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Abstract

Wir betrachten die Lage der eindeutigen minimalen
Hauptbahn einer Isotropiewirkung eines einfach zusam-
menhängenden symmetrischen Raumes kompakten Typs
mit Wurzelsystem An bzw. Dn. Nach einer Identifizierung
des Bahnenraumes mit einer verallgemeinerten Weyl-Kam-
mer, geben wir für An die Lage der minimalen Hauptbahn
in der dominanten verallgemeinerten Weyl-Kammer ex-
plizit an. FürDn geben wir ein Ergebnis an, welches es uns
erlaubt die Lage der minimalen Hauptbahn in der domi-
nanten verallgemeinertenWeyl-Kammer aus den Nullstellen
eines Polynoms zu bestimmen, dessen Form wir explizit
angeben.

Abstract

We study the position of the unique minimal principal
orbit of the isotropy action of a simply-connected symmet-
ric space of compact type with restricted root system An

or Dn. After identifying the orbit space with a generalized
Weyl chamber, we give for An an explicit formula for the
position of the minimal principal orbit in the dominant
generalized Weyl chamber. For Dn, on the other hand,
we give a result that enables us to determine the position
of the minimal principal orbit in the dominant generalized
Weyl chamber by computing the roots of a polynomial,
which we give explicitly.
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1 Introduction

An isometric action of a compact Lie group G on a Riemannian
manifold M is called polar if there exists a section, i.e. a subman-
ifold of M that intersects every orbit orthogonally. The action
is called hyperpolar, if the section is flat in the induced metric.
Manifolds with hyperpolar actions have various nice properties
and are therefore an interesting field of study. It has been shown
by A. Kollross [Koll] that in the case of hyperpolar actions on
irreducible Riemannian symmetric spaces of compact type, de-
noted by M = G/K, the action has to be either of cohomogene-
ity one or a so called Hermann action. The latter is defined as
an action of a symmetric subgroup H ⊆ G, i.e. a subgroup such
that there exists an involution σ : G → G with the property that
H is contained in the fixed point set of σ. A special case of
a Hermann action is given by the action of the isotropy group
K. These so called isotropy actions and their orbits are the cen-
tral subject of this thesis, where we restrict our considerations to
simply-connected symmetric spaces.

Isotropy actions and the geometry of their orbits have been
studied extensively over the years. Particularly important for us
are the following two results: In [Tas] the mean curvature of a
principal orbit is calculated. Using this result, [HSTT] showed
that there exists a unique principal orbit that is a minimal sub-
manifold. The root space decomposition of symmetric spaces is a
very useful tool in this context. Identifying the orbit space with
the closure of a generalized Weyl chamber, enables an investiga-
tion of the orbits on the Lie algebra level.

The outlined results lead in a natural way to the problem of
determining the unique point, associated to the unique minimal
principal orbit of an isotropy action, in a given Weyl chamber.
For some symmetric spaces of rank two the position of the mini-
mal principal orbit has already been found, [CNV]. But for most
cases it remained an open question.
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In this thesis, we study the position of the minimal principal
orbit for isotropy actions on symmetric spaces of compact type
and rank n with root systems An and Dn, i.e. the classical root
systems with simply-laced Dynkin diagrams. For this, we de-
fine real valued functions, denoted by ϑAn and ϑDn , respectively.
These functions have the property that their unique extremal
point coincides with the unique minimal principal orbit in the
Weyl chamber.

In the case that the root system is An, we give an explicit
formula for the point associated to the minimal principal orbit
within the dominant generalized Weyl chamber.

For the root system Dn, on the other hand, the main result
is a theorem that enables us to find the unique minimal principal
orbit in the dominant generalized Weyl chamber by determining
the roots of a polynomial of degree ⌊n2 ⌋ − 1.

This thesis is organized as follows:
The first section gives a short introduction to the field and

preliminary results. Starting with a review of some needed prop-
erties of symmetric spaces and hyperpolar actions, we then re-
strict our considerations to isotropy actions on simply-connected
symmetric spaces of the compact type. We reprove the diagonal-
ization of the shape operator of principal orbits given in [Ver], by
adjusting the proof for the diagonalization of the shape operator
of the orbits of Hermann actions given in [GT] to the special case
of an isotropy action. This allows us to read off the mean curva-
ture of the orbits from the diagonalized shape operator. For each
root system ∆, we define the function ϑ∆ on a generalized Weyl
chamber, originally introduced in [CNV], which has a unique ex-
tremal point that coincides with the unique minimal principal
orbit in the Weyl chamber. The investigation of the position of
the critical point of ϑ∆ within a Weyl chamber will be our ap-
proach to determine the positon of the unique minimal principal
orbit. Finally, we give a formulation of the central problem in
this thesis.
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Section 2 deals with the solution of the posed problem for
symmetric spaces with root system An. We state and prove the
main result of this section which is an explicit formula for the po-
sition of the unique minimal principal orbit of the isotropy action
within the dominant generalized Weyl chamber. As a corollary
we obtain a recursive relation between the minimal principal or-
bit of a symmetric space of rank n and the minimal orbit of a
symmetric space of rank n + 1. Originally, the insight of the
fact, that the solution of the problem for rank n can be used to
construct the solution of the problem for rank n + 1, was the
foundation that led to the construction of the explicit formula in
the main result.

Section 3 deals with symmetric spaces with root system Dn.
The main result of this section is a theorem that enables us to de-
termine the unique minimal principal orbit in the dominant gen-
eralized Weyl chamber from the roots of a polynomial of degree
⌊n2 ⌋−1, which will be denoted by Pn. The key to the main result
is an ansatz that reduces the problem from having originally n
unknowns x1, . . . , xn to a problem with only ⌊n2 ⌋ − 1 unknowns
ξ1, . . . , ξ⌊n

2
⌋−1. The proof starts by revealing symmetries of the

components of ∇ϑDn with respect to certain permutations of the
variables x1, . . . , xn. This study of symmetries, together with the
ansatz, lead to a non-linear system of equations (NSE) in ⌊n2 ⌋−1
variables. The benifit of this derived NSE lies not only in the
fact that a solution yields the unique minimal principal orbit in
the considered Weyl chamber, but in particular in its relatively
simple form. Finally, we show, using symmetry arguments, that
the solution of the NSE is given by the roots of the polynomial
Pn of degree ⌊n2 ⌋ − 1, which we give explicitly.

We emphazise that in contrast to the first section on the pre-
liminaries, the results in section two and three are original.

In this work we will denote the geodesic exponential map
by Exp and the Lie group exponential map by exp. The par-
allel transport along the geodesic γ in M will be denoted by
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γ||ba : Tγ(a)M → Tγ(b)M . If the Lie group G acts on the Rieman-
nian manifold M and p ∈ M , then we write G · p for the orbit
through p. Further, we denote the isotropy group at p by Gp. In
the following, every Riemannian manifold will be endowed with
the Levi-Civita connection ∇ and we write R for the Riemannian
curvature tensor. For each symmetric space of the compact type
the metric is understood to be induced by a negative multiple of
the Killing form on the Lie algebra of the isometry group.
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2 Preliminaries

2.1 Basics

Let M be a Riemannian manifold.

Definition 2.1 For p ∈ M and y ∈ TpM The curvature operator
Ry in direction y is given by the self adjoint linear map

Ry : TpM → TpM, x 7→ R(x, y)y.

Further, let N ⊆ M be a submanifold and let p ∈ N .

Definition 2.2 For ξ ∈ νpN , the shape operator Aξ in p in nor-
mal direction ξ is defined to be the self adjoint linear map

Aξ : TpN → TpN, x 7→ −(∇xξ)
⊤.

Let γ : (−a, a) → M be a geodesic with γ(0) = p and γ′(0) ∈ νpN .
Consider the geodesic variation γs(t) with γ0 = γ and γs(0) ∈ N .
If in addition also γ′s(0) ∈ νγs(0)N , for all s, then the Jacobi
vector field Y along γ, defined by the geodesic variation γs(t),
satisfies the initial conditions

Y (0) ∈ Tγ(0)N,

∇
dt
Y (0) +Aγ′(0)Y (0) ∈ νγ(0)N.

A Jacobi field satisfying these initial conditions is called an N -
Jacobi field.

Definition 2.3 Let N be a submanifold of a Riemannian man-
ifold M . Further let p ∈ N and ξ ∈ νpN . Then the mean
curvature of N in the point p in normal direction ξ, denoted by
Hξ, is defined to be the trace of the shape operator Aξ.
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Remark 2.4 Usually the mean curvature is defined slightly dif-
ferent in the literature: one additionally devides the trace of the
shape operator through the dimension of the submanifold N , but
since this factor will play no role for our considerations, we will
ignore it for brevity.

Definition 2.5 A submanifold N ⊆ M of a Riemannian man-
ifold M is called minimal if for every p ∈ N and every non-
vanishing normal vector ξ ∈ νpN the trace of the shape operator
in normal direction ξ vanishes, i.e. tr(Aξ) = 0.

2.2 Hyperpolar actions

Consider the isometric action of the compact Lie group G on the
Riemannian manifold M . Let (Gp), for p ∈ M , be the conjugacy
class of the isotropy group Gp of the G-action. We call (Gp) the
isotropy type of the orbit G·p. For closed subgroupsK,H ⊆ G we
have the following partial ordering on the set of conjugacy classes
of G: If K is conjugated to a subgroup of H we set (K) ≤ (H).

Definition 2.6 For p ∈ M the orbit G · p is called a principal
orbit if there is a neighbourhood U of p such that (Gp) ≤ (Gq),
for all q ∈ U . The point p ∈ M is called regular is G · p is a
principal orbit.

Definition 2.7 An isometric action of a compact Lie group G
on a connected complete Riemannian manifold M is called polar
if there exists a connected closed embedded submanifold Σ ⊆ M ,
called a section, that meets every orbit of the G-action on M and
is perpendicular to every orbit it meets. The G-action is called
hyperpolar if there exists a section that is flat in the induced
metric.

Let us state some properties of G-manifolds that admit sections:

14



Theorem 2.8 Let the isometric action of the compact Lie group
G on the Riemannian manifold M be polar and let Σ be a section.
Then

1. Σ is totally geodesic.

2. There is a unique section through every regular point p ∈ M
which is given by Σp = Expp(νpG ·p), where νpG ·p denotes
the normal space to the orbit G · p in the point p.

3. Every G-equivariant normal vector field on a principal orbit
is parallel with respect to the normal connection.

4. Principal orbits have constant principal curvatures with re-
spect to parallel normal unit vector fields.

Proof. [PT1], page 86.
�

For a principal orbit G · p and v ∈ νpG · p, a G-equivariant
normal field ξ on G · p is defined by ξ(g · p) = (dg)p(v).

Because of the third statement of the previous theorem, for
a polar G-action on M and a regular point p ∈ M the shape
operator of the principal orbit G ·p in normal direction ξ is given
by

AξX = −∇Xξ.

2.3 Isotropy actions

In the following M is an irreducible, simply-connected, Rieman-
nian symmetric space of compact type. The reason for restricting
our considerations to simply-connected spaces lies in the fact that
in such spaces all orbits of maximal volume are principal and no
exceptional orbits occur [Con]. First we recall some basic prop-
erties associated to M :
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Since the identity component of the isometry group of M , de-
noted by G, acts transitively on M , we can identify M = G/K,
where K is the compact isotropy group of a point p ∈ M . The
identification is given by G/K → M , g ·K 7→ g ·p. The metric on
M is induced by the Killing form B of the Lie algebra of G, which
we denote by g. We have the well-known Cartan decomposition
g = k ⊕ m, where k is the Lie algebra of K and m is a vector
space of the same dimension as M . We can identify m with the
tangent space TpM via the isomorphism m → TpM , X 7→ X(p),
where X is the induced fundamental vector field of X, given by

X(q) =
d

dt

∣∣∣∣
t=0

exp(tX) · q,

for q ∈ M . We also recall the Cartan relations

[k, k] ⊂ k, [k,m] ⊂ m, [m,m] ⊂ k.

The Riemannian curvature tensor in p = eK is given by

R(X,Y )Z = −[[X,Y ], Z],

with X,Y, Z ∈ m. We also recall that the Cartan decomposition
can be characterized via Killing vector fields: If we identify g
with the Lie algebra of Killing vector fields on M by mapping
each element of g to its fundamental vector field, then we get

k ∼= {X | X is a Killing vector field on M with X(eK) = 0},
m ∼= {X | X is a Killing vector field on M with (∇X)(eK) = 0}.

Proposition 2.9 Let M be an m-dimensional symmetric space
and J a Jacobi field along the geodesic γ with ⟨J(t), γ′(t)⟩ = 0.
Further let {Ai}, for i = 1, . . . ,m − 1, be an orthogonal basis of
γ′(0)⊥, such that all elements of this basis are eigenvectors of the
operator Rγ′(0) : γ

′(0)⊥ → γ′(0)⊥ with eigenvalues λi. Then

J(t) =

m−1∑
i=1

(δiαλi
+ ρiβλi

)γ||t0Ai,
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where the coefficients δi, ρi are determined by the initial condi-
tions

J(0) =

m−1∑
i=1

ρiAi,
∇
dt
J(0) =

m−1∑
i=1

δiAi,

and αλi
, βλi

are given by

αλi
=


sin(

√
λit)√
λi

, if λi > 0,

t , if λi = 0,

sinh(
√
−λit)√

−λi
, if λi < 0,

βλi
=


cos(

√
λit) , if λi > 0,

1 , if λi = 0,

cosh(
√
−λit) , if λi < 0.

An important tool for this thesis will be the real root space
decomposition for symmetric spaces of compact type. For this,
let a ⊆ m be a maximal Abelian subalgebra, meaning that ev-
ery Abelian subalgebra of m containing a is already equal to a.
The rank of M is defined to be the dimension of a. Let for the
remaining part of this thesis dim(a) = n. We set

gα = {Z ∈ gC | [H,Z] = iα(H)Z, for all H ∈ a}

and define the restricted roots ∆ = {α1, . . . , αl} to be the set
of one-forms αi : a → R such that gαi ̸= {0} and αi ̸= 0. It is
important to remark that, contrary to root systems of semisimple
Lie algebras, for symmetric spaces also non-reduced restricted
root systems occur. Non-reduced root systems have the property
that there exits a root α such that an integer multiple of α, other
than −α, is also contained in the root system. In particular
the non-reduced root system BCq occurs, as for example in the
quaternionic Grassmannian

Sp(2p+ 2q)

Sp(2p)× Sp(2q)
,
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for p > q. An overview over the restricted root systems associated
to symmetric spaces can be found in [Bum], page 264. Let ∆+ ⊆
∆ denote a choice of positive roots, i.e. a subset with the property
∆ = ∆+ ∪ (−∆+) and ∆+ ∩ (−∆+) = ∅. Then the real root
space decomposition is given by the following theorem, where
zk(a) denotes the centralizer of a in k:

Theorem 2.10 Let kα = k∩(gα⊕g−α) and mα = m∩(gα⊕g−α).
Then the following holds:

1. There are the direct sum decompositions

k = zk(a)⊕
∑

α∈∆+

kα and m = a⊕
∑

α∈∆+

mα,

which are orthogonal with respect to the Killing form on g.

2. kα and mα are isomorphic: For each X ∈ kα there exists
a unique Y ∈ mα with [H,X] = −α(H)Y and [H,Y ] =
α(H)X, for all H ∈ a.

3. The root spaces are given by

kα = {X ∈ k | [H, [H,X]] = −α(H)2X, for all H ∈ a},
mα = {X ∈ m | [H, [H,X]] = −α(H)2X, for all H ∈ a}.

We will denote by mα the multiplicity of the root α ∈ ∆+ which
is defined to be the dimension of mα.

We come to the definition of the central notion of this thesis:

Definition 2.11 For the symmetric space M = G/K the action
of K on G/K, given by k · gK = kgK, is called isotropy action.

Proposition 2.12 Consider the isotropy action on M = G/K.

1. The action of K on G/K is hyperpolar.
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2. A section of the action of K on G/K is given by Σ =
ExpeK(a).

Now we will describe the tangent spaces of the orbits of the
isotropy action for which we will make use of the root space
decomposition in symmetric spaces. The following result was
obtained by [Ver] but we prove it differently using the proof in
[GT] for a similar result for Hermann actions and applying it to
the special case of an isotropy action. In the proof we try to use a
similar notation as in [GT] to make the proofs easier to compare.

For the remaining part of this section, let w ∈ a and p =
ExpeK(w). In particular we have the geodesic γ(t) = ExpeK(tw) ∈
Σ.

Proposition 2.13 The tangent space of the orbit K · p is given
by

TpK · p = γ||10

 ∑
α∈∆+ : α(w)/∈πZ

mα

 .

Proof. We have TpK ·p = {X(p) | X ∈ k}. For α ∈ ∆+ we denote
by {Xα

i }i∈Iα an orthonormal basis of mα. Further we denote by
Eα

i the parallel vector fields along γ with Eα
i (0) = Xα

i (eK). For
X ∈ k let Y = X|γ . As a restriction of a Killing vector field to
a geodesic, Y is a Jacobi field along γ. Since Y (t) is tangent to
the orbit through γ(t) for all t, it follows from the description of
Jacobi fields in symmetric spaces.

Y (t) =
∑

α∈∆+

∑
i∈Iα

(ci,α sin (α(w)t) + di,α cos (α(w)t))E
α
i (t). (1)

Further, let {Zα
i }i∈Iα be the orthonormal basis of kα related to

{Xα
i } by [Zα

i , u] = α(u)Xα
i , for all u ∈ a. We have

[kα, u] =

{
mα , if α(u) ̸= 0,

0 , if α(u) = 0.
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For X ∈ k we get

Y (t) = X(ExpeK(tw))

=
d

ds

∣∣∣∣
s=0

exp(sX) · ExpeK(tw)

=
d

ds

∣∣∣∣
s=0

exp(sX)exp(tw)K

=
d

ds

∣∣∣∣
s=0

exp
(
Adexp(sX)(tw)

)
K

= d(Exp)tw

(
d

ds

∣∣∣∣
s=0

Adexp(sX)(tw)

)
= d(Exp)tw

(
d(Ad)e

(
d

ds

∣∣∣∣
s=0

exp(sX)

)
(tw)

)
= d(Exp)tw (ad (dexp0(X)) (tw))

= d(Exp)tw (t[X,w]) .

This implies for t = 1, together with k = zk(a)⊕
∑

α∈∆+
kα, that

TpK · p = d(Exp)w

[
∑

α∈∆+

kα, w]


= d(Exp)w

 ∑
α∈∆+

[kα, w]


= d(Exp)w

 ∑
α∈∆+ : α(w)̸=0

mα

 .

Now, let α(w) ̸= 0 and X̃α ∈ mα. Write X̃α =
∑

i∈Iα λi,αX
α
i ,

with λi,α ∈ R. We use the coefficients λi,α to define Xα ∈ kα via
Xα =

∑
i∈Iα λi,αZ

α
i . We showed that the Jacobi field Yα = Xα|γ
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along γ is determined by Yα(0) = 0 and ∇
dtYα(0) = [Xα, w] =

α(w)X̃α. From the first initial condition and the general form
(1) follows di,α = 0. Hence Yα has to be of the form

Yα(t) =
∑
i∈Iα

ci,α sin(α(w)t)E
α
i (t).

Differentiating yields

∇
dt
Yα(t) =

∑
i∈Iα

ci,α

{
cos(α(w)t)α(w)Eα

i (t)

+ sin(α(w)t)
∇
dt
Eα

i (t)︸ ︷︷ ︸
=0

}
.

Therefore we get from the second initial condition from a
comparison of coefficients that ci,α = λi,α and hence

Yα(t) =
∑
i∈Iα

λi,α sin(α(w)t)E
α
i (t)

= sin(α(w)t)γ||10X̃α.

It follows that Yα(1) vanishes if and only if α(w) ∈ πZ. Hence
TpK · p is the parallel displacement of

∑
α∈∆+ : α(w)/∈πZmα along

γ.
�

The previous theorem motivates the following definition: The
diagram of M is defined to be

D(G/K) = {X ∈ a | ∃α ∈ ∆+ : α(X) ∈ πZ}.

All elements of the diagram are mapped by the exponential map
to points on singular orbits, whereas all elements in a \D(G/K)
are mapped by the exponential map to points on principal or-
bits. The connected components of a\D(G/K) are called gener-
alized Weyl chambers. We call the points in a \D(G/K) regular
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and the points in D(G/K) singular. Let W be a generalized
Weyl chamber. Then each orbit of K intersects ExpeK(W ) at
a unique point, where W denotes the closure of W . To avoid
lengthy formulations, we will from now on write Weyl chamber
instead of generalized Weyl chamber. Given a choice of simple
roots ∆+, where |∆+| = rank(M) = n, there is one distinguished
Weyl chamber Wn, with 0 < ⟨α, x⟩ < π, for all α ∈ ∆+ and all
x ∈ Wn. We call Wn the dominant generalized Weyl chamber or
dominant Weyl chamber. This particular Weyl chamber has the
property that its closure contains the origin of a.

