready to define the concept of Relevant Process Fragment (RPF)
as the output of our proposed approach.

Definition 10 (Relevant Process Fragment (RPF))
A graph C is called a Relevant Process Fragment (RPF) of a process model
collection Gcoll ={G1, . . . , Gn} when it holds:

1. C = (VC , EC ) ∈- (CGi

ch ,C
Gj

ch ), Gi , G j ∈ Gcoll, 1≤ i, j ≤ n (p1)

2. |VC | ≥ vmin, where vmin ≥ 5 (p2)

3. ∃v ∈ VC : type(v) ∈ Act (p3)
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In other words, as RPF we define a maximum common checkpoint-subgraph
between any two graphs G1 and G2 of a graph collection Gcoll (p1). It also
follows from Definitions 4 and 10 that an RPF will always have exactly one
source that is a checkpoint according to Definition 1. As seen in Definition 10
an RPF also has two extra properties. The first extra property is that an RPF
must have a minimum number of vertices vmin (p2). For our approach we
considered vmin = 5 vertices, as this is the minimum threshold from which a
BPMN 2.0 subgraph has any structural interest. Moreover, activities have
a key role to the substance of any BPMN 2.0 process model. Thus, we are
interested into detecting the structures that contain at least one element of
activity (Act) type (p3).
Figures 6.2a and 6.2b show RPFs as they are: (i) both MCSI and check-

point-subgraphs starting from SE1′′ and EG1′′ of Model A (cf. Figure 6.1a)
and Model B (cf. Figure 6.1b) respectively (p1); (ii) they have at least 5
vertices (p2); and (iii) contain at least one activity (Act) element (p3). In
contrast, Figure 6.2c is not an RPF because although it is a common check-
point-subgraph of Model A and Model B it does not satisfy the following
requirements: (i) it does not have 5 vertices and (ii) it does not contain an
activity (Act) element. Finally, the subgraph of Figure 6.2d is not an RPF
because it is not source connected and it does not have a unique source, i. e.,
it is not a maximum common checkpoint-subgraph of the two models. In
the following, we discuss an algorithm that identifies RPFs in a collection of
process models.

6.3. Algorithms

6.3.1. Cycles Detection

The formal model presented in Section 6.2 does not consider BPMN 2.0
process models that contain cycles. For this purpose, we need to apply an
approach that detects BPMN 2.0 process models with cycles in a collection of
process models in order to remove them. Before proceeding to the explana-
tion of the defined approach, in the following we explain what we consider
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Figure 6.3.: BPMN 2.0 process model with cycle

as a cycle in the graph of a process model.

Definition 11 (Cycle)
A graph G contains a cycle, if there exists a path of length k, k ∈ !+, u 3→ w
such that u= w.

In order to detect cycles in our process models collection we apply the
algorithm proposed by Tarjan [Tar72]. Since we could not find an implemen-
tation of the algorithm for BPMN 2.0 language, for purposes of completeness,
in the following we provide the implementation we applied. The algorithm
focuses on detecting the strongly connected components of a graph, which are
defined as follows:

Definition 12 (Strongly Connected Components (SCC))
Let G = (V , E) be a directed graph. Strongly connected components of G is a
subset of vertices M ⊆ V, such that any two vertices {vi , v j} ∈ M are reachable
from each other, i. e., vi 3→ v j , v j 3→ vi.

For example, in the process model shown in Figure 6.3 the vertices
M = {T1, T4} comprise strongly connected components because T1 3→ T4

through the edges {β ,ε,ζ} and T4 3→ T1 through the edge {η}.
For the detection of a graph's strongly connected components Tarjan's

algorithm [Tar72] is based on a DFS traversal. The DFS algorithm traverses a
graph by creating a DFS tree. This ensures that each vertex is not encountered
more than once throughout the graph traversal. For example, by applying
the DFS algorithm on the process model of Figure 6.3 we construct the DFS
tree shown in Figure 6.4a. Starting from vertex ªSE1º, there is only one
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(a) DFS traversal tree
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T2

EE1

T3

T4

(b) Tarjan's algorithm traver-
sal tree

Figure 6.4.: DFS and Tarjan's traversals trees for the process model shown
in Figure 6.3

way to move forward and that is to go to ªT1º. This builds vertices ªSE1º
and ªT1º to the DFS tree as shown in Figure 6.4a. From vertex ªEG1º of the
process model we then have two choices in the traversal. We may either
proceed to ªT2º or to ªT3º. This is shown in the DFS tree of Figure 6.4a
as vertex ªEG1º has two children (ªT2º, ªT3º). We can pick any of the two
vertices to proceed with our traversal, if we proceed to ªT2º then we discover
vertex ªEE1º and add it as a child to the vertex ªT2º of the tree. From vertex
ªEE1º we cannot continue the traversal, thus we move back to the parent
vertex ªEG1º and choose the rest of the undiscovered vertices, in this case
ªT3º. Similarly, from vertex ªT3º we can discover vertex ªT4º. After ªT4º
there is no edge that leads to a not already traversed vertex. Therefore, ªT4º
constitutes a leaf of the DFS tree.
Vertex ªT4º has an edge to a vertex that has already been traversed by
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the DFS algorithm (i. e., edge ªηº in Figure 6.3). This edge cannot be
identified by the DFS algorithm as it only moves to undiscovered vertices.
Tarjan's algorithm [Tar72] basically extends the DFS traversal to also keep
the information of such edges, thereafter named as back link edges. A back
link edge is an edge that allows the backward linking of a descendant vertex
to its ancestor. Consequently, their existence indicates the existence of a
cycle in a graph, and the algorithm will return true. Thus, the goal of
Tarjan's algorithm (Algorithm 6.1) is to detect back link edges in a graph and
consequently, determine the strongly connected components.

Algorithm 6.1 Initiates the variables and calls the function StrongConnect

Input: G = (V , E): The graph G for which we search the cycles.
Output: true, if the graph contains strongly connected components, false

otherwise.
1: function TarjansAlgorithm(G)
2: index ← 0
3: stack← 0
4: scc← f alse
5: hasC ycle← f alse
6: for each vi ∈ V do
7: if (vi .index = null) then
8: hasC ycle← StrongConnect(G, vi , index , stack, scc)
9: end if

10: end for
11:

12: return hasC ycle
13: end function

The Tarjan's algorithm executes the DFS algorithm that recursively ex-
plores a vertex vi (line 5, Algorithm 6.2) and its ancestors. For the algorithm's
implementation we consider each vertex v ∈ V of a graph G = (V , E) as a
data structure with following information:

v.index: is the depth first traversal vertex number counter. The counter
increases for each newly visited vertex;

v.lowLink: is the smallest index of any vertex known to be reachable from
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Algorithm 6.2 Discovers the Strongly Connected Components starting from
a vertex vi

Input: G = (V , E): The graph G for which we search the cycles.
Input: vi: the vertex from which we start the graph traversal.
Input: index: variable contains the smallest unused index.
Input: stack: the stack that holds information for the graph traversal.
Output: t rue if the vertex is connected to back links, f alse otherwise.
1: function StrongConnect(G, vi , index , stack, scc)
// Set the depth of vi to the smallest unused index

2: vi .index ← index
3: vi .lowLink← index
4: index ← index + 1
5: stack.push(vi)
6: vi .onStack← t rue

// Handle the ancestors of vi
7: for each ((vi , v j) ∈ E) do

// If the ancestors is not yet visited apply a recursion
8: if (v j .index = ∅) then
9: scc← scc ∪ StrongConnect(G, v j , index , stack, scc)

10: vi .lowLink← min(vi .lowLink, v j .lowLink)
// If v j is onStack this means that it is the current SCC

11: else if (v j .onStack) then
12: vi .lowLink← min(vi .lowLink, v j .index)
13: end if
14: end for

// If vi .lowLink equals to the smallest unused index then vi is the
root vertex. We then pop the stack

15: if (vi .lowLink − vi .index) then
16: scc← 0
17: do
18: v j ← stack.pop()
19: v j .onStack← f alse
20: scc← scc ∪ {v j}
21: while stack ̸= 0
22: end if
23: if (vi .lowLink − vi .index) then
24:

25: return t rue
26: end if
27:

28: return f alse
29: end function
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a vertex v, including v itself;

v.onStack: is a boolean value that shows if the vertex is contained in the
stack.

As the vertices are discovered they are placed in a stack (line 5, Algo-
rithm 6.2). The vertices are not necessarily popped from the stack before
the recursive call returns. A vertex vi remains in a stack if and only if it
has a path to some vertex v j that has been discovered earlier on the same
path (i. e., v j is an ancestor of vi). Thus, at the end of the recursive call that
explores a vertex vi and its ancestors, we can conclude if vi has a path or
not to one of its ancestors.
Every ancestor v j of a vertex may be already visited by the traversal. If

the ancestor is not already visited we apply again the recursion for vertex v j .
In this case, we also update v j .lowLink to the smallest index of any vertex
known to be reachable from v j including v j . If v j has already be discovered
by the traversal, then v j is already on stack (line 11, Algorithm 6.2). The
existence of v j on stack means that v j is a strongly connected component.
Hence, we need to update vi .lowLink to the smallest index of any vertex
known to be reachable from vi including vi. At the end we must check if vi

is the root of a strongly connected component (line 15, Algorithm 6.2). If it
is, then we remove it from the stack and create a new strongly connected
component. At the end the set of strongly connected components starting
from vertex vi is printed as output.

The complexity of Tarjan's algorithm is linear to the number of edges and
vertices of the graph G, i. e., O(|V |+ |E|) in the worst case [Tar72]. Based on
it we can detect and remove process models with cycles from the collection.
The following algorithms assume that such a process has already taken place
in order to ensure their absence.

6.3.2. Detection of Frequently Reoccurring Structures

Let Gcoll be a collection of BPMN 2.0 process models and G∗coll the set of pairs
of process models to check for RPFs. G∗coll is constructed to be irreflexive and
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asymmetric to avoid two runs for the same pairs of graphs. This means that
either (G1, G2) or (G2, G1), but not both, will be contained in G∗coll. G∗coll is
the maximum set such that:

(i) G∗coll ⊂ Gcoll ×Gcoll,

(ii) x ∈ Gcoll =⇒ (x , x) /∈ G∗coll and

(iii) (x , y) ∈ Gcoll, x ̸= y =⇒ (x , y) ∈ G∗coll ⊻ (y, x) ∈ G∗coll, where ⊻ denotes
the exclusive disjunction.

For every pair (G1, G2) ∈ G∗coll we execute the RoSE algorithm (Algorithm 6.3)
to construct the sets- (CG1

ch ,CG2

ch ) (cf. Definition 9) of all possible pairs of
checkpoints of the process models. Then ∀G ∈ - (CG1

ch ,CG2

ch ) we need to
detect RPFs (according to Definition 10).
RoSE algorithm takes as input two process models G1 and G2 for which

we need to detect RPFs. As a pre-condition the model with the biggest
number of edges always corresponds to G1 and the set of edges (E1, E2)
are considered as partially ordered sets, where the partial order of the
elements denotes the sequence with which the edges are traversed by DFS
algorithm. The sets of process model checkpoints VG1

ch and VG2

ch are also
given as input to RoSE algorithm. As it is trivial to obtain a process model's
checkpoints (Definition 1) we omit an algorithm that describes this process.
Upon termination the RoSE algorithm outputs the collection of the detected
RPFs of the two process models (G1 and G2). For returning the RPFs of a
complete process models collection, RoSE needs to be applied to all pairs in
G∗coll.
Before proceeding to a detailed description of the algorithm we need to

explain the involved variables. The variable RPFcoll (line 2, Algorithm 6.3)
stores the collection of the detected RPFs, which will be returned at the
end of the execution. The variable matrix (line 5, Algorithm 6.3) is an
|E1| × |E2| incidence matrix in which each cell corresponds to a pair of edges
(edge1, edge2) where edge1 ∈ E1 and edge2 ∈ E2. An incidence matrix (see for
example Table 6.1) is essentially a sparse matrix with ones in the cells where
the two edges ªmatchº, or zeroes otherwise. Since our approach focuses
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Algorithm 6.3 Compares two graphs to discover and extract the existing
RPFs. It inserts the extracted RPFs in the RPFs collection RPFcoll and keeps
metadata on the RPF frequency of appearance in the RPFcoll.

Input: G1 = (V1, E1), G2 = (V2, E2): The models to compare.
Input: VG1

ch , VG2

ch : the sets of checkpoints of the two models G1, G2
Output: RPFcoll: A multi-set with the discovered Relevant Process Fragments

and corresponding intensities
Require: It holds that ((|E1| ≥ |E2|) and ({E1,≤}), ({E2,≤})) are partially

ordered sets, where the partial order of the elements is defined by the
sequence with which an element (edge) is accessed by the DFS traversal

1: function RoSE(G1, G2, VG1

ch , VG1

ch )
2: RPFcoll← ∅
3: for each (outgoing(v1) ∈ VG1

ch as edge1) do
4: matrices← ∅
5: matrix← InitialiseMatrixWithZero(matrix)
6: for each (outgoing(v2) ∈ VG2

ch as edge2) do
7: matrix← CreateMatrix(edge1, edge2, matrix)
8: matrices←matrices∪ {matrix}
9: end for

// Comparison of this checkpoint finished.
10: RPFs←MatricesToRPFs(matrices)

// The edges of a checkpoint might return many subgraphs that
were isomorphic. We only need to keep the largest RPF starting
from two specific checkpoints.

11: RPFs← FindMaxRPF(RPFs)
12: for each (rpfnew ∈ RPFs) do
13: RPFcoll← RPFcoll ∪ FixDuplicates(G1, G2, rpfnew,RPFcoll)
14: end for
15: end for
16: return RPFcoll
17: end function

only on the structural characteristics of the process models, two edges
edge1 = (u1, v1) and edge2 = (u2, v2) are considered to ªmatchº when their
incident vertices are of the same type, i. e., e1 ≃ e2⇔ type(u1) = type(u2)∧
type(v1) = type(v2). For example, in Figure 6.1 it holds that α ≃ α′ (start
events connected to exclusive gateways) and β ≃ β ′ (exclusive gateways
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G1

G2
α′ β ′ γ′ δ′ ε′ ζ′ η′ θ ′ ΣR

α 1 0 0 0 0 0 0 0 1

β 0 1 0 0 1 0 0 0 2

γ 0 0 1 0 0 1 0 0 2

δ 0 0 0 1 0 0 1 0 2

ε 0 1 0 0 1 0 0 0 2

ζ 0 0 0 1 0 0 1 0 2

η 0 1 0 0 1 0 0 0 2

θ 0 0 1 0 0 1 0 0 2

ι 0 0 0 1 0 0 1 0 2

κ 0 0 0 0 0 0 0 1 1

ΣC 1 3 2 3 3 2 3 1

Table 6.1.: Incidence matrix for the process models of Figure 6.1

connected to tasks) match. The initial incidence matrix of the process models
of Figure 6.1 is shown in Table 6.1 and it contains all possible edge matchings
between the two models. For example, α≃ α′, β ≃ α′, β ≃ ζ′, etc.

As seen in Table 6.1 the matrix may contain more than one ones per row
(R) and per column (C) (i. e., ΣR ≥ 1 and ΣC ≥ 1). However, RPFs contain
only one-to-one matchings of edges as the definition of isomorphism they rely
on (Definition 6) is an injective function. Therefore, our goal is to reduce the
extra ones per row and column in a consistent way and derive the resulting
RPF. By a closer look at the incidence matrix we observe that multiple ones
on the same row indicate alternative matchings of the corresponding edge,
e. g., β ≃ β ′ and β ≃ ε′. For obtaining the one to one isomorphism we need
to choose either β ≃ β ′ or β ≃ ε′. Let us assume for example that we choose
the first matching (i. e., β ≃ β ′). In this case we need to eliminate the β ≃ ε′
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Figure 6.5.: Decision tree for RPFs detection

from the incidence matrix. We also need to eliminate the rest of the ones
on the β row so that it will not be chosen for another edge (i. e., column).
In a similar manner it can be concluded that the incidence matrix should
contain at most one one in the ΣR and ΣC for any detected RPF. In other
words, for the detection of an RPF it should hold that for each row ΣR ≤ 1

and for each column ΣC ≤ 1.
The challenge at this point is to eliminate the redundant ones of the

incidence matrix in a consistent way. Reducing the graph isomorphisms to
tree searches is a well established technique [Ull76]. To this effect, we are
introducing a tree that represents all the possible isomorphic candidates
indicated by the incidence matrix. By traversing each row of the matrix, we
are gradually building the tree that represents all the possible choices (i. e.,
RPFs candidates).
The tree that maps to the incidence matrix of Table 6.1 is shown in

Figure 6.5 and it represents all possible isomorphic choices that can be
produced by the incidence matrix, when we are gradually eliminating the
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ones of each row. The root of the tree is the source node of G2 and each
child of the root indicates the possible choices of ones of the next row. Each
tree path from the root to the leaves indicates the set of edges that build
a candidate RPF. For example, for the incidence matrix in Table 6.1 and
corresponding decision tree of Figure 6.5 we start traversing the matrix
from the cell (α,α′) which is the root. The next row (β) has ones in the
positions (β ,β ′) and (β ,ε′). Hence, we can choose either of one of these two.
Thus, the root node α′ on the tree has children β ′ and ε′ as they constitute
alternative choices of the RPF.

Proceeding now to the next row of the incidence matrix, γ is mapped to γ′
or ζ′. This choice is represented in the tree by putting γ′ and ζ′ as children
of β ′ and ε′, i. e., the alternatives produced by the edge β of the previous
step. Similarly, the ones of row δ will produce the children of the leaves γ′
and ζ′. We are now on row ε where the ones are on β ′ and ε′. The ones
of these positions have already been used on the first step (edge α) of our
procedure and are already placed as the children of the root. In this case,
we cannot add both as children because each tree path must contain each
edge only once. Therefore, for the subtree of the decision tree that starts
from β ′ we will only add as leaf-child ε′, while for the subtree of the tree
that starts from ε′ we will add β ′ as leaf-child. We proceed likewise to build
the rest of the decision tree.
With respect to the method described above, for the representative ex-

ample (Figure 6.1), the resulting RPF starting from the checkpoints (SE1
and SE1′) is the model of Figure 6.2a which is isomorphic to the complete
model B (Figure 6.1b). In other words, the resulting RPF is a subgraph of
model A (cf. Figure 6.1a) and the complete model B (cf. Figure 6.1b). In
this case the tree is presenting different orderings of the same set of edges
(α′,β ′,γ′,δ′,ε′,η′,ζ′,θ ′).

In the following we explain in more detail the set of algorithms that are
used to detect the RPFs, by exploiting the concepts of the incidence matri-
ces and decision tree. For detecting the RPFs of two process models the
RoSE algorithm (Algorithm 6.3) exploits the aforementioned constructs of
incidence matrix and its corresponding decision tree. The CreateMatrix
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Algorithm 6.4 Runs DFS on checkpoint-subgraph of G1 and G2 starting from
a specific checkpoint to compare all the visited checkpoints with each other
and create the incidence matrix (matrix) accordingly

Input: edge1, edge2: the outgoing edges of a checkpoint of graphs G1 and G2
respectively.

Input: matrix: the sparse incidence matrix, initialised with zeroes (ª0º).
Output: matrix: the sparse incidence matrix that contains ones (ª1º) on the

cells for which the edges matched.
1: function CreateMatrix(edge1, edge2, matrix)
// Let edge1 = (u1, v1) and edge2 = (u2, v2)

2: if (edge1 ≃ edge2) then // If the two edges are of the same type
3: Ou1

← out going(u1)
4: Ou2

← out goint(u2)
5: matrix[edge1][edge2]← 1
6: for each (o1 ∈ Ou1

) do
7: for each (o2 ∈ Ou2

) do
8: matrix← CreateMatrix(o1, o2, matrix)
9: end for

10: end for
11: end if
12: return matrix
13: end function

function (Algorithm 6.4) is called by the RoSE algorithm to compare all pos-
sible combinations of the checkpoints of G1 to the checkpoints of G2 (lines 3
and 6, Algorithm 6.3). The concept of checkpoints reduces the emerging
comparisons (line 2, Algorithm 6.4) as when the type of two checkpoints
do not match (e. g., comparing start event to an exclusive gateway) the
comparison is terminated immediately and an empty incidence matrix is
returned by the CreateMatrix function (line 12, Algorithm 6.4). If the
two checkpoints match, we start traversing all possible combinations of the
edges of the two process models by using a DFS algorithm. During the DFS
traversals we compare all edges of the process models to each other and we
gradually build the incidence matrix which is stored in the matrix variable
(line 7, Algorithm 6.3). If there is a mismatch between an edge, the DFS
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Algorithm 6.5 Function that uses matrices to detect and synthesize the set
of discovered RPFs (RPFs)

Input: matrices a set of matrix variables of incidence matrices describing
the edge matches discovered between two checkpoint subgraphs

Output: RPFs the set of detected RPFs, derived from the individual matrix
variables

1: function MatricesToRPFs(matrices)
2: RPFs← ∅
3: for each (matrix ∈matrices) do
4: column← FindFirstOneInRow()
5: root← NewTreeNode(

0, column, matrix, map.rowSize, map.columnSize)
6: tree← FixDecisionTree(root, matrix)
7: for each (branch ∈ tree) do
8: Vnew← DiscoverVerticeFromEdges(Enew)
9: rpfnew← G(Vnew, Enew)

10: if (rpfnew.isValid()) then
11: RPFs← {rpfnew} ∪RPFs
12: break
13: end if
14: end for
15: end for
16: return RPFs
17: end function

traversal stops for the examined path and the matrix will contain zeroes to
all the forthcoming edges.

When an incidence matrix of a comparison is constructed, we insert it to
a set of incidence matrices variables (line 8, Algorithm 6.3). The edges of a
checkpoint might return many subgraphs that were isomorphic, therefore at
this point we have different versions of incidence matrices variables stored.
Then through the function MatricesToRPFs(matrices) (Algorithm 6.5) we
detect all RPFs that occur from each matrix ∈matrices based on Definition 10,
by applying the tree-based approach described above. The purpose of the
MatricesToRPFs function is to detect and synthesise the set of RPFs that
are described by the incidence matrices given as input to the function. The
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Algorithm 6.6 Function for building the decision tree (tree) for RPF detection
with respect to a matrix (matrix)

1: global variables
// Global variable used as memory for defining the edges which are still
not added in the tree. It is implemented as a LIFO Queue. This variable
is shared with the AddChildren function (cf. Algorithm A.2).

2: childrenQueue← ∅
3: end global variables
Input: e the edge that is currently handled for the tree construction
Input: matrix the matrix for which we build the decision tree
Output: tree the decision tree that corresponds to matrix
4: function FixDecisionTree(parent, matrix)
5: children← AddChildren(parent, matrix)
6: while (childrenQueue ̸= 0) do
7: child← childrenQueue.pol l()
8: if (child ̸= 0) then
9: children← AddChildren(child, matrix)

10: end if
11: end while
12: return tree
13: end function

MatricesToRPFs function handles each incidence matrix separately. For this
it constructs a decision tree by calling the FixDecisionTree(parent, matrix)
function (Algorithm 6.6). The purpose of this function is to build a decision
tree that reflects the corresponding incidence matrix. For implementation
purposes each branch of a decision tree is considered a data structure that
contains the following information:

Matrix State: the values of the updated matrix variable when we choose
to add the specific node in the decision tree;

row: the row index of the cell in the matrix in which we found the one
(ª1º) that led to the creation of this node in the decision tree;

column: the column index of the cell in the matrix in which we found the
one (ª1º) that led to the creation of this node in the decision tree;
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Matrix Row Size: constant variable that contains the total number of rows
of the matrix variable;

Matrix Column Size: constant variable that contains the total number of
columns of the matrix variable.

The construction of a tree node is executed by calling the NewTreeNode
function (line 5, Algorithm 6.5). The implementation of this function is
considered trivial and it is omitted. Overall, the FixDecisionTree function
recursively calls the assistive function AddChildren(parent,matrix) (Algo-
rithm A.2 in the Appendix). The AddChildren function calculates the
children of each tree node with respect to the matrix state of the parent node,
and applies the needed updates to the matrix variable for the newly added
node (line 11, Algorithm A.2). The FixDecisionTree and AddChildren
functions share a global queue variable that implements a Last-In-First-Out
(LIFO) queue (childrenQueue) as memory and stores the edges of the matrix
variable for which we have still not calculated their children in the decision
tree. The FixDecisionTree function terminates when the childrenQueue is
empty and returns a decision tree.
The decision tree of each matrix is returned to the MatricesToRPFs

function. Each branch in a decision tree is essentially an alternative set of
matched edges (cf. Figure 6.5). Consequently, through the DiscoverVer-
ticeFromEdges function (line 8, Algorithm 6.5) we can discover the set of
vertices contained in a branch. The DiscoverVerticeFromEdges function
is trivial and thus its detailed description is omitted. After the completion of
the DiscoverVerticeFromEdges function the vertices and edges are known
to us. Hence, we can define a new checkpoint subgraph (see Definition 4)
which is the newly discovered RPF (line 9, Algorithm 6.5). If the newly
discovered structure is an RPF we can: (i) add it to the discovered RPFs set
of the MatricesToRPFs function (RPFs) and (ii) stop the RPF search for
this branch.

As we will prove in Section 6.3.3, all branches of the RPF detection decision
tree are of the same size. Thus, they reveal the maximum set of edges the
graphs (G1, G2) have in common. To this effect extracting one RPF from a
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tree is enough and we can stop the search to reduce complexity. Hence, we
need to choose the first set of edges (branch) that satisfies the RPF properties
(see Definition 10). Due to the fact that the matrices variable might contain
subsets of an RPF, we need to detect and keep only the largest RPF starting
from a specific checkpoint. This is done with function FindMaxRPF (line 11,
Algorithm 6.3). The implementation of FindMaxRPF is considered trivial as
it contains size and source checkpoint comparisons, thus its omitted.

