
James Madison University
JMU Scholarly Commons

Masters Theses The Graduate School

Spring 2012

Forensic analysis of linux physical memory:
Extraction and resumption of running processes.
Ernest D. Mougoue
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/master201019
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in
Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.

Recommended Citation
Mougoue, Ernest D., "Forensic analysis of linux physical memory: Extraction and resumption of running processes." (2012). Masters
Theses. 275.
https://commons.lib.jmu.edu/master201019/275

https://commons.lib.jmu.edu/?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/grad?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019/275?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu

Forensic Analysis of Linux Physical Memory:

Extraction and Resumption of Running Processes

Ernest Djomani Mougoue

A thesis submitted to the Graduate Faculty of

JAMES MADISION UNIVERSITY

In

Partial Fulfillment of the Requirements

for the degree of

Master of Science

Department of Computer Science

May 2012

 ii

DEDICATION

To Thee for every drop—

The bitter and the sweet.

To Thee for the desert road,

And for the riverside;

For all Thy goodness hath bestowed,

And all Thy grace denied.

To Thee for both smile and frown,

And for the gain and loss;

To Thee for the future crown

And for the present cross.

To Thee for both wings of love

Which stirred my worldly nest;

And for the stormy clouds which drove

Me, trembling, to Thy breast.

Adapted from ―I Thank Thee‖ – Jane Crewdson (1850)

 iii

ACKNOWLEDGEMENTS

A number of people have contributed to the completion of this project and my journey at

James Madison and to them I am very grateful. My first thanks go to my family and

friends all over the world: We may not see each other often, but your continuous support

and encouragements are worth more than you can imagine to me. Special thanks to my

brother Ghislain (Gman) who has been and continues to be a center piece to my recent

achievements.

I would like to thank my committee chair and advisor Dr. Florian Buchholz for his

guidance and patience through the thesis process which was completely new to me. My

gratitude also goes to the other members of my committee Dr. Bernstein and Dr. Wang

for their time spent reviewing my work.

My time at JMU was particularly impacted by many individuals: the faculty of the

department of Computer Science (especially Dr. Mata-Toledo, Dr. Fox, Dr. Elvis Tjaden

and Taz Daughtrey), the faculty and staff of the College of Business (I have to mention

by name my boss for two years Dave Jones, thanks for giving me a chance), the members

of the African Student Organization, the staff of the International Student and Scholar

Services, the members of the International Students Association, the members of the

Student Technology Advisory Committee (STAC), the Information Technology staff at

JMU and the Zeta Chapter of Virginia of the Upsilon Pi Epsilon honor society.

Finally, I would like to express my appreciation to all the three generations of graduate

students with whom I shared the ―CS Grad Lounge‖ and countless memories, especially

Ally, Joel, Will, Sufi, Justin, Tyler, Deborah, Ben, Stephen (GLG), Jasen, Brian, Jona,

Newton, Jake, Xuewen, Tom, Fred and Brandon.

 iv

TABLE OF CONTENTS

LIST OF TABLES ... VI

LIST OF FIGURES .. VII

ABSTRACT ... VIII

1. INTRODUCTION... 1

1.1. BACKGROUND, OVERVIEW AND PROBLEM STATEMENT ... 2

1.2. PURPOSE AND MOTIVATION .. 5

1.3. DOCUMENT STRUCTURE .. 6

2. DIGITAL FORENSICS BACKGROUND, RELATED WORK AND CONTRIBUTION..................... 8

2.1. OVERVIEW OF DIGITAL FORENSICS PROCESS AND PRACTICES ... 8

2.1.1. Digital Forensics Methodologies .. 8

2.1.2. Digital Forensics Activities... 12

2.2. OVERVIEW OF MALWARE ANALYSIS ... 16

2.2.1. Static Malware Analysis ... 17
2.2.2. Dynamic Malware Analysis .. 18

2.3. ADVANCES IN FORENSIC ANALYSIS OF PHYSICAL MEMORY .. 20

2.3.1. RAM Analysis on Microsoft Windows... 20
2.3.2. RAM Analysis on OSX .. 22
2.3.3. RAM Analysis on Linux ... 23

2.4. WORK RELATED TO PROCESS RESUMPTION .. 24

2.5. CONTRIBUTIONS OF OUR WORK .. 25

3. THE LINUX KERNEL AND PROCESS INFORMATION IN MEMORY 29

3.1. LINUX MEMORY MANAGEMENT .. 29

3.1.1. The Virtual Memory .. 29
3.1.2. From Virtual to Physical Memory: Translation and Paging 31

3.2. PROCESS-RELATED KERNEL DATA STRUCTURES.. 33

3.2.1. The Process Descriptor ... 33

3.2.2. Process Address Space ... 36
3.2.3. Processes and Filesystem Kernel Structures .. 39

4. EXTRACTING PROCESS INFORMATION FROM THE RAM (GETTSK) 42

4.1. INITIAL SETUP AND IMAGE ACQUISITION .. 42

4.2. EXTRACTING PROCESS INFORMATION ... 46

4.2.1. Identifying the Process to be Saved .. 46
4.2.2. Retrieving the Process’ Artifacts and Metadata ... 48

4.3. SAVING THE OBTAINED RESULTS .. 55

 v

4.4. LIMITATIONS OF GETTSK .. 57

5. RESUMING THE EXECUTION OF AN EXTRACTED PROCESS (MEMEXEC) 59

5.1. REQUIREMENTS AND DESIGN OPTIONS ... 59

5.2. RESTORING PROCESS ARTIFACTS .. 62

5.2.1. General Methodology ... 62
5.2.2. Implementation (Memexec) ... 64
5.2.3. Results ... 69

5.2.4. Limitations of Memexec .. 73

6. CONCLUSION .. 74

APPENDIX A: OFFSETS AND OTHER CONFIGURATIONS ... 78

APPENDIX B: LISTING RUNNING PROCESSES .. 80

APPENDIX C: GETTSK SOURCE CODE ... 81

APPENDIX D: XML SCHEMA FOR GETTSK‘S OUTPUT .. 92

APPENDIX E: MEMEXEC SOURCE CODE ... 94

REFERENCE LIST .. 108

 vi

LIST OF TABLES

TABLE 1. GENERAL INFORMATION EXTRACTED BY GETTSK .. 50

 vii

LIST OF FIGURES

FIGURE 1. ―DEAD‖ FORENSIC ACQUISITION [31] ... 9

FIGURE 2. ―LIVE‖ FORENSIC ACQUISITION [31] ... 10

FIGURE 3. VIRTUAL MEMORY LAYOUT FOR USER MODE PROCESS 30

FIGURE 4. THE PAGING MECHANISM [3] .. 32

FIGURE 5. EXCERPT OF TASK_STRUCT .. 35

FIGURE 6. EXCERPT OF MM_STRUCT .. 37

FIGURE 7. PROCESS ADDRESS SPACE STRUCTURES ... 38

FIGURE 8. EXCERPT FROM FILE ... 40

FIGURE 9. POSSIBLE VALUES OF THE EXECUTION STATE .. 49

FIGURE 10. FINDING THE PROCESS REGISTER SET ... 54

FIGURE 11. ORIGINAL MAPPINGS FOR THE DYNAMICALLY COMPILED TEST PROGRAM 70

FIGURE 12. RESTORED MAPPINGS FOR THE DYNAMICALLY COMPILED TEST PROCESS 71

FIGURE 13. ORIGINAL MAPPINGS FOR THE STATICALLY COMPILED TEST PROCESS 72

 viii

ABSTRACT

Traditional digital forensics‘ procedures to recover and analyze digital data were focused

on media-type storage devices like hard drives, hoping to acquire evidence or traces of

malicious behavior in stored files. Usually, investigators would image the data and

explore it in a somewhat ―safe‖ environment; this is meant to reduce as much as possible

the amount of loss and corruption that might occur when analysis tools are used.

Unfortunately, techniques developed by intruders to attack machines without leaving files

on the disks and the ever dramatically increasing size of hard drives make the discovery

of evidence difficult. These increased interest in research on live forensics (attempting to

obtain evidence while the system is running) and on volatile memory forensic analysis.

Because of the important role they play in computing systems, volatile memory is a

source of information about running processes, network connections, opened files and/or

loaded kernel modules that might be valuable to forensic investigations.

In this thesis we show that when provided with an image of the physical memory of a

Linux system, it is possible to extract data about a specific running process, enough to be

able to resume its execution on a prepared environment. We also describe two proof-of-

concept tools gettsk and memexec developed for this purpose. This would allow

investigators to not only obtain information about a suspicious running task from a RAM

dump, but also to perform further inquiry through techniques such as malware analysis.

1. INTRODUCTION

 Digital forensic investigations aim at establishing the patterns, causes and

consequences of attacks on a computer system. Investigators attempt to determine the

nature and chronology of events that might have caused system failure or loss of valuable

assets. They seek evidence of changes in configurations and any artifact that could alter

the behavior of the system or put it in an undesirable state. This is done mainly by

capturing and analyzing storage devices for threats and exploited vulnerabilities. In some

cases, malicious software (or malware) are responsible for the misbehavior, in which

situation suspected software programs are identified and studied through a set of

activities called malware analysis. These techniques help determine what damages the

malware can expose the system to, thus allowing investigators to take appropriate

decisions and measures to mitigate and ultimately annihilate its effects. Because of the

danger they represent, it is commonly recommended to perform forensic analyses of

malicious programs in a non-production and heavily controlled environment.

 Historically, only permanent storage media such as hard disk drives were

examined by investigators who hoped to find evidence in files on disk. Since they do not

lose their contents when the machine is powered down, researchers have been able to

develop methods to analyze files and their associated metadata for knowledge valuable to

forensic investigations. However, they do not constitute the only sources of information;

a considerable amount of data about computer systems can be obtained by exploring the

contents of volatile media amid the primordial role they play in performing operating

systems tasks. It is possible, for example, to obtain information about the processes

2

running on a host at a given time, as well as associated objects such as opened/mapped

files and network connections, by examining the physical memory. However, the volatile

nature of the memory and the fact that their use is highly operating system-dependent

make the acquisition and analysis of its contents challenging. Even when the RAM is

successfully acquired and enough process-specific data retrieved, it is still difficult to

perform an effective malware analysis.