The following theorem was given in [Ver], but we reprove it
using the method in [GT].

Proposition 2.14 Let u ∈ a and α ∈ ∆+ with α(w) /∈ πZ.
Then we have

Au(p)(v) = −α(u) cot(α(w))v,

for all v ∈ γ||10(mα).

Proof. Define the geodesic c(s) = ExpeK(w+ su) through p. We
have

c′(0) =
d

ds

∣∣∣∣
s=0

ExpeK(w + su)

=
d

ds

∣∣∣∣
s=0

exp(w + su)K

=
d

ds

∣∣∣∣
s=0

exp(su)exp(w)K

=
d

ds

∣∣∣∣
s=0

exp(su) · p

= u(p).
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For s ∈ [0, 1] let γs(t) = ExpeK(t(w+su)) be a geodesic variation
with γ0 = γ. For α ∈ ∆+ with α(w) ̸= πZ, let X̃α ∈ mα. Define
Xα ∈ kα to be the vector related to X̃α, i.e. [H,X] = −α(H)X̃,
for all H ∈ a. Let Ys,α(t) = Xα(γs(t)) be the Jacobi field along
γs with initial values Ys,α(0) = 0 and ∇

dtYs,α(0) = [Xα, w + su] =

α(w+su)X̃α. As in the proof of the previous lemma, we get from
the general description of Jacobi fields the following:

Ys,α(t) = sin(α(w + su)t)γs||10X̃α.

Consider Yα(s) := Ys,α(1) = Xα(c(s)). Since c(s) is a geodesic
contained in the section Σ = ExpeK(a), it follows that c(s) is
orthogonal to the orbit K · c(s). Further, Yα(s) is tangent to
K · c(s). Hence, Yα(s) is a K · p - Jacobi field and therefore
∇
dsYα(0) +Au(p)(Yα(0)) ∈ νpK · p. The initial values of Yα(s) are
given by

Yα(0) = sin(α(w))γ||10X̃α,

∇
ds

Yα(0) = α(u) cos(α(w))γ||10X̃α.

In particular, both Yα(0) and ∇
dsYα(0) are tangent to K · p and

from the relation ∇
dsYα(0) +Au(p)(Yα(0)) ∈ νpK · p together with

α(w) ̸= πZ follows

Au(p)(γ||10X̃α) = −α(u) cot(α(w))γ||10X̃α.

�

Corollary 2.15 The mean curvature of the principal orbit K · p
in the normal direction u(p) ∈ a is given by

Hu(p)(w) = −
∑

α∈∆+

mαα(u) cot(α(w)).
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Proof. The mean curvature of K ·ExpeK(p) in the normal direc-
tion u(p) ∈ a is given by the trace of Au(p), which can be directly
obtained from the previous proposition.

�
Motivated by the proof of Lemma 3.2 in [HSTT], we define the
function Φ: a → R by

Φ(x) = −
∑

α∈∆+ : α(w)/∈πZ

log (| sin(α(x))|mα) .

Lemma 2.16 Let e1, . . . , en be an orthonormal basis of a. Then
the mean curvature of the principal orbit K ·p in normal direction
ei(p) is given by

Hei(w) = (∇Φ(w))i .

Proof. Partial differentiation with respect to the standard coor-
dinates of a yields

∂

∂xi
Φ(x) = −

∑
α∈∆+ : α(w)/∈πZ

mα cot(α(x))α(ei).

The claim follows from the previous corollary.
�

We can also write

Φ(x) = −log

 ∏
α∈∆+ : α(w)/∈πZ

| sin(α(x))|mα

 ,

which motivates the following definition:

Definition 2.17 For w ∈ a we set

ϑ∆(w) =
∏

α∈∆+

| sin(α(w))|mα .

Remark 2.18 The function ϑ∆ has originally been introduced in
[CNV]. Obviously ϑ∆(w) vanishes if and only if w ∈ D(G/K).
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In the setting of Lemma 2.16, we get the relation

Hei(w) = (−∇log (ϑ∆(w)))i .

Lemma 2.19 Let w be a point in the interior of a Weyl chamber.
Then the orbit K ·p is minimal if and only if w is a critical point
of ϑ∆, i.e. ∇ϑ∆(w) = 0.

Proof. Since w is in the interior of a Weyl chamber, it follows
ϑ∆(w) ̸= 0. The claim follows from

Hei(w) = (−∇log (ϑ∆(w)))i

= − ∂

∂xi
log (ϑ∆(w))

= − 1

ϑ∆(w)

∂

∂xi
ϑ∆(w)

= − 1

ϑ∆(w)
(∇ϑ∆(w))i .

�

Theorem 2.20 There exists a unique principal orbit of the iso-
tropy action on M that is a minimal submanifold of M . In par-
ticular, in each Weyl chamber there exists a unique point w ∈ a
such that K · ExpeK(w) is the unique minimal orbit.

Proof. [HSTT].
�

The function ϑ∆ assigns, up to a constant, to each point w ∈ a
the volume of the orbit K · ExpeK(w), as the following theorem
states:

Proposition 2.21 For w ∈ a we have

Vol(K · ExpeK(w)) = c · ϑ∆(w),

where c ∈ R is a constant.
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Proof. [CNV], Theorem 3.5.
�

Remark 2.22 In [CNV], Theorem 3.5., it is shown that

c =
V ol(M)∫

W ϑ∆(X)dX
.

In particular c also depends on the scaling factor of the Killing
form, which determines the Riemannian metric.

2.4 Formulation of the Problem

The stated results of the previous section lead to the following
very natural problem:

Problem Given a simply-connected symmetric space of com-
pact type M and its restricted root system ∆. Find the unique
point in each Weyl chamber corresponding to the unique minimal
principal orbit of the isotropy action.

For some symmetric spaces of low rank there are already so-
lutions to the posed problem given in the literature. In [CNV]
for example the rank two spaces

SU(3)

SO(3)
,

Sp(2)

U(2)
,

SU(4)

S(U(2)× U(2))
,

G2

SO(4)

were investigated, having root systems A2, C2, C2, G2, respec-
tively. As it can be seen in [CNV] the unique crtitical point
of ϑA2 in the interior of the generalized Weyl chamber of A2,
which is a regular triangle, is given by the centroid. The second
and third space listed above have C2 as restricted root system
but the multiplicities of the roots differ for each of these spaces.
Although they have the same generalized Weyl chambers, their
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unique critical points in the interior of the Weyl chamber do not
coincide. But still, these two critical points have in common that
they lie both on the symmetry axis of the Weyl chamber, which
is an isoceles triangle in this case. Concerning the relation of the
unique critical point of ϑ∆ to the symmetry of the Weyl cham-
ber, it is important to mention that for the restricted root system
BC2, whose generalized Weyl chambers are isoceles triangles, the
unique critical point of ϑBC2 doesn’t even lie an the symmetry
axis of the Weyl chamber.

In this thesis we will investigate the position of the unique
critical point of ϑ∆ in the interior of a Weyl chamber for the
classical simply-laced restricted root systems An and Dn.

For An we will give a closed form for the unique critical point
for a particular Weyl chamber that is valid for arbitrary rank n.
Having found the unique critical points in one Weyl chamber,
the unique critical points in all the other Weyl chambers can be
obtained by the action of the generalized Weyl group.

In the case of the restricted root systemDn, we give a theorem
that allows us to find the unique critical point in one certain
Weyl chamber by determining the roots of a polynomial of degree⌊
n
2

⌋
− 1. Again, the unique critical points in all the other Weyl

chambers can be obtained by the action of the generalized Weyl
group.

The classes of simply-connected symmetric spaces with re-
stricted root systems An and Dn are given in the following table
(cf. [Hel], [Bum]):
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Symmetric spaces of type I:

Cartan’s
Class G K dimension rank ∆

AI SU(n) SO(n) (n−1)(n+2)
2 n− 1 An−1

AII SU(2n) Sp(2n) (n− 1)(2n+ 1) n− 1 An−1

DI SO(2n) S(O(n)×O(n)) n2 n Dn

BII SO(2n+ 1) SO(2n) 2n 1 A1

DII SO(2n) SO(2n− 1) 2n− 1 1 A1

EIV E6 F4 26 2 A2

Symmetric spaces of type II:

Lie group dimension rank ∆

SU(n+1) n(n+ 2) n An

Spin(2n) n(2n− 1) n Dn
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3 An-Problem

3.1 Result

The root system An can be considered as a subset of Rn+1 given
by

An = {ei − ej | 1 ≤ i, j ≤ n+ 1, i ̸= j},

where e1, . . . , en+1 is the standard basis of Rn+1. In particular,
An is contained in the hyperplane through the origin which is
orthogonal to the diagonal vector e1 + · · · + en+1. A choice of
positive roots is given by

(An)+ = {ei − ej | 1 ≤ i < j ≤ n+ 1},

containing the simple roots α1, . . . , αn, with αi = ei − ei+1.
We consider the function

ϑAn (x1, . . . , xn+1) =
∏

α∈(An)+

sin (⟨α, (x1, . . . , xn+1)⟩)mα ,

where x1, . . . , xn+1 are standard coordinates and mα is the mul-
tiplicity of the root α. Since the Dynkin diagram of the root
system An is simply-laced, all roots have the same multiplicity.

In the following, we will study regular solutions of the equa-
tion

∇ϑAn (x1, . . . , xn+1) = 0.

The main result of this section is the following theorem.

Theorem 3.1 Let M = G/K be a simply-connected symmet-
ric space of compact type with rank(M) = n and restricted root
system An.

1. The point

Ln =
π

2 + 2n

n∑
k=1

k(n− k + 1)αk
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is contained in the dominant generalized Weyl chamber Wn.

2. The unique minimal principal orbit of the isotropy action
on G/K is given by

K · ExpeK(Ln).

Proof. We define the function

ϑ̃An (x1, . . . , xn+1) =
∏

α∈(An)+

sin (⟨α, (x1, . . . , xn+1)⟩) .

Because the multiplicities mα are equal for all roots, it follows
that

∇ϑAn (x1, . . . , xn+1) =mαϑ̃An (x1, . . . , xn+1)
mα−1

· ∇ϑ̃An (x1, . . . , xn+1) .

Therefore ϑAn and ϑ̃An have the same critical point in a given
Weyl chamber.

Lemma 3.2 The point Ln is regular.

Proof. Let 1 ≤ i < j ≤ n + 1. Assume that Ln is singular, i.e.
that there exists m ∈ Z with

⟨ei − ej , Ln⟩ = mπ.

Then the relation

⟨ei − ej , Ln⟩ =
π

2 + 2n

n∑
k=1

k(n− k + 1)⟨ei − ej , ek − ek+1⟩

=
π

2 + 2n

n∑
k=1

k(n− k + 1)(δi,k − δi,k+1 − δj,k + δj,k+1)

= π
j − i

1 + n
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implies j− i = m(1+n). But since 1 ≤ j− i ≤ n, such an integer
m can not exist and we get a contradiction.

�

Corollary 3.3 The point Ln is contained in the generalized dom-
inant Weyl chamber Wn.

Proof. For 1 ≤ i < j ≤ n + 1 the proof of the previous lemma
implies

0 < ⟨ei − ej , Ln⟩ < π.

�

In the following, we will show that ∇ϑ̃An(Ln) = 0, i.e. that
Ln is the unique critical point of ϑ̃An in Wn. For this purpose
we introduce some notation:

Definition 3.4 Let i ∈ {1, . . . , n + 1} and k ∈ {1, . . . , n}. We
define

1) Rn,i (x1, . . . , xn+1) =
∏

1≤k<l≤n+1
k,l ̸=i

sin(xk − xl),

2) ζn(k) (x1, . . . , xn) = cos(xk)

k−1∏
i=1

sin(xi)

n∏
j=k+1

sin(xj),

3) Vi,k =

{
1 , for k ≥ i,

−1 , for k < i,

4) an(i, k) (x1, . . . , xn+1) =

{
xk − xi , for k < i,

xi − xk+1 , for k ≥ i.
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To avoid lengthy notation, we will write

an(i, k) (x1, . . . , xn+1) = an(i, k).

With the introduced notation, the i-th component of the gradient
of ϑ̃An (x1, . . . , xn+1) is given by

∂

∂xi
ϑ̃An (x1, . . . , xn+1) =Rn,i (x1, . . . , xn+1)

·

(
n∑

k=1

Vi,kζn(k) (an(i, 1), . . . , an(i, n))

)
.

Lemma 3.5 We have

an(i, k)(Ln) =


2k − 2i+ 2

2n+ 2
π , for k ≥ i,

2i− 2k

2n+ 2
π , for k < i.

Proof. The i-th component of Ln is given by

(Ln)i =
n− 2i+ 2

2n+ 2
π.

For k ≥ i, we get

an(i, k)(Ln) = (Ln)i − (Ln)k+1

=
2k − 2i+ 2

2n+ 2
π

and for k < i the relation

an(i, k)(Ln) = (Ln)k − (Ln)i

=
2i− 2k

2n+ 2
π

is valid.
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�

The following two lemmas imply, that the first
⌊
n
2

⌋
+ 1 com-

ponents of ∇ϑ̃An(Ln) vanish.

Lemma 3.6 Let i ≤
⌊
n
2

⌋
+ 1. Then

2i−2∑
k=1

Vi,kζn(k) (an(i, 1)(Ln), . . . , an(i, n)(Ln)) = 0.

Proof. Let l ∈ {1, . . . , i − 1}. In particular, we have l < i. We
will show that the l-th and the 2i−1− l-th summand cancel each
other. Since 2i− 1− l ≥ i, we get

an(i, 2i− 1− l)(Ln) =
2(2i− 1− l)− 2i+ 2

2 + 2n
π

=
2i− 2l

2 + 2n
π

= an(i, l)(Ln).

This implies

ζn(l) (an(i, 1)(Ln), . . . , an(i, n)(Ln))

= ζn(2i− 1− l) (an(i, 1)(Ln), . . . , an(i, n)(Ln)) .

Furthermore, we have Vi,2i−1−l = −Vi,l.
�

Lemma 3.7 Let i ≤
⌊
n
2

⌋
+ 1. Then

n∑
k=2i−1

Vi,kζn(k) (an(i, 1)(Ln), . . . , an(i, n)(Ln)) = 0.
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Proof. First, let i ≤
⌊
n
2

⌋
+ 1 and n even. We will show that for

l ∈ {1, . . . ,
⌊
n
2

⌋
− i + 1} the 2i − 2 + l-th and the n + 1 − l-th

summand cancel each other, which implies the assertion. Because
of 2i− 2 + l ≥ 2i− 1 ≥ i, we get

an(i, 2i− 2 + l)(Ln) =
2(2i− 2 + l)− 2i+ 2

2 + 2n
π =

2i− 2 + 2l

2 + 2n
π.

Since n+1− l ≥ n+1− (
⌊
n
2

⌋
− i+1) =

⌊
n
2

⌋
+ i+1 ≥ i, we have

an(i, n−l+1)(Ln) =
2(n+ 1− l)− 2i+ 2

2 + 2n
π =

2n− 2l − 2i+ 4

2 + 2n
π.

Therefore,

an(i, 2i− 2 + l)(Ln) = π − an(i, n+ 1− l)(Ln),

which implies

cos(an(i, 2i− 2 + l)(Ln)) = cos(π − an(i, n+ 1− l)(Ln))

=− cos(an(i, n+ 1− l)(Ln))

and

sin(an(i, 2i− 2 + l)(Ln)) = sin(π − an(i, n+ 1− l)(Ln))

= sin(an(i, n+ 1− l)(Ln)).

In particular we get

ζn(2i− 2 + l) (an(i, 1)(Ln), . . . , an(i, n)(Ln))

= −ζn(n+ 1− l) (an(i, 1)(Ln), . . . , an(i, n)(Ln)) .

Because we further have Vi,2i−2+l = Vi,n+1−l, we showed that the
2i− 2 + l-th and the n+ 1− l-th summand cancel each other.

Now, let i ≤
⌊
n
2

⌋
+ 1 and n odd. First we remark, that for

l ∈ {1, . . . ,
⌊
n
2

⌋
− i + 1} the 2i − 2 + l-th and the n + 1 − l-

th summand cancel each other, which can be proved using the
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same argument as in 1. But for this case, it remains to consider
ζn(
⌊
n
2

⌋
+ i) (an(i, 1)(Ln), . . . , an(i, n)(Ln)). We have

an

(
i,
⌊n
2

⌋
+ i
)
(Ln) =

2(
⌊
n
2

⌋
+ i)− 2i+ 2

2 + 2n
π =

π

2

and therefore cos
(
an
(
i,
⌊
n
2

⌋
+ i
)
(Ln)

)
= 0, which implies

ζn

(⌊n
2

⌋
+ i
)
(an(i, 1)(Ln), . . . , an(i, n)(Ln)) = 0.

�

Now, we show that the last n−
⌊
n
2

⌋
components of ∇ϑ̃An(Ln)

also vanish.

Lemma 3.8 Let
⌊
n
2

⌋
+ 1 < i ≤ n+ 1. Then

1. an(i, j)(Ln) = an(n− i+ 2, n− j + 1)(Ln),

2. Vi,j = −Vn−i+2,n−j+1.

Proof. To prove 1, we start by considering the case j ≥ i. Here
we have n− j + 1 < n− i+ 2 and therefore

an(n− i+ 2, n− j + 1)(Ln) =
2(n− i+ 2)− 2(n− j + 1)

2n+ 2
π

=
2j − 2i+ 2

2n+ 2
π

= an(i, j)(Ln).

In the case j < i we get n− j + 1 ≥ n− i+ 2. Hence

an(n− i+ 2, n− j + 1)(Ln) =
2(n− j + 1)− 2(n− i+ 2) + 2

2n+ 2
π

=
2i− 2j

2n+ 2
π

= an(i, j)(Ln)
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and the first assertion follows.
To prove 2, we start with the case j ≥ i. Here we have on one

hand Vi,j = 1 and on the other hand n− j+1 < n− i+2, which
implies Vn−i+2,n−j+1 = −1. In the case j < i we get Vi,j = −1
and, since n− i+ 2 ≤ n− j + 1, also Vn−i+2,n−j+1 = 1.

�

Lemma 3.9 Let
⌊
n
2

⌋
+ 1 < i ≤ n+ 1. Then

n∑
k=1

Vi,kζn(k) (an(i, 1)(Ln), . . . , an(i, n)(Ln)) = 0.

Proof. First we note that n− i+2 < n− (
⌊
n
2

⌋
+1)+2 =

⌊
n
2

⌋
+2

and hence n − i + 2 ≤
⌊
n
2

⌋
+ 1. For the case that n is even, we

even have the stronger inequality n− i+2 <
⌊
n
2

⌋
+1. Using the

previous lemma, we get

n∑
k=1

Vi,kζn(k) (an(i, 1)(Ln), . . . , an(i, n)(Ln)))

=

n∑
k=1

{
− Vn−i+2,n−k+1

· ζn(k) (an(n− i+ 2, n)(Ln), . . . , an(n− i+ 2, 1)(Ln))
}

=
n∑

k=1

{
− Vn−i+2,n−k+1

· ζn(n− k + 1) (an(n− i+ 2, 1)(Ln), . . . , an(n− i+ 2, n)(Ln))
}

=

n∑
k=1

{
− Vn−i+2,k

· ζn(k) (an(n− i+ 2, 1)(Ln), . . . , an(n− i+ 2, n)(Ln))
}

= 0.
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In the last line we first changed the order of the summation, then
used n− i+ 2 ≤

⌊
n
2

⌋
+ 1 together with Lemma 3.5 and 3.6.

�

This concludes the proof of the main theorem .
�

Corollary 3.10 If Ln−1 is the solution of

∇ϑAn−1 (x1, . . . , xn) = 0

in the Weyl chamber Wn−1, then the solution of

∇ϑAn (x1, . . . , xn+1) = 0

in the Weyl chamber Wn is given by

Ln = Qn +
n

n+ 1
Ln−1,

with Qn = π
2+2n

∑n
k=1 kαk.

Proof. We have

Ln−1 =
π

2 + 2(n− 1)

n−1∑
k=1

k(n− k)αk,

which is an element in Rn. The embedding of Ln−1 into Rn+1 is
understood to be as follows:

Ln−1 7→
(
Ln−1

0

)
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We get

Qn +
n

n+ 1
Ln−1 =

π

2 + 2n

n∑
k=1

kαk

+
n

n+ 1

π

2 + 2(n− 1)

n−1∑
k=1

k(n− k)αk

=
π

2 + 2n

(
n∑

k=1

kαk +

n−1∑
k=1

k(n− k)αk

)

=
π

2 + 2n

n∑
k=1

k(n− k + 1)αk

= Ln.

�

Remark 3.11 In particular, we have a recursive formula for the
solution, from one dimension to the other.

