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Abstract

Wir betrachten die Lage der eindeutigen minimalen
Hauptbahn einer Isotropiewirkung eines einfach zusam-
menhingenden symmetrischen Raumes kompakten Typs
mit Wurzelsystem A,, bzw. D,,. Nach einer Identifizierung
des Bahnenraumes mit einer verallgemeinerten Weyl-Kam-
mer, geben wir fir A,, die Lage der minimalen Hauptbahn
in der dominanten verallgemeinerten Weyl-Kammer ex-
plizit an. Fir D,, geben wir ein Ergebnis an, welches es uns
erlaubt die Lage der minimalen Hauptbahn in der domi-
nanten verallgemeinerten Weyl-Kammer aus den Nullstellen
eines Polynoms zu bestimmen, dessen Form wir explizit
angeben.

Abstract

We study the position of the unique minimal principal
orbit of the isotropy action of a simply-connected symmet-
ric space of compact type with restricted root system A,
or D,. After identifying the orbit space with a generalized
Weyl chamber, we give for A,, an explicit formula for the
position of the minimal principal orbit in the dominant
generalized Weyl chamber. For D,, on the other hand,
we give a result that enables us to determine the position
of the minimal principal orbit in the dominant generalized
Weyl chamber by computing the roots of a polynomial,
which we give explicitly.
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1 Introduction

An isometric action of a compact Lie group G on a Riemannian
manifold M is called polar if there exists a section, i.e. a subman-
ifold of M that intersects every orbit orthogonally. The action
is called hyperpolar, if the section is flat in the induced metric.
Manifolds with hyperpolar actions have various nice properties
and are therefore an interesting field of study. It has been shown
by A. Kollross [Koll] that in the case of hyperpolar actions on
irreducible Riemannian symmetric spaces of compact type, de-
noted by M = G/K, the action has to be either of cohomogene-
ity one or a so called Hermann action. The latter is defined as
an action of a symmetric subgroup H C G, i.e. a subgroup such
that there exists an involution o: G — G with the property that
H is contained in the fixed point set of 0. A special case of
a Hermann action is given by the action of the isotropy group
K. These so called isotropy actions and their orbits are the cen-
tral subject of this thesis, where we restrict our considerations to
simply-connected symmetric spaces.

Isotropy actions and the geometry of their orbits have been
studied extensively over the years. Particularly important for us
are the following two results: In [Tas] the mean curvature of a
principal orbit is calculated. Using this result, [HSTT] showed
that there exists a unique principal orbit that is a minimal sub-
manifold. The root space decomposition of symmetric spaces is a
very useful tool in this context. Identifying the orbit space with
the closure of a generalized Weyl chamber, enables an investiga-
tion of the orbits on the Lie algebra level.

The outlined results lead in a natural way to the problem of
determining the unique point, associated to the unique minimal
principal orbit of an isotropy action, in a given Weyl chamber.
For some symmetric spaces of rank two the position of the mini-
mal principal orbit has already been found, [CNV]. But for most
cases it remained an open question.



In this thesis, we study the position of the minimal principal
orbit for isotropy actions on symmetric spaces of compact type
and rank n with root systems A, and D,, i.e. the classical root
systems with simply-laced Dynkin diagrams. For this, we de-
fine real valued functions, denoted by ¥4, and ¥'p, , respectively.
These functions have the property that their unique extremal
point coincides with the unique minimal principal orbit in the
Weyl chamber.

In the case that the root system is A,, we give an explicit
formula for the point associated to the minimal principal orbit
within the dominant generalized Weyl chamber.

For the root system D,,, on the other hand, the main result
is a theorem that enables us to find the unique minimal principal
orbit in the dominant generalized Weyl chamber by determining
the roots of a polynomial of degree [§] — 1.

This thesis is organized as follows:

The first section gives a short introduction to the field and
preliminary results. Starting with a review of some needed prop-
erties of symmetric spaces and hyperpolar actions, we then re-
strict our considerations to isotropy actions on simply-connected
symmetric spaces of the compact type. We reprove the diagonal-
ization of the shape operator of principal orbits given in [Ver], by
adjusting the proof for the diagonalization of the shape operator
of the orbits of Hermann actions given in [GT] to the special case
of an isotropy action. This allows us to read off the mean curva-
ture of the orbits from the diagonalized shape operator. For each
root system A, we define the function YA on a generalized Weyl
chamber, originally introduced in [CNV], which has a unique ex-
tremal point that coincides with the unique minimal principal
orbit in the Weyl chamber. The investigation of the position of
the critical point of 9o within a Weyl chamber will be our ap-
proach to determine the positon of the unique minimal principal
orbit. Finally, we give a formulation of the central problem in
this thesis.
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Section 2 deals with the solution of the posed problem for
symmetric spaces with root system A,,. We state and prove the
main result of this section which is an explicit formula for the po-
sition of the unique minimal principal orbit of the isotropy action
within the dominant generalized Weyl chamber. As a corollary
we obtain a recursive relation between the minimal principal or-
bit of a symmetric space of rank n and the minimal orbit of a
symmetric space of rank n + 1. Originally, the insight of the
fact, that the solution of the problem for rank n can be used to
construct the solution of the problem for rank n + 1, was the
foundation that led to the construction of the explicit formula in
the main result.

Section 3 deals with symmetric spaces with root system D,,.
The main result of this section is a theorem that enables us to de-
termine the unique minimal principal orbit in the dominant gen-
eralized Weyl chamber from the roots of a polynomial of degree
| 5] —1, which will be denoted by P,. The key to the main result
is an ansatz that reduces the problem from having originally n
unknowns 1, ...,Z, to a problem with only |4 ] — 1 unknowns
£,...,¢& 12]-1- The proof starts by revealing symmetries of the
components of Vi¥p_ with respect to certain permutations of the
variables x1, ..., x,. This study of symmetries, together with the
ansatz, lead to a non-linear system of equations (NSE) in |5 | —1
variables. The benifit of this derived NSE lies not only in the
fact that a solution yields the unique minimal principal orbit in
the considered Weyl chamber, but in particular in its relatively
simple form. Finally, we show, using symmetry arguments, that
the solution of the NSE is given by the roots of the polynomial
P, of degree | 5] — 1, which we give explicitly.

We emphazise that in contrast to the first section on the pre-
liminaries, the results in section two and three are original.

In this work we will denote the geodesic exponential map
by Exp and the Lie group exponential map by exp. The par-
allel transport along the geodesic v in M will be denoted by
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Y8 TyyM — T, M. If the Lie group G acts on the Rieman-
nian manifold M and p € M, then we write G - p for the orbit
through p. Further, we denote the isotropy group at p by Gp. In
the following, every Riemannian manifold will be endowed with
the Levi-Civita connection V and we write R for the Riemannian
curvature tensor. For each symmetric space of the compact type
the metric is understood to be induced by a negative multiple of
the Killing form on the Lie algebra of the isometry group.
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2 Preliminaries

2.1 Basics

Let M be a Riemannian manifold.

Definition 2.1 Forp € M andy € T,M The curvature operator
R, in direction y is given by the self adjoint linear map

Ry,: TyM — T,M, x+— R(x,y)y.
Further, let N C M be a submanifold and let p € N.

Definition 2.2 For { € v,N, the shape operator A¢ in p in nor-
mal direction & is defined to be the self adjoint linear map

A¢: T,N = T,N, x> —(V&)".

Let v: (—a,a) — M be a geodesic with y(0) = p and 7/(0) € v, N.
Consider the geodesic variation vs(t) with vo = v and v5(0) € N.
If in addition also 7((0) € v, )V, for all s, then the Jacobi
vector field Y along ~y, defined by the geodesic variation ~,(t),
satisfies the initial conditions

Y(O) S T’\/(O)Na

Vv
&Y(O) -+ A’VI(O)Y(O) € V’Y(O)N‘

A Jacobi field satisfying these initial conditions is called an N-
Jacobi field.

Definition 2.3 Let N be a submanifold of a Riemannian man-
ifold M. Further let p € N and §& € v,N. Then the mean
curvature of N in the point p in normal direction &, denoted by
Hye, is defined to be the trace of the shape operator Ag.
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Remark 2.4 Usually the mean curvature is defined slightly dif-
ferent in the literature: one additionally devides the trace of the
shape operator through the dimension of the submanifold N, but
since this factor will play no role for our considerations, we will
ignore it for brevity.

Definition 2.5 A submanifold N C M of a Riemannian man-
ifold M is called minimal if for every p € N and every non-
vanishing normal vector § € v, N the trace of the shape operator
in normal direction § vanishes, i.e. tr(Ag¢) = 0.

2.2 Hyperpolar actions

Consider the isometric action of the compact Lie group G on the
Riemannian manifold M. Let (G)), for p € M, be the conjugacy
class of the isotropy group G, of the G-action. We call (G)) the
isotropy type of the orbit G-p. For closed subgroups K, H C G we
have the following partial ordering on the set of conjugacy classes
of G: If K is conjugated to a subgroup of H we set (K) < (H).

Definition 2.6 For p € M the orbit G - p is called a principal
orbit if there is a neighbourhood U of p such that (Gp) < (Gy),
for all ¢ € U. The point p € M is called regular is G -p is a
principal orbit.

Definition 2.7 An isometric action of a compact Lie group G
on a connected complete Riemannian manifold M is called polar
if there exists a connected closed embedded submanifold > C M,
called a section, that meets every orbit of the G-action on M and
s perpendicular to every orbit it meets. The G-action is called
hyperpolar if there exists a section that is flat in the induced
metric.

Let us state some properties of G-manifolds that admit sections:
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Theorem 2.8 Let the isometric action of the compact Lie group
G on the Riemannian manifold M be polar and let 3 be a section.
Then

1. X is totally geodesic.

2. There is a unique section through every regular point p € M
which is given by ¥, = Exp,(vpG -p), where vpG -p denotes
the normal space to the orbit G - p in the point p.

3. Every G-equivariant normal vector field on a principal orbit
18 parallel with respect to the normal connection.

4. Principal orbits have constant principal curvatures with re-
spect to parallel normal unit vector fields.

Proof. [PT1], page 86.
]

For a principal orbit G - p and v € v,G - p, a G-equivariant
normal field £ on G - p is defined by &(g - p) = (dg),(v).

Because of the third statement of the previous theorem, for
a polar G-action on M and a regular point p € M the shape
operator of the principal orbit G - p in normal direction £ is given
by
AcX = -Vx&.

2.3 Isotropy actions

In the following M is an irreducible, simply-connected, Rieman-
nian symmetric space of compact type. The reason for restricting
our considerations to simply-connected spaces lies in the fact that
in such spaces all orbits of maximal volume are principal and no
exceptional orbits occur [Con]. First we recall some basic prop-
erties associated to M:
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Since the identity component of the isometry group of M, de-
noted by G, acts transitively on M, we can identify M = G/K,
where K is the compact isotropy group of a point p € M. The
identification is given by G/K — M, g- K +— g-p. The metric on
M is induced by the Killing form B of the Lie algebra of GG, which
we denote by g. We have the well-known Cartan decomposition
g = t ® m, where t is the Lie algebra of K and m is a vector
space of the same dimension as M. We can identify m with the
tangent space T, M via the isomorphism m — T,M, X — X(p),
where X is the induced fundamental vector field of X, given by

d
X(q) = pn exp(tX) - q,
t=0

for ¢ € M. We also recall the Cartan relations
[, Ce [E,m]Cm, [mmCE¢t
The Riemannian curvature tensor in p = eK is given by
R(X.Y)Z = —[[X,Y], 2],

with X,Y, Z € m. We also recall that the Cartan decomposition
can be characterized via Killing vector fields: If we identify g
with the Lie algebra of Killing vector fields on M by mapping
each element of g to its fundamental vector field, then we get

t = {X | X is a Killing vector field on M with X (eK) = 0},
m = {X | X is a Killing vector field on M with (VX)(eK) = 0}.

Proposition 2.9 Let M be an m-dimensional symmetric space
and J a Jacobi field along the geodesic v with (J(t),~'(t)) = 0.
Further let {A;}, fori=1,...,m — 1, be an orthogonal basis of
7' (0)*, such that all elements of this basis are eigenvectors of the
operator Ry (gy: 7' (0)+ — +/(0)* with eigenvalues A;. Then

m—1

> (Gicn, + piBr)VI1h A,

i=1

J(#)
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where the coefficients d;, p; are determined by the initial condi-
tions

m—1 m—1
\Y
J(O) = Z piAi, %J(O) = Z (57;141',
i=1 i=1
and oy,;, By, are given by
Sin(\/ )\lt) Zf}\ >0

Vi

ay, =<t , if A =0,
sinh(v/—At) i A<,

SRVASY

cos(v/Ait) , if A >0,

Br, =141 L if N =0,

Lcosh(\/—)\it) , if A < 0.

An important tool for this thesis will be the real root space
decomposition for symmetric spaces of compact type. For this,
let @ € m be a maximal Abelian subalgebra, meaning that ev-
ery Abelian subalgebra of m containing a is already equal to a.
The rank of M is defined to be the dimension of a. Let for the
remaining part of this thesis dim(a) = n. We set

go=1{Zcg" | [H 7] =ia(H)Z, for all H € a}

and define the restricted roots A = {aa,...,oq} to be the set
of one-forms «;: @ — R such that g, # {0} and a; # 0. It is
important to remark that, contrary to root systems of semisimple
Lie algebras, for symmetric spaces also non-reduced restricted
root systems occur. Non-reduced root systems have the property
that there exits a root « such that an integer multiple of «;, other
than —a, is also contained in the root system. In particular
the non-reduced root system BC, occurs, as for example in the
quaternionic Grassmannian

Sp(2p + 2q)
Sp(2p) x Sp(2q)’
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for p > q. An overview over the restricted root systems associated
to symmetric spaces can be found in [Bum], page 264. Let A, C
A denote a choice of positive roots, i.e. a subset with the property
A =A;U(-Ay) and Ay N(—=A;) = (. Then the real root
space decomposition is given by the following theorem, where
3e(a) denotes the centralizer of a in &:

Theorem 2.10 Let t, = tN(ga®Dg—o) and my = mN(ga Dg—0)-
Then the following holds:

1. There are the direct sum decompositions

t=3¢(a) @ Z t, and m=ad Z Mgy,

a€A+ OZEA+
which are orthogonal with respect to the Killing form on g.