Each RPF detected for a distinct model combination is compared against
the RPFcoll for possible existing duplicates (clones) of it. This is done through
the FixDuplicates function (cf. Algorithm A.1). The FixDuplicates func-
tion takes as input an RPF (rpf1) and the RPFs collection (RPFcoll) against
which we search duplicates of rpf1. To check if two RPFs are isomorphic to
each other (Definition 5) we first check the number of their edges (line 3,
Algorithm A.1). If the two RPFs have equal number of edges then we proceed
to check if there exists a real isomorphism between the RPFs. For this we
re-apply the CreateMatrix function and derive the RPF from matrix by
using the MatricesToRPFs({matrix}) function (Algorithm 6.5) as described
above. The CreateMatrix function will return the maximum match be-
tween the two graphs (i. e., rpf1 and rpf2). To this effect, at this point we only
need to check that the returned maximum common subgraph between the
RPFs is the RPF itself (i. e., rpf2). This is done by checking the set-theoretic
difference between the edge sets of the resulting RPF (i. e., rpfresult) and rpf2.
If the set-theoretic difference of the two sets returns an empty set then the
two sets are equal (i. e., the two RPFs have exactly the same edges) and all
the three RPFs are isomorphic to each other (rpf1 ∼ rpf2 ∼ rpfresult).

For each RPF in the RPFcoll we store two types of metadata: (i) the occur-
rences of an RPF in the RPFcoll and (ii) the distinct process models in which
an RPF was discovered. If a newly discovered RPF (rpf1) has a duplicate
(rpf2) in the RPFcoll then it will not be inserted again in it. Instead we update
the metadata of rpf2 regarding the frequency of occurrence of this specific
RPF (line 12, Algorithm A.1) and the number of graphs that contain this
RPF (line 13, Algorithm A.1). If an RPF rpf1 does not have duplicates in the
RPFcoll, we insert it in it and update its metadata (line 16, Algorithm A.1).
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These metadata are used after the execution of the RoSE algorithm for deriv-
ing the statistics on frequency of occurrence of an RPF. In terms of process
models synthesising for workload mix generation, these metadata are also
used to calculate the intensity with which a process model will participate
in the workload mix (see Chapter 9).
Finally, the detected RPFcoll is returned by the RoSE algorithm (Algo-

rithm 6.3). The RoSE algorithm is iteratively called externally for all the
possible distinct pairs of model combinations in the collection.

6.3.3. Completeness and Complexity

The RoSE algorithm (cf. Algorithm 6.3) uses DFS traversal on two models
for discovering all possible isomorphisms between their edges and insert
them into an incidence matrix (Table 6.1). By construction the incidence
matrix will contain all possible subgraph isomorphisms between the edges of
the two models. We are then applying a tree search [Ull76] to consistently
produce all possible isomorphisms between the edges of the two process
models. Although the set of edges represented by tree branches may vary, in
the following we prove through proof by contradiction that the branches of
the tree will always be of same length:

Theorem 1 (Branches are of equal length)
All branches (paths from root to leaves) of the decision tree for RPF detection
are of the same length.

Proof
We make the following assumption:

P: There exists a branch in the tree that is longer than the rest of the
branches (Assumption 1).

Then, for every matching of edges (ei , e j) that exist in a branch we define
the following sentences:

Q: The matching of edges had an alternative in the incidence matrix.
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¬Q: The matching of edges did not have alternative in the incidence
matrix.

W: The matching of edges belongs to the branch of the tree.

¬W: The matching of edges does not belong to the branch of the tree.

Then, from the tree construction process the following premises hold for any
matching of edges that belongs to a branch of the tree:

Q∧W: The matching of edges has alternatives and it belongs to a branch
(Premise 1).

Q∧¬W: The matching of edges has alternatives and it is not part of a
branch (Premise 2).

¬Q→W: The matching of edges does not have alternatives, therefore it
belongs to a branch (Premise 3).

Moreover, from construction the following premise is an antinomy (i. e.,
always false):

¬Q∧¬W: The matching of edges does not have alternatives and it does
not belong to a branch (Premise 4).

For P to hold, i. e., for a branch to be longer than the rest of the branches, it
means that there exists at least one edge in the branch for which Premises
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1±3 do not hold. More particularly, the following must hold:

¬+%(Q∧W)∨ (Q∧¬W)∨ (¬Q→W)!* ≡
¬+%Q∧ (W ∨¬W)!∨ (¬Q→W)

* ≡
¬+%Q∧ (T )!∨ (¬Q→W)

* ≡
¬%Q∨ (¬Q→W)! ≡
¬%Q∨ (¬¬Q∨W)! ≡
¬%Q∨ (Q∨W)! ≡
¬(Q∨Q∨W)≡
¬(Q∨W)≡
¬Q∧¬W ≡

F .

The above set of statement is an antinomy, thus we may conclude that our
assumption is not true (i. e., ¬P holds), i. e., there is not a branch in the
tree that is longer than the rest. Similarly, we can prove that there is not a
branch of the tree that is shorter than the rest. Thus, we may conclude that
the branches of the tree will always be of equal size.□

If there is a solution ourmethodologywill detect it, as it exhausts the search
space for the detection of RPFs between two process models. Consequently, we
can argue that the proposed methodology is complete. In terms of complexity,
due to the naïve nature of the decision tree construction in the worst case
we are in the area of O(mn) where m= |E1| and n= |E2|. This also holds for
the FixDuplicates function, which basically re-applies the RoSE algorithm.
Furthermore, we need to compare all possible pairs of graphs in the collection,
denoting O(k2) comparisons, where k is the size of business process model
collection.

In real life practice process models are smaller graphs with low structural
complexity. Thus, in combination to the applied heuristics (i. e., checkpoints,
decision tree, incidence matrix) the observed performance can be achieved
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in realistic times (cf. Chapter 9). As we will show in Chapter 9, unlike to
similar efforts [BDDS14] the algorithm completed successfully in realistic
times and discovered 143 RPFs.

6.4. Chapter Summary

In this chapter we introduced the RoSE algorithm that detects frequently
reoccurring structures in a collection of BPMN 2.0 process models. Structural
similarities of process models is accepted to have application in different
scenarios of BPM, such as detection of differences in various versions of the
same process models [PW12], clone detection in process model reposito-
ries [EDG+12; Dum+13] or generation of synthetic process models with
respect to reoccurring fragments [YDG15].

In contrast to most of the approaches of subgraph isomorphisms that are
based on a known subgraph that is searched against a bigger graph, our
approach starts by comparing the bigger graphs (i. e., process models) to
extract similarities. The goal is to detect and extract the reoccurring sub-
graphs (defined as Relevant Process Fragments (RPFs)), which are basically
the reoccurring structures (or subgraphs) of the compared process models.
Thus, in the scope of this work we first defined the underlying formal model
of our approach. We described a group of algorithms that detect the RPFs
of a BPMN 2.0 process models collection and calculate metadata regarding
the frequency of their appearance. Our approach utilises and customises
well established techniques of subgraph isomorphism as for example Ull-
mann's algorithm [Ull76] and we argued that our approach is complete
as it exhausts the search space. The presented approach currently does
not support cyclic structures, therefore we presented algorithms that detect
cyclic process models in the original process models collection, in order to
be able to remove them. Later, in Chapter 9 we apply the RoSE algorithm on
the real world process models collection described in Chapter 3 to derive
RPFs that are then used towards the generation of representative workload
mix.
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ªGreat wisdom not applied to
action and behaviour is
meaningless data.º

R. Drucker

In Section 1.2 we described (semi-) automated workload mix generation
as one of the most challenging tasks towards the development of a bench-
mark for WfMSs. In the context of WfMSs, workload mix generation refers
primarily to the constituent process models and their execution behaviour.
Having already discussed the discovery and extraction of RPFs (Chapter 6),
in this chapter we shift the focus on research question RQ-6: ªHow to syn-
thesise a representative BPMN 2.0 process model?º, by proposing a method
to support the (semi-) automatic process model generation (see contribution
C-6: ªRepresentative BPMN 2.0 process model generation methodº). Our
proposed approach is agnostic with respect to its application. This means
that we essentially use the workload development problem as a use case
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for our proposal that, due to its generality, can also be applied for other
purposes, as for example, the evaluation of refactoring techniques requiring
large repositories of process models [DRR12; YDG15].
In order to provide a generic solution, we use an initial set of structural

criteria to drive the process model generation. These criteria are considered
reusable across diverse use cases. Some examples are model size, structural
criteria like specific events, e. g., start or end events in the model, number of
control⁄activity nodes etc. [Car08]. As we will show, RPFs also play a key role
in the generation of the process models, and they provide useful information
for measuring the representativeness of a generated process model with
respect to a process model collection and define the intensity of a process
model in the workload mix (Chapter 9). More particularly, this chapter
extends previous work [SAL16], by presenting in a more comprehensive way
a method for generating automated process models out of RPFs with respect
to given structural criteria.
The rest of this chapter is structured as follows: Section 7.1 describes a

high level overview of our approach that is split in a group of phases. These
phases are discussed more extensively in Section 7.2. Finally, Section 7.3
provides a short summary of the chapter.

7.1. Method Overview

The overall goal of the process model generation method is to construct a
synthetic, executable process model that follows specific structural criteria
defined by the application user. As the generated process model will be
used for benchmarking purposes, its execution behaviour is fully automated,
i. e., it does not pause its execution to require input from the user. Our
proposed method for process model generation is divided into three main
phases (i. e., łCharacterisationž, łSynthesisž and łExecutable Refinementž),
that are presented in Figure 7.1. The application user (ªApplication Userº)
acts as the orchestrator of process model generation, by invoking it and
providing required data in each phase. Hence, the process model generation

132 7 | Generating BPMN 2.0 Process Models



G
en
er
at
io
n
A
pp

Characte-
risation

Executable
RefinementSynthesis

Application User

Send Executable
Process Model

Request Synthetic
Process Model

Figure 7.1.: Process model generation method overview

application (ªGeneration Appº in Figure 7.1) is initially triggered with a
request made by the application user (ªRequest Synthetic Process Modelº in
Figure 7.1). Figure 7.1 presents the sequence with which each phase needs
to be invoked for an end-to-end generation of a synthetic process model.
However, provided the existence of the required data, the user may also
invoke any of the phases individually. Therefore, the phases are modelled as
call activities ([ISO13, [p. 183]) to allow also an independent instantiation.
At the end, the process model generation returns the generated process
model to the user (ªSend Executable Process Modelº in Figure 7.1).

The first phase of the process generation method is Characterisation (Sec-
tion 7.2.1) and its expanded view is shown in Figure 7.2. This phase needs
a reference to a data storage that contains a collection of RPFs (ªRPFs Col-
lectionº data storage in Figure 7.2) extracted by any means (e. g., manually,
through the execution of the RoSE algorithm (Chapter 6) etc.). The RPFs
are parsed (ªParse Metadataº script task in Figure 7.2) in order to create
structural metadata, which are persisted in a separate data storage (ªRPFs
Structural Metadataº data storage in Figure 7.2). This phase may be ex-
ecuted only once for a specific RPF collection. Hence, it is not needed to
recreate the metadata data storage each time the user needs to construct a
synthetic process model.

7.1 | Method Overview 133



C
ha
ra
ct
er
is
at
io
n

Parse
Metadata

RPFs
Collection

RPFs Structural
Metadata

Received
Request

Figure 7.2.: Characterisation Phase

Sy
nt
he
si
s

Synthesise
Process

Compatible?

RPFs
Structural
Metadata

RPFs
Collection

Select
RPFs

Check
Validity

Valid?

Selected
RPFs

no

yes yes

no

Synthetic
Process Model

Received
Request

Application User

Request
Criteria

Send Synthetic
Process Model

Send
Criteria

Statistical
Analysis Data
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The characterisation phase is followed by the synthesis phase (Section 7.2.2)
and its expansion is shown in Figure 7.3. In this phase structural criteria
are required as input from the application user (ªRequest Criteriaº, ªSend
Criteriaº in Figure 7.3). These criteria contain information about the struc-
tural characteristics of the RPFs to be selected. For example, some structural
criteria might be the total number of exclusive gateways or script tasks an
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RPF must have. The criteria are afterwards used for selecting appropriate
RPFs (ªSelect RPFsº script task in Figure 7.3) for generating a synthetic
process model. For this, the ªSelect RPFsº script task uses the data created
in the previous phase, stored in the ªRPFs Collectionº and ªRPFs Structural
Metadataº data stores. The selection of appropriate RPFs does not only con-
sider the given structural criteria, but also applies compatibility checks for
ensuring that the selected RPFs can be linked to each other. If the RPFs are
compatible with each other (ªCompatible?º exclusive gateway in Figure 7.3)
we proceed to their synthesis (ªSynthesise Processº script task in Figure 7.3).
If we fail to select any compatible RPFs for the given criteria, we ask the user
to refine the structural criteria.

In ªCheck Validityº script task (Figure 7.3), the synthesised process model
is validated at a first stage against the BPMN 2.0 standard [ISO13]. Although
the new synthetic business process model might be valid BPMN 2.0, it might
not necessarily be representative of the process model collection that is
derived from. For this reason the synthetic process model is also validated
against data gathered from applying statistical analysis to the original process
model collection (ªStatistical Analysis Dataº data object in Figure 7.3). If
the validation is not successful (ªValid?º exclusive gateway in Figure 7.3)
the complete phase must be repeated with different structural criteria. The
purpose of this iterative process is to create a valid and representative process
model.
As soon as a process model is validated successfully, we proceed to the

Executable Refinement phase (Section 7.2.3) to convert it to an automated
process model. The expanded view of this phase is shown in Figure 7.4. This
phase, is a manual step, therefore it is expressed as user tasks in the process
shown in Figure 7.4. In particular, in this phase we give guidelines on how
to produce data generators and test data, so that a process model will be
fully automated. It essentially realises the components ªProbabilistic Data
Generator' and ªTest Dataº' introduced in Figure 4.2 of Chapter 4. These
data for example might be specific web services or scripts with which the
process model will interact, or probability assignments for each control flow
of an exclusive gateway.
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In the ªSerialise Engine Specificº user task (Figure 7.4) the user needs to
handle the fact that various WfMSs demand different serialisation formats
in order to execute a process model [GW13]. Therefore, the user must also
provide the specific WfMS on which the model will be executed. Finally, the
user can get the executable process model (ªSend Synthetic Process Modelº
in Figure 7.4).

7.2. Synthetic, Executable Process Models Generation

This section discusses in more detail the phases of the synthetic process
model generation method. Section 7.2.1 describes the characterisation phase,
Section 7.2.2 presents the synthesis phase and the executable refinement phase
is discussed in Section 7.2.3.

7.2.1. Characterisation

For the process model generation method we rely on the concept of process
fragment placeholders [SKK+11]. While in the original definition [SKK+11]
placeholders can be anywhere in the process fragment, in our case they can
only exist in the beginning and⁄or at the end of an RPF. More particularly, as
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(b) Node structural metadata
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hasStartEvent() hasEndEvent() getTotalIncomingOCPs() getTotalOutgoingOCPs()

false false 4 3

(c) RPF structural metadata

Figure 7.5.: Example of RPF, emerging OCPs and calculated metadata

placeholders of an RPF we consider the set of RPF nodes that miss incoming
and⁄or outgoing sequence flows. These can act as potential connection
points during the synthesis. Therefore, each missing sequence flow in an RPF
is hereafter referred to as an incoming or outgoing Open Connection Point
(OCP) of an RPF.

For example, consider the RPF shown in Figure 7.5a. This RPF has an
exclusive gateway (EG1) as a source node. In its current state and according
to the definition of the source node (see Section 6.2), EG1 does not have any
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incoming sequence flows and has two outgoing sequence flows. According
to the BPMN 2.0 standard [ISO13] a gateway must be diverging (i. e., one to
many sequence flows) or converging (many to one sequence flows). Hence,
EG1 needs at least one incoming sequence flow to be a valid diverging gateway.
This missing incoming sequence flow is an incoming OCP for EG1. Likewise,
for this work we assume that the tasks of a valid process model should
have at least one incoming and one outgoing sequence flow. Therefore, the
script tasks (T2, T3 in Figure 7.5a) miss their outgoing sequence flows and
have one outgoing OCP each, causing two outgoing OCPs on the depicted
RPF. On the contrary script task T1 is already connected with incoming and
outgoing sequence flows, thus it does not have any OCP. Finally, EG2 is also
an exclusive gateway with one incoming and one outgoing OCP, as it needs
either one incoming or one outgoing sequence flow to be a converging or
diverging exclusive gateway respectively.
With respect to this concept, the goal of this phase is twofold: we firstly

need to parse a given collection of RPFs and obtain their structural metadata,
and secondly to determine the existing OCPs of each node and RPF. The
calculated metadata are afterwards exploited in the synthesis phase to select
these RPFs that comply with the structural criteria and can be linked to
each other towards the synthesis of a valid process model. As discussed in
the previous section, the characterisation of the RPF collection needs to be
executed only once for an RPFs collection. The metadata are then stored in
a persistent data storage, out of which they can be retracted for any future
request.
Figure 7.6 shows the conceptual model of an RPF's structural metadata

that were calculated for the purposes of this work. More specifically, an RPF
is characterised by the following metadata (ªRPF Metadataº in Figure 7.6):

hasStartEvent(): returns a boolean, indicating if the RPF has a start
event,

hasEndEvent(): returns a boolean, indicating if the RPF has an end
event,

getTotalIncomingOCPs(): returns the total number of incoming OCPs
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Figure 7.6.: Conceptual model of RPF structural metadata

that exist in the RPF, i. e., the sum of incoming OCPs of the RPF's nodes,
and

getTotalOutgoingOCPs(): returns the total number of outgoing OCPs
that exist in the RPF, i. e., the sum of outgoing OCPs of the RPF's nodes.

Each node of an RPF contains by default the following information (ªNodeº
in Figure 7.6):

type: the type of the node (see Section 6.2),

incomingSequenceFlows: information for the set of incoming se-
quence flows (i. e., id, name, etc.) of this node,

outgoingSequenceFlows: information for the set of outgoing sequence
flows (i. e., id, name, etc.) of this node.

In addition to the OCPs, the following metadata are calculated for each
RPF node (ªNode Metadataº in Figure 7.6):
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isFlexible: it can participate in a synthesis by either linking an incom-
ing or outgoing OCP. For example, EG2 in Figure 7.5a has one incoming
and one outgoing OCP, as it needs either one incoming or one outgoing
sequence flow to be a converging or diverging exclusive gateway respec-
tively. This makes EG2 a flexible node, as it can be used flexibly per case
for linking incoming or outgoing sequence flows. We discuss flexible nodes
in more detail later in this section.

generalType: the node's general type (i. e., task, gateway, event, etc.),

specificType: the node's specific type (i. e., script task, exclusive gate-
way, start event, etc.),

getIncomingOCPs(): calculates the total number of incoming OCP's
for this node, and

getOutgoingOCPs(): calculates the total number of outgoing OCP's for
this node.

A summary of the calculated Node Metadata and RPF Metadata for the
RPF of Figure 7.5a are shown in Figure 7.5b and Figure 7.5c respectively.

7.2.2. Synthesis

The synthesis phase starts with a set of user-defined criteria, that are used
to select a set of RPFs that satisfy it. For example, the user may either query
the RPF collection by providing general node types in the criteria (e. g., l1 −
{2 tasks AND 3 gateways}) or by requesting specific node types (e. g., l2 −
{4 service tasks AND 3 parallel gateways}) or a mix of general and specific
types (e. g., l3 − {2 tasks AND 3 exclusive gateways}). Overall, we target to
select RPFs that: (i) satisfy the given user-defined criteria, and (ii) can be
successfully linked to a complete process model.
The selection of RPFs that match the structural criteria is trivial, as each

criterion can be translated into simple queries against the ªRPFs Structural
Metadataº data storage (Figure 7.3). Let L be a set of all criteria used for
selecting RPFs from the data storage. Based on the criterion li ∈ L, 1≤ i ≤ |L|,
let Ci be the set of selected RPFs that resulted from li.
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As start or end events in the middle of a synthetic process model are not
permitted, we apply some additional rules during the RPFs selection. More
specifically, let & and λ be the predicate functions that indicate if an RPF
element contains a start event or an end event respectively. Then for the
intermediary sets of RPFs it also holds that
∀({x ∈ Ci , (2≤ i ≤ |L| − 1)∧ (|L| ≥ 3) : &(x) = f alse ∧λ(x) = f alse}).
Finally, the family of sets C of all Ci, contains one set of RPFs for each

provided criterion.
The next step is to check the Open Connection Points (OCPs) between the

sets of selected RPFs. In order to enable the linking between RPFs we need
to verify that there is an appropriate number of OCPs between them (i. e.,
compatibility check). Hence, for every consecutive sets (Ci ,Ci+1) we need to
find sequences of pairs (x , y) where:
{∃ x ∈ Ci ∧ ∃ y ∈ Ci+1, 1 ≤ i ≤ |L| − 1 : |xout goingOC Ps| ≥ |yincomingOC Ps|}. This
condition indicates that the left-hand RPF should have more outgoing OCPs
than the right-hand RPF. Despite being more straightforward, a condition of
equality would have been too restrictive in our selection process. Neverthe-
less, as we will discuss in the following, the extra outgoing OCPs introduced
by this condition can be handled by heuristics.
Determining RPFs that can be linked (i. e., they are compatible) to each

other is handled by Algorithm 7.1. Before proceeding to the explanation of
the algorithm's functionality, in the following we explain the variables that
the algorithm uses as input. Algorithm 7.1 takes as input the aforementioned
collection C with the sets of RPFs that were selected for each criterion. It
also uses the variable i to point to the set (Ci) of collection C that we
examine at each iteration. Algorithm 7.1 goes over the sets of RPFs (Ci) until
it discovers a sequence of RPFs that can be linked. In order to satisfy this
purpose Algorithm 7.1 uses backtracking techniques (line 24, Algorithm 7.1).
The resulting RPFs set of the algorithm is stored and returned through the
RPFs set. The (RPFs,≤) set is a partially ordered set were the partial order
indicates the criterion to which an RPF corresponds. In other words, the
element rpfi ∈ RPFs corresponds to the RPF that was chosen by the algorithm
for the i th criterion. Consequently, it holds that rpfi ∈ Ci. When calling
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Algorithm 7.1 Detects a set of RPFs that can be linked with each other to
synthesise a process model

Input: C : a family of sets of RPFs, where the set Ci ∈ C corresponds to the
i th criterion.

Input: i: the index that points to the set Ci ∈ C that we examine at the
specific iteration.

Input: RPFs: the set of RPFs that are compatible to each other. The rpfi ∈
RPFs is the selected RPF for the i criterion. Consequently, rpfi ∈ Ci. In
the first call RPFs= 0.

Input: memor y: is an array that stores information of the positions of a
compatible RPFs. Namely, the position memory[i] = j indicates the j th

element of the set Ci ∈ C denoted as rpfj in the algorithm. In the first
call it is initialised with zeroes (ª0º).

Output: RPFs: the set of RPFs that are compatible.
1: function FindCompatibleRPFs(C , i, RPFs, memory)
2: if (i + 1< |C |) then
3: j← memor y[i]
4: l ← memor y[i + 1]
5: rpfj← Ci .getElementAt( j)
6: while (l < |Ci+1|) do
7: rpfl← Ci+1.getElementAt(l)
8: if (isCompatible((rpfj, rpfl)) = t rue) then
9: memor y[i + 1]← l

10: RPFs← RPFs∪ {rpfj, rpfl}
11: if (i + 1= |C |) then
12: return RPFs
13: end if
14: RPFs← FindCompatibleRPFs(i + 1,RPFs, memory)
15: end if
16: end while
17: if (i = 0) then
18: memor y[i]← j + 1
19: RPFs← FindCompatibleRPFs(i,RPFs, memory)
20: else // Erase and backtrack
21: memory[i]← j + 1
22: memory← resetMemory(memory, i + 1)
23: RPFs← RPFs \ {rpfj}
24: RPFs← FindCompatibleRPFs(i − 1,RPFs, memory)
25: end if
26: end if
27: return RPFs
28: end function
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Algorithm 7.1 the RPFs set is initialised with an empty set. Algorithm 7.1
also uses the memory variable, which is an integer array that stores the
indices of the successfully linked (compatible) RPFs for each set in C . More
particularly, the integer j ∈ ! found in the position memory[i] indicates that
the j th element of the set Ci is linked with elements of the sets Ci−1 and Ci+1.
In the beginning of the algorithm the memory array is initialised with zeroes
(ª0º).

Algorithm 7.1 is executed for every set of RPFs (Ci) in the family of sets
C . For every set we use the memory variable to discover this RPF of the set
that has already been linked with other RPFs (rpfj, line 5, Algorithm 7.1).
We keep the rpfj fixed and for every element in the successive set C (i. e.,
for all rpfl ∈ Ci+1, l ∈ !+), we examine if the pair of elements (rpfj, rpfl) is
compatible. In case we find two compatible RPFs, we store the position of
the newly linked element in the memory variable (line 9, Algorithm 7.1) and
add the rpfl to the set of results (RPFs). If the examined set is the next to
last set of C (line 11, Algorithm 7.1), we terminate the algorithm and return
the resulting set of RPFs (i. e., RPFs). This is because an RPF of the last set
has already been paired to this of the next to last set as we always iterate the
pair (i, i + 1) of sets. In case there are more sets to examine, we recursively
call the algorithm for the next sets of the collection.