3.2 Examples

The diagram below contains the coefficents of the simple roots
α1, . . . , αn for the solution Ln:

n = 1: π
4

n = 2: 2π
6

2π
6

n = 3: 3π
8

4π
8

3π
8

n = 4: 4π
10

6π
10

6π
10

4π
10

n = 5: 5π
12

8π
12

9π
12

8π
12

5π
12

. . . : . . . . . . . . . . . .

In the case n = 2, a Weyl chamber is an equilateral triangle
and the minimal principal orbit is given by the centroid, as was
already shown in [CNV].
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4 Dn-Problem

4.1 Result

The root system Dn can be considered as a subset of a ∼= Rn

given by
Dn = {±ei ± ej | 1 ≤ i < j ≤ n},

where e1, . . . , en is the standard basis of Rn. A choice of positive
roots is given by

(Dn)+ = {ei ± ej | 1 ≤ i < j ≤ n},

containing the simple roots α1, . . . , αn , where

αi =

{
ei − ei+1 for i = 1, . . . , n− 1,

en−1 + en for i = n.

In this section, we study the function

ϑDn (x1, . . . , xn) =
∏

α∈(Dn)+

sin (⟨α, (x1, . . . , xn)⟩)mα ,

where x1, . . . , xn are standard coordinates of Rn and mα is the
multiplicity of the root α. Since the Dynkin diagram for the root
system Dn is simply-laced, all roots have the same multiplicity.

As in the previous section, we will study regular solutions of
the equation

∇ϑDn (x1, . . . , xn) = 0.

Before formulating the main result of this section, we give some
definitions first:

Definition 4.1 For j ∈ {0, 1, . . . ,
⌊
n
2

⌋
−1}, let ξj be real numbers

with 0 ≤ ξi ≤ 1 and ξ0 = 1. Define Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

)
∈ a ∼= Rn

as follows:
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1. For even n and i ∈ {1, . . . , n}, we set(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))
i

=


1
2 arccos

(
−
√

ξi−1

)
, for 1 ≤ i ≤

⌊
n
2

⌋
,

1
2 arccos

(√
ξn−i

)
, for

⌊
n
2

⌋
+ 1 ≤ i ≤ n.

2. For odd n and i ∈ {1, . . . , n}, we set(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))
i

=


1
2 arccos

(
−
√

ξi−1

)
, for 1 ≤ i ≤

⌊
n
2

⌋
,

π
4 , for i =

⌊
n
2

⌋
+ 1,

1
2 arccos

(√
ξn−i

)
, for

⌊
n
2

⌋
+ 2 ≤ i ≤ n.

Remark 4.2 For a more compact notation, we will frequently
identify

ξ :=
(
ξ1, . . . , ξ⌊n

2 ⌋−1

)
,

ξ :=
(
ξ1, . . . , ξ⌊n

2 ⌋−1

)
.

Definition 4.3 Define the subset L ⊆ a by

L =

{
Ln (ξ)

∣∣∣∣ 1 > ξ1 > · · · > ξ⌊n
2 ⌋−1 > 0

}
.

Definition 4.4 Let Pn : R → R be the polynomial given by

Pn(x) =

⌊n
2 ⌋−1∑
k=0

(−1)kSkx
⌊n

2 ⌋−1−k,

with

Sk =

k∏
r=1

∑⌊n
2 ⌋

l=r+1(1 + 2n− 4l)∑r
l=1(1 + 2n− 4l)

,

for 0 ≤ k ≤
⌊
n
2

⌋
− 1.
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The main result of this section is given by the following the-
orem.

Theorem 4.5 Let M = G/K be a simply-connected symmet-
ric space of compact type with rank(M) = n and restricted root
system Dn.

1. The set L is contained in the dominant generalized Weyl
chamber Wn.

2. For Ln

(
ξ
)
∈ L, the components of ξ are the roots of the

polynomial Pn if and only if K ·ExpeK
(
Ln

(
ξ
))

is the unique
minimal principal orbit of the isotropy action on G/K.

Remark 4.6 1. We remark the necessity of the assumption
Ln

(
ξ
)
∈ L for this theorem. In particular we remark, that

the proof of Conjecture 4.46 would enable us to omitt this
assumption and at the same time imply that the unique
minimal principal orbit is contained in L. We explicitly em-
phasize, that the statement, that the unique minimal prin-
cipal orbit is contained in L, is not proven in this thesis,
since Conjecture 4.46 is still open. But there is very strong
evidence, partly also relying on computer simulations, that
this conjecture must be true. For the precise consequences,
of the validity of the mentioned conjecture, we refere the
reader to the end of this section.

2. Since the proof of the main result of this section is rather
lengthy, we want to give the reader a guideline for the most
important steps in the proof:

After introducing an appropriate notation, oriented on the
notation in the previous section, and restricting our con-
siderations to the function ϑ̃Dn, which we get by setting all
multiplicities in ϑDn to 1, we decompose the i-th component
of the gradient of ϑ̃Dn into two factors; one denoted by Rn,i
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(the R-factor) and the other one denoted by Kn,i (the K-
factor). The first factor in this decomposition will play a
rather subsidiary role for our investigations. The second
one, on the other hand, will be studied extensively.

We continue by introducing the premutation Pi, for 2 ≤
i ≤ ⌊n2 ⌋ − 1, and show in Lemma 4.16 that the action
of this permutations on the variables in the argument of
Kn,i(x1, . . . , xn) is equal to −Kn,(i+1)(x1, . . . , xn). Hence,
this lemma gives us a method, to determine the K-factor
of the i + 1-th component of the gradient by knowing the
K-factor of the i-th component. Lemma 4.16 also contains
an analogue statement for going from the n− i+1-th com-
ponent to the n− i-th one. At this point it is important to
remark that Lemma 4.16 does not give a way to conclude
from the K-factor of the ⌊n2 ⌋-th component of the gradient
to any component in the lower part of the gradient.

In Definition 4.1 we give an ansatz (the Ln-ansatz), which
reduces the problem from originally having n unknowns
x1, . . . , xn to a problem with only ⌊n2 ⌋ − 1 unknowns
ξ1, . . . , ξ⌊n

2
⌋−1. This ansatz can be considered as the key

to the main result of this section.

One direct consequence of the Ln-ansatz is given by Lemma
4.17, which states that the first and the last component,
as well as the middle component in the case of odd rank,
vanish. Another consequence of the Ln-ansatz is Lemma
4.32, giving us the bridge to deduce from the K-factor of
the ⌊n2 ⌋-th component to the K-factor of a component in
the lower half of the gradient.

These developed tools enable us to do the following: After
giving the explicit form of the K-factor of the second com-
ponent in Proposition 4.20, which is a central result in the
course of the proof, we deduce from this K-factor the ex-
plicit form of all remaining K-factors of the gradient, by
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using the mentioned lemmas in the text above. This proce-
dure leads to Proposition 4.33, and completes a major step
of the proof of the main theorem.

Proposition 4.33 translates the initial problem of determin-
ing the crtical point of the function ϑDn to the problem of
solving a non-linear system of ⌊n2 ⌋ − 1 equations (NSE),
each of which is given, up to a prefactor, by the function
Fi(n)(ξ1, . . . , ξ⌊n

2
⌋−1).

Introducing the polynomial P̂ ξ̄
n in Definition 4.41, we obtain

a way to reformulate the functions Fi(n) in terms of this
polynomial, cf. Remark 4.42.

The final crucial step in the proof of the main result is
given by Lemma 4.43, which implies that the roots of the
polynomial Pn, assuming that they are distinct and lie in
the interval (0, 1), are a solution of the (NSE) and hence
give, together with the Ln-ansatz, the unique critical point
of ϑDn.

Proof of Theorem 4.5. We define the function

ϑ̃Dn (x1, . . . , xn) =
∏

α∈(Dn)+

sin (⟨α, (x1, . . . , xn)⟩) .

Because the multiplicities mα are equal for all roots, it follows
that

∇ϑDn (x1, . . . , xn) = mαϑDn (x1, . . . , xn)
mα−1∇ϑ̃Dn (x1, . . . , xn) .

Therefore ϑDn and ϑ̃Dn have the same critical point in a given
Weyl chamber.

Lemma 4.7 We have

ϑ̃(Dn)(x1, . . . , xn) =
∏

1≤p<q≤n

sin(xp − xq) sin(xp + xq).
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Proof.

ϑ̃(Dn)(x1, . . . , xn) =
∏

α∈(Dn)+

sin (⟨α, (x1, . . . , xn)⟩)

=
∏

α=ep±eq
1≤p<q≤n

sin (⟨α, (x1, . . . , xn)⟩)

=
∏

1≤p<q≤n

sin (⟨ep − eq, (x1, . . . , xn)⟩)

· sin (⟨ep + eq, (x1, . . . , xn)⟩)

=
∏

1≤p<q≤n

sin (xp − xq) sin (xp + xq)

�

Definition 4.8 Let i ∈ {1, . . . , n} and k ∈ {1, . . . , 2(n−1)}. We
set

1) Rn,i (x1, . . . , xn) =
∏

1≤p<q≤n
p,q ̸=i

sin(xp − xq)
∏

1≤r<s≤n
r,s̸=i

sin(xr + xs),

2) ζn(k)
(
x1, . . . , x2(n−1)

)
= cos(xk)

k−1∏
i=1

sin(xi)

2(n−1)∏
j=k+1

sin(xj),

3) Vi,k =

{
1 , for k ≥ i,

−1 , for k < i.

Remark 4.9 We set R2,i(x1, x2) = 1.

Lemma 4.10 Let (x1, . . . , xn) be a point in a Weyl chamber in
a. Then

Rn,i(x1, . . . , xn) ̸= 0.

44



Proof. Assume that Rn,i(x1, . . . , xn) = 0 for a regular point
(x1, . . . , xn). It follows ϑDn(x1, . . . , xn) = 0, yielding a contra-
diction.

�

Definition 4.11 For i ∈ {1, . . . , n} and j ∈ {1, . . . , n − 1}, we
define

a±n (i, j)(x1, . . . , xn) =

{
xj ± xi , for j < i,

xi ± xj+1 , for j ≥ i.

Lemma 4.12 ∂
∂xi

ϑ̃Dn (x1, . . . , xn) is equal to

Rn,i (x1, . . . , xn)

·
2(n−1)∑
k=1

Vi,kζn(k)
(
a−n (i, 1), . . . , a

−
n (i, n− 1), a+n (i, 1) . . . a

+
n (i, n− 1)

)
.

Proof. We have

ϑ̃Dn(x1, . . . , xn) =
∏

1≤p<q≤n

sin (xp − xq) sin (xp + xq)

=
∏

1≤p<q≤n
p,q ̸=i

sin (xp − xq) sin (xp + xq)

·
∏

1≤p<q≤n
p=i or q=i

sin (xp − xq) sin (xp + xq)

= Rn,i(x1, . . . , xn)

·
∏

1≤p<q≤n
p=i or q=i

sin (xp − xq) sin (xp + xq) .
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Since Rn,i(x1, . . . xn) does not depend on xi, we get

∂

∂xi
ϑ̃Dn(x1, . . . , xn)

= Rn,i(x1, . . . , xn)
∂

∂xi

 ∏
1≤p<q≤n
p=i or q=i

sin (xp − xq) sin (xp + xq)

 ,

where ∏
1≤p<q≤n
p=i or q=i

sin (xp − xq) sin (xp + xq) (2)

is equal to  ∏
i<q≤n

sin (xi − xq) sin (xi + xq)


·

 ∏
1≤p<i

sin (xp − xi) sin (xp + xi)

 ,

which we can write as ∏
1≤p<i

sin (xp − xi)

 ∏
i<q≤n

sin (xi − xq)


·

 ∏
1≤p<i

sin (xp + xi)

 ∏
i<q≤n

sin (xi + xq)

 .

Writing (2) in the form ∏
1≤p<i

sin
(
a−n (i, p)

) ∏
i<q≤n

sin
(
a−n (i, q − 1)

)
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·

 ∏
1≤p<i

sin
(
a+n (i, p)

) ∏
i<q≤n

sin
(
a+n (i, q − 1)

)
and noting that (2) has 2(n − 1) factors, we can deduce that
differentiating (2) with respect to xi yields

∂

∂xi

 ∏
1≤p<q≤n
p=i or q=i

sin (xp − xq) sin (xp + xq)


=

2(n−1)∑
k=1

{
Vi,k

· ζn(k)
(
a−n (i, 1), . . . , a

−
n (i, n− 1), a+n (i, 1) . . . a

+
n (i, n− 1)

)}
,

where the minus sign of the first i− 1 summands arises from the
fact that for 1 ≤ p < i differentiating a−n (i, p) = xp − xi by xi
yields −1.

�

The previous proof motivates the following definition.

Definition 4.13 We set

Kn,i(x1, . . . , xn)

=

2(n−1)∑
k=1

{
Vi,k

· ζn(k)
(
a−n (i, 1), . . . , a

−
n (i, n− 1), a+n (i, 1) . . . a

+
n (i, n− 1)

)}
.

Definition 4.14 For 2 ≤ i ≤ ⌊n2 ⌋ − 1 let Pi be the permutation

Pi : {1, . . . , n} → {1, . . . , n}
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with

Pi(i) = i+ 1,

Pi(i+ 1) = i,

Pi(n− i+ 1) = n− i,

Pi(n− i) = n− i+ 1

and Pi(k) = k, for k ̸∈ {i, i+ 1, n− i+ 1, n− i}.

We will use for 2 ≤ k ≤ ⌊n2 ⌋ − 1 the notation

Pk

(
a±n (i, j)(x1, . . . , xn)

)
:= a±n (i, j)(xPk(1), . . . , xPk(n)).

Lemma 4.15 For 2 ≤ i ≤ ⌊n2 ⌋ − 1 we have

Pi

(
a±n (i, j)(x1, . . . , xn)

)

=


a±n (i+ 1, j)(x1, . . . , xn) , for j ̸∈ {i, n− i− 1, n− i},
±a±n (i+ 1, j)(x1, . . . , xn) , for j = i,

a±n (i+ 1, j + 1)(x1, . . . , xn) , for j = n− i− 1,

a±n (i+ 1, j − 1)(x1, . . . , xn) , for j = n− i

and

Pi

(
a±n (n− i+ 1, j)(x1, . . . , xn)

)

=


a±n (n− i, j)(x1, . . . , xn) , for j ̸∈ {i, i+ 1, n− i},
a±n (n− i, j + 1)(x1, . . . , xn) , for j = i,

a±n (n− i, j − 1)(x1, . . . , xn) , for j = i+ 1,

±a±n (n− i, j)(x1, . . . , xn) , for j = n− i.

Proof. First we note, that the following inequality is valid:

n− i ≥ 2
⌊n
2

⌋
− i ≥ 2

⌊n
2

⌋
−
(⌊n

2

⌋
− 1
)

=
⌊n
2

⌋
+ 1 >

⌊n
2

⌋
≥ i+ 1
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This implies
i+ 1 < n− i.

We start by proving the first equation. On the one hand we have

a±n (i, j)(xPi(1), . . . , xPi(n)) =

{
xPi(j) ± xPi(i) , for j < i,

xPi(i) ± xPi(j+1) , for j ≥ i.

=



xj ± xi+1 , for j < i,

xi+1 ± xi , for j = i,

xi+1 ± xj+1 , for j > i and j ̸∈ {n− i− 1, n− i},
xi+1 ± xn−i+1 , for j = n− i− 1,

xi+1 ± xn−i , for j = n− i.

On the other hand we get

• For j ̸∈ {i, n− i− 1, n− i}:

a±n (i+ 1, j)(x1, . . . , xn) =

{
xj ± xi+1 , for j < i,

xi+1 ± xj+1 , for j > i,

=


a±n (i, j)(xPi(1), . . . , xPi(n)) , for j < i,

a±n (i, j)(xPi(1), . . . , xPi(n)) , for j > i and

j ̸∈ {n− i− 1, n− i}.

• For j = i:

a±n (i+ 1, j)(x1, . . . , xn)

= xi ± xi+1 = ±a±n (i, j)(xPi(1), . . . , xPi(n)).
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• For j = n− i− 1: Since i+ 1 < n− i we have

a±n (i+ 1, j + 1)(x1, . . . , xn)

= a±n (i+ 1, n− i)(x1, . . . , xn)

= xi+1 ± xn−i+1

= a±n (i, j)(xPi(1), . . . , xPi(n)).

• For j = n− i: The inequality i+ 1 < n− i implies i+ 1 ≤
n− i− 1. Therefore we have

a±n (i+ 1, j − 1)(x1, . . . , xn)

= a±n (i+ 1, n− i− 1)(x1, . . . , xn)

= xi+1 ± xn−i

= a±n (i, j)(xPi(1), . . . , xPi(n)).

This proves the first equation.

To prove the second equation we note that on the one hand
we have

a±n (n− i+ 1, j)(xPi(1), . . . , xPi(n))

=

{
xPi(j) ± xPi(n−i+1) , for j < n− i+ 1,

xPi(n−i+1) ± xPi(j+1) , for j ≥ n− i+ 1.

=



xj ± xn−i , for j < n− i+ 1 and j ̸∈ {i, i+ 1, n− i},
xn−i ± xj+1 , for j ≥ n− i+ 1,

xi+1 ± xn−i , for j = i,

xi ± xn−i , for j = i+ 1,

xn−i+1 ± xn−i , for j = n− i.

On the other hand we get
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• For j ̸∈ {i, i+ 1, n− i}:

a±n (n− i, j)(x1, . . . , xn)

=

{
xj ± xn−i , for j < n− i and j ̸∈ {i, i+ 1},
xn−i ± xj+1 , for j > n− i,

=


a±n (n− i+ 1, j)(xPi(1), . . . , xPi(n)) , for j < n− i and

j ̸∈ {i, i+ 1},
a±n (n− i+ 1, j)(xPi(1), . . . , xPi(n)) , for j > n− i.

• For j = i: Since i+ 1 < n− i we have

a±n (n− i, j + 1)(x1, . . . , xn)

= a±n (n− i, i+ 1)(x1, . . . , xn)

= xi+1 ± xn−i

= a±n (n− i+ 1, j)(xPi(1), . . . , xPi(n)).

• For j = i+ 1: Since i < n− i we have

a±n (n− i, j − 1)(x1, . . . , xn)

= a±n (n− i, i)(x1, . . . , xn)

= xi ± xn−i

= a±n (n− i+ 1, j)(xPi(1), . . . , xPi(n)).

• For j = n− i:

a±n (n− i, j)(x1, . . . , xn)

= xn−i ± xn−i+1

= ±a±n (n− i+ 1, j)(xPi(1), . . . , xPi(n)),

which proves the second equation.

�
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Lemma 4.16 Let 2 ≤ i ≤ ⌊n2 ⌋ − 1. Then

1. Kn,i(xPi(1), . . . , xPi(n)) = −Kn,(i+1)(x1, . . . , xn),

2. Kn,(n−i+1)(xPi(1), . . . , xPi(n)) = −Kn,(n−i)(x1, . . . , xn).

Proof. We start by proving 1):
The k-th summand of Kn,i(xPi(1), . . . , xPi(n)) is equal to

Vi,kζn(k)

(
Pi

(
a−n (i, 1)

)
, . . . , Pi

(
a−n (i, n− 1)

)
,

Pi

(
a+n (i, 1)

)
, . . . , Pi

(
a+n (i, n− 1)

))
.

We set

Ii(k) = ζn(k)

(
Pi

(
a−n (i, 1)

)
, . . . , Pi

(
a−n (i, n− 1)

)
,

Pi

(
a+n (i, 1)

)
, . . . , Pi

(
a+n (i, n− 1)

))
.

From Lemma 4.15 follows that for j ∈ {1, . . . , 2(n− 1)} \ {i, n−
i − 1, n − i, 2n − 2 − i, 2n − 1 − i} the j-th argument of Ii(k) is
given by a−n (i + 1, j) if j ≤ n − 1 and by a+n (i + 1, j − n + 1) if
j > n−1. Further the i-th argument is given by −a−n (i+1, i), the
n− i−1-th by a−n (i+1, n− i), the n− i-th by a−n (i+1, n− i−1),
the n−1+ i-th by a+n (i+1, i), the 2n−2− i-th by a+n (i+1, n− i)
and the 2n− 1− i-th by a+n (i+ 1, n− i− 1).

On the other hand, the l-th summand of Kn,i+1(x1, . . . , xn)
is given by

Vi+1,lζn(l)

(
a−n (i+ 1, 1), . . . , a−n (i+ 1, n− 1),

a+n (i+ 1, 1), . . . , a+n (i+ 1, n− 1)

)
.
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We set

IIi+1(l) = ζn(l)

(
a−n (i+ 1, 1), . . . , a−n (i+ 1, n− 1),

a+n (i+ 1, 1), . . . , a+n (i+ 1, n− 1)

)
.

