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Abstract 

Decker K. P., M. J. Saunders, N. D. Luden, C. J. Womack, and N. J. Hladick.  Mouth Exposure to 

Carbohydrate Prior to Exercise Possibly Impairs the Efficacy of Carbohydrate Mouth Rinsing 

during Exercise.  Purpose: Carbohydrate mouth-rinsing (CHO-MR) during intense endurance 

exercise has been associated with improved cycling performance, due to neurological influences. 

However, prior studies have reported the efficacy of CHO-MR is attenuated following a pre-

exercise meal.  To determine if this outcome is related to desensitization of CHO receptors (rather 

than metabolic effects following digestion), this study will investigate whether CHO-MR prior to 

exercise influences cycling performance when CHO-MR is also used during exercise.  Methods: 

Eight trained cyclists (age, 24 ± 6 yr; height, 176 ± 6 cm; weight 75 ± 12 kg; VO2max, 61 ± 8 

ml/kg/min) completed three exercise trials, each consisting of 15-min of incremental, constant-

load exercise followed by a simulated 30-km time-trial (TT).  Treatment beverages in the trials 

were randomly counterbalanced: a) PL_PL: placebo before and during exercise, b) PL_CHO: 

placebo pre-exercise, CHO-MR during exercise, and c) R_CHO: CHO-MR before and during 

exercise.  Physiological responses (VO2, VE, RER, RPE, heart rate, blood glucose and lactate) 

were assessed during constant-load exercise and during the TT.  Magnitude-based qualitative 

inferences were used to evaluate differences in responses between treatments.  Results: TT 

performance was ‘possibly’ impaired (59% likelihood) with R_CHO (57.3 ± 3.6) versus 

PL_CHO (56.9 ± 3.0 min).  Both trials were ‘likely’ slower than PL_PL (55.8 ± 3.1 min), but the 

reliability of performance data from this trial may have been impacted by measurement error, 

which limited our ability to determine the influence of CHO-MR during exercise.  Physiological 

responses between treatments during constant-load cycling, and the TT were generally similar 

between all treatments.  Conclusion: A pre-exercise CHO-MR had a possibly negative impact on 

cycling performance that also included CHO-MR during exercise.  Although further evidence is 

required to validate this finding, our data suggests that desensitization of CHO receptors related 
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to recent CHO exposure may be partially responsible for previous reports that the efficacy of 

CHO-MR during exercise are attenuated by pre-exercise feedings.  Keywords: CYCLING, 

CARBOHYDRATE, MOUTH-RINSING, PERFORMANCE, ERGOGENIC-AIDS. 



Chapter I 

Introduction 

The influence of carbohydrate ingestion on endurance performance has been studied 

extensively.  Muscle and liver glycogen are important fuel sources during prolonged endurance 

events (≥90 minutes) (10, 32), and athletes are generally instructed to consume high carbohydrate 

meals the night before and/or within a few hours prior to prolonged endurance events (31, 38, 46, 

65), in order to insure that muscle/liver glycogen stores are high prior to exercise (16, 28).  In 

addition, carbohydrate ingestion during prolonged endurance events is associated with improved 

performance (17, 21, 63), particularly when endogenous carbohydrate is limited.  Carbohydrate 

replacement during exercise maintains higher rates of carbohydrate oxidation (65), thus making 

more energy available in the later stages of prolonged exercise (17, 37). 

To maximize the ergogenic effects of carbohydrates, researchers have investigated the 

combined effects of carbohydrate feeding before and during endurance exercise.  Wright et al. 

found cycling time to exhaustion was improved by 18% with pre-exercise feeding, and by 32% 

with during exercise feeding.  However, a combination of pre- and during exercise carbohydrate 

feedings improved performance by 44%.  Collectively, carbohydrate feedings before and during 

prolonged endurance exercise are believed to be ergogenic because they support higher rates of 

carbohydrate oxidation (65), maintain adequate blood glucose levels , and spare endogenous 

glycogen stores throughout exercise (10, 16, 18, 32). 

More recently, the benefits of carbohydrate feedings before and during exercise have 

been observed in relatively short, high intensity (~60 minutes, ≥ 75%VO2max) aerobic exercise (2, 

9, 22, 36, 44),  although not all studies report benefits (19, 43, 47).  Jeukendup and colleagues 

found consumption of a 7.6% carbohydrate-electrolyte solution before and during a 40-km time 

trial improved performance by approximately one minute (2.3%).  However, only 15 grams of 

exogenous carbohydrate were oxidized during the 60 min time-trial, while total energy 

expenditure was ~ 20 kcal/min (36).  Similarly, McConnell and colleagues (43) reported that only 
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26% of carbohydrate ingested during a one-hour high-intensity exercise trial appeared in the 

peripheral circulation (22 of 84 grams).  Although blood glucose levels were significantly 

increased by exogenous glucose ingestion, there was little to no effect on total carbohydrate 

oxidation under these exercise conditions (43).  In addition, intravenous glucose infusion (at one 

g/min) had no effect on performance during a 40-km cycling time trial (13).  Therefore, 

carbohydrate ingestion may be beneficial during high intensity aerobic exercise of ~ one hour, 

these effects cannot be explained by metabolic mechanisms (39).  

Carter and colleagues were the first to investigate the effects of carbohydrate mouth 

rinsing on endurance performance.  Rinsing the mouth with 25 ml of a 6.4% maltodextrin 

solution periodically during exercise (without ingestion) improved performance in a one-hour 

cycling time-trial by 3% versus a placebo mouth rinse (12).  In a review by de Ataide e Silva and 

colleagues, at least nine studies replicated the enhancements in performance (ranging from 1.5% 

to 11.6%) using a carbohydrate mouth rinse protocol of similar intensity and duration (5).  For 

athletes sensitive to incidences of gastrointestinal problems with carbohydrate ingestion during 

exercise may find carbohydrate mouth rinsing an alternative strategy (45, 48).  Collectively, 

carbohydrate ingestion and mouth rinses during short, high intensity aerobic exercise has been 

shown to enhance performance (2, 9, 12, 14, 22, 36, 44, 50, 52–54), yet not all studies report 

these performance enhancements (1, 8, 34, 61, 62). 

The ergogenic effects of carbohydrate mouth rinsing during exercise are believed to be 

related to neurological influences of carbohydrate sensed in the mouth.  The mouth has oral-

pharyngeal receptors that respond to taste, temperature, texture and nutrients sensed by gustatory 

neurons, which sends sensory information to the central nervous system for integration (4, 11, 40, 

56).  Stimulation of these receptors from carbohydrates in the mouth can induce dopaminergic 

pathways in the brain rewards center (3).  For example, the tasting of sucrose elicited stimulation 

of dopamine regions in the brain even when a tube prevented digestion to the stomach (30).  

Chambers and colleagues used functional magnet resonance imaging (fMRI) to examine brain 
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responses to glucose, a sweet carbohydrate, and maltodextrin, a tasteless non-sweet carbohydrate.  

The fMRI revealed exposure of carbohydrates in the mouth, regardless of sweetness, activated the 

insula/frontal operculum, orbitofrontal cortex and striatum of the brain relating to the pleasure 

and reward (15).  Frank and colleagues used fMRI to examine the effects of sucrose versus 

sucralose, a taste matched non-caloric sweetener, on brain activity.  Sucrose elicited a greater 

response in the anterior insula, frontal operculum, striatum and anterior cingulate cortex than 

sucralose. Sucrose, but not sucralose stimulated dopaminergic midbrain areas, suggesting energy 

content rather than sweetness stimulates the central nervous system (25).  Gant and colleagues 

used transcranial magnetic stimulation of the primary motor cortex to examine the effects of a 

non-sweet carbohydrate on corticomotor excitability and voluntary force production during 30 

minutes of isometric elbow flexion.  They demonstrated that the presence of carbohydrates in the 

oral cavity immediately increased corticomotor output and maximal voluntary force production 

(27).  Bastos-Silva and colleagues reported carbohydrate mouth rinsing during exercise 

maintained electromyography activity of the quadriceps (6).  This enhanced performance lasting 

at least 60 minutes, but not during supramaximal exercise (~ three minutes), indicating the role 

carbohydrate mouth rinsing has with alleviating central fatigue (59).  In summary, enhanced 

performance from carbohydrate mouth rinsing is believed to be due to its actions on the central 

nervous system, stimulating the motor cortex and dopaminergic pathways, subsequently causing 

increased voluntary force production (27), reduced neuromuscular fatigue (6, 35), reductions in 

perceived exertion, and maintained motivational drive (11, 23).  

The magnitude of the ergogenic effects of carbohydrate mouth rinsing on endurance 

performance can be influenced by the duration of mouth rinsing, concentration of carbohydrate 

solution, and total number of mouth rinses.  Most studies rinse for five seconds (8, 12, 26, 49, 50, 

52, 54, 55), but others have utilized a ten second rinsing protocol (15, 42).  Sinclair et al. found 

both five and ten second mouth rinse protocols improve 30-minute cycling performance 

compared to placebo (57).  Gam et al. reported that additional time spent mouth rinsing during 
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intense exercise is detrimental to performance because of disturbances in ventilation (26).  The 

effects of different concentrations of maltodextrin mouth rinses were examined in two studies; 

both reported no difference between 3%, 6%, or 9% solutions (41), or between  6% or 16% 

solution on cycling performance (20).  Most exercise research use a carbohydrate mouth rinsing 

protocol of relatively high mouth rinsing frequencies of eight or more times over ~ one-hour (12, 

15, 23, 42, 50, 62), although some studies have used less (52, 55, 57).  However, de Ataide e 

Silva  and colleagues reported that no studies have directly investigated how mouth rinsing 

frequency influences performance outcomes (5), so further research is warranted in that regard.   