When Algorithm 7.1 reaches the end of the loop (line 16, Algorithm 7.1)
it means that it iterated a full set without finding a match. In this case, if
we are at the first set C1 ∈ C we can simply recursively call the algorithm for
the next RPF of the first set. However, in a different case we need to apply
backtracking. In the case of backtracking, we first set the memory variable
to the next RPF of the current set (rpfj+1 ∈ Ci), then we remove rpfj from
the sets of results, as we could not find an RPF in the successive set that is
compatible to it, and lastly we reset the memory to zero (ª0º) values for all
the positions that follow i. Then we recursively call the algorithm for the
predecessor set (i. e., Ci−1) and continue the search of compatible RPFs in
a similar manner. If the algorithm is successful the size of the resulting set
(|RPFs|) must be equal with the number of the criteria. Namely, we should
result to one RPF for each user-defined criterion. As the goal of this phase
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(a) RPF without relax node

Relax
Node

(b) Relax node increases con-
ceptual consistency

Figure 7.7.: Heuristics example of adding a relax node

is to create a synthesised process model for benchmarking purposes, the
presented method executes non-deterministically. Namely, two executions of
this phase may result in diverse synthetic process models. If for the returned
set of RPFs holds that |RPFs| < |L| it means that we exhausted all possible
combinations of RPFs without finding a sequence of RPFs that can be linked
based on the given criteria.

After the selection of compatible RPFs we proceed to their synthesis into a
process model. This is done by linking outgoing OCPs with incoming OCPs
of the selected RPFs. In order to assist the synthesis of a valid process model
we apply the following set of heuristics:

(i) parallel gateways are connected first, exclusive and inclusive gateways
are connected next, and activity nodes are connected at the end. This
way we eliminate the risk to connect a diverging exclusive and⁄or
inclusive gateway to a converging parallel gateway and produce dead-
locks.

(ii) flexible nodes (see Figure 7.5) are handled as outgoing OCPs if they
are at the left-hand RPF or as incoming OCPs otherwise. This way
we manage to synthesise the process model in a gradual manner, and
handle as many as possible those OCPs that are positioned in the middle
of the process model.

(iii) at the end of the synthesis process we add start events to the incoming
OCPs and end events to the outgoing OCPs. This way we produce a
complete process model.
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Table 7.1.: Criteria for selecting RPFs and synthesising the example process
model of Figure 7.8

Exclusive Gateways Parallel Gateways Tasks

Crit. 1 2 - 3

Crit. 2 - 1 4

(iv) if a gateway at the end of the synthesis has two outgoing OCPs, then
we add an extra empty script task (ªrelax nodeº) to one of the branches
before the addition of the end event. In this way, we avoid producing
meaningless process models (see Figure 7.7) without adding extra
overhead in its execution performance (see Chapter 5).

Before returning the result of this phase, the synthetic process model will
be additionally checked against its structural validity and its validity against
the BPMN 2.0 standard. The structural validity of the synthetic process model
is checked against statistics derived from the initial process models collection.
The statistics can describe simple structural metrics such as for example,
model size, and structural criteria like specific events, e. g., start or end events
in the model, number of control⁄activity nodes, etc. [Car08]. To this effect,
we ensure that the synthetic process model reflects the original collection.
The validity of the process model with respect to the BPMN 2.0 standard can
be achieved with the utilisation of external, well-known frameworks such as
Camunda BPMN model API 1. If any of the aforementioned checks are not
satisfied then a corresponding warning or error message is produced and
the user is asked to repeat this phase with different criteria.
In Figure 7.8 we present the selected RPFs for the criteria shown in

Table 7.1. For the first criterion we select one RPF as shown in Figure 7.8a.
For the second criterion we assume that the RPFs shown in Figures 7.8b
and 7.8c were selected from the RPF collection. The OCPs of each RPF
are marked with dotted arrows. Namely, the RPF of Figure 7.8a has one

1Camunda, Camunda BPMN Model API,
URL: https://github.com/camunda/camunda-bpmn-model
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(d) Synthesised process model for the criteria of Table 7.1

Figure 7.8.: Example of synthesising a process model out of RPFs

incoming and two outgoing OCPs, the RPF of Figure 7.8b has one outgoing
OCP and the RPF of Figure 7.8c has either two incoming and one outgoing,
or one incoming and two outgoing OCPs. This is because the parallel gateway
may be used flexibly. Choosing the OCP of Figure 7.8a for the first criterion,
we proceed in finding a compatible RPF from the second criterion. The RPF
of Figure 7.8b is incompatible, as it contains a start event and its number
of incoming OCPs (0) is lower than the number of the first RPF's outgoing
OCPs (2). On the contrary, the compatibility check will evaluate to true for
RPF of Figure 7.8c. This RPF does not contain a start event and it can be
used with two incoming OCPs (RPF of Figure 7.8a and RPF of Figure 7.8b
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have equal number of outgoing and incoming OCPs respectively).
The RPF of Figure 7.8a and RPF of Figure 7.8b are linked to each other

following the aforementioned heuristics. Namely, the incoming OCP of the
parallel gateway (Figure 7.8b) will be connected first (see sequence flow
marked with ª1º in Figure 7.8d) and OCPs of task nodes are connected
afterwards (see sequence flow marked with ª2' in Figure 7.8d). Finally, start
and end events are added to the remaining unconnected OCPs (see sequence
flows marked with ª3' in Figure 7.8d).

7.2.3. Executable Refinement

The process model generated during the previous phase comprises a refer-
ence, non-executable model. As the synthetic process models are targeted for
performance benchmarking of the WfMS's process navigator the application
user needs to refine it into a process model for automated execution, i. e., a
process model that does not require input data during its execution. In this
section, we provide guidelines on how to refine the reference process model
into a process model with automated execution.

In principle, for deriving the executable process model the application user
should implement all the external interactions with placeholder activities.
Since our process models are generated for benchmarking purposes we
need to eliminate additional overhead of the external interactions and⁄or
redundant code in the process model. This way we manage to isolate the
behaviour of the WfMS to the maximum possible extend and obtain clean
measurements.
For this we suggest the following changes:

Script Task: the application user should implement it as an no-operational
script task. The only case to edit the script task is when it precedes an
exclusive gateway. In this case, the script task should implement random
number generators, for evaluating the exclusive gateway condition that
follows. Defining the probability distribution with which the number
generators will produce the numbers is left to the user.
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Figure 7.9.: Example of completing a synthetic process model to an exe-
cutable

Call Activity: the application user should implement it as a non-operational
activity (i. e., start event - no operational script - end event). When a call
activity of a synthetic process model precedes an exclusive gateway, it
should be converted to a script task that generates the required numbers.
This is because the needed underlying variable sharing between the parent
and the child process models is not supported by all WfMSs [GHLW16].

Service Task: the application user should link it to an no operational web
service or Java application. In case a service task precedes an exclusive
gateway, the linked web service or Java application should implement
data generation respectively.

Exclusive Gateway: the application user should add conditions and vari-
ables on the respective outgoing sequence flows to take the control of
execution. This should be done in accordance to the preceding script task
that implements the data generation. In case there is not any preceding
script task to the exclusive gateway, the user should manually add one. In
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order to eliminate additional overhead, the user should find an optimal
way to add a minimum number of script tasks to the process model.

Inclusive Gateway: the application user should explicitly define the condi-
tions with which the outgoing sequence flows of the gateway are activated.

Figure 7.9 shows a process model created for demonstration purposes.
The process model starts with a script task (ªSCTº script task). As this
precedes an exclusive gateway, this needs to implement a data generation
script. The script task is followed by an exclusive gateway. For each of the
outgoing sequence flows of the gateway, we need to add conditions to take
over the control flow. For example, if the ªSCTº is set to randomly generate
numbers 1≤ x ≤ 10, then the upper sequence flow could be assigned with
the condition x ≤ 5 and the lower sequence flow with the condition x > 5.
The upper sequence flow is connected to a call activity (ªCAº). This should
be linked to a non operational process, as shown in Figure 7.9. Likewise,
the lower sequence flow is connected to a service task (ªSTº) that should be
connected to a running web service or to local Java code.
Finally, different WfMSs may demand different serialisation of the

BPMN 2.0 file in order to execute it [GW13]. Therefore, the user needs to
apply appropriate changes on the serialisation of the process model.

7.3. Chapter Summary

In this chapter, we introduced a method to generate synthetic BPMN 2.0
process models out of an RPF collection. The synthesis is driven from user-
defined structural criteria, as for example, the number of exclusive gateways
or script tasks the participating RPFs should have. The selection of the
required RPFs is achieved by applying backtracking techniques on sets of
RPFs, while the synthesis of the RPFs to a complete process model is based
on heuristics. The synthetic process model is validated against structural
representativeness with respect to statistics from a real world practice process
models collection and against validity to the BPMN 2.0 standard [ISO13]. We
then suggest guidelines on how to convert a valid synthetic process model to
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an executable, fully automated one. The execution of the synthetic process
models should be fully automated as they are targeted for performance
tests that stress the WfMS's process navigator. The proposed method can
be utilised for the creation of single process models or even collections of
thousands of synthetic process models. This fact, constitutes our method
useful in diverse use cases that require the generation of synthetic, executable
process models.

In Chapter 9 we apply the process models generation method for the RPFs
detected on the original collection (cf. Chapter 3). We then use the generated
process models as part of a workload model that is used for performance
benchmarking.
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A Process and Toolchain
for Workload Mix

Generation

ªSoftware is a great combination
between artistry and engineering.º

Bill Gates

The goal of this chapter is to answer research question RQ-4: ªHow to de-
rive a representative and meaningful workload mix for both general and do-
main specific benchmarks?º. Hence, we present contribution C-4: ªThe Work-
load Mix Generation for Workflow Management Systems (WINE4WfMSs)
processº, which builds on concepts and components introduced in Chapters 3,
4, 6 and 7. We also present the architecture and implementation details of a
toolchain that supports the WINE4WfMSs process.
As discussed in previous chapters, each sub-method participating in the

WINE4WfMSs process may also be used to serve diverse application scenarios
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in the BPM domain. Thus, as a guiding principle on the toolchain's design
we follow the principle of loose coupling to enable the future integration of
the components to third-party systems. The movement of cloud technology
to the mainstream advocates towards the design of cloud-aware applica-
tions [Sen15]. Therefore, we also focus on diverse architectural paradigms
and recognised design patterns to facilitate a cloud aware application.
The remainder of this chapter is structured as follows: Section 8.1 de-

scribes the WINE4WfMSs process; Section 8.2 discusses related architectural
principles and presents the architecture of the toolchain; Section 8.3 shows
architectural and implementation details for each component separately;
Section 8.4 presents other software that is related to BenchFlow project and
Section 8.5 summarises the chapter.

8.1. Workload Mix Definition Method

The definition of the workload model constitutes a critical task in the design
of a benchmark (see Chapter 4). In order to support the practitioners towards
the definition of a robust workloadmodel, Kounev et al. [KHSB12] summarise
an abstract methodology to be followed during the performance modelling
process. The process can be described in the following five steps [KHSB12]:

Step 1: identify the basic components of the workload.

Step 2: partition the basic components into classes.

Step 3: identify the resources used by each workload class.

Step 4: describe the inter-component interactions.

Step 5: quantify the workload demands and intensities.

In Chapter 4 we identified the basic workload components for BPMN 2.0
WfMSs (step 1) and described the inter-components interactions (step 4),
while the identification of resources used by the workload classes (step 3) is
extensively presented by Ferme et al. [FIP15; FIP+16]. The remaining steps
(i. e., to partition the basic components into classes (step 2) and to quantify
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the workload demands and intensities (step 5)) are addressed during the
application of the WINE4WfMSs method.

More specifically, the workload mix consists of the executable process mod-
els that are given as input to a performance test, their execution behaviour,
and the intensity with which each process model participates in the workload
mix. In the scope of this work we defined as workload class of the workload
mix each pair of process model and corresponding intensity. Consequently,
the workload mix is comprised of different workload classes and the execu-
tion behaviour of the underlying process models (see Section 4.2). In the
case of WfMSs additional attention should be paid to the structure of the
workload mix's process models, as this dictates the sequence with which
the WfMS will execute a set of activities. Therefore, in order to reflect a
diverse set of use cases the structure of the process models participating
in the workload mix should be representative of the whole range of a pro-
cess models collection. To derive a structurally representative workload
mix of a given collection we propose the WINE4WfMSs method, which is
based on the components and concepts discussed in Chapters 3, 4, 6 and 7.
More specifically, the WINE4WfMSs method consists of the following phases
(Figure 1.1):

Phase 1: Cleaning and analysing the initial process models collection.

Phase 2: Discovery of the existing RPFs.

Phase 3: Derivation of the process models for the workload mix.

Phase 4: Partitioning the process models into workload mix classes.

Phase 5: Defining the execution behaviour of the workload mix.

In phase 1 we transform custom serialised process models (cf. Section 3.2)
or remove invalid and incomplete process models, as none of them can be part
of the workload mix. Then we apply a statistical analysis on the collection,
in order to obtain an insight into its structural composition. In phase 2 we
proceed to the detection and extraction of the RPFs, by applying the RoSE
algorithm on the process models collection (Chapter 6). The detected RPFs
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are extracted and semantically annotated with their frequency of appearance
in the original collection, as well as other metadata regarding their structure.
In phase 3 we exploit the results acquired by the previous analyses for
recognising or synthesising (Chapter 7) distinct, structurally representative
process models that will participate in the workload classes. In phase 4, we
partition the derived process models into workload classes.
Each class participates in the workload mix with a different intensity,

which corresponds to the degree of the process model's representativeness
to the collection. Let C = {c1, c2, ..., ck, ..., cm}, k, m ∈ !, 1≤ k ≤ m be the set
of process models that we include in the classes of the workload mix. For
calculating the representativeness repr of a process model (ck ∈ C) for the
collection we use the following formula [FSP+17]:

repr(ck) =
1

2 |Sk|
"

rpfi∈Sk

#
t(rpfi)
|Sc| +

m(rpfi)
|M |
$

(8.1)

where:

M = {m1, m2, ..., m j} is the set of process models in the original collection.

Sc = {rpf1, rpf2, ..., rpfn} is the multiset of all the RPFs rpfi detected in the
original process models collection M . A given RPF rpfi can reoccur multiple
times within the same mi ∈ M , and⁄or in different models in M , and thus
multiple times in the multiset Sc.

Sk ⊂ Sc is the set of RPFs participating in the process model ck.

t : Sc → ! is a function counting how many times an RPF rpfi ∈ Sc is
present in mi ∈ M , counting each time rpfi is found in the same mi .

m : Sc→ ! is a function returning the number of process models in the
set M , in which the RPF rpfi ∈ Sc is present at least once.

For deriving the intensity (inte) of a class (ck ∈ C) we normalise its
representativeness (repr(ck)) to 100 and round to the closest integer. This
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is described by the following formula:

inte(ck) =

&
100 · repr(ck),|C |

i=0 repr(ci)

(
(8.2)

The metric of intensity is therefore a proportional number of the times
and process models for which an RPF is detected in the collection. Since a
process model of the workload mix can be synthesised by many RPFs, the
representativeness and intensity are cumulative metrics for each RPF in a
process model. Finally, in phase 5 we define the execution behaviour of the
workload mix. More specifically, we need to link each process model of the
workload classes to artifacts that are required for its execution (e. g., script
tasks or web services) and define probabilities with which a process model
will take over the control-flow. Essentially, this phase corresponds to the
executable refinement phase presented in Section 7.2.3.
The application of WINE4WfMSs method is demonstrated in Chapter 9,

where we apply it in a real world case study to derive a workload mix.

8.2. Toolchain Architecture

In this section we present the architecture of a toolchain that supports the
WINE4WfMSs method. Section 8.2.1 presents architectural principles to be
followed by cloud-aware applications, Section 8.2.2 discusses some of the
cloud patterns that were considered in our design and Section 8.2.3 presents
an overview of our toolchain's architecture.

8.2.1. Cloud-Aware Architecture Principles

In order to benefit from cloud environments a cloud-aware applica-
tion should follow specific design principles [Feh15]. To this effect,
Fehling et al. [FLR+14] recognise the Isolation, Distribution, Elasticity,
Automated Management, Loose Coupling (IDEAL) set of properties, that
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a paradigmatic cloud-aware application should satisfy. Namely, a cloud
application should fulfil to the maximum possible extend the following
properties:

Isolated: the majority of application components should be stateless;

Distributed: the application's functionality should be distributed across
multiple components;

Elasticity: it should be possible to scale the cloud application based on
changing workload (i. e., to add or remove cloud resources in a flexible
way);

Automated Management: there should be a way to independently handle
runtime management (e. g., elastic scaling or failure resiliency) and

Loose Coupling: the application should maintain the platform, reference,
time and format autonomies as defined by the loose coupling principle.

Hence, cloud applications should follow the architectural principles of
loose coupling and distributed applications that simplify the fulfilment of
the aforementioned properties [Feh15]. As we will show in Section 8.2.3
our architecture was designed with these principles in mind. Overall, our
application is composed out of distributed components that interact with
each other towards the completion of diverse actions. The architecture of the
business logic components follows the REST architectural style. Namely, the
business logic of the WINE4WfMSs process is exposed as RESTful services
that comply with the following REST properties identified by [HKLS14]:

Layered Client Server: the existence of a client on an upper layer that uses
the functionality of the underlying (lower) server layer;

Cache: a server response should be marked as ªcacheableº or ªnon-
cacheableº. In the first case the response may be saved locally in order to
be faster accessible for future requests;

Stateless Server: each subsequent request to the server should be indepen-
dent from other requests. Namely, sessions should not be used;

156 8 | A Process and Toolchain for Workload Mix Generation



Uniform Interface: the client and the server interact to each other through
a well-defined set of Create, Read (Retrieve), Update (Modify), Delete
(Destroy) (CRUD) methods. Especially for the HTTP interaction protocol
is used, these methods map to POST, GET, PUT and DELETE [FGM+99];

Identification: the location of the resources should be easily identifiable
and addressable in the distributed environment. This is achieved through
Uniform Resource Identifier (URI);

Manipulation through Representations: there is a distinction between a re-
source and each representation corresponding to the client that processes
it;

Self-Descriptive Messages: the structure of a request should provide all
information that is needed to understand and process it and

Hypertext as the Engine of Application State (HATEOAS): the state of a
client is driven by the resources it can access.

In the following section we present the architecture of the tool chain that
is designed with respect to the aforementioned properties and architectural
styles.

8.2.2. Cloud Design Patterns Selection

For designing the toolchain architecture we considered the architectural
principles described in Section 8.2.1. As the design of a cloud application
constitutes a complex task we also follow cloud application design patterns
identified by Fehling [Feh15]. Fehling [Feh15] divides these patterns into
five major categories: (i) cloud computing fundamentals; (ii) cloud offerings;
(iii) cloud application architecture; (iv) cloud application management; and
(v) composite cloud application.

Each of the categories need to be individually assessed by the developer
of a cloud application before proceeding to the design of the architecture.
In the rest of this subsection we discuss our decision for selecting a subset
of the recognised design patterns as guidelines towards the design of the

8.2 | Toolchain Architecture 157



Category Design Pattern Explanation

Cloud Computing
Fundamentals

Once-in-a-lifetime
Workload (p. 33)

As this is a proof-of-concept prototype, we expect low
workload during a certain event.

PaaS (p. 49)
We utilise the PaaS service model for hosting

application components

Cloud Offerings

Node-based
Availability (p. 95)

We need the node-based availability provided by the
cloud provider for hosting our application

components.

Hypervisor
(p. 101)

We need this functionality for being able to provision
and decommission virtualised components.

Relational
Database (p. 115)

We use relational database components for storing
data needed for the functionality of our application.

Key-Value Storage
(p. 107)

We use key-value storage for storing unstructured
data needed for the functionality of our application.

Cloud Application
Architecture

Loose Coupling
(p. 156)

We apply the principles of loose coupling in our
architecture.

Distributed
Application
(p. 160)

We follow the principles of distributed application
design in our architecture.

Stateless
Components
(p. 171)

We design the components implementing interface,
or business logic to not handle the state of the

application.

User Interface
Components
(p. 175)

We design some of the application components to
implement user interface.

Processing
Components
(p. 180)

We design some of the application components to
implement processing.

Data Access
Components
(p. 188)

We design some of the application components to be
used for data access.

Composite Cloud
Application

Three-Tier
Architecture
(p. 290)

The application components are categorised in three
layers (presentation, business logic and

infrastructure) for enabling the scaling with regards
to individual needs.

Table 8.1.: Selected cloud design patterns [FLR+14] for our architectural
design

architecture. The applied design patterns and the reasoning for selecting
them are summarised in Table 8.1. The selected design patterns are marked
with the corresponding page on which they appear in Fehling et al. [FLR+14]
for quicker access. The first two categories refer to properties that are usually
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provided by the cloud provider and thus should be considered when defining
hosting options for the cloud application. With respect to the cloud computing
fundamentals category we first need to think of the workload that will arrive
to our application. The proposed cloud application is implemented as a
prototypical proof-of-concept of the workload generation method. Thus,
it is expected to receive low workload over a certain period of time. In
this regards, we match to the once-in-a-lifetime workload pattern were the
application will only be used during a certain event. Afterwards, we need to
define the service model on which we will build and deploy our application.
In this case, a cloud provider that offers a Platform as a Service (PaaS) service
model are required for deploying middleware components (e. g., databases
and WfMSs) as well as functional components of the application.
The functional and non-functional behaviour provided in the cloud run-

time environments are described by patterns in the category of cloud offerings.
We set some of the properties as defined by the design patterns in this cate-
gory, as the minimum set of requirements to select cloud providers to host
our application components. For instance, we base on the design pattern
of node-base availability, where the provider guarantees availability of indi-
vidual nodes that host middleware, servers or application components. The
cloud offerings category also includes design patterns that describe different
behaviours of the cloud provider under different workloads and define the
conditions under which these design patterns should be selected. Out of
these design patterns we find applicable the hypervisor pattern which advises
the virtualisation of the components to easily provision and decommission
them on the servers. Offerings regarding data storage should at least support
the relational database and key-value storage design patterns as we use both
of these options for implementing different databases for our application.
The cloud application management category includes application compo-

nents that execute management plans during the runtime of the application.
Hence, in principle our design focuses merely on the design patterns that
lay under cloud application architecture and composite cloud application cate-
gories. As discussed in Section 8.2.1 our architecture follows the two funda-
mental architectures of loose coupling and distributed application. Moreover,
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we implement the application through stateless components, i. e., components
that do not handle the state of the application and ease scaling-out. The
diverse components realise different functionalities of our application by
implementing the design patterns of user interface components, processing
components and data access components. The correspondence of the imple-
mented functional components to these design patterns is discussed in the
following section.
Finally, the composite cloud application category reveals common design

pattern combinations revealed in many real world practice application sce-
narios. In this case, we focused on the three-tier cloud application architecture
which separates the presentation, business logic, and data handling com-
ponents in different architectural layers. Our application also follows this
architectural style as it allows separate tiers to scale with regards to indi-
vidual need. In the next section we show how the aforementioned design
patterns are applied to the architecture of the toolchain.

8.2.3. Architecture Overview

An overview of the toolchain's architecture is shown in Figure 8.1. As
discussed in Section 8.2.2 we follow a distributed architecture. More par-
ticularly, the toolchain components are distributed across three layers (i. e.,
Presentation, Business Logic as a Service, Middleware as a Service). The sep-
aration of the layers provides increased scalability on the cloud application
and is preferred when there are more than one data sources [Feh15].
The Presentation layer contains the user interface component, i. e., the

components with which the user may request the execution of a service
and receive the visualised results. With respect to the cloud application
architecture category this component implements a user interface component
(see Table 8.1). More particularly, the presentation layer is realised in the
form of a Mashup (Web App Hybrid). The mashup is basically a hybrid web
portal application, which brings together content from diverse sources and
displays it into a single User Interface (UI). By implementing a mashup one
may achieve easy and fast integration, frequent usage of open API's and data
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Figure 8.1.: Workload mix generation toolchain architecture overview and
implementation details

sources. In more detail, the architecture of the Mashup (Web App Hybrid)
relies on the Model-View-Controller (MVC) design pattern [BMR+96], which
is a broadly applied software design pattern for implementing UIs. The MVC
design pattern divides the components into three types: model, view and
controller. The model component manages the application's data logic and
functional rules, the view component is related to any visual representation
of information, while the controller acts as a broker that converts commands
to model or view [BMR+96]. A characteristic property of the MVC design
pattern is that it decouples the views from the models, thus enforcing the
flexibility of the system and its easier adaptability to change. Moreover, it
enables the attachments of multiple views to the system to provide different
adaptations.
The Business Logic layer contains the business logic of the application,

which is offered as distributed services. These components offer a REST
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API and implement different patterns of the cloud application architecture
category (Table 8.1). Moreover, these components also implement the Cross-
Origin Resource Sharing (CORS) technique, which basically relaxes the
security concept of same-origin policy1 implemented by web browsers. This
prevents JavaScript code from making requests against a different origin
(e. g., different domain) than the one from that it is served. Each component
of this layer will be discussed in further detail in the following section.
The Middleware layer hosts the middleware components (i. e., databases

and WfMS), with which the services of the Business Logic layer interact.
The communication among the layers is enabled through Communication
Managers, which are aware of the individual ways to access each service
component. Communication Managers implement messaging design pat-
terns (i. e., Message-oriented Middleware, At-least-once Delivery [Feh15])
to enable consistent communication. Through the implementation of diverse
design patterns they provide a seamless way of communication among the
components. The communication managers also enable the flexibility of the
system, in case a change in the implementation of a component occurs.

8.3. Toolchain Components Description

In this section, we discuss each component shown in Figure 8.1 and analyse
its functional role in the toolchain, related facts of architectural importance,
the underlying inter-component interactions (see Figure 8.2), and its im-
plementation details. As discussed in Section 8.2.3, the inter-component
interactions are enabled through the communication layers that ensure an
increased system autonomy. For the sake of simplicity, in the following we
omit the intermediate layers and describe only the end-to-end component
interaction.