2. o and m, are isomorphic: For each X € %, there exists
a unique Y € m, with [H,X] = —a(H)Y and [H,Y] =
a(H)X, for all H € a.

3. The root spaces are given by
b, ={X ct|[H [H X] = —a(H)?*X, foral H € a},
my ={X cw | [H,[H X]] = —a(H)*X, for all H € a}.

We will denote by m,, the multiplicity of the root & € A, which
is defined to be the dimension of m,,.

We come to the definition of the central notion of this thesis:

Definition 2.11 For the symmetric space M = G /K the action
of K on G/K, given by k - gK = kgK, is called isotropy action.

Proposition 2.12 Consider the isotropy action on M = G/K.

1. The action of K on G/K is hyperpolar.
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2. A section of the action of K on G/K is given by ¥ =
ExpeK(a)'

Now we will describe the tangent spaces of the orbits of the
isotropy action for which we will make use of the root space
decomposition in symmetric spaces. The following result was
obtained by [Ver| but we prove it differently using the proof in
[GT] for a similar result for Hermann actions and applying it to
the special case of an isotropy action. In the proof we try to use a
similar notation as in [GT] to make the proofs easier to compare.

For the remaining part of this section, let w € a and p =
Exp,j (w). In particular we have the geodesic y(t) = Exp,x (tw) €
3.

Proposition 2.13 The tangent space of the orbit K - p is given
by

T,K - p=1lls >, M
a€AL: a(w)¢nZ

Proof. We have T, K -p = {X(p) | X € ¢}. For a € A, we denote
by {X{}icr, an orthonormal basis of m,. Further we denote by
E¢ the parallel vector fields along v with E*(0) = X&(eK). For
X e tlet Y = X|,. As a restriction of a Killing vector field to
a geodesic, Y is a Jacobi field along ~. Since Y (¢) is tangent to
the orbit through ~(t) for all ¢, it follows from the description of
Jacobi fields in symmetric spaces.

Y(t)= > ) (ciasin(a(w)t) + diqcos (a(w)t)) B (t). (1)

OéEA+ 1€l

Further, let {Z}ics, be the orthonormal basis of £, related to
{X&} by [Z8,u] = a(u) X7, for all u € a. We have

b ] = {ma , ?f a(u) # 0,
0 ,ifa(u)=0.
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For X € £ we get
Y (t) = X(Expef (tw))

= Z| exp(sX) - Expg(tw)
ds|,_g

= —| exp(sX)exp(tw)K
ds|,_

= ds s:OeXp (Adexp(sX) (tw)) K

Adexp(sX) (tw)>
s=0

a0 (5] enx)) (@)

s=0

This implies for ¢ = 1, together with £ = ze(a) ® > ,ca, ta, that

T,K -p=dExp)y [ [ > ta ]

a€A+

= d(Exp)w | Y [ea,w})

CXGA+

= d(EXp)w Z My

acAL: a(w)#0

Now, let a(w) # 0 and X, € m,. Write X, = Y ier, NiaX,
with \; o € R. We use the coefficients \; o, to define X, € £, via
X, = Zz‘ela XiaZ{. We showed that the Jacobi field Y, = X, /|,

20



along v is determined by Y,(0) = 0 and %YQ(O) = [Xo,w] =
a(w)X,. From the first initial condition and the general form
(1) follows d; o = 0. Hence Y, has to be of the form

Differentiating yields

\Y
JYalt) = Z cm{ cos(a(w)t)a(w) EX(t)
i€l
. Vo
+ sin(a(w)t) %El (t) ¢.

=0

Therefore we get from the second initial condition from a
comparison of coefficients that ¢; » = \; o and hence

Ya(t) = > Aiasin(a(w)t) B (1)

i€ly
— sin(a(w)t)y|[s K-
It follows that Y, (1) vanishes if and only if a(w) € nZ. Hence
T,K - p is the parallel displacement of ¢rz Ma along
.

AL a(w)
O
The previous theorem motivates the following definition: The
diagram of M is defined to be
D(G/K)={X €a|3JaecA;: a(X) € 7Z}.

All elements of the diagram are mapped by the exponential map
to points on singular orbits, whereas all elements in a \ D(G/K)
are mapped by the exponential map to points on principal or-
bits. The connected components of a\ D(G/K) are called gener-
alized Weyl chambers. We call the points in a \ D(G/K) regular
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and the points in D(G/K) singular. Let W be a generalized
Weyl chamber. Then each orbit of K intersects Exp,; (W) at
a unique point, where W denotes the closure of W. To avoid
lengthy formulations, we will from now on write Weyl chamber
instead of generalized Weyl chamber. Given a choice of simple
roots Ay, where |A| = rank(M) = n, there is one distinguished
Weyl chamber W,,, with 0 < (a,z) < 7, for all @« € A} and all
x € Wy. We call W, the dominant generalized Weyl chamber or
dominant Weyl chamber. This particular Weyl chamber has the
property that its closure contains the origin of a.

The following theorem was given in [Ver|, but we reprove it
using the method in [GT].

Proposition 2.14 Let u € a and o € Ay with a(w) ¢ 7wZ.
Then we have

Auipy () = —o(u) cot(afw))
for all v € v||§(my).

Proof. Define the geodesic ¢(s) = Exp, (w + su) through p. We
have

d
d(0) = s SZOEXPeK(’LU + su)
_ 4 exp(w + su)K
ds s=0 P
_d exp(su)exp(w)K
d
=7 Szoexp(SU) p
= u(p).
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For s € [0, 1] let v5(t) = Exp, g (t(w+su)) be a geodesic variation
with 79 = . For o € Ay with a(w) # 7Z, let X, € my,. Define
X, € t, to be the vector related to X, i.e. [H,X] = —a(H)X,
for all H € a. Let Y;o(t) = Xa(7s(t)) be the Jacobi field along
7s with initial values Y; 4 (0) = 0 and %Y o (0) = [Xo, w + su] =
a(w+su)X,. As in the proof of the previous lemma, we get from
the general description of Jacobi fields the following:

Yealt) = sin(a(w + su)t)y][f Xo.

Consider Y, (s) := Y, (1) = Xa(c(s)). Since ¢(s) is a geodesic
contained in the section ¥ = Exp.g(a), it follows that c(s) is
orthogonal to the orbit K - ¢(s). Further, Y,(s) is tangent to
K - ¢(s). Hence, Y,(s) is a K - p - Jacobi field and therefore
YYa(0) 4+ Ay (Ya(0)) € K - p. The initial values of Y,(s) are
given by .
Ya(0) = sin(a(w))y]|gXa,

\% 1

75 Ya(0) = a(u) cos(a(w))7loXa-
In particular, both Y, (0) and Y-Y,(0) are tangent to K - p and
from the relation Y, (0) + Aup)(Ya(0)) € vp K - p together with
a(w) # 7Z follows

Ay (VI5Xa) = —a(u) cot(a(w)1[iXa-

Corollary 2.15 The mean curvature of the principal orbit K - p
in the normal direction u(p) € a is given by

Hyp)(w) = — Z meao(u) cot(a(w)).

aEA L
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Proof. The mean curvature of K - Exp,j(p) in the normal direc-
tion u(p) € ais given by the trace of A,;,), which can be directly
obtained from the previous proposition.

O
Motivated by the proof of Lemma 3.2 in [HSTT], we define the
function ®: a — R by

®x)=—- Y log(|sin(a(z))|™).

a€AL: a(w)¢nZ

Lemma 2.16 Leteq,...,e, be an orthonormal basis of a. Then
the mean curvature of the principal orbit K -p in normal direction
ei(p) is given by

He,(w) = (V&(w)); -

Proof. Partial differentiation with respect to the standard coor-
dinates of a yields

aiicb(x) - > ma cot(a(z))a(e;).

acAy: a(w)¢nZ

The claim follows from the previous corollary.

We can also write

®(z) = —log I1 |sin(a(z))|™ |,

a€AL: o(w)gnZ
which motivates the following definition:

Definition 2.17 For w € a we set

H | sin(a(w))|™e.

OleAJ,_

Remark 2.18 The function 9a has originally been introduced in
[CNV]. Obviously Ia(w) vanishes if and only if w € D(G/K).
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In the setting of Lemma 2.16, we get the relation
He,(w) = (=Vlog (Ja(w))); -

Lemma 2.19 Let w be a point in the interior of a Weyl chamber.

Then the orbit K -p is minimal if and only if w is a critical point
of 9a, t.e. Via(w) =0.

Proof. Since w is in the interior of a Weyl chamber, it follows
Ua(w) # 0. The claim follows from

H,(w) = (~Viog (92 (w)))
- (.f log (1 (1))

0
Ia(w) dz; Bz, 02 )

(Via(w)); -

1

N

1

Ia(w)
O

Theorem 2.20 There exists a unique principal orbit of the iso-
tropy action on M that is a minimal submanifold of M. In par-
ticular, in each Weyl chamber there exists a unique point w € a
such that K - Exp g (w) is the unique minimal orbit.

Proof. [HSTT].
O

The function ¥ A assigns, up to a constant, to each point w € a
the volume of the orbit K - Exp,j(w), as the following theorem
states:

Proposition 2.21 For w € a we have
Vol(K - Exp i (w)) = ¢ - Ia(w),

where ¢ € R is a constant.
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Proof. [CNV], Theorem 3.5.

Remark 2.22 In [CNV], Theorem 3.5., it is shown that

B Vol(M)
T T, aX)dx

In particular ¢ also depends on the scaling factor of the Killing
form, which determines the Riemannian metric.

2.4 Formulation of the Problem

The stated results of the previous section lead to the following
very natural problem:

Problem Given a simply-connected symmetric space of com-
pact type M and its restricted root system A. Find the unique
point in each Weyl chamber corresponding to the unique minimal
principal orbit of the isotropy action.

For some symmetric spaces of low rank there are already so-
lutions to the posed problem given in the literature. In [CNV]
for example the rank two spaces

SU®B3)  Sp(2) SU(4) Gs
SOB) U@Q)’ SUQR)xU®2) S0

were investigated, having root systems Ay, Co, Ca, G2, respec-
tively. As it can be seen in [CNV] the unique crtitical point
of ¥4, in the interior of the generalized Weyl chamber of As,
which is a regular triangle, is given by the centroid. The second
and third space listed above have Cy as restricted root system
but the multiplicities of the roots differ for each of these spaces.
Although they have the same generalized Weyl chambers, their
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unique critical points in the interior of the Weyl chamber do not
coincide. But still, these two critical points have in common that
they lie both on the symmetry axis of the Weyl chamber, which
is an isoceles triangle in this case. Concerning the relation of the
unique critical point of YA to the symmetry of the Weyl cham-
ber, it is important to mention that for the restricted root system
BC5, whose generalized Weyl chambers are isoceles triangles, the
unique critical point of ¥pc, doesn’t even lie an the symmetry
axis of the Weyl chamber.

In this thesis we will investigate the position of the unique
critical point of YA in the interior of a Weyl chamber for the
classical simply-laced restricted root systems A, and D,.

For A,, we will give a closed form for the unique critical point
for a particular Weyl chamber that is valid for arbitrary rank n.
Having found the unique critical points in one Weyl chamber,
the unique critical points in all the other Weyl chambers can be
obtained by the action of the generalized Weyl group.

In the case of the restricted root system D,,, we give a theorem
that allows us to find the unique critical point in one certain
Weyl chamber by determining the roots of a polynomial of degree
L%J — 1. Again, the unique critical points in all the other Weyl
chambers can be obtained by the action of the generalized Weyl
group.

The classes of simply-connected symmetric spaces with re-
stricted root systems A,, and D,, are given in the following table
(cf. [Hel], [Bum)]):
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Symmetric spaces of type I:

Cartan’s

Class G K dimension rank A
Al SU(n) SO(n) e T T
ATI SU(2n) Sp(2n) (n=1)(2n+1) n—-1 A,
DI SO(2n) S(O(n) x O(n)) n? n D,
BII SO(2n +1) SO(2n) 2n 1 Ay
DII SO(2n) SO(2n —1) 2n—1 1 Ay
EIV Eg F, 26 2 A,

Symmetric spaces of type I1:

Lie group dimension rank A

SU(m+1) n(n+2) n A,
Spin(2n) n(2n—1) n D,
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3 A,-Problem

3.1 Result

The root system A,, can be considered as a subset of R*! given
by

where eq,...,e,41 is the standard basis of R"*!. In particular,
A, is contained in the hyperplane through the origin which is

orthogonal to the diagonal vector e; + --- + epp1. A choice of
positive roots is given by

(An)+:{ei—ej|1§i<j§n+1},

containing the simple roots aq, ..., ay, with a; = ¢; — e;41.
We consider the function

Oa, (1, xni) = [ sin(e (21, )™,
aG(An)+

where 1, ..., z,41 are standard coordinates and m,, is the mul-
tiplicity of the root a. Since the Dynkin diagram of the root
system A, is simply-laced, all roots have the same multiplicity.

In the following, we will study regular solutions of the equa-
tion
VﬂAn (wl, ce a$n+1) =0.

The main result of this section is the following theorem.

Theorem 3.1 Let M = G/K be a simply-connected symmet-
ric space of compact type with rank(M) = n and restricted root
system A,,.

1. The point

n

Zk(n— kE+1)ag

k=1

T
2+ 2n

L, =
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is contained in the dominant generalized Weyl chamber W, .

2. The unique minimal principal orbit of the isotropy action
on G/K is given by

K - Exp,r(Ly).

Proof. We define the function

Da, (@1, sanp) = [ sin(o, (@1, 2041))) -
O‘E(An)+

Because the multiplicities m, are equal for all roots, it follows
that

Via, (x1,...,Tnt1) :moﬂAn (x1,... ,xn+1)m“_1
. VﬁAn (m’l, e ,$n+1> .