 In this document, we describe ways to collect information about a running

process, when provided with an image of a Linux 2.6 physical memory, and resume its

execution on another host. This will permit investigators not only to examine the data for

evidence, but also to perform further malware analysis in a controlled environment.

1.1. Background, Overview and Problem Statement

 Computer-related attacks against individuals and companies referred to as

cybercrime, have been on the rise for the past decades. Various types of cybercrime exist

depending on parameters such as the target and the techniques used to execute the attack;

they are often classified as follows with respect to the crime perpetrated [16]:

- Identity theft: Access to and misuse of personal information for fun or profit.

- Cyber harassment: Use of computer systems to threaten or stalk another person.

- Unauthorized access to computer systems or data: Also known as computer

crime.

- Fraud: Bank and other financial fraud, data piracy.

3

- Non-access computer crimes: causing damage without gaining control of the

computer system. This includes for example denial-of-service and virus attacks.

The consequences of these attacks on personal and group welfare are considerable as

shown by an Identity Theft Resource Centre (ITRC) report, which states that 662 major

data breaches were identified in 2010, exposing more than 16 million personal records

[29]. The U.S. department of Justice also reported from a survey that 67% of

participating businesses have been victims of at least one cybercrime in 2005, with a total

in losses estimated at $867 million [38]. In a similar survey, the Computer Security

Institute (CSI) found out that the average loss per business in 2007 was around $350,000,

nearly the double of the previous year results [39]. Cybercrime has escalated to introduce

the concept of cyber warfare, which refers to actions that a country/nation or

governmental organization takes to compromise the computing systems of other

countries‘/nations‘ in order to disrupt, create damage or obtain secret information. A

recent example of such actions is the Stuxnet worm that spread around the world and

targeted specific industrial control systems [45]. Therefore, the need for digital forensic

investigations and malware analysis techniques, to better understand these attacks and

reduce the effects of cybercrime, is growing very fast and so is research in these areas.

 Early digital forensics efforts were focused on permanent media storage, since the

filesystem can be preserved and studied to detect anomalies [8]. Their contents are

imaged or copied into other devices and generally attached to different machines for

further investigation. Unfortunately, intruders have developed techniques to hide tracks

of their mischief such as deleting compromising evidence, and performing their attacks

without leaving files on the disks. Also, it is difficult to obtain information about the

4

programs running on the system, the network connections opened, the loaded kernel

modules or other process and operating system-related artifacts at the time of acquisition,

as they are generally stored on main memory. This increased the interest in live forensics

(attempt to obtain evidence while the system is running) and in the analysis of volatile

media such as the Random Access Memory or RAM. The storage acquisition and

analysis methodologies as well as their limitations are developed in Section 2.1.2.

 The main memory plays an important role to the effective functioning of a

computing system, as it is used to keep track of the interactions between the OS, the

applications running on the machine, the filesystem and the hardware (CPU). Therefore,

harvesting the contents of the RAM is of undeniable value to a forensic investigation,

especially if the acquisition is done correctly, at the right time and can be parsed for

evidence. For instance, some passwords and encryption keys can be found in memory

[25, 30], as well as structures holding important information about running processes

[43]. Fortunately, in the past decade, major progress in documenting what kind of data

can be extracted from an image of RAM and how to obtain it have been made (discussed

in Section 2.3). However the resulting tools and techniques are mostly operating system-

dependent, because of the differences in the way each uses the memory. Furthermore,

investigators do not have a complete understanding of what incidents might have

happened on the system just from a memory analysis, since the results are mainly

presented in the form of lists (such as list of running processes, open files and network

connections) and represent the state of the machine at a specific moment (they do not

include an evolution of the situation over time).

5

 In light of all the above, two questions concerning the forensic analysis of

physical memory come to mind. First, when provided with the RAM dump of a machine,

what kind of data can be extracted? Second, how can we make the obtained information

more useful to investigations?

Taking into consideration the fact that most of the incidents happening on computers are

linked to applications, our approach is concentrated on acquiring knowledge about

specific processes being run on the machine when the RAM was captured and restoring

their execution state. Is all the data necessary to bring a process back to life available

from the memory image? Assuming the answer is affirmative, how hard is it to resume a

process? What kind of environment is required? These are some of the questions that will

be considered in this thesis.

1.2. Purpose and Motivation

 The purpose of our work is to determine to what extent it is possible to collect

data about a specific process running on the machine and resume its execution on another

―safe‖ environment, from an image of the memory of a Linux 2.6 kernel.

 The immediate benefit that such a capability offers is bringing together the

advantages of both ―dead‖ and ―live‖ forensic analysis techniques (described in Section

2.1.1). Indeed, obtaining an image of the RAM allows the investigation to be performed

with minimum corruption of the state of the original machine; Meanwhile gathering the

context and environment of a process and resuming its execution on a prepared host gives

more confidence in the integrity of the live tools used [35]. It would also permit

6

investigators to have a repeatable analysis process (which is of great value when evidence

is presented in a court of law) and give them the ability to perform additional inquiries on

extracted artifacts without risk to production systems.

An important aspect of digital forensics and incident response is the study of malicious

software or malware analysis in order to determine their purpose, stop their progression

and/or protect against their propagation (See Section 2.2). One of the techniques used

here is dynamic malware analysis, which involves running the malware to observe and

monitor its interactions with the system rather than attempting to determine the malware

execution path without actually running it. Our work could allow investigators to perform

dynamic malware analysis on a suspicious program rebuilt from an image of the RAM.

A more detailed description of the potential benefits of our work can be found in Section

2.5.

1.3. Document Structure

 This document is divided in six parts. Following this introduction, Chapter 2

gives a general overview of the field of digital forensics and presents prior work related

to the analysis of physical memory; the contributions that our study bring are also

discussed. Chapter 3 documents what relevant information about a running process is

available in a Linux RAM and where to locate it in the 2.6 kernel. Chapter 4 and Chapter

5 describe in detail, the activities to perform in order to acquire and store process specific

data, as well as ways to transport the execution of the process onto another host. They

both include a proof-of-concept experiment showing results produced by applying the

7

described methods. We conclude with a summary of the thesis, a statement of the major

problems encountered during research as well as future work.

2. DIGITAL FORENSICS BACKGROUND, RELATED WORK AND CONTRIBUTION

 This chapter presents a general view of what digital forensics and malware

analysis are about, followed by a review of major developments in the forensic analysis

of physical memory. We close the chapter with an enumeration of the potential benefits

that our research can bring to the forensics community.

2.1. Overview of Digital Forensics Process and Practices

 According to Wiles [51], digital forensics can be defined as ―the preservation,

identification, extraction, interpretation and documentation of computer evidence‖. This

definition suggests that to get the best results acceptable in a legal system, investigations

require a variety of activities (preservation, extraction, interpretation and documentation).

Over the years, researchers have proposed different processes and codes of conduct to

perform these various tasks. The following sections describe general digital forensics

investigation process models as well as the major activities they comprise.

2.1.1. Digital Forensics Methodologies

 A main concept in defining digital forensics models, consists in following existing

procedures used for physical crime scenes, and includes technology-specific guidelines.

Carrier and Spafford proposed a model of digital investigation, admissible in a court of

law, which easily integrates with refined law enforcement methodologies for a mutual

9

benefit [11]. The result of such collaboration is a link between human suspects and digital

evidence. Carrier summarizes the process into three general stages [7]:

- Preservation: Collect and copy the digital data in its entirety and integrity.

- Search and Analysis: includes examination, interpretation and recovery of the

acquired data.

- Reconstruction: report and documentation of events leading to the crime.

In practice however, applying these recommendations is not a simple issue; factors

surrounding the investigation such as the state of the machine at different stages of the

process have to be taken into account.

In the early years of digital forensics, “dead” acquisition was used. This method requires

investigators to power down the machine(s) to be examined to avoid potential loss or

modification of data on the system. Afterwards, media such as hard drives and other data-

persistent devices are harvested for analysis (see Fig. 1).

Figure 1. ―Dead‖ Forensic Acquisition [31]

10

Figure 2. ―Live‖ Forensic Acquisition [31]

More recently, new techniques emerged to acquire and analyze data while the system is

still running. They form what is called ―live‖ forensic analysis (see Fig. 2). It is worth

noting that both Figure 1 and Figure 2 do not address acquiring volatile data, illustrating

the fact that it was not appropriately considered in early forensic investigations.

Lessing and Von Solms published a comparative study of both frameworks (―dead‖ and

―live‖ forensic analysis) [31]. According to their observations, ―dead‖ analysis

procedures are straightforward and more or less platform independent. Also, chances that

evidence are corrupted are very small since the computer is not running. However, dead

forensic analysis presents some limitations, which include:

- Volatile data (data that exist when the machine is running and is destroyed

after a shutdown) such as network information and physical memory are

difficult to acquire, even impossible when the system is already shut down.

11

- With the increasing size of hard drives, investigations become time-

consuming and valuable evidence could be missed as a consequence of the

large amount of information.

- It is now common practice to use encryption on disks for protection against

attackers who have physical access to the system. When the machine is

powered off, the encryption keys (usually residing in memory) necessary to

access the contents of the storage device are not available [25, 26]. In such

situations, the investigator may not be able to analyze the collected data.

Live forensic analysis on the other hand allows analysis of volatile data through

techniques such as ―trusted‖ command shells (local analysis) or remote connections

(network analysis). The investigators interact directly with the underlying operating

system and therefore have access to the memory; with the appropriate credentials, disk

encryption is not an issue anymore [26]. Live analysis however can be associated with

shortcomings that can diminish the value of forensic evidence in court [31, 9, 26]:

- Evidence can be altered. Because of the interaction with the operating system,

tools or mistakes from the investigator might modify files and/or memory

locations on the system and potentially affect evidence.