1W3, Cross Origin Resource Sharing,
URL: https://www.w3.org/Security/wiki/Same_Origin_Policy
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Figure 8.2.: Workload mix generation toolchain components interaction

8.3.1. Mashup (Web App Hybrid)

Functionality: Provides a UI with which the user interacts to initialise
requests and receive responses of the underlying service components.

Architectural Facts: The UI follows the mashup paradigm to bring the
functionality of diverse distributed components together to a consolidated
UI. Moreover, we implement the MVC design pattern that decouples the
views from the models and fosters the flexibility of the system.

Inter-Component Interactions: The mashup web application acts as a re-
quest initiator for any component of the Business Logic. The type of requests
and responses varies with respect to the service purpose and specification.
Namely, a request or response may be synchronous or asynchronous and it
may contain a complete process model file or data query. These variations
are discussed in detail for each component individually in the following
subsections.

Implementation Details: The purpose of the UI interface is to create a
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Figure 8.3.: Screenshot of the toolchain's user interface

user-friendly environment that enables the seamless interaction and easy
completion of the user goals. Hence, we choose state-of-art technologies
for web application design. Bootstrap1 is a Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS)2 and JavaScript framework that
eases the front-end development and enables the design of responsive web
pages. In addition, we use AngularJS3 for declaring dynamic views in our
web application. A screenshot of the toolchain's UI is shown in Figure 8.3.

8.3.2. Normaliser

Functionality: Some of the BPMN 2.0 process models collected for our
research were not serialised according to the BPMN 2.0 standard serial-
isation (see Chapter 3). The purpose of this component is to receive a

1Bootstrap, URL: http://getbootstrap.com
2CSS, URL: https://www.w3.org/standards/webdesign/htmlcss
3AngularJS, URL: https://angularjs.org
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process model serialised in the IBM custom serialisation or the BPMAI
serialisation (Section 3.2) and convert it to the standard serialisation as
defined by the BPMN 2.0 standard [ISO13].

Architectural Facts: The component is a stateless component and imple-
ments the processing component design pattern (Table 8.1). Namely, the
component takes a file in the original custom serialisation and processes
it to transform and return it to the standard format. As there are two
different types of serialisation to convert, this service is composed out of
two different sub-services one transforming the IBM custom serialisations
to standard and one transforming the BPMAI serialisation. Subsequently,
the normaliser acts as an orchestrator that calls the appropriate service
with respect to the serialisation of the file it must transform.

Inter-Component Interactions: For completing its goal the component
needs to receive a request from the client (in our case the UI) that
contains at least information regarding the type of the document's custom
serialisation, as well as the document itself. The document is processed
with respect to its original custom format and the transformed result is
returned to the client.

Implementation Details: The orchestrator service of the normaliser com-
ponent is implemented with the Java Spring Framework1, the service that
transforms the IBM processes to the standard format is implemented in
Python and the one that transforms the BPMAI process models is using
Java Spring to wrap the BPMAI2BPMN converter proposed by Pietsch and
Yazdi [PY14] to a RESTful service.

8.3.3. Statistics

Functionality: The purpose of this component is to calculate statistics of
a collection of BPMN 2.0 process models [GL06]. These statistics can
afterwards be utilised by the user of the workload generation process for

1Java Spring Framework, URL: https://spring.io
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taking pivotal decisions regarding the synthesis of process models (see
Chapter 9).

Architectural Facts: The component is a stateless component and can be
seen as a data access and processing component (Table 8.1). For each
calculation of size statistics the component iterates and parses the whole
collection of process model files. Although this calculation could be accel-
erated through storing some process model metadata on a new database,
the calculation is completed in a few seconds for a collection of thousands
process models, while hosting one more database on the cloud would
have caused additional costs. Therefore, in the trade-off of calculation
time versus database hosting costs we preferred the first approach but in
case the size of the process models collection increases significantly then
this decision should be reassessed. Moreover, the calculations executed
by this component rely on a database with a rather stable state (i. e., it
is rarely expected to have process model additions or removals on the
database). Therefore, in the future, the client calling this component, may
also implement caching for a more efficient result retrieval [FLR+14].

Inter-Component Interactions: For completing its goal the component re-
ceives a simple request from the user indicating that a calculation of col-
lection statistics is needed. For this the component accesses the database
in which the complete collection of BPMN 2.0 process models is stored
(BPMN 2.0 DB in Figure 8.1). Afterwards, the statistics component cal-
culates the size metric for each process models and returns to the client
a response containing the statistics in a Comma-Separated Values (CSV)
format.

Implementation Details: The component is implemented in Java. It uses
the Java EMF1 of BPMN 2.0 Metamodel2 for processing the BPMN 2.0 file
and is converted to a RESTful service with the Java Spring Framework.

1Java EMF, URL: http://www.eclipse.org/emf
2BPMN 2.0 EMF, URL: http://www.eclipse.org/modeling/mdt/?project=bpmn2
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8.3.4. BPanon

Functionality: The purpose of this component is to accept a process model
and pseudonimise it or anonymise it, while maintaining its executional
behaviour. Namely, this component implements the BPanon method pre-
sented in Section 3.1.

Architectural Facts: The component is a stateless component and imple-
ments the processing component design pattern (Table 8.1). Internally,
this component is separated into four different management layers: the
interaction management layer refers to the part of the implementation that
receives and decodes the client request for the business process anonymi-
sation or pseudonymisation; the anonymise management layer implements
the business process anonymisation; the rename management layer pro-
vides the new words to be used and finally the registry management layer
logs the changes to a registry. Each management layer contains more
sub-components to complete their functionality. More details on the in-
ternal architecture of the BPanon component can be found in previous
work [SFL+15].

Inter-Component Interactions: The component receives a request from the
client containing the process model to anonymise or pseudonymise, pro-
cesses it and returns to the client a response containing the anonymised
process model.

Implementation Details: The component is implemented as RESTful ser-
vice with the Java Spring Framework.

8.3.5. Cycles Detector

Functionality: The purpose of this component is to detect if there is a cyclic
structure in a given process model. Namely, it implements the algorithm
presented in Section 6.3.1.

Architectural Facts: The component is a stateless component and imple-
ments the processing component design pattern (Table 8.1).
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Inter-Component Interactions: The component receives a request from the
client containing the process model to check for cyclic structures and
returns a true or false response to the client, expressing if the process
model contains a cyclic structure or not respectively.

Implementation Details: The component is implemented as a RESTful ser-
vice with the Java Spring Framework and uses the Java EMF BPMN 2.0
Metamodel for processing BPMN 2.0 files.

8.3.6. Decision Support System (DSS)

Functionality: The purpose of this component is to provide functionality
of a Decision Support System (DSS) for WfMSs benchmarking by allow-
ing user-defined queries against a knowledge base the schema of which
is based on the conceptual model presented in Figure 4.1. The data of
the DSS knowledge base are derived from standard middleware bench-
marks [Tra92b; TPC15; Sta15; Sta07], as well as custom benchmarks for
WfMSs [SFP+16; BBD10; DES08; Act11; Rol13].

Architectural Facts: According to Power et. al. [PSB15] the different types
of DSS can be summarised as follows: (i) a data-driven DSS provides access
to large knowledge bases in order to extract information; (ii) a commu-
nication-driven DSS supports the shared access on a specific task where
more than one person is involved in working on it; (iii) a document-driven
DSS data is retrieved and manipulated in form of a document; (iv) a
knowledge-driven DSS or expert system provides support to problem-solv-
ing in terms of defined rules and procedures and (v) a model-driven DSS
provides functionality by offering different models for which the data and
parameters are provided by the user. The three different components
inside a DSS are: (i) the knowledge base, where all relevant information
is stored, (ii) the conceptual model that defines different decision criteria
and (iii) the user interface that presents the required output. In our case,
the provided DSS is offered in the form of a document driven DSS were
the data are retrieved and manipulated as unstructured information. More
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architectural facts regarding the DSS component can be found in previous
work [SAB+16].

Inter-Component Interactions: The component receives a request from the
client, containing data for querying the knowledge base. In turn the DSS
component forms a query and executes it against a knowledge base (see
DSS DB in Figure 8.2). The results are formed in a response and returned
back to the client.

Implementation Details: For the implementation of the DSS client we used
the MongoDB, Express, AngularJS, NodeJS (MEAN) stack1, which is a full
stack JavaScript framework that simplifies web application development.

8.3.7. RoSE

Functionality: The purpose of this component is to detect and extract RPFs
contained in a collection of BPMN 2.0 process models. Namely, this com-
ponent realises the algorithms presented in Section 6.3.2 and Appendix A.

Architectural Facts: The component is a stateless component and imple-
ments the data access and processing component design patterns (Ta-
ble 8.1). It also executes in an asynchronous mode due to the complexity
of the RoSE algorithm. As the calculations executed by this component
rely on a database with a rather stable state (i. e., it is rarely expected
to have process model additions or removals on the database), the client
calling this component may also implement caching for a more efficient
result retrieval [FLR+14].

Inter-Component Interactions: For the calculation of the reoccurring struc-
tures the component first receives a request from the client that initiates
it. Then the RoSE component interacts with a database, in which the com-
plete process model collection is stored (cf. BPMN 2.0 DB in Figure 8.2). As
soon as the component finds RPFs it stores them into a separate database
(RPF DB in Figure 8.2). At the end of the RPFs detection process the

1Linnovate, MEAN, URL: http://mean.io
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RoSE component sends a response to the client containing information
for access to the RPF DB, as well as CSV structured metadata information
concerning the discovered RPFs files.

Implementation Details: The component is implemented as RESTful ser-
vice with the Java Spring Framework and uses the Java EMF BPMN 2.0
Metamodel for processing BPMN 2.0 files.

8.3.8. Metadata Importer

Functionality: The purpose of this component is to create the RPFs meta-
data. Namely, it calculates the metadata to characterise the RPFs, as
described in Section 7.2.1.

Architectural Facts: The component is a stateless component and im-
plements the data access and processing component design pat-
terns(Table 8.1). Internally its architecture contains a parser that
parses the files of the RPFs, a metadata calculator, that calculates the
metadata of the RPFs and an importer that imports the calculated
metadata to the database.

Inter-Component Interactions: In contrast to the other components of the
business logic layer this one is not initiated by the user-interface. When
the RoSE component finishes its execution, it automatically triggers the
initiation of this component to calculate and import the RPFs metadata
in a new database. The component must respond to the RoSE algorithm
regarding failure or success.

Implementation Details: The component is implemented as a RESTful ser-
vice with the Java Spring Framework and uses the Java EMF BPMN 2.0
Metamodel for processing BPMN 2.0 files.

8.3.9. Synthesiser

Functionality: The purpose of this component is to consistently synthesise
RPFs to generate synthetic, non-executable process models with respect
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to user defined criteria. Namely, it implements the RPFs selection and
synthesis presented in Section 7.2.2.

Architectural Facts: The component is a stateless component and imple-
ments the data access and processing component design patterns (Ta-
ble 8.1). For evaluating efficiently if two RPFs can be connected with each
other this component exploits a rule engine.

Inter-Component Interactions: Initially, this component receives a request
from the client containing information regarding the criteria with respect
to which the synthetic process model should be generated. It then uses
the criteria to form a query against the RPF metadata DB to retrieve these
RPFs that can be used for generating synthetic process models. In case a
process model could be successfully generated the component returns the
generated process model or false if no combinable RPFs were found.

Implementation Details: The component is implemented as RESTful ser-
vice with the Java Spring Framework and uses the Java EMF BPMN 2.0
Metamodel for processing BPMN 2.0 files. Moreover, we use the Drools
rule engine1 for rules execution.

8.3.10. BPMN Modeler

Functionality: This component can be used from the user for converting
the non-executable BPMN 2.0 process model to an executable equivalent.
Namely, this component is used for following the guidelines presented in
Section 7.2.3.

Architectural Facts: The component is a stateless component (Table 8.1).

Inter-Component Interactions: For editing a process model the component
must be initialised with a request that contains the non-executable process
model as well as other relevant data, for example, initialisation values for
the variables and probabilities to follow the existing control flow paths.

1Red Hat, Drools, URL: http://www.drools.org
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Then, the component updates the process model and returns it to the
client.

Implementation Details: The component is implemented with bpmn.io1

framework.

8.3.11. Middleware

This section discusses the components of the Infrastructure as a Service (IaaS)
layer. Here, we omit the descriptions of the inter-component interactions as
they have already been described in the previous subsections.

8.3.11.1. BPMN 2.0 DB and RPF DB

Functionality: The purpose of these databases is to store the complete
BPMN 2.0 process models and RPFs collections respectively.

Architectural Facts: The BPMN 2.0 and RPF databases need to store a big
amount of data in form of files and allow a seamless access to them from
the components of the Business Logic. A document-oriented database
seemed the most appropriate for our purposes of usage.

Implementation Details: For the implementation of these databases we
use MongoDB 2 and store the process models and RPFs as documents. The
database is deployed on the OpenShift 3 PaaS cloud provider.

8.3.11.2. RPF Metadata DB

Functionality: The purpose of this component is to store metadata infor-
mation regarding the RPFs structural properties. Namely, this component
stores information as it is described in Section 7.2.1.

1bpmn.io, URL: http://www.bpmn.io
2Mongo DB, URL: https://www.mongodb.com
3OpenShift, URL: https://www.openshift.com
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Architectural Facts: Metadata information comprise structured informa-
tion and may be stored in relational databases for easy access. Hence, for
this purpose we have preferred a relational database.

Implementation Details: A MySQL1 relational database is used for the re-
alisation of this component.

8.3.11.3. DSS DB

Functionality: The purpose of this component is to store data explained
in Sections 2.1.1, 2.1.2 and 4.1 in order to provide a knowledge base for
the described DSS.

Architectural Facts: The data stored in this component are derived from
different benchmark scenarios and therefore they comprise unstructured
information. For these purposes we considered a document database to
be more appropriate.

Implementation Details: A MongoDB document database is used for the
realisation of this component.

8.4. Related BenchFlow Software

The architecture described in Section 8.2.3 supports the complete end-to-
end WINE4WfMSs process. Nevertheless, we also present two additional
software solutions that can be used complementary to our toolchain. BP-
Meter [IFP15] is an application that applies static analysis to a collection
of BPMN 2.0 process models. The analysis includes more than 100 met-
rics including variability of aggregated size metrics (e. g., number of nodes,
number of gateways, number of events, etc.), disaggregated metrics (e. g.,
number of script tasks, number of exclusive split gateways, etc.) and metrics
on the control flow and data flow of the process (e. g., parallel gateway fanin,
data input distribution). This application can be used not only for a deeper
understanding of the collection's composition, but also for exporting reports

1Oracle, MySQL, URL: https://www.mysql.com
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that can afterwards be utilised by data mining and analysis tools for drawing
additional conclusions. For example, in Chapter 9 we showcase how the
results of clustering analysis can be combined with the workload mix gener-
ation process for deriving a workload mix that is structurally representative
of a specific collection.

The Interactive Dashboard forWorkflow Engine Benchmarking [BMHW16]
is an effort to aggregate the results derived from diverse benchmarks on
WfMSs into a common data model and bring them to a common view.
Through this application the end-users, developers and researchers are able
to analyse and compare the behaviour of the systems in a straight-forward
fashion. The experiment configurations, workload mix details and results
used in the benchmarks described in Chapters 5 and 9 were also provided
for integration to the interactive dashboard.

8.5. Chapter Summary

In this chapter we presented a four phased method for deriving a structurally
representative workload mix with respect to a given BPMN 2.0 process
models collection. The WINE4WfMSs process employed information and
methods presented in Chapters 3, 4, 6 and 7 for the generation of the
workload mix. Afterwards we presented an architecture and a prototypical
implementation of a cloud aware, web-based toolchain that supports the
WINE4WfMSs process. For the design of the demonstrated architecture we
studied and applied selected cloud design patterns [Feh15] and followed
the fundamental cloud architectures, as for example distributed application
and loose coupling. For the prototypical implementation of the application
we selected state-of-art technologies and bring them together in a web
application mashup. Moreover, we presented additional BenchFlow software
that can be used complementary to our toolchain.
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Deriving a Workload Mix -
A Real World Case Study

ªIf the statistics are boring you've
got the wrong numbers.º

E. Tufte

The purpose of this chapter is to showcase the WINE4WfMSs process
by means of an exploratory case study. To this end, we apply the com-
plete WINE4WfMSs process to the process model collection discussed in
Section 3.2. After generating the workload mix we use it to execute a
benchmark for BPMN 2.0 WfMSs [FSP+17]. The detailed description of
the benchmark environment, experiments setup, performance metrics and
emerging results [FSP+17] are not a contribution of this work. However,
for the sake of completeness we explain them shortly and report the most
important findings. We also publish the workload mix and emerging results
in the interactive dashboard of the ªPerformance and Conformance Bench-
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marking for Workflow Enginesº (PeACE) initiative1 for easy access by third
parties.

The remainder of this chapter is structured as follows: Section 9.1 demon-
strates the application of the WINE4WfMSs process on a collection of thou-
sands of real world practice process models to result in a workload mix
that structurally represents this collection; Section 9.2 describes shortly the
benchmark in which we applied the derived workload mix and reports the
most important findings; and Section 9.3 summarizes the chapter.

9.1. Deriving a Workload Mix

In the following, we apply each phase of the WINE4WfMSs process as dis-
cussed in Section 8.1 to the BPMN 2.0 process models collection discussed
in Chapter 3.

9.1.1. Phase 1: Cleaning and Analysis of the Initial Process Models
Collection

The collection presented in Section 3.2 contains 12,624 real world BPMN 2.0
process models. Event logs of the process models were not shared with us,
since they constitute a valuable corporate asset for the companies. Therefore,
a behavioural analysis of the collection was not possible at this point. Before
proceeding to the analysis of the process models collection we should ensure
that the analysed sample is valid and compliant with the constraints set
by the RoSE algorithm presented in Section 6.3 and the BenchFlow frame-
work [FIP15], which will be used for executing the benchmark. To this end,
the analysed subset of the original collection should satisfy the following
requirements: i) should not contain incomplete or invalid process models;
ii) should not contain collaboration elements and iii) should not contain
cyclic process models.
As discussed in Section 3.2 the process models collected from the ªIBM

Banking Process and Service Modelsº, the ªIBM Insurance Process and

1PeACE, URL: https://peace-project.github.io/about.html
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Service Modelsº and the BPMAI process models were not compliant with
the BPMN 2.0 standard serialisation. Therefore, we need to convert them
into BPMN 2.0 compliant process models. For the IBM process models
we used the transformation rules shown in Section 3.2 that are realised
by the normaliser component (Section 8.3.2). All IBM process models
could be transformed into the standard serialisation without detecting any
invalid process models. For the BPMAI process models we succeeded in
transforming 7,515 (87.7%) process models of the BPMAI collection to
the standard serialisation, while the rest of the models were marked as
invalid. In total, after normalisation we discovered 5,491 process models
containing collaboration elements and 1,908 incomplete and⁄or invalid
process models. At this point it should be taken into consideration that these
statistics overlap for some process models. For instance, a process model may
contain collaboration elements and be incomplete or invalid. For the ªcleanº
collection of 3,779 process models (i. e., invalid, incomplete process models
and process models containing collaboration elements excluded) in total
532 (14.07%) cyclic process models were detected (Section 8.3.5). After
removing the aforementioned process models we resulted in a collection of
3,247 process models that can be analysed statistically (Section 8.3.3) and
by the RoSE algorithm (Section 8.3.7).

For a better comprehension of the analysed collection we present its struc-
tural composition in Figure 9.1, which shows the number of process models
(# Process Models) with a specific size for the clean collection. The size
for a process model is defined as the total number of nodes (i. e., FlowN-
odes [ISO13, p. 97]) per process model [GL06]. As shown in Figure 9.1, the
process models have a minimum size of 3 (size = 3) while their maximum ex-
istent size is 120 (size = 120). For values between 3 and 20 (3≤ size ≤ 20)
we observe a bigger concentration of data, especially in the range of sizes
between 5 and 12 (5≤ size ≤ 12, first and third quartile respectively) and a
mean size of 10.44 (size = 10.44). For the rest of sizes we observe a sparser
distribution [Observation 1]. Following these observations we conclude that
a process model with size between 5 and 20 (5 ≤ size ≤ 20) represents
the vast majority of the collection's process models, while a process model
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Figure 9.1.: Process model size distribution in the resulting BPMN 2.0 col-
lection

with size between 20 and 40 (20 < size ≤ 40) represents a smaller subset
of the collection [Observation 2]. Process models with sizes greater than
40 (size > 40) represent only a minority of the collection's process models.
With respect to the above statistics we can see that process models with size
between 5 and 32 (5≤ size ≤ 32) represent 81.99% of the collection.
As a final step of this phase we apply a clustering analysis [Iva14]. Clus-

tering analysis is a method that assists towards the grouping of a set of
objects into clusters, in such way that similar objects will belong to the same
cluster. Through the clustering analysis we are able in phase 2 to obtain
a more fine grained insight on the actual structural characteristics of the
process models. This has a triple utility: i) characterise the discovered RPFs
with respect to the obtained clusters; ii) synthesise process models that
reflect the characteristics of different clusters; and iii) set the foundation for
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Clusters Representativeness Description

Cluster 1 35% 1 Start Event,
2 End Events,

4 Tasks⁄Activities,
1 Exclusive Gateway

Cluster 2 29% 1 Start Event,
2 End Events,

6 Tasks⁄Activities,
2 Exclusive Gateways

Cluster 3 19% 1 Start Event,
3 End Events,

11 Tasks⁄Activities,
4 Exclusive Gateways,
1 Parallel Gateway

Cluster 4 11% 1 Start Event,
3 End Events,

16 Tasks⁄Activities,
5 Exclusive Gateways,
1 Parallel Gateway

Table 9.1.: Clusters of representative process models (adapted from [Iva14])

categorising the process models into workload classes.
A comprehensive clustering analysis of the collection is executed by

Ivanchikj [Iva14] who concluded in six clusters each one representing a
different group of process models in the collection. We show clusters 1 to 4
in Table 9.1, while we omitted clusters 5 and 6 as they describe a negligible
percentage of the collection (4% and 2% respectively). The original work
of Ivanchikj [Iva14] describes the clusters in more detail, by giving also
information considering the data elements, and the incoming (fan-in) and
outgoing (fan-out) values of the participating gateways [GL06]. At this
point, we omit these details as the discovered RPFs will already include this
information. More sophisticated attributes such as the complexity of the
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Figure 9.2.: Number of comparisons that extracted an RPF

process models of each cluster and levels of parallelism are also not con-
sidered in the clustering analysis. However, we also expect the discovered
RPFs to contain this information. It is also notable that the detected clusters
comply with the observations regarding the sizes of the process models.
Smaller process models (i. e., size = 8 in cluster 1) represent the 35% of the
collection while bigger process models (i. e., size = 26 in cluster 4) represent
a smaller percentage of the collection (11%).

9.1.2. Phase 2: Discovery of the Existing Relevant Process Fragments

The first step of this phase is to discover the RPFs of the underlying col-
lection. To this effect, we executed the RoSE algorithm (cf. Sections 6.3.2
and 8.3.7) against the collection. For measurement purposes we deployed
our implementation on a Virtual Machine (VM) in a private cloud solution.
The VM was configured with 8 MB memory and 4 CPUs, using the Ubuntu
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Figure 9.3.: Resulting RPFs of the BPMN 2.0 collection

LTS 14.04 operating system. The algorithm executed for 14 hours where
it conducted 5,229,769 comparisons and resulted in 143 RPFs. Figure 9.2
shows the number of algorithm comparisons that produced each detected
RPF (i. e., the occurrences of each detected RPF). As seen in Figure 9.2, most
of the RPFs were detected in one comparison, while only a smaller number
of RPFs was detected in more than one thousand comparisons.
The five most frequently detected RPFs are shown in Figure 9.3. The

most frequent RPF shown in Figure 9.3a is formed by a simpler structure,
while in the rest of the RPFs we can already observe more complex struc-
tures. The RPF shown in Figure 9.3a is also a substructure of Figure 9.3c
[Observation 3]. Therefore, the count of occurrences of Figure 9.3a contains
also the occurrences of Figure 9.3c. The fourth and fifth RPFs (Figures 9.3d
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Table 9.2.: Count of appearance of the existing elements in the cleaned
BPMN 2.0 collection

and 9.3e) represent more complex structures. Generally, the first three RPFs
(Figures 9.3a to 9.3c) confirm the frequent usage of the control flow work-
flow patterns and reveal combinations of those [VTKB03]. Regarding the
clustering analysis we observe mappings of the discovered RPFs to the recog-
nised clusters. More particularly, with a small deviation the Figures 9.3a
and 9.3b reflect cluster 1 while Figure 9.3e reflects cluster 2 [Observation 4].
Along with the number of comparisons that extract a specific RPF (rpfi)

we calculate two additional types of metadata. Namely, the total number of
occurrences of this RPF in the original collection and the number of process
models that contain an RPF. For example, assume two process models A
and B and an RPF rpf1 such that rpf1 is contained twice in model A and
once in model B. Then rpf1 is extracted by two comparisons (two complete
matches from model A to model B), is found in two process models, and
has three occurrences in the collection. These metadata are used in phase 4
for calculating the intensity with which an RPF (rpfi) will participate in the
workload mix.

Finally, despite the expressiveness of the BPMN 2.0 language, the detected
RPFs contained only a small subset of the BPMN 2.0 constructs as is it is
shown in Table 9.2. Although an extensive statistical analysis is beyond the
scope of this work, we need to stress out the limited usage of the BPMN 2.0
language constructs, a fact that is already observed in the existing litera-
ture [MR08]. With respect to that we may also observe that the recognised
clusters also describe process models that contain the mostly used BPMN 2.0
constructs of Table 9.2 (i. e., start event, end event, call activity, exclusive
gateway and parallel gateway). Thus, the derivation of the workload mix
process models discussed in phase 3 only considers these constructs. How-
ever, the proposed method for workload mix generation can be applied on
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any other process model collection and for deriving workload mixes that use
a richer set of the BPMN 2.0 language constructs.