The i-th factor of Ii(i) is given by cos (−a−n (i+ 1, i)) =
cos (a−n (i+ 1, i)). Hence Ii(i) = IIi+1(i). Because we further
have Vi,i = 1 and Vi+1,i = −1, the i-th summand
of Kn,i(xPi(1), . . . , xPi(n)) is equal to minus one times the i-th
summand of Kn,i+1(x1, . . . , xn).

For k, l ∈ {1, . . . , 2(n − 1)} \ {i}, the i-th factor of Ii(k) is
given by sin (−a−n (i+ 1, i)) = − sin (a−n (i+ 1, i)), which is equal
to minus one times the i-th factor of IIi+1(l).

Let k ∈ {1, . . . , 2(n− 1)} \ {i, n− i− 1, n− i, 2n− 2− i, 2n−
1− i}. Then we have Ii(k) = −IIi+1(k). Since for k < i we have
Vi,k = Vi+1,k = −1 and for k > i we get Vi,k = Vi+1,k = 1, we
deduce that the k-th summand of Kn,i(xPi(1), . . . , xPi(n)) is equal
to minus one times the k-th summand of Kn,i+1(x1, . . . , xn).

The n− i− 1-th factor of Ii(n− i− 1) is equal to the n− i-th
factor of IIi+i(n−i) and the n−i-th factor of Ii(n−i−1) is equal
to the n− i− 1-th factor of IIi+1(n− i). Hence Ii(n− i− 1) =
−IIi+1(n − i). Since we further have Vi,n−i−1 = Vi+1,n−i = 1 it
follows that the n − i − 1-th summand of
Kn,i(xPi(1), . . . , xPi(n)) is equal to minus one times the n − i-th
summand of Kn,i+1(x1, . . . , xn).

Finally, the 2n − 2 − i-th factor of Ii(2n − 2 − i) is equal to
the 2n− 1− i-th factor of IIi+1(2n− 1− i) and the 2n− 1− i-
th factor of Ii(2n− 2− i) is equal to the 2n− 2− i-th factor of
IIi+1(2n−1−i). Hence, Ii(2n−2−i) = −IIi+1(2n−1−i). Since
further we have Vi,2n−2−i = Vi+1,2n−1−i = 1, it follows that the
2n − 2 − i-th summand of Ii(xPi(1), . . . , xPi(n))is equal to minus
one times the 2n− 1− i-th summand of IIi+1(x1, . . . , xn).
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Alltogether we proved the first statement.

Now we prove 2):
The k-th summand of Kn,n−i+1(xPi(1), . . . , xPi(n)) is equal to

Vn−i+1,k

· ζn(k)
(
Pi

(
a−n (n− i+ 1, 1)

)
, . . . , Pi

(
a−n (n− i+ 1, n− 1)

)
,

Pi

(
a+n (n− i+ 1, 1)

)
, . . . , Pi

(
a+n (n− i+ 1, n− 1)

))
.

We set

In−i+1(k)

= ζn(k)

(
Pi

(
a−n (n− i+ 1, 1)

)
, . . . , Pi

(
a−n (n− i+ 1, n− 1)

)
,

Pi

(
a+n (n− i+ 1, 1)

)
, . . . , Pi

(
a+n (n− i+ 1, n− 1)

))
.

From Lemma 4.15 follows that for j ∈ {1, . . . , 2(n− 1)} \ {i, i+
1, n− i, n− 1 + i, n+ i} the j-th argument of In−i+1(j) is given
by a−n (n− i, j) if j ≤ n− 1 and a+n (n− i, j − n+1) if j > n− 1 .
Further the i-th argument is given by a−n (n− i, i+1), the i+1-th
by a−n (n− i, i), the n− i-th by −a−n (n− i, n− i), the n− 1+ i-th
by a+n (n−i, i+1), the n+i-th by a+n (n−i, i) and the 2n−1−i-th
by a+n (n− i, n− i).

On the other hand, the l-th summand of Kn,n−i(x1, . . . , xn)
is given by

Vn−i,lζn(l)

(
a−n (n− i, 1), . . . ,a−n (n− i, n− 1),

a+n (n− i, 1), . . . , a+n (n− i, n− 1)

)
.

54



We set

IIn−i(l) = ζn(l)

(
a−n (n− i, 1), . . . , a−n (n− i, n− 1),

a+n (n− i, 1), . . . , a+n (n− i, n− 1)

)
.

The n− i-th factor of In−i+1(n− i) is given by

cos
(
−a−n (n− i, n− i)

)
= cos

(
a−n (n− i, n− i)

)
.

Hence In−i+1(n − i) = IIn−i(n − i). Because we further have
Vn−i+1,n−i = −1 and Vn−i,n−i = 1, the n − i-th summand of
Kn,n−i+1(xPi(1), . . . , xPi(n)) is equal to minus one times the n− i-
th summand of Kn,n−i(x1, . . . , xn).

For k, l ∈ {1, . . . , 2(n − 1)} \ {n − i}, the n − i-th factor of
In−i+1(k) is given by sin (−a−n (n− i, n− i))
= − sin (a−n (n− i, n− i)), which is equal to minus one times the
n− i-th factor of IIn−i(l).

Let k ∈ {1, . . . , 2(n − 1)} \ {i, i + 1, n − i, n − 1 + i, n + i}.
Then we have In−i+1(k) = −IIn−i(k). Since for k < n − i
we have Vn−i+1,k = Vn−i,k = −1 and for k > n − i we have
Vn−i+1,k = Vn−i,k = 1, we deduce that the k-th summand of
Kn,n−i+1(xPi(1), . . . , xPi(n)) is equal to minus one times the k-th
summand of Kn,n−i(x1, . . . , xn).

The i-th factor of In−i+1(i) is equal to the i + 1-th factor of
IIn−i(i+1) and the i+1-th factor of In−i+1(i) is equal to the i-th
factor of IIn−i(i+1). Hence In−i+1(i) = −IIn−i(i+1). Since we
further have Vn−i+1,i = Vn−i,i+1 = −1 (note that i+1 < n− i) it
follows that the i-th summand of
Kn,n−i+1(xPi(1), . . . , xPi(n)) is equal to minus one times the i+1-
th summand of Kn,n−i(x1, . . . , xn).

Finally, the n − 1 + i-th factor of In−i+1(n − 1 + i) is equal
to the n + i-th factor of IIn−i(n + i) and the n + i-th factor of
In−i+1(n−1+ i) is equal to the n−1+ i-th factor of IIn−i(n+ i).
Hence, In−i+1(n − 1 + i) = −IIn−i(n + i). Since we further get
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Vn−i+1,n−1+i = Vn−i,n+i = 1, it follows that the n − 1 + i-th
summand of Kn,n−i+1(xPi(1), . . . , xPi(n)) is equal to minus one
times the n+ i-th summand of Kn,n−i(x1, . . . , xn).

Hence, also the second statement is proved.
�

Lemma 4.17 We have

1. Kn,1

(
Ln(ξ1, . . . , ξ⌊n

2
⌋−1)

)
= Kn,n

(
Ln(ξ1, . . . , ξ⌊n

2
⌋−1)

)
=

0,

2. Kn,(⌊n
2
⌋+1)

(
Ln(ξ1, . . . , ξ⌊n

2
⌋−1)

)
= 0, for n odd.

Proof. We start by proving 1).
First we will show that

Kn,1

(
Ln(ξ1, . . . , ξ⌊n

2
⌋−1)

)
= 0.

We have

Kn,1(x1, . . . , xn)

=

2(n−1)∑
k=1

V1,kζn(k)
(
a−n (1, 1), . . . , a

−
n (1, n− 1),

a+n (1, 1), . . . , a
+
n (1, n− 1)

)
=

2(n−1)∑
k=1

ζn(k)
(
a−n (1, 1), . . . , a

−
n (1, n− 1),

a+n (1, 1), . . . , a
+
n (1, n− 1)

)
.

In the last line we used V1,k = 1, since k ≥ 1. Further we get

a±n (1, j) = x1 ± xj+1
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for j ∈ {1, . . . , n− 1}. It follows, that for even n

a±n (1, j)
(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
is equal to

π

2
±

{
1
2 arccos

(
−
√
ξj
)

, for 1 ≤ j ≤ n
2 − 1,

1
2 arccos

(√
ξn−j−1

)
, for n

2 ≤ j ≤ n− 1

and for odd n

a±n (1, j)
(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
is equal to

π

2
±


1
2 arccos

(
−
√
ξj
)

, for 1 ≤ j ≤ ⌊n2 ⌋ − 1,
π
4 , for j = ⌊n2 ⌋,
1
2 arccos

(√
ξ2⌊n

2
⌋−j

)
, for ⌊n2 ⌋+ 1 ≤ j ≤ n− 1.

Now we will show that the j-th and the j+n− 1-th summand of

Kn,1

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
cancel each other, for j ∈ {1, . . . , n−

1}.
First we assume n to be even.

Then, the j-th summand of

Kn,1

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
has the following properties:

The j-th factor is given by{
cos
(
π
2 − 1

2 arccos
(
−
√
ξj
))

, for 1 ≤ j ≤ n
2 − 1,

cos
(
π
2 − 1

2 arccos
(√

ξn−j−1

))
, for n

2 ≤ j ≤ n− 1

and the j + n− 1-th factor is given by{
sin
(
π
2 + 1

2 arccos
(
−
√

ξj
))

, for 1 ≤ j ≤ n
2 − 1,

sin
(
π
2 + 1

2 arccos
(√

ξn−j−1

))
, for n

2 ≤ j ≤ n− 1.
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On the other hand, the j + n− 1-th summand of

Kn,1

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
has the following properties:

The j-th factor is given by{
sin
(
π
2 − 1

2 arccos
(
−
√
ξj
))

, for 1 ≤ j ≤ n
2 − 1,

sin
(
π
2 − 1

2 arccos
(√

ξn−j−1

))
, for n

2 ≤ j ≤ n− 1

and the j + n− 1-th factor is given by{
cos
(
π
2 + 1

2 arccos
(
−
√
ξj
))

, for 1 ≤ j ≤ n
2 − 1,

cos
(
π
2 + 1

2 arccos
(√

ξn−j−1

))
, for n

2 ≤ j ≤ n− 1.

We see that for both 1 ≤ j ≤ n
2 − 1 and n

2 ≤ j ≤ n − 1 the
j-th factor of the j-th summand is equal to minus one times
the j + n − 1-th factor of the j + n − 1-th summand and that
the j + n − 1-th factor of the j-th summand is equal to the
j-th factor of the j + n − 1-th summand. Since further, for
k ∈ {1, . . . , 2(n − 1)} \ {j, j + n − 1}, the k-th factor of the
j-th summand coincides with the k-th factor of the j + n− 1-th
summand, it follows that the j-th and the j+n−1-th summands
cancel each other.

Now we assume n to be odd.
Then, the j-th summand of Kn,1

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
has the

following properties:
The j-th factor is given by

cos
(
π
2 − 1

2 arccos
(
−
√
ξj
))

, for 1 ≤ j ≤ ⌊n2 ⌋ − 1,

cos
(
π
4

)
, for j = ⌊n2 ⌋,

cos

(
π
2 − 1

2 arccos

(√
ξ2⌊n

2
⌋−j

))
, for ⌊n2 ⌋+ 1 ≤ j ≤ n− 1.
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and the j + n− 1-th factor is given by
sin
(
π
2 + 1

2 arccos
(
−
√
ξj
))

, for 1 ≤ j ≤ ⌊n2 ⌋ − 1,

sin
(
3π
4

)
, for j = ⌊n2 ⌋,

sin

(
π
2 + 1

2 arccos

(√
ξ2⌊n

2
⌋−j

))
, for ⌊n2 ⌋+ 1 ≤ j ≤ n− 1.

On the other hand, the j + n− 1-th summand of

Kn,1

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
has the following properties:

The j-th factor is given by
sin
(
π
2 − 1

2 arccos
(
−
√
ξj
))

, for 1 ≤ j ≤ ⌊n2 ⌋ − 1,

sin
(
π
4

)
, for j = ⌊n2 ⌋,

sin

(
π
2 − 1

2 arccos

(√
ξ2⌊n

2
⌋−j

))
, for ⌊n2 ⌋+ 1 ≤ j ≤ n− 1

and the j + n− 1-th factor is given by
cos
(
π
2 + 1

2 arccos
(
−
√
ξj
))

, for 1 ≤ j ≤ ⌊n2 ⌋ − 1,

cos
(
3π
4

)
, for j = ⌊n2 ⌋,

cos

(
π
2 + 1

2 arccos

(√
ξ2⌊n

2
⌋−j

))
, for ⌊n2 ⌋+ 1 ≤ j ≤ n− 1.

We see that also in this case for all j ∈ {1, . . . , n−1} the j-th fac-
tor of the j-th summand is equal to minus one times the j+n−1-
th factor of the j+n−1-th summand and that the j+n−1-th fac-
tor of the j-th summand is equal to the j-th factor of the j+n−1-
th summand. Since further, for k ∈ {1, . . . , 2(n−1)}\{j, j+n−1},
the k-th factor of the j-th summand coincides with the k-th fac-
tor of the j+n− 1-th summand, it follows that the j-th and the
j + n− 1-th summands cancel each other.

Now we will prove that

Kn,n

(
Ln(ξ1, . . . , ξ⌊n

2
⌋−1)

)
= 0.
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We have

Kn,n(x1, . . . , xn) =

2(n−1)∑
k=1

Vn,kζn(k)
(
a−n (n, 1), . . . , a

−
n (n, n− 1),

a+n (n, 1), . . . , a
+
n (n, n− 1)

)
,

with

Vn,k =

{
1 , for k ≥ n,

−1 , for k < n.

For j ∈ {1, . . . , n− 1} we get

a±n (n, j) = xj ± xn.

It follows, that for even n

a±n (n, j)
(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
is equal to{

1
2 arccos

(
−
√
ξj−1

)
, for 1 ≤ j ≤ n

2 ,
1
2 arccos

(√
ξn−j

)
, for n

2 + 1 ≤ j ≤ n− 1

and for odd n

a±n (n, j)
(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
is equal to

1
2 arccos

(
−
√

ξj−1

)
, for 1 ≤ j ≤ ⌊n2 ⌋,

π
4 , for j = ⌊n2 ⌋+ 1,

1
2 arccos

(√
ξ2⌊n

2
⌋−j+1

)
, for ⌊n2 ⌋+ 2 ≤ j ≤ n− 1.

Now we will show that the j-th and the j+n− 1-th summand of

Kn,n

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
cancel each other, for j ∈ {1, . . . , n−

1}.
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First we assume n to be even.
Then, the j-th summand of

Kn,n

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
has the following properties:

The j-th factor is given by{
cos
(
1
2 arccos

(
−
√
ξj−1

))
, for 1 ≤ j ≤ n

2 ,

cos
(
1
2 arccos

(√
ξn−j

))
, for n

2 + 1 ≤ j ≤ n− 1

and the j + n− 1-th factor is given by{
sin
(
1
2 arccos

(
−
√
ξj−1

))
, for 1 ≤ j ≤ n

2 ,

sin
(
1
2 arccos

(√
ξn−j

))
, for n

2 + 1 ≤ j ≤ n− 1.

On the other hand, the j + n− 1-th summand of

Kn,n

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
has the following properties:

The j-th factor is given by{
sin
(
1
2 arccos

(
−
√
ξj−1

))
, for 1 ≤ j ≤ n

2 ,

sin
(
1
2 arccos

(√
ξn−j

))
, for n

2 + 1 ≤ j ≤ n− 1

and the j + n− 1-th factor is given by{
cos
(
1
2 arccos

(
−
√
ξj−1

))
, for 1 ≤ j ≤ n

2 ,

cos
(
1
2 arccos

(√
ξn−j

))
, for n

2 + 1 ≤ j ≤ n− 1.

We see that for all j ∈ {1, . . . , n − 1} the j-th factor of the j-th
summand is equal to the j + n − 1-th factor of the j + n − 1-th
summand and that the j+n−1-th factor of the j-th summand is
equal to the j-th factor of the j + n− 1-th summand. Since fur-
ther, for k ∈ {1, . . . , 2(n−1)}\{j, j+n−1}, the k-th factor of the
j-th summand coincides with the k-th factor of the j + n− 1-th
summand, it follows that the j-th and the j+n−1-th summands
cancel each other because of Vn,j = −1 and Vn,j+n−1 = 1.
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Now we assume n to be odd.
Then, the j-th summand of Kn,n

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
has the

following properties:
The j-th factor is given by

cos
(
1
2 arccos

(
−
√
ξj−1

))
, for 1 ≤ j ≤ ⌊n2 ⌋,

cos
(
π
4

)
, for j = ⌊n2 ⌋+ 1,

cos

(
1
2 arccos

(√
ξ2⌊n

2
⌋−j+1

))
, for ⌊n2 ⌋+ 2 ≤ j ≤ n− 1.

and the j + n− 1-th factor is given by
sin
(
1
2 arccos

(
−
√
ξj−1

))
, for 1 ≤ j ≤ ⌊n2 ⌋,

sin
(
π
4

)
, for j = ⌊n2 ⌋+ 1,

sin

(
1
2 arccos

(√
ξ2⌊n

2
⌋−j+1

))
, for ⌊n2 ⌋+ 2 ≤ j ≤ n− 1.

On the other hand, the j + n− 1-th summand of

Kn,n

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
has the following properties:

The j-th factor is given by
sin
(
1
2 arccos

(
−
√
ξj−1

))
, for 1 ≤ j ≤ ⌊n2 ⌋,

sin
(
π
4

)
, for j = ⌊n2 ⌋+ 1,

sin

(
1
2 arccos

(√
ξ2⌊n

2
⌋−j+1

))
, for ⌊n2 ⌋+ 2 ≤ j ≤ n− 1.

and the j + n− 1-th factor is given by
cos
(
1
2 arccos

(
−
√
ξj−1

))
, for 1 ≤ j ≤ ⌊n2 ⌋,

cos
(
π
4

)
, for j = ⌊n2 ⌋+ 1,

cos

(
1
2 arccos

(√
ξ2⌊n

2
⌋−j+1

))
, for ⌊n2 ⌋+ 2 ≤ j ≤ n− 1.

We see that also in this case for all j ∈ {1, . . . , n − 1} the j-th
factor of the j-th summand is equal to the j + n − 1-th factor
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of the j + n− 1-th summand and that the j + n− 1-th factor of
the j-th summand is equal to the j-th factor of the j + n− 1-th
summand. Since further, for k ∈ {1, . . . , 2(n−1)}\{j, j+n−1},
the k-th factor of the j-th summand coincides with the k-th fac-
tor of the j+n− 1-th summand, it follows that the j-th and the
j + n − 1-th summands cancel each other because of Vn,j = −1
and Vn,j+n−1 = 1.
Alltogether we proved 1).

To prove 2), we assume n to be odd. We have

a±n

(⌊n
2

⌋
+ 1, j

)
(x1, . . . , xn)

=

{
xj ± x⌊n

2
⌋+1 , for j < ⌊n2 ⌋+ 1,

x⌊n
2
⌋+1 ± xj+1 , for ⌊n2 ⌋+ 1 ≤ j ≤ n− 1.

It follows that

a±n

(⌊n
2

⌋
+ 1, j

)(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
is equal to

1
2 arccos

(
−
√

ξj−1

)
± π

4 , for j < ⌊n2 ⌋+ 1,

π
4 ± 1

2 arccos

(√
ξ2⌊n

2
⌋−j

)
, for ⌊n2 ⌋+ 1 ≤ j ≤ n− 1.

To show that

Kn,⌊n
2
⌋+1

(
Ln

(
ξ1, . . . , ξ⌊n

2
⌋−1

))
vanishes, it is enough to show that the following summands of
this expression cancel each other:

a) the first with the 2(n− 1)-th

b) the n− 1-th with the n-th
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c) for 2 ≤ j ≤ n−1
2 , the j-th with the n− j-th

d) for n+ 1 ≤ j ≤ 3
2(n− 1), the j-th with the 3n− j − 2-th

To show a) we first remark that V⌊n
2
⌋+1,1 = −1 and V⌊n

2
⌋+1,n =

1. The first summand has the following properties:
The first factor is given by

cos
(π
4

)
and the 2(n− 1)-th factor is given by

sin
(π
4

)
.

On the other hand, the 2(n − 1)-th summand has the following
properties:
The first factor is given by

sin
(π
4

)
and the 2(n− 1)-th factor by

cos
(π
4

)
.

Hence, the first factor of the first summand is equal to the 2(n−
1)-th factor of the 2(n−1)-th summand and the 2(n−1)-th factor
of the first summand is equal to the first factor of the 2(n−1)-th
summand. Further, for k ∈ {1, . . . , 2(n − 1)} \ {1, 2(n − 1)} the
k-th factor of the first summand coincides with the k-th factor
of the 2(n− 1)-th summand. Statement a) follows.