Most studies that have reported ergogenic effects from carbohydrate ingestion/rinsing 

during exercise durations of ~ one-hour have testing subjects after an overnight fast (for purposes 

of nutritional standardization).  Beelen and colleagues examined the effects of carbohydrate 

mouth rinsing after a pre-exercise meal, and observed no improvements in cycling performance 

(8).  The authors speculated that pre-exercise feedings may attenuate the ergogenic effects of 

carbohydrate mouth rinsing during subsequent exercise, which would reduce the practical 

significance of this strategy (since pre-exercise feedings are recommended for reasons already 

discussed) (8).  Lane and colleagues directly examined the impact of pre-exercise nutritional 

status on the effectiveness of carbohydrate mouth rinsing (42).  Subjects were either fasted or fed 

a 2.5g/kg meal two hours prior to a 60-minute cycling time-trial utilizing a carbohydrate mouth 

rinses.  Carbohydrate mouth rinsing during exercise improved mean power output by 3.4% after 

an overnight fast, but only 1.8% in a carbohydrate fed state.  Although the efficacy of the 

carbohydrate mouth rinse was reduced in a fed state, the best mean performance time was 

reported in the trial which included pre-exercise carbohydrate feeding and mouth rinse during 

exercise (42).  In a similar study, subjects were either fasted or fed a carbohydrate rich breakfast 

three hours prior to cycling to exhaustion at 60%Wmax utilizing a carbohydrate mouth rinse 

protocol.  A maltodextrin mouth rinse solution improved time to exhaustion by 5.6 minutes after 
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an overnight fast and by 1.9 minutes in the fed state (23). The carbohydrate mouth rinse was 

thought to exhibit a more pronounced signal to the CNS during a physiological state of hunger. 

The aforementioned outcomes may indeed be related to altered neural responses in a state 

of hunger (29).  Van Rijn et al. measured neural responses using fMRI when the oral cavity was 

exposed to carbohydrates or artificial sweetener in a fasted and fed state. Carbohydrates activated 

more areas of the brain in state of hunger than satiety than the artificial sweetener (51), again 

suggesting the importance of energy over taste (25).  In addition, neuronal activity in the 

hypothalamus is reduced following glucose ingestion, with greater reduction from 75 grams 

compared to 25 grams suggesting a dose-dependent response (58).  Although brain activation 

appears to be blunted after carbohydrate feedings, the mechanisms responsible for the attenuation 

in performance using a carbohydrate mouth rinse during exercise are not fully understood.  

Therefore, the purpose of this study was to investigate if pre-exercise carbohydrate mouth rinses 

influence the efficacy of carbohydrate mouth rinsing during a 30-km performance cycling time-

trial.  This will help determine if the attenuated response is related to neurological influences 

related to desensitization of (or down-regulation of feedback from) oral-pharyngeal CHO 

receptors, as opposed to altered metabolic responses following digestion (i.e. such as changes in 

blood glucose, insulin, ghrelin, etc.).  It was hypothesized pre-exercise carbohydrate mouth rinses 

will attenuate the neurological aspects of carbohydrate mouth rinsing during exercise, resulting in 

impaired 30-km cycling performance compared to no pre-exercise carbohydrate mouth exposure.  

 

Assumptions, Limitations, Delimitations 

During this study, it will be assumed that subjects are giving maximal efforts during all 

performance trials.  The researchers will also assume that subjects adhere to pre-exercise 

behavioral and dietary protocols and instructions, in addition to adhering to all experimental 

protocols during trials.  Accuracy of measurement instruments and competency of all researchers 

and assistants involved will be assumed.  Due to homogeneity of the subject group, the results of 
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this study can only be applied to similarly trained subjects, between the ages of 18 and 45 years 

old.  Trials will be performed on cycle ergometers in an exercise laboratory; as such, the practical 

application of the findings may be limited when applying the same feeding strategies in real-

world competitions.   
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Chapter II 

Methods 

Subjects 

Eleven trained cyclists were recruited from James Madison University and the 

surrounding area in Harrisonburg, Virginia.  Subjects met the following inclusion criteria: 18 - 45 

years of age, ≥ 2 years of experience in endurance cycling events, VO2max ≥ 50 ml/kg/min, 

consistent training prior to this study of ≥ 3 days/week, and ≥ 4 training sessions ≥ 2 hours in 

duration over the past 2 months.  Subjects were classified as low-risk for health complications 

according to ACSM guidelines (60), and provided written informed consent prior to starting the 

study (appendix A).  Experimental procedures were approved by the James Madison University 

Institutional Review Board (IRB #17-0084).  

 

Study Design 

        The study utilized a double-blind placebo-controlled crossover design.  Subjects who 

meet the inclusion criteria performed a maximal oxygen uptake (VO2max) test, a familiarization 

trial and three experimental trials.  Treatments utilized during the experimental trials are shown in 

Table 1.  Trial order was randomly counterbalanced across subjects and separated by ≥ 7 days 

each. Subjects reported to the Human Performance Laboratory at James Madison University for a 

total of five visits within a six-week timeline.  

 

Table 1: Treatment Conditions for each experimental trial. (PL = Placebo; CHO = Carbohydrate) 

Treatment Pre-exercise beverage During-exercise mouth-rinse 

PL_PL PL-Drink PL 

PL_CHO PL-Drink CHO 

R_CHO PL-Drink w/ CHO-Rinse CHO 
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Preliminary Testing and Familiarization  

To determine VO2max, subjects performed an incremental exercise on a bicycle ergometer 

(Velotron Racermate, Inc., Seattle, Washington) while gas exchange was recorded on a Moxus 

Modular Metabolic System (AEI Technologies, Pittsburgh, Pennsylvania).  After a five-minute 

warmup at a self-selected pace, the test began at 100-150 W and increased by 25 W every two-

minutes until volitional exhaustion.  Heartrate was recorded at the end of each stage using a Polar 

heartrate monitor and VO2max was recorded as the highest 30-second average value.  Wattmax was 

documented as the workload of the last completed stage of the test. Body weight was recorded 

prior to the VO2max test, and used to calculate beverage volumes for the experimental protocol. 

A familiarization trial was conducted to allow subjects to learn the experimental protocol 

and minimize variance between trials related to learning/training effects.  The familiarization trial 

was identical to experimental trials (described below) with the exceptions that a) subjects did not 

report to the lab two hours prior to exercise, b) no pre-exercise beverage was provided, and c) no 

finger stick blood samples were obtained.  During the familiarization trial, water was consumed 

ad libitum and a pedestal fan was set to the subject’s preferred speed setting.  Volume of water 

consumed and any changes in fan speed were recorded and held consistent throughout 

experimental trials.  Individual seat and handlebar settings on the cycle ergometer were recorded 

and replicated throughout experimental trials. 

 

Pre-Exercise Beverages and Mouth Rinse Solutions 

Pre-exercise beverages (PL-drink) consisted of 10 ml/kg water, flavored with a non-

caloric sweetener (all treatments).  In the R_CHO trial, the PL-drink was followed by pre-

exercise CHO-MR.  25 ml of CHO solution (15% maltodextrin, plus non-caloric sweetener) was 

rinsed in the mouth for five seconds and expectorated.  Following a seven second pause, this 

procedure was repeated ten times, for a total of 250 ml over a period of two minutes.  This 
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protocol was designed to mimic the mouth exposure to CHO during beverage consumption of the 

same volume.  

MR utilized during exercise were 25 ml each. In PL_PL, the rinse consisted of water with 

a non-caloric sweetener.  In the PL_CHO and R_CHO trials, the rinse was a 6.4% maltodextrin 

solution with the same non-caloric sweetener.  MR were refrigerated until administered at minute 

0 and 7.5 of constant-load cycling, and at 0-km, 5-km, 10-km, 15-km, 20-km, and 25-km of TT 

for a total of eight rinses, as shown in Figure 1.  Subjects were instructed to vigorously rinse the 

25-ml solution in mouth for five seconds and expectorate with no ingestion of solution at any 

point during the experimental protocol. 

  

Experimental Protocol 

Subjects arrived at the human performance laboratory after an overnight fast.  After five 

minutes of rest, a finger stick blood sample (~0.25 ml) was obtained and subjects completed a 

satiety scale (appendix B).  Immediately afterwards, the pre-exercise beverage was consumed. 

Blood was sampled again via finger sticks at 30 and 120 minutes after consumption of the pre-

exercise beverage.  Subjects completed 15 minutes of constant-load cycling at the following 

incremental workloads: 40%Wattmax (minute 0-4), 55%Wattmax (minutes 4-9), and 70%Wattmax 

(minutes 9-15). Subjects were allowed three minutes before starting the 30-km simulated time-

trial.  Subjects were instructed to give a maximal effort to complete 30-km in the shortest amount 

of time possible as if it was a competitive event.   No feedback of performance was provided 

during experimental trials, except for distance completed.  

 

Dietary and Exercise Control 

Subjects recorded 24-hour dietary intake and 48-hour physical activity prior to each data 

collection period, before the first experimental time-trial (appendix C and D, respectively).  