- The tests performed during live forensics are generally not repeatable, since

the state of the system changes.

- The tools are platform dependent. Every system is different, so the tools must

be tailored to fit specific platforms: what works for one might not be usable in

the other.

12

- The presence of a kernel rootkit (malicious software running on a system, at

the kernel level and with privileged permissions while at the same time hiding

its existence to users by changing the normal behavior of the operating

system) could provide investigators with erroneous, incomplete or no

information at all.

An alternative to both ―dead‖ and live analysis would be to complementarily combine

them during a unique investigation process. Mrdovic et al. [35] claim that such a

combination is feasible with the use of memory imaging/dumping and virtualization.

Indeed, both persistent and volatile data could be imaged/copied and then the studied

machine powered down. Finally, a virtual environment could be created to mimic the

behavior of the investigated computer. At this point, some ―live‖ interaction could

happen without significant impact on the integrity of the collected evidence. Although

most of the shortcomings of dead analysis do not apply when this technique is used and

the process is repeatable, the live interaction in the virtual machine is still operating-

system based and thus subject to evidence manipulation.

2.1.2. Digital Forensics Activities

2.1.2.1. Acquisition and Preservation

 It is crucial for investigators to correctly collect and preserve data from machines;

any mistake could lead to loss of evidence or rejection from court. Carrier indicates that a

great deal of information pertaining to a digital forensic investigation can be obtained

from files in external storage media like hard drives [8]. He also describes general

techniques used to acquire data from these devices, such as the dd command in UNIX

13

systems, which performs a byte-to-byte copy from one medium to the other, and the

concept of hashing to verify the integrity of copied data.

Unfortunately, in addition to the disk encryption discussed earlier, hard drives wear out

over time or can be damaged; also, attackers have developed ways to hide their tracks

through data destruction (deleting files potentially containing evidence of intrusion) [23]

and data contraception (performing attacks without writing to any file on disk, also

referred to as memory resident malware) [24]. Therefore, the interest in obtaining other

sources of data such as volatile storage media grew significantly.

 Because of the transient nature of volatile data, its acquisition is challenging and

time sensitive. Methods and tools exist to efficiently dump the RAM, classified by

Burdach in two major groups [6]: Software and hardware-based methods.

- Software-based memory acquisition consists of utilities loaded on the live

system to dump the RAM on an external device. Generally, the effects of

running the toolkit on the system are known to the investigator and are

considered during analysis. However, if the machine is infected, there is a

chance that the tool used to image the memory gets compromised by the

malicious program and that misleading evidence is produced. Moreover, it is

difficult to verify that the imaging operation was performed correctly, since

the memory is constantly changing. These integrity and verifiability issues are

not a concern in a virtual environment as most of the virtualization toolkits

(such as VMware and Xen) provide mechanisms to acquire a snapshot of the

RAM (pause the execution of the host and collect the memory) [47]. The

14

contents of memory are constantly changing and thus data collected by the

software tool might be inconsistent.

- Hardware-based methods implant devices on the computer to bypass the

Operating System. They use DMA (Direct Memory Access) to access the

RAM and copy its contents to external storage media. Unfortunately, attackers

might be able to detect the devices and as a result, provide erroneous

information. An example of such hardware components includes a hidden PCI

card that would be visible to the machine only when enabled by an

investigator; however, this method is impractical as it requires the PCI card to

be installed and configured on the machine before the incident occurs [10].

Also, a firewire device (IEEE 1394) that accesses the physical memory

independently of the CPU can be used [34]. This firewire acquisition

technique can slightly modify the state of the machine (in case the operating

system has to activate the port) and, if not properly performed, crash the

system.

Contrary to popular belief, some of the RAM hardware on the market does not

immediately lose their contents when the system is powered down; there is a small time

window of data persistence (several seconds), which could be significantly extended by

freezing the RAM chips [25]. This retention capability could be exploited by

investigators to copy the contents of the memory by rapidly restarting the machine after a

shutdown; the full operating system is not loaded, rather, a specially crafted program

installed on a USB drive or attached to a network/firmware boot is used to start the

15

machine and dump the contents of the RAM [25]. This method however presents a timing

challenge, and can be tried only once: in case of failure, everything will be lost.

2.1.2.2. Data Analysis

 Much information can be obtained by examining the data acquired from a hard

drive for a forensic investigation: deleted files can be restored; log files, browsing history

and more can help support or refute theories about the incidents [8]. The investigators

typically have to rebuild the volumes and partitions from the image, based on the specific

type of file systems in use, and then search through the files for tangible evidence. The

rapid increase in hard-drive size, the proliferation of file types/formats and the rise of

storage management technologies such as RAID and LVM have complicated the

investigators‘ ability to discover evidence. In such situations, information gathered by

analyzing the physical memory can be particularly useful since they might provide

preliminary answers and help the investigator prioritize on the type of information to look

for in the filesystem. Also, as researchers are developing more ways to extract, parse and

study the contents of memory, some investigators have started to give a lot more value to

the data from the RAM.

 Despite the importance of the information that could be found in the RAM,

research in forensic analysis of memory is relatively young (no more than a decade old).

Initially, investigators derived clues by searching for strings on the binary dump of the

memory, hoping to uncover sequences of characters that might have a meaning such as

the name of a process or a loaded kernel module. Unfortunately, this method is not

efficient because of the important number of strings that can be found in a memory dump.

It was not until the release of the 2005 Memory Analysis Challenge for the 5
th

 edition of

16

the Digital Forensics Research Workshop (DFRWS) [2, 17], that an active community

began making progress on answering the question of what can be discovered given a

snapshot of memory (more details in Section 2.3).

2.2. Overview of Malware Analysis

 In the aftermath of a computer attack, or after a security incident has been

detected, a set of activities, referred to as incident response, is generally performed to

identify the threats on the system, reduce potential damages and ultimately prevent the

attack to happen again in the future. The SANS (SysAdmin, Audit, Networking and

Security) Institute proposed a standard approach to incident response composed of six

consecutive steps [15]: Preparation, Identification, Containment, Eradication, Recovery

and Lessons Learned.

Malware Analysis, the study of an unwanted and potentially malicious piece of software

(such as virus, Trojan, spyware, etc…), is an inherent part of the incident response

process and is usually associated with the identification phase. Indeed, malware analysis

activities attempt to determine exactly what actions the malware performs and to some

extent, how it was introduced into the system. This permits the responders to efficiently

recover from incidents and strengthen their system against similar infections.

The traditional methodology in performing malware analysis involves collecting all the

available artifacts (such as code and/or executable files) of the malicious software and

transporting them into a contained (i.e. cannot infect production machines) host

specifically prepared for observation and analysis. Depending on whether the malware is

17

actually run or not, there exist two different types of malware analysis techniques: static

and dynamic analysis [15, 1].

2.2.1. Static Malware Analysis

 Static analysis refers to the set of techniques used to determine how a piece of

malware works without executing it on a machine. This usually involves reverse

engineering the software and/or examining its code/binaries to understand what it is

supposed to do. The most common tools range from the advanced decompilers and

disassemblers to the simple source code viewers and string matching utilities [40]. Static

analysis permits investigators to walk through the malicious code and immediately

identify the weaknesses exploited by the malware and therefore plan for effective defense

mechanisms to be implemented on the system. Also, most or all of the execution paths of

the malicious software can be covered through this analysis method and it is usually

faster than dynamic analysis [15, 1, 17]. However, static analysis has a few limitations:

- For large and complex code, it may be difficult to completely predict what

the malware does; Investigators sometimes have to approximate the

overall behavior.

- Obfuscation techniques have been developed to make the disassembly and

reverse engineering process more difficult. Obfuscation is concerned with

modifying the structure and syntax of a program so that it would be hard

to dissect through code analysis, while at the same time conserving its

18

functionality and efficiency. These techniques make static analysis harder,

not impossible.

- Sometimes the code examined during static analysis is not necessarily the

code executed on the machine; metamorphic code (code that reprogram

itself) and polymorphic code (different code at each execution, though

having the same functionality) are examples of such programs and thus

static analysis may not be accurate in these cases.

- It is also possible that the malware will respond differently depending on

an input provided. In some cases for example, that input represent

additional code that the attacker sends over the network and thus is not

necessarily available to the investigator.

2.2.2. Dynamic Malware Analysis

 Dynamic malware analysis techniques, contrary to static analysis, attempt to

determine the interactions between the malware and the system, by actually running the

program and analyzing its behavior. Safety restrictions are more important in these

situations, since running the unknown piece of software could be disastrous for the host:

The malware could destroy key functionalities, break loose and potentially harm other

machines and networks. It is therefore imperative for the investigator to prepare a

contained and asset-free environment in which to launch the execution of the malware for

analysis. The common activities in dynamic analysis include monitoring the system and

19

library calls made by the program or examining each machine instruction with the help of

debuggers or machine emulators [1, 17].

The major benefit of dynamic analysis over static analysis is the assurance that the

machine instructions being analyzed are the ones that the program actually executes; i.e.

it is not affected by techniques like obfuscation and polymorphic code. On the other

hand, dynamic analysis has some drawbacks:

- For complex and large programs, it is difficult to run through all their

execution paths and thus predictions on their behavior in a random setup are

difficult to make.

- In dynamic analysis, there is a limited view of the internals of the program.

Unless using a virtual machine (VM) coupled with introspection techniques

(monitoring and inspecting guest operating systems in a virtual environment

from the outside to observe behavior [36]), one can only observe input/output

and library/system calls.

- The analysis environment is not invisible to the malware. As mentioned in the

previous paragraph, the safety measures taken in building the analysis

environment are of crucial importance. Malicious software can be tailored to

behave differently depending on the underlying configurations of the system.