To show b), we first note that V⌊n
2
⌋+1,n−1 = V⌊n

2
⌋+1,n = 1.

The n− 1-th summand has the following properties:
The n− 1-th factor is given by

cos

(
π

4
− 1

2
arccos

(√
ξ0

))
= cos

(π
4

)
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and the n-th factor is given by

sin

(
1

2
arccos

(
−
√

ξ0

)
+

π

4

)
= sin

(
3π

4

)
= sin

(π
4

)
.

The n-th summand has the following properties:
The n− 1-th factor is given by

sin
(π
4

)
and the n-th factor by

cos

(
3π

4

)
= − cos

(π
4

)
.

Hence. the n − 1-th factor of the n − 1-th summand is equal to
minus one times the n-th factor of the n-th summand and the n-
th factor of the n− 1-th summand is equal to the n− 1-th factor
of the n-th summand. For k ∈ {1, . . . , 2(n − 1)} \ {n − 1, n},
the k-th factor of the n− 1-th summand coincides with the k-th
factor of the n-th summand. This implies b).

To show c) we assume that 2 ≤ j ≤ n−1
2 . In this case we have

V⌊n
2
⌋+1,j = −1 and because of the inequality

n− j ≥ n− n− 1

2
=

n

2
+

1

2
=
⌊n
2

⌋
+ 1,

it follows V⌊n
2
⌋+1,n−j = 1.

The j-th summand has the following properties:
The j-th factor is given by

cos

(
1

2
arccos

(
−
√
ξj−1

)
− π

4

)
and the n− j-th factor by

sin

(
π

4
− 1

2
arccos

(√
ξ2⌊n

2
⌋−n+j

))
.
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Further, the n− j-th summand has the following properties:
Using the fact that arccos(−x) = π − arccos(x), we deduce that
the j-th factor is given by

sin

(
1

2
arccos

(
−
√

ξj−1

)
− π

4

)
= sin

(
π

4
− 1

2
arccos

(√
ξj−1

))
= sin

(
π

4
− 1

2
arccos

(√
ξ2⌊n

2
⌋−n+j

))
,

where we used for the last equality that 2⌊n2 ⌋ − n+ j = j − 1.
Applying the same arguments, it follows that the n− j-th factor
is given by

cos

(
π

4
− 1

2
arccos

(√
ξ2⌊n

2
⌋−n+j

))
= cos

(
1

2
arccos

(
−
√
ξj−1

)
− π

4

)
.

As we can see, the j-th factor of the j-th summand is equal to the
n− j-th factor of the n− j-th summand and the n− j-th factor
of the j-th summand is equal to the j-th factor of the n − j-th
summand. Since for k ∈ {1, . . . , 2(n − 1)} \ {j, n − j} the k-th
factor of the j-th summand coincides with the k-th factor of the
n− j-th summand, statement c) follows.

For proving d), we assume that n+1 ≤ j ≤ 3
2(n− 1). In this

case we have V⌊n
2
⌋+1,j = V⌊n

2
⌋+1,3n−j−2 = 1. The j-th summand

has the following properties:
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The j-th factor is given by

cos

(
1

2
arccos

(
−
√

ξj−n

)
+

π

4

)
= cos

(
−1

2
arccos

(√
ξj−n

)
+

3π

4

)
= cos

(
1

2
arccos

(√
ξj−n

)
− 3π

4

)
= − cos

(
1

2
arccos

(√
ξj−n

)
+

π

4

)
and the 3n− j − 2-th factor by

sin

(
π

4
+

1

2
arccos

(√
ξj−n

))
.

On the other hand, the 3n− j− 2-th summand has the following
properties: The j-th factor is given by

sin

(
1

2
arccos

(
−
√

ξj−n

)
+

π

4

)
= sin

(
−1

2
arccos

(√
ξj−n

)
+

3π

4

)
= − sin

(
1

2
arccos

(√
ξj−n

)
− 3π

4

)
= sin

(
π

4
+

1

2
arccos

(√
ξj−n

))
and the 3n− j − 2-th factor is given by

cos

(
π

4
+

1

2
arccos

(√
ξj−n

))
.

Hence, the j-th factor of the j-th summand is equal to minus one
times the 3n− j − 2-th factor of the 3n− j − 2-th summand and
the 3n− j− 2-th factor of the j-th summand is equal to the j-th
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factor of the 3n− j−2-th summand. Since further, we have that
for k ∈ {1, . . . , 2(n − 1)} \ {j, 3n − j − 2} the k-th factor of the
j-th summand coincides with the k-th factor of the 3n− j− 2-th
summand, statement d) follows.

The statements a), b), c) and d) imply 2).
�

Definition 4.18 For 1 ≤ i ≤
⌊
n
2

⌋
− 1 let

Fi(n) (ξ) =

⌊n
2 ⌋−1∑
k=0

(−1)k(−3+2n−4k)ξ
⌊n

2 ⌋−1−k

i (ak−1(ξ)+ak(ξ)),

with

ak (ξ) =

k∑
m=0

(−1)k−mξk−m
i Sm(ξ),

where Sm(ξ) is the m-th elementary symmetric polynomial in the
variables ξ1, . . . , ξ⌊n

2 ⌋−1. Further, we set

a−1 = 0,

a0 = 1,

a⌊n
2 ⌋−1 = 0

and

Fi(2)() = 0,

Fi(3)() = 0.

Remark 4.19 For 2 ≤ i ≤
⌊
n
2

⌋
− 1 we have the relation

Fi(n)(ξ1, . . . , ξi−1︸︷︷︸
i−1−th

, ξi︸︷︷︸
i−th

, . . . , ξ⌊n
2 ⌋−1)

= Fi−1(n)(ξ1, . . . , ξi︸︷︷︸
i−1−th

, ξi−1︸︷︷︸
i−th

, . . . , ξ⌊n
2 ⌋−1).
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Proposition 4.20 We have

Kn,2 (Ln(ξ)) =


−1

2n−2

√
1− ξ1F1(n) (ξ) , for n even,

−1

2n−2

√
ξ1
√
1− ξ1F1(n) (ξ) , for n odd.

Before we give the proof of this proposition, we state some needed
intermediate results:

In the following we will denote by

ζn(k) (Ln (ξ))

the function

ζn(k)
(
a−n (i, 1), . . . , a

−
n (i, n− 1), a+n (i, 1) . . . a

+
n (i, n− 1)

)
evaluated at Ln (ξ).

Lemma 4.21 For n ≥ 6 we have

ζn(0) (Ln (ξ)) = ζn−2(0) (Ln−2 (ξ))
1

4

(
ξ1 − ξ⌊n

2
⌋−1

)
.

Proof. For arbitrary n ≥ 6 we get

ζn(0) (Ln (ξ))

= ζn−2(0)
(
Ln

(
ξ1, . . . , ξ⌊n−2

2 ⌋−1

))
· sin

(
(Ln(ξ))2 − (Ln(ξ))⌊n

2
⌋

)
· sin

(
(Ln(ξ))2 − (Ln(ξ))n−⌊n

2
⌋+1

)
· sin

(
(Ln(ξ))2 + (Ln(ξ))⌊n

2
⌋

)
· sin

(
(Ln(ξ))2 + (Ln(ξ))n−⌊n

2
⌋+1

)
= ζn−2(0)

(
Ln

(
ξ1, . . . , ξ⌊n−2

2 ⌋−1

)) 1

4

(
ξ1 − ξ⌊n

2 ⌋−1

)
.
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Lemma 4.22 Let n ≥ 4. Then

ζn(0) (Ln (ξ)) =



√
ξ1 (1− ξ1)

4⌊
n
2
⌋−1

⌊n
2
⌋−1∏

i=2

(ξ1 − ξi) , for n even,

ξ1 (1− ξ1)

2 · 4⌊
n
2
⌋−1

⌊n
2
⌋−1∏

i=2

(ξ1 − ξi) , for n odd.

Further, we have

1. ζ2(0) (L2()) = 1,

2. ζ3(0) (L3()) =
1

4
.

Proof. The statement for dimension n ∈ {2, 3} follows from di-
rect computation. We prove the statement for n ≥ 4 inductively:

By direct computation we obtain

ζ4(0) (L4 (ξ1)) =

√
ξ1
4

(1− ξ1) ,

ζ5(0) (L5 (ξ1)) =
ξ1
2 · 4

(1− ξ1) .

First we consider the case where n is odd. Since we want to
consider only odd dimensions first, we assume the statement to
be true for n and want to deduce that it is then also true for
n+ 2.
Using the previous lemma, we get

ζn+2(0)
(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2
⌋−1

))
= ζn(0) (Ln (ξ))

1

4

(
ξ1 − ξ⌊n

2
⌋

)
.
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Using the induction assumption, it follows that the term above
is equal to

ξ1 (1− ξ1)

2 · 4⌊
n
2
⌋

(
ξ1 − ξ⌊n

2
⌋

) ⌊n
2
⌋−1∏

i=2

(ξ1 − ξi)

=
ξ1 (1− ξ1)

2 · 4⌊
n
2
⌋

⌊n
2
⌋∏

i=2

(ξ1 − ξi) .

Noting that
⌊
n+2
2

⌋
− 1 =

⌊
n
2

⌋
, we have shown that the statement

of the lemma is also true for n+ 2.

Now, we consider the case n even. As in the case before, using
the previous lemma yields

ζn+2(0)
(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2
⌋−1

))
= ζn(0) (Ln (ξ))

1

4

(
ξ1 − ξ⌊n

2
⌋

)
.

Using the induction assumption, we see that this is equal to

√
ξ1 (1− ξ1)

4⌊
n
2
⌋

(
ξ1 − ξ⌊n

2
⌋

) ⌊n
2
⌋−1∏

i=2

(ξ1 − ξi)

=

√
ξ1 (1− ξ1)

4⌊
n
2
⌋

⌊n
2
⌋∏

i=2

(ξ1 − ξi) ,

which shows that the statement is also true for n+ 2.
�

Lemma 4.23 Let n be odd and ξ1 ̸= 0. Then
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1) ζn

(⌊n
2

⌋)
(Ln (ξ))

=

√
ξ1 (1− ξ1)

2 · 4⌊
n
2 ⌋−1

⌊n
2 ⌋−1∏
i=2

(ξ1 − ξi)
(
1 +

√
1− ξ1

)
,

2) ζn

(
n+

⌊n
2

⌋
− 1
)
(Ln (ξ))

=

√
ξ1 (1− ξ1)

2 · 4⌊
n
2 ⌋−1

⌊n
2 ⌋−1∏
i=2

(ξ1 − ξi)
(√

1− ξ1 − 1
)
.

Proof. We have

ζn

(⌊n
2

⌋)
(Ln (ξ))

= ζn (0) (Ln (ξ)) cot

(
1

2
arccos

(
−
√

ξ1

)
− π

4

)
= ζn (0) (Ln (ξ))

√
1−

√
ξ1 +

√
1 +

√
ξ1√

1 +
√
ξ1 −

√
1−

√
ξ1
.

Using the previous lemma, we see that this is equal to

ξ1 (1− ξ1)

2 · 4⌊
n
2
⌋−1

√
1−

√
ξ1 +

√
1 +

√
ξ1√

1 +
√
ξ1 −

√
1−

√
ξ1

⌊n
2
⌋−1∏

i=2

(ξ1 − ξi)

=

√
ξ1 (1− ξ1)

2 · 4⌊
n
2
⌋−1

(
1 +

√
1− ξ1

) ⌊n
2
⌋−1∏

i=2

(ξ1 − ξi) .

Further, we get

ζn

(
n+

⌊n
2

⌋
− 1
)
(Ln (ξ))

= ζn (0) (Ln (ξ)) cot

(
1

2
arccos

(
−
√

ξ1

)
+

π

4

)
= ζn (0) (Ln (ξ))

√
1− ξ1 − 1√

ξ1
.
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Again, using the previous lemma, we obtain that this is equal to

√
ξ1 (1− ξ1)

2 · 4⌊
n
2
⌋−1

(√
1− ξ1 − 1

) ⌊n
2
⌋−1∏

i=2

(ξ1 − ξi) ,

which concludes the proof.
�

Corollary 4.24 Let n be odd and ξ1 ̸= 0. Then

1) ζn

(⌊n
2

⌋)
(Ln (ξ))

=
1√
ξ1

(
1 +

√
1− ξ1

)
ζn (0) (Ln (ξ))

2) ζn

(
n+

⌊n
2

⌋
− 1
)
(Ln (ξ))

=
1√
ξ1

(√
1− ξ1 − 1

)
ζn (0) (Ln (ξ)) .

A motivation for the following definition is given by Lemma
4.51 in the appendix.

Definition 4.25 We set for ξ1 ̸= 0

1) Fs,s,s,s =
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

,

2) Fc,s,s,s =

(√
1− ξ1 +

√
1− ξ⌊n

2 ⌋

)(√
ξ1 +

√
ξ⌊n

2 ⌋

)
2
√
ξ1

,

3) Fs,c,s,s =

(√
1− ξ1 +

√
1− ξ⌊n

2 ⌋

)(√
ξ1 −

√
ξ⌊n

2 ⌋

)
2
√
ξ1

,

4) Fs,s,c,s =

(√
1− ξ1 −

√
1− ξ⌊n

2 ⌋

)(√
ξ1 +

√
ξ⌊n

2 ⌋

)
2
√
ξ1

,
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5) Fs,s,s,c =

(√
1− ξ1 −

√
1− ξ⌊n

2 ⌋

)(√
ξ1 −

√
ξ⌊n

2 ⌋

)
2
√
ξ1

.

Remark 4.26 Summation yields

Fc,s,s,s + Fs,c,s,s + Fs,s,c,s + Fs,s,s,c = 2
√
1− ξ1.

For the proof of Proposition 4.20 we will make use of the fol-
lowing well-known facts for elementary symmetric polynomials.

Lemma 4.27 For 0 ≤ i ≤ m, let Si(x1, . . . , xm) be the i-th ele-
mentary symmetric polynomial in the variables x1, . . . , xm. Then

Si(x1, . . . , xm) =Si(x1, . . . , xj−1, xj+1, . . . , xm)

+ xjSi−1(x1, . . . , xj−1, xj+1, . . . , xm).

Further, the equality

m∏
j=1

(x− xj) =

m∑
k=0

(−1)kSk(x1, . . . , xm)xm−k

is valid.

Using this preperation, we can now give the proof of Proposition
4.20.

Proof of Proposition 4.20. We prove this statement by induc-
tion.

74



A direct calcuation gives

K2,2 (L2()) = 0 = −
√
1− ξ1F1(2)(),

K3,2 (L3()) = 0 = −1

2

√
ξ1
√

1− ξ1F1(3)(),

K4,2 (L4(ξ1)) = −1

4

√
1− ξ1 (5ξ1 − 1)

= −1

4

√
1− ξ1F1(4) (ξ1) ,

K5,2 (L5(ξ1)) = −1

8

√
ξ1
√
1− ξ1 (7ξ1 − 3)

= −1

8

√
ξ1
√

1− ξ1F1(5) (ξ1) .

First, we prove the claim for odd n, where n ≥ 5: We get

Kn+1,2

(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
=

2n∑
k=1

Vi,kζn+1(k)
(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))

=

⌊n
2 ⌋−1∑
k=1

Vi,kζn+1(k)
(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
+ Vi,⌊n

2 ⌋ζn+1

(⌊n
2

⌋)(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
+ Vi,⌊n

2 ⌋+1ζn+1

(⌊n
2

⌋
+ 1
)(

Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
+

n+⌊n
2 ⌋−1∑

k=⌊n
2 ⌋+2

Vi,kζn+1(k)
(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
+ Vi,n+⌊n

2 ⌋ζn+1

(
n+

⌊n
2

⌋)(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
+ Vi,n+⌊n

2 ⌋+1ζn+1

(
n+

⌊n
2

⌋
+ 1
)(

Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
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+

2n∑
k=n+⌊n

2 ⌋+2

Vi,kζn+1(k)
(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))

= Fs,s,s,s

⌊n
2 ⌋−1∑
k=1

Vi,kζn(k) (Ln (ξ))

+ Fc,s,s,s ζn (0) (Ln (ξ))

+ Fs,c,s,s ζn (0) (Ln (ξ))

+ Fs,s,s,s

n+⌊n
2 ⌋−2∑

k=⌊n
2 ⌋+1

Vi,kζn(k) (Ln (ξ))

+ Fs,s,c,s ζn (0) (Ln (ξ))

+ Fs,s,s,c ζn (0) (Ln (ξ))

+ Fs,s,s,s

2(n−1)∑
k=n+⌊n

2 ⌋
Vi,kζn(k) (Ln (ξ))

= Fs,s,s,s Kn,2 (Ln (ξ))

−Fs,s,s,s

(
ζ⌊n

2 ⌋ (0) (Ln (ξ)) + ζn+⌊n
2 ⌋−1 (0) (Ln (ξ))

)
+ (Fc,s,s,s + Fs,c,s,s + Fs,s,c,s + Fs,s,s,c) ζn (0) (Ln (ξ))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

(
ζ⌊n

2 ⌋ (0) (Ln (ξ)) + ζn+⌊n
2 ⌋−1 (0) (Ln (ξ))

)
+ 2
√

1− ξ1 ζn (0) (Ln (ξ))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

+

(
ξ1 + ξ⌊n

2 ⌋
)
(1− ξ1)

√
1− ξ1

2 · 4⌊
n
2 ⌋−1

⌊n
2 ⌋−1∏
i=2

(ξ1 − ξi)
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=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

+

(
ξ1 + ξ⌊n

2 ⌋
)
(1− ξ1)

√
1− ξ1

2 · 4⌊
n
2 ⌋−1

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
=

ξ1 − ξ⌊n
2 ⌋

2
√
ξ1

Kn,2 (Ln (ξ))

+
ξ1 (1− ξ1)

√
1− ξ1

2n−2

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+
ξ⌊n

2 ⌋
√
1− ξ1

2n−1
(1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

2(−1)kξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
=

ξ1 − ξ⌊n
2 ⌋

2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−2

·

(
(1− ξ1)

⌊n
2 ⌋−2∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (−1)⌊

n
2 ⌋−1ξ1S⌊n

2 ⌋−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1
(1− ξ1)
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·
⌊n

2 ⌋−2∑
k=0

2(−1)k+1ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
=

ξ1 − ξ⌊n
2 ⌋

2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−2

·

(
(1− ξ1)

⌊n
2 ⌋−2∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (−1)⌊

n
2 ⌋−2ξ21S⌊n

2 ⌋−2

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (−1)⌊

n
2 ⌋−1ξ1

(
S⌊n

2 ⌋−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1S⌊n

2 ⌋−2

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)))

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1
(1− ξ1)

·

( ⌊n
2 ⌋−2∑
k=0

(−1)k (−n+ 2k) ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−2∑
k=0

(−1)k+1 (−n+ 2k + 2) ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−2

(
(1− ξ1)

·

( ⌊n
2 ⌋−2∑
k=0

(−1)k+1
(⌊n

2

⌋
− 1− k

)
ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
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+

⌊n
2 ⌋−3∑
k=0

(−1)k+2
(⌊n

2

⌋
− 2− k

)
ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

+

⌊n
2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−3∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (−1)⌊

n
2 ⌋−1ξ1

(
S⌊n

2 ⌋−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1S⌊n

2 ⌋−2

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)))

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1
(1− ξ1)

(
3(−1)⌊

n
2 ⌋−2S⌊n

2 ⌋−2

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−2∑
k=0

(−1)k (−n+ 2k) ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−2∑
k=0

(−1)k (−n+ 2k) ξ
⌊n

2 ⌋−1−k

1 Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−2

(
(1− ξ1)

·

( ⌊n
2 ⌋−2∑
k=0

(−1)k+1
(⌊n

2

⌋
− 1− k

)
ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−2∑
k=1

(−1)k+1
(⌊n

2

⌋
− 1− k

)
ξ
⌊n

2 ⌋−k

1 Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))
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+

⌊n
2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−2∑
k=1

(−1)kξ
⌊n

2 ⌋−k+1

1 Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (−1)⌊

n
2 ⌋−1ξ1

(
S⌊n

2 ⌋−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1S⌊n

2 ⌋−2

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)))

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1

(
(1− ξ1)

·

(
3(−1)⌊

n
2 ⌋−2S⌊n

2 ⌋−2

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−2∑
k=0

(−1)k (−n+ 2k) ξ
⌊n

2 ⌋−2−k

1

(
Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)))

+

⌊n
2 ⌋−3∑
k=0

(−1)k3ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−3∑
k=0

(−1)k+13ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−2

(
(1− ξ1)
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·

( ⌊n
2 ⌋−2∑
k=0

(−1)k+1
(⌊n

2

⌋
− 1− k

)
ξ
⌊n

2 ⌋−1−k

1

(
Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)))

+

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)))

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1

(
(1− ξ1)

( ⌊n
2 ⌋−2∑
k=0

(−1)k (−n+ 2k) ξ
⌊n

2 ⌋−2−k

1

(
Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)))