Subjects were asked to refrain from strenuous exercise for 48 hours, alcohol and tobacco for 24 
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hours pre-trial and caffeine for 12 hours before experimental trial.  An eight-ounce vanilla 

nutritional shake was provided as a snack before bedtime to ensure consistency in pre-exercise 

nutritional intake (appendix E).  Scanned copies of dietary/exercise records were provided for 

subject to replicate for each subsequent experimental trial.  Subjects were requested to maintain 

consistent diet, exercise, and sleep habits throughout the duration of the study. 

 

 

Figure 1. Diagram of experimental procedure. Symbols are as following:   

 

 

Performance 

 Time to complete the 30-km time-trial was recorded using the Coach Training Software 

(RacerMate Inc., Seattle, Washington).  

 

Metabolic measurements 

 VO2 (ml/min), ventilation (VE) (L/min), and respiratory exchange ratio (RER) were 

recorded from minute ten to fifteen during constant-load cycling and for five minutes at 20-km of 

time-trial.  The last three of five minutes of metabolic measurement were averaged to allow for 
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two minutes of breathing equilibration.  All metabolic values were assessed using a MOXUS 

modular system.  

 

Heart Rate 

 Heart rate was monitored throughout the trial, and recorded at minute 13 of constant-

load exercise and 20-km of the time-trial.  

 

Gastrointestinal Discomfort and Ratings of Perceived Exertion (RPE) 

 Subjects rated gastrointestinal discomfort using a 1-10 scale (appendix F).  RPE was 

obtained using the Borg’s 6-20 scale (appendix G), both measurements were taken at minute 13 

of constant-load exercise and 20-km of the time-trial. 

 

Blood Glucose and Lactate Concentrations 

 Blood glucose and lactate concentrations were assessed from finger stick blood samples 

for a total of five time points, [prior to pre-exercise beverage (min 0), 30 minutes following the 

pre-exercise beverage (min 30), and 120 minutes following the pre-exercise beverage (min 120), 

minute 13 of constant-load cycling, and at 20-km of the time-trial].  Each sample contained 

approximately 0.25 ml of blood, with glucose and lactate concentrations measured using the YSI 

2300 STAT PLUS (YSI Inc., Yellow Springs, Ohio).  

  

Satiety Scale 

 Subject rated hunger status and satiety on a visual analog scale (VAS) pre-treatment 

(min 0) and immediately prior to exercise (min 120).  The 100mm VAS ranged from 0mm, “I 

have not hungry at all”, to 100mm, “I have never been more hungry” (appendix B).   Satiety was 

converted into a change score to be compared across treatments.  The VAS assessment of appetite 

sensations in single test meal was adopted from Flint and colleagues (24). 
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Statistical Analyses 

Magnitude-based inferences were used to compare treatment effects for each of the 

dependent variables, using methods described by Batterham and Hopkins (7).  All data was log 

transformed to diminish the effects of non-uniformity.  A threshold for the smallest worthwhile 

change was determined for each dependent variable.  The smallest worthwhile change for 30-km 

time-trial performance was determined to be 0.3 x the coefficient of variation (CV) of sub-elite 

cyclists between repeated time-trials (CV = 1.3%) which translated to a difference of 0.39% or a 

13.2 second difference in performance in the current protocol.  The smallest worthwhile change 

threshold for all other measurements was calculated as 0.2 x standard deviation (from the placebo 

trial).  Using a published spreadsheet (64), mean treatment differences, 90% confidence intervals 

and percent likelihoods of treatments resulting in beneficial/trivial/harmful effects in the 

population were calculated (7, 33).  In addition, semantic inferences regarding the likelihood of 

observed effects resulting in beneficial/trivial/harmful effects in the population were determined, 

using the following guidelines: < 1%= almost certainly no chance, 1-5%= very unlikely, 5-25%= 

unlikely, 25-75%= possible, 75-95%= likely, 95-99%= very likely, and > 99%= almost 

certain.  Mechanistic/qualitative inferences were used to classify the effects of the treatment on 

all dependent variables, other than performance time.  If the 90% confidence interval surpassed 

minimum thresholds for benefit and harm, the effect was classified as “unclear”.  For 

performance times, clinical inferences were provided based on threshold chances of harm and 

benefit of 0.5% and 25%, respectively (and declaring beneficial when odds ratio of benefit/harm 

was > 66).    
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Chapter III 

Manuscript 

Mouth Exposure to Carbohydrate Prior to Exercise Possibly Impairs the Efficacy of Carbohydrate 

Mouth Rinsing during Exercise  

 

Abstract-  

 

Decker K. P., M. J. Saunders, N. D. Luden, C. J. Womack, and N. J. Hladick.  Mouth Exposure to 

Carbohydrate Prior to Exercise Possibly Impairs the Efficacy of Carbohydrate Mouth Rinsing 

during Exercise Purpose: Carbohydrate mouth-rinsing (CHO-MR) during intense endurance 

exercise has been associated with improved cycling performance, due to neurological influences.  

However, prior studies have reported the efficacy of CHO-MR is attenuated following a pre-

exercise meal.  To determine if this outcome is related to desensitization of CHO receptors (rather 

than metabolic effects following digestion), this study will investigate whether CHO-MR prior to 

exercise influences cycling performance when CHO-MR is also used during exercise.  Methods: 

Eight trained cyclists (age, 24 ± 6 yr; height, 176 ± 6 cm; weight 75 ± 12 kg; VO2max, 61 ± 8 

ml/kg/min) completed three exercise trials, each consisting of 15-min of incremental, constant-

load exercise followed by a simulated 30-km time-trial (TT).  Treatment beverages in the trials 

were randomly counterbalanced: a) PL_PL: placebo before and during exercise, b) PL_CHO: 

placebo pre-exercise, CHO-MR during exercise, and c) R_CHO: CHO-MR before and during 

exercise.  Physiological responses (VO2, VE, RER, RPE, heartrate, blood glucose and lactate) 

were assessed during constant-load exercise and during the TT.  Magnitude-based qualitative 

inferences were used to evaluate differences in responses between treatments.  Results: TT 

performance was ‘possibly’ impaired (59% likelihood) with R_CHO (57.3 ± 3.6) versus 

PL_CHO (56.9 ± 3.0 min).  Both trials were ‘likely’ slower than PL_PL (55.8 ± 3.1 min), but the 

reliability of performance data from this trial may have been impacted by measurement error, 

which limited our ability to determine the influence of CHO-MR during exercise.  Physiological 

responses between treatments during constant-load cycling, and the TT were generally similar 

between all treatments.  Conclusion: A pre-exercise CHO-MR had a possibly negative impact on 

cycling performance that also included CHO-MR during exercise.  Although further evidence is 

required to validate this finding, our data suggests that desensitization of CHO receptors related 

to recent CHO exposure may be partially responsible for previous reports that the efficacy of 

CHO-MR during exercise are attenuated by pre-exercise feedings.  Keywords: CYCLING, 

CARBOHYDRATE, MOUTH-RINSING, PERFORMANCE, ERGOGENIC-AIDS. 
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Introduction 

Carbohydrate (CHO) ingestion during prolonged exercise has been widely reported to 

enhance performance.  Since endogenous CHO stores can be limiting during exercise durations > 

90 minutes, the ergogenic effects of CHO ingestion during prolonged exercise are predominantly 

attributed to maintenance of blood glucose (33), muscle and liver glycogen sparing (18, 19, 30, 

31) and higher CHO oxidation late in exercise (18, 19, 39, 65).  More recently, CHO ingestion 

has also been found to be ergogenic during shorter, high intensity aerobic exercise (~ 60 min, 

>75% VO2max) (2, 11, 22, 38, 46), though not all studies agree (20, 44, 48).  However, because 

CHO availability is not considered to be limiting under these conditions (38, 44, 55), and minimal 

exogenous CHO are oxidized at such intense exercise intensities (15, 38, 40, 44), it is believed 

that other mechanisms are responsible for the ergogenic effects of CHO during intense aerobic 

exercise of approximately one hour. 

Carter and colleagues reported that CHO mouth-rinsing (MR) without ingestion enhanced 

time-trial (TT) performance lasting approximately one hour by ~ 3% (14).  Other studies have 

confirmed the ergogenic effect of CHO-MR on TT performance of approximately one-hour (7, 

16, 21, 23, 27, 41, 50, 52), yet not all studies report enhanced performance (1, 10, 36, 60, 63).  It 

was determined that CHO is detected by oral-pharyngeal receptors in the mouth to send feedback 

to the central nervous system (CNS) (4), stimulating the motor cortex and dopaminergic pathways 

(3, 26, 28, 57).  Therefore the ergogenic effects of CHO ingestion (and MR) during intense 

aerobic exercise are related to increased motor output, improved motivational drive, and reduced 

neuromuscular fatigue or perceived exertions, (7, 13, 16, 28, 37). 

The efficacy of CHO-MR may be influenced by various factors, including: MR time, 

with most studies using a five second MR (10, 14, 16, 27, 49, 50, 52–54); CHO concentration, 

with most studies using a 6.4% CHO solution (10, 14, 17, 23, 47, 50, 52, 58); and total number of 

MR, with most studies using ≥ 8 during exercise protocols of approximately one hour (14, 16, 23, 

41, 50, 63).  Perhaps more important is the influence that pre-exercise nutritional status has on the 
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efficacy of CHO-MR during exercise.  A majority of studies have found CHO-MR enhances 

performance when exercise is conducted in a fasted state (14, 16, 41, 52, 54), and some studies 

report that CHO-MR efficacy is attenuated in a CHO fed-state (10, 23, 41).  Lane and colleagues 

reported CHO-MR improved a simulated 60-minute cycling trial by 3.4% after an overnight fast, 

but only 1.8% in a CHO fed state (41).  Similarly, Fares and colleagues observed CHO-MR 

improved time to exhaustion performance by 5.6 minutes when fasted, but only 1.9 minutes when 

fed a CHO rich breakfast (23).  The pre-exercise CHO feedings may modulate the CNS response 

to CHO-MR as more neural activations has been shown in a physiological state of hunger (32, 

51), presumably due to homeostatic signals related to satiety (56). 