Therefore 94, and 94, have the same critical point in a given
Weyl chamber.

Lemma 3.2 The point L, is regular.

Proof. Let 1 <i < j <mn+ 1. Assume that L, is singular, i.e.
that there exists m € Z with

(e; —€j, Lp) = mm.

Then the relation

n
™
<€i - ej,Ln> = 5 T on kzlk(n - k+ 1)<67, —€5,€6 — €k+1>
T n
T 242 ;k(n —k+ D)0k = i1 = O+ Ojks)
j—i
=T
1+n
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implies j —i = m(1+n). But since 1 < j—i < n, such an integer
m can not exist and we get a contradiction.

O

Corollary 3.3 The point L, is contained in the generalized dom-
mant Weyl chamber W,,.

Proof. For 1 < i < j < n+ 1 the proof of the previous lemma
implies
0<(ei—ej,Ly) <m.
O

In the following, we will show that Via, (L) =0, ie. that
L, is the unique critical point of ¥4, in W,. For this purpose
we introduce some notation:

Definition 3.4 Let i € {1,...,n+ 1} and k € {1,...,n}. We
define

1) Rui(x1,...,%Zp41) = H sin(x — x7),
1<k<l<n+1
k|
k—1 n
2) (n(k) (z1,...,2p) = cos(xg) H sin(x;) H sin(z;),
i=1 j=k+1
1 k>1i
3) V; o= ) fOT' - Z.7
’ -1 , fork <1,

Tp — T , for k <1,

4) an(i, k) (x1,...,Tpt1) = {

Ti — Tpr1 , for k> .
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To avoid lengthy notation, we will write

an (i, k) (x1,. .., Tnt1) = an(i, k).

With the introduced notation, the i-th component of the gradient
of ¥4, (x1,...,2Zp41) is given by

’l9An (1‘1, N ,$n+1) :Rn,i ($1, N ,.’En+1)

' <Z Vikn(k) (an(i, 1), ... ,an(i,n))> .
k=1

al'i

Lemma 3.5 We have

2k — 21 4 2
72—1'# , for k> i,
2n +2
an (i, k)(Ly) =
2i — 2k
2Zn+277 , for k <.

Proof. The i-th component of L,, is given by

n—2+2
B —

L) =
(Ln); on+ 2

For k > ¢, we get

an (i, k)(Ln) = (Ln); — (Ln)jgy
2242
 2n+2

and for k& < i the relation
an(i’ k)(Ln) = (Ln)k - (Ln)z

2i — 2k
= T
2n + 2

is valid.

32



g

The following two lemmas imply, that the first L%J + 1 com-
ponents of Vi a, (L) vanish.

Lemma 3.6 Let i < L%J +1. Then

Z VikCn (k) (an(iy 1) (Ly), - - - an(i,n)(Ly)) = 0.

Proof. Let | € {1,...,i — 1}. In particular, we have [ < i. We
will show that the [-th and the 27 — 1 —[-th summand cancel each
other. Since 2¢ — 1 — 1 > 7, we get

22 —1—1) —2i+2
T

an(i,2i — 1= )(Lp) = o

_2i—2
242
= an(i,1)(Ly).

This implies

Cn(D) (an (i, 1)(Ln), - - -y an(i,n)(Ln))
=(n(20 =1 —1) (an(i,1)(Ln), ..., an(i,n)(Ly)) .

Furthermore, we have V; 2;_1_; = =V ;.

Lemma 3.7 Leti < L%J +1. Then

Z VikCn(k) (an(i, 1)(Lp), - . ., an(i,n)(Ly)) = 0.

k=2i—1

33



Proof. First, let 1 < L%J + 1 and n even. We will show that for
le{l,...,]%| —i+ 1} the 20 — 2 + I-th and the n + 1 — I-th
summand cancel each other, which implies the assertion. Because
of 20 —24+1>2i—12>1i, we get

22 —241)—2i+2  2—2+2
2+ 2n T 9t

an(i,2i — 2 +1)(Ly) =

Sincen—i—l—lZn—i—l—(LgJ —i+1)= L%J—H’—i—lZi, we have

2n+1—-1)—2i+2  2n—20—2i+4

an(i,n—I+1)(L,) = >+ o ™ >+ on

Therefore,
an(i,2i —2+1)(Ly) =7 — ap(i,n+ 1 —1)(Ly),
which implies

cos(an(i,2t —2+1)(Ly)) =cos(m — an(i,n+1—1)(Ly))
= —cos(an(i,n+1—10)(Ly))

and

sin(an,(7,2i — 2 +1)(Ly)) = sin(m — ap(i,n +1 —1)(Ly))
= sin(ap(i,n +1—1)(Ly)).

In particular we get

(20 —241) (an(i, 1)(Ln), ..., an(i,n)(Ly))
= —Cun+1-=10)(an(i, 1)(Ln),...,an(i,n)(Ly)) .

Because we further have V; 9;_o1; = V; 41—, we showed that the
2i — 2 4+ [-th and the n + 1 — [-th summand cancel each other.
Now, let 1 < L%J 4+ 1 and n odd. First we remark, that for
l€{l,....|%] —i+1} the 20 — 2 + I-th and the n 4+ 1 — [-
th summand cancel each other, which can be proved using the
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same argument as in 1. But for this case, it remains to consider

Gnl|5] +9) (an (i, 1)(Ln), - . an(i,n) (L )) We have

on (i | 2] + ) () = 2T D242, 7

and therefore cos (an (i, || +14) (Ln)) = 0, which implies

G (|5 ] +1) @i (L), - anim) (L)) =0
0

Now, we show that the last n — L%J components of V9 A, (Ly)
also vanish.

Lemma 3.8 Let[ J+1<z<n+1 Then
1. an(i,7)(Lp) = an(n —i+2,n—j+ 1)(L,),
2. Vij=—Vou_itan—jt1-

Proof. To prove 1, we start by considering the case j > i. Here
we have n — j + 1 < n — i+ 2 and therefore

2n—i+2)—2(n—j+1)
T
2n + 2
27— 21+ 2
-7
2n + 2

In the case j <iwegetn—j+1>n—i+ 2. Hence

an(n—i+2,n—j+1)(Ly) =

2ln—j+1)—-2(n—i+2)+2
T

an(n—i+2,n—j+1)(Ly) = R

22—2]
2n+2
- an(lvj)(Ln)
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and the first assertion follows.

To prove 2, we start with the case j > i. Here we have on one
hand V; ; = 1 and on the other hand n — j+1 < n —¢+ 2, which
implies V;,_ij42n—j+1 = —1. In the case j < i we get V;; = —1
and, sincen —i+2<n-—j+1,also Vj_i12p—jt1 = 1.

O

Lemma 3.9 Let L%J +1<i<n-+1. Then
Z‘/szH an z 1)( )" . 'aan(i7n)(Lﬂ)) = 0

Proof. First we note that n—i+2 <n— (|| +1)+2=|%] +2
and hence n —i + 2 < L%J + 1. For the case that n is even, we
even have the stronger inequality n —i + 2 < L%J + 1. Using the
previous lemma, we get

> VikGalk) (an(i, 1)(Ln), - - an(i,n) (Ly)))

k=1

S

= { - Vn—i+2,n—k+1
k=1

(k) (an(n — i +2,0)(Ln), - - . san(n — i + 2,1)(Ly)) }
_Z{ n 1+2,n—k+1
Cln — k1) (an(n —i +2,1)(Ln), .., an(n —i +2,n)(Ln)) }

W

(k) (@n(n — i +2,1) (L), -« .y an(n — i+ 2,1)(Ln)) }
= 0.
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In the last line we first changed the order of the summation, then
used n —14+2 < L%J + 1 together with Lemma 3.5 and 3.6.
O

This concludes the proof of the main theorem .

Corollary 3.10 If L,_1 is the solution of
Via, | (z1,...,2,) =0

in the Weyl chamber Wy, _1, then the solution of
Via, (x1,...,2p41) =0

in the Weyl chamber W, 1is given by

Ly =Qn+ nL_HLn—I;
with Qn = 575, Yooy kag.
Proof. We have
n—1

™

= e T TP ; k(n — k)ag,

Lnfl

which is an element in R™. The embedding of L,_; into R"*! is
understood to be as follows:

L,_
Lnl'_>< 761)
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We get

n
n Y
Qn + Ly, = Z kay,
k=1

n+1 2+ 2n “—
n T n—1
k(n—k
+n+12+2(n—1); (n =)oy
n n—1
T
=35 (ZkakJer(nk)ak)
k=1 k=1
S ik(n—k%—l)a
24 2n b

k=1
= Ly.

g

Remark 3.11 In particular, we have a recursive formula for the
solution, from one dimension to the other.

3.2 Examples

The diagram below contains the coefficents of the simple roots

a1, ...,q, for the solution L,:
n=1: z
n =2 %ﬂ %’T
n=s S S

In the case n = 2, a Weyl chamber is an equilateral triangle
and the minimal principal orbit is given by the centroid, as was
already shown in [CNV].
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4 D, -Problem

4.1 Result

The root system D, can be considered as a subset of a = R”
given by
Dn:{:i:ei:tej |1§Z<]§n},

where ey, ..., e, is the standard basis of R”. A choice of positive
roots is given by

(Dn)y ={eitej |1 <i<j<n},
containing the simple roots asq, ..., o, , where
e, —eir1 fori=1,....,n—1,
a; = .
en—1+e, fori=n.

In this section, we study the function

Ip, (T1,...,xn) = H sin ((a, (@1, ..., 2,)))",

aE(Dn)+

where x1,...,x, are standard coordinates of R™ and m,, is the
multiplicity of the root . Since the Dynkin diagram for the root
system D,, is simply-laced, all roots have the same multiplicity.

As in the previous section, we will study regular solutions of
the equation
VT9Dn (1'1, ce ,a:n) =0.

Before formulating the main result of this section, we give some
definitions first:

Definition 4.1 Forj € {0,1,...,|%| -1}, let & be real numbers
with0 < & < 1 and & = 1. Define Ly, (51,...,5H_1) € aR”
2

as follows:
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1. For evenn andi € {1,...,n}, we set

(L (€0-061)1)),
%arccos —\/a) , for1<i<|%],
3 arccos \/&Lj> ,Jor |3l 4+1<i<n.

2. For oddn and i€ {1,...,n}, we set

CACERTE))
arccos (—\/ﬁzj) ,forlSz'SL

, fori= L%J—i—l,

arccos («/fnﬂ) , for L%J +2<i<n.

Remark 4.2 For a more compact notation, we will frequently
identify

/N
I3
[

[N R IT

o (o).
€m (6 51)

Definition 4.3 Define the subset L C a by
L= {Ln(g) ’ 1>& > >§L%J—1 >0}.
Definition 4.4 Let P,,: R — R be the polynomial given by
Po(z) = (—1)kSzl5] -1k,
with

Zl 7"+1 (14 2n —4l)

H Sl +2n—4l) 7

for0 <k < L%J—l.
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The main result of this section is given by the following the-
orem.

Theorem 4.5 Let M = G/K be a simply-connected symmet-
ric space of compact type with rank(M) = n and restricted root
system D,.

1. The set L is contained in the dominant generalized Weyl
chamber W,,.

2. For Ly (E) € L, the components of & are the roots of the
polynomial Py, if and only if K-Exp, (Ln (E)) is the unique
minimal principal orbit of the isotropy action on G/K.

Remark 4.6 1. We remark the necessity of the assumption
L, (E) € L for this theorem. In particular we remark, that
the proof of Conjecture 4.46 would enable us to omitt this
assumption and at the same time imply that the unique
minimal principal orbit is contained in L. We explicitly em-
phasize, that the statement, that the unique minimal prin-
cipal orbit is contained in L, is not proven in this thesis,
since Conjecture 4.46 is still open. But there is very strong
evidence, partly also relying on computer simulations, that
this conjecture must be true. For the precise consequences,
of the validity of the mentioned conjecture, we refere the
reader to the end of this section.

2. Since the proof of the main result of this section is rather
lengthy, we want to give the reader a guideline for the most
important steps in the proof:

After introducing an appropriate notation, oriented on the
notation in the previous section, and restricting our con-
siderations to the function 1§Dn, which we get by setting all
multiplicities in Op, to 1, we decompose the i-th component
of the gradient of 7§Dn into two factors; one denoted by Ry, ;
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(the R-factor) and the other one denoted by K, ; (the K-
factor). The first factor in this decomposition will play a
rather subsidiary role for our investigations. The second
one, on the other hand, will be studied extensively.

We continue by introducing the premutation P;, for 2 <
i < [5] — 1, and show in Lemma 4.16 that the action
of this permutations on the wvariables in the argument of
Kni(z1,...,%0) is equal to —K,, (;41)(21,...,7n). Hence,
this lemma gives us a method, to determine the K-factor
of the © + 1-th component of the gradient by knowing the
K-factor of the i-th component. Lemma 4.16 also contains
an analogue statement for going from the n — i+ 1-th com-
ponent to the n — i-th one. At this point it is important to
remark that Lemma 4.16 does not give a way to conclude
from the K-factor of the | 5 |-th component of the gradient

to any component in the lower part of the gradient.

In Definition 4.1 we give an ansatz (the Ly-ansatz), which
reduces the problem from originally having n unknowns
T1,...,Zy to a problem with only %] — 1 wunknowns
‘51""’€L%J—1‘ This ansatz can be considered as the key
to the main result of this section.

One direct consequence of the Ly-ansatz is given by Lemma
4.17, which states that the first and the last component,
as well as the middle component in the case of odd rank,
vanish. Another consequence of the Ly-ansatz is Lemma
4.82, giving us the bridge to deduce from the K-factor of
the |5 ]-th component to the K-factor of a component in
the lower half of the gradient.

These developed tools enable us to do the following: After
giving the explicit form of the K-factor of the second com-
ponent in Proposition 4.20, which is a central result in the
course of the proof, we deduce from this K-factor the ex-
plicit form of all remaining K-factors of the gradient, by
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using the mentioned lemmas in the text above. This proce-
dure leads to Proposition 4.33, and completes a major step
of the proof of the main theorem.