9.1.3. Phase 3: Derivation of the Process Models for the Workload Mix

At this point, the clusters indicate the structural attributes a process model
should have, while the detected RPFs reveal the way in which these attributes
are connected to each other. A combination of these results helps us towards
defining process models that are structurally representative of the full range
of process models of the original collection. Thus, by combining information
detected by RPFs with respect to size characteristics of the collection with
the results of clustering analysis we derive the process models shown in
Figures 9.4a to 9.4c (cf. Observation 4). The RPFs synthesis presented in
previous chapter (Section 8.3.9), works for synthesising process models
out of two or more RPFs. Hence, the transformation of a unique RPF to a
complete process model has been done manually.
For deriving the process models shown in Figures 9.4d and 9.4e we use

the same information but we additionally synthesise two RPFs for deriving
process models that reflect clusters 3 and 4 respectively (Section 8.3.9). The
criteria with which we generate the synthetic process models of Figures 9.4d
and 9.4e are shown in Table 9.3. Due to space limitations, we use the
abbreviation ST for script task and CA for call activity on the depicted
workload mix process models. In the following, we discuss in more detail
the generation of the workload mix.

We begin by examining the first discovered RPF (rpf1 shown in Figure 9.3a).
The number of comparisons that extracted the rpf1 (Figure 9.3a) are much
higher than those of the other discovered RPFs (see Figure 9.2). This result
indicates an extensive usage of this specific RPF. Moreover, this RPF contains
parallelism which has previously indicated interesting performance impacts
regarding resource utilisation (cf. Chapter 5). Last but not least, with a small
deviation this RPF reflects cluster 1 in Table 9.1. For these reasons we decide
to use this RPF in the workload mix and proceed with its transformation to
a complete process model (Figure 9.4b). Taking into consideration Observa-
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Script
Tasks

Call
Activities

Exclusive
Gateways

Parallel
Gateways

Class 4
Crit. 1 6 - 2 -

Crit. 2 5 - 2 2

Class 5
Crit. 1 6 - 4 1

Crit. 2 - 9 1 1

Table 9.3.: Criteria for synthesizing the workload mix process models Fig-
ures 9.4d and 9.4e

tion 3 we see that the third discovered RPF (rpf3 shown in Figure 9.3c) is an
extended structure of the first RPF (rpf1 shown in Figure 9.3a). This eases
our goal to complete rpf1 (Figure 9.3a) into a complete process model. The
leftmost exclusive gateway of the rpf1 needs data for evaluating its condition
and passing the control to a branch. Therefore, we added a script task to
precede the exclusive gateway and generate the appropriate data. Then, we
link the Open Connection Points (OCPs) (see Chapter 7) of the gateways
with start and end events respectively. This results is the process model
shown in Figure 9.4b forming class 2 (c2) of the workload mix because the
metadata of this RPF resulted to the second higher intensity for the workload
mix class (see also phase 4).
The second and third classes of the workload mix (c3, c4 in Figures 9.4c

and 9.4d respectively) are in accordance with Observation 4. Namely, clus-
ter 1 is also reflected by the second RPF (rpf2, Figure 9.3b), while cluster 2
by the fifth RPF (rpf5, Figure 9.3e) with a small deviation on the number of
contained BPMN 2.0 elements. Again in this case we need to complete the
derived RPFs into complete process models. We follow a naive approach to
convert the RPFs to complete process models in order to avoid additional
overhead to the new process model. Thus, for rpf2 shown in Figure 9.3b we
add the missing sequence flow from task ªT3º to the merging exclusive gate-
way and then we add an end event to the exclusive gateway. This generates
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Figure 9.4.: Derived process model classes of the workload model [FSP+17]

the process model of class 1 (c1 shown in Figure 9.4a). Likewise, for the
fifth RPF (rpf5, Figure 9.3e) we add a start event and a script task before the
splitting exclusive gateway. Again in this case, the script task needs to be
added for providing the relevant data to the exclusive gateway to evaluate
its condition. Finally, we add the missing sequence flow from task ªT4º to
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task ªT5º and we connect task ªT6º with an end event. This results in the
process model of class 3 (c3 shown in Figure 9.4c).

As already discussed by Observation 1 most of the participating models in
the workload mix should have size between 5 and 32 (5≤ size ≤ 32). For
the classes constructed until now, we have process models of sizes between
8 and 10 (8 ≤ size ≤ 10). However, the initial analysis of the collection
(Observation 2), as well as the clustering analysis (clusters 3 and 4) denote
that also more complex process models should be included in the workload
mix. As it is expected, the more complex the process model is, the more
difficult it is to have exact recurrences in the original collection. Hence,
while a single RPF was sufficient for generating the process models shown
in Figures 9.4a to 9.4c, for deriving the bigger and more complex process
models shown in Figures 9.4d and 9.4e we need to proceed to the synthesis
of individual RPFs. For this we applied the process model generation method
as it was introduced in Chapter 7. In order to keep consistency with the
characteristics of the collection, we synthesised with respect to the clusters 3
and 4 analysis. The small number of extracted RPFs (143) made it infeasible
to synthesise valid process models that were a precise reflection of clusters 3
and 4. Therefore, the derived process models shown in Figures 9.4d and 9.4e
for the clusters 3 and 4 respectively are the closest we could get to these
clusters with respect to the contents of our database. In particular, the
criteria used for the generation of the process models shown in Figures 9.4d
and 9.4e are shown in Table 9.3.
The process model shown in Figure 9.4d is synthesised out of two RPFs.

The left-handed RPF of the process model in Figure 9.4d consists of the
flow nodes not marked by the dashed-line. It is the same as rpf5 shown
in Figure 9.3e but slightly changed, due to the synthesis of different OCPs.
The second RPF contained the rest of the elements marked by the dashed
line. The process model shown in Figure 9.4e is also synthesised out of
two RPFs. The first RPF is the leftmost part of the model up to the second
parallel gateway (not marked by the dashed line). The right-handed RPF
is marked by the dashed-line and consists of all nodes that exist right to
the second parallel gateway, including the parallel gateway. By sorting the
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Table 9.4.: Occurrences t(rpfi) of an RPF rpfi in the process models collection
M , occurrences in process models (m(rpfi)) and its calculated
intensity inte(ck) from Equation (8.1) (adapted from [FSP+17])

rpfi t(rpfi) m(rpfi) inte(ck)

Class 1 (c1) rpf2 1,731 1,602 39%

Class 2 (c2) rpf1 2,303 953 27%

Class 3 (c3) rpf5 1,710 640 19%

Class 4 (c4) rpf5 1,710 640 13%

rpf17 635 309

Class 5 (c5) rpf24 157 130 2%

rpf47 30 30

set of resulting RPFs with respect to their number of occurrences, Table 9.4
shows the position of rpfi in the resulting set (i. e., i indicates the ith element
of the set of resulting RPFs). Moreover, on the right part of Table 9.4 we
present RPF metadata regarding the number of occurrences (see t(rpfi) of
Equation (8.1) in Section 8.1) and the number of process models (see m(rpfi)
of Equation (8.1) in Section 8.1) in which the RPFs (rpfi) of the workload
mix process models we found.

9.1.4. Phase 4: Partition the Process Models into Workload Mix Classes

In this phase we form the workload classes (Figures 9.4a to 9.4e) of the
workloadmix. In other words, we calculate the intensity with which a process
model participates in the workload mix. For this we apply Equations (8.1)
and (8.2) introduced in Section 8.1. In the following we demonstrate how to
calculate the representativeness of the process model shown in Figure 9.4d
denoted as ªClass 4 (c4)º in Table 9.4. The values needed for calculating
the representativeness are shown in Table 9.4. Before proceeding to the

9.1 | Deriving a Workload Mix 187



calculation of the representativeness we evaluate the participating elements
as follows:

Sk = {rpf5, rpf17} : where {rpf5, rpf17} are the RPFs comprising the process
model shown in Figure 9.4d.

t(rpf5) = 1, 710 : the RPF rpf5 has 1,710 occurrences in the collection.

m(rpf5) = 640 : the RPF rpf5 occurs in 640 process models of the collec-
tion.

t(rpf17) = 635 : the RPF rpf17 has 635 occurrences in the collection.

m(rpf17) = 309 : the RPF rpf17 occurs in 309 process models of the collec-
tion.

|Sc |= 23, 125 : total number of occurrences of all resulting RPFs1.

|M |= 3, 247 : number of process models in the original collection.

This evaluates the representativeness of process model c4 of Figure 9.4d
as follows:

repr(c4) =
1
4

1, 710+ 635
23, 125

+
1
4

640+ 309
3, 247

= 0.0982

For calculating the intensity (inte(c4)) with which process model c4 par-
ticipates in the workload mix we multiply the representativeness (c4) with
100 and divide to the summarised representativeness of all process models
comprising the classes of the workload mix (resulting in 0.7295). Hence,
we then apply Equation (8.2) as follows:

1Note: this number is calculated using raw data
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inte(c4) =
'

100 · 0.0982
0.7295

)
= 13%

We proceed likewise for calculating the representativeness and conse-
quently the intensity of all the workload mix process models. The process
models shown in Figures 9.4a to 9.4e are labelled with respect to their
calculated intensity, such that a bigger class will map to a bigger intensity.
The exact intensity of each class is shown in Table 9.4.

9.1.5. Phase 5: Definition of the Execution Behaviour of the Workload Mix

For defining the execution behaviour of the process models of the workload
mix we follow the guidelines provided in Section 7.2.3 as follows:

i) Maximise the simplicity of the process models. A script task implements
an no operational script, except for the case in which the script task
precedes an exclusive gateway. In that case, generating a number for
evaluating an exclusive gateway condition is needed. We keep it to
the minimal amount of code that produces the required amount of
data. Similarly, the call activities call a no-operative process (start
event - no operational script task - end event). By implementing empty
script tasks and call activities calling an empty process, we eliminate
the time overhead introduced by the executed scripts tasks and call
activities and we are able to derive clean measurements;

ii) Keep the semantics of the script task or the call activity for all the
derived process models as they were present in the originally detected
RPFs. The only cases in which we edited the original RPF is when
a call activity precedes an exclusive gateway. In this case, the call
activity needs to call another process model that generates a number
and returns it to the parent workflow. The required underlying vari-
able sharing between the parent and the child process models is not
supported by all WfMSs [GHLW16]. Therefore, we converted such call
activities to script tasks.
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iii) Drop the interactions with external systems. We implement all tasks as
script tasks or call activities and exclude human tasks and web service
invocations. We use this approach as our workload mix targets to
stress only the process navigator and not components of the WfMS.
Generally, the derived process models are fully automated, as the goal
is to stress the performance of the process navigator.

iv) Define an equal probability for passing the control flow to any outgoing
branch of an exclusive gateway.

9.2. Application of the Workload Mix for Benchmarking
Purposes

The derived workload mix distils the most prominent control flow charac-
teristics, sizes (in terms of number of events, activities and gateways) and
structures of a large collection of real world process models, and can be used
for performance tests. For this purpose, we collaborated with an external
partner for running the generated benchmark to assess and compare the
performance of BPMN 2.0 WfMSs. The definition of performance metrics,
experiments setup, benchmarking and analysis of results are published in
detail by Ferme et al. [FSP+17]. For the sake of completeness in the follow-
ing we also provide a short overview of them as well as the most important
findings.

For the experiments we used the same methodology as the one described
in Chapter 5. Namely, we use the BenchFlow environment [FIP15; FIP+16],
which is an end-to-end Docker-based environment for WfMS performance
benchmarking [Mer14]. In the benchmark we include four different versions
of two open-source WfMSs. The included versions are the released versions
of the last two years (2014 ± 2016). Since we did not get the consent of
the vendors for publishing their names, the WfMSs that participated in
our experiments are thereafter named as WfMS A and WfMS B. Here we
should note that there is no mapping between WfMS A and WfMS B of this
chapter, to WfMS A and WfMS B of Chapter 5. We stress the tested WfMSs
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WfMS A

Load 7.2.0 7.3.0 7.4.0 7.5.0

Client-side Mean # Requests
per Second ±ci

50 49.13±0.04 49.17±0.03 49.16±0.02 49.09±0.01
500 484.87±0.39 486.44±0.10 484.84±0.82 482.91±2.20

1,000 890.84±4.82 879.15±9.94 859.81±3.42 763.46±2.17

Server-side

Mean Throughput
±ci (#pi⁄s)

50 118.23±0.21 119.72±0.17 120.08±0.79 120.05±0.42
500 1,185.12±0.45 1,185.56±0.33 1,180.80±4.34 1,175.10±0.58

1,000 2,121.35±6.23 2,130.90±9.50 2,087.26±2.72 1,849.88±5.17
Weighted Mean
Duration (ms)

50 1.03 1.08 1.12 1.24

500 0.87 0.91 1.07 1.14

1,000 0.93 0.99 1.05 1.15

Resource
Consumption

Weighted Mean
CPU (%)

50 1.66 1.33 1.33 1.35

500 8.07 6.26 7.03 6.95

1,000 11.39 8.33 8.81 8.79

Weighted Mean
RAM (MB)

50 637.28 590.82 634.79 648.67

500 885.10 860.70 886.53 866.37

1,000 970.61 957.47 978.97 971.43

Server-side

Weighted Mean
Process Instance
Duration (ms)

Class 1 (c1) 1.09 1.14 1.24 1.35

Class 2 (c2) 1.34 1.41 1.54 1.67

Class 3 (c3) 2.31 2.43 2.64 2.88

Class 4 (c4) 1.13 1.20 1.30 1.42

Class 5 (c5) 1.93 2.03 2.21 2.40

Table 9.5.: Performance and resource consumption metrics for WfMS A
[FSP+17]

with a load function of 50, 500, and 1,000 users instantiating business
process instances every second. The different numbers of users represent
different sized companies in which the WfMS technology was deployed.
Ferme et al. [FIP16] identified an expressive set of metrics for the thorough
description of the WfMS performance, which are included in this benchmark.
The performance metrics cover client-side performance aspects, such as the
number of process instantiation requests the WfMSs accept per second, as
well as WfMS specific metrics representing the internal behaviour of the
system executing the models and resource (i. e., CPU and RAM) consumption.
For ensuring reliable results that eliminate the non-determinism in the
performance measures we executed three rounds of each experiment. Then
we computed the aggregated metrics to analyse performance variability and
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WfMS B

Load 5.18.0 5.19.0.2 5.20.0 5.21.0

Client-side Mean # Requests
per Second ±ci

50 48.84±0.02 48.72±0.05 48.66±0.03 48.65±0.04
500 488.61±0.12 487.72±0.13 487.34±0.15 487.71±0.55

1,000 906.10±3.81 900.14±4.09 891.62±1.76 885.80±2.97

Server-side

Mean Throughput
±ci (#pi⁄s)

50 119.87±0.07 119.82±0.09 119.99±0.09 119.82±0.14
500 1,161.88±0.98 1,160.46±1.13 1,160.96±1.67 1,132.92±2.43

1,000 2,182.78±8.25 2,202.37±6.37 2,189.36±4.83 1,974.01±10.59
Weighted Mean
Process Instance
Duration (ms)

50 6.53 6.75 6.90 7.19

500 5.08 5.27 5.56 5.65

1,000 5.18 5.34 5.39 5.43

Resource
Consumption

Weighted Mean
CPU (%)

50 3.01 1.59 1.63 1.66

500 8.82 7.55 9.59 9.50

1,000 12.05 12.74 12.78 11.84

Weighted Mean
RAM (MB)

50 1,764.83 2,430.69 2,620.57 2,455.11

500 8,686.66 8,653.84 8,633.66 8,583.11

1,000 9,549.54 9,749.74 9,509.81 9,350.82

Server-side
Weighted Mean
Duration (ms)

Class 1 (c1) 9.28 9.52 9.79 10.02

Class 2 (c2) 6.09 6.24 6.42 6.57

Class 3 (c3) 16.73 17.16 17.64 18.06

Class 4 (c4) 3.53 3.62 3.73 3.81

Class 5 (c5) 22.49 23.07 23.72 24.28

Table 9.6.: Performance and resource consumption metrics for WfMS B
[FSP+17]

WfMS behaviour across the rounds.
Table 9.5, Table 9.6 and Figure 9.5 show the aggregated results that

emerged from our experiments. In the following we summarise the most
important findings, while a more detailed analysis of the results if provided
in [FSP+17]. As seen in Tables 9.5 and 9.6 WfMS A performed with a
significantly lower average single process model instance duration and lower
RAM usage. However, WfMS B had the edge in throughput (see Figure 9.5).
The obtained results also lead us to interesting conclusions regarding the
evolution of the WfMSs per se. As seen in Figure 9.5 each newer version
tested on both WfMS A and WfMS B demonstrated a performance decrease
with respect to the older versions. This fact indicates that adding new func-
tionalities to the system has an inverse effect on its performance. However,

192 9 | Deriving a Workload Mix - A Real World Case Study



0 2 4 6 8
0

500

1,000

1,500

2,000

50 Users

500 Users

1'000 Users

Weighted Average Process Instance Duration (ms)

A
ve
ra
ge

Th
ro
ug

hp
ut

(#
pi
⁄s
)

WfMS A 7.2.0
WfMS B 5.18.0
WfMS A 7.3.0
WfMS B 5.19.0.2
WfMS A 7.4.0
WfMS B 5.20.0
WfMS A 7.5.0
WfMS B 5.21.0

Figure 9.5.: Weighted average process instance duration (ms) vs. throughput
(# pi⁄s) [FSP+17]

these results were apparent only after executing multiple experiments with
different load functions. This highlights the need for executing diverse, sta-
ble, and reliable performance tests before drawing conclusions, and justifies
the need for benchmarking complex WfMSs using representative workload
mix and varying load functions as part of the workload model.
At the bottom of Tables 9.5 and 9.6 we also show the mean process

instance duration for each workload class. The presented mean values for
the various workload classes are calculated using diverse data points, as
the intensity with which a workload class participated in the workload mix
varies (see Table 9.4). The presented results show that the increased average
duration is not caused by a particular workload class, as an increase in the
performance is evident in each workload class separately. However, the
workload classes performed differently for the two WfMSs. Class 1 (see c1 in
Figure 9.4a and Table 9.4) was the fastest for WfMS A across all loads and
versions while class 4 (see c4 in Figure 9.4d and Table 9.4) was the fastest
for WfMS B. Similarly, class 3 resulted in the slowest duration results for
WfMS A (see c3 in Figure 9.4c and Table 9.4) and class 5 (see c5 in Figure 9.4e
and Table 9.4) to the slowest duration for WfMS B. The fact that these results
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are disproportional to the process models sizes and complexities reinforces
the conclusions drawn in Chapter 5 that parallelism and conditions also play
a role in the performance of WfMSs.
Overall, the applied benchmark detected significant performance dif-

ferences in the benchmarked systems. We are confident that the overall
methodology followed for defining the benchmark can be reliably applied
for comparing and evaluating the performance of different WfMSs releases
or deployment configurations.

9.3. Chapter Summary

This chapter can be seen as a use case exploratory study of the overall work,
as we employed the WINE4WfMSs process for the generation of a workload
mix based on a collection of real-world practice process models. Overall,
the generation of the workload mix executed smoothly and generated five
workload classes of gradual complexity, that distils the prominent structural
characteristics of the collection.

The generated workload mix has been given as input to a benchmark for
BPMN 2.0 WfMSs executed in the BenchFlow environment [FIP15; FIP+16].
Through the benchmark we tested four different versions of two widely used
open source BPMN 2.0 WfMSs. The workload mix was adequate for stressing
the WfMSs and revealing interesting performance differences between the
different versions of the products or the products per se. Moreover, the results
of the generated workload mix and emerging results are openly published
in the interactive dashboard of the PeACE initiative for future reference or
easy access by other interested parties.
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Conclusions and Outlook

ªNothing is really over until the
moment you stop trying.º

B. Dyson

Nowadays, Workflow Management Systems (WfMSs) are broadly used for
the design, deployment, monitoring, execution and analysis of automated
business process models. Through the years WfMSs have advanced and
can now deliver complex, service-oriented applications. The evolution of
WfMSs as well as the large number of them available in the market leads
companies in an extensive research before choosing which product is opti-
mal for their requirements and business. Benchmarking is an established
practice that allows the comparison of alternative products and helps the
constant technological evolution, by setting distinct key performance indi-
cators for measuring and assessing performance. For the case of WfMSs
there is not yet a standard benchmark available. A possible explanation for
this might be the inherent architectural complexity of WfMSs and the very
large number of parameters that affect their performance [PFR+15]. The
BenchFlow approach targets to propose the first standard benchmark for
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assessing and comparing the performance of WfMSs. In order to guarantee
reliable results the BenchFlow approach targets to fulfil the requirements of
a benchmark: portability, scalability, simplicity, vendor neutrality, repeatabil-
ity, efficiency, representativeness, relevance, accessibility, and affordability.
This work was conducted under the scope of the BenchFlow approach and
introduced the Workload Mix Generation for WorkflowManagement Systems
(WINE4WfMSs) method that allows the semi-automated generation of a
workload mix. The WINE4WfMSs method itself targeted a set of recognised
research challenges in the area of WfMS benchmarking and introduced some
new research questions that are also addressed by this work.

Initially, in Chapter 2 we covered related work on benchmarking and Busi-
ness Process Management (BPM). In Chapter 3 we introduced the anonymi-
sation method that we used for collecting real world practice process mod-
els and described the composition of the derived process model collection.
Afterwards we identified the basic components of a workload model for
benchmarking WfMSs (see Chapter 4) and in Chapter 5 we proposed and
executed the first micro-benchmark for BPMN 2.0 WfMSs to investigate the
impact of BPMN 2.0 language constructs on the WfMS process navigator
performance. In Chapter 6 we proposed a method that detects and extracts
reoccurring structures (i. e., Relevant Process Fragments (RPFs)) in a collec-
tion of BPMN 2.0 process models. The RPFs were then used by a method that
follows user-defined constraints for generating complete, executable process
models out of RPFs (see Chapter 7). The complete WINE4WfMSs method
and its realisation through a toolchain developed with diverse architectural
paradigms (e. g., distributed and cloud computing) was discussed extensively
in Chapter 8. The WINE4WfMSs method and its realisation were utilised in
Chapter 9, where we apply the WINE4WfMSs method to derive a workload
mix based on a collection of real world practice process models. The derived
workload mix is then provided for executing a benchmark for BPMN 2.0
WfMSs. An overview of the obtained results is also provided in Chapter 9.

In the following sections we discuss the answers to research questions,
limitations of this work and emerging open research challenges.
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10.1. Answers to Research Questions

The research questions outlined in Chapter 1 have been answered as follows:

RQ-1: How to overcome obstacles in creating a collection of real-world practice
process models?

In order to foster the sharing of real-world process models we initially
made confidentiality agreements. Moreover, in Chapter 3 we proposed a
process model anonymisation method that obfuscates business information
of process models, while maintaining the process model's executional
semantics. The acquired collection and its composition were also discussed
in Chapter 3, forming contribution C-1: łAn anonymisation method for process
models(łBPanonž) and the obtained collection of process models.ž

RQ-2: What are the basic components of a workload model for WfMSs?

Through a literature study in Chapter 4 we identified the core components
of a WfMS benchmark and their underlying interactions. In order to support
future endeavours for designing WfMS benchmarks we built a knowledge
base with the collected information and provided it to the users as a Decision
Support System for Benchmarking (see Chapter 8). Afterwards, we identified
the basic components of a workload model for WfMSs and their underlying
interactions and introduced a metamodel for WfMSs workload forming
contribution C-2: łA metamodel of the basic workload model components for
WfMSs.ž.

RQ-3: What is the impact of diverse BPMN 2.0 language constructs on the
process navigator’s performance?

Before proceeding to the definition of a complex workload mix we needed
to comprehend the impact of BPMN 2.0 language constructs on the process
navigator's performance. For this purpose, we proceeded to the definition
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and execution of contribution C-3: łThe first micro-benchmark for BPMN 2.0
WfMSsž. The micro-benchmark contained six different workload mixes
derived from frequently used control flow workflow patterns (i. e., sequence
flow, exclusive choice and simple merge, explicit termination, parallel
split and synchronisation, and arbitrary cycle) [VTKB03]. The first five
workload mixes defined the instantiation and execution of one workflow
pattern, while the sixth workload mix included instances of all workflow
patterns with equal distribution. The experiments were executed using the
BenchFlow environment [FIP15] for measuring response time, throughput
and resource utilisation [FIP16]. Among other observations, our results
revealed that the sequential workflow pattern makes a better candidate
when investigating the maximum throughput of WfMSs, while parallelism
may be used for performance tests investigating throughput and resource
utilisation. Moreover, more complex structures (e. g., arbitrary cycle) seemed
to be better candidates for measuring resource utilisation.

RQ-4: How to derive a representative and meaningful workload mix for both
general and domain specific benchmarks?

The complexity of WfMSs architecture and usage needs a flexible approach
for defining workload mixes. In this way, one may generate representative
workload mixes that match diverse performance testing scenarios and
goals. For addressing this challenge we proposed contribution C-4: The
WINE4WfMSs method. The WINE4WfMSs method was firstly introduced
as a vision in Chapter 1 and described in detail in Chapter 8. In summary,
WINE4WfMSs takes as input a collection of process models and derives the
structures that reoccur in the collection (referred to as Relevant Process
Fragments (RPFs)). The RPFs are annotated with related metadata and
used in subsequent steps for generating representative process models.
The representative process models generation is done with respect to
user-defined criteria. These criteria were extracted from the related work
presented in Chapters 2 and 4 as well as from the micro-benchmark results
(Chapter 5). In future endeavours, the acquisition of existing data on WfMSs
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benchmarking is facilitated through our toolchain and related BenchFlow
software presented in Chapter 8. In Chapter 9 we applied the WINE4WfMSs
method to a real world practice process models collection and derive a
structurally representative workload mix. The derived workload mix was
provided for the execution of a benchmark for BPMN 2.0 WfMSs [FSP+17].
The workload mix was adequate for stressing the WfMSs and evidenced
interesting performance behaviour among different versions of the same
products or the products per se.