The mechanism for the attenuation in exercise performance with CHO-MR following 

pre-exercise CHO feedings is not fully understood.  It is unclear whether this outcome is related 

to altered metabolic responses following digestion (i.e. such as changes in blood glucose, insulin, 

ghrelin, etc.), or due to neural influences related to desensitization of (or down-regulation of 

feedback from) oral-pharyngeal CHO receptors.  To provide information regarding the neural 

effects of pre-exercise CHO, the purpose of this study was to determine the influence of a pre-

exercise CHO-MR on the ergogenic effects of CHO-MR during cycling.  It was hypothesized the 

pre-exercise CHO-MR would attenuate the neurological influences of CHO-MR during exercise, 

resulting in impaired cycling performance compared to no pre-exercise CHO exposure. 

 

Methods 

 

Subjects 

Eight trained cyclists were recruited from James Madison University and the surrounding 

area in Harrisonburg, Virginia.  Subjects met the following inclusion criteria: 18 - 45 years of 

age, ≥ 2 years of experience in endurance cycling events, VO2max ≥ 50 ml/kg/min, consistent 

training prior to this study of ≥ 3 days/week, and ≥ 4 training sessions ≥ 2 hours in duration over 

the past 2 months.  Subjects were classified as low-risk for health complications according to 
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ACSM guidelines (59), and provided written informed consent prior to starting the study.  

Experimental procedures were approved by the James Madison University Institutional Review 

Board (IRB #17-0084).  

 

Study Design 

        The study utilized a double-blind placebo-controlled crossover design.  Subjects 

performed a maximal oxygen uptake (VO2max) test, a familiarization trial and three experimental 

trials.  Treatments utilized during the experimental trials are shown in Table 1.  Trial order was 

randomly counterbalanced across subjects and separated by ≥ 7 days each. Subjects reported to 

the Human Performance Laboratory at James Madison University for a total of five visits within a 

six-week timeline.  

 

Table 1: Treatment Conditions for each experimental trial. (PL = Placebo; CHO = Carbohydrate) 

Treatment Pre-exercise beverage During-exercise mouth-rinse 

PL_PL PL-Drink PL 

PL_CHO PL-Drink CHO 

R_CHO PL-Drink w/ CHO-Rinse CHO 

 

Preliminary Testing and Familiarization  

To determine VO2max, subjects performed an incremental exercise on a bicycle ergometer 

(Velotron Racermate, Inc., Seattle, Washington) while gas exchange was recorded on a Moxus 

Modular Metabolic System (AEI Technologies, Pittsburgh, Pennsylvania).  After a five-minute 

warmup at a self-selected pace, the test began at 100-150 W and increased by 25 W every two-

minutes until volitional exhaustion.  Heartrate was recorded at the end of each stage using a Polar 

heartrate monitor and VO2max was recorded as the highest 30-second average value.  Wattmax was 

documented as the workload of the last completed stage of the test. Body weight was recorded 

prior to the VO2max test, and used to calculate beverage volumes for the experimental protocol. 
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A familiarization trial was conducted to allow subjects to learn the experimental protocol 

and minimize variance between trials related to learning/training effects.  The familiarization trial 

was identical to experimental trials (described below) with the exceptions that a) subjects did not 

report to the lab two hours prior to exercise, b) no pre-exercise beverage was provided, and c) no 

finger stick blood samples were obtained.  During the familiarization trial, water was consumed 

ad libitum and a pedestal fan was set to the subject’s preferred speed setting.  Volume of water 

consumed and any changes in fan speed were recorded and held consistent throughout 

experimental trials.  Individual seat and handlebar settings on the cycle ergometer were recorded 

and replicated throughout experimental trials. 

 

Pre-Exercise Beverages and Mouth Rinse Solutions 

Pre-exercise beverages (PL-drink) consisted of 10 ml/kg water, flavored with a non-

caloric sweetener (all treatments).  In the R_CHO trial, the PL-drink was followed by pre-

exercise CHO-MR.  25 ml of CHO solution (15% maltodextrin, plus non-caloric sweetener) was 

rinsed in the mouth for five seconds and expectorated.  Following a seven second pause, this 

procedure was repeated ten times, for a total of 250 ml over a period of two minutes.  This 

protocol was designed to mimic the mouth exposure to CHO during beverage consumption of the 

same volume.  

MR utilized during exercise were 25 ml each. In PL_PL, the rinse consisted of water with 

a non-caloric sweetener.  In the PL_CHO and R_CHO trials, the rinse was a 6.4% maltodextrin 

solution with the same non-caloric sweetener.  MR were refrigerated until administered at minute 

0 and 7.5 of constant-load cycling, and at 0-km, 5-km, 10-km, 15-km, 20-km, and 25-km of TT 

for a total of eight rinses, as shown in Figure 1.  Subjects were instructed to vigorously rinse the 

25-ml solution in mouth for five seconds and expectorate with no ingestion of solution at any 

point during the experimental protocol. 
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Experimental Protocol 

Subjects arrived at the human performance laboratory after an overnight fast.  After five 

minutes of rest, a finger stick blood sample (~0.25 ml) was obtained and subjects completed a 

satiety scale.  Immediately afterwards, the pre-exercise beverage was consumed. Blood was 

sampled again via finger sticks at 30 and 120 minutes after consumption of the pre-exercise 

beverage.  Subjects completed 15 minutes of constant-load cycling at the following incremental 

workloads: 40%Wattmax (minute 0-4), 55%Wattmax (minutes 4-9), and 70%Wattmax (minutes 9-15).  

Subjects were allowed three minutes before starting the 30-km simulated TT.  Subjects were 

instructed to give a maximal effort to complete 30-km in the shortest amount of time possible as 

if it was a competitive event.  No feedback of performance was provided during experimental 

trials, except for distance completed.  

 

Dietary and Exercise Control 

Subjects recorded 24-hour dietary intake and 48-hour physical activity prior to each data 

collection period, before the first experimental TT.  Subjects were asked to refrain from strenuous 

exercise for 48 hours, alcohol and tobacco for 24 hours and caffeine for 12 hours before 

experimental trial.  A nutritional shake was provided as a snack before bedtime to ensure 

consistency in pre-exercise nutritional intake.  Scanned copies of dietary/physical activity records 

were provided for subject to replicate for each subsequent experimental trial.  Subjects were 

requested to maintain consistent diet, exercise, and sleep habits throughout the duration of the 

study. 
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Figure 1. Diagram of experimental procedure. Symbols are as following:   

 

 

Performance 

 Time to complete the 30-km TT was recorded using the Coach Training Software 

(RacerMate Inc., Seattle, Washington).  

 

Metabolic measurements 

 VO2 (ml/min), ventilation (VE) (L/min), and respiratory exchange ratio (RER) were 

recorded from minute ten to fifteen during constant-load cycling and for five minutes at 20-km of 

TT.  The last three of five minutes of metabolic measurement, starting at minute 13, were 

averaged, allowing two minutes for breathing equilibration.  All metabolic values were assessed 

using a Moxus Modular Metabolic System.  

 

Heart Rate 

Heart rate was monitored throughout the trial, and recorded at minute 13 of constant-load 

exercise and at 20-km of the TT.  
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Gastrointestinal Discomfort and Ratings of Perceived Exertion (RPE) 

Subjects rated gastrointestinal discomfort using a 1-10 scale.  RPE was obtained using the 

Borg’s 6-20 scale at minute 13 during constant-load exercise and 20-km of the TT. 

 

Blood Glucose and Lactate Concentrations 

 Blood glucose and lactate concentrations were assessed from finger stick blood samples 

for a total of five time points, [prior to pre-exercise beverage (min 0), 30 minutes following the 

pre-exercise beverage (min 30), and 120 minutes following the pre-exercise beverage (min 120), 

at minute 13 of constant-load, and at 20-km of TT].  Each sample contained approximately 0.25 

ml of blood, with glucose and lactate concentrations measured using the YSI 2300 STAT PLUS 

(YSI Inc., Yellow Springs, Ohio).  

 

Satiety Scale 

 Subject rated hunger status and satiety on a visual analog scale (VAS) pre-treatment 

(min 0) and immediately prior to exercise (min 120).  The 100mm VAS ranged from 0mm, “I 

have not hungry at all”, to 100mm, “I have never been more hungry”.  Satiety was converted into 

a change score to be compared across treatments.  The VAS assessment of appetite sensations in 

single test meal was adopted from Flint and colleagues (25). 