For example, to ensure absolute containment, investigators can build a VM

similar the one infected, without network connections; however, it is possible

to determine that the program is running on a VM by checking the hardware

configurations that virtualization software usually utilize, through techniques

such as timing attacks on virtual and emulated environments. An attacker

20

could then program the software not to execute properly when such properties

are detected.

2.3. Advances in Forensic Analysis of Physical Memory

 Numerous utilities have been developed to help investigators perform memory

analysis. Most of these tools are however platform dependent, due to the unique way each

operating system (and even specific versions) handles the RAM. We now present some of

these tools and related developments, organized with respect to the underlying family of

operating systems.

2.3.1. RAM Analysis on Microsoft Windows

 The DFRWS challenge, mentioned in Section 2.1.2.2 above, provided contestants

with a memory dump from a Windows 2000 machine to be analyzed. From this emanated

two research results:

First, Betz studied the way the Windows 2000 kernel uses the memory, and designed a

command line tool called Memparser that produces a list of running processes on the

system, even the ones that were hidden to the operating system [2].

Garner and Mora developed KnTList (part of the now commercial toolset KnTTools),

which could list the running and hidden processes on the machine, as well as access some

other system‘s information such as time parameters and ARP cache [19].

In 2005, Burdach published a guide to discovering Windows 2000 and Windows XP

kernel data structures. He developed a follow-up tool WMFT (Windows Memory

21

Forensics Toolkit), which can enumerate active processes and loaded modules as well as

other kernel structures such as driver objects when provided with their addresses in

memory.

A year later, Schuster created the tool PTfinder which is capable of discovering, from an

image of the RAM, all processes and threads running on Windows NT systems (including

ones that were potentially deleted by kernel attacks or persisted through a reboot). This

utility also provided users with a graphical and hierarchical view of the processes

discovered, so investigators could easily determine parental relationships between the

threads [42].

In 2007, Walters and Petroni introduced a set of tools to analyze memory dumps from

Windows XP SP2 systems: volatools. The suite evolved to become The Volatility

Framework, one of the most used open source toolkits for Windows memory forensic

analysis. It provides important functionalities, such as [50]:

- Information on running processes and threads (list of open files, addressable

memory, loaded DLLs)

- Information on network connections

- Support for different types of memory dumps (Windows crash dumps,

hibernation)

- Information about the registry and loaded kernel modules

Moreover the framework can be extended through plug-ins and a beta version to support

Linux operating systems is currently in development [14].

Another well-known tool is Memoryze, developed by the company MANDIANT in 2008,

which has support for a variety of versions of the Microsoft Windows Operating System.

22

Memoryze can allow its users to acquire an image of the RAM as well as perform the

analysis on both on live systems and RAM images. It provides the following, among

other features [33]:

- List the virtual address space of a given process including:

- List all network sockets that the process has open, including any hidden by

rootkits.

- Specify the functions imported and exported by the EXE and DLLs.

- Verify the digital signatures of the EXE and DLLs. (This is disk based.)

- Output all strings in memory on a per process basis.

2.3.2. RAM Analysis on OSX

 Research on memory analysis on OSX systems is still rudimentary: we were not

able to find any tool to perform analysis on OSX RAM. However, Suiche published a

paper describing the kernel internals of this operating system [43]. He laid out details on

memory management of processes, files and other kernel structures, necessary to retrieve

valuable information from MAC OSX memory dumps. Because OSX is a Unix-like

system and is largely based on BSD (Berkeley Software Distribution), it has similarities

with Linux kernel structures, such as the existence of a doubly-linked list object to keep

track of processes running on the machine (see Chapter 3).

23

2.3.3. RAM Analysis on Linux

 Various utilities for the forensic analysis of Linux RAM have been developed.

One of the earliest is Burdach‘s iDetect, a tool that can provide information about user-

mode processes running on the system, as well as files mapped into memory. It was

designed for Linux 2.4-x and uses the System.map file (symbol table used by the kernel)

to obtain the address of important kernel structures.

Urrea developed a proof-of-concept for what he called ―the basis of later research in

RAM forensics‖ [46]. He focused his efforts on kernel 2.6 and described means to obtain

information on running processes and recover files loaded in physical memory. He also

discussed ways to explore potential swap space, to complete the memory analysis.

In 2008, Case et al. proposed a framework, called FACE, for digital forensic investigation

that finds and correlates evidence from multiple sources (e.g. disk images, memory

images and network capture) and multiple targets [12]. Their framework included

Ramparser, a tool that analyzes Linux 2.6-x memory dumps and provides information on

running processes, network connections and loaded kernel modules. In an attempt to

reduce the platform dependency of Linux memory analysis tools, Ramparser was later

improved to support a variety of kernel versions [21]. This was achieved by dynamically

reverse engineering core kernel functions for each version, to obtain data structures‘

offsets necessary for a deep memory analysis and save them in an extensible database.

SecondLook, a commercial tool from Pikewerks Corporation was recently introduced

[37]. It provides users with a GUI interface for ease of use as well as a command line

interface for custom analysis. Running processes, network connections and loaded kernel

modules are some of the information the tool provides to investigators.

24

Kollar developed a tool called Foriana that, when provided with a memory dump,

attempts to determine the corresponding operating system by using pattern matching and

performing a string search on the image (hoping to identify the name of a known standard

process such as ―init‖ for example for Linux systems) [30]. The tool uses heuristics to

find kernel structures in memory, and then generates a list of loaded modules and running

processes.

A more recent project started by Girault resulted in volatilitux [20]. volatilitux can extract

memory-mapped files from the RAM, output the list of running processes as well as

produce process-specific information such as the list of open files and memory mappings.

2.4. Work Related to Process Resumption

 Resuming the execution of a process loaded in memory is closely related to the

way it has been extracted. Most of the efforts realized in this prospect, were directed

towards dumping the binaries of the process. The procmemdump and procexedump plug-

ins of the Volatility tool are prime examples [50]: they permit investigators the obtain

executables from the memory of Windows systems. We could not find any similar work

for the analysis of an image of the Linux RAM. However, for live Linux systems, Ilo

presented a proof-of-concept tool to extract the binaries of a running process [28].

Although his primary goal consisted in building a single binary file from the artifacts

collected from the memory about a running process, he also proposed a sequence of steps

that one could take in order to recover the state of the process on another host or at

another time. His proposal included the following:

25

- Get the files used by the process, place them in the appropriate location and

open them.

- Create a new process

- Copy process segments and registers in the appropriate locations

- Launch the execution of the process

An area of research related to our project is process migration or process

checkpoint/restart techniques on Linux systems, which is concerned with saving the state

of a running process from a live machine in order to resume its execution on another host

or for rollback purposes. Linking checkpointing and digital forensics is not a completely

new initiative, it was proposed by Foster and Wilson in their introduction to process

forensics [18]. They argue that checkpointing can be a powerful tool in the arms of the

digital forensic investigator or to the incidence response team, since crucial evidence can

be obtained from processes running on a host.

One approach to checkpointing consists in loading a kernel module into the system and

using it to save the state of a chosen process onto a file and restart its execution through

the same module. CRAK is an example of a tool that uses the Linux Kernel Module

(LKM) option to restart a previously saved Linux process or group of processes [52].

Currently, we did not find any work that extracts a running process from an image of

memory and resume its execution.

2.5. Contributions of our Work

26

 Many advantages can be associated with the recovery of the context of a running

process from a memory image as well the resumption of its execution in another

environment. We now present and discuss a non-exhaustive list of them in detail.

Benefits to General Forensic Investigations:

- We cannot stress enough the importance to a case, of the information that is

available when analyzing non-volatile storage. It is possible, for example to

determine what kind of machine it was in the first place (version of operating

system and underlying hardware characteristics in case this was not known), what

modules were loaded on the system and even find some password and encryption

keys that could help break a case. With the list of running processes that our work

provides, investigators might be able to identify unknown, unexpected and/or

potentially dangerous programs that were on the machine at the time of

acquisition of the RAM image. They could then take a closer look at the type of

resources that the process was accessing such as the user running the process, the

opened file descriptors (includes files, network connections and ports) and the

memory mappings.

- The fact that we are provided with an image of the memory would normally imply

the use of ―dead‖ analysis techniques, meaning that there would be no live

interaction and the observation of the evolution of the system over time is not an

option. As indicated in Section 2.1.1, it is possible to combine both ―live‖ and

―dead‖ analysis on one case, with the use of memory dumping and virtualization.

This is one of the main ideas behind our study, as the resumption component

27

gives ―life‖ to the data obtained from the RAM and thus allows for ―live‖ analysis

to occur without significant changes to the integrity of the collected evidence.

Moreover, the problems of live techniques are minimized as the process is

repeatable and the impact of tools is limited.

Benefits to Malware Analysis:

After an investigator has detected a potentially harmful process running on a

machine, the next step is usually to perform malware analysis.

- The CPU state (register set), at the moment of acquisition of the memory, of the

process of interest is available and can be taken into account when reverse

engineering is performed. Moreover, the code section of the memory mappings

associated with the application can be dumped into binaries that can use for static

malware analysis.

- When provided with an image of RAM, being able to resume the execution of a

process so that dynamic analysis can be performed is already an important

contribution. More so, if the resumption phase can be done in a safe environment

built for the purpose of observation, as production systems will be compromised.

Our approach suggests building a virtual machine, similar to the original system

(which is actually a common malware analysis technique), in which the execution

of the program will continue. Most virtualization software provide additional

monitoring capabilities through VM introspection that could be useful to an

investigator.

28

- A legitimate question to ask is why not dump the binaries of the process from the

memory and launch its execution from the beginning? This method has been used

before (see Section 2.4) and would certainly allow for malware analysis to take

place. The problem with this approach is that most attackers are aware of the

latest forensic techniques such as studying the binary in a virtual environment. To

work around such techniques, they tend to perform VM detection and/or check for

other configurations and change the behavior of the program accordingly. These

checks generally occur when the program starts its execution. Thus, if the process

is resumed from where it stopped when the memory image was collected, there is

a decent chance that this detection phase is over.