Proposition 4.33 translates the initial problem of determin-
ing the crtical point of the function ¥p, to the problem of
solving a non-linear system of || — 1 equations (NSE),
each of which is given, up to a prefactor, by the function

Fy(n) (&1, -5 8§ 2 -1)-

Introducing the polynomial pf; in Definition 4.41, we obtain
a way to reformulate the functions F;(n) in terms of this
polynomial, cf. Remark 4.42.

The final crucial step in the proof of the main result is
given by Lemma 4.43, which implies that the roots of the
polynomial P, assuming that they are distinct and lie in
the interval (0,1), are a solution of the (NSE) and hence
give, together with the L,-ansatz, the unique critical point

Of 19Dn.

Proof of Theorem 4.5. We define the function

Ip, (@1, zn) = [ sin((e, (@1, 20)).

oze(Dn)+

Because the multiplicities m,, are equal for all roots, it follows
that

Vip, (x1,...,2n) = ma¥p, (T1,... ,mn)m“_l V’@Dn (X1, Tp).

Therefore 9p, and 9p, have the same critical point in a given
Weyl chamber.

Lemma 4.7 We have

1§(Dn)(m1, R H sin(x, — x4) sin(z, + z4).
1<p<qg<n
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Proof.

(@, yan) = ] sin(a (@1, 20)))

OLE(DTL)-‘,-

= H sin (o, (21, ..., 2n)))

a=epteq
1<p<gq<n

= [ sin(ep—eq(z1,.. 20)
1<p<g<n
-sin ((ep + eq, (T1,...,7p)))

= H sin (zp, — x4) sin (z, + x4)
1<p<g<n

Definition 4.8 Letic {1,...,n} andk € {1,...,2(n—1)}. We
set

1) Ryi(x,...,xp) = H sin(xp — mq) H sin(z, + x),

1<p<g<n 1<r<s<n
P,qFi 570

k—1 2(n—1)
2) Calk) (w1, .., To(—1)) = cos(z) H sin(z;) H sin(z;),
i=1

j=k+1
1 , for k> 1,
3) Vig= .
-1 , fork <i.
Remark 4.9 We set Ry ;(z1,x2) = 1.
Lemma 4.10 Let (x1,...,x,) be a point in a Weyl chamber in

a. Then
Rm(ml, N ,{L‘n) 7'é 0.
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Proof. Assume that R, ;(z1,...,2,) = 0 for a regular point
(x1,...,zy). It follows Ip, (z1,...,2,) = 0, yielding a contra-
diction.

]

Definition 4.11 For i € {1,...,n} and j € {1,...,n — 1}, we
define
xj £ x; , for j <1,

ariL(iaj)(ﬂfl, ceeyTp) = {

r; xxjp1 , forj >
Lemma 4.12 %51)” (x1,...,2y) is equal to

Ry i(z1,...,2p)
2(n—1)
Y Vikln(k) (0, (1), .y (i = 1),af (6, 1) ot (5,0 — 1)) .
k=1

Proof. We have

Op, (x1,...,20) = H sin (zp — z4) sin (zp + z4)
1<p<g<n

= H sin (zp — z4) sin (zp + z4)
1<p<g=<n
Pa7Fi

H sin (xp — x4) sin (z, + x4)
1<p<q<n
p=1t or qg=t

= Rn,i(l‘l, e ,:En)

H sin (xp — xq) sin (zp, + x4) -
1§p<q§n'
p=1t or q=t
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Since Ry, i(z1,...2y,) does not depend on z;, we get

amiﬁDn(l'l, ey xn)
0 . .
= Rpi(w1, ... 73:”)(913' H sin (zp — @q) sin (2p + 74) |
©\ 1<p<qsn
p=t or q=1
where
H sin (zp, — z4) sin (zp + x4) (2)
1<p<g<n

p=1i or q=1

is equal to

H sin (z; — z4) sin (z; + z4)
1<q<n

H sin (xp — ;) sin (xp + ;) | ,

which we can write as

H sin (zp — ;) H sin (z; — z4)

1<p<t 1<q<n

H sin (zp + ;) H sin (z; + x4)

1<p<i i<g<n

Writing (2) in the form

H sin (ay, (i,p)) H sin (a, (i,q — 1))

1<p<e 1<q<n
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H sin (a! (i,p)) H sin (a;} (i,q — 1))

1<p<t 1<q<n

and noting that (2) has 2(n — 1) factors, we can deduce that
differentiating (2) with respect to x; yields

0
H sin (zp — z4) sin (zp + z4)
8xi
1§'p<q§n'
p=1 or qg=1

2(n—1)
= Z {Vzk
k=1
k) (a5 5,1), s (i = 1), (6 1) ot (ion = 1)

where the minus sign of the first ¢ — 1 summands arises from the
fact that for 1 < p < i differentiating a,, (4,p) = x, — x; by z;
yields —1.

O

The previous proof motivates the following definition.

Definition 4.13 We set

K,w'(xl, e ,.%'n)
2 1)

= {Vzk
—1

—~

n

e

é\

k) (g (i,1), ... ap (i,n — 1), 0, (6, 1) ... at (i,n — 1)) }
Definition 4.14 For2 <i < |g] —1 let P; be the permutation

P:A{1,...,n} —>{1,...,n}
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with

Pi(i) —it1,
Pi(i+1) =1,
Pi(n—i+1) =n—1,
Pi(n —1) =n—i+1

and Pi(k) =k, fork & {i,i+1,n—i+1,n—1i}.
We will use for 2 < k < |5 | — 1 the notation
Py (ap (i, §) (21, -y 20)) = ay (5, 5) (T py(1)s - > Ty(m))-
Lemma 4.15 For2 <i < |5| —1 we have

P, (af(i,j)(wl,...,xn))
af(i+1,5)(z1,...,2,) , forj & {i,n—i—1,n—1},
:i:a,f(i—i—l,j)(ml,...,:cn) , for j =1,
af(i4+ 1,5+ 1)(z1,...,20) , forj=n—i—1,
atf(i+ 1,5 —D(w1,...,20) , forj=n—i

and

P, (a,il(n —i+1,75)(z1,. .., ﬂUn))

a‘%(n_ivj)(xb-“vxn) 5 fOT'jg{’L,Z—Fl,’n—Z},
_ af(n—i,j—}—l)(xl’___’xn) , for j =1,
o +

ar(n—i,j—1)(z1,...,2y) , forj=i+1,
tag(n—i,j)(x1,...,x0) , forj=n—i.

Proof. First we note, that the following inequality is valid:

n-iz2[p]-iz2[g )= ([5] )

:L%JJFDPJ >i+1



This implies
t+1<n—z.

We start by proving the first equation. On the one hand we have

. . :EPz :l:mpl ,fOI“j<i,
ai(%])(xpl(l),,xpl(n)) = (4) () : .
zp,i) £xp ) o forj >
(xj £ Tt , for j <,
Ti+1 £ x; , for j =1,
=\ Tit1 £ T ,forj>iand j &€ {n—i—1,n—i},

Tit1 * Tp—iy1 , forj=n—1—1,

(i1 £ Tp , for j =n—1.

On the other hand we get
e For j & {i,n—i—1,n—1i}:

T; £ Tip , for j <1,
rip1 £z, for j >,

af(i+1,5) (1, ... x0) = {

a,jf(i,j)(:z:pi(l),...,xpi(n)) , for j < i,
= a%(@j)(xpi(l), ce 7xPi(n)) , for j > i and
jE€{n—i—1,n—1i}.
e For j =1

a$(7’+17])(x177$n)

=i £ a1 = Fa, (i, ) (@p,0)s - Thn))-
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e For j =n—14—1: Since  + 1 < n — ¢ we have

af(i4+1,54 1) (z1,...,2,)

=af(i4+1,n—1i)(x1,...,2,)
= Xip1 £ Tpoiy1
= ax (i, §) (TP, (1) - -+ TPi(n))-

e For j =n —4: The inequality i +1 < n —¢ implies ¢ + 1 <
n — ¢ — 1. Therefore we have

af(i+1,5—1)(z1,...,2,)

=af(i4+1,n—i—1)(zx1,...,2,)
= Tijt1 T Tp—y
= ax (i, §)(Tp,1) - - TRi(n))-

This proves the first equation.

To prove the second equation we note that on the one hand
we have

(12:(71 — i+ 1aj)(xPi(1)7 s >$Pi(n))

_ {pri(j) L TP, (n—it1) , forj<n—i+4+1,
Tp(n—i+1) TTp(j+1) , forj=>n—i+ 1.
'xjixn_i , forj<mn—i+1andj¢&{i,i+1,n—i},
Tp—i £ xj41 ,forj>n—i+1,
= Tit1 T Tp—y , for j =1,
Tt Tp—i , forj=i+1,

L Ln—i+1 + Tn—i for j =n—1.

On the other hand we get
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e For j & {i,i+1,n—i}:

at(n—i,j)(z1,...,T0)
IR e , for j <n—iand j¢{ii+1},
Tp—i Exj4p1 , for j >n—1,
atf(n—i+ Li)(@pa)--->Tpm) » for j <n—iand

= J & {ii+1},
a,il(n—i—i— ].,j)(iUpi(l),...,IPi(n)) , for j >n—i.

e For j =4: Since i +1 < n — ¢ we have

aril(n - Z?] + 1)($17 cee 7x'fl)
=at(n—i,i+1)(z1,...,20)
= Tit1 £ Tp—g

=ay(n—i+1,5)(@pa), - Thm)-

e For j =i+ 1: Since i < n — ¢ we have

aTiL(n - Z?] - 1)("171) s 7:1:71)
=at(n—i,i)(z1,...,x,)
= Ty ia;n_i

=ay(n—i+1,5)(@pa), - Tpm)-

e For j=n—1:
af(n—1i,5)(z1,...,x)
= Tn—j :t'fn—i—l—l
= iaf(n —i+ 1,]‘)(%]31,(1), . 7xPi(n))7

which proves the second equation.
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Lemma 4.16 Let 2 <i < [5]| —1. Then
1 Kni(Tp ), Tpm) = —Kn (@1, T0),
2. Kpm—iv1)(Tp,1)s -+ Tpi(n)) = =K (nei)(T1, -+, Tn).

Proof. We start by proving 1):
The k-th summand of Ky, ;(zp,1),---,%p,m)) is equal to

Vi kCn(k) <R~ (an (i,1)),..., P (ay, (i,n — 1)),
P (a}(0.1) oo Pl = 1) )

We set
109 = G0 (P ar 1), P (oo = 1)

Py (af(i.1)) ..., P, (a (i — 1))).
From Lemma 4.15 follows that for j € {1,...,2(n — 1)} \ {i,n —
i—1,n—1,2n—2—142n—1—1i} the j-th argument of I;(k) is
given by a, (i +1,j) if j <n—1and by af (i + 1,5 —n+1) if
j > n—1. Further the i-th argument is given by —a,, (i+1,1%), the
n—i—1-th by a;, (i+1,n—1), the n—i-th by a, (i +1,n—i—1),
the n—1+i-th by a;f (i+1,4), the 2n —2—i-th by a;f (i +1,n—1)
and the 2n — 1 —i-th by o/ (i + 1,n — i — 1).

On the other hand, the I-th summand of Ky, ;i(z1,...,xy)
is given by

V;-i—l,lcn(l) <(1;(Z +1, 1)7 s ,CL;(Z. +1,n— 1)7

a;(z’+1,1),...,a;(z’+1,n—1)>.
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We set
I (1) = Cn(l)<an(i +1,1),...,a,(i+1,n—1),
af(i+1,1),...,a (i +1,n— 1)).

The i-th factor of I;(i) is given by cos(—a, (i + 1,7)) =
cos (a,, (i+1,7)). Hence I;(i) = II;+1(i). Because we further

have V;; = 1 and Vi41; = -1, the 4-th summand
of Kn’i(.:UPi(l)’ . ,acpi(n)) is equal to minus one times the i-th
summand of K, j11(21,...,2n).

For k,l € {1,...,2(n — 1)} \ {¢}, the i-th factor of I;(k) is
given by sin (—a,, (i + 1,7)) = —sin (a;, (¢ + 1,4)), which is equal
to minus one times the i-th factor of I7;41(1).

Let ke {1,....2(n—1)}\{i,n—i—1,n—1i,2n—2—14,2n —
1—4}. Then we have I;(k) = —II,11(k). Since for k < i we have

Vik = Vigar = —1 and for £ > i we get Vi = Vi1 = 1, we
deduce that the k-th summand of Ky, ;(zp,(1 - - -, %p,n)) is equal
to minus one times the k-th summand of Ky, ;11(x1,...,xp).

The n — i — 1-th factor of I;(n —i—1) is equal to the n —i-th
factor of I1;1;(n—14) and the n—i-th factor of I;(n—i—1) is equal
to the n — i — 1-th factor of I1;11(n —i). Hence I;(n —i —1) =
—1I1I;+1(n —1). Since we further have V; ,_j—1 = Viy1p—i = 1 it

follows that the n — ¢ — 1-th summand  of
Kni(Tp,1),---,Tp,(n)) is equal to minus one times the n — i-th
summand of K, j11(21,...,2n).

Finally, the 2n — 2 — i-th factor of I;(2n — 2 — i) is equal to
the 2n — 1 — i-th factor of I1;+1(2n — 1 — ) and the 2n — 1 — -
th factor of I;(2n — 2 — i) is equal to the 2n — 2 — i-th factor of
IT;+1(2n—1—1). Hence, I;(2n—2—i) = —I1;11(2n—1—1). Since
further we have V; 2,2 = Vit12n—1—; = 1, it follows that the
2n — 2 — i-th summand of I;(zp,(1), - - -, Zp,(n))is equal to minus
one times the 2n — 1 — i-th summand of I1;11(z1,...,x,).
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Alltogether we proved the first statement.