 

Statistical Analyses 

        Magnitude-based inferences were used to compare treatment effects for each of the 

dependent variables, using methods described by Batterham and Hopkins (8).  All data was log 

transformed to diminish the effects of non-uniformity.  A threshold for the smallest worthwhile 

change was determined for each dependent variable.  The smallest worthwhile change for 30-km 

TT performance was determined to be 0.3 x the coefficient of variation (CV) of sub-elite cyclists 
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between repeated TT (CV = 1.3%) which translated to a difference of 0.39% or 13.2 second 

difference in performance in the current protocol.  The smallest worthwhile change threshold for 

all other measurements was calculated as 0.2 x standard deviation (from the placebo trial).  Using 

a published spreadsheet (64), mean treatment differences, 90% confidence intervals and percent 

likelihoods of treatments resulting in beneficial/trivial/harmful effects in the population were 

calculated (8, 35).  In addition, semantic inferences regarding the likelihood of observed effects 

resulting in beneficial/trivial/harmful effects in the population were determined, using the 

following guidelines: < 1%= almost certainly no chance, 1-5%= very unlikely, 5-25%= unlikely, 

25-75%= possible, 75-95%= likely, 95-99%= very likely, and > 99%= almost 

certain.  Mechanistic/qualitative inferences were used to classify the effects of the treatment on 

all dependent variables, other than performance time.  If the 90% confidence interval surpassed 

minimum thresholds for benefit and harm, the effect was classified as “unclear”.  For 

performance times, clinical inferences were provided, based on threshold chances of harm and 

benefit of 0.5% and 25%, respectively (and declaring beneficial when odds ratio of benefit/harm 

was > 66).    

 

Results 

Eleven endurance-trained cyclists from James Madison University and the Harrisonburg, 

VA area volunteered to participate in this study.  Two subjects withdrew before completion 

because of circumstances unrelated to the study and one subject was dropped due to non-

compliance to maximal effort during TT.  This resulted in six male and two female cyclists (age, 

24 ± 6 years; height, 176 ± 6 cm; weight 75 ± 12 kg; BMI, 24.3 ± 2.6; VO2max, 61± 8 ml/kg/min; 

Wattmax 316 ± 58 W).  All experimental procedures were under similar environmental conditions 

(21.8 ± 1.1 °C, 24.4 ± 11.3% humidity, 728.6 ± 4.9 mmHg).  
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Pre-exercise Measurements 

Upon arrival to the lab, fasted blood glucose was similar between PL_PL (84.0 ± 8.3 

mg/dL), PL_CHO (83.0 ± 6.4 mg/dL), and R_CHO (79.7 ± 5.7 mg/dL), with R_CHO values 

‘possibly’ lower versus PL_CHO.  Changes in blood glucose over the 120 minutes prior to 

exercise were negligible, with no clear differences between PL_PL (-1.3 ± 6.3 mg/dL), PL_CHO 

(-4.0 ± 7.2 mg/dL) and R_CHO (-0.4 ± 4.6 mg/dL), respectively.  Hunger rating change scores 

increased from pre-treatment (minute 0) to pre-exercise (minute 120) to a similar degree between 

for PL_PL (20 ± 12.8), PL_CHO (15.6 ± 9.1), and R_CHO (18.3 ± 16.7).  

 

Responses during Constant-load Exercise 

Metabolic measurements obtained during constant-load cycling at 70%Wmax are 

displayed in Table 2.  VO2 responses during PL_PL and PL_CHO were ‘possibly’ higher than 

R_CHO.  Blood glucose responses during PL_PL and R_CHO were ‘likely’ lower than PL_CHO. 

Treatment effects for all other physiological responses were ‘unclear’.    

Table 2. Physiological Responses during Cycling at 70% Wmax (Mean ± SD) 

Variable     PL_PL   PL_CHO   R_CHO 

Heart rate (bpm)   158 ± 13   151 ± 12   149 ± 11 

VO2 (ml/min) 3349 ± 510 * 3306 ± 558 *
  3219 ± 608 

Ventilation (L/min)  91.5 ± 15.9  92.0 ± 15.7  92.1 ± 17.0 

RER  0.93 ± 0.06  0.93 ± 0.08  0.93 ± 0.06 

RPE (6-20)  12.8 ± 1.3  12.3 ± 2.0  13.6 ± 1.0 

Glucose (mg/dL)  73.3 ± 13.6 $  79.8 ± 9.5  75.3 ± 7.4 $ 

Lactate (mmol/L)  2.52 ± 1.32  2.33 ± 1.35  2.55 ± 0.63 

PL_PL = Placebo before and during exercise; PL_CHO = Placebo pre-exercise, carbohydrate 

mouth-rinse during exercise; R_CHO = carbohydrate mouth-rinse before and during exercise  
* = ‘Possibly’ higher than R_CHO; $ = ‘Likely’ lower than PL_CHO 
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Responses during Cycling TT 

 VO2 responses during R_CHO were ‘likely’ lower than PL_PL. RPE responses during 

R_CHO were ‘likely’ higher than PL_PL.  Treatment effects for all other variables were 

‘unclear’. 

 

Table 3. Physiological Responses during Cycling Time-Trial (Mean ± SD) 

Variable     PL_PL  PL_CHO   R_CHO 

Heart rate (bpm)   161 ± 13   162 ± 14   164 ± 13 

VO2 (ml/min) 3085 ± 358 2986 ± 436 
  2895 ± 505 # 

Ventilation (L/min)  81.5 ± 11.3  78.7 ± 9.1  75.4 ± 9.5 

RER  0.83 ± 0.03  0.83 ± 0.04  0.83 ± 0.03 

RPE (6-20)  15.5 ± 1.1  15.6 ± 1.6  16.0 ± 0.9 
& 

Glucose (mg/dL)  74.0 ± 18.1  74.9 ± 20.0  75.4 ± 6.5 

Lactate (mmol/L)  2.27 ± 1.13  2.30 ± 0.65  2.03 ± 1.09 

PL_PL = Placebo before and during exercise; PL_CHO = Placebo pre-exercise, carbohydrate 

mouth-rinse during exercise; R_CHO = carbohydrate mouth-rinse before and during exercise  
# = ‘Likely’ lower than PL_PL; & = ‘Likely’ higher than PL_PL 

 

Treatment Effects on Performance 

 Cycling performance times during the 30-km TT were as follows: PL_PL: 55.8 ± 3.1 

min; PL_CHO: 56.9 ± 3.0 min; R_CHO: 57.3 ± 3.6 min.  Mean differences (and individual 

responses) in performance between treatments (±90% CI) are illustrated in Figure 2.  

Performance in the PL_PL trial was ‘likely’ beneficial compared to R_CHO (% likelihoods of 

beneficial/trivial/harmful effect: 91/5/4) and PL_CHO (% likelihoods: 91/7/3).  Performance in 

R_CHO was ‘possibly’ harmful than PL_CHO (% likelihoods: 20/21/59).  Treatment effects were 

also examined after statistically adjusting for treatment order, but this did not alter any of the 

reported inferences.   
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 Figure 2. Treatment Effects on 30-km TT Performance (Mean ± 90%CI)

 

PL_PL = Placebo before and during exercise; PL_CHO = Placebo pre-exercise, carbohydrate 

mouth-rinse during exercise; R_CHO = carbohydrate mouth-rinse before and during exercise  

Filled circles represent the mean value, open squares represent individual scores (some are 

obscured by the mean value), Dashed lines represent the threshold value for a meaningful effect 

(± 13.2 seconds). † = ‘Likely’ faster for PL_PL; Ω = ‘Possibly’ harmful for R_CHO 
 

GI distress symptoms 

 The symptoms of GI distress remained low in all trials (average values were < 2.0 for all 

individual symptoms, at all-time points).  Only one subject reported upper-GI distress symptoms 

≥ 5 (“severe” or higher) during exercise.  This subject experienced ‘stomach problems’ during 

constant-load exercise and during the TT of the R_CHO treatment. 

 

Discussion 

 The aim of this study was to determine if pre-exercise CHO exposure in the mouth 

influenced the efficacy of CHO-MR during a 30-km cycling performance TT.  Our hypothesis 

was that pre-exercise CHO-MR would attenuate the neurological influences of CHO-MR during 

exercise, resulting in impaired performance compared to no pre-exercise CHO exposure.  The 

primary finding was that CHO-MR two hours before exercise (R_CHO) had a ‘possibly’ harmful 

effect on performance compared to no CHO-MR before exercise (PL_CHO).  Although the 

outcome requires some verification in future studies, this is the first evidence suggesting that 
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CHO sensed in the mouth (without ingestion) prior to exercise might attenuate the efficacy of 

CHO-MR during cycling.  

The performance outcome in the PL_PL trial (i.e. ‘likely’ faster 30-km TT than the trials 

in which CHO-MR was performed) was surprising, and may have been influenced by 

measurement error and/or researcher error.  Body weight was incorrectly entered in the ergometer 

software prior to one PL_PL TT, and this error (and a similar issue in another trial), may have 

contributed to the relatively fast time reported in the PL_PL trial.  Performance outcomes were 

reassessed after removal of these subjects, with minimal impact on the treatment effects reported 

in our results.  This suggests that the CHO-MR during exercise did not have a positive impact on 

performance in our study.  However, the decrease in sample size and statistical power resulting 

from removal of these subjects minimized the confidence with which we could infer meaningful 

conclusions regarding this data.  As such, further discussion of our results will focus mainly on 

the comparison of the pre-exercise CHO-MR on 30-km TT between the PL_CHO and R_CHO 

trials (from the full complement of eight subjects). 

It is known that rinsing the mouth with CHO generates gustatory sensory information for 

CNS integration (4).  Specifically, fMRI and transcranial magnetic stimulation studies have 

shown the insula/frontal operculum, orbitofrontal cortex, ventral striatum, and anterior cingulate 

cortex regions of the brain relating to the pleasure/reward and motor controls are stimulated 

during the presence of CHO in the mouth (16, 26, 28, 32).  Our finding that R_CHO ‘possibly’ 

attenuated the efficacy of CHO-MR during exercise is provocative (despite its moderate statistical 

certainty) because it suggests that oral-pharyngeal CHO receptors may have been desensitized by 

prior exposure to CHO.  If this occurred, a reduction in motivation, motor output, and ultimately 

TT performance would be expected from the CHO-MR during exercise.  