3. THE LINUX KERNEL AND PROCESS INFORMATION IN MEMORY

 Before we describe how to obtain relevant information about a running process

from a RAM dump and resuming its execution, it is primordial to understand how the

Linux kernel manages the memory, especially process-specific data. Indeed, to maintain

control over the execution flow on the machine, the kernel must keep track of process

activity by storing various attributes such as the process‘ state, children and CPU

registers. A look into the C source code of the kernel reveals that this information is

organized in memory through a number of data structures—There are many ways to

access the source code of the Linux kernel such as looking at location /usr/src/linux-

headers-x/ (‗x‘ represents the kernel version) on the local machine (if the source files

are installed) or browsing online repositories [32]—The following subsections will

describe some of these data structures and their relationships, for the kernel version

2.6.35 on x86 systems, as well as present the memory management mechanisms used in

Linux.

3.1. Linux Memory Management

3.1.1. The Virtual Memory

 To ensure that CPU multithreading and time-sharing (i.e. the possibility to have

more than one process use the same system resources over a certain period of time) are

efficient, it is crucial to share the physical memory between processes. Because of the

constraints and differences that may exist between the actual size of the physical memory

30

and the amount of space needed by the all the programs running on the system, the Linux

operating system implements virtual memory, which is a layer of abstraction of the RAM

to processes and users.

On a 32-bit x86 system for example, the whole 2
32

= 4 GB addressable space, ranging

from 0x00000000 to 0xFFFFFFFF, is considered available to each user process and each

address is referred to as linear address or virtual address. The kernel, also uses a virtual

address space but splits it into two parts at the PAGE_OFFSET (macro defined as

0xC0000000) mark: The first part (of size 3GB) is mapped to the currently running

process and changes at every context switch, while the second part is fixed and used for

other kernel operations [22]. As a result of this split, every user process reserves 1GB in

its linear address space mapped to the kernel‘s first virtual memory zone and used when

the process in running in kernel mode (See Fig. 3). The rest of the process‘ virtual space

is directly addressable and is divided into pages of size PAGE_SIZE (can be 4KB, 2MB or

4MB on x86. In practice, it is typically 4KB).

Figure 3. Virtual Memory Layout for User Mode Process

31

3.1.2. From Virtual to Physical Memory: Translation and Paging

 The actual physical memory does not follow the same scheme as its virtual

counterpart. Rather, physical addresses are used to map the memory cells in memory

chips and operating systems use a number of mechanisms to translate between the

physical and linear addresses.

Similar to the virtual address space of a user process, the RAM is divided into sets of

contiguous addresses called page frames. These frames are grouped into zones with

specific functions. In Linux for instance, there are three physical memory zones [22]:

- ZONE_DMA: From 0 to 16 MB, used for Direct Access Memory (DMA) page

frames.

- ZONE_NORMAL: Ranges from 16MB to 896MB, contains non-DMA pages with

virtual memory mapping.

- ZONE_HIGHMEM (if applicable): 896MB and onwards and is not directly

mapped to the kernel.

At boot time, Linux directly maps physical address 0 with the kernel virtual address

PAGE_OFFSET (0xC0000000). Therefore, when faced with a kernel virtual address, its

physical equivalent is obtained simply by subtracting PAGE_OFFSET. For example, linear

kernel address 0xc0342FF4 corresponds to actual physical memory location 0x00342FF4.

The conversion process is completely different for user mode virtual addresses. In this

case, the Linux operating system uses virtual memory paging to map the virtual pages to

physical page frames in memory. The paging mechanism consists in dividing the linear

address in parts, used as offsets in mapping structures called page tables. In its version

32

2.6.35, the kernel implements four levels (splitting up the linear address in up to five

parts) of page tables:

- Page Global Directory (PGD)

- Page Upper Directory (PUD)

- Page Middle Directory (PMD)

- Page Table (PTE)

These levels are linked to each other (in the order cited) and each table contains addresses

to a set of tables on the next level (see Fig. 4). This scheme was built to fit the 32-bit and

64-bit architectures, as well as the Physical Address Extension or PAE (support for some

Intel processors with 36 address pins, i.e. can address up to 64 GB of memory with three

page levels) and extended paging (translation for systems with 4MB page sizes with just

one page level) [3].

Figure 4. The Paging Mechanism [3]

33

For Intel x86 32-bit systems, the virtual address is divided in two parts which serve as

offsets in the only two levels of page tables implemented (here, PUD and PMD do not

exist).

3.2. Process-Related Kernel Data Structures

3.2.1. The Process Descriptor

 Probably the most important process bookkeeping kernel artifact, the process

descriptor is the entry point in memory to all the available information about a specific

process or task (as commonly referred to in the kernel jargon). It is represented by the

task_struct (cf. Fig. 5) data structure defined in include/linux/sched.h (from the

top level directory of the kernel source code), whose fields are used to identify, store and

track the various aspects of a task including but not limited to [3, 40]:

- Process State: Through the state field in the task_struct, the execution

status (running, stopped, interruptible or not, etc…) of the task is saved.

- Process Id and Name: Mostly used for identification, the id and name of the

process are respectively kept in the pid and comm attributes in the

task_struct.

- Credentials: These represent the permissions that are associated with the

process and are used to determine what operations the task is (or is not)

allowed to perform. It is represented in the process descriptor by an attribute

of type cred, a kernel structure defined in include/linux/cred.h. This

34

structure contains information such as the user (uid) and group (gid) ids

associated with process.

- Scheduling Properties: For a more efficient use of the CPU execution cycles

and control over the process switching and scheduling activities, the kernel

stores via the process descriptor a number of values such as the process

priority and scheduling queue.

- Process Address Space: User space tasks require memory areas to store

segments (code, data, stack, etc…) or to map files. The set of virtual

addresses reserved for a process form its address space. The kernel keeps

track of these memory locations through the mm field of type mm_struct

(more details in Section 3.2.2).

- Process Relationships: The process descriptor provides a link to the parent,

children and siblings processes (using respectively the parent, children and

sibling fields) of a task.

- Filesystem Properties: With the files and fs variables in task_struct, the

kernel can keep track of the files opened by a process as well as the current

working directory (more details in 3.2.3).

- Process CPU-related information: The process descriptor, through a variable

of type thread_struct, also gives access to information about relations

between the process and the CPU, such as the address of the Kernel Mode

Stack of the process (location where the CPU registers of the process are

stored in memory).

35

Figure 5. Excerpt of task_struct

The kernel also keeps track of all the processes currently running on the machine by

maintaining a circular doubly linked list of process descriptors, through the tasks field

include/linux/sched.h

1168 struct task_struct {

1169 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped*/

...

1170 void *stack;

1171 atomic_t usage;

1172 unsigned int flags; /* per process flags, defined below */

...

1182

1183 int prio, static_prio, normal_prio;

1184 unsigned int rt_priority;

1185 const struct sched_class *sched_class;

1186 struct sched_entity se;

1187 struct sched_rt_entity rt;

1188

...

1221 struct list_head tasks;

...

1224 struct mm_struct *mm, *active_mm;

...

1243 pid_t pid;

1244 pid_t tgid;

... struct task_struct *real_parent; /* real parent process */

1257 struct task_struct *parent;

...

1261 struct list_head children; /* list of my children */

1262 struct list_head sibling;

...

1298 const struct cred *cred;

...

1305 char comm[TASK_COMM_LEN]; /* executable name excluding path*/

...

1319/* CPU-specific state of this task */

1320 struct thread_struct thread;

1321/* filesystem information */

1322 struct fs_struct *fs;

1323/* open file information */

1324 struct files_struct *files;

1325/* namespaces */

1326 struct nsproxy *nsproxy;

1327/* signal handlers */

1328 struct signal_struct *signal;

1329 struct sighand_struct *sighand;

1330

1331 sigset_t blocked, real_blocked;

1332 sigset_t saved_sigmask;

1333 struct sigpending pending;

...

1502};

36

(of type list_head, the kernel‘s implementation of a circular doubly linked list) in each

task_struct. Therefore, it is possible to obtain a list of all running tasks by traversing

the linked list (See Appendix B), potentially starting from the kernel address of the

init_task process (named swapper and first item in the doubly linked list). This address

can be obtained in various ways such as looking into the kernel symbol table file

/boot/System.map-x (‗x‘ represents the kernel version) [46] and through heuristics-

based search performed on the memory image [20].

3.2.2. Process Address Space

 The Linux kernel uses a set of related data structures to manage the virtual

memory space needed by a process. As stated in the previous subsection, each process

descriptor has a field of type mm_struct dedicated to that purpose. The mm_struct data

structure sometimes referred to as the memory descriptor, is defined in

include/linux/mm_types.h and retains among others, the following information (See

Fig. 6):

- Page Global Directory: The pgd field in mm_struct stores this value, which

represents the entry for this process‘ memory areas in the Page Global

Directory (see Section 3.1.2).

- Memory Segments: The kernel also uses the mm_struct to monitor process‘

segments in memory. Thus the start_code and end_code attributes refer to

the limits of the text/code segment of a task, start_brk and brk to the

growing heap, start_data and end_data to the data section containing

initialized static variables, start_stack to the start of the stack region,

37

arg_end and arg_start to the command line arguments, env_start and

env_end to the environment variables.

- Memory Regions: These are non-overlapping sets of adjacent virtual

addresses that map into the various memory segments of a process. The mmap

field (of type vm_area_struct) of mm_struct points to the first of these

regions. A memory segment is actually a group of memory regions serving

the same purpose.

Figure 6. Excerpt of mm_struct

For every task, the kernel maintains a linked-list of its associated memory regions.

Therefore, each vm_area_struct (defined in include/linux/mm_types.h) includes a

vm_next field pointing to the next region on the list, as well as a link (through the vm_mm

attribute) back to the memory descriptor describing the address space they belong to. The

structure also has self-describing elements such as vm_start, vm_end and

vm_page_prot, respectively representing the beginning address, end address and access

 222 struct mm_struct {

 223 struct vm_area_struct * mmap; /* list of VMAs */

 224 struct rb_root mm_rb;

 ...