RQ-5: How to detect reoccurring BPMN 2.0 structures in a process models
collection?

With respect to the characteristics of our BPMN 2.0 process models
collection two objectives were set for the detection of RPFs: the approach
should exploit solely the structural information of the process models
(i. e., omit textual semantics) and the detection of RPFs should be achieved
without knowing the structure to search a priori. For this we defined a formal
model and introduced contribution C-5: łThe RoSE methodž that achieves
the detection of RPFs while satisfying the aforementioned objectives. The
proposed method adapted Ullmann's algorithm [Ull76], which is a broadly
accepted approach on subgraph isomorphism. We argued that our approach
is complete, as it exhausts the search space. Moreover, in Chapter 9 we
showcased that our method can execute in acceptable time, as it completed
in 14 hours for comparing 3,247 process models and produced 143 RPFs.

RQ-6: How to synthesise a representative BPMN 2.0 process model?

As part of the WINE4WfMSs process we proposed contribution C-6: Rep-
resentative BPMN 2.0 process model generation method. The method applied
structural criteria as constraints for the generation of complete process mod-
els out of detected RPFs. The ultimate goal of this method is to produce
representative, executable process models that can be provided to the per-
formance tests. To achieve this goal, the method follows an identified set of
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rules that were afterwards realised through a backtracking algorithm (see
Chapter 7). The transformation of a process models to executable is achieved
manually, following suggested guidelines.

10.2. Limitations

In this section, we focus on two main limitations that pertain to the complete
WINE4WfMSs method. Although we could successfully gather a large and
diverse collection of process models, statistical information regarding their
execution was not actually shared with us [Limitation 1]. For example,
information regarding the ratio of specific process model instantiation per
time unit (i. e., load functions), the frequency of usage of each process
model, the execution duration of process models, the probability to follow a
control flow path or the data that drive the process models execution are
unavailable to us. Despite the numerous discussion sessions with industrial
and research partners, it slowly became clear that this type of information
is highly confidential. Hence, targeting people that are willing to provide
this information or log files that contain it is very challenging. In order to
overcome this burden we generate synthetic data and probabilistic activation
of the process paths. Hence, this type of information is currently user-defined
and its representation to real world situations depends on the user's intuition
and experience through the provision of criteria that drive the synthesis
process.

The workload characterisation process defines performance tests contain-
ing the synthetic workload mix to typical cases of workload mixes applied in
real world practice. Through collecting and comparing the results of exe-
cuted performance tests to real world practice, one is then able to evaluate
the representativeness of the synthetic workload mix to the real world. Since
we could not obtain any information regarding the load of the WfMSs in real
world practice and the corresponding behaviour of the process models, it
was not possible to proceed to the aforementioned workload characterisation
process [Limitation 2] [Fei02]. Thus, in Chapter 9 we could only partially
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validate the representativeness of the synthetic workload mix with respect
to its structural characteristics.

10.3. Future Work

In the following we discuss future research opportunities introduced by this
work.

10.3.1. Standardisation of the BenchFlow Benchmark

This work was conducted under the scope of the BenchFlow approach. The
BenchFlow approach is built with respect to the requisite properties of a
benchmark (portability, scalability, simplicity, vendor neutrality, repeatabil-
ity, efficiency, representativeness, relevance, accessibility, and affordability).
To this effect and in order to address the recognised challenges [PFR+15],
the definition of the workload mix as well as the development of the bench-
marking environment [FIP15] of the BenchFlow approach can be seen as a
first step towards a standard benchmark for BPMN 2.0 WfMSs. For evolving
into a standard industry benchmark, the BenchFlow project should make
steps towards the inclusion of industrial partners to the performance tests,
as well as the approval and support of a benchmarking initiative, as for
example Standard Performance Evaluation Corporation (SPEC) [Sta95] or
Transaction Processing Performance Council (TPC) [Tra92a].

10.3.2. Extend the RoSE Method

The RoSE method detects frequently reoccurring structures in a collection of
BPMN 2.0 process models by relying solely on the structural characteristics
of the process models collection. This decision was essentially driven by the
need for process model anonymisation and the existence of non-executable
process models in our collection [Limitation 1] (see Chapters 3 and 6). Upon
availability of the appropriate information, the RoSE method should be
extended to amore comprehensive approach that exploits existing techniques
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of textual and behavioural [Dij+13] semantics in the similarity detection.
This will enable the detection of reoccurring structures with similar context.
Nevertheless, an improved version of the RoSE method should also support
the detection of cyclic structures. Moreover, the RoSE method may be
optimised in terms of its performance, through the utilisation of heuristic
based methods [VM97].

10.3.3. Extend the Generation of Representative Process Models Method

Currently, the representative process models generation method supports
the generation of process models out of RPFs. Its functionality could be
extended to cover also generation of representative execution behaviour
of the process models (e. g., the number of started processes per second,
or the path divergence probability), as well as the probabilistic behaviour
of entities (i. e., web services, human actors and interacting applications)
interacting with the process instances. This can be achieved through the
analysis of real world practice or simulated process model event logs and
data ([Limitation 1]). Previous work has been done in the context of pro-
cess mining [Bur15] and workload characterisation [Fei02]. There exist
many techniques to mine process models from event logs when no model
is available, as well as techniques to add timing information to the mined
models [vdAvD02]. Additionally, many Business Process Intelligence tech-
niques exist to mine time information of known process models [vdAal13].
These techniques may be exploited in order to derive representative synthetic
process models that imitate also a realistic behaviour. At the end workload
characterisation techniques [Fei02] should be applied to the synthetic pro-
cess models, to ensure the representativeness of the observed performance
([Limitation 2]).

10.4. Chapter Summary

In this chapter we provided answers to the research questions presented in
Chapter 1. The two major limitations of the WINE4WfMSs method have
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been discussed, emerging essentially as an immediate consequence of the
process event logs unavailability. Upon acquisition of event logs, the com-
plete WINE4WfMSs method can be extended to support the generation of
workload mixes that imitate realistic behaviour. A possible approach to ex-
trapolate this behaviour would be through the utilisation of well established
process minings techniques [Bur15] or through the extension of the RoSE
method to support the detection of reoccurring structures considering also
textual and behavioural semantics. In order to verify the representativeness
of the synthetic workload mix's behaviour, one may proceed to workload
characterisation techniques [Fei02]. Through these techniques the synthetic
workload mix behaviour is compared to real world process models to derive
a ratio of representativeness.
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Assistive Functions for
RoSE Algorithm

This appendix presents the pseudocode of two assistive functions that are
used by the RoSE algorithm (see Algorithm 6.3, Section 6.3.2). Algo-
rithm A.1 shows a function that compares an RPF against a collection of
RPFs and detects duplicate occurrences of it (i. e., if there already is an
exact isomorphism of the RPF in the collection). In case there are multiple
occurrences of the RPF, the function updates the metadata information of
the RPF with respect to its frequency of occurrence. The function takes as
input the process models (G1 = (V1, E1), G2 = (V2, E2)) that extracted the
RPF (rpf1) for which we want to examine the duplicates, the RPF (rpf1) itself,
and the complete collection of RPFs (RPFcoll) which we search for duplicates.
The algorithm outputs the updated collection (RPFcoll). The algorithm needs
to compare the targeted RPF with each one of the RPFs that exist in the RPFs
collection. As a first condition, we first check if two RPFs are of the same size.
If not, we know for sure that these two RPFs cannot be exact isomorphisms
to each other and proceed to the next comparison. In case two RPFs are
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of the same size, we may proceed by re-applying the RoSE algorithm (cf.
Section 6.3) on the two RPFs. In case the algorithm returns a resulting RPF
that is common between two RPFs, we then proceed by checking the edges
of both graphs. If there is an equality among the edges we know that these
two RPFs are the same. We then proceed by updating the relevant metadata
for the discovered RPF. If we did not find any match (i. e., there was not a
duplicate of rpf1 in the collection), it means that the discovered RPF can be
inserted to the collection for first time. Hence, we insert it in the collection.
At the end of the algorithm we return the updated collection.

Algorithm A.2 is an assistive function used by the FixDecisionTree al-
gorithm (cf. Algorithm 6.6,Section 6.3.2) to construct the decision tree for
RPFs detection construction. The algorithm uses a child renQueue which is a
global variable shared with the FixDecisionTree function. This variable is
implemented with a LIFO queue that holds information regarding the edges
that are still not added in the tree. In addition, the algorithm takes as input
the parent variable, which is the edge that is currently checked for the tree
construction and the matrix which is an array for which we build the decision
tree. Algorithm A.2 outputs a set of edges that were calculated as children
of the edge parent. For the calculation of the edge's immediate children the
function traverses the array matrix row by row. The immediate children
can be found in the next row which contains ones (ª1º). If we find a child
and add it to the tree, then the siblings of this child need to be eliminated
from the matrix, because they represent alternative edges in the sub-graph
isomorphism and cannot be considered again for addition to this version
of the tree. At the end of the process we add all discovered children in the
child renQueue as they need to be recursively examined for their children.
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Algorithm A.1 Function that compares a RPF against the the RPFcoll to
detect duplicate (clone) RPFs and calculate the RPF metadata regarding its
frequency of occurrence

Input: G1 = (V1, E1), G2 = (V2, E2): the models Algorithm 6.3 compared to
extract the rpf1

Input: rpf1 represents the RPF to check against the collection for duplicates
Input: RPFcoll represents the collection against which we compare the rpf1

for duplicates
Output: The updated RPFcoll
1: function FixDuplicates(G1, G2, rpf1,RPFcoll)
2: for each (rpf2 ∈ RPFcoll) do
3: if (|Erpf1 | −|Erpf2 |) then
4: E1← out going(vrpf1

src )
5: edge1← e1 ∈ E1
6: E2← out going(vrpf2

src )
7: edge2← e2 ∈ E2
8: matrix← ∅
9: matrix← CreateMap(edge1, edge2, matrix)

10: rpfresult←MapToRPFs({matrix})
11: if ((Erpf2 − Erpfresult

) = 0) then // It is duplicate
// The RPF existing already in the RPFcoll (i. e., rpf2) will
update its metadata

12: rpf2.count← rpf2.count+ 1
13: rpf2.processModels← {G1, G2} ∪ rpf2.processModels
14: else // It is not duplicate
15: rpf1.count← 1
16: RPFcoll← RPFcoll ∪ {rpf1}
17: end if
18: end if
19: end for
20: return RPFcoll
21: end function
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Algorithm A.2 Assistive function for the decision tree for RPFs detection
construction. It relies on the matrix to detect the immediate children of an
edge and add them to the decision tree (tree)

1: global variables
2: child renQueue: Global variable used as memory for defining the

edges which are still not added in the tree. It is implemented as a LIFO
queue. This variable is shared with the FixDecisionTree function (cf.
Algorithm 6.6).

3: end global variables
Input: parent: the edge that is currently handled for the tree construction
Input: matrix: the array for which we build the decision tree
Output: children a set of edges that were calculated as the children of the

edge parent
4: function AddChildren(parent, matrix)
// First we get the immediate children of the edge parent

5: children← 0 // Start searching from the first row
6: i← parent.row+ 1
7: while (i <matrix.rowsSize ) do
8: j = 0
9: while ( j <matrix.columnsSize) do

10: if matrix[i][ j] = 1 then
11: matrixnew← UpdateMatrix(

matrix, i, j, map.rowSize,map.columnSize)
12: children← NewTreeNode(

i, j, matrixnew, map.rowSize, map.columnSize)
13: end if
14: j← j + 1
15: end while

// Before going to the next row if found children break
16: if (children ̸= 0) then
17: break
18: end if
19: i← i + 1
20: end while

// For the children we just calculated
21: for each (child ∈ children) do
22: tree.add(parent, child)
23: end for
24: child renQueue.add(children)
25: return children
26: end function

208 A | Assistive Functions for RoSE Algorithm



List of Figures

1.1. Overview of the WINE4WfMSs method . . . . . . . . . . . . . . 22

3.1. Influence relations among the artifacts of a WS-BPEL or
BPMN 2.0 business process model for the anonymisation
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1. Metamodel of a benchmark's components . . . . . . . . . . . . . 74
4.2. Basic components of workload model for WfMSs and interactions 78

5.1. SEQ± Sequence flow workflow pattern [SFP+16] . . . . . . . . 85
5.2. EXC± Exclusive choice and simple merge workflow pat-

terns [SFP+16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3. PAR± Parallel split and synchronisation workflow pat-

terns [SFP+16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4. EXT± Explicit termination workflow pattern [SFP+16] . . . . 86
5.5. CYC± Arbitrary cycle workflow pattern [SFP+16] . . . . . . . . 87
5.6. Mean duration (ms) per workflow pattern [SFP+16] . . . . . 91
5.7. Mean CPU (%) usage per workflow pattern [SFP+16] . . . . . 92
5.8. Mean RAM (MB) usage per workflow pattern [SFP+16] . . . 93

209



5.9. Mean duration (ms) per workflow pattern in MIX [SFP+16] . 94

6.1. BPMN 2.0 example process models [SAKL16] . . . . . . . . . . 104
6.2. Reoccurring structures in the process models of Figure 6.1

[SAKL16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3. BPMN 2.0 process model with cycle . . . . . . . . . . . . . . . . 111
6.4. DFS and Tarjan's traversals trees for the process model shown

in Figure 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5. Decision tree for RPFs detection . . . . . . . . . . . . . . . . . . . 119

7.1. Process model generation method overview . . . . . . . . . . . 133
7.2. Characterisation Phase . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3. Synthesis Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.4. Executable Refinement Phase . . . . . . . . . . . . . . . . . . . . 136
7.5. Example of RPF, emerging OCPs and calculated metadata . . 137
7.6. Conceptual model of RPF structural metadata . . . . . . . . . . 139
7.7. Heuristics example of adding a relax node . . . . . . . . . . . . 144
7.8. Example of synthesising a process model out of RPFs . . . . . 146
7.9. Example of completing a synthetic process model to an exe-

cutable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.1. Workload mix generation toolchain architecture overview and
implementation details . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2. Workload mix generation toolchain components interaction . 163
8.3. Screenshot of the toolchain's user interface . . . . . . . . . . . . 164

9.1. Process model size distribution in the resulting BPMN 2.0
collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.2. Number of comparisons that extracted an RPF . . . . . . . . . 180
9.3. Resulting RPFs of the BPMN 2.0 collection . . . . . . . . . . . . 181
9.4. Derived process model classes of the workload model [FSP+17]185
9.5. Weighted average process instance duration (ms) vs. through-

put (# pi⁄s) [FSP+17] . . . . . . . . . . . . . . . . . . . . . . . . 193

210 List of Figures



List of Tables

1.1. Research questions and contributions overview . . . . . . . . . 24
1.2. Contribution - publication correspondence . . . . . . . . . . . . 27

4.1. Components dependencies of a WfMS benchmark design . . . 76

5.1. Process instance duration and experiment execution statis-
tics [SFP+16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1. Incidence matrix for the process models of Figure 6.1 . . . . . 118

7.1. Criteria for selecting RPFs and synthesising the example pro-
cess model of Figure 7.8 . . . . . . . . . . . . . . . . . . . . . . . . 145

8.1. Selected cloud design patterns [FLR+14] for our architectural
design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1. Clusters of representative process models (adapted from
[Iva14]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.2. Count of appearance of the existing elements in the cleaned
BPMN 2.0 collection . . . . . . . . . . . . . . . . . . . . . . . . . . 182

211



9.3. Criteria for synthesizing the workload mix process models
Figures 9.4d and 9.4e . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.4. Occurrences t(rpfi) of an RPF rpfi in the process models col-
lection M , occurrences in process models (m(rpfi)) and its
calculated intensity inte(ck) from Equation (8.1) (adapted
from [FSP+17]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.5. Performance and resource consumption metrics for WfMS A
[FSP+17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.6. Performance and resource consumption metrics for WfMS B
[FSP+17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

212 List of Tables



Table of Definitions

1. Checkpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2. Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3. Source connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4. Checkpoint-subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5. Graph isomorphism [Val02] . . . . . . . . . . . . . . . . . . . . . . . 108
6. Subgraph isomorphism [Val02] . . . . . . . . . . . . . . . . . . . . . 108
7. Common Subgraph Isomorphism (CSI) . . . . . . . . . . . . . . . . 109
8. MCSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9. Common checkpoint-subgraph . . . . . . . . . . . . . . . . . . . . . . 109
10. Relevant Process Fragment (RPF) . . . . . . . . . . . . . . . . . . . . 109
11. Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12. SCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

213





Acronyms

ACID Atomicity, Consistency, Isolation, Durability.

API Application Programming Interface.

APROMORE Advanced Process Model Repository.

BenchFlow ªBenchFlow: A Benchmark for Workflow Management Sys-
tems".

betsy BPEL Engine Test System.

BPanon Business Process Anonymisation.

BPM Business Process Management.

BPMAI Business Process Management Academic Initiative.

BPMN Business Process Model and Notation.

BPMN 2.0 Business Process Model and Notation 2.0.

BPMS Business Process Management Systems.

CI Confidence Interval.

CORS Cross-Origin Resource Sharing1.

1https://www.w3.org/TR/cors/

215



CPU Central Processing Unit.

CRUD Create, Read (Retrieve), Update (Modify), Delete (Destroy).

CSS Cascading Style Sheets.

CSV Comma-Separated Values.

DAG Directed Acyclic Graph.

DFS Depth First Search.

DSS Decision Support System.

EAI Enterprise Application Integration.

EMF Eclipse Modeling Framework.

EPC Event-Driven Process Chain.

ESB Enterprise Service Bus.

FACTS Framework for Fault-Tolerant Composition of Transactional Web
Services.

GASTON Graph ⁄ Sequence ⁄ Tree extractiON.

GED Graph Edit Distance.

gSpan Graph-based Substructure Pattern Mining.

HATEOAS Hypertext as the Engine of Application State.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

I/O Input⁄Output.

IaaS Infrastructure as a Service.

IBM International Business Machines Corporation.

216 Acronyms



IDEAL Isolation, Distribution, Elasticity, Automated Management, Loose
Coupling.

IT Information Technology.

JMS Java Message Service.

JVM Java Virtual Machine.

KB KiloByte.

KPIs Key Performance Indicators.

LIFO Last-In-First-Out.

MAG Attribute Graph Model.

MB megabyte.

MCSI Maximum Common Subgraph Isomorphism.

MEAN MongoDB, Express, AngularJS, NodeJS.

MOM Message Oriented Middleware.

MVC Model-View-Controller.

OCL Object Constraint Language.

OCP Open Connection Point.

OLTP Online Transaction Processing.

PaaS Platform as a Service.

PC Personal Computer.

PDA Personal Digital Assistant.

PEaCE Benchmark for Conformance and Performance of Workflow En-
gines.

Acronyms 217



REST Representational State Transfer.

R-MAT Recursive Matrix.

RDF Resource Description Framework.

RoSE Reoccurring Structures Detection.

RPF Relevant Process Fragment.

RPST Refined Process Structure Tree.

SAP Systems, Applications & Products in Data Processing SE.

SCC Strongly Connected Components.

Sd Standard Deviation.

SESE Single-Entry-Single-Exit.

SLA Service Level Agreement.

SOA Service Oriented Architecture.

SOAP SOAP.

SPEC Standard Performance Evaluation Corporation.

SUT System Under Test.

SWoM Stuttgarter Workflow Maschine.

TPC Transaction Processing Performance Council.

UI User Interface.

URI Uniform Resource Identifier.

UUID Universally Unique Identifier.

VM Virtual Machine.

WfMS Workflow Management System.

218 Acronyms



WINE4WfMSs Workload Mix Generation for Workflow Management Sys-
tems.

WS-BPEL Web Services Business Process Execution Language.

WSDL Web Services Description Language.

XML eXtensible Markup Language.

XSD XML Schema Definition.

YAWL Yet Another Workflow Language.

Acronyms 219





Acknowledgements

I would like to express my gratitude to my advisor Prof. Frank Leymann
for the continuous support of my Ph.D study and related research, for his
patience, motivation, and immense knowledge. I could not have imagined
having a better advisor and mentor for my Ph.D study. Besides my advisor, I
would like to thank my second advisor Prof. Dimitris Plexousakis for taking
time to review the thesis, but most of all for providing his full support
throughout my complete educational journey.

My sincere thanks also goes to Prof. Cesare Pautasso for his insightful
comments and feedback, for the hard questions which led me to widen my
research from various perspectives, and for the fruitful discussions during
my visit in Lugano.

Thanks to all the IAAS team for the stimulating discussions and for all the fun
we have had in the last three years. I thank especially Santiago Gómez Sáez
and Sebastian Wagner for vitalizing the working routine and Steve Strauch
for pushing me to be better. Thank you Dr. Dieter H. Roller, Katharina
Görlach, Michael Hahn, Karolina Vukojevic-Haupt, Oliver Kopp and Andrè
van Hoorn for sharing your profound knowledge and for participating in the
different stages of this research and learning process. I greatly appreciate the

221



support and continuous encouragement received from Dimka Karastoyanova
and Vasilios Andrikopoulos. Thank you, for being great friends and mentors.

From Università della Svizzera Italiana, a big thank you to my close colleague
Vincenzo Ferme for the productive collaboration and for his dedication and
determination to help me meet even the most impossible deadlines and Ana
Ivanchikj for the critical comments and the excellent teamwork.

I would like to thank my husband Nikos for standing by my side all these
years with infinite patience and love, and my friend Roza for believing in
me even when I did not. Finally, I wish to thank my mother Aimilia and my
father Vasilis for their unconditional love and amazing opportunities that
they have given me, and my brother Giannis for his continuous support and
encouragement.

222 Acronyms



Bibliography

[Act11] Active Endpoints Inc. Assessing ActiveVOS Performance. 2011.
url: http://www.activevos.com/content/developers/
technical_notes/assessing_activevos_performance.pdf
(cit. on pp. 38, 73, 168).

[Adr16] AdroitLogic Private Ltd. Performance Framework and ESB Perfor-
mance Benchmarking. 2016. url: http://esbperformance.org
(cit. on p. 39).

[All16] T. Allweyer. BPMN 2.0 Introduction to the Standard for Business
Process Modeling. Ed. by B. on Demand. Books on Demand, May 3,
2016 (cit. on p. 106).

[Alm02] V. A. F. Almeida. ªCapacity Planning for Web Services Techniques
and Methodology.º In: Performance Evaluation of Complex Systems:
Techniques and Tools. Springer Science + Business Media, 2002,
pp. 142±157 (cit. on p. 71).

[Apa13a] Apache Software Foundation. Creating a Process. 2013. url: http:
//ode.apache.org/creating-a-process.html (cit. on p. 63).

[Apa13b] Apache Software Foundation. Red Hat JBoss BPM Suite 6.1 - De-
ployment Descriptors. 2013. url: https://access.redhat.com/
documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.1/
html/Administration_And_Configuration_Guide/sect-
Deployment_Descriptors.html (cit. on p. 63).

223



[APDL13] R. Angles, A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey.
ªBenchmarking Database Systems for Social Network Applications.º
In: International Workshop on Graph Data Management Experiences
and Systems. GRADES'13. New York, New York: Association for
Computing Machinery ACM, 2013, pp. 1±7 (cit. on pp. 41, 82).

[ARX12] ARX. ARX - Powerful Data Anonymization. 2012. url: http://arx.
deidentifier.org/ (cit. on p. 45).

[BBC+85] D. Bitton, M. Brown, R. Catell, S. Ceri, T. Chou, D. DeWitt, D. Gawlick,
H. Garcia-Molina, B. Good, J. Gray, et al. ªA Measure of Transaction
Processing Power.º In: Datamation 31.7 (1985), pp. 112±118 (cit.
on p. 13).

[BBD10] D. Bianculli, W. Binder, and M. L. Drago. ªSOABench: Performance
Evaluation of Service-oriented Middleware Made Easy.º In: Inter-
national Conference on Software Engineering. Vol. 2. ICSE '10. Cape
Town, South Africa, 2010, pp. 301±302 (cit. on pp. 14, 38, 41, 73,
82, 95, 168).

[BBDA12] M. Bentounsi, S. Benbernou, C. S. Deme, and M. J. Atallah.
ªAnonyfrag: An Anonymization-based Approach for Privacy-
preserving BPaaS.º In: International Workshop on Cloud Intelligence.
Cloud-I '12. Istanbul, Turkey: Association for Computing Machinery
ACM, 2012, pp. 1±8 (cit. on p. 46).

[BCM+05] P. Brebner, E. Cecchet, J. Marguerite, P. Tuma, O. Ciuhandu, B.
Dufour, L. Eeckhout, S. Frénot, A. S. Krishna, J. Murphy, et al. ªMid-
dleware Benchmarking: Approaches, Results, Experiences.º In: Con-
currency and Computation: Practice and Experience 17.15 (2005),
pp. 1799±1805 (cit. on p. 37).

[BDDS14] D. Breuker, P. Delfmann, H.-A. Dietrich, and M. Steinhorst. ªGraph
Theory and Model Collection Management: Conceptual Framework
and Runtime Analysis of Selected Graph Algorithms.º In: Information
Systems and e-Business Management 13.1 (Feb. 2014), pp. 69±106
(cit. on pp. 53, 101, 102, 129).

[BM06] D. A. Bader and K. Madduri. GTgraph: A Synthetic Graph Generator
Suite. 2006 (cit. on p. 44).