An alternative explanation for the ‘possibly’ impaired 30-km TT performance in R_CHO 

could be due to desensitization of dopamine pathways.  The presence of CHO in the mouth 

induces dopaminergic pathways in the brain rewards center (3), playing a role in motivational 



 26 

 

behavioral (12) and maintaining mechanical efficiency during exercise (29).  The CHO-MR prior 

to exercise was expected to stimulate the release of dopamine, which may have altered the 

dopamine response related to the subsequent CHO-MR during cycling.  There is evidence that 

repeated stimulation from food/carbohydrate can spike dopamine levels (6) and lead to alterations 

in the dopamine reward circuitry for secondary exposure of the same stimuli (62).  As such, , the 

potentially slower TT performance in R_CHO could be related to a blunted dopamine response to 

the subsequent CHO-MR, compromising mechanical efficiency and/or motivation during cycling 

(29).  However, this theory is highly speculative, and further study is required to determine the 

influence of CHO-MR on the dopaminergic pathways.   

The neurophysiological explanation for a ‘possible’ treatment differences in performance 

is supported by the absence of CHO ingestion in all trials.  The pre-exercise CHO-MR did not 

impact blood glucose levels in the 120-min recovery period prior to exercise.  However, there 

was a ‘likely’ elevated blood glucose response in PL_CHO versus R_CHO and PL_CHO during 

constant-load cycling.  Although the volume of CHO-MR expectorated was not measured, 

researchers were present to make sure carbohydrate was not ingested.  In addition, our CHO-MR 

consisted of maltodextrin which cannot be digested in the mouth (34).  Other studies have 

reported elevated blood glucose responses with CHO-MR during cycling (5, 42), and suggested 

that this was caused by sympathetic neural activity inducing hepatic glucose release (45).  The 

lack of increase in blood glucose from a CHO-MR in R_CHO could potentially be explained by a 

desensitization of oral-pharyngeal receptors from the pre-exercise CHO-MR. 

There is some evidence suggesting the activation of reward centers in the brain from 

CHO in the mouth is related to the degree of hunger (16, 32).  All trials in the present study were 

conducted after an overnight fast, and hunger ratings upon arrival to the lab, and prior to exercise 

were similar between treatments.  Based on this evidence, varying degrees of hunger does not 

appear to explain the possible differences in performance observed between our treatments.  

However, it is possible that varying levels of hunger could partially explain the attenuated 
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ergogenic effects reported in prior studies when using CHO-MR during exercise in the fed versus 

fasted state (10, 23, 41).  Following ingestion of CHO, homeostatic signals such as glucose, 

insulin, ghrelin, and leptin are altered which may modulate satiety and sensory input of CHO-MR 

during exercise to the CNS (9, 24, 43).  Further study is required to determine the influence of 

hunger status and homeostatic signals on the effects of CHO-MR during exercise.  

Among the eight subjects to complete the study, five recorded their worst 30-km TT 

performance with the R_CHO treatment.  R_CHO reduced the mean TT performance by 24 

seconds or 0.7% compared to PL_CHO, which exceeded the “smallest worthwhile change” 

threshold of 13.2 seconds or 0.4% (35).  Although the apparent effect of the pre-exercise CHO-

MR on subsequent performance was relatively small, it is possible that the time-period between 

the CHO-MR and onset of exercise could have provided sufficient time for receptor sensitivity in 

the mouth to return to near baseline (fasted) levels.  Future research investigating the time course 

of neural responses to CHO exposure in the mouth would be of interest to further understand the 

influences of CHO feedings and CHO-MR.  For example, future studies could investigate the 

effects of frequent CHO-MR leading up to exercise, to maximize the potential of any neural 

desensitizing effect that may occur, prior to TT performance using a CHO-MR.   

It is worth acknowledging the current study was part of a larger project, which also 

investigated the effects of pre-exercise feedings with different glycemic indices.  Thus, subjects 

completed the experimental protocols on five occasions (plus an additional familiarization trial), 

lasting 5-6 weeks.  An analysis of the effects of trial-order revealed no systematic influences on 

the treatment outcomes in this study, but it is possible that the prolonged nature of the study could 

have increased the between-trial variability in TT performance (due to changes in motivation, 

fitness, etc. over the course of the study).  This could have reduced the sensitivity of our exercise 

tests to detect small but important changes in performance between treatments.   In addition, the 

previously noted concerns regarding the reliability of the PL_PL performance trials prevented us 

from determining the ergogenic effect of CHO-MR in the fasted state (i.e. % difference between 
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PL_PL and PL_CHO). Therefore, we cannot reliably infer the degree to which R_CHO may have 

attenuated the ergogenic effects of CHO-MR during exercise.  

In summary, this is the first study to provide some evidence that mouth exposure to 

carbohydrate (without ingestion) prior to exercise might attenuate the efficacy of CHO-MR 

during cycling.  We observed that pre-exercise CHO mouth exposure ‘possibly’ harms TT 

performance when CHO-MR are used during exercise.  Further study is required to validate this 

finding, due to its moderate statistical certainty (59% likelihood of harm).  If verified, this 

outcome suggests that the attenuated ergogenic effects of CHO-MR during exercise in the fed 

state may be the result of desensitization of oral-pharyngeal receptors (and/or neural output) due 

to prior CHO exposure.   
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James Madison University – Department of Kinesiology 

Informed Consent 

 

Purpose 

You are being asked to volunteer for a research project conducted by Nikolai Hladick, Kevin 

Decker, Dr. Nick Luden, Dr. Mike Saunders, and Dr. Christopher Womack from James Madison 

University titled Impact of pre-exercise carbohydrate exposure, and the glycemic index of pre-

exercise feeding on the ergogenic effects of carbohydrate mouth-rinsing during cycling 

 

The primary goals of this study are to determine the effects of a) pre-exercise exposure to 

carbohydrate, and b) pre-exercise beverages of differing glycemic indexes on high intensity 

cycling performance when a carbohydrate mouth rinse is used during exercise. 

 

Experimental Procedures 

You will be asked to report to James Madison University’s Human Performance Laboratory 

(Godwin 209) on 7 occasions, each separated by at least 7 days.  These include one initial testing 

session, one familiarization trial, and five experimental exercise trials.  The initial testing session 

will last approximately 1 hour and the familiarization trial will last approximately 1 hour and 30 

minutes.  Each experimental exercise trial will require approximately 3.5 hours.  The total time 

commitment will be approximately 20 hours. 

 

Initial Exercise Testing Session – Visit 1 – 1 hour 

You will be asked to complete short questionnaires related to your health history and exercise 

training, to determine whether you meet the criteria for participation and to rule out any health-

related risk factors that would prevent you from participating in this study.  During this process, 

you will be asked to share information concerning your lifestyle, training habits, and general 

health with the researchers.  If you meet the participation criteria, your height and body weight 

will be measured and your maximal oxygen consumption (VO2max) will be assessed with a test on 

a cycle ergometer.  You will begin this test by cycling at a moderate intensity, after which the 

workload will be increased by 25 watts every 2 minutes until you are unable to continue due to 

fatigue (~10-20 min).  Throughout the trial, you will breathe through a mouthpiece that is 

connected to a metabolic cart, in order to measure your oxygen consumption and other variables 

during exercise.  Heart rate will be also be monitored continuously by a wearable heart rate 

monitor on your chest.    

 

Familiarization Trial – Visit 2 – 1 hour and 30 minutes 

During the familiarization trial you will be asked to complete a simulated 30 km cycling time trial 

on a cycle ergometer (~ 50 min).  During the time trial you will be asked to rinse your mouth with 

water for 5 seconds every 5 km without swallowing.  On one occasion during the trial (20 km), 

you will have your oxygen consumption measured for 5 minutes, by wearing the mouthpiece 

described above.  You will also be asked to rate your perceived effort and gastrointestinal 

discomfort (using a scale provided by the researchers) at these time-points.  Heart rate will be 

measured continuously via a wearable heart rate monitor on your chest.    

      

Experimental Trials – Visits 3 through 7 – 3.5 hours each 

You will report to the laboratory after an overnight fast (no food after dinner the night prior to the 

trial), and provide a small (0.25 ml) blood sample from a finger-prick.  Following the blood 

sample, you will consume a sports beverage, and then rest for two hours, during which time two 
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additional 0.25 ml blood samples will be obtained.  After the rest period, 15 minutes of cycling at 

moderate intensity will be completed, followed immediately by a simulated 30 km cycling time 

trial, as described above.  You will be asked to give a maximal effort during each time trial and to 

treat it as a competitive event.  During each trial, you will also be asked to rinse your mouth with 

a sports drink for 5 seconds every 5 km without swallowing.  You will receive all the 

measurements described in the Familiarization Trial above (oxygen consumption, heart rate, 

perceived effort and gastrointestinal discomfort).  You will also receive finger-pricks at two time-

points to obtain small blood samples (0.125 ml) from your finger.  Each of the five experimental 

trials will include a different combination of pre-exercise sports drink (or mouth rinse) and/or 

sports drink mouth rinse during exercise.  The order in which you receive the different beverages 

and mouth rinses during the experimental trials will be randomly assigned.   