 236 pgd_t * pgd;

 237 atomic_t mm_users; /* How many users with user space? */

 238 atomic_t mm_count; /* How many references to "struct mm_struct"

 (users count as 1) */

 239 int map_count; /* number of VMAs */

 ...

 254 unsigned long start_code, end_code, start_data, end_data;

 255 unsigned long start_brk, brk, start_stack;

 256 unsigned long arg_start, arg_end, env_start, env_end;

 257

 ...

 313 };

include/linux/mm_types.h

38

permissions of the region. In case the vm_area_struct describes a non-anonymous

memory-mapped disk file or shared library, the vm_file field is non-null and points to a

file structure (see Section 3.2.3), while vm_pgoff represents the offset of the region in

the mapped file in question. Fig. 7 gives a sample overview of the kernel structures

related to a task‘s address space and their relationships.

Figure 7. Process Address Space Structures

39

3.2.3. Processes and Filesystem Kernel Structures

 Processes in Linux constantly interact with files on disks; they are either mapped

in memory for easier access or opened for basic input/output operations. However,

regular named disk files are not the only type of files in the Linux system: directories,

symbolic links, device files, sockets and pipes are all considered files [3, 40]. The Linux

kernel uses a number of structures to store and maintain data on the relationships between

process and files:

- fs_struct: Defined in include/linux/fs_struct.h, it is accessed from

the process descriptor of a task through the fs field and keeps information on

the current working directory (pwd attribute), the root directory (root

attribute) and their associated mounted filesystem. The same fs_struct can

be shared between different processes that are executing from the same

location; the field count is used to store the number of process descriptors

linked to this structure.

- files_struct: also accessible from a process‘ task_struct through the

files attribute, it is defined in include/linux/fdtable.h and is

sometimes referred to as the open file table structure to describe the type of

information it holds. The fdt field of files_struct is of type fdtable

(also called file descriptor table) that keeps, among other data, the maximum

number of files that a process can have opened (max_fds field) and the array

40

of file descriptors currently opened by the task. In Linux, the first three

entries are stdin, stdout and stderr.

- file (see Fig. 8): defined in include/linux/fs.h and referred to as file

descriptor, it is the main structure used by the kernel to get information about

the relationship between a process and the file, such as the process access

mode (attribute f_mode), the current offset (f_pos) and a pointer to the file

operations table (f_op; the table stores pointers to functions that are

associated with the file). The structure also holds general file data including

the user credentials (f_cred) as well as the directory entry (from which the

pathname of the file can be constructed), and its associated mounted

filesystem metadata, both accessible through the f_path field.

Figure 8. Excerpt from file

 917 struct file {

 918 /*

 919 * fu_list becomes invalid after file_free is called and queued via

 920 * fu_rcuhead for RCU freeing

 921 */

 922 union {

 923 struct list_head fu_list;

 924 struct rcu_head fu_rcuhead;

 925 } f_u;

 926 struct path f_path;

 927 #define f_dentry f_path.dentry

 928 #define f_vfsmnt f_path.mnt

 929 const struct file_operations *f_op;

 930 spinlock_t f_lock; /* f_ep_links, f_flags, no IRQ */

 931 atomic_long_t f_count;

 932 unsigned int f_flags;

 933 fmode_t f_mode;

 934 loff_t f_pos;

 935 struct fown_struct f_owner;

 936 const struct cred *f_cred;

 ...

 950 struct address_space *f_mapping;

 ...

 954 };

include/linux/fs.h

41

Although the concepts and design remain the same for subversions of Linux 2.6,

there might exist some slight differences in the code of the described structures. The

disparities become greater when compared with older versions such as Linux 2.4. For

example, rather than having an entire structure to handle process credentials (i.e. the field

struct cred in the process descriptor), Linux 2.4 and even early Linux 2.6 versions just

had extra fields added to the task_struct (uid, gid, suid, etc…). This is one of

reasons why most the tools developed to analyze the RAM are operating system-

dependent. To this effect, our experiment was entirely performed on machines running

the same Linux distribution, on top of the same kernel version 2.6.35, even though it

might work on different versions.

4. EXTRACTING PROCESS INFORMATION FROM THE RAM (GETTSK)

 Chapter 3 gives an overview of how the Linux operating system manages the

memory and keeps track of the tasks running on the machine. Now, we discuss the

mechanisms necessary to retrieve process-related information, when provided with an

image of the RAM of a Linux system. We start by describing the environment setup to

carry out our experiment; then we document what specific data is extracted as well as

how do to it. We conclude the chapter by presenting the results and discussing the

limitations of our approach on the proof-of-concept.

4.1. Initial Setup and Image Acquisition

 In order to perform the procedures described in the next sections, we need the

image of the physical memory acquired from a Linux machine. To that end, a virtual

environment was built with the following specifications:

 Virtualization Software: VMware Workstation 6.5.7

 Operating System: 32-bit Linux Ubuntu 10.10 – Kernel 2.6.35.22

 Amount of RAM: 512 MB

 Hard Drive: 20 GB, with no swap space.

These configurations were not selected randomly. Indeed, the virtual setup would allow

us to easily obtain the contents of the RAM, as virtualization software such as VMware

use a file on the disk of the host computer (physical machine on which the environment is

43

built) to simulate the memory. When a snapshot of the virtual machine is taken, or when

it is pause at some point in time, that file (with .vmem extension if VMware is used) can

be copied and will represent an image of the Ram at that exact moment [47]. On the other

hand, obtaining the image of the memory from a running full blown system can be

tedious as discussed in Section 2.1.2.1.

Ubuntu is one of the most used distributions of Linux; version 10.10 (also called

Maverick Meerkat) was the latest release at the beginning of our project and is based on

the 2.6.35 kernel.

The size of the RAM was chosen to avoid the complexities that a ZONE_HIGHMEM would

introduce to the virtual to physical address translation (see Section 3.1.2 and [5]), thus it

was kept below 896MB. The size of the virtual hard drive was chosen arbitrarily, but we

opted for no swap space. The swapping mechanism uses some preconfigured space on

disk to extend the available physical memory by moving some pages from the RAM to

the allocated area on hard drive. The complexity associated with this practice will be

ignored.

After building the virtual environment, the next activity involves creating a

process and running it, at which point the VM can be paused and a snapshot taken so that

an image of the memory can be copied. Because the created process serves as basis to the

proof-of-concept implementation and is central to the rest of the experiment, it should be

specially crafted to be simple and flexible. The following source code is the C program

(test.c) that we used to create such a process:

44

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

int main()

{

 float i, j;

 for (i=0; i<500000; i++)

 for(j=0; j<50000; j++);

 int fd;

 fd = open("sample.txt", O_RDWR|O_CREAT);

 write(fd, "Done.\n", 6);

 close(fd);

 return 0;

}

This program executes a nested for loop, then opens a file called sample.txt (creates it

if it does not exist) in which it writes the string “Done.”. The file is then closed and the

program exited. The purpose of the nested for loop is to give us enough time to take a

snapshot of the VM and even get some information about the process for verification

purposes in future stages. The constant values were chosen to ensure that the wait time

was sufficient. A simple call to the sleep() function would have been more predictable,

unfortunately returning from system calls during the resumption phase is problematic

(see Chapter 5).

 Following is the source code to a second C program (test2.c) on which the

experiment was also performed. This program was designed to verify if data (variables in

this case) are preserved through the procedure:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

int main()

{

45

 float i, j;

 int fd, value;

 char buf[5];

 int k=4;

 static char dec[] = "0123456789";

 value = 12 + 32;

 for (i=0; i<500000; i++)

 for (j=0; j<50000; j++);

 value += j;

 do { /* Implementation of itoa()* /

 buf[k--] = dec[value%10];

 value /= 10;

 } while(value);

 fd = open("sample.txt", O_RDWR|O_CREAT);

 write(fd, buf, sizeof(buf));

 write(fd, "\nDone.\n", 8);

 close(fd);

 return 0;

}

The variable value is modified before and after the nested loop is executed, and the final

value (50044) is to be printed into the ―sample.txt‖ file. The do..while statement is

used to convert value into a string buffer to be written in the output file.

 Both test.c and test2.c were compiled using the following gcc commands

(which imply the default level of optimization - level 0):

gcc –Wall –o test test.c

gcc –Wall –o test2 test2.c

The binaries were then run, a snapshot of the VM was taken while the nested loop was

being executed and the memory images collected.

46

4.2. Extracting Process Information

 When an investigator is provided with a snapshot of memory for analysis, after

ensuring the integrity and preservation of the image, there are a number of activities that

she or he can perform, using the tools and methods described in Section 2.3., to obtain

information about the state of the machine at acquisition time. The following is a general

sequence of steps that can be followed in case the examiner wishes to retrieve process-

specific data from an image of RAM in order to resume its execution. For each of these

steps, we will also present and explain how they were applied to the memory image and

the test and test2 processes of Section 4.1 by the tool gettsk. Written in Python,

gettsk takes as input the image file and the task‘s process ID and produces the artifacts

related to the specified process (The source code for Gettsk is included in Appendix C).

4.2.1. Identifying the Process to be Saved

The first activity is concerned with determining what processes were running on

the machine at the moment of acquisition of the RAM, and choosing among them which

one might be of interest. As mentioned in Section 3.2.1, the Linux kernel maintains a

circular doubly linked list of all the processes loaded in memory. Therefore, by traversing

the structure, we can obtain the list of running tasks. One of the difficulties here lies on

finding a starting point. There are two approaches to solve this issue:

- If the filesystem of the machine is available, the address of the process

descriptor (Section 3.2.1) for the swapper process can be retrieved from the

47

kernel symbol table file /boot/System.map-x (‗x‘ being the kernel version)

[46].