Now we prove 2):
The k-th summand of Ky »—it1(Tp,(1),- -, Tp,(n)) s equal to

Vi—it1,k

-Cn(k:)<Pi(an(n—i+1,1)),...,Pi(an(n—i—i-l,n—l)),
Pi(a;f(n—z’—l—l,l)),...,B(ai{(n—i—i—l,n—l))).
We set

In—iv1(k)

:Cn(k)(B (ap,(n—i+1,1)),.... P (a,(n—i+1,n—1)),
a(am_iﬂ,l)),...,pi(am—iﬂ,n_l))).

From Lemma 4.15 follows that for j € {1,...,2(n — 1)} \ {4,7 +
1,m—i,n—141i,n+i} the j-th argument of I,,_;+1(j) is given
by a,(n—i,j)ifj<n—landal(n—i,j—n+1)ifj>n—1.
Further the i-th argument is given by a,, (n —,i+1), the i+ 1-th
by a,, (n —1,1), the n —i-th by —a,, (n —i,n —14), the n — 1+ i-th
by a;f (n—1,i+1), the n+i-th by a;} (n—1,4) and the 2n—1—i-th
by at(n —i,n —1).

On the other hand, the [-th summand of K, ,—i(z1,...,xy)
is given by

Vn—i,l{n(l) (CL;(TL — 1, ]-)7 s 70’; (n —i,n— 1)5

a:[(n—i,l),...,af{(n—i,n—1)>.
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We set
i) = 6u0) (4 (0= 81— i = ),

at(n—i,1),... a*(n—z’,n—l)).

The n — i-th factor of I,,_;y1(n — i) is given by
cos (—ay, (n —i,n — 1)) = cos (a, (n —i,n — 1)) .

Hence I,,—iy1(n — 1) = II,_;(n —i). Because we further have

Vi—ivin—i = —1 and V,—; ,—; = 1, the n — i-th summand of
Knn—i+1(Zp,(1)s - - - Tp,(n)) is equal to minus one times the n —i-
th summand of K, p—i(x1,...,2n).

For k,l € {1,...,2(n — 1)} \ {n — i}, the n — i-th factor of
I, _iv1(k) is given by sin (—a,, (n —i,n — 1))

= —sin (a,, (n — i,n — 7)), which is equal to minus one times the
n — i-th factor of I1,,_;(1).

Let k € {1,....2(n — D} \{i,i +1L,n—i,n —1+i,n+i}.
Then we have I,,_;+1(k) = —II,—;(k). Since for k < n — i
we have V11 = Vp—ix = —1 and for £ > n — 7 we have
Vi—ivik = Vn—ir = 1, we deduce that the k-th summand of
Knn—iv1(Tp,(1);- - Tp(n)) is equal to minus one times the k-th
summand of K, p—i(21,...,2).

The i-th factor of I,—;41(7) is equal to the i + 1-th factor of
IT,_;(i+1) and the i+ 1-th factor of I,,_;1+1(7) is equal to the i-th
factor of I'T,—;(i+1). Hence I,,_;11(i) = —I1,—;(i+1). Since we
further have V;,_ij11; = Vh—iit1 = —1 (note that i+1 < n—1) it

follows that the i-th summand of
Knn—is1(Tp,(1);- -+ Tp,(n)) is equal to minus one times the i+ 1-
th summand of K, p—i(x1,...,2p).

Finally, the n — 1 + i-th factor of I,,_;411(n — 1 4 4) is equal
to the n + i-th factor of I1,_;(n + ¢) and the n + i-th factor of
I—iy1(n—141) is equal to the n—1+i-th factor of I1,,_;(n+1).
Hence, I,,_iy1(n —1+1i) = —1I,,_;(n + 7). Since we further get
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Vn7i+1,n71+i = ani,n+i = 1, it follows that the n — 1 + i-th
summand of Ky ,—i+1(Tp,1),---,Tp,mn)) is equal to minus one
times the n + i-th summand of Ky, ,,—i(21,...,2p).

Hence, also the second statement is proved.
O

Lemma 4.17 We have

1. Kpa (Ln(fl,---afL%J—1)> = Knn (Ln(fl"""SL%J—l)> -
0,

2. Ky (n)41) (Ln(gl, . ,gL%J_l)) — 0, forn odd.

Proof. We start by proving 1).
First we will show that

Ky (Ln(glv--'aqgj—l)) =0.
We have

Kn71(13'1,...,$n)
2(n—1)

== I/Lkgn(k)(ag(l,l),...,a;(1,n—1),
k=1

af (1,1),....at(1,n— 1))

2(n—1)

= 3 Gk (a;u, 1),...,a;(L,n—1),

k=1
ar(1,1),...,at(1,n— 1)).

n

In the last line we used Vi, = 1, since k£ > 1. Further we get

at(1,7) = z1 £ xj41
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for j € {1,...,n — 1}. It follows, that for even n

ay (1, 5) (Ln (51, - 75@—1))

is equal to
T %arccos(—@) ,for 1< <5 -1,
2 Tarccos (/&—jo1) , for 2<j<n-—1
and for odd n
(li:(l,]) (Ln (517 v 75\_%j—1)>
is equal to
%arccos (—V&) ,for 1 <5< [3] -1,
g:t % ; for Jj= L%Ja
%arccos (,/ﬁngJ_]) yfor [§]+1<j<n—1

Now we will show that the j-th and the j +n — 1-th summand of
K1 (Ln (51, . ’éL%J—1)> cancel each other, for j € {1,...,n—
1}.

First we assume n to be even.
Then, the j-th summand of

Kya (Ln (51, ... ’éL%J—1)> has the following properties:
The j-th factor is given by

cos (%—%arccos (—\/{j)) , forlﬁjg%_l,
cos(g—%arccos(m» yfor 3 <j<n—1

and the j + n — 1-th factor is given by

sin(%+%arccos (—\/57)) , forlgjgg—l,
sin (% + %arccos («/fn—j—l)) ,for g <j<n—-1
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On the other hand, the j + n — 1-th summand of
Ky (Ln (51, e angJ—l)) has the following properties:

The j-th factor is given by
sm( %arccos(—\/?j)) yfor 1< <5 -1,
sin( — 5 arccos (\/ﬁn_j_l)) ,for § <j<n-—1

and the j + n — 1-th factor is given by

B} w\ti
—

cos (g—i—%arccos (-V&)) yfor 1< <8 -1,
cos (g + %arccos (\/fn,j,l)) , for 3 <j<n-—1

We see that for both 1 < j < %—land%Sjgn—lthe
j-th factor of the j-th summand is equal to minus one times
the j +n — 1-th factor of the j + n — 1-th summand and that
the j + n — 1-th factor of the j-th summand is equal to the
j-th factor of the j + n — 1-th summand. Since further, for
ke {l,....2(n— 1} \ {j,7 + n — 1}, the k-th factor of the
j-th summand coincides with the k-th factor of the j +n — 1-th
summand, it follows that the j-th and the j+n — 1-th summands
cancel each other.

Now we assume n to be odd.
Then, the j-th summand of K, ; <Ln (51, e ,ng_l)) has the
following properties:
The j-th factor is given by

cos (% — 3 arccos (—/§;)) ,for 1 <5< [5] -1,
cos (%) , for j = L§J7

cos (5 - povecos ((feag ) ) or 31411
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and the j + n — 1-th factor is given by

T+ Larccos (—/§5)) yfor 1 <5< [3] -1,
7) 9 fOI‘j: I_%Ja

4
sin (g + 3 arccos (, /§2LZJ—J'>> yfor [§]+1<j<n—1

On the other hand, the j +n — 1-th summand of

K1 (Ln (51, . ’§L%J*1)> has the following properties:
The j-th factor is given by

sin (Z — % arccos (—/¢;)) , for 1 <j<[3] -1,
sin (%) , for j = L%J,

sin (g — %arccos (, /§2LZJ—j>> yfor [§]+1<j<n—1

and the j + n — 1-th factor is given by

sin

cos (Z + 5 arccos (—/§;)) , for 1 <5< [5] -1,
cos (%ﬂ) , for j = [5],

cos <’2T—|—%arccos (\/@)) yfor [3]+1<j<n—-1

We see that also in this case for all j € {1,...,n—1} the j-th fac-
tor of the j-th summand is equal to minus one times the j+mn—1-
th factor of the j+mn—1-th summand and that the j+n—1-th fac-
tor of the j-th summand is equal to the j-th factor of the j+n—1-
th summand. Since further, for k € {1,...,2(n—1)}\{j, j+n—1},
the k-th factor of the j-th summand coincides with the k-th fac-
tor of the j +n — 1-th summand, it follows that the j-th and the
J + n — 1-th summands cancel each other.

Now we will prove that
Ko (Ln(gl, . 75@_1)) —0.
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We have

Kon(@t,..yw) = > Vn,kgn(k)(a;(n,n,...,a;(n,n—1),
k=1

at(n,1),...,a}(n,n — 1))7

1 , for k > n,
Vak =
’ -1 , for k <n.

with

For j € {1,...,n— 1} we get

a,il(n,j) =z £ xy.

It follows, that for even n

ax ) (Lo (610 6211
is equal to

{Zarccos( Véi- 1) , for 1 <5 <3,
<J

2aurccos( En_ J) , for 5 +1

and for odd n

ax(n.9) (Ln (€00 6311))

is equal to
%arccos (—‘/éj_l) , for 1 <j <[5,
1 , for j =[5 +1,
%arccos <1 /fngJ_jH) yfor [§] +2<j<n—1

Now we will show that the j-th and the j +n — 1-th summand of
Kpn (Ln (51, .. ’£L%J—1)) cancel each other, for j € {1,...,n—
1}.
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First we assume n to be even.
Then, the j-th summand of

Kn (Ln (51, e 75ng—1)) has the following properties:
The j-th factor is given by

{cos (% arccos (—\/fj_l)) , for 1 <5 < 3,

cos (%arccos (\/ﬁn,j)) yfor g +1<j<n—-1

and the j + n — 1-th factor is given by

sin (% arccos (—\/fj_l)) ,for1 <5<
sin (% arccos (\/fn_j)) , for g +1<
On the other hand, the j +n — 1-th summand of

Knn (Ln (51, . ’glgj—l)) has the following properties:
The j-th factor is given by

sin (%arccos (—w/fj_l)) , for 1 <j < 3,

sin (%arccos (M{n_j)) yfor g +1<j<n-1
and the j + n — 1-th factor is given by

cos (% arccos (—\/gj,l)) , for 1 <5 < 3,

cos (% arccos (w/fn,j)) yfor g +1<5<n-1

We see that for all j € {1,...,n — 1} the j-th factor of the j-th
summand is equal to the j + n — 1-th factor of the j +n — 1-th
summand and that the j+n — 1-th factor of the j-th summand is
equal to the j-th factor of the j +n — 1-th summand. Since fur-
ther, for k € {1,...,2(n—1)}\{j, j+n—1}, the k-th factor of the
j-th summand coincides with the k-th factor of the j + n — 1-th
summand, it follows that the j-th and the j+mn — 1-th summands

cancel each other because of V,, ; = —1 and V;, j1n—1 = 1.
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Now we assume n to be odd
Then, the j-th summand of K, ,

, Ln (51""’£L%J_1)) has the
following properties:
The j-th factor is given by

arccos (— \/éi) )

»M:\ NI

os (
COS (

, for 1 <j <[5,
forj = (2] +1,

<%arccos< €2L [ ]H)) yfor [B]+2<j<n—1
and the j + n — 1-th factor is given by

sin (l

5 arccos (—+/&-1)) ,for 1 <5< (5],
sin (%) , for j =[5] +1,

sin <% arccos <1 /€2LZJ—J'+1>> yfor [B3]+2<i<n—1
On the other hand, the j +n — 1-th summand of

Knn (Ln (51, . ’£L%J—1)> has the following properties
The j-th factor is given by

sin (

arccos (— \/éi) )

SERS™
SN—

, for 1 <j <[5,
,forj:L%J—i—l

sin <; arccos <1 /§2ngj+1>> yfor [§]+2<j<n—1.
and the j + n — 1-th factor is given by
cos (% arccos (—+/&-1)) , for 1 <5 <[5,
cos (%) , for j= 5] +1

cos (% arccos (W)) yfor [§]+2<j<n—1

We see that also in this case for all j € {1,...,n — 1} the j-th
factor of the j-th summand is equal to the j + n — 1-th factor

sin (
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of the j +n — 1-th summand and that the j + n — 1-th factor of
the j-th summand is equal to the j-th factor of the j +n — 1-th
summand. Since further, for k € {1,...,2(n—1)}\{j,j+n—1},
the k-th factor of the j-th summand coincides with the k-th fac-
tor of the j +n — 1-th summand, it follows that the j-th and the
J +n — 1-th summands cancel each other because of V;, ; = —1
and V;, jyn—1 = 1.

Alltogether we proved 1).

To prove 2), we assume n to be odd. We have

aﬂf (LSJ —i—l,j) (X1, ., Tp)

_ xjixL%J+1 , for j < L%J + 1,
xL%J+1ixj+1 7fOI‘ L%J—f‘léjén—l

It follows that

o (3] 1) (b o)

is equal to
$arccos (—/&_1) £ % , for j < [3]+1,

= %arccos (, /§2LZJ—j> yfor [§] +1<j<n—1

To show that

Ky 241 (Ln (51, e 75@71))

vanishes, it is enough to show that the following summands of
this expression cancel each other:

a) the first with the 2(n — 1)-th

b) the n — 1-th with the n-th
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c) for2<j < "T_l, the j-th with the n — j-th

d) for n+1<j < 3(n— 1), the j-th with the 3n — j — 2-th

To show a) we first remark that Vizjpia = -1 and Vizj4in =
1. The first summand has the following properties:
The first factor is given by
(%)
cos [ —
4

and the 2(n — 1)-th factor is given by

ﬂn(%).