 

Dietary and Exercise Controls 

You will be asked to record your food intake for 24 hours prior to each experimental visit.  After 

bringing the initial dietary record to the Human Performance Laboratory, you will be given a 

copy, and will be asked to replicate your food intake for the 24 hours before each subsequent 

visit.  You will also be asked to record your physical activity/exercise during the 72 hours prior to 

each experimental trial and to maintain consistent physical activity/exercise patterns between 

trials.  You will be asked to refrain from heavy exercise 48 hours pre-trial, alcohol and tobacco 24 

hours pre-trial, caffeine 12 hours pre-trial, and will be asked to fast the night before each 

experimental visit (no food after dinner).    

 

Risks 

The risks associated with maximal exercise and maximal exercise testing are minimal in 

individuals who are considered healthy and at low risk for cardiovascular disease and cardiac 

events according to the American College of Sports Medicine.  In order to participate in this 

study, you must be considered low risk after initial assessment via health history questionnaires.  

You are expected to be honest when filling out questionnaires and identifying any risk factors you 

may have.  In the case of a cardiac or emergency event during exercise, an emergency plan is in 

place, including access to a phone to contact emergency personnel.  At least one investigator at 

each testing session will be CPR certified, and an AED is present in the laboratory. 

 

The cycling time trials may induce muscle fatigue and soreness both immediately after the trial 

and for 1-2 days following the visit.  Gastrointestinal distress is a possibility when consuming 

sports drinks before intense exercise.  However, this poses no threat to your health or safety, and 

will at most cause mild discomfort.  In addition, you may stop exercising at any point throughout 

the trials.  The risks of blood sampling include slight discomfort, temporary minor bleeding, 

possibility for infection, and the possible transfer of blood-borne pathogens.  Risks during blood 

sampling are considered to be minimal and OSHA safety protocols will be followed when 

handling blood samples.  The researchers have completed JMU blood-borne pathogen training.  

In addition, the total amount of blood obtained throughout the study is very small [~2 ml per trial 

= 10 ml or < 0.4 fluid ounces, which is 2% of the amount given when donating blood in a single 

session (approximately 1 pint, or 473 ml)].   

 

Benefits 

Participating in this study includes receiving a free assessment of maximal oxygen consumption 

(which typically cost > $100 at commercial testing facilities).  You will also be contributing to 

the first study investigating the effects of pre-exercise mouth rinsing and pre-exercise meal GI on 

the efficacy of carbohydrate mouth rinsing during cycling.  In addition, participants will receive a 

monetary incentive of $200 for completion of the study.  Participants who do not complete the 
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entire study will receive a prorated payment of $35 for each of the experimental time-trials 

completed (i.e. trials 3-7 above).   

 

Inquiries 

If you have any questions or concerns, please contact Dr. Mike Saunders at saundemj@jmu.edu 

and (540) 568-8121 or Dr. Nicholas Luden at ludennd@jmu.edu and (540) 568-4069. 

 

Questions about Your Rights as a Research Subject  

Dr. David Cockley  

Chair, Institutional Review Board  

James Madison University  

(540) 568-2834  

cocklede@jmu.edu  

 

Confidentiality 

Data obtained in this study will be kept confidential and your name will not be identified with 

individual data.  An identification code will be assigned to each participant in order to avoid 

identifying participant names with data, which will be kept in a locked cabinet.  Once the study has 

been completed, any information connecting participants to their information/data will be 

destroyed.  The researchers retain the right to use and publish non-identifiable data.  Final aggregate 

results will be made available to you upon request. 

 

Freedom of Consent 

Your participation is entirely voluntary.  You are free to choose not to participate.  Should you 

choose to participate, you can withdraw at any time without consequences of any kind. 

 

I have read this consent form and I understand what is being requested of me as a participant in this 

study.  I freely consent to participate.  I have been given satisfactory answers to my questions.  The 

investigator provided me with a copy of this form.  I certify that I am at least 18 years of age. 

 

 

   

Name of Subject (Printed)  Name of Researcher (Printed) 

   

Name of Subject (Signed)  Name of Researcher (Signed) 

   

  Date    Date 

 

  

mailto:ludennd@jmu.edu
mailto:cocklede@jmu.edu
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24-Hour Diet Record 



 43 

 

 

 
 



 44 

 

INSTRUCTIONS FOR KEEPING YOUR 24-HOUR FOOD RECORD 

Keep your record for three days per trial. You will include the day before, the day of, and the day 
after each trial. Include all meals, snacks, nibbling, and beverages including water and cocktails 

1. Fill out the date and day of the week at the top of food record sheet 

2. Record the time you consumed your food and/or drink. To be most accurate, fill out the 
food record as soon as you finish eating. 

3. List the first food and/or drink you consumed when you began your day and continue to 
record until you consume your last food and/or drink of your day (usually before bedtime) 

4. List each food and/or drink on a separate line 
Example: cereal with milk, cereal and milk should each be on 

separate lines spaghetti, noodles, and sauce should each be 
on separate lines 

Combination foods: 
List parts of food on separate lines 
Include preparation method, quantity, and brand name of each food Example: 

Sandwich (4 oz. healthy choice turkey, 2 slices Sara Lee wheat bread, 1 tbsp. 
'Heilman’s light mayo, 2 oz. Kraft American cheese, I slice of red fresh tomato) 

5. Record the method of preparation 
Example: fried, baked, grilled 

salt, oil (olive, canola, corn, other) butter or margarine, spices, etc. 

6. Record quantity consumed 
Do not record any food not eaten 

Example: made two cups of vegetables but ate half so you would record 

one cup Quantity of food and/or drink 
Example: cups, ounces, liters, grams, each, or other unit of measure 
Example: 1 cup of vegetables, 4 ounces of meat, one medium apple 

7. Record brand name 
Example: fast food chain name and/or package name 
Example: Wendy’s, Betty Crocker, Lean Cuisine, Gatorade, Thomas Bagel 

8. Place any helpful food labels in manila envelope that is attached to folder
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48-Hour Physical Activity Records 
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Appendix E. 

Bedtime Nutritional Shake Nutrition Label  
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Appendix F 

Gastrointenstial Discomfort Scale 
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Appendix G 

Borg’s 6-20 Ratings of Perceived Exertion Scale 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

 

 

 

 

  



 54 

 

Reference 

1.  Ali A, Yoo MJY, Moss C, et al. Carbohydrate mouth rinsing has no effect on power 

output during cycling in a glycogen-reduced state. J Int Soc Sports Nutr 2016;13(1):19.  

2.  Anantaraman R, Carmines AA, Gaesser GA, Weltman A. Effects of carbohydrate 

supplementation on performance during 1 hour of high-intensity exercise. Int J Sports 

Med 1995;16(7):461–5.  

3.  de Araujo IE, Ren X, Ferreira JG. Metabolic sensing in brain dopamine systems. Results 

Probl Cell Differ 2010;52:69–86. 

4.  de Araujo IE, Simon SA. The gustatory cortex and multisensory integration. Int J Obes 

(Lond) 2009;33 Sup2:S34-43.  

5.  de Ataide e Silva T, Di Cavalcanti Alves de Souza ME, de Amorim JF, Stathis CG, 

Leandro CG, Lima-Silva AE. Can carbohydrate mouth rinse improve performance during 

exercise? A systematic review. Nutrients 2014;6(1):1–10.  

6.  Bastos-Silva VJ, Melo A de A, Lima-Silva AE, Moura FA, Bertuzzi R, de Araujo GG. 

Carbohydrate Mouth Rinse Maintains Muscle Electromyographic Activity and Increases 

Time to Exhaustion during Moderate but not High-Intensity Cycling Exercise. Nutrients 

2016;8(3):49.  

7.  Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J 

Sports Physiol Perform 2006;1(1):50–7.  

8.  Beelen M, Berghuis J, Bonaparte B, Ballak SB, Jeukendrup AE, van Loon LJC. 

Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial 

performance. Int J Sport Nutr Exerc Metab 2009;19(4):400–9.  

9.  Below PR, Mora-Rodríguez R, González-Alonso J, Coyle EF. Fluid and carbohydrate 

ingestion independently improve performance during 1 h of intense exercise. Med Sci 

Sports Exerc 1995;27(2):200–10.  

10.  Bergström J, Hermansen L, Hultman E, Saltin B. Diet, Muscle Glycogen and Physical 



 55 

 

Performance. Acta Physiol Scand 1967;71(2–3):140–50.  

11.  Burke LM, Maughan RJ. The Governor has a sweet tooth – Mouth sensing of nutrients to 

enhance sports performance. Eur J Sport Sci 2015;15(1):29–40.  

12.  Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h 

cycle time trial performance. Med Sci Sports Exerc 2004;36(12):2107–11.  

13.  Carter JM, Jeukendrup AE, Mann CH, Jones DA. The effect of glucose infusion on 

glucose kinetics during a 1-h time trial. 2004;36(9):1543-50. 

14.  Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects 

on exercise performance and brain activity. J Physiol 2009;587(Pt 8):1779–94.  

15.  Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects 

on exercise performance and brain activity. J Physiol 2009;587(Pt 8):1779–94.  

16.  Coggan AR, Coyle EF. Carbohydrate ingestion during prolonged exercise: effects on 

metabolism and performance. Exerc Sport Sci Rev 1991;19:1–40. 

17.  Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilization during 

prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 1986;61(1):165–72.  

18.  Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JO. Carbohydrate 

feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol 1983;55(1 

Pt 1):230–5.  

19.  Desbrow B, Anderson S, Barrett J, Rao E, Hargreaves M. Carbohydrate-electrolyte 

feedings and 1 h time trial cycling performance. Int J Sport Nutr Exerc Metab 

2004;14(5):541–9.  