- If the investigator does not have access to files, it is still possible to find the

address of the task_struct of the swapper process, by combining search

and known facts about the way Linux manages the memory. For example,

one can start with searching the image for strings such as ―swapper‖ or

―init‖ (first two kernel tasks, that are always running on a well-functioning

Linux system), then use the fact that their PID is respectively 0 and 1 and that

every kernel address is greater than PAGE_OFFSET (equivalent of

0xC0000000) to build a heuristic algorithm that would find the address to a

process‘ task_struct as well as offsets to some of its fields.

For the purpose of our study, we used the filesystem of the virtual machine, specifically

the file /boot/System.map-2.6.35-22-generic to read the linear kernel address of the

init_task: 0xc07c76e0. The actual address in memory is obtained by subtracting

PAGE_OFFSET (see Section 3.1.2).

Having the starting point is not enough for the traversal; we need to be able to

move from one task to the next. The kernel uses the tasks field of the process descriptor

for each process to link it to its neighbors in the list.

The offsets to fields in kernel data structures are derived manually by navigating through

the source code for the structure, accounting for the size of each field (taking into

consideration the storage size of basic types, for example one byte for long and pointers,

etc…). Automating the computation of these offsets is problematic because of C

preprocessor conditional groups defined in the kernel source code. For example, #ifdef

48

statements are common and add or remove fields to kernel structures depending on

certain macros. However, the value of these macros cannot be obtained from the RAM

image alone.

Using this procedure, the offsets for the tasks, comm and pid fields of the task_struct

can be found and used to walkthrough and list the processes running on the machine from

the memory image (Appendix A contains all the offsets used during our experiment;

these values are very specific to our environment and apply only to the kernel version

2.6.35.22). This is exactly what the program ps.py (whose Python source code is in

Appendix B) does on our proof-of-concept image.

4.2.2. Retrieving the Process’ Artifacts and Metadata

 The previous subsection explains how to obtain the list of running processes from

the memory image. The investigator can now identify a specific task that could be of

interest to the case and proceed to extract the data related to that process from the RAM.

General Information:

These refer to the data that is used for identification or to determine the basic status of the

process and include:

- The Process ID: Integer value uniquely assigned to tasks running on a

machine. It is mainly used for identification purposes. It is the pid field of the

task_struct for the process. It is passed as input to the gettsk tool.

49

- The Process’ name: String also used for identification, excluding the

execution path. It is the comm field of the process descriptor. In our illustrative

examples, ―test‖ and ―test2‖ would represent the name.

- The Execution State: The field state of the task_struct describes the

running status of the program. If the value is negative, the process is

unrunnable, runnable/running if it‘s 0, or can take the values showed in Fig.

9.

Figure 9. Possible values of the execution state

- Process Flags: Provide more details on the status of the task. They can take a

wide range of values such as PF_STARTING when the process is being created,

PF_KTHREAD for kernel threads, PF_VCPU if run on a virtual CPU or

PF_SUPERPRIV if used super-user privileges. The list of all the possible

options can be found in include/linux/sched.h.

- Process Credentials: As mentioned in Section 3.2.1, they refer to permissions

associated with the process. A pointer to a cred structure can be found in the

task_struct. We can thus obtain the pairs (UID, GID), (SUID, SGID),

182 #define TASK_RUNNING 0

183 #define TASK_INTERRUPTIBLE 1

184 #define TASK_UNINTERRUPTIBLE 2

185 #define __TASK_STOPPED 4

186 #define __TASK_TRACED 8

...

191 #define TASK_DEAD 64

192 #define TASK_WAKEKILL 128

193 #define TASK_WAKING 256

194 #define TASK_STATE_MAX 512

include/linux/sched.h

50

(EUID, EGID) and (FSUID, FSGID) which denote the real, saved, effective

and filesystem-related user and group ID.

The following table summarizes what general information does the gettsk tool extract,

as well as actual values for our test and test2 processes when statically compiled

(More in Section 5.2.3).

Metadata Data Structures Fields Values for

test.c

Values for

test2.c

ID task_struct pid 21526 14475

Name task_struct comm test test2

State task_struct state 0 0

Flags task_struct flags 0x00000078 0x00000078

Credentials cred uid, gid,

euid, egid,

suid, sgid,

fsuid,

fsgid

1000 (same

value for all of

them)

1000 (same

value for all of

them)

Table 1. General Information extracted by gettsk

Process Address Space:

The memory segments and mappings are core components to Linux processes. We first

collect structural information from the memory descriptor, that is, start and end virtual

addresses to memory segments (code, data, stack, heap, arguments and environment

variables). They can be found in the mm_struct of the process.

51

To ease the collection of data from memory, Gettsk implements a generic data structure

(called Structure) to mimic the different structures used by the Linux kernel to maintain

process information:

class Structure:

 def __init__(self, **kwds):

 self.__dict__.update(kwds)

 def __str__(self):

 state = ["%s = 0x%08x" % (att, value)

 for (att, value)

 in self.__dict__.items()]

 return '\n'.join(state)

For example, the following vmstruct is used to store information from the memory

descriptor of a process in the kernel.

vmstruct = Structure(start_code, end_code,

 start_data, end_data, start_brk, brk,

 arg_start, arg_end, start_stack,

 env_start, env_end)

Using the starting address of the task_struct and the configured offsets, gettsk can

access the data in the RAM image and copy them into the built structures .

Next, we extract the memory regions‘ metadata and their contents. The Linux

kernel maintains a linked list, sorted by starting virtual address, to keep track of memory

areas. The memory descriptor of each process has a field mmap of type vm_area_struct

that points to the first element of the list of regions. Each vm_area_struct or region

descriptor has a field vm_next pointing the current area to the next (and a field vm_prev

pointing to the previous). These can be used to navigate the list of region and extract the

self-descriptive data for each: vm_start, vm_end, vm_prot, vm_flags, vm_pgoff

and vm_file defined in Section 3.2.2. In case the value of vm_file is not null, it points

52

to a file structure from which the pathname of the file can be obtained (refer to Section

3.2.3).

For anonymous memory areas, that is, regions that are not mapped to a file on disk

(vm_file is null), gettsk dumps their contents, page by page, from the memory image.

This is done by following the following pseudo-algorithm, where PAGE_SIZE represents

the size of a page frame (4KB on x86 Linux systems):

start

vaddress = vm_start

while (vaddress <= vm_end)

 Convert vaddress to physical address

 Dump page at physical address

 vaddress = vaddress + PAGE_SIZE

end

Machine-dependent data:

 The CPU registers associated with the running task also have to be saved, as they

are part of the process state when it is paused. When performing context switching, the

Linux kernel saves the values of the general registers at the bottom of the Kernel Mode

Stack of the process [3]. In older versions of Linux, the location of task_struct was

always right below the Kernel Mode Stack of the process, so the register set could be

obtained using the following formula (in the case of a 8KB kernel stack, with p

representing the address of the process descriptor) [52]:

struct pt_regs *regs = ((struct pt_regs *)(2*PAGE_SIZE + (unsigned long)p)) – 1.

53

However, this setup posed a security risk, so, since version 2.6, the Kernel Mode Stack is

randomly allocated. Luckily, the kernel stores its address in memory. Indeed, the field

thread.sp0, where thread is a field of task_struct (of type thread_struct -

structure storing CPU specific data for the process), contains a pointer to the bottom of

the Kernel Mode stack right where the register set is saved.

For 32-bit Linux Kernel 2.6 systems, the register set structure (pt_regs) is defined in the

source code as follows (location arch/x86/include/asm/ptrace.h):

struct pt_regs {

 unsigned long bx;

 unsigned long cx;

 unsigned long dx;

 unsigned long si;

 unsigned long di;

 unsigned long bp;

 unsigned long ax;

 unsigned long ds;

 unsigned long es;

 unsigned long fs;

 unsigned long gs;

 unsigned long orig_ax;

 unsigned long ip;

 unsigned long cs;

 unsigned long flags;

 unsigned long sp;

 unsigned long ss;

 };

The size of this structure is 68 bytes (8 * 17 fields) and thus, the following formula can

be used to obtain the registers set (See Fig. 10):

struct pt_regs *regs = ((struct pt_regs *)((unsigned long)(p->thread.sp0) - 68)

With the address of the top of the Kernel Mode Stack, gettsk copies the process

registers in a byte stream.

54

Figure 10. Finding the Process Register Set

Filesystem information:

 The interaction between tasks and the filesystem is fundamental to the functioning

of a computing system. In Linux, files can be of different types: Regular named files,

directories, symbolic links, device files, sockets or pipes.

As mentioned in Section 3.2.3, the kernel manages an array of file descriptor numbers

(integers uniquely associated with files used by a task), through the file descriptor table,

that keeps track of all the files currently opened by the process. Each file descriptor

number refers to a structure of type file (see Fig. 8), which holds data about the file in

question and its relationship with the process.

The tool gettsk does not fully support extracting filesystem information from memory.

It only collects the pathname of regular files on disk and does not deal with either pipes

or sockets (See Section 4.3).

Child Processes Information:

High Addresses

Low Addresses

thread.sp0

task_struct

68 bytes

register

set

Kernel

Mode Stack

55

 It is possible that the process to be extracted had child processes also running on

the machine. The kernel keeps track of all the children of a process through a circular

doubly linked list accessed through the children field of the task_struct. Their

information should also be retrieved and their hierarchy (child processes might also have

children) preserved. It would allow investigators to have a more accurate depiction of

their effects on the system resources, as well as the communication between them.

Because each of the threads in the hierarchy also has their execution state saved in

memory, the procedure described so far to retrieve information about a task can be

repeated for all the threads and saved in a tree-like structure.

Gettsk does not support retrieving child processes data. This is not problematic for our

proof-of-concept since out test and test2 processes do not have child processes.

4.3. Saving the Obtained Results

 All the artifacts extracted in the previous steps are to be saved in a simple,

efficient and portable format. Indeed, the size of the information collected can be

considerable, especially if the contents of memory regions are dumped. Also, it should be

simple enough for the investigators to be able to decipher the data and find evidence. One

of the goals of our exercise is to determine if it is possible to resume the execution of the

saved process, potentially on a different host. Therefore, the requirement that the output

should be portable plays a special role in these circumstances.