224 Bibliography



[BMHW16] D. Bimamisa, M. Müller, S. Harrer, and G. Wirtz. ªInteractive Dash-
board for Workflow Engine Benchmarks.º In: International Workshop
on Performance and Conformance of Workflow Engines. PEaCE '16.
2016 (cit. on pp. 26, 41, 80, 174).

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture. A System of Patterns. Ed. by
G. Redvers-Mutton. Wiley John + Sons, 1996 (cit. on p. 161).

[Bur15] A. Burattin. Process Mining Techniques in Business Environments.
Springer International Publishing, 2015 (cit. on pp. 202, 203).

[CAA+11] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson,
I. Pandis, and R. Stoica. ªTPC-E vs. TPC-C: Characterizing the New
TPC-E Benchmark via an I⁄O Comparison Study.º In: ACM SIGMOD
Record 39.3 (Feb. 2011), pp. 5±10 (cit. on p. 37).

[Cam13] Camunda Services GmbH. Camunda BPM. Mar. 2013. url: https:
//camunda.org/ (cit. on p. 89).

[Car08] J. Cardoso. ªBusiness Process Control-Flow Complexity: Metric, Eval-
uation, and Validation.º In: International Journal of Web Services
Research (IJWSR) 5.2 (2008), pp. 49±76 (cit. on pp. 132, 145).

[CFSV04] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. ªA (Sub)graph
Isomorphism Algorithm forMatching Large Graphs.º In: Transactions
on Pattern Analysis and Machine Intelligence 26.10 (2004), pp. 1367±
1372 (cit. on p. 102).

[Cha95] A. B. Chaudhri. ªAn Annotated Bibliography of Benchmarks for
Object Databases.º In: ACM SIGMOD Record 24.1 (1995), pp. 50±57
(cit. on p. 37).

[CMT00] M. Calzarossa, L. Massari, and D. Tessera. ªWorkload Characteriza-
tion Issues and Methodologies.º In: Performance Evaluation: Origins
and Directions. London, UK, UK: Springer-Verlag, 2000, pp. 459±481
(cit. on p. 71).

[CZF04] D. Chakrabarti, Y. Zhan, and C. Faloutsos. ªR-MAT: A Recursive
Model for Graph Mining.º In: International Conference on Data Min-
ing. ICDM' 04. Society for Industrial & Applied Mathematics (SIAM),
Apr. 2004, pp. 442±446 (cit. on pp. 43, 44).

Bibliography 225



[DDG09] R. Dijkman, M. Dumas, and L. García-Bañuelos. ªGraph Matching
Algorithms for Business Process Model Similarity Search.º In: In-
ternational Conference on Business Process Management (BPM ’09).
Ulm, Germany: Springer-Verlag, 2009, pp. 48±63 (cit. on p. 52).

[DDvD+11] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling.
ªSimilarity of Business Process Models: Metrics and Evaluation.º In:
Information Systems 36.2 (Apr. 2011), pp. 498±516 (cit. on p. 52).

[DES08] G. Din, K.-P. Eckert, and I. Schieferdecker. ªA Workload Model
for Benchmarking BPEL Engines.º In: International Conference on
Software Testing Verification and Validation Workshop. ICSTW '08.
IEEE. 2008, pp. 356±360 (cit. on pp. 39, 73, 98, 168).

[DG08] J. Dean and S. Ghemawat. ªMapReduce: Simplified Data Processing
on Large Clusters.º In: Commun. ACM 51.1 (Jan. 2008), pp. 107±
113 (cit. on p. 45).

[Dij+13] R. M. Dijkman et al. ªA Short Survey on Process Model Similarity.º
In: Seminal Contributions to Information Systems Engineering, 25
Years of CAiSE. Springer Berlin Heidelberg, 2013, pp. 421±427 (cit.
on pp. 52, 101, 202).

[DKP+13] M. Dave, T. Kohlenberg, S. Purcell, A. Ross, and J. Sedayao. Some
Key Cloud Security Considerations. Service Technology Magazine.
Sept. 2013 (cit. on p. 45).

[DKSU11] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. ªApples and
Oranges: a Comparison of RDF Benchmarks and Real RDF Datasets.º
In: International Conference on Management of Data. SIGMOD'11.
Association for Computing Machinery (ACM), 2011 (cit. on p. 43).

[DL08] D. J. DeWitt and C. Levine. ªNot Just Correct, but Correct and Fast:
A Look at One of Jim Gray's Contributions to Database System
Performance.º In: SIGMOD Rec. 37.2 (June 2008), pp. 45±49 (cit. on
pp. 13, 17).

[Dom+10] D. Dominguez-Sal et al. ªSurvey of Graph Database Performance
on the HPC Scalable Graph Analysis Benchmark.º In: Web-Age In-
formation Management. Springer Science + Business Media, 2010,
pp. 37±48 (cit. on p. 43).

226 Bibliography



[DRR12] R. Dijkman, M. L. Rosa, and H. A. Reijers. ªManaging Large Col-
lections of Business Process Models: Current Techniques and Chal-
lenges.º In: Computers in Industry 63.2 (Feb. 2012), pp. 91±97 (cit.
on p. 132).

[DRS10] F. Doelitzscher, C. Reich, and A. Sulistio. ªDesigning Cloud Services
Adhering to Government Privacy Laws.º In: International Confer-
ence on Computer and Information Technology. CIT '10. June 2010,
pp. 930±935 (cit. on p. 61).

[DS12] M. Dayarathna and T. Suzumura. ªXGDBench: A Benchmarking
Platform for Graph Stores in Exascale Clouds.º In: International
Conference on Cloud Computing Technology and Science. CloudCom
'12. Institute of Electrical & Electronics Engineers (IEEE), Dec. 2012
(cit. on p. 44).

[Dum+09] M. Dumas et al. ªSimilarity Search of Business Process Models.º In:
Institute of Electrical & Electronics Engineers (IEEE) Data Engineering
Bulletin 32.3 (2009), pp. 23±28 (cit. on p. 53).

[Dum+13] M. Dumas et al. ªFast Detection of Exact Clones in Business Process
Model Repositories.º In: Information Systems 38.4 (June 2013),
pp. 619±633 (cit. on pp. 51, 101, 129).

[EDG+12] C. C. Ekanayake, M. Dumas, L. García-Bañuelos, M. La Rosa, and
A. H. M. ter Hofstede. ªApproximate Clone Detection in Repositories
of Business Process Models.º In: International Conference of Busi-
ness Process Management. Ed. by A. Barros, A. Gal, and E. Kindler.
BPM '12. Tallinn, Estonia: Springer Berlin Heidelberg, Sept. 2012,
pp. 302±318 (cit. on pp. 51, 101, 129).

[EKMW12] R.-H. Eid-Sabbagh, M. Kunze, A. Meyer, and M. Weske. ªA Plat-
form for Research on Process Model Collections.º In: International
Workshop of Business Process Model and Notation (BPMN ’12). Ed.
by J. Mendling and M. Weidlich. Vienna, Austria: Springer Berlin
Heidelberg, Sept. 2012, pp. 8±22 (cit. on pp. 47, 48).

[Eli15] M. Elias. ªDesign of Business Process Model Repositories.º PhD thesis.
Stockholm University, 2015 (cit. on pp. 46, 47).

Bibliography 227



[ELS+10] H. Eberle, F. Leymann, D. Schleicher, D. Schumm, and T. Unger.
ªProcess Fragment Composition Operations.º In: Asia-Pacific Ser-
vices Computing Conference. APSCC '10. Institute of Electrical &
Electronics Engineers (IEEE) Asia-Pacific, 2010 (cit. on pp. 51, 56).

[ELtHF11] C. C. Ekanayake, M. La Rosa, A. H. M. ter Hofstede, and M.-C. Fauvet.
ªFragment-Based Version Management for Repositories of Business
Process Models.º In: On the Move to Meaningful Internet Systems:
OTM 2011 Conferences. Springer, 2011 (cit. on pp. 33, 50).

[EM06] S. Elnaffar and P. Martin. ªTechniques and a Framework for Char-
acterizing Computer Systems' Workloads.º In: Innovations in Infor-
mation Technology. Institute of Electrical & Electronics Engineers
(IEEE), Nov. 2006 (cit. on pp. 32, 33, 42, 71).

[Erl05] T. Erl. Service-oriented Architecture: Concepts, Technology, and Design.
Pearson Education India, 2005 (cit. on p. 34).

[Fed90] Federal Ministry of Justice. German Federal Data Protection Law.
1990 (cit. on p. 60).

[Feh15] C. Fehling. ªCloud computing patterns: identification, design, and
application.º Dissertation. Universität Stuttgart, Fakultät Informatik,
Elektrotechnik und Informationstechnik, Germany, Nov. 2015 (cit.
on pp. 155±157, 160, 162, 174).

[Fei02] D. G. Feitelson. ªWorkload Modeling for Performance Evaluation.º
In: Performance Evaluation of Complex Systems: Techniques and Tools.
Springer Science + Business Media, 2002, pp. 114±141 (cit. on
pp. 200, 202, 203).

[Fei15] D. G. Feitelson.Workload Modeling for Computer Systems Performance
Evaluation. Cambridge University Press, 2015 (cit. on pp. 15, 18,
21, 32, 42, 58, 59, 71, 79).

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1. W3C
RFC 2616. 1999 (cit. on p. 157).

228 Bibliography



[FHM14] C. Fähnrich, T. Hoppe, and A. Mascher. PromniCAT-Collecting
and Analyzing Heterogenic Business Process Models. 2014. url:
http://wiki.promnicat.googlecode.com/git-history/
c3eda190b1141b06e131543c38121aa009ca5c56/promnicat.
pdf (cit. on pp. 48, 49).

[FIP+16] V. Ferme, A. Ivanchikj, C. Pautasso, M. Skouradaki, and F. Leymann.
ªA Container-centric Methodology for Benchmarking Workflow Man-
agement Systems.º In: International Conference on Cloud Computing
and Services Science. CLOSER '16. Springer, 2016 (cit. on pp. 25, 27,
40, 72, 78, 98, 152, 190, 194).

[FIP15] V. Ferme, A. Ivanchikj, and C. Pautasso. ªA Framework for Bench-
marking BPMN 2.0 Workflow Management Systems.º In: Interna-
tional Conference on Business Process Management. BPM '15. Springer,
2015, pp. 251±259 (cit. on pp. 40, 82, 88, 98, 152, 176, 190, 194,
198, 201).

[FIP16] V. Ferme, A. Ivanchikj, and C. Pautasso. ªEstimating the Cost for
Executing Business Processes in the Cloud.º In: International Con-
ference on Business Process Management. BPM '16 (Forum). Springer.
2016, pp. 72±88 (cit. on pp. 41, 88, 191, 198).

[FLH+17] V. Ferme, J. Lenhard, S. Harrer, M. Geiger, and C. Pautasso. ªLessons
Learned from Evaluating Workflow Management Systems.º In: Inter-
national Conference on Software Engineering (Poster Track). ICSE'17.
ACM. 2017 (cit. on p. 77).

[FLR+14] C. Fehling, F. Leymann, R. Retter,W. Schupeck, and P. Arbitter. Cloud
Computing Patterns. Springer Wien, Jan. 2014 (cit. on pp. 155, 158,
166, 169).

[FSP+17] V. Ferme, M. Skouradaki, C. Pautasso, F. Leymann, and A. Ivanchikj.
ªPerformance Comparison Between BPMN 2.0 Workflow Manage-
ment Systems Versions.º In: International Workshop on Business
Process Modeling, Development and Support. BPMDS '17. Springer,
2017 (cit. on pp. 24, 27, 154, 175, 185, 187, 190±193, 199).

Bibliography 229



[FV01] M.-L. Fernández and G. Valiente. ªA graph distancemetric combining
maximum common subgraph and minimum common supergraph.º
In: Pattern Recognition Letters 22.6±7 (2001), pp. 753±758 (cit. on
p. 108).

[GAH+15] S. Gómez Sáez, V. Andrikopoulos, M. Hahn, D. Karastoyanova, F.
Leymann, M. Skouradaki, and K. Vukojevic-Haupt. ªPerformance
and Cost Evaluation for the Migration of a Scientific Workflow In-
frastructure to the Cloud.º In: International Conference on Cloud
Computing and Service Science. CLOSER '15. SciTePress, May 2015,
pp. 1±10 (cit. on p. 40).

[GAYG15] E. Goettelmann, A. Ahmed-Nacer, S. Youcef, and C. Godart. ªPaving
the Way towards Semi-automatic Design-Time Business Process
Model Obfuscation.º In: International Conference on Web Services
(ICWS ’15). Institute of Electrical & Electronics Engineers (IEEE),
June 2015 (cit. on pp. 45, 52).

[GGKS02] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. ªIntroduction to
Web Services Architecture.º In: IBM Systems Journal 41.2 (2002),
pp. 170±177 (cit. on p. 37).

[GHL+15] M. Geiger, S. Harrer, J. Lenhard, M. Casar, A. Vorndran, and G.
Wirtz. ªBPMN Conformance in Open Source Engines.º In: Interna-
tional Symposium on Service-Oriented System Engineering. SOSE '15.
Institute of Electrical & Electronics Engineers (IEEE). San Francisco
Bay, CA, USA, Mar. 2015 (cit. on pp. 41, 79).

[GHL16] M. Geiger, S. Harrer, and J. Lenhard. ªProcess Engine Benchmark-
ing with Betsy±Current Status and Future Directions.º In: Central-
European Workshop on Services and their Composition. ZEUS '16.
CEUR-WS.org, 2016 (cit. on p. 41).

[GHLW16] M. Geiger, S. Harrer, J. Lenhard, and G. Wirtz. ªOn the Evolution of
BPMN 2.0 Support and Implementation.º In: International Sympo-
sium on Service-Oriented System Engineering. SOSE '16. Mar. 2016,
pp. 101±110 (cit. on pp. 41, 148, 189).

230 Bibliography



[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. ªAn Overview of
Workflow Management: From Process Modeling to Workflow Au-
tomation Infrastructure.º In: Distributed and parallel Databases 3.2
(1995), pp. 119±153 (cit. on p. 16).

[GL06] V. Gruhn and R. Laue. ªComplexity Metrics for Business Process Mod-
els.º In: International Conference on Business Information Systems.
Vol. 85. BIS 2006. 2006, pp. 1±12 (cit. on pp. 165, 177, 179).

[GMG13] E. Goettelmann, N. Mayer, and C. Godart. ªA General Approach for
a Trusted Deployment of a Business Process in Clouds.º In: Inter-
national Conference on Management of Emergent Digital EcoSystems.
MEDES '13. Luxembourg, Luxembourg: Association for Computing
Machinery ACM, 2013, pp. 92±99 (cit. on p. 45).

[GN95] A. Gupta and N. Nishimura. The Complexity of Subgraph Isomorphism:
Duality Results for Graphs of Bounded Path- and Tree-Width. Tech.
rep. University of Waterloo. Computer Science Department., 1995
(cit. on p. 102).

[GR15] W. Grossmann and S. Rinderle-Ma. Fundamentals of Business In-
telligence. Data-Centric Systems and Applications. Springer-Verlag
Berlin Heidelberg, 2015 (cit. on pp. 102, 106).

[Gra92] J. Gray. The Benchmark Handbook for Database and Transaction
Systems. Ed. by J. Gray. 2nd. Morgan Kaufmann, 1992 (cit. on
p. 37).

[Gup14] A. Gupta. ªGenerating Large-Scale Heterogeneous Graphs for Bench-
marking.º In: Specifying Big Data Benchmarks. Springer Science +
Business Media, 2014, pp. 113±128 (cit. on p. 43).

[GW13] M. Geiger and G. Wirtz. ªBPMN 2.0 Serialization - Standard Com-
pliance Issues and Evaluation of Modeling Tools.º In: International
Workshop on Enterprise Modelling and Information Systems Archi-
tectures (EMISA ’13). Vol. Vol. 2. Lecture Notes in Informatics. St.
Gallen, Switzerland, Sept. 2013, pp. 177±190 (cit. on pp. 136, 149).

[HHGR06] G. Hackmann, M. Haitjema, C. Gill, and G.-C. Roman. ªSliver: A
BPEL Workflow Process Execution Engine for Mobile Devices.º In:
International Conference of Service Oriented Computing. ICSOC '06.
Springer, 2006, pp. 503±508 (cit. on pp. 38, 41).

Bibliography 231



[HJ14] M. Hertis and M. Juric. ªAn Empirical Analysis of Business Pro-
cess Execution Language Usage.º In: IEEE Transactions on Software
Engineering 40.8 (Aug. 2014), pp. 738±757 (cit. on p. 54).

[HKLS14] F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth. ªA Model-
Driven Approach for REST Compliant Services.º In: International
Conference on Web Services. ICWS '14. Institute of Electrical & Elec-
tronics Engineers (IEEE), June 2014 (cit. on p. 156).

[HLW12] S. Harrer, J. Lenhard, and G. Wirtz. ªBPEL Conformance in Open
Source Engines.º In: International Conference on Service Oriented
Computing & Applications. SOCA '12. Institute of Electrical & Elec-
tronics Engineers (IEEE) Computer Society, 2012, pp. 1±8 (cit. on
p. 41).

[Hol95] D. Hollingsworth. ªThe Workflow Reference Model.º In: Workflow
Management Coalition 68 (1995) (cit. on pp. 16, 17).

[HRW14] S. Harrer, C. Rock, and G. Wirtz. ªAutomated and Isolated Tests
for Complex Middleware Products: The Case of BPEL Engines.º
In: International Conference on Software Testing, Verification and
Validation Workshops. ICSTW '14. Mar. 2014, pp. 390±398 (cit. on
p. 41).

[HSA+14] M. Hahn, S. G. Sáez, V. Andrikopoulos, D. Karastoyanova, and F.
Leymann. ªDevelopment and Evaluation of a Multi-tenant Service
Middleware PaaS Solution.º In: International Conference on Utility
and Cloud Computing. UCC '14. Institute of Electrical & Electronics
Engineers (IEEE) Computer Society, 2014, pp. 278±287 (cit. on
p. 39).

[Hup09] K. Huppler. ªThe Art of Building a Good Benchmark.º In: Lecture
Notes in Computer Science. Springer Science + Business Media, 2009,
pp. 18±30 (cit. on pp. 13, 73, 75, 76).

[HW04] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2004 (cit. on p. 34).

232 Bibliography



[HZ06] C. Hentrich and U. Zdun. ªPatterns for Business Object Model Inte-
gration in Process-driven and Service-oriented Architectures.º In:
Conference on Pattern Languages of Programs. PLoP '06. Portland,
Oregon, 2006, pp. 1±14 (cit. on p. 37).

[IC07] Intel and Cape Clear. BPEL Scalability and Performance Testing. White
paper. 2007 (cit. on p. 73).

[IFP15] A. Ivanchikj, V. Ferme, and C. Pautasso. ªBPMeter: Web Service
and Application for Static Analysis of BPMN 2.0 Collections.º In:
International Conference on Business Process Management. BPMDemo
'15. CEUR-WS.org, 2015, pp. 30±34 (cit. on p. 173).

[ISO13] ISO⁄IEC. ISO/IEC 19510:2013 ś Information technology - Object
Management Group Business Process Model and Notation. V2.0.2.
Nov. 2013 (cit. on pp. 14, 16, 69, 84, 85, 106, 133, 135, 138, 149,
165, 177).

[Iva14] A. Ivanchikj. ªCharacterising Representative Models for BPMN 2.0
Workflow Engine Performance Evaluation.º MA thesis. Universitá
della Svizzera Italiana, Sept. 2014. url: https://thesis.bul.
sbu.usi.ch/theses/1235-1314Ivanchikj/pdf?1412857872
(cit. on pp. 178, 179).

[JCD+13] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.
Vahi. ªCharacterizing and Profiling Scientific Workflows.º In: Future
Generation Computer Systems 29.3 (Mar. 2013), pp. 682±692 (cit. on
p. 43).

[JWR+13] T. Jin, J. Wang, M. L. Rosa, A. ter Hofstede, and L. Wen. ªEfficient
Querying of Large Process Model Repositories.º In: Computers in
Industry 64.1 (2013), pp. 41±49 (cit. on pp. 47, 54).

[Kar95] D. Karagiannis. ªBPMS: Business Process Management Systems.º In:
SIGOIS Bull. 16.1 (Aug. 1995), pp. 10±13 (cit. on p. 16).

[Kha07] R. Khalaf. ªFrom RosettaNet PIPs to BPEL Processes: A Three Level
Approach for Business Protocols.º In: Data & Knowledge Engineering
61.1 (Apr. 2007), pp. 23±38 (cit. on p. 55).

Bibliography 233



[Kha08] R. Khalaf. ªSupporting Business Process Fragmentation While Main-
taining Operational Semantics: a BPEL Perspective.º Dissertation.
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Infor-
mationstechnik, Germany, Mar. 2008 (cit. on p. 52).

[KHSB12] S. Kounev, N. Huber, S. Spinner, and F. Brosig. ªModel-Based Tech-
niques for Performance Engineering of Business Information Sys-
tems.º In: Lecture Notes in Business Information Processing. Springer
Science + Business Media, 2012, pp. 19±37 (cit. on pp. 42, 71,
152).

[KKL06] R. Khalaf, A. Keller, and F. Leymann. ªBusiness processes for Web
Services: Principles and applications.º In: IBM Systems Journal 45.2
(2006), pp. 425±446 (cit. on p. 40).

[KKL07] R. Khalaf, O. Kopp, and F. Leymann. ªMaintaining Data Dependen-
cies Across BPEL Process Fragments.º In: International Conference in
Service-Oriented Computing. ICSOC '07. Springer Science + Business
Media, 2007, pp. 207±219 (cit. on p. 33).

[KL12] M. Kim and J. Leskovec. ªMultiplicative Attribute Graph Model of
Real-World Networks.º In: Internet Mathematics 8.1-2 (Mar. 2012),
pp. 113±160 (cit. on p. 44).

[KLSU11] O. Kopp, F. Leymann, D. Schumm, and T. Unger. ªOn BPMN Process
Fragment Auto-Completion.º In: Central-European Workshop on Ser-
vices and their Composition. Ed. by D. Eichborn, A. Koschmider, and
H. Zhang. ZEUS '11. CEUR-WS.org, 2011, pp. 58±64 (cit. on p. 57).

[KLWW11] M. Kunze, A. Luebbe, M. Weidlich, and M. Weske. ªTowards Un-
derstanding Process Modeling ± The Case of the BPM Academic
Initiative.º In: Business Process Model and Notation. Ed. by R. Di-
jkman, J. Hofstetter, and J. Koehler. Vol. 95. BPMN '11. Springer
Berlin Heidelberg, 2011, pp. 44±58 (cit. on p. 46).

[KtHvdA03] B. Kiepuszewski, A. ter Hofstede, and W. van der Aalst. ªFundamen-
tals of Control Flow in Workflows.º In: Acta Informatica 39.3 (Mar.
2003), pp. 143±209 (cit. on p. 57).

234 Bibliography



[LDUD13] M. La Rosa, M. Dumas, R. Uba, and R. Dijkman. ªBusiness Process
Model Merging: An Approach to Business Process Consolidation.º In:
ACM Transactions on Software Engineering andMethodology (TOSEM)
22.2 (Mar. 2013), pp. 1±42 (cit. on p. 56).

[Len16] J. Lenhard. ªPortability of Process-Aware and Service-Oriented Soft-
ware: Evidence and Metrics.º PhD thesis. University of Bamberg,
Germany, 2016 (cit. on p. 52).

[Ley01] F. Leymann. ªManaging Business Processes via Workflow Technol-
ogy.º In: International Conference on Very Large Data Bases. VLDB
'01. 2001 (cit. on pp. 19, 47, 59, 68).

[LGZ07] J. Liu, I. Gorton, and L. Zhu. ªPerformance Prediction of Service-
Oriented Applications based on an Enterprise Service Bus.º In: IEEE
Annual international Computer Software and Applications Conference.
Ed. by Huimin Lin et al. Beijing, China: IEEE Computer Society,
July 2007, pp. 327±334 (cit. on p. 14).

[LLHX10] A. Liu, Q. Li, L. Huang, and M. Xiao. ªFacts: A Framework for Fault-
Tolerant Composition of Transactional Web Services.º In: IEEE Trans-
actions on Services Computing 3.1 (2010), pp. 46±59 (cit. on p. 39).

[LMJ10] G. Li, V. Muthusamy, and H.-A. Jacobsen. ªA Distributed Service-
Oriented Architecture for Business Process Execution.º In: ACM
Transactions on the Web 4.1 (Jan. 2010), pp. 1±33 (cit. on p. 40).

[LR00] F. Leymann and D. Roller. Production Workflow: Concepts and Tech-
niques. Ed. by C. Little. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2000 (cit. on pp. 16, 42, 83).

[LR97] F. Leymann and D. Roller. ªWorkflow-Based Applications.º In: IBM
Systems Journal 36.1 (1997), pp. 102±123 (cit. on p. 21).

[LRvdA+11] M. La Rosa, H. A. Reijers, W. M. van der Aalst, R. M. Dijkman, J.
Mendling, M. Dumas, and L. García-Bañuelos. ªAPROMORE: An
advanced process model repository.º In: Expert Systems with Appli-
cations 38.6 (2011), pp. 7029±7040 (cit. on pp. 46, 48, 54, 58).

[MA01] D. A. Menasce and V. Almeida. Capacity Planning for Web Services:
Metrics, Models, and Methods. 1st. Prentice Hall, 2001 (cit. on p. 75).

Bibliography 235



[Ma12] Z. Ma. ªProcess Fragments: Enhancing Reuse of Process Logic in
BPEL Process Models.º PhD thesis. Doctoral dissertation, University
of Stuttgart, 2012 (cit. on pp. 46, 50, 54).