+

⌊n
2 ⌋−2∑
k=0

(−1)k3ξ
⌊n

2 ⌋−2−k

1

(
Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

+ (−1)⌊
n
2 ⌋−13ξ1S⌊n

2 ⌋−2

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−2

(
(1− ξ1)
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·

( ⌊n
2 ⌋−2∑
k=0

(−1)k+1
(⌊n

2

⌋
− 1− k

)
ξ
⌊n

2 ⌋−1−k

1 Sk (ξ)

)

+

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1 Sk (ξ)

)

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1

(
(1− ξ1)

·

( ⌊n
2 ⌋−2∑
k=0

(−1)k (5− 2n+ 4k) ξ
⌊n

2 ⌋−2−k

1 Sk (ξ)

+ 2

⌊n
2 ⌋−3∑
k=0

(−1)k
(⌊n

2

⌋
− 2− k

)
ξ
⌊n

2 ⌋−2−k

1 Sk (ξ)

)

+

⌊n
2 ⌋−2∑
k=0

(−1)k3ξ
⌊n

2 ⌋−2−k

1 Sk (ξ) + (−1)⌊
n
2 ⌋−13S⌊n

2 ⌋−1 (ξ)

)

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−2

(
(1− ξ1)

⌊n
2 ⌋−2∑
k=0

k∑
m=0

(−1)2k−m+1ξ
⌊n

2 ⌋−1−m

1 Sm (ξ)

+

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1 Sk (ξ)

)

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1

·

( ⌊n
2 ⌋−1∑
k=0

(−1)k+1 (4(k + 1)− 2(n+ ξ1) ξ
⌊n

2 ⌋−1−kSk−1 (ξ)
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+

⌊n
2 ⌋−1∑
k=0

(−1)k (−3 + 2n− 4k) ξ⌊
n
2 ⌋−1−kSk (ξ)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1 (1− ξ1)

k−2∑
m=0

(−1)k−mξk−2−m
1 Sm (ξ)

)

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−2

·

( ⌊n
2 ⌋−1∑
k=1

(−1)kξ
⌊n

2 ⌋−k

1

k−1∑
m=0

(−1)k−1−m (1− ξ1) ξ
k−1−m
1 Sm (ξ)

+

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1 Sk (ξ)

)

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1

·

( ⌊n
2 ⌋−1∑
k=0

(−1)k+1 (−2n+ 4(k + 1)) ξ
⌊n

2 ⌋−1−k

1 Sk−1 (ξ)

+

⌊n
2 ⌋−1∑
k=0

(−1)k (−3 + 2n− 4k) ξ
⌊n

2 ⌋−1−k

1 Sk (ξ)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
(1− ξ1)

·
k−2∑
m=0

(−1)k−mξk−2−m
1 Sm (ξ) + Sk−1 (ξ)

))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))
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−
√
1− ξ1
2n−2

( ⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
k−1∑
m=0

(−1)k−1−mξk−1−m
1 Sm (ξ)

+

k∑
m=0

(−1)k−mξk−m
1 Sm (ξ)

))

−
ξ⌊n

2 ⌋
√
1− ξ1

2n−1

( ⌊n
2 ⌋−1∑
k=0

(−1)k(−4k)ξ
⌊n

2 ⌋−1−k

1 Sk−1 (ξ)

+

⌊n
2 ⌋−1∑
k=0

(−1)k(−3 + 2n− 4k)ξ
⌊n

2 ⌋−1−k

1 Sk (ξ)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
k−1∑
m=0

(−1)k−1−mξk−1−m
1 Sm−1 (ξ)

+

k∑
m=0

(−1)k−mξk−m
1 Sm−1 (ξ)

)
+ (−1)⌊

n
2 ⌋
(
2− 4

⌊n
2

⌋)
·
⌊n

2 ⌋−1∑
m=0

(−1)⌊
n
2 ⌋−1−mξ

⌊n
2 ⌋−1−m

1 Sm−1 (ξ)

)

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

+
−
√
1− ξ1

2n−1

(
2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

·

(
k−1∑
m=0

(−1)k−1−mξk−1−m
1 Sm (ξ)

+

k∑
m=0

(−1)k−mξk−m
1 Sm (ξ)

)
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+ ξ⌊n
2 ⌋

·

( ⌊n
2 ⌋−1∑
k=0

(−1)k (−3 + 2n− 4k) ξ
⌊n

2 ⌋−1−k

1

(
Sk−1 (ξ) + Sk (ξ)

)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
k−1∑
m=0

(−1)k−1−mξk−1−m
1 Sm−1 (ξ)

+
k∑

m=0

(−1)k−mξk−m
1 Sm−1 (ξ)

)
+ (−1)⌊

n
2 ⌋
(
−3 + 2(n+ 1)− 4

⌊n
2

⌋)
·
⌊n

2 ⌋−1∑
m=0

(−1)⌊
n
2 ⌋−1−mξ

⌊n
2 ⌋−1−m

1 Sm−1 (ξ)

))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−1

(
ξ⌊n

2 ⌋

·
⌊n

2 ⌋−1∑
k=0

(−1)k(−3 + 2n− 4k)ξ
⌊n

2 ⌋−1−k

1

(
Sk−1 (ξ) + Sk (ξ)

)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
k−1∑
m=0

(−1)k−1−mξk−1−m
1

(
Sm (ξ)

+ ξ⌊n
2 ⌋Sm−1 (ξ)

)

+
k∑

m=0

(−1)k−mξk−m
1

(
Sm (ξ) + ξ⌊n

2 ⌋Sm−1 (ξ)

))
+ (−1)⌊

n
2 ⌋
(
−3 + 2(n+ 1)− 4

⌊n
2

⌋)
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·
⌊n

2 ⌋−1∑
m=0

(−1)⌊
n
2 ⌋−1−mξ

⌊n
2 ⌋−1−m

1

(
Sm (ξ) + ξ⌊n

2 ⌋Sm−1 (ξ)

))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−1

(
ξ⌊n

2 ⌋

⌊n
2 ⌋−1∑
k=0

(−1)k(−3 + 2n− 4k)ξ
⌊n

2 ⌋−1−k

1

(
Sk−1 (ξ)

+ Sk (ξ)

)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
k−1∑
m=0

(−1)k−1−mξk−1−m
1

(
Sm (ξ)

+ ξ⌊n
2 ⌋Sm−1 (ξ)

)
+

k∑
m=0

(−1)k−mξk−m
1

(
Sm (ξ) + ξ⌊n

2 ⌋Sm−1 (ξ)
))

+ (−1)⌊
n
2 ⌋
(
−3 + 2(n+ 1)− 4

⌊n
2

⌋)
·
⌊n

2 ⌋−1∑
m=0

(−1)⌊
n
2 ⌋−1−mξ

⌊n
2 ⌋−1−m

1

(
Sm (ξ) + ξ⌊n

2 ⌋Sm−1 (ξ)

))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−1

(
ξ⌊n

2 ⌋

·
⌊n

2 ⌋−1∑
k=0

(−1)k(−3 + 2n− 4k)ξ
⌊n

2 ⌋−1−k

1

(
Sk−1 (ξ) + Sk (ξ)

)
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+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
k−1∑
m=0

(−1)k−1−mξk−1−m
1 Sm

(
ξ1, . . . , ξ⌊n

2 ⌋
)

+

k∑
m=0

(−1)k−mξk−m
1 Sm

(
ξ1, . . . , ξ⌊n

2 ⌋
))

+ (−1)⌊
n
2 ⌋
(
−3 + 2(n+ 1)− 4

⌊n
2

⌋)
·
⌊n

2 ⌋−1∑
m=0

(−1)⌊
n
2 ⌋−1−mξ

⌊n
2 ⌋−1−m

1 Sm

(
ξ1, . . . , ξ⌊n

2 ⌋
))

=
ξ1 − ξ⌊n

2 ⌋
2
√
ξ1

Kn,2 (Ln (ξ))

−
√
1− ξ1
2n−1

(
ξ⌊n

2 ⌋

⌊n
2 ⌋−1∑
k=0

(−1)k(−3 + 2n− 4k)ξ
⌊n

2 ⌋−1−k

1

(
Sk−1 (ξ)

+ Sk (ξ)

)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
ak−1

(
ξ1, . . . , ξ⌊n

2 ⌋
)

+ ak

(
ξ1, . . . , ξ⌊n

2 ⌋
))

+ (−1)⌊
n
2 ⌋
(
−3 + 2(n+ 1)− 4

⌊n
2

⌋)
a⌊n

2 ⌋−1

(
ξ1, . . . , ξ⌊n

2 ⌋
))

= −
√
1− ξ1
2n−1

·

(
ξ1

⌊n
2 ⌋−1∑
k=0

(−1)k(−3 + 2n− 4k)ξ
⌊n

2 ⌋−k−1

1

(
ak−1 (ξ) + ak (ξ)
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−
ξ⌊n

2 ⌋
ξ1

(
ak−1 (ξ) + ak (ξ)− Sk−1 (ξ)− Sk (ξ)

))

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−k

1

(
ak−1

(
ξ1, . . . , ξ⌊n

2 ⌋
)

+ ak

(
ξ1, . . . , ξ⌊n

2 ⌋
))

+ (−1)⌊
n
2 ⌋
(
−3 + 2(n+ 1)− 4

⌊n
2

⌋)
a⌊n

2 ⌋−1

(
ξ1, . . . , ξ⌊n

2 ⌋
))

Now, using the easily verifiable fact that

ak−1

(
ξ1, . . . , ξ⌊n

2 ⌋
)
+ ak

(
ξ1, . . . , ξ⌊n

2 ⌋
)

= ak−1 (ξ)+ak (ξ)−
ξ⌊n

2 ⌋
ξ1

(
ak−1 (ξ)+ak (ξ)−Sk−1 (ξ)−Sk (ξ)

)
,

we see that the above expression is equal to

−
√
1− ξ1
2n−1

·
⌊n+1

2 ⌋−1∑
k=0

(−1)k(−3 + 2(n+ 1)− 4k)ξ
⌊n+1

2 ⌋−k−1

1

(

ak−1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

)
+ ak

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
,

which is equal to

−1

2n−1

√
1− ξ1F1(n+ 1)

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

)
.

On the other hand, we get for even n the following, where we
assume n ≥ 6 and note that

⌊
n+1
2

⌋
=
⌊
n
2

⌋
= n

2 :

Kn+1,2

(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
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= Kn+1,2 (Ln+1 (ξ))

=
2n∑
k=1

V2,kζn+1(k) (Ln+1 (ξ))

=

⌊n
2 ⌋−1∑
k=1

V2,kζn+1(k) (Ln+1 (ξ))

+ ζn+1(
⌊n
2

⌋
) (Ln+1 (ξ))

+

n+⌊n
2 ⌋−1∑

k=⌊n
2 ⌋+1

V2,kζn+1(k) (Ln+1 (ξ))

+ ζn+1(n+
⌊n
2

⌋
) (Ln+1 (ξ))

+
2n∑

k=n+⌊n
2 ⌋+1

V2,kζn+1(k) (Ln+1 (ξ))

= sin
(
(Ln(ξ))2 −

π

4

)
sin
(
(Ln(ξ))2 +

π

4

)
·

( ⌊n
2 ⌋−1∑
k=1

V2,kζn(k) (Ln (ξ)) +

n+⌊n
2 ⌋−1∑

k=⌊n
2 ⌋+1

V2,kζn(k − 1) (Ln (ξ))+

2n∑
k=n+⌊n

2 ⌋+1

V2,kζn(k − 2) (Ln (ξ))

)

+ ζn(0) (Ln (ξ))

·

(
cos
(
(Ln(ξ))2 −

π

4

)
sin
(
(Ln(ξ))2 +

π

4

)
+ sin

(
(Ln(ξ))2 −

π

4

)
cos
(
(Ln(ξ))2 +

π

4

))
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=

√
ξ1
2

( ⌊n
2 ⌋−1∑
k=1

V2,kζn(k) (Ln (ξ)) +

n+⌊n
2 ⌋−2∑

k=⌊n
2 ⌋

V2,k+1ζn(k) (Ln (ξ))

+
2n−2∑

k=n+⌊n
2 ⌋−1

V2,k+2ζn(k) (Ln (ξ))

)
+
√

1− ξ1ζn(0) (Ln (ξ))

=

√
ξ1
2

Kn,2 (Ln (ξ)) +
√
1− ξ1ζn(0) (Ln (ξ))

=

√
ξ1
2

Kn,2 (Ln (ξ)) +

√
1− ξ1

√
ξ1 (1− ξ1)

4⌊
n
2 ⌋−1

⌊n
2 ⌋−1∏
i=2

(ξ1 − ξi)

=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1 (1− ξ1)

2n−2

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1

2n−2

(
(1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (1− ξ1) (−1)⌊

n
2 ⌋−2

(⌊n
2

⌋
− 2−

(⌊n
2

⌋
− 2
))

· ξ01S⌊n
2 ⌋−2

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (−1)⌊

n
2 ⌋ξ01S⌊n

2 ⌋−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

90



=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1

2n−2

(
(1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)k
(⌊n

2

⌋
− 2− k

)
ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (1− ξ1)

·
⌊n

2 ⌋−3∑
k=0

(−1)k+1
(⌊n

2

⌋
− 2− k

)
ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−2∑
k=0

(−1)k+2ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1

2n−2

(
(1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (1− ξ1)
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·
⌊n

2 ⌋−2∑
k=0

(−1)k
(⌊n

2

⌋
− 2− k

)
ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)k
(⌊n

2

⌋
− 1− k

)
ξ
⌊n

2 ⌋−1−k

1 Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−k

1 Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1

2n−2

(
(1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)k
(⌊n

2

⌋
− 2− k

)
ξ
⌊n

2 ⌋−2−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ (1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)k
(⌊n

2

⌋
− 1− k

)
ξ
⌊n

2 ⌋−1−k

1 Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)

+

⌊n
2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1 Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
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+

⌊n
2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−k

1 Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1

2n−2

(
(1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1

(⌊n
2

⌋
− 1− k

)(
Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

))

+

⌊n
2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1

(
Sk

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)
+ ξ1Sk−1

(
ξ2, . . . , ξ⌊n

2 ⌋−1

)))

=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1

2n−2

(
(1− ξ1)

·
⌊n

2 ⌋−2∑
k=0

(−1)kξ
⌊n

2 ⌋−2−k

1

(⌊n
2

⌋
− 1− k

)
Sk (ξ)

+

⌊n
2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1 Sk (ξ)

)

=

√
ξ1
2

Kn,2 (Ln (ξ))
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+

√
1− ξ1

√
ξ1

2n−2

(
(1− ξ1)

·
⌊n

2 ⌋−1∑
k=0

k−1∑
m=0

(−1)2k−mξ
⌊n

2 ⌋−2−m

1 Sm (ξ)

+

⌊n
2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1 Sk (ξ)

)

=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1

2n−2

·
⌊n

2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1

(
k−1∑
m=0

(
(−1)k−1−mξk−1−m

1 (1− ξ1)
)
Sm (ξ) + Sk (ξ)

)

=

√
ξ1
2

Kn,2 (Ln (ξ))

+

√
1− ξ1

√
ξ1

2n−2

·
⌊n

2 ⌋−1∑
k=0

(−1)k+1ξ
⌊n

2 ⌋−1−k

1

(
k−1∑
m=0

(−1)k−1−mξk−1−m
1 Sm (ξ)

+
k∑

m=0

(−1)k−mξk−m
1 Sm (ξ)

)

=

√
ξ1
2

Kn,2 (Ln (ξ))

−
√
1− ξ1

√
ξ1

2n−2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−1−k

1

(
ak−1 (ξ) + ak (ξ)

)
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=

√
ξ1
2

(−1)

2n−2

√
1− ξ1F1(n) (ξ)

−
√
1− ξ1

√
ξ1

2n−2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−1−k

1

(
ak−1 (ξ) + ak (ξ)

)

=
−
√
ξ1
√
1− ξ1

2n−1

(
F1(n) (ξ)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−1−k

1 (ak−1 (ξ) + ak (ξ))

)

=
−
√
ξ1
√
1− ξ1

2n−1

·

( ⌊n
2 ⌋−1∑
k=0

(−1)k (−3 + 2n− 4k) ξ
⌊n

2 ⌋−1−k

1

(
ak−1 (ξ) + ak (ξ)

)

+ 2

⌊n
2 ⌋−1∑
k=0

(−1)kξ
⌊n

2 ⌋−1−k

1 (ak−1 (ξ) + ak (ξ))

)

=
−
√
ξ1
√
1− ξ1

2n−1

·
⌊n

2 ⌋−1∑
k=0

(−1)k (−3 + 2(n+ 1)− 4k) ξ
⌊n

2 ⌋−1−k

1

(
ak−1 (ξ) + ak (ξ)

)
=

−
√
ξ1
√
1− ξ1

2n−1

·
⌊n+1

2 ⌋−1∑
k=0

(−1)k (−3 + 2(n+ 1)− 4k) ξ
⌊n+1

2 ⌋−1−k

1

(
ak−1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

)
+ ak

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
=

−
√
ξ1
√
1− ξ1

2n−1
F1(n+ 1)

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

)
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= Kn+1,2

(
Ln+1

(
ξ1, . . . , ξ⌊n+1

2 ⌋−1

))
.

�

Now, the goal is to prove Proposition 4.33, which expands the
result of the previous proposition to the remaining components
of the considered gradient. One key of the proof of Proposition
4.33 is given by Lemma 4.32. In the following, we give some
preliminary results that finally lead to the proof of Lemma 4.32.

Lemma 4.28 Let n ≥ 4. Then

1) ζn+2,⌊n+2
2 ⌋(0)

(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2 ⌋−1

))
= ζn,⌊n

2 ⌋(0)
(
Ln

(
ξ2, . . . , ξ⌊n+2

2 ⌋−1

)) 1

4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)
,

2) ζn+2,⌊n+2
2 ⌋+1(0)

(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2 ⌋−1

))
= ζn,⌊n

2 ⌋+1(0)
(
Ln

(
ξ2, . . . , ξ⌊n+2

2 ⌋−1

))
· 1
4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)
, for even n,

3) ζn+2,⌊n+2
2 ⌋+2(0)

(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2 ⌋−1

))
= ζn,⌊n

2 ⌋+2(0)
(
Ln

(
ξ2, . . . , ξ⌊n+2

2 ⌋−1

))
· 1
4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)
, for odd n.

Proof. For n ≥ 4 we have

ζn+2,⌊n+2
2 ⌋(0)

(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2 ⌋−1

))
= ζn,⌊n

2 ⌋(0)
(
Ln

(
ξ2, . . . , ξ⌊n+2

2 ⌋−1

))
· sin

(
1

2
arccos

(
−
√
ξ1

)
− 1

2
arccos

(
−
√
ξ⌊n+2

2 ⌋−1

))
· sin

(
1

2
arccos

(
−
√
ξ⌊n+2

2 ⌋−1

)
− 1

2
arccos

(√
ξ1

))
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· sin
(
1

2
arccos

(
−
√
ξ1

)
+

1

2
arccos

(
−
√
ξ⌊n+2

2 ⌋−1

))
· sin

(
1

2
arccos

(
−
√
ξ⌊n+2

2 ⌋−1

)
+

1

2
arccos

(√
ξ1

))
= ζn,⌊n

2 ⌋(0)
(
Ln

(
ξ2, . . . , ξ⌊n+2

2 ⌋−1

)) 1

4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)
.

For even n with n ≥ 4 we get

ζn+2,⌊n+2
2 ⌋+1(0)

(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2 ⌋−1

))
= ζn,⌊n

2 ⌋+1(0)
(
Ln

(
ξ2, . . . , ξ⌊n+2

2 ⌋−1

))
· sin

(
1

2
arccos

(
−
√
ξ1

)
− 1

2
arccos

(√
ξ⌊n+2

2 ⌋−1

))
· sin

(
1

2
arccos

(√
ξ⌊n+2

2 ⌋−1

)
− 1

2
arccos

(√
ξ1

))
· sin

(
1

2
arccos

(
−
√
ξ1

)
+

1

2
arccos

(√
ξ⌊n+2

2 ⌋−1

))
· sin

(
1

2
arccos

(√
ξ⌊n+2

2 ⌋−1

)
+

1

2
arccos

(√
ξ1

))
= ζn,⌊n

2 ⌋+1(0)
(
Ln

(
ξ2, . . . , ξ⌊n+2

2 ⌋−1

)) 1

4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)
.

An analogous calculation for odd n yields the third statement of
the lemma.