On the other hand, the 2(n — 1)-th summand has the following
properties:
The first factor is given by

i (})

and the 2(n — 1)-th factor by

w(3)

Hence, the first factor of the first summand is equal to the 2(n —
1)-th factor of the 2(n—1)-th summand and the 2(n—1)-th factor
of the first summand is equal to the first factor of the 2(n —1)-th
summand. Further, for k € {1,...,2(n — 1)} \ {1,2(n — 1)} the
k-th factor of the first summand coincides with the k-th factor
of the 2(n — 1)-th summand. Statement a) follows.

To show b), we first note that VL%Jan*l = VL%JJrl,n = 1.
The n — 1-th summand has the following properties:
The n — 1-th factor is given by

cos (5 L areces (V) ) = con (7)
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and the n-th factor is given by

sin <; arccos (—\/f»o) + Z) = sin <?Zr> = sin (2) :

The n-th summand has the following properties:
The n — 1-th factor is given by

()

and the n-th factor by

cos (°F ) == eos (5).

Hence. the n — 1-th factor of the n — 1-th summand is equal to
minus one times the n-th factor of the n-th summand and the n-
th factor of the n — 1-th summand is equal to the n — 1-th factor
of the n-th summand. For k € {1,...,2(n — 1)} \ {n — 1,n},
the k-th factor of the n — 1-th summand coincides with the k-th
factor of the n-th summand. This implies b).

To show ¢) we assume that 2 < j < ”771 In this case we have
VL% J+1,j = —1 and because of the inequality
. n—1 n n 1 VLJ 41
n— n———=—+4-=|—=
)= 2 ~2 T2 lal T

it follows VL%J+17n_j =1.
The j-th summand has the following properties:
The j-th factor is given by

COSs <; arccos <_\/é:) - Z)

and the n — j-th factor by

sin (Z — %arceos (M)) .
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Further, the n — j-th summand has the following properties:
Using the fact that arccos(—z) = 7 — arccos(x), we deduce that
the j-th factor is given by

sin (; arccos <—\/fj7_1> - Z)
= sin <Z - %arccos (@))
= sin (Z — %arccos (M)) )

where we used for the last equality that 2|5 | —n+j =j — 1.
Applying the same arguments, it follows that the n — j-th factor

is given by
T 1
cos <4 —3 arccos <, /§2L’§J—n+ﬂ')>
1 m
= cos (2 arccos <—\/£j,1> — 4) .

As we can see, the j-th factor of the j-th summand is equal to the
n — j-th factor of the n — j-th summand and the n — j-th factor
of the j-th summand is equal to the j-th factor of the n — j-th
summand. Since for k € {1,...,2(n — 1)} \ {j,n — j} the k-th
factor of the j-th summand coincides with the k-th factor of the
n — j-th summand, statement c) follows.

For proving d), we assume that n+1 < j < 3(n—1). In this
case we have Vin 1y ; = V|n413, j o =1 The j-th summand
has the following properties:
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The j-th factor is given by
1
cos <2 arccos (—\/fj,n) + Z)
1
= cos <—2 arccos (\/fj_n> + 3;)
1
= cos (2 arccos (ij—n) — :Zr)
1 s
= — cos <2 arccos (\/gj,n> + 4>
and the 3n — j — 2-th factor by
. T 1
sin <4 + 5 Arecos (\/§j_n>> .

On the other hand, the 3n — 7 — 2-th summand has the following
properties: The j-th factor is given by

1
sin <2 arccos <—\/£j_n> + Z)
1 3
= sin (—2 arccos (M) + I)
1 3
= —sin (2 arccos (@) — I)
. T 1
= sin <4 + 3 arccos <\/§j_n)>
and the 3n — j — 2-th factor is given by
™ 1
cos <4 + 3 arccos <\/§j_n>> .

Hence, the j-th factor of the j-th summand is equal to minus one
times the 3n — j — 2-th factor of the 3n — j — 2-th summand and
the 3n — j — 2-th factor of the j-th summand is equal to the j-th
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factor of the 3n — j — 2-th summand. Since further, we have that
for k € {1,...,2(n — 1)} \ {j,3n — j — 2} the k-th factor of the
j-th summand coincides with the k-th factor of the 3n — j — 2-th
summand, statement d) follows.

The statements a), b), ¢) and d) imply 2).

Definition 4.18 For 1 <i< |%| —1 let

Fm) €)= 3 (~)F(=3+2n—4k)e 7 a1 (0 1 an(o)),

k

ag (§) = Y (=18, (),

m=0
where Sy, (&) is the m-th elementary symmetric polynomial in the
variables &1, . .. ’gLEJ—l' Further, we set
2

and

Remark 4.19 For2<i< L%J — 1 we have the relation

Fz(n)(gh "7£L%J_1)

) gi—l ) gl 5.
~
i—1—th i—th

:Fi_l(n)(fl,..., \éi-/ 7$7".7§L%J_1)'

i—1—th i—th
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Proposition 4.20 We have

-1

on—2 V1I-&F(n) (€ , forn even,
-1

W\/EHFKTL) (&) , forn odd.

Before we give the proof of this proposition, we state some needed
intermediate results:
In the following we will denote by

(k) (Ln (€))

Kn 2 (Ln(g)) = {

the function

Ca(k) (ay, (3,1), ..y ay, (i,n — 1), 0 (3,1) ..t (i,n — 1))
evaluated at Ly, (£).

Lemma 4.21 For n > 6 we have

6o(0) (L (€)) = Cao(0) (L2 () § (&1~ €151

Proof. For arbitrary n > 6 we get

¢n(0) (L (£))
= Cu2(0) ( Ly <§1: bos 7§L”T*2J*1))
sin ((Ln(»:))z - <Ln<£>>L%J)
it ((En©)2 ~ (Eal&)ci3 1)
sin ((Ln(ﬁ))z + (Ln(é“))L%J)
sin ((Ln(g))Q + (Ln(é))n—L%JH)



Lemma 4.22 Letn > 4. Then

\/a(glj;&) 1:12 (61 —=&) , forn even,
n(0) (Ln (£)) = o

a-g 'Y

9. 4211 g (&1—&) , forn odd.

Further, we have
1. G(0) (L2()) =1,
1

2. 3(0) (L3()) = 1

Proof. The statement for dimension n € {2,3} follows from di-
rect computation. We prove the statement for n > 4 inductively:

By direct computation we obtain

GO) (L () = YL (1 - &),
G0) (L5 (6) = 5 (1- &).

First we consider the case where n is odd. Since we want to
consider only odd dimensions first, we assume the statement to
be true for n and want to deduce that it is then also true for
n+ 2.

Using the previous lemma, we get

Cng2(0) (Ln+2 (517 cos 7§L%J—1))
= 0 (L () (6~ €13)).

70



Using the induction assumption, it follows that the term above

is equal to
& (1-&) i |
W (51—5L%J) H (&1 — &)
1=2

3)
_Ga(1-&) s
= LE-9.

Noting that L"—HJ —-1= LfJ we have shown that the statement

of the lemma is also true for n + 2.

Now, we consider the case n even. As in the case before, using

the previous lemma yields

Gur2(0) (Ensz (€1 €z 1))

= u(0) (L (€)) i (6 -m1)-

Using the induction assumption, we see that this is equal to

511
VA8 (6 -gy) TT @ -
=2

f
- 4LJ Hg_gla

which shows that the statement is also true for n + 2.

Lemma 4.23 Let n be odd and & # 0. Then
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() o
3]
:m Il @-¢ (1+m>’
. 2 1=2
2) G+ 2] 1) L)
3]
= I @9 (Vita 1),
. 2 1=2
Proof. We have
6 (|5]) @)
= (0 (0) (Ly, (€)) cot (; arccos (—\/5> B D
VI-VE V1t W

= (0) (Ly, (€))

VI+ VG —1-
Using the previous lemma, we see that this is equal to

60_6) VI VE+VIEVE ] g )

24J1\/1+\F V1-Vea Va5
l3]-1

VRIS (1 ima) [T @ 6.

1
24|_J i=2

Further, we get
G (n+ 5] 1) 2a©)
= ¢, (0) (L, (€)) cot (; arccos (_\/{1) * D

vi—& -1

=(pn (0) (Ln (5)) \/g
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Again, using the previous lemma, we obtain that this is equal to
YEU-8) (=g 1) ]] @-e
Qj_l 1 1 1)

2412 i=2

which concludes the proof.

Corollary 4.24 Letn be odd and & # 0. Then
D G ([3]) E©)
= = (14 VI=6) G 0) (20 ©)

2) Gu(n+|5] 1) (Lal©)
1

= = (VT -1 GO @),

A motivation for the following definition is given by Lemma
4.51 in the appendix.

Definition 4.25 We set for &1 # 0

) Fonnn= -yl

) o <m ) (V)
o 5, ST (67 )
9 f_<ﬁ F >< el )
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(vi=s- F)(f 1)

Remark 4.26 Summation yields

5) J—"s,s,s,c =

fC,S,S,S + fS,C,S,S + ]:s,s,c,s + f57575’c =2 \V/ 1-— gl

For the proof of Proposition 4.20 we will make use of the fol-
lowing well-known facts for elementary symmetric polynomials.

Lemma 4.27 For 0 <i <m, let Si(z1,...,xm) be the i-th ele-

mentary symmetric polynomial in the variables x1, ..., xy. Then
Sl'(l‘l, ey Qj‘m) :Si(:cl, R A R o H I ,l‘m)
+ xS (w1, 1, T, T

Further, the equality

m

m
H(a:—x] Z DESk(z1, .. zp) 2™k

j=1 k=0

s valid.

Using this preperation, we can now give the proof of Proposition
4.20.

Proof of Proposition 4.20. We prove this statement by induc-
tion.
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A direct calcuation gives

Ko (L2()) = 0= —/1-&F1(2)()
Ko (L50) = 0= 5 VGV~ GR(3)0)

Kz (La(&1)) = —1\/751(561 1)
:_7\/7511?1

K52 (Ls(81)) Z—*\f\/ifl (7€ = 3)
=—§\F\/7§1F1

First, we prove the claim for odd n, where n > 5: We get

Kui12 (Ln+1 (fl ----- §L nt1 Jq))
= i%,k@ﬁl ( ( e >)
k

k=1
+Vi 350 ([ 3)) (Lnﬂ (6o 0))
Vg (] #1) (s (6082 1))
+ n+Li:J l Vi kCnt1 (k) (Ln+1 (51 ftij_l))

g2
Vi G (4 [5]) (B (60002 0)
Vi eaonn (04 [5] +1) (Lo (8108200
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+ Zn: VikCnt1(k) (LHH (51’ e ’q%J—l))

L%J*l
—]:ssss Z VszCn )( n(g))

k=1
+ Feys,s8 Gn (0) (L (£))
+ Fsess Gn (0) (Ln (£))
n+|2|-2
+ Fasns S VikGa(k) (L ()
k=|%|+1
+ Fasies Gn (0) (Ln (£))
+ Fss.5c Cn(o) (Ln (£))
)

|3

(n—1

Fs,5,5,5 VikGn(k) (L (£))
k=n+| 2]
= Fss,s5 Kn2 (Ln (§))
— Fossis (6] 0) (Lo () + o 2] -1 (0) (L 9)))
+ (Fessis T Fsesis T Fsses + Fssse) o (0) (Ln (§))

Sy
§1—&|n
v (€3 O @)+ G2 O 10 )
+2y/T=& G0 (0) (La (€))
S
= 2\/5 Kn,Q (Ln (f))
<§1 +§L%J> (I-&)VI-& ]

+

9.413]1 o =%
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= 61 _ ﬂgj Kn,2 (Ln (f))

2V&

(51 +§L%J> (1-&)V1I-&
9. 4151

+
[3)-2

=0
S

- 2\/5 n,2( n(f))
+§1(1—§1)\/1—§1

2n—2
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k=0

(—1)]€€1L%J_lC (Sk (52,---,§ng,1>

+ &15k-1 (527 e ’§L§J4> ))

Jl

(

5l
2

[53]-2

k=0

vI=&
1 ((1_51)

n—

(—1)k (—’I’L + Qk') fltgji2ik (Sk (fg, - ,é{

+&15k-1 (52’ e ’§L%J*1> ))
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+ (—1)F (=3 + 2n — 4k) £L5]-17kg, (¢

k=0
5]-1 | k—2
+2 (—1)*¢ F 1-&) ) (-nFmgf2ms, (6))
k=0 m=0
44
= 27\/?1Kn2 (Ln (£))
Vi—a
2n—2
|3]-1 5] k—1
( ; (—1)ker? Z_j()( DM (1 — &) ebTTms,, (€)
LI
+ ) (DR S (f))
k=0
ppvi—a
B 2n—1
3]t s
( > (DR (=20 +4(k + 1)) &2 Sk—1 (&)
k=0
[5]-1 L |1k
+ (—) (=3 +2n —4k) & Sk (€)
k=0
31 )
+2 (—D’“&FJ_k ( (1-&)
k=0

k-2
: Z (—1)Fmmer27mG,, (€) + Sk—1 (€) ))
m=0

S a9
NGl
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[5]-1 . k—1
+9 Z (_Dkgl\_ij —k < Z (—1)k_1_m§]1€_1_msm—1 (©)

m=0

k
+ ) (=DFTET S, <f)>
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H
51 31k
( (D} (=342 =4k & (Sima () + Sk ()
k=0
[3]-1 =
v2 Y (et <Z<—1>’”mgf—1—msm_1 (©)
k=0 m=0

(—1)* (=3 + 2n — ak)el 2 <sk_1 (€) + Sk (€) )

m=0

0
5]-1 s
+2 Z (_1)19 I\_EJ_ < Z(_l)k—l—mgllc—l—m <Sm (f)

+ Z (_1>kimff_m (Sm (f) + fth Sm—1 (5)))
+ (-l (=s3+2m+1) -4 7))
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A
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—
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—
|3

J)

+(—)ls] (—3+2(n+ 1) —4 L%J)
[5]-1 . 2 ]-1-m
Z ( 1)L5J717m§ 2 Sim (fl, ,anJ)>
m=0
46
2\/5—1 Kn?(Ln<£))
|-1
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IENE (—3+2(n+ 1)—4 gJ) e (51""’£LZJ)>

Now, using the easily verifiable fact that

() o)
»
—%1@Hﬂu@—L”<%1@Hﬂu@—&1@wsma>

&1
we see that the above expression is equal to
Vi—a
n—1
1

el »
- (—1)F (=34 2(n+ 1) — dk)eL T 17+ (
k=0

akl@h~vﬂ@19+ﬂk@h~wﬂ@wﬂ>v

which is equal to

—1
F\/l —lel(n—i- 1) (él""’gt%ﬂjfl) .