[MAD99] D. A. Menascé, V. A. Almeida, and L. W. Dowdy. Capacity Planning
and Performance Modeling: FromMainframes to Client-Server Systems.
Ed. by D. Mosco. Prentice-Hall, Inc., Mar. 11, 1999 (cit. on p. 19).

[MBM09] M. R. Mendes, P. Bizarro, and P. Marques. Performance Evaluation
and Benchmarking. Ed. by R. Nambiar and M. Poess. Berlin, Heidel-
berg: Springer-Verlag, 2009. Chap. A Performance Study of Event
Processing Systems (cit. on pp. 41, 82).

[Mer14] D. Merkel. ªDocker: Lightweight Linux Containers for Consistent
Development and Deployment.º In: Linux J. 2014.239 (Mar. 2014)
(cit. on p. 190).

[ML08] Z. Ma and F. Leymann. ªA Lifecycle Model for Using Process Frag-
ment in Business Process Modeling.º In: International Workshop on
Business Process Modeling, Development and Support. BPMDS '08.
conjuction with CAiSE, France, 2008, pp. 1±9 (cit. on p. 46).

[MMB16] R. Mrasek, J. Mülle, and K. Böhm. ªProcess Synthesis with Sequential
and Parallel Constraints.º In: On the Move to Meaningful Internet
Systems: OTM 2016 Conferences. Springer Nature, 2016, pp. 43±60
(cit. on p. 34).

[Mol14] I. Molyneaux. The Art of Application Performance Testing: From Strat-
egy to Tools. 2nd. O'Reilly Media, Inc., 2014 (cit. on pp. 71, 77).

[MR03] D. C. Montgomery and G. C. Runger. Applied Statistics and Probabil-
ity for Engineers. John Wiley and Sons, 2003 (cit. on p. 89).

[MR08] M. Muehlen and J. Recker. ªHow Much Language is Enough? Theo-
retical and Practical Use of the Business Process Modeling Notation.º
In: International Conference on Advanced Information Systems En-
gineering. CAiSE '08. Springer. Springer Berlin Heidelberg, 2008,
pp. 465±479 (cit. on pp. 106, 182).

236 Bibliography



[MTJ+10] H. Mili, G. Tremblay, G. B. Jaoude, É. Lefebvre, L. Elabed, and G. E.
Boussaidi. ªBusiness Process Modeling Languages: Sorting Through
the Alphabet Soup.º In: ACM Computing Surveys 43.1 (Dec. 2010),
pp. 41±456 (cit. on p. 16).

[NGY+16] A. A. Nacer, E. Goettelmann, S. Youcef, A. Tari, and C. Godart. ªOb-
fuscating a Business Process by Splitting Its Logic with Fake Frag-
ments for Securing a Multi-cloud Deployment.º In: World Congress
on Services. SERVICES '16. June 2016, pp. 18±25 (cit. on pp. 45,
52).

[NK05] S. Nijssen and J. N. Kok. ªThe Gaston Tool for Frequent Subgraph
Mining.º In: Electronic Notes in Theoretical Computer Science 127.1
(Mar. 2005), pp. 77±87 (cit. on pp. 53, 102).

[Obe06] D. Oberle. Semantic Management of Middleware. Vol. 1. Semantic
Web and Beyond. New York: Springer, 2006 (cit. on p. 35).

[Org07] Organization for the Advancement of Structured Information Stan-
dards (OASIS). Web Services Business Process Execution Language
(WS-BPEL) Version 2.0. Apr. 2007. url: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (cit. on
pp. 14, 16).

[Ory08] Oryx. http://bpt.hpi.uni- potsdam.de/Oryx/WebHome.
2008 (cit. on p. 49).

[Pega] Pegasus WMS. Workflow Gallery. url: https://confluence.
pegasus.isi.edu/display/pegasus/WorkflowGenerator
(cit. on p. 42).

[Pegb] Pegasus WMS. Workflow Generator. url: https://pegasus.isi.
edu/workflow_gallery/index.php (cit. on p. 42).

[PF08] R. Prodan and T. Fahringer. ªOverhead Analysis of Scientific Work-
flows in Grid Environments.º In: IEEE Transactions on Parallel and
Distributed Systems 19.3 (Mar. 2008), pp. 378±393 (cit. on p. 40).

Bibliography 237



[PFR+15] C. Pautasso, V. Ferme, D. Roller, F. Leymann, and M. Skouradaki.
ªTowards Workflow Benchmarking: Open Research Challenges.º In:
Conference on Database Systems for Business, Technology, and Web.
BTW 2015. 2015, pp. 331±350 (cit. on pp. 14, 18, 19, 38, 40, 41,
48, 57, 79, 80, 195, 201).

[PGD10] A. Polyvyanyy, L. García-Bañuelos, and M. Dumas. ªStructuring
Acyclic Process Models.º In: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, pp. 276±293 (cit. on p. 57).

[PJMR14] A. Petermann, M. Junghanns, R. Müller, and E. Rahm. ªGraph-
based data integration and business intelligence with BIIIG.º In:
Proceedings of the VLDB Endownment 7.13 (Aug. 2014), pp. 1577±
1580 (cit. on p. 42).

[Poe12] M. Poess. ªTPC's Benchmark Development Model: Making the First
Industry Standard Benchmark on Big Data a Success.º In: WBDB.
Vol. 8163. Lecture Notes in Computer Science. Springer, 2012, pp. 1±
10 (cit. on p. 77).

[PSB15] D. J. Power, R. Sharda, and F. Burstein. Decision Support Systems.
Ed. by DSSResources.COM. John Wiley and Sons, Ltd, 2015. url:
http://dx.doi.org/10.1002/9781118785317.weom070211
(cit. on p. 168).

[PVV11] A. Polyvyanyy, J. Vanhatalo, and H. Völzer. ªSimplified Computa-
tion and Generalization of the Refined Process Structure Tree.º In:
Web Services and Formal Methods. Ed. by M. Bravetti and T. Bul-
tan. Vol. 6551. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 25±41 (cit. on p. 51).

[PW12] P. Pietsch and S. Wenzel. ªComparison of BPMN2 Diagrams.º English.
In: Business Process Model and Notation. Ed. by J. Mendling and M.
Weidlich. Vol. 125. Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg, 2012, pp. 83±97 (cit. on pp. 55, 101,
129).

[PY14] P. Pietsch and H. Yazdi. BPMAI 2 BPMN. Qudimo Project. 2014.
url: http://pi.informatik.uni-siegen.de/qudimo/bpmn/
transformation/ (cit. on pp. 68, 165).

238 Bibliography



[Ran91] M. Randić. ªGeneralized molecular descriptors.º In: Journal of Math-
ematical Chemistry 7.1 (Dec. 1991), pp. 155±168 (cit. on p. 56).

[RG08] L. Ramakrishnan and D. Gannon. A Survey of Distributed Workflow
Characteristics and Resource Requirements. Tech. rep. TR671. Indiana
Univeristy, 2008 (cit. on p. 42).

[RH14] C. Röck and S. Harrer. Literature Survey of Performance Benchmarking
Approaches of BPEL Engines. Tech. rep. Otto-Friedrich University of
Bamberg, 2014 (cit. on p. 41).

[RHW14] C. Röck, S. Harrer, and G. Wirtz. ªPerformance Benchmarking of
BPEL Engines: A Comparison Framework, Status Quo Evaluation and
Challenges.º In: International Conference on Software Engineering
and Knowledge Engineering. SEKE '14. 2014, pp. 31±34 (cit. on
p. 41).

[RMD10] H. Reijers, J. Mendling, and R. Dijkman. ªOn the Usefulness of
SubProcesses in Business Process Models.º In: External Report, BPM
center report, No. BPM-10-03. Eindhoven: BPMcenter.org, 2010 (cit.
on p. 50).

[Rol13] D. H. Roller. ªThroughput Improvements for BPEL Engines: Imple-
mentation Techniques and Measurements applied in SWoM.º PhD
thesis. University of Stuttgart, 2013 (cit. on pp. 17, 39, 41, 73, 168).

[RvdAH07] N. Russell, W. M. van der Aalst, and A. Hofstede. ªAll That Glitters Is
Not Gold: Selecting the Right Tool for Your BPM Needs.º In: Cutter
IT Journal 20.11 (2007), pp. 31±38 (cit. on pp. 38, 40).

[RYC16] G. Rosinosky, S. Youcef, and F. Charoy. ªA Framework for BPMS
Performance and Cost Evaluation on the Cloud.º In: Workshop on
Business Process Monitoring and Performance Analysis in the Cloud.
CloudCom '16. Luxembourg, Luxembourg: Institute of Electrical &
Electronics Engineers (IEEE), Dec. 2016 (cit. on p. 41).

[SAB+16] M. Skouradaki, T. Azad, U. Breitenbücher, O. Kopp, and F. Leymann.
ªA Decision Support System for the Performance Benchmarking of
Workflow Management Systems.º In: Advanced Summer School of
Service Oriented Computing. SummerSOC '16. IBMResearch Division,
2016, pp. 41±58 (cit. on pp. 24, 27, 72, 169).

Bibliography 239



[SAKL16] M. Skouradaki, V. Andrikopoulos, O. Kopp, and F. Leymann. ªRoSE:
Reoccurring Structures Detection in BPMN 2.0 Process Model Col-
lections.º In: On the Move to Meaningful Internet Systems: OTM 2016
Conferences. Springer Nature, 2016, pp. 263±281 (cit. on pp. 24, 27,
103, 104).

[SAL16] M. Skouradaki, V. Andrikopoulos, and F. Leymann. ªRepresentative
BPMN 2.0 Process Model Generation from Recurring Structures.º
In: International Conference on Web Services. ICWS '16. Institute of
Electrical & Electronics Engineers (IEEE), June 2016, pp. 468±475
(cit. on pp. 25, 27, 132).

[SALM12] S. Strauch, V. Andrikopoulos, F. Leymann, and D. Muhler. ªESBMT:
Enabling Multi-Tenancy in Enterprise Service Buses.º In: Interna-
tional Conference on Cloud Computing Technology and Science Proceed-
ings. CloudCom '12. Institute of Electrical & Electronics Engineers
(IEEE), Dec. 2012, pp. 456±463 (cit. on p. 39).

[SASL13] S. Strauch, V. Andrikopoulos, S. G. Saez, and F. Leymann. ªESBMT:
A Multi-tenant Aware Enterprise Service Bus.º In: IJNGC 4.3 (2013)
(cit. on p. 39).

[SBK+12] S. Strauch, U. Breitenbücher, O. Kopp, F. Leymann, and T. Unger.
ªCloud Data Patterns for Confidentiality.º In: International Conference
on Cloud Computing and Service Science. CLOSER '12. SciTePress,
2012, pp. 387±394 (cit. on pp. 45, 60).

[SCG06] V. Seidita, M. Cossentino, and S. Gaglio. ªA Repository of Fragments
for Agent Systems Design.º In:Workshop on Objects and Agents. WOA
'06. Catania, Italy, 2006, pp. 130±137 (cit. on p. 49).

[Sed12] J. Sedayao. Enhancing Cloud Security Using Data Anonymiza-
tion. White Paper. Intel, 2012. url: http : / / www . intel .
com/content/dam/www/public/us/en/documents/best-
practices / enhancing - cloud - security - using - data -
anonymization.pdf (cit. on pp. 45, 61).

[SEH03] S. E. Sim, S. Easterbrook, and R. C. Holt. ªUsing Benchmarking
to Advance Research: A Challenge to Software Engineering.º In:
International Conference on Software Engineering. ICSE '03. IEEE
Computer Society. 2003, pp. 74±83 (cit. on p. 17).

240 Bibliography



[Sen15] R. Sen. Develop Secure Cloud-Aware Application. Tech. rep. IBM,
2015 (cit. on p. 152).

[SFL+15] M. Skouradaki, V. Ferme, F. Leymann, C. Pautasso, and D. H. Roller.
ªBPELanon: Protect Business Processes on the Cloud.º In: Interna-
tional Conference on Cloud Computing and Service Science. CLOSER
'15. Lisbon, Portugal: SciTePress, May 2015, pp. 241±250 (cit. on
pp. 25, 27, 60, 64, 66, 167).

[SFP+16] M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, and A. van
Hoorn. ªMicro-Benchmarking BPMN 2.0 Workflow Management
Systems with Workflow Patterns.º In: Advanced Information Systems
Engineering. Ed. by S. Nurcan, P. Soffer, M. Bajec, and J. Eder. CAISE
'16. Springer International Publishing, 2016, pp. 67±82 (cit. on
pp. 25, 27, 42, 73, 82, 85±87, 89±95, 168).

[SGHL15] M. Skouradaki, K. Görlach, M. Hahn, and F. Leymann. ªApplica-
tion of Sub-Graph Isomorphism to Extract Reoccurring Structures
from BPMN 2.0 Process Models.º In: International Symposium on
Service-Oriented System Engineering. SOSE '15. Institute of Electrical
& Electronics Engineers (IEEE), Apr. 2015, pp. 11±20 (cit. on pp. 25,
27, 103).

[SK10] M. Sonntag and D. Karastoyanova. ªNext Generation Interactive
Scientific Experimenting based on the Workflow Technology.º In:
IASTED Technology Conferences / 696:MS / 697:CA / 698: WC / 699:
EME / 700: SOE. ACTA Press, 2010 (cit. on p. 40).

[SKBB09] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. ªPerformance
Evaluation ofMessage-OrientedMiddleware Using the SPECjms2007
Benchmark.º In: Performance Evaluation 66.8 (2009), pp. 410±434
(cit. on p. 35).

[SKCB07] K. Sachs, S. Kounev, M. Carter, and A. Buchmann. ªDesigning a
Workload Scenario for Benchmarking Message-Oriented Middle-
ware.º In: SPEC Benchmark Workshop. Austin, Texas, USA: SPEC,
Jan. 2007 (cit. on p. 75).

Bibliography 241



[SKK+11] D. Schumm, D. Karastoyanova, O. Kopp, F. Leymann, M. Sonntag,
and S. Strauch. ªProcess Fragment Libraries for Easier and Faster
Development of Process-based Applications.º In: Journal of Systems
Integration 2.1 (2011), pp. 39±55 (cit. on pp. 51, 56, 136).

[SKLS10] D. Schumm, D. Karastoyanova, F. Leymann, and S. Strauch. ªFrag-
mento: Advanced Process Fragment Library.º In: 19th International
Conference on Information Systems Development, ISD. Prague, Czech
Republic, Aug. 2010 (cit. on pp. 49, 50, 58).

[SL15] M. Skouradaki and F. Leymann. ªDetecting Frequently Recurring
Structures in BPMN 2.0 Process Models.º In: Advanced Summer
School of Service Oriented Computing. SummerSOC '15. IBM Re-
search Division, 2015 (cit. on pp. 25, 27, 103).

[SLM+10] D. Schumm, F. Leymann, Z. Ma, T. Scheibler, and S. Strauch. ªInte-
grating Compliance into Business Processes: Process Fragments as
Reusable Compliance Controls.º In: TheMultikonferenzWirtschaftsin-
formatik, MKWI. Universitätsverlag Göttingen, 2010 (cit. on pp. 51,
56).

[Spe99] W. M. C. Specification.Workflow Management Coalition, Terminology
& Glossary (Document No. WFMC-TC-1011). Workflow Management
Coalition Specification, Feb. 1999 (cit. on p. 15).

[SRL+15] M. Skouradaki, D. H. Roller, F. Leymann, V. Ferme, and C. Pau-
tasso. ªOn the Road to Benchmarking BPMN 2.0 Workflow Engines.º
In: ACM/SPEC International Conference on Performance Engineering.
ICPE '15. Austin, Texas: Association for Computing Machinery ACM,
2015, pp. 301±304 (cit. on pp. 16, 25, 27, 32, 38, 40).

[SRPL14] M. Skouradaki, D. Roller, C. Pautasso, and F. Leymann. ªBPELanon:
Anonymizing BPEL Processes.º In: Central European Workshop on
Services and their Composition. ZEUS '14. 2014, pp. 9±15 (cit. on
pp. 26, 60, 64).

[Sta07] Standard Performance Evaluation Corporation. SPECjms2007. 2007.
url: https://www.spec.org/jms2007/ (cit. on pp. 34, 35, 73,
74, 168).

242 Bibliography



[Sta10] Standard Performance Evaluation Corporation. SPEC SOA Subcom-
mittee. Feb. 2010. url: http://www.spec.org/soa/ (cit. on
p. 36).

[Sta15] Standard Performance Evaluation Corporation. SPECjbb2015. 2015.
url: https://www.spec.org/jbb2015/ (cit. on pp. 35, 73,
168).

[Sta95] Standard Performance Evaluation Corporation (SPEC). 1995. url:
https://www.spec.%20org/spec/ (cit. on pp. 34, 72, 77, 201).

[STK+10] D. Schumm, O. Turetken, N. Kokash, A. Elgammal, F. Leymann,
and W.-J. Van Den Heuvel. ªBusiness Process Compliance Through
Reusable Units of Compliant Processes.º In: International Conference
on Current Trends in Web Engineering. Vol. 6385. ICWE '10. Springer-
Verlag, 2010, pp. 325±337 (cit. on pp. 33, 46, 50, 51).

[Tar72] R. Tarjan. ªDepth First Search and Linear Graph Algorithms.º In:
SIAM Journal on Computing (1972) (cit. on pp. 111, 113, 115).

[TPC15] TPC. TPC benchmark E standard specification, version 1.14. http:
//www.tpc.org/tpce/. 2015 (cit. on pp. 37, 73, 168).

[TPC94a] TPC. TPC benchmark A standard specification, revision 2.0. http:
//www.tpc.org/tpce/. 1994 (cit. on p. 36).

[TPC94b] TPC. TPC benchmark B standard specification, revision 2.0. http:
//www.tpc.org/tpcb. 1994 (cit. on p. 36).

[TPK+13] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki. ªFrom A to
E: Analyzing TPC's OLTP Benchmarks: the Obsolete, the Ubiquitous,
the Unexplored.º In: International Conference on Extending Database
Technology. EDBT'13. Association for Computing Machinery (ACM),
2013, pp. 17±28 (cit. on pp. 36, 37).

[Tra92a] Transaction Processing Performance Council. TPC. http://www.
tpc.org/information/benchmarks.asp. 1992. url: http:
//www.tpc.org/tpch/ (cit. on pp. 21, 34, 72, 77, 201).

[Tra92b] Transaction Processing Performance Council. TPC-H. http://www.
tpc.org/tpcc/. 1992 (cit. on pp. 36, 73, 168).

Bibliography 243



[TZJW08] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright. ªA Nine Year
Study of File System and Storage Benchmarking.º In: Transaction
Storage 4.2 (2008), pp. 1±56 (cit. on p. 37).

[UEKL10] T. Unger, H. Eberle, O. Kopp, and F. Leymann. ªThe SubProcess Spec-
trum.º In: International Conference on Business Process and Services
Computing (BPSC ’10). Lecture Notes in Informatics. Gesellschaft
für Informatik e.V. (GI), 2010 (cit. on pp. 50, 51).

[Ull76] J. R. Ullmann. ªAn Algorithm for Subgraph Isomorphism.º In: ACM
23.1 (1976), pp. 31±42 (cit. on pp. 53, 54, 102, 119, 126, 129,
199).

[Val02] G. Valiente. Algorithms on Trees and Graphs. Berlin; New York:
Springer-Verlag Berlin Heidelberg, 2002 (cit. on pp. 108, 213).

[vdAal13] W. M. P. van der Aalst. ªBusiness Process Management: A Compre-
hensive Survey.º In: ISRN Software Engineering 2013 (2013), pp. 1±
37 (cit. on p. 202).

[vdAvD02] W. van der Aalst and B. van Dongen. ªDiscovering Workflow Perfor-
mance Models from Timed Logs.º In: Engineering and Deployment
of Cooperative Information Systems. Ed. by Y. Han, S. Tai, and D.
Wikarski. Vol. 2480. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2002, pp. 45±63 (cit. on p. 202).

[vKAH+15] J. v. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning,
and P. Cao. ªHow to Build a Benchmark.º In: ACM/SPEC Interna-
tional Conference on Performance Engineering. ICPE '15. Association
for Computing Machinery (ACM), 2015 (cit. on pp. 15, 31).

[VKL06] J. Vanhatalo, J. Koehler, and F. Leymann. ªRepository for Business
Processes and Arbitrary Associated Metadata.º In: International
Conference on Business Process Management. BPM Demo '16. Vienna,
Austria: CEUR-WS.org, 2006 (cit. on p. 49).

[VM97] G. Valiente and C. Martínez. ªAn Algorithm for Graph Pattern-
Matching.º In: South American Workshop on String Processing. Vol. 8.
International Informatics Series. Carleton University Press, 1997,
pp. 180±197 (cit. on pp. 53, 102, 202).

244 Bibliography



[VMSS12] M. Vieira, H. Madeira, K. Sachs, and K. S. Resilience Assessment and
Evaluation of Computing Systems. Ed. by K. Wolter, A. Avritzer, M.
Vieira, and A. van Moorsel. Springer Science + Business Media,
2012 (cit. on pp. 31, 71).

[VMZ+10] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins.
ªA Comparison of a Graph Database and a Relational Database.º
In: ACM Southeast Conference. SE '10. Association for Computing
Machinery (ACM), 2010 (cit. on pp. 42, 43).

[VP12] S. Vinogradov and A. Pastsyak. ªEvaluation of Data Anonymization
Tools.º In: International Conference on Advances in Databases, Knowl-
edge, and Data Applications. DBKDA '12. 2012, pp. 163±168 (cit. on
p. 45).

[VTKB03] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and
A. P. Barros. ªWorkflow Patterns.º In: Distributed Parallel Databases
14.1 (July 2003), pp. 5±51 (cit. on pp. 82, 87, 182, 198).

[VVK08] J. Vanhatalo, H. Völzer, and J. Koehler. ªThe Refined Process Struc-
ture Tree.º In: Business Process Management. Ed. by M. Dumas, M.
Reichert, and M.-C. Shan. Vol. 5240. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008, pp. 100±115 (cit. on
pp. 51, 56).

[Wal14] J. Waller. Benchmark for: Performance Benchmarking of Application
Monitoring Frameworks. Aug. 2014 (cit. on pp. 17, 18, 20).

[WH13] J. Waller and W. Hasselbring. ªA Benchmark Engineering Methodol-
ogy to Measure the Overhead of Application-Level Monitoring.º In:
KPDAYS. Vol. 1083. CEUR Workshop Proceedings. CEUR-WS.org,
2013, pp. 59±68 (cit. on pp. 33, 41, 81).

[Win00] WinEdt. WinEdt Dictionaries. Aug. 2000. url: http : / / www .
winedt.org/Dict/ (cit. on p. 66).

[WJWW13] J. Wang, T. Jin, R. K. Wong, and L. Wen. ªQuerying Business Process
Model Repositories.º In: World Wide Web 17.3 (Apr. 2013), pp. 427±
454 (cit. on p. 54).

Bibliography 245



[WLR+09] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar, and F.
Leymann. ªMonitoring and Analyzing Influential Factors of Business
Process Performance.º In: Proc. of the IEEE International on Enterprise
Distributed Object Computing Conference. EDOC '09. 2009, pp. 141±
150 (cit. on p. 38).

[WR+00] C.Wohlin, P. Runeson, et al. Experimentation in Software Engineering:
An Introduction. Kluwer, 2000 (cit. on p. 97).

[WRMR11] B. Weber, M. Reichert, J. Mendling, and H. A. Reijers. ªRefactoring
large process model repositories.º In: Computers in Industry 62.5
(2011), pp. 467±486 (cit. on p. 51).

[WvdAD+06] P. Wohed, W. M. van der Aalst, M. Dumas, A. H. ter Hofstede, and
N. Russell. ªOn the Suitability of BPMN for Business Process Mod-
elling.º In: Lecture Notes in Computer Science 4102 (2006), pp. 161±
176 (cit. on p. 84).

[YDG12] Z. Yan, R. Dijkman, and P. Grefen. ªBusiness Process Model Reposi-
tories - Framework and Survey.º In: Information and Software Tech-
nology 54.4 (Apr. 2012), pp. 380±395 (cit. on pp. 46, 47).

[YDG15] Z. Yan, R. Dijkman, and P. Grefen. ªGenerating process model col-
lections.º In: Software and Systems Modeling (SoSyM) (Oct. 2015)
(cit. on pp. 55, 56, 101, 129, 132).

[YH02] X. Yan and J. Han. ªgSpan: Graph-Based Substructure Pattern Min-
ing.º In: International Conference on Data Mining. ICDM '02. Institute
of Electrical & Electronics Engineers (IEEE), 2002 (cit. on pp. 22,
53, 102).

[YWH+07] W. Yurcik, C. Woolam, G. Hellings, L. Khan, and B. M. Thurais-
ingham. ªToward Trusted Sharing of Network Packet Traces Using
Anonymization: Single-Field Privacy⁄Analysis Tradeoffs.º In: Com-
puter Research Repository (CoRR) abs⁄0710.3979 (2007), pp. 1±8
(cit. on p. 44).

[ZLN+14] X. Zhang, C. Liu, S. Nepal, C. Yang, and J. Chen. ªPrivacy Preser-
vation over Big Data in Cloud Systems.º In: Security, Privacy and
Trust in Cloud Systems. Ed. by S. Nepal and M. Pathan. Security,
Privacy and Trust in Cloud Systems. Springer Berlin Heidelberg,
2014, pp. 239±257 (cit. on pp. 45, 61).

246 Bibliography



[ZMH16] M. A. Zemni, A. Mammar, and N. B. Hadj-Alouane. ªAn Automated
Approach for Merging Business Process Fragments.º In: Computers
in Industry 82 (Oct. 2016), pp. 104±118 (cit. on p. 56).

Bibliography 247