20.  Devenney S, Collins K, Shortall M. Effects of various concentrations of carbohydrate 

mouth rinse on cycling performance in a fed state. Eur J Sport Sci 2016;1–6.  

21.  Doherty M, Smith PM. Effects of caffeine ingestion on exercise testing: A meta-analysis. 

Int J Sport Nutr Exerc Metab 2004;14(6):626–46. 

22.  el-Sayed MS, Balmer J, Rattu AJ. Carbohydrate ingestion improves endurance 



 56 

 

performance during a 1 h simulated cycling time trial. J Sports Sci 1997;15(2):223–30.  

23.  Fares E-JM, Kayser B, Fares E-JM, Kayser B. Carbohydrate mouth rinse effects on 

exercise capacity in pre- and postprandial States. J Nutr Metab 2011;2011:385962.  

24.  Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual 

analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes 

Relat Metab Disord 2000;24(1):38–48.  

25.  Frank GKW, Oberndorfer TA, Simmons AN, et al. Sucrose activates human taste 

pathways differently from artificial sweetener. Neuroimage 2008;39(4):1559–69.  

26.  Gam S, Guelfi KJ, Fournier PA. Opposition of Carbohydrate in a Mouth-Rinse Solution to 

the Detrimental Effect of Mouth Rinsing During Cycling Time Trials. Int J Sport Nutr 

Exerc Metab 2013;23:48–56. 

27.  Gant N, Stinear CM, Byblow WD. Carbohydrate in the mouth immediately facilitates 

motor output. Brain Res 2010;1350:151–8.  

28.  Gollnick PD. Metabolism of substrates: energy substrate metabolism during exercise and 

as modified by training. Fed Proc 1985;44(2):353–7.  

29.  Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli 

during the physiological states of hunger and satiety. Neuroimage 2009;44(3):1008–21.  

30.  Hajnal A, Smith GP, Norgren R. Oral sucrose stimulation increases accumbens dopamine 

in the rat. AJP Regul Integr Comp Physiol 2003;286(1):31R–37. 

31.  Hawley JA, Schabort EJ, Noakes TD, Dennis SC. Carbohydrate-loading and exercise 

performance. An update. Sports Med 1997;24(2):73–81. 

32.  Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. 

Acta Physiol Scand 1967;71(2):129–39.  

33.  Hopkins W. How to Interpret Changes in an Athletic Performance Test. Sportscience 

2004;1–7. Available from: http://www.sportsci.org/jour/04/wghtests.htm 

34.  Ispoglou T, OʼKelly D, Angelopoulou A, Bargh M, OʼHara JP, Duckworth LC. Mouth 



 57 

 

Rinsing With Carbohydrate Solutions at the Postprandial State Fail to Improve 

Performance During Simulated Cycling Time Trials. J Strength Cond Res 

2015;29(8):2316–25.  

35.  Jeffers R, Shave R, Ross E, Stevenson EJ, Goodall S. The effect of a carbohydrate mouth-

rinse on neuromuscular fatigue following cycling exercise. Appl Physiol Nutr Metab 

2015;40(6):557–64.  

36.  Jeukendrup A, Brouns F, Wagenmakers A, Saris W. Carbohydrate-Electrolyte Feedings 

Improve 1 h Time Trial Cycling Performance. Int J Sports Med 1997;18(2):125–9.  

37.  Jeukendrup AE. Carbohydrate feeding during exercise. Eur J Sport Sci 2008;8(2):77–86.  

38.  Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition;2004(7–

8):669–77. 

39.  Jeukendrup AE. Oral carbohydrate rinse: placebo or beneficial? Curr Sports Med Rep 

2013;12(4):222–7.  

40.  Katz DB, Nicolelis MA, Simon SA. Nutrient tasting and signaling mechanisms in the gut. 

IV. There is more to taste than meets the tongue. Am J Physiol Gastrointest Liver Physiol 

2000;278(1):6-9.  

41.  Kulaksız TN, Koşar ŞN, Bulut S, et al. Mouth Rinsing with Maltodextrin Solutions Fails 

to Improve Time Trial Endurance Cycling Performance in Recreational Athletes. 

Nutrients 2016;8(5). 

42.  Lane SC, Bird SR, Burke LM, Hawley JA. Effect of a carbohydrate mouth rinse on 

simulated cycling time-trial performance commenced in a fed or fasted state. Appl Physiol 

Nutr Metab 2013;38(2):134–9.  

43.  McConell GK, Canny BJ, Daddo MC, Nance MJ, Snow RJ. Effect of carbohydrate 

ingestion on glucose kinetics and muscle metabolism during intense endurance exercise. J 

Appl Physiol 2000;89(5):1690–8. 

44.  Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements in 



 58 

 

exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol 

1987;62(3):983–8.  

45.  van Nieuwenhoven MA, Brouns F, Kovacs EMR. The effect of two sports drinks and 

water on GI complaints and performance during an 18-km run. Int J Sports Med 

2005;26(4):281–5.  

46.  Okano G, Takeda H, Morita I, Katoh M, Mu Z, Miyake S. Effect of pre-exercise fructose 

ingestion on endurance performance in fed men. Med Sci Sports Exerc 1988;20(2):105–9.  

47.  Palmer G, Clancy M, Hawley J, Rodger I, Burke L, Noakes T. Carbohyrate Ingestion 

Immediately Before Exercise Does Not Improve 20 km Time Trial Performance in Well 

Trained Cyclists. Int J Sports Med 1998;19(6):415–8.  

48.  Peters HP, Wiersma JW, Koerselman J, et al. The Effect of a Sports Drink on 

Gastroesophageal Reflux During a Run-Bike-Run Test. Int J Sports Med 2000;21(1):65–

70.  

49.  Phillips SM, Findlay S, Kavaliauskas M, Grant MC. The Influence of Serial Carbohydrate 

Mouth Rinsing on Power Output during a Cycle Sprint. J Sports Sci Med 2014;13(2):252–

8.  

50.  Pottier A, Bouckaert J, Gilis W, Roels T, Derave W. Mouth rinse but not ingestion of a 

carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports 

2010;20(1):105–11.  

51.  van Rijn I, de Graaf C, Smeets PAM. Tasting calories differentially affects brain 

activation during hunger and satiety. Behav Brain Res 2015;279:139–47. 

52.  Rollo I, Cole M, Miller R, Williams C. Influence of mouth rinsing a carbohydrate solution 

on 1-h running performance. Med Sci Sports Exerc 2010;42(4):798–804.  

53.  Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance 

performance. Sports Med 2011;41(6):449–61.  

54.  Rollo I, Williams C, Gant N, Nute M. The influence of carbohydrate mouth rinse on self-



 59 

 

selected speeds during a 30-min treadmill run. Int J Sport Nutr Exerc Metab 

2008;18(6):585–600.  

55.  Rollo I, Williams C, Nevill M. Influence of ingesting versus mouth rinsing a carbohydrate 

solution during a 1-h run. Med Sci Sports Exerc 2011;43(3):468–75.  

56.  Simon SA, de Araujo IE, Gutierrez R, Nicolelis MAL. The neural mechanisms of 

gustation: a distributed processing code. Nat Rev Neurosci 2006;7(11):890–901.  

57.  Sinclair J, Bottoms L, Flynn C, et al. The effect of different durations of carbohydrate 

mouth rinse on cycling performance. Eur J Sport Sci 2014;14(3):259–64.  

58.  Smeets PAM, de Graaf C, Stafleu A, van Osch MJP, van der Grond J. Functional MRI of 

human hypothalamic responses following glucose ingestion. Neuroimage 2005;24(2):363–

8. 

59.  Thomas K, Goodall S, Stone M, Howatson G, Gibson SC, Ansley L. Central and 

Peripheral Fatigue in Male Cyclists after 4-, 20-, and 40-km Time Trials. Med Sci Sport 

Exerc 2015;47(3):537–46.  

60.  Thompson PD, Arena R, Riebe D, Pescatello LS. ACSM’s New Preparticipation Health 

Screening Recommendations from ACSM’s Guidelines for Exercise Testing and 

Prescription, Ninth Edition. Curr Sports Med Rep 2013;12(4):215–7.  

61.  Trommelen J, Beelen M, Mullers M, Gibala MJ, van Loon LJC, Cermak NM. A Sucrose 

Mouth Rinse Does Not Improve 1-hr Cycle Time Trial Performance When Performed in 

the Fasted or Fed State. Int J Sport Nutr Exerc Metab 2015;25(6):576–83.  

62.  Whitham M, McKinney J. Effect of a carbohydrate mouthwash on running time-trial 

performance. J Sports Sci 2007;25(12):1385–92. 

63.  Widrick JJ, Costill DL, Fink WJ, Hickey MS, McConell GK, Tanaka H. Carbohydrate 

feedings and exercise performance: effect of initial muscle glycogen concentration. J Appl 

Physiol 1993;74(6):2998–3005.  

64.  Will G Hopkins. Spreadsheets for analysis of controlled trials, crossoves and time series. 



 60 

 

Sportscience 2017;1–4.  

65.  Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in 

combination improve cycling endurance performance. J Appl Physiol 1991;71(3):1082–8.  

 

 

 

 
 

 


	James Madison University
	JMU Scholarly Commons
	Spring 2017

	Mouth exposure to carbohydrate prior to exercise possibly impairs the efficacy of carbohydrate mouth rinsing during exercise
	Kevin Decker
	Recommended Citation


	tmp.1493737788.pdf.BHv6g