On the other hand, we get for even n the following, where we
assume n > 6 and note that L”T‘HJ = L%J = %:

Kni12 (Ln+1 (51, cees 5L"T“J _1))
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= Kny12 (Lng1 (§))

2n
= Z ‘/é,kcn+1(k) (LTL+1 (5))
k=1

[5]-1
= Z Va kCnt1(E) (Ln1 (§))
)

Gl 5 ) Enr (©))

nt|5]-1

+ Z Vo Cn+1(k) (Ln1 (§))

= sin ((La(§)2 — 7 ) sin (La(©)2+ )
[3)-1 wt 3]
( Z VQkCn(k) (Ln (é))"" Z VQkCn(k_ 1) (Ln (f))"ﬁ‘

1 L5
2n
S VarGalk —2) (L <§>>>

k=n+|2]+1

+ n(0) (Ln (£))

s

: (cos ((Zn©))2 = ) sin (La(€)2+ )

+sin ((Ln(g))z - %) cos ((Ln(ﬁ))z + g) )
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e (lin nt|3)-2
= 71 < Z VQ,kCn(k) (Ln (5)) =+ Z ‘/2,k+1<n(k7) (Ln (5))
k=1 k=[5
2n—2
+ Z ‘/2,k+2Cn(k;) (Ln (5))) + \V 1- £1Cn(0) (Ln (E))
k=n+|%2]-1
= YK (L () + VI = 6u(0) (L ()
— 31
= YR (L () + Y iﬁﬁl —U T @-o
2 i=2
= YO (L (6)
L VIZGVE(A-&)
2n—2
LI
’ Z (71)kf1 ? Sk <§2 ,fL%J_l)
k=0
= \/QTKnQ (Ln (f))
+ 12]512“5((1 &)
13)-2
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_@(_1)\/—7F
mw Z

2n2

k£1 k<ak1 (&) + ay (§)>

_ W(pm ©
B s
+2 Z (ax—1 (§) + ax (5)))

Y Vi
on— T on—1

5] )
- ( S (DF (34 20— k)l (ak_l () + a <5))

k=0
[5]-1 N
+2 ) (—1)’1%‘15J_1_’C (ak—1 (&) + ax (5)))
—0

k=
_VEVITE

oan— 1
l5]-1 .

(—1)F (=34 2(n+ 1) — 4k) gL FITF <ak_1 (€) + a (6) >
=0

_VEVITE

2n1

ol

#Jl

Z —342(n+1) — 4k) 61“;1“]{(

ap_1 (&1, ... §LL+1J71)+0«I¢ (51"“’§L"21J1>)

= LPA R (6t )
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= oz (Luvr (608 ) 1))
0

Now, the goal is to prove Proposition 4.33, which expands the
result of the previous proposition to the remaining components
of the considered gradient. One key of the proof of Proposition
4.33 is given by Lemma 4.32. In the following, we give some
preliminary results that finally lead to the proof of Lemma 4.32.

D G o2 O) (B (6100 €2 1))
g0 (1 (o)) (66 )

) G 2322 (0) (B (610 . =20))

1301 (o (&2 0))

(gl—gtuj_l), for even n,

D) Gz 22 ]5200) (Bnve (6006 g2 1))

=G 142(0) (Ln (€20 1€ ms2) 1))

. % ({1 — gt%ﬂjil) ,  for odd n.

Proof. For n > 4 we have
Gura 2] O) (LS00 € g2 1))
I CACRRCT)
sin (g anceos (~ /&) — gareeos (- €z )
sin (ganceos (. f6 e ) - gareeos (V&) )
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sin (; arccos (~/&7) + & arccos <_m))
i Bavecos (- 6z 1) + S avcos (V1))
= Gulg) O (L (60 a2 1)) 3 (- gy )

For even n with n > 4 we get

v o2 (0) (Bnsz (6100 € g2 )

arccos < ftngzj_l) + %arecos <\/§71>>
= ol (B (o) )) 1 (6= g2y )-

An analogous calculation for odd n yields the third statement of
the lemma.
O



Lemma 4.29 Letn > 4. Then

1) G| 2](0) (L (€))

Ea gt (1= €psy) L8
_ zlﬂgJ—l : 41 (§Z - fth,l) , N even,
B Einy 4 1=&n L%JfZ
RISt ) [T (5-5g) oo
2) Go[2]4+1(0) (Ln (€)
€y (1= €y) L
B ;LSJ—l : (51 - 5L%j—1) , n even,

Further, we have
1. (2,1(0) (L2()) = 1,
2. (2,2(0) (L2()) = 1,

3. G3a(0) (Ls0) = 5,
b Gaal0) (La0) = 5

Proof. The statements for the dimensions n = 2 and n = 3 fol-
low from direct computation. The statements for n > 4 we prove
inductively:

Statement 1)
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Let n be even. By direct computation we obtain

3

Ga2(0) (L4 (&1)) = == (1 = &)

We assume the first statement of the lemma to be true for n,
where n > 4, and we will show that it is also true for n+ 2. From
the previous lemma follows

G 232) O) (B (6100 €2y 1))
= o310 (B (60 €2 1)) (6 a2 )

which is the first statement of the lemma for n + 2 in the case
that n is even.

Now, let n be odd. By direct computation we obtain

&1

G5,2(0) (L5 (&1)) = 7 (1 = &)

We assume the first statement of the lemma to be true for n,
where n > 5, and the induction step n — n + 2 follows from the
previous lemma by an analogous argument.

Statement 2)
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Let n be even. By direct computation we obtain

Gal0) (L&) = Y (- €0).

We assume the second statement of the lemma to be true for n,
where n > 4, and we will show that it is also true for n+2. From
the previous lemma follows

A TR I CREICIRCEE)
= G311 O (Ln (&0 613101)) § (60— Eosz )

=522
[T (6-gum) g (6 )).

which is the second statement of the lemma for n + 2.
Statement 3)

Let n be odd. Direct computation yields

&
G5.4(0) (L5 (€1)) = 577 (1 = &)
The induction step n — n+2 follows from the previous lemma by
an analogous argument as in the proof of the first two statements.

g
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Corollary 4.30 Let n > 4. Then

Cn,LgJH(O) (Ln (&) , forn even,
Cn,LgJ (0) (Ln (§)) =
Cn,l_%J-}-Q(O) (L (8)) , forn odd.

Lemma 4.31 Let 1 <i<nandl1 <j<n-—1.

1) For even n we get aX(i,j) (Ln (51 ----- ELEJ_l))

2
1 1
3 arccos (—\/ﬁj_1> + 3 arccos (—\/&_1) ,
for1<j<i<|z],
1 1
3 arccos (—\/ﬁj_1> + 3 arccos (\/fn—z‘) ,
for1<i<|3]<izn,
1 1
3 arccos (an—j) + 3 arccos (an—i) ,
n . .
for {§J <j<i<n,
1 1
5 arceos (—\/ﬁi_l) + 5 arceos <—\/§>j) ,
fori<i<j<|z|-1,
1 1
> arccos (—\/@;1) + 3 arccos («/ﬁn,j,l
for1<i< [gJ <j<n-—1,

%arccos (\/&Z) + %aTCCOS (@) )

for [gJ<i§j§n—1.

2) For odd n we get af(i,j) (Ln (fl ----- §LgJ_1)>

[\)

N——

i
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Proof:

r%arccos (—\/fjio }arccos < \/éi) 5

for1<j<i< LgJ—i_l’
%arccos (—\/@7_1> =+ éarccos (\/gni—z) )

for1<j< L2J+1<z<n
%arccos (@) + %arccos (\/&j) )

for [ J+1<]<Z<”
%arccos (—\/&j) + %MCCOS <_\/§) ’

for1<i<j< \\gJa
5 arccos (—v/E1) & g arceos (V& 1)

for1<i< [2J+1<J<n*17
%arccos (\/ﬁni_z) + %arccos <m> ’

for{ J+1<z<]<n_1

Follows directly from the definition of a;f (i, j) and L.
O

Lemma 4.32 Let L,(§) € L. For even n we have

Koy (Bn (600 600)
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and for odd n we have

Koz (B (60€50))
e AT CACISRC YY) )
Proof: We have the following:
1. Case: 1 <k<n-—1,n even:

(a) Case: 1 <k < [5]:
It follows n —1 > n — k > | §]. The previous lemma

yields
a (|5] k) (La©)
%arccos (4 fr1<k<|t],
—garecos () fork=|2],
with
Ai=1-23)4
and
@ (|5] +1.0—%) a©)
—garccos(A)  forn—12n—k> 2],

—% arccos (A) , forn—k= {gJ .
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This implies

cot (a; (LgJ k> (Ln(é)))

1

Viz 41—k = {

—1

n
Cfor 1<k H
orl1 <k< 5

,fork:gJ,

forn—1>n—-%k> {—

forn—k= LgJ

n
Cfor 1<k L*J
or ~ < 9

,fork::{gj,

, for [gJ <n—-k<n-1,

,forn—k:[gJ.

Hence, together with Corollary 4.30 we get

me

n—1

k) (Ln(8))

n
2

|,



(b) Case: |5 <k<n-1
We get 1 <n —k < |§]. The previous lemma yields

n

an (5] ) La@)
= 1 (anccos (g ) v (VB i)

= —% arccos (B)

with
B:=—/én—k-1§2]-1+ \/mm
and

a (gJ +1,n— k:) (Ln(£))
-2 <arccos (~vE ) - arCCOS( ¢ V;J1>)
_ %arccos (B).

This implies

cot (az (| 2] %) (La(©)) = =/ 122,

cot (a; (L%J +1,n— k) (Ln(f))) = %

Further, we have

Mgle =t

VL%J ek = L
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Corollary 4.30 implies

== 22 Vz)erala 2] (B) Ln(8) -

k=1

%
2. Case: n <k <2(n-—1), neven:

(c) Case 1<k—n+1<|2]:
We get | 5] <2n—k—1<n—1. The previous lemma

yields
ar ([5] k=n+1) L)
) ﬂ—%arccos(C) Jori<k-n+i< |,
S fork—n+1=|Z]|.
with

Ci=/Ek—ng|z)-1 — V1= &eony /1 - SEIS

and

ar (gJ Y120k — 1) (Ln(€))

1
§arccos(C) ,forn—1>2n—k—1

: - 3]

,f0r2n—k:—1:[%J.

2ol 3
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This implies

cot (CLTJLr (L%J Jk—mn+ 1) (Ln(ﬁ))> =\ 1=¢

cot (a,t ([gJ Y12 — k- 1) (Ln(g))> -\ 1
Further, we have

VL J,k—n+1 =1,

%
VLgJH,zn—k—l =1

We deduce
[)+n-1

D Vi aGa sz (R) (Lal©)
k=n

2(n—1)

= — Z VL%J+L’“C"’L%J +1(k) (Ln(g)) :

k=| % |+n—1
(d) Case |3| <k—-n+1<n-1
Wegetl <2n—k—-1< L%J The previous lemma
yields
+ (2] g =
af (5] k=n+1) (La©)
1
=3 (arccos <— L3J1> + arccos (—\/ﬁgn,k,2> )
1
= —arccos (D)
2
with

D=\ /Sn-k-2§zj-1+ V1= 2/l =&z
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and

ar ([%J Y120 — k- 1) (Ln(€))

- ;<arCCOS (—M> +arccos ( gLZJ_l) )

1
=7 — —arccos (D) .

This implies
o o (3] k1) aat9) =/ 55,

cot (a; Q%J Y120 — k- 1) (Ln(g))) — %.

Further, we have
g hner =h

VLgJ +1,2n—k—1 — —-L

It follows

2(n—1)
> Via sz ) (La()
k=13 n
5] 4n2

= 2 Vgl g ®) En(©).
k=n

Alltogether, we showed the first statement of the lemma.

The following cases will prove the second statement of

the lemma in a similar way:
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3. Case: 1 <k<n-—1,n odd:

(e) Case: 1 <k <[5
It follows n —1 > n —k > [§] + 1. The previous
lemma yields

ar (|5] k) Lal©)

1 n
<
2arccos(.A) , for 1 <k < bJ,

%arccos (/1) , for k= LgJ ,

with

A= (e g) bz \/1—€fgj_1\/1 —&f)

Further, we get

a (gJ Y20 — k) (Ln(€))

1
—iarccos(.A) ,forn—1>n—k

n
_[QJ-F,

—% arccos (/l) , forn—k = LgJ + 1.
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This implies

cot (a; (LgJ k:) (Ln(é)))

11—:: ,for1§k<{gJ
_ 1i—j: ,fork:LgJ,

cot (a; (LgJ +2,n— k) (Lz(@))

(
— 11_:2 ,form—1>n—k
n
1+ A n
\1T=a ,fornfk:L§J+1.
We have
Vi), = -1 ,for1§k<LgJ,
[5] 1 , for k= L%J,

1 ,forn—lZn—kZL%J—i—Q,
,forn—k::L%Jqu.

(f) Case: 5] +1<k<n-—-1
It follows 1 < n—Fk < |5 |. The previous lemma yields

a (5] ) (Za) = —% arccos(B).