�
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Lemma 4.29 Let n ≥ 4. Then

1) ζn,⌊n
2 ⌋(0) (Ln (ξ))

=



√
ξ⌊n

2 ⌋−1

(
1− ξ⌊n

2 ⌋−1

)
4⌊

n
2 ⌋−1

⌊n
2 ⌋−2∏
i=1

(
ξi − ξ⌊n

2 ⌋−1

)
, n even,

ξ⌊n
2 ⌋−1

(
1− ξ⌊n

2 ⌋−1

)
2 · 4⌊

n
2 ⌋−1

⌊n
2 ⌋−2∏
i=1

(
ξi − ξ⌊n

2 ⌋−1

)
, n odd,

2) ζn,⌊n
2 ⌋+1(0) (Ln (ξ))

=

√
ξ⌊n

2 ⌋−1

(
1− ξ⌊n

2 ⌋−1

)
4⌊

n
2 ⌋−1

⌊n
2 ⌋−2∏
i=1

(
ξi − ξ⌊n

2 ⌋−1

)
, n even,

3) ζn,⌊n
2 ⌋+2(0) (Ln (ξ))

=
ξ⌊n

2 ⌋−1

(
1− ξ⌊n

2 ⌋−1

)
2 · 4⌊

n
2 ⌋−1

⌊n
2 ⌋−2∏
i=1

(
ξi − ξ⌊n

2 ⌋−1

)
, n odd.

Further, we have

1. ζ2,1(0) (L2()) = 1,

2. ζ2,2(0) (L2()) = 1,

3. ζ3,1(0) (L3()) =
1

2
,

4. ζ3,3(0) (L3()) =
1

2
.

Proof. The statements for the dimensions n = 2 and n = 3 fol-
low from direct computation. The statements for n ≥ 4 we prove
inductively:

Statement 1)
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Let n be even. By direct computation we obtain

ζ4,2(0) (L4 (ξ1)) =

√
ξ1
4

(1− ξ1) .

We assume the first statement of the lemma to be true for n,
where n ≥ 4, and we will show that it is also true for n+2. From
the previous lemma follows

ζn+2,⌊n+2
2 ⌋(0)

(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2
⌋−1

))
= ζn,⌊n

2 ⌋(0)
(
Ln

(
ξ2, . . . , ξ⌊n+2

2
⌋−1

)) 1

4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)
=

√
ξ⌊n+2

2 ⌋−1

4⌊
n
2 ⌋−1

(
1− ξ⌊n+2

2 ⌋−1

)

·
⌊n+2

2 ⌋−2∏
i=2

(
ξi − ξ⌊n+2

2 ⌋−1

) 1

4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)

=

√
ξ⌊n+2

2 ⌋−1

4⌊
n+2
2 ⌋−1

(
1− ξ⌊n+2

2 ⌋−1

) ⌊n+2
2 ⌋−2∏
i=1

(
ξi − ξ⌊n+2

2 ⌋−1

)
,

which is the first statement of the lemma for n + 2 in the case
that n is even.

Now, let n be odd. By direct computation we obtain

ζ5,2(0) (L5 (ξ1)) =
ξ1
2 · 4

(1− ξ1) .

We assume the first statement of the lemma to be true for n,
where n ≥ 5, and the induction step n → n+ 2 follows from the
previous lemma by an analogous argument.

Statement 2)
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Let n be even. By direct computation we obtain

ζ4,3(0) (L4 (ξ1)) =

√
ξ1
4

(1− ξ1) .

We assume the second statement of the lemma to be true for n,
where n ≥ 4, and we will show that it is also true for n+2. From
the previous lemma follows

ζn+2,⌊n+2
2 ⌋+1(0)

(
Ln+2

(
ξ1, . . . , ξ⌊n+2

2
⌋−1

))
= ζn,⌊n

2 ⌋+1(0)
(
Ln

(
ξ2, . . . , ξ⌊n

2
⌋−1

)) 1

4

(
ξ1 − ξ⌊n+2

2
⌋−1

)
=

√
ξ⌊n+2

2 ⌋−1

4⌊
n
2 ⌋−1

(
1− ξ⌊n+2

2 ⌋−1

)

·
⌊n+2

2 ⌋−2∏
i=2

(
ξi − ξ⌊n+2

2 ⌋−1

) 1

4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)

=

√
ξ⌊n+2

2 ⌋−1

4⌊
n+2
2 ⌋−1

(
1− ξ⌊n+2

2 ⌋−1

)

·
⌊n+2

2 ⌋−2∏
i=1

(
ξi − ξ⌊n+2

2 ⌋−1

) 1

4

(
ξ1 − ξ⌊n+2

2 ⌋−1

)
,

which is the second statement of the lemma for n+ 2.

Statement 3)

Let n be odd. Direct computation yields

ζ5,4(0) (L5 (ξ1)) =
ξ1
2 · 4

(1− ξ1) .

The induction step n → n+2 follows from the previous lemma by
an analogous argument as in the proof of the first two statements.

�
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Corollary 4.30 Let n ≥ 4. Then

ζn,⌊n
2 ⌋(0) (Ln (ξ)) =


ζn,⌊n

2 ⌋+1(0) (Ln (ξ)) , for n even,

ζn,⌊n
2 ⌋+2(0) (Ln (ξ)) , for n odd.

Lemma 4.31 Let 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1.

1) For even n we get a±n (i, j)
(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))

=



1

2
arccos

(
−
√

ξj−1

)
± 1

2
arccos

(
−
√
ξi−1

)
,

for 1 ≤ j < i ≤
⌊n
2

⌋
,

1

2
arccos

(
−
√

ξj−1

)
± 1

2
arccos

(√
ξn−i

)
,

for 1 ≤ j ≤
⌊n
2

⌋
< i ≤ n,

1

2
arccos

(√
ξn−j

)
± 1

2
arccos

(√
ξn−i

)
,

for
⌊n
2

⌋
< j < i ≤ n,

1

2
arccos

(
−
√

ξi−1

)
± 1

2
arccos

(
−
√

ξj

)
,

for 1 ≤ i ≤ j ≤
⌊n
2

⌋
− 1,

1

2
arccos

(
−
√

ξi−1

)
± 1

2
arccos

(√
ξn−j−1

)
,

for 1 ≤ i ≤
⌊n
2

⌋
≤ j ≤ n− 1,

1

2
arccos

(√
ξn−i

)
± 1

2
arccos

(√
ξn−j−1

)
,

for
⌊n
2

⌋
< i ≤ j ≤ n− 1.

2) For odd n we get a±n (i, j)
(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))
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=



1

2
arccos

(
−
√

ξj−1

)
± 1

2
arccos

(
−
√
ξi−1

)
,

for 1 ≤ j < i ≤
⌊n
2

⌋
+ 1,

1

2
arccos

(
−
√

ξj−1

)
± 1

2
arccos

(√
ξn−i

)
,

for 1 ≤ j ≤
⌊n
2

⌋
+ 1 < i ≤ n,

1

2
arccos

(√
ξn−j

)
± 1

2
arccos

(√
ξn−i

)
,

for
⌊n
2

⌋
+ 1 < j < i ≤ n,

1

2
arccos

(
−
√

ξi−1

)
± 1

2
arccos

(
−
√

ξj

)
,

for 1 ≤ i ≤ j ≤
⌊n
2

⌋
,

1

2
arccos

(
−
√

ξi−1

)
± 1

2
arccos

(√
ξn−j−1

)
,

for 1 ≤ i ≤
⌊n
2

⌋
+ 1 ≤ j ≤ n− 1,

1

2
arccos

(√
ξn−i

)
± 1

2
arccos

(√
ξn−j−1

)
,

for
⌊n
2

⌋
+ 1 < i ≤ j ≤ n− 1.

Proof: Follows directly from the definition of a±n (i, j) and Ln.
�

Lemma 4.32 Let Ln(ξ) ∈ L. For even n we have

Kn,⌊n
2 ⌋
(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))
= −Kn,⌊n

2 ⌋+1

(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))
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and for odd n we have

Kn,⌊n
2 ⌋
(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))
= −Kn,⌊n

2 ⌋+2

(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))
.

Proof: We have the following:

1. Case: 1 ≤ k ≤ n− 1, n even:

(a) Case: 1 ≤ k ≤ ⌊n2 ⌋:
It follows n − 1 ≥ n − k ≥ ⌊n2 ⌋. The previous lemma
yields

a−n

(⌊n
2

⌋
, k
)
(Ln(ξ))

=


1

2
arccos (A) , for 1 ≤ k <

⌊n
2

⌋
,

−1

2
arccos

(
Â
)

, for k =
⌊n
2

⌋
,

with

A :=
√
ξk−1ξ⌊n

2
⌋−1 +

√
1− ξk−1

√
1− ξ⌊n

2
⌋−1,

Â := 1− 2ξ⌊n
2
⌋−1

and

a−n

(⌊n
2

⌋
+ 1, n− k

)
(Ln(ξ))

=


−1

2
arccos (A) , for n− 1 ≥ n− k >

⌊n
2

⌋
,

−1

2
arccos

(
Â
)

, for n− k =
⌊n
2

⌋
.
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This implies

cot
(
a−n

(⌊n
2

⌋
, k
)
(Ln(ξ))

)

=


√

1 +A
1−A

, for 1 ≤ k <
⌊n
2

⌋
,

−

√
1 + Â
1− Â

, for k =
⌊n
2

⌋
,

cot
(
a−n

(⌊n
2

⌋
+ 1, n− k

)
(Ln(ξ))

)

=


−
√

1 +A
1−A

, for n− 1 ≥ n− k >
⌊n
2

⌋
,

−

√
1 + Â
1− Â

, for n− k =
⌊n
2

⌋
.

Further, we have

V⌊n
2 ⌋,k =


−1 , for 1 ≤ k <

⌊n
2

⌋
,

1 , for k =
⌊n
2

⌋
,

V⌊n
2 ⌋+1,n−k =


1 , for

⌊n
2

⌋
< n− k ≤ n− 1,

−1 , for n− k =
⌊n
2

⌋
.

Hence, together with Corollary 4.30 we get

⌊n
2 ⌋∑

k=1

V⌊n
2 ⌋,kζn,⌊n

2 ⌋(k) (Ln(ξ))

= −
n−1∑

k=⌊n
2 ⌋

V⌊n
2 ⌋+1,kζn,⌊n

2 ⌋+1(k) (Ln(ξ)) .
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(b) Case: ⌊n2 ⌋ < k ≤ n− 1:
We get 1 ≤ n− k < ⌊n2 ⌋. The previous lemma yields

a−n

(⌊n
2

⌋
, k
)
(Ln(ξ))

=
1

2

(
arccos

(
−
√
ξ⌊n

2 ⌋−1

)
− arccos

(√
ξn−k−1

))
= −1

2
arccos (B)

with

B := −
√
ξn−k−1ξ⌊n

2
⌋−1 +

√
1− ξn−k−1

√
1− ξ⌊n

2
⌋−1

and

a−n

(⌊n
2

⌋
+ 1, n− k

)
(Ln(ξ))

=
1

2

(
arccos

(
−
√
ξn−k−1

)
− arccos

(√
ξ⌊n

2 ⌋−1

))
=

1

2
arccos (B) .

This implies

cot
(
a−n

(⌊n
2

⌋
, k
)
(Ln(ξ))

)
= −

√
1 + B
1− B

,

cot
(
a−n

(⌊n
2

⌋
+ 1, n− k

)
(Ln(ξ))

)
=

√
1 + B
1− B

.

Further, we have

V⌊n
2 ⌋,k = 1,

V⌊n
2 ⌋+1,n−k = −1.
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Corollary 4.30 implies

n−1∑
k=⌊n

2 ⌋+1

V⌊n
2 ⌋,kζn,⌊n

2 ⌋(k) (Ln(ξ))

= −
⌊n

2 ⌋−1∑
k=1

V⌊n
2 ⌋+1,kζn,⌊n

2 ⌋+1(k) (Ln(ξ)) .

2. Case: n ≤ k ≤ 2(n− 1), n even:

(c) Case 1 ≤ k − n+ 1 ≤
⌊
n
2

⌋
:

We get ⌊n2 ⌋ ≤ 2n−k−1 ≤ n−1. The previous lemma
yields

a+n

(⌊n
2

⌋
, k − n+ 1

)
(Ln(ξ))

=


π − 1

2
arccos (C) , for 1 ≤ k − n+ 1 <

⌊n
2

⌋
,

π

2
, for k − n+ 1 =

⌊n
2

⌋
.

with

C :=
√
ξk−nξ⌊n

2
⌋−1 −

√
1− ξk−n

√
1− ξ⌊n

2
⌋−1

and

a+n

(⌊n
2

⌋
+ 1, 2n− k − 1

)
(Ln(ξ))

=


1

2
arccos (C) , for n− 1 ≥ 2n− k − 1

>
⌊n
2

⌋
,

π

2
, for 2n− k − 1 =

⌊n
2

⌋
.
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This implies

cot
(
a+n

(⌊n
2

⌋
, k − n+ 1

)
(Ln(ξ))

)
= −

√
1 + C
1− C

,

cot
(
a+n

(⌊n
2

⌋
+ 1, 2n− k − 1

)
(Ln(ξ))

)
=

√
1 + C
1− C

.

Further, we have

V⌊n
2 ⌋,k−n+1 = −1,

V⌊n
2 ⌋+1,2n−k−1 = 1.

We deduce

⌊n
2 ⌋+n−1∑
k=n

V⌊n
2 ⌋,kζn,⌊n

2 ⌋(k) (Ln(ξ))

= −
2(n−1)∑

k=⌊n
2 ⌋+n−1

V⌊n
2 ⌋+1,kζn,⌊n

2 ⌋+1(k) (Ln(ξ)) .

(d) Case
⌊
n
2

⌋
< k − n+ 1 ≤ n− 1:

We get 1 ≤ 2n − k − 1 <
⌊
n
2

⌋
. The previous lemma

yields

a+n

(⌊n
2

⌋
, k − n+ 1

)
(Ln(ξ))

=
1

2

(
arccos

(
−
√

ξ⌊n
2 ⌋−1

)
+ arccos

(
−
√
ξ2n−k−2

))
=

1

2
arccos (D)

with

D :=
√
ξ2n−k−2ξ⌊n

2
⌋−1 +

√
1− ξ2n−k−2

√
1− ξ⌊n

2
⌋−1
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and

a+n

(⌊n
2

⌋
+ 1, 2n− k − 1

)
(Ln(ξ))

=
1

2

(
arccos

(
−
√
ξ2n−k−2

)
+ arccos

(√
ξ⌊n

2 ⌋−1

))
= π − 1

2
arccos (D) .

This implies

cot
(
a+n

(⌊n
2

⌋
, k − n+ 1

)
(Ln(ξ))

)
=

√
1 +D
1−D

,

cot
(
a+n

(⌊n
2

⌋
+ 1, 2n− k − 1

)
(Ln(ξ))

)
= −

√
1 +D
1−D

.

Further, we have

V⌊n
2 ⌋,k−n+1 = 1,

V⌊n
2 ⌋+1,2n−k−1 = −1.

It follows

2(n−1)∑
k=⌊n

2 ⌋+n

V⌊n
2 ⌋,kζn,⌊n

2 ⌋(k) (Ln(ξ))

= −
⌊n

2 ⌋+n−2∑
k=n

V⌊n
2 ⌋+1,kζn,⌊n

2 ⌋+1(k) (Ln(ξ)) .

Alltogether, we showed the first statement of the lemma.

The following cases will prove the second statement of
the lemma in a similar way:
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3. Case: 1 ≤ k ≤ n− 1, n odd:

(e) Case: 1 ≤ k ≤ ⌊n2 ⌋:
It follows n − 1 ≥ n − k ≥ ⌊n2 ⌋ + 1. The previous
lemma yields

a−n

(⌊n
2

⌋
, k
)
(Ln(ξ))

=


1

2
arccos (A) , for 1 ≤ k <

⌊n
2

⌋
,

1

2
arccos

(
Ã
)

, for k =
⌊n
2

⌋
,

with

Ã :=
√
ξ⌊n

2 ⌋−1ξ⌊n
2 ⌋ +

√
1− ξ2⌊n

2 ⌋−1

√
1− ξ2⌊n

2 ⌋
.

Further, we get

a−n

(⌊n
2

⌋
+ 2, n− k

)
(Ln(ξ))

=


−1

2
arccos (A) , for n− 1 ≥ n− k

≥
⌊n
2

⌋
+ 2,

−1

2
arccos

(
Ã
)

, for n− k =
⌊n
2

⌋
+ 1.
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This implies

cot
(
a−n

(⌊n
2

⌋
, k
)
(Ln(ξ))

)

=


√

1 +A
1−A

, for 1 ≤ k <
⌊n
2

⌋
,√

1 + Ã
1− Ã

, for k =
⌊n
2

⌋
,

cot
(
a−n

(⌊n
2

⌋
+ 2, n− k

)
(Ln(ξ))

)

=



−
√

1 +A
1−A

, for n− 1 ≥ n− k

≥
⌊n
2

⌋
+ 2,

−

√
1 + Ã
1− Ã

, for n− k =
⌊n
2

⌋
+ 1.

We have

V⌊n
2 ⌋,k =

{
−1 , for 1 ≤ k <

⌊
n
2

⌋
,

1 , for k =
⌊
n
2

⌋
,

V⌊n
2 ⌋+2,n−k =

{
1 , for n− 1 ≥ n− k ≥

⌊
n
2

⌋
+ 2,

−1 , for n− k =
⌊
n
2

⌋
+ 1.

(f) Case: ⌊n2 ⌋+ 1 ≤ k ≤ n− 1:
It follows 1 ≤ n−k ≤ ⌊n2 ⌋. The previous lemma yields

a−n

(⌊n
2

⌋
, k
)
(Ln(ξ)) = −1

2
arccos(B).

Further, we get

a−n

(⌊n
2

⌋
+ 2, n− k

)
(Ln(ξ)) =

1

2
arccos(B)
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This implies

cot
(
a−n

(⌊n
2

⌋
, k
)
(Ln(ξ))

)
= −

√
1 + B
1− B

,

cot
(
a−n

(⌊n
2

⌋
+ 2, n− k

)
(Ln(ξ))

)
=

√
1 + B
1− B

.

We have

V⌊n
2 ⌋,k = 1

V⌊n
2 ⌋+2,n−k = −1

4. Case: n ≤ k ≤ 2(n− 1), n odd:

(g) Case: 1 ≤ k − n+ 1 ≤ ⌊n2 ⌋:
It follows ⌊n2 ⌋+1 ≤ 2n− k− 1 ≤ n− 1. The previous
lemma yields

a+n

(⌊n
2

⌋
, k − n+ 1

)
(Ln(ξ))

=


π − 1

2
arccos (C) , for 1 ≤ k − n+ 1 <

⌊n
2

⌋
,

π − 1

2
arccos

(
C̃
)

, for k − n+ 1 =
⌊n
2

⌋
,

with

C̃ :=
√
ξ⌊n

2 ⌋−1ξ⌊n
2 ⌋ −

√
1− ξ2⌊n

2 ⌋−1

√
1− ξ2⌊n

2 ⌋
.
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Further, we get

a+n

(⌊n
2

⌋
+ 2, 2n− k − 1

)
(Ln(ξ))

=


1

2
arccos (C) , for

⌊n
2

⌋
+ 1

< 2n− k − 1 ≤ n− 1,

1

2
arccos

(
C̃
)

, for 2n− k − 1 =
⌊n
2

⌋
+ 1.

This implies

cot
(
a+n

(⌊n
2

⌋
, k − n+ 1

)
(Ln(ξ))

)

=


−
√

1 + C
1− C

, for 1 ≤ k − n+ 1 <
⌊n
2

⌋
,

−

√
1 + C̃
1− C̃

, for k − n+ 1 =
⌊n
2

⌋
,

cot
(
a+n

(⌊n
2

⌋
+ 2, 2n− k − 1

)
(Ln(ξ))

)

=


√

1 + C
1− C

, for
⌊n
2

⌋
+ 1 < 2n− k − 1 ≤ n− 1,√

1 + C̃
1− C̃

, for 2n− k − 1 =
⌊n
2

⌋
+ 1.
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We have

V⌊n
2 ⌋,k−n+1 =

{
−1 , for 1 ≤ k − n+ 1 <

⌊
n
2

⌋
,

1 , for k − n+ 1 =
⌊
n
2

⌋
,

V⌊n
2 ⌋+2,2n−k−1 =


1 , for

⌊
n
2

⌋
+ 1 < 2n− k − 1

≤ n− 1,

−1 , for 2n− k − 1 =
⌊
n
2

⌋
+ 1.

(h) Case: ⌊n2 ⌋ < k − n+ 1 ≤ n− 1:
It follows 1 ≤ 2n − k − 1 < ⌊n2 ⌋ + 1. The previous
lemma yields

a+n

(⌊n
2

⌋
, k − n+ 1

)
(Ln(ξ)) =

1

2
arccos(E),

with

E := −
√
ξ⌊n

2 ⌋−1ξ2n−k−2−
√
1− ξ⌊n

2 ⌋−1

√
1− ξ2n−k−2.

Further, we get

a+n

(⌊n
2

⌋
+ 2, 2n− k − 1

)
(Ln(ξ)) = π − 1

2
arccos(E)

This implies

cot
(
a+n

(⌊n
2

⌋
, k − n+ 1

)
(Ln(ξ))

)
=

√
1 + E
1− E

,

cot
(
a+n

(⌊n
2

⌋
+ 2, 2n− k − 1

)
(Ln(ξ))

)
= −

√
1 + E
1− E

.

We have

V⌊n
2 ⌋,k−n+1 = 1

V⌊n
2 ⌋+2,2n−k−1 = −1.

Alltogether, this implies the second statement.
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�

Now, we are in the position to prove the following central
proposition.

Proposition 4.33 Let 2 ≤ i ≤
⌊
n
2

⌋
. Then

1) Kn,i (Ln (ξ))

=


(−1)i+1

2n−2

√
1− ξi−1Fi−1 (ξ) , for even n,

(−1)i+1

2n−2

√
ξi−1

√
1− ξi−1Fi−1 (ξ) , for odd n,

2) Kn,n−i+1 (Ln (ξ))

=


(−1)i

2n−2

√
1− ξi−1Fi−1 (ξ) , for even n,

(−1)i

2n−2

√
ξi−1

√
1− ξi−1Fi−1 (ξ) , for even n.

Proof:
1) Lemma 4.16 implies for 2 ≤ i ≤

⌊
n
2

⌋
− 1

−Kn,i+1(x1, . . . , xn)

= Kn,i

(
xPi(1), . . . , xPi(i), xPi(i+1), . . .

. . . , xPi(n−i), xPi(n−i+1), . . . , xPi(n)

)
= Kn,i

x1, . . . , x1+i︸︷︷︸
i−th

, xi︸︷︷︸
1+i−th

, . . . , xn+1−i︸ ︷︷ ︸
n−i−th

, xn−i︸︷︷︸
n+1−i−th

, . . . , xn

 .

First, let n be even. From Lemma 4.20 follows that the state-
ment is true for i = 2. Now, we assume the claim to be true for
i, where 2 ≤ i ≤

⌊
n
2

⌋
− 1, and want to show that it is then also

true for i+ 1:
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The consideration above implies

Kn,(i+1) (Ln (ξ))

= −Kn.i

Ln

ξ1, . . . , ξi︸︷︷︸
−1+i−th

, ξ−1+i︸ ︷︷ ︸
i−th

, . . . , ξ⌊n
2 ⌋−1

 .

=
(−1)(i+1)+1

2n−2

√
1− ξiFi−1

ξ1, . . . , ξi︸︷︷︸
−1+i−th

, ξ−1+i︸ ︷︷ ︸
i−th

, . . . , ξ⌊n
2 ⌋−1


=

(−1)(i+1)+1

2n−2

√
1− ξiFi (ξ) .

Hence, the claim is true for all 2 ≤ i ≤
⌊
n
2

⌋
.

Now, let n be odd. Since in this case the proof is analogous
to the even case, we omit it here.
2) Let n be even. From Lemma 4.32 follows

Kn,n+1−⌊n
2 ⌋ (Ln (ξ)) = Kn,⌊n

2 ⌋+1 (Ln (ξ))

= −Kn,⌊n
2 ⌋ (Ln (ξ))

=
(−1)⌊

n
2 ⌋

2n−2

√
1− ξ⌊n

2 ⌋−1F⌊n
2 ⌋−1 (ξ) ,

where the last equality is a consequence of 1). Hence the state-
ment is true for i =

⌊
n
2

⌋
. Now, we assume the statement to be

true for 3 ≤ i ≤
⌊
n
2

⌋
and we will show that it is then also true

for i− 1:
For 2 ≤ j ≤

⌊
n
2

⌋
− 1, the fact that P 2

j = id{1,...,n} together with
the second statement of Lemma 4.16 implies

−Kn,n−j

(
xPj(1), . . . , xPj(n)

)
= Kn,n−j+1 (x1, . . . , xn) .
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Hence, because of 2 ≤ i− 1 ≤
⌊
n
2

⌋
− 1, we have

Kn,n−(i−1)+1 (Ln (ξ))

= −Kn,n−i+1

Ln

ξ1, . . . ξ−1+i︸ ︷︷ ︸
−2+i−th

, ξ−2+i︸ ︷︷ ︸
−1+i−th

, . . . , ξ⌊n
2 ⌋−1


=

(−1)i−1

2n−2

√
1− ξi−2Fi−1

ξ1, . . . , ξi−1︸︷︷︸
−2+i

, ξ1−2︸︷︷︸
−1+i

, . . . , ξ⌊n
2 ⌋−1


=

(−1)i−1

2n−2

√
1− ξi−2Fi−2 (ξ) .

This implies statement 2) for even n.

For odd n an analogous argument, also using Lemma 4.32
and Lemma 4.16, concludes the proof.

�

An immediate consequence of Proposition 4.33 is given by the
following lemma.

Lemma 4.34 Let ξ1, . . . , ξ⌊n
2 ⌋−1 with 0 ≤ ξi ≤ 1 be a solution

of the system of equations given by

Fi(n)
(
ξ1, . . . , ξ⌊n

2 ⌋−1

)
= 0, 1 ≤ i ≤

⌊n
2

⌋
− 1.

Then
∇ϑ̃Dn

(
Ln

(
ξ1, . . . , ξ⌊n

2 ⌋−1

))
= 0.

Proof: This is a direct consequence of Lemma 4.12 together with
Proposition 4.33.

�

We proceed by giving necessary and sufficient conditions for
Ln (ξ) for being a regular point.
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Lemma 4.35 Let 1 > ξ1 > ξ2 > · · · > ξ⌊n
2 ⌋−1 > 0. Then Ln (ξ)

is regular.

Proof: Assume Ln (ξ) is singular. Then

ϑDn (Ln (ξ)) = 0.

In particular there exist indices i, j with 1 ≤ i < j ≤ n such that

sin (⟨ei ± ej , Ln (ξ)⟩) = 0,

which implies the existence of m ∈ Z with

⟨ei ± ej , Ln (ξ)⟩ = mπ.

Since
0 ≤ (Ln (ξ))k ≤ π

2

for 1 ≤ k ≤ n and 1
2 arccos(

√
x) is strictly monotonically decreas-

ing, it follows that

0 < ⟨ei ± ej , Ln (ξ)⟩ < π.

Hence
⟨ei ± ej , Ln (ξ)⟩ ̸= mπ

for all m ∈ Z, which is a contradiction.
�

Remark 4.36 From the fact that for 1 > ξ1 > ξ2 > · · · >
ξ⌊n

2 ⌋−1 > 0, the inequality

0 < ⟨ei ± ej , Ln (ξ)⟩ < π

is valid follows that the set

L :=

{
Ln (ξ)

∣∣∣∣ 1 > ξ1 > · · · > ξ⌊n
2 ⌋−1 > 0

}
is contained in the dominant generalized Weyl chamber Wn.
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Lemma 4.37 If Ln (ξ) is regular, then 0 < ξi < 1 and ξi ̸= ξj
for i ̸= j.

Proof. Assume there exist indices i ̸= j such that ξi = ξj . Then

(Ln (ξ))i+1 = (Ln (ξ))j+1 .

For ei+1 − ej+1 ∈ (Dn)+, we get

⟨ei+1 − ej+1, Ln (ξ)⟩ = 0.

In particular,

ϑ̃(Dn)(Ln (ξ)) =
∏

α∈(Dn)+

sin (⟨α,Ln (ξ)⟩) = 0,

which is a contradiction to Ln (ξ) being a regular point.

Now assume ξi = 0. Then we get

(Ln (ξ))i+1 =
1

2
arccos

(
−
√
0
)
=

π

4

and

(Ln (ξ))n−i =
1

2
arccos

(√
0
)
=

π

4
.

For ei+1 − en−i ∈ (Dn)+ follows

⟨ei+1 − en−i, Ln (ξ)⟩ = 0,

and in the the same way as above, we get a contradiction to
Ln (ξ) being regular.

Finally, assume ξi = 1. Then

(Ln (ξ))i+1 =
1

2
arccos

(
−
√
1
)
=

π

2
.
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For e1 + ei+1 ∈ (Dn)+ follows

⟨e1 + ei+1, Ln (ξ)⟩ = π,

again, a contradiction to Ln (ξ) being regular.

�

Restricted to the subset L, we alltogether get the following
statement.

Lemma 4.38 Let Ln

(
ξ
)
∈ L. Then

Fi(n)
(
ξ
)
= 0, for 1 ≤ i ≤

⌊n
2

⌋
− 1,

if and only if
∇ϑ̃Dn

(
Ln

(
ξ
))

= 0.

Proof. One implication follows from Lemma 4.34.

Conversely, let

∇ϑ̃Dn

(
Ln

(
ξ
))

= 0,

i.e.
gn,i

(
Ln

(
ξ
))

= 0, for 1 ≤ i ≤ n.

It follows, that for all 1 ≤ i ≤ n

Rn,i

(
Ln

(
ξ
))

Kn,i

(
Ln

(
ξ
))

= 0.

Since Lemma 4.10 implies Rn,i

(
Ln

(
ξ
))

̸= 0, we deduce

Kn,i

(
Ln

(
ξ
))

= 0, for 1 ≤ i ≤ n.

Now Lemma 4.33, together with the fact that 0 < ξj < 1, implies

Fi(n)
(
ξ
)
= 0, for 1 ≤ i ≤

⌊n
2

⌋
− 1.

�
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Lemma 4.39 Let 1 ≤ i ≤
⌊
n
2

⌋
− 1 and n ≥ 4. Then

Fi(n) (ξ) = A(n)ξ
⌊n

2 ⌋−1

i +

⌊n
2 ⌋−2∑
l=1

B(n, l)ξ
⌊n

2 ⌋−1−l

i + C(n),

with

1) A(n) :=

⌊n
2 ⌋−1∑
k=1

(1 + 2n− 4k),

2) B(n, l)(ξ) := (−1)l

((
1 + 2n− 4

⌊n
2

⌋)
Sl−1 (ξ)

+

⌊n
2 ⌋−1−l∑
k=1

(1 + 2n− 4(k + l)) (Sl−1 (ξ) + Sl (ξ))

)
,

3) C(n)(ξ) := (−1)⌊
n
2 ⌋−1

(
1 + 2n− 4

⌊n
2

⌋)
S⌊n

2 ⌋−2 (ξ) .

Proof. This can be easily seen.
�

This motivates the following definition.

Definition 4.40 For real numbers ξ1, . . . , ξ⌊n
2 ⌋−1 we define the

polynomial

P̂ ξ
n(x) = x⌊

n
2 ⌋−1 +

⌊n
2 ⌋−2∑
l=1

B(n, l)(ξ)

A(n)
x⌊

n
2 ⌋−1−l +

C(n)(ξ)

A(n)
.

Remark 4.41 For 1 ≤ i ≤
⌊
n
2

⌋
− 1 we have the equality

Fi(n)
(
ξ1, . . . , ξ⌊n

2 ⌋−1

)
= A(n)P̂ ξ

n(ξi).
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Lemma 4.42 Let Ln(ξ) ∈ L. Then ξ1, . . . , ξ⌊n
2 ⌋−1 are the roots

of P̂ ξ
n if and only if ξ1, . . . , ξ⌊n

2 ⌋−1 are the roots of Pn.

Proof. Let ξ1, . . . , ξ⌊n
2 ⌋−1 be the roots of P̂ ξ

n. Then

P̂ ξ
n(x) =

⌊n
2 ⌋−1∏
i=1

(x− ξi).

In terms of elementary symmetric polynomials, this can also be
written as

P̂ ξ
n(x) =

⌊n
2 ⌋−1∑
k=0

(−1)kSk(ξ)x
⌊n

2 ⌋−1−k.

A comparison of coefficients yields

(−1)kSk(ξ) =
B(n, k)(ξ)

A(n)
, for 1 ≤ k ≤

⌊n
2

⌋
− 2, (3)

and

(−1)⌊
n
2 ⌋−1S⌊n

2 ⌋−1(ξ) =
C(n)(ξ)

A(n)
. (4)

For k = 1 it follows

S1(ξ) =

⌊n
2 ⌋−1∑
l=1

1 + 2n− 4(l + 1)

1 + 2n− 4
.

In particular, S1(ξ) is a constant. Further, for 1 ≤ k ≤
⌊
n
2

⌋
− 2,

we get from (3) the recursive formula

Sk(ξ) = Sk−1(ξ)

∑⌊n
2 ⌋−1

l=k (1 + 2n− 4(l + 1))∑k
l=1(1 + 2n− 4l)
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and from (4) we deduce

S⌊n
2 ⌋−1(ξ) = S⌊n

2 ⌋−2(ξ)
1 + 2n− 4

⌊
n
2

⌋
∑⌊n

2 ⌋−1

l=1 (1 + 2n− 4l)
.

This implies for 0 ≤ k ≤
⌊
n
2

⌋
− 1 the formula

Sk(ξ) =

k∏
r=1

∑⌊n
2 ⌋−1

l=r (1 + 2n− 4(l + 1))∑r
l=1(1 + 2n− 4l)

.

In particular, for 0 ≤ k ≤
⌊
n
2

⌋
−1, Sk(ξ) are constants and hence

independent of ξ. From the fact that Sk(ξ) = Sk, follows one
direction of the proof.

Conversely, let ξ1, . . . , ξ⌊n
2 ⌋−1 be the roots of Pn. Then we

have

Pn =

⌊n
2 ⌋−1∑
k=0

(−1)kSk(ξ)x
⌊n

2 ⌋−1−k.

In particular Sk = Sk(ξ) holds. By construction, the numbers Sk

satisfy the relations

S⌊n
2 ⌋−1 =

1 + 2n− 4
⌊
n
2

⌋
A(n)

S⌊n
2 ⌋−2

and for 1 ≤ k ≤
⌊
n
2

⌋
− 2

Sk =
1

A(n)

((
1 + 2n− 4

⌊n
2

⌋)
Sk−1

+

⌊n
2 ⌋−1−k∑
l=1

(1 + 2n− 4(l + k)) (Sk−1 + Sk)

)
.

This implies

S⌊n
2 ⌋−1 = (−1)⌊

n
2 ⌋−1C(n)(ξ)

A(n)
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and

Sk = (−1)k
B(n, k)(ξ)

A(n)
,

for 1 ≤ k ≤
⌊
n
2

⌋
− 2. Hence we showed P̂ ξ

n = Pn.
�

Lemma 4.43 Let n ≥ 4 and Ln(ξ) ∈ L. Then ξ1, . . . , ξ⌊n
2 ⌋−1 is

a solution of the system of equations given by

Fi(n) (ξ) = 0, 1 ≤ i ≤
⌊n
2

⌋
− 1,

if and only if ξ1, . . . , ξ⌊n
2 ⌋−1 are roots of the polynomial Pn.

Proof. Since the relation

Fi(n)
(
ξ
)
= A(n)P̂ ξ

n(ξi), for 1 ≤ i ≤
⌊n
2

⌋
− 1,

holds and A(n) ̸= 0, it follows that ξ1, . . . , ξ⌊n
2 ⌋−1 is a solution

of
Fi(n) (ξ) = 0, 1 ≤ i ≤

⌊n
2

⌋
− 1,

if and only if ξ1, . . . , ξ⌊n
2 ⌋−1 are roots of the polynomial P̂ ξ

n. The

previous lemma concludes the proof.
�

Lemma 4.44 Let Ln

(
ξ
)
∈ L. Then Ln

(
ξ
)
is the unique critical

point of ϑ̃Dn in W, if and only if ξ1, . . . , ξ⌊n
2 ⌋−1 are the roots of

Pn.

Proof. clear.
�
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This concludes the proof of the main theorem.
�

Remark 4.45 It is not proven yet, that the unique critical point
of ϑ̃Dn in Wn is contained in L. But there is very strong ev-
idence that the following conjecture is true, which would imply
this statement. The validity of the conjecture for n = 4, 5, 6, 7, 8
can be veryfied using the examples at the end of this section.

Conjecture 4.46 For n ≥ 4, the polynomial Pn has
⌊
n
2

⌋
− 1

distinct roots ξ1, . . . , ξ⌊n
2 ⌋−1 with 0 < ξi < 1.

Remark 4.47 The conjecture above would imply the following
two theorems.

Theorem 4.48 *(Existence) There exists a unique point Ln(ξ) ∈
L such that
K · ExpeK

(
Ln

(
ξ
))

is the unique minimal principal orbit of the
isotropy action on G/K.

Proof. Existence would follow from the validity of Conjecture
4.46. Uniqueness from [HSTT]

�*

Theorem 4.49 * The unique minimal principal orbit of the
isotropy action on G/K is given by K · ExpeK

(
Ln

(
ξ
))

, with

ξ1, . . . , ξ⌊n
2 ⌋−1 being the distinct roots of the polynomial Pn.

Proof. The order of the ξi is not important in the previous theo-
rem since a permutation of the ξi is due to the action of the Weyl
group.

�*
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4.2 Examples

In the following we give the polynomial Pn including the roots
for n = 4, 5, 6, 7, 8 explicitly. We remark that the roots are all
distinct and lie in the interval (0, 1), respectively, substantiating
Conjecture 4.46. This shows in particular, that for n = 4, 5, 6, 7, 8
the minimal principal orbit is an element in L.

D4-Problem

The root of

P4(x) = x− 1

5

is given by

ξ1 =
1

5
.

D5-Problem

The root of

P5(x) = x− 3

7

is given by

ξ1 =
3

7
.

D6-Problem

The roots of

P6(x) = x2 − 14

21
x+

1

21

are given by

ξ1 =
7 + 2

√
7

21
,

ξ2 =
7− 2

√
7

21
.
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D7-Problem

The roots of

P7(x) = x2 − 30

33
x+

5

33

are given by

ξ1 =
15 + 2

√
15

33
,

ξ2 =
15− 2

√
15

33
.

D8-Problem

The roots of

P8(x) = x3 − 495

429
x2 +

135

429
x− 5

429

are given by

ξ1 =
8
√
55

143
cos

(
1

3
arccos

(√
55

30

))
+

5

13
,

ξ2 =
−8

√
55

143
sin

(
−1

3
arccos

(√
55

30

)
+

π

6

)
+

5

13
,

ξ3 =
−8

√
55

143
sin

(
1

3
arccos

(√
55

30

)
+

π

6

)
+

5

13
.

Remark 4.50 For the cubic Polynomial P8, the casus irreducibilis
appears.
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Appendix

Lemma 4.51 We have

Fs,s,s,s =

(
sin

(
1

2
arccos

(
−
√
ξ1

)
− π

4

)

· sin
(
1

2
arccos

(
−
√

ξ1

)
+

π

4

))−1

· sin
(
1

2
arccos

(
−
√

ξ1

)
− 1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
− 1

2
arccos

(√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
+

1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
+

1

2
arccos

(√
ξ⌊n

2 ⌋

))

Fc,s,s,s =

(
sin

(
1

2
arccos

(
−
√
ξ1

)
− π

4

)

· sin
(
1

2
arccos

(
−
√

ξ1

)
+

π

4

))−1

· cos
(
1

2
arccos

(
−
√
ξ1

)
− 1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
− 1

2
arccos

(√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
+

1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
+

1

2
arccos

(√
ξ⌊n

2 ⌋

))
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Fs,c,s,s =

(
sin

(
1

2
arccos

(
−
√
ξ1

)
− π

4

)

· sin
(
1

2
arccos

(
−
√

ξ1

)
+

π

4

))−1

· sin
(
1

2
arccos

(
−
√

ξ1

)
− 1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· cos

(
1

2
arccos

(
−
√
ξ1

)
− 1

2
arccos

(√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
+

1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
+

1

2
arccos

(√
ξ⌊n

2 ⌋

))

Fs,s,c,s =

(
sin

(
1

2
arccos

(
−
√
ξ1

)
− π

4

)

· sin
(
1

2
arccos

(
−
√

ξ1

)
+

π

4

))−1

· sin
(
1

2
arccos

(
−
√

ξ1

)
− 1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
− 1

2
arccos

(√
ξ⌊n

2 ⌋

))
· cos

(
1

2
arccos

(
−
√
ξ1

)
+

1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
+

1

2
arccos

(√
ξ⌊n

2 ⌋

))
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Fs,s,s,c =

(
sin

(
1

2
arccos

(
−
√
ξ1

)
− π

4

)

· sin
(
1

2
arccos

(
−
√

ξ1

)
+

π

4

))−1

· sin
(
1

2
arccos

(
−
√

ξ1

)
− 1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
− 1

2
arccos

(√
ξ⌊n

2 ⌋

))
· sin

(
1

2
arccos

(
−
√

ξ1

)
+

1

2
arccos

(
−
√
ξ⌊n

2 ⌋

))
· cos

(
1

2
arccos

(
−
√
ξ1

)
+

1

2
arccos

(√
ξ⌊n

2 ⌋

))
Proof. One proves this lemma by applying addition theorems
and using standard identities for trigonometric functions.

�
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