Further, we get

a, (LgJ +2,n— k) (Ln(&)) = %arccos([)’)
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This implies

cot (az (| 2] %) (La(©)) = =/ 122,

cot (a; (L%J +2,n— k) (Ln(f))) = %

We have
Vigje=1
VL%JJrQ,nfk =-1

4. Case: n <k <2(n—1), nodd:

(g) Case: 1<k—n+1<|2]
It follows |5 | +1 < 2n—k—1 <n— 1. The previous
lemma yields

at QgJ k—n+ 1) (Ln(€))

1
W—Qarccos(C) ,f01r1§k;—n+1<[gJ7

n

ﬂ—%arccos(é) ,fork—m+1= LiJ’

with

Cm ez mafl) 1= a1 6y
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Further, we get

n

af (|5] 220k =1) (La€)

1 n
\2 arccos (C) , for LgJ +1

= <2n—k—-1<n-1,

n

1.
N

%arceos((j’) , for 2n—k—1:L

This implies
cot (az Q%J Jk—n+ 1) (Ln(f))>

{ % ,forlSk—n+1<LgJ>

—|——= ,fork—mn+1= {gJ,

cot (a; (LgJ +2,20— k= 1) (La(€)))

1+C n

> =z 1<y —
{ o for {2J+1<2n k—1<n—1,
) Ji+¢ n

T foron—k—1=|2] 41

1 ¢ , for 2n bJ—i—
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We have

-1 ,for1<k-n+1<|%],
VL;J,k_nﬂ:{

1 ,forkz—n—kl:L%J,

1 for |2]+1<2n—k—1
Sn_la

-1 ,for2n—k—1=[%|+1

VL%J+2,2nfk71 =

(h) Case: |5]<k—-n+1<n-1:

It follows 1 < 2n —k —1 < || + 1. The previous

lemma yields
+(|" B 1
n <l2J k—n+ 1) (Ln(£)) = 5 arccos(&),

with
&= 7\/§£J _1§2n—k—2* \/1 - f{gJ_1 \/m

Further, we get

ab ([gJ +2,2n—k — 1) (Lp(§))=m— %arceos(é’)

This implies
cot (az Q%J k—n+ 1
1+

cot (af (|5 +2,2n—k—1) (Ln (g))) =\

We have

(\'3' ™

g bmnia =1
VLgJ +2,2n—k—1 — -1

Alltogether, this implies the second statement.
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Now, we are in the position to prove the following central
proposition.

Proposition 4.33 Let 2 <i < L%J Then

1) Kn,i (Ln (5))

’L

i+1

2n V1= &i—1Fio( , Jor even n,
H—l

2n i ViV = &imaFia ( , for odd n,

((=1)
2’FL

2
\(2711); &1V 1—¢&1Fi—1(&) , for even n.

1 =& 1Fi1 (&) , for even n,

Proof:
1) Lemma 4.16 implies for 2 < i < L%J -1
n,i-i—l(xla s 7:1371)
= Kn,; <$Pi(1)> s TP(i)s TPy (it 1) - - -
-y LP;(n—i)s LPy(n—i+1)s -+ > xl%(n))
=Kpi| T, .., %14, Ti ooy Tngioiy Tpei 4., Tp
i—th 1+i—th n—i—th n+l—i—th

First, let n be even. From Lemma 4.20 follows that the state-
ment is true for ¢ = 2. Now, we assume the claim to be true for
1, where 2 < 1 < L%J — 1, and want to show that it is then also
true for ¢ + 1:
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The consideration above implies

K, (i+1) (Ln (£))

= —Kni [ Ln | &-h & 581408 n )
~— N~ 2
“1ti—th i—th
(_1)(i+1)+1
=02 1-&GFi1 &,y & ,fflﬂ',---,ftgj_l
—1+i—th i—th
( z+1

= 2n ~ on—2 \/ ng
Hence, the claim is true for all 2 <4 < L%J
Now, let n be odd. Since in this case the proof is analogous

to the even case, we omit it here.
2) Let n be even. From Lemma 4.32 follows

Kn,n—Q—l—L%J (LTL (5)) = KT“L%J +1 (Ln (§

~—
~—

where the last equality is a consequence of 1). Hence the state-
ment is true for ¢ = L%J Now, we assume the statement to be
true for 3 < ¢ < LgJ and we will show that it is then also true
for ¢ — 1:

For 2 < j < L%J — 1, the fact that P2 1d{1 )} together with
the second statement of Lemma 4.16 1mphes

_Kmn—j (ij(1)7 <. 7xPj(n)> = Kn,n—j-‘rl (931, <o 71'71) .
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Hence, because of 2 <i —1 < L%J — 1, we have

Kn,nf(ifl)+1 (Ln (£))

0|3
[E—
|
—_

= —Kpn—it1 | Ln | &5 144 5 §—24i 7-~~,§L
e e
—24+1i—th —1+4+i—th
(71)1'—1
= 27172 1 _é.i—QE—l 517"'7£i—17 1—27"'7€L%J,1

~— —~—~
—24+i —141

(-

= oo V1 &Gi2Fi2 (6).

This implies statement 2) for even n.

For odd n an analogous argument, also using Lemma 4.32
and Lemma 4.16, concludes the proof.
O

An immediate consequence of Proposition 4.33 is given by the
following lemma.

Lemma 4.34 Let &, ... ,ZHJ_I with 0 < &, < 1 be a solution
2
of the system of equations given by
, n
Fi(n) <51""’5L%J—1) 0, 1<i< bJ ~ 1
Then B 3 B
Vip, (Ln (& &5 1)) =0,

Proof: This is a direct consequence of Lemma 4.12 together with
Proposition 4.33.
0

We proceed by giving necessary and sufficient conditions for
L, (&) for being a regular point.
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Lemma 4.35 Let1>§1>§2>--->§£

s regular.

|1 > 0. Then Ly, (§)

n
2

Proof: Assume L, (§) is singular. Then
VD, (Ln (5)) =0.
In particular there exist indices i, j with 1 < i < j < n such that
sin ((e; £ €5, Ly, (£))) = 0,
which implies the existence of m € Z with
(ei £ej, Ly (§)) = mm.

Since

0 < (Ln (§)), <

for1 <k <nand % arccos(y/z) is strictly monotonically decreas-
ing, it follows that

ol 3

0< <€i:f:€j,Ln(§)> <.

Hence
(ei €5, Ln (§)) # mm

for all m € Z, which is a contradiction.

Remark 4.36 From the fact that for 1 > & > & > --- >
ftﬂjfl > 0, the inequality
2

0<(e; e, Ln(§))<m

1s valid follows that the set

L= {Ln(g) ‘1>§1>--->§L3J1>0}

s contained in the dominant generalized Weyl chamber W,,.
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Lemma 4.37 If L, (&) is reqular, then 0 < & < 1 and & # &;
fori#£ 7.

Proof. Assume there exist indices ¢ # j such that & = ;. Then
(Ln (f))z-i-l = (Ln (5))j+1 .

For ej11 — ej41 € (Dy)4, we get
(€iv1 —€jy1, Ly (§)) = 0.

In particular,

Ipy(Ln (€)= J] sin(la,La () =0,

a€(Dyn)+

which is a contradiction to Ly, ({) being a regular point.

Now assume &; = 0. Then we get

(Ln (€)1 = %arccos (—\f()) — %
and
(L (€)= 5 awecos (v0) = 7

For e;11 — en—; € (Dy)4 follows

(€it1 — en—i, Ln (§)) =0,

and in the the same way as above, we get a contradiction to
L, (&) being regular.

Finally, assume & = 1. Then
1 T
(Ln (€))i1 = 5 arccos (—ﬁ) =5
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For e; + €41 € (Dy,)+ follows
(e1 4 €ir1, Ln () =,
again, a contradiction to L, (§) being regular.

g

Restricted to the subset £, we alltogether get the following
statement.

Lemma 4.38 Let L, (Z) € L. Then

Fi(n) (E) =0, for1<i< {gJ -1,

if and only if . B
Vip, (Ln (f)) =0.

Proof. One implication follows from Lemma 4.34.

Conversely, let

Vi, (Lu (§) = 0.

i.e.
It follows, that for all 1 <7 <n

Since Lemma 4.10 implies R,, ; (Ln (E)) # 0, we deduce
Kni(Ln (§)) =0, for 1 <i<n.

Now Lemma 4.33, together with the fact that 0 < Ej < 1, implies

Fin) (€) =0, for 1<i< | 2| -1.
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Lemma 4.39 Letl1 <i < L%J —1 andn > 4. Then

Fin) (€)= Amel2 T ST Bne Bl v o),
=1
with
2]
1) A(n) = (14 2n — 4k),
k=1

2) B(n.0)(€) = (1) ( (1+2n-4|3]) 51

|2 ]-1-1
+ > (420 =4k +1) (Si-1 (&) + S (&) )

3) C(n)(€) == (-3 (1+2n—4gJ)5L |20,

n
2

Proof. This can be easily seen.

This motivates the following definition.

Definition 4.40 For real numbers &1, ... ,ELQJA we define the
2

polynomial

Remark 4.41 Forl1<i< L%J — 1 we have the equality

Fi(n) (Elv e ’EL%J—l) = A(n)pg(‘i:i)'
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Lemma 4.42 Let L,(§) € L. Then &4, ... ’EPJ _, are the roots
_ 2
of P if and only if &4, ... ’ELEJ*1 are the roots of Py.
2

Proof. Let &4, ... ,EL |1 be the roots of ]55 Then

n
2

In terms of elementary symmetric polynomials, this can also be
written as

AR NCINCAGEIE
k=0

A comparison of coefficients yields

(—1)"Sk(&) = B(Z’(l:l))(&), for1 <k< LgJ -2, (3)
" C(n) (&)
(—1) LEJ—LS'L%J_I(&) = Aln) (4)

For k£ =1 it follows

_ L§511+2n—4(l—|—1)
142n—-4

In particular, S1(€) is a constant. Further, for 1 < k < L%J -2,
we get from (3) the recursive formula

[5]-1
= — 2 (+2n—4(141))
S N Ty
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and from (4) we deduce
_ _ 1+2n-4]2]
Sin_1(8) =)0 | o(l)—% :
lzj 1 LQJ 2 ZlLflJil(l—l-?n—lll)

This implies for 0 < k < L%J — 1 the formula

[5]-1
Yoo (1+2n—4(1+1))
H = =1 (14 2n —41) '

In particular, for 0 < k < L%J —1, Si(€) are constants and hence
independent of £. From the fact that Sg(£) = Sk, follows one
direction of the proof.

Conversely, let &, ... ,EL |1 be the roots of P,. Then we

n
2

have
Po= Y (-1 Sp(@alil
0
In particular S = S;(€) holds. By construction, the numbers Sy,

satisfy the relations

1+2n—4[%|

3]-1 A(n) S3)-2

andforlngL%J—

(n) (1+2n-4[3]) S

S|

Sk =

n
2

|2 ]-1-k
+ Z (I+2n—4(1+k)) (Sk— 1+3k)>
=1

This implies



and

for1 <k< L%J — 2. Hence we showed AE =P,.

Lemma 4.43 Letn >4 and L,(€) € L. Then &, ... ,ELEJ_l is
2

a solution of the system of equations given by

Fi(n) (&) =0, 1<i< gJ 1,

if and only if &, . .. ,fLﬂJ_l are roots of the polynomial Pj,.
2
Proof. Since the relation

Fi(n) (€) = A(n)PS(E,), for 1 < i <

—

nly,
2

holds and A(n) # 0, it follows that &, ... ,ELQJ_l is a solution
2
of
Fn)(©) =0, 1<i<|Z|-1,

if and only if &, ... ’EHJ _, are roots of the polynomial ﬁg The
2

previous lemma concludes the proof.
O

Lemma 4.44 Let L, (E) € L. Then Ly, (E) is the unique critical

point of 1§Dn in W, if and only if &,,. .. ,Etﬂjil are the roots of
2

P,.

Proof. clear.
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This concludes the proof of the main theorem.

Remark 4.45 [t is not proven yet, that the unique critical point
of @Dn in Wiy is contained in L. But there is very strong ev-
idence that the following conjecture is true, which would imply
this statement. The wvalidity of the conjecture for n = 4,5,6,7,8
can be veryfied using the examples at the end of this section.

Conjecture 4.46 For n > 4, the polynomial P, has L%J -1
distinct roots &, . .. ,ELEJ_I with 0 < & < 1.
2

Remark 4.47 The conjecture above would imply the following
two theorems.

Theorem 4.48 *(Existence) There exists a unique point Ly, (§) €
L such that

K - Exp i (Ln (E)) is the unique minimal principal orbit of the
isotropy action on G/K.

Proof. Existence would follow from the validity of Conjecture
4.46. Uniqueness from [HSTT]
%

Theorem 4.49 * The unique minimal principal orbit of the
isotropy action on G/K is given by K - Ezp, i (Ln (f)) , with
&, .. ,Emfl being the distinct roots of the polynomial P,.

2

Proof. The order of the &, is not important in the previous theo-
rem since a permutation of the &; is due to the action of the Weyl

group.
[]*
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4.2 Examples

In the following we give the polynomial P, including the roots
for n = 4,5,6,7,8 explicitly. We remark that the roots are all
distinct and lie in the interval (0, 1), respectively, substantiating
Conjecture 4.46. This shows in particular, that forn =4,5,6,7,8
the minimal principal orbit is an element in L.

D4-Problem
The root of )
Py(x) =z — E
is given by
1
f=:
Ds-Problem
The root of 5
Ps(x) =z — =
is given by
3
=1
Dg-Problem
The roots of
Ps(z) = 2* — ;—41% + %
are given by
&= ! +2?\ﬁ7
b=" _ziﬁ'
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D7-Problem

The roots of

&=
§o =

Pr(x)
are given by
Dg-Problem
The roots of
By(x) = ° -

are given by
b= cos 1
VT 7 cor 3
b2 = 143 (
&= 143 v i (

appears.

15+ 215
33
15 — 2v/15
33

495 5
129"

135,
429

a5\
arccos | ——
30
YCEA
— — arccos
30
V) T .
6

Remark 4.50 For the cubic Polynomial Ps, the casus irreducibilis

— arccos
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an (Joucos (~vE) +5) ) |
sin (; arccos (—+/&1 ) — % arccos (—@))
sin @ arccos (—/&r) — 5 arccos ( ¢ L’;J>>
an (L avcos (5) + L (1))
1 1

Proof. One proves this lemma by applying addition theorems
and using standard identities for trigonometric functions.
O
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