The Gettsk tool organizes the retrieved data in an XML (eXtensible Markup Language)

file. The XML language was chosen because it is standardized widely supported and

56

defines rules for building files that are both human and machine readable. Moreover, it is

customizable, as users can construct and implement specific formats that valid files have

to follow: they are called schemas. Appendix D contains the XML schema (defined using

XML Schema Definition or XSD language) used by gettsk to store the recovered data.

The following is an excerpt of the resulting file for out test process, displaying how the

name, pid, credentials and register set are stored:

<?xml version="1.0" ?>

<process arch="x86" kernel_version="2.6.35" magic_number="FFC0">

 <pid>

 21526

 </pid>

 <name>

 test

 </name>

 <state>

 0

 </state>

 <flags>

0x00000078

<flags/>

 <credentials egid="1000" euid="1000" fsgid="1000" fsuid="1000" gid="1000"

sgid="1000" suid="1000" uid="1000"/>

 <reg_set encoding="binary-base64">

 AAAAAMQhnL9QIZy/AGmeR8CJBAgoIZy/AQAAAHsAAAB7AAAAAAAAADMAAAAQ////74IECHMAA

AACAgAAACGcv3sAAAAAAAAA

 </reg_set>

For binary streams that are dumped in the output, such as CPU registers or the contents of

memory areas, base64 encoding is used to transform the data in textual form. This was

used first to accommodate XML standards that require the use of Unicode encoding.

Base64 is also a very common encoding/decoding scheme widely used to transfer data on

the Internet.

57

4.4. Limitations of Gettsk

The gettsk implementation described in the previous section is developed as a

proof-of-context for extracting process information from an image of RAM. There are

still a lot of unexplored or unsupported features that could be of interest to an

investigator. They include:

- Determining offsets to fields of kernel structures in memory: This is probably

the most important issue the tool still faces. The offsets and configurations

displayed in Appendix A were obtained by hand and are specific to a version

of the Linux Kernel. Therefore, for an investigator to use this tool on another

Linux platform, these values have to be reexamined and reevaluated. This

shortcoming is tied to the fact that the tool does not have much room for

extension to different versions of the kernel.

- Files: We mentioned in Section 4.2.2 that gettsk does not support extracting

information about pipes and sockets (although they might contain knowledge

valuable to investigators such as external IP addresses and/or inter-process

communication data). They require information about other processes or

external entities that we could not obtain (although they may exist) from the

memory image. For files on disk, only their pathnames is saved to allow the

investigator to at least have a list, which can be examined further for potential

evidence. Our proof-of-concept processes do not have any open file, therefore

the outcome of our experiment is not compromised, but in case a task of

interest has open files, more information about them should be extracted

58

including the file descriptor number, the current position in the file, its

permissions and open mode (read, write, etc…). To prepare for the

resumption phase, these files should be packaged together with the XML

output file and transported to the host machine.

- Process Hierarchy: Gettsk also does not store any information about parent

and child processes. In an ideal situation, every task that is linked to the

process passed as input should be extracted and saved following the same

hierarchy (i.e. with details about their relationships with each other).

- Processes executing a system call: It is possible that at the moment the RAM

was collected, a process of interest was waiting on a system call (this would

have been the case for our test process if the sleep() system call was used,

refer to Section 4.1). In such a case, in addition to the process information,

the state of the kernel should be captured. Gettsk does not explore this

option.

- Inter-Process Communication (IPC): Tasks often cooperate with each other

through techniques such as message passing, synchronization or Remote

Procedure Calls (RPC). In this Chapter, apart from sockets for networking

and pipes, we did not discuss what other kernel objects are required to

perform IPC. They include signals, message queues, held semaphores, shared

memory metadata and of course the other processes involved in the

transactions.

5. RESUMING THE EXECUTION OF AN EXTRACTED PROCESS (MEMEXEC)

 We have successfully extracted process information from an image of the RAM

of a Linux system. We now focus on the question of whether it is possible to resume the

execution of the task using the data collected. It turns out that under certain

circumstances the answer is affirmative. This chapter will first describe what type of

configuration is required from the machine in which the resumption will occur, and then

will follow a discussion on how this can be actually be performed. A tool, memexec built

to implement these recommendations on our proof-of-concept experiment will also be

presented and explained, as well as its results and limitations.

5.1. Requirements and Design Options

 Earlier in this thesis, we mentioned the need for the environment in which

malware analysis is performed to be contained. This is one of the main pillars of our

approach to resume a process obtained from a memory image. However, the process

cannot just be transported onto any machine and revived; there is a very good chance that

it will not work at all. To ensure that the resources and configurations are the ones

expected by the task, the host should be as close as possible to the initial system. Ideally,

the machine from which the RAM was acquired would be the primary choice for

resumption. Unfortunately, it is usually a production system which might be

compromised in an unknown manner, and thus is susceptible to produce manipulated

60

evidence, misguide the investigator and/or propagate malware to other computers. The

following are some of the most important configurations that the host machine should

have:

- The underlying hardware of the host must be the same as the original.

Processes are built and compiled for a specific machine and are highly

dependent on the CPU architecture.

- Similarly, it is preferable for the operating system of the receiving machine to

match with the initial computer. However, this requirement is weaker than

the restriction on the hardware: It is possible that the resumption process will

work on different versions of the same operating system, especially for Linux

if they are from the same patch level (version 2.6.34 and 2.6.35 for example)

or if the new kernel is a recompile of the original.

- Unless it was (or will be) used by the saved process, a file on disk does not

need to be replicated in the host machine. However, because the pathname of

opened and mapped files depend on the filesystem of the original machine

(root directory and current working directory), it might be necessary for some

files to exist in specific locations. It is possible to work around this

requirement, by manually renaming the files.

- Similarly to files on disk, the users and groups existing in the original system

are not necessary to the resumption of the task. But, in case the owner of the

initial process needs to be restored, the permissions of the user/group in

question should be the same in the two machines, especially on resources

accessed by the saved task.

61

 After the data has been extracted from the memory image and the receiving

machine is adequately configured, the resumption can begin. The general idea behind

resuming the execution of a process involves moving the saved information into the

appropriate locations and launching its execution. For the Linux kernel, this activity can

be performed either from User Space or from Kernel Space.

From User Space, this can be achieved by using the tracing capabilities of Linux (with

the ptrace() call for example) and other system calls such as mmap() to recreate

memory mappings or file operations (open(), write(), etc…) for opened files. This

would allow for a cross-version solution, since most system calls are kept across kernel

changes. This method might work for very simple processes, but issues will quickly arise

for more complex tasks, as system calls do not permit users to change specific values in

kernel data structures, which might be desirable or required in some cases. Furthermore,

it would be difficult to modify some process metadata such as name, pid or execution

state from user space without hacking the kernel.

The alternative solution involves restoring the saved artifacts while running in kernel

mode. This gives direct access to kernel data structures and thus all the changes necessary

for process resumption can be made. However, this technique is very kernel-dependent,

thus the solution might not work in different kernel versions. Here, two options are

available: Either patch the kernel or use a Loadable Kernel Module (LKM). Patching the

kernel implies creation of new system calls and/or modification of existing kernel code

that would allow the user to carry out their task. The kernel has to be recompiled and the

62

machine restarted every time a new functionality has to be added or modified, which can

become problematic and cumbersome for large project.

Using a loadable kernel module offers more flexibility and is much easier on the

developer. Indeed, a kernel module is a set of functionalities that can be added and

removed from the kernel (using the insmod and rmmod commands respectively) without

rebuilding it. They are particularly useful when creating drivers for devices and adding

them to the kernel.

The kernel module approach is the one used for our experiment and the toolset memexec

includes the memlkm program implementing a pseudo device driver (/dev/memexec),

which will permit us to execute customized code in kernel mode.

5.2. Restoring Process Artifacts

5.2.1. General Methodology

 In Section 4.2, we described ways to retrieve information about a running process

from memory and prepare a package that would help reconstruct the extracted process

and resume its execution on a similar environment. We now discuss how to achieve such

reconstruction. Two basic methods can be considered here:

- Create a new kernel task from scratch containing only information from the

saved process and launch its execution.

- Use a process already running on the host and modify its behavior and

artifacts to mimic the saved process.

63

 The first approach is similar to the proposal made by Ilo [28] (see Section 2.4),

which involves building a process from the ground up (implies creating a new

task_struct and a new address space), insert data saved during the extraction stage and

schedule its execution. This would be ideal from a forensic perspective, given that all the

information about the revived process will be known to the investigator. But, this turns

out to be a daunting task without the help of the operating system because it requires

accounting for every single kernel structure and performing the appropriate initialization

for each of them. If even one variable or structure is not correctly instantiated, a system

crash or an unwanted behavior can happen.

The second method on the other hand, is closer to the restart component of the CRAK

process migration tool [48], where the program that parses the ―checkpoint‖ file (file

containing information about a saved process) is the one being modified to resemble the

original task. This approach is simple since the operating system already built the

foundation for the preexisting process and so, only the insertion of saved information

(such as memory regions and the register set) is to be performed. However, artifacts

associated with the modified task remain in memory and might have effects on the

resumed task. But, since the process is chosen, its impact is known to the investigator.

This method is the one used during our experiment.

 The following steps give a general overview of what activities should be done to

resume the execution context of a saved process:

1. Create a new process: This is optional depending on the method used.

2. Modify the process to insert information gathered from memory.

3. Launch the execution.

64

The next subsections will illustrate how these activities were achieved during our proof-

of-concept experiment, giving details on the inner-workings of the memexec toolset.

5.2.2. Implementation (Memexec)

 Memexec, written in C (see Appendix E), is divided in two components: a loadable

kernel module (memlkm) that will be used to restore the artifacts of the saved process and

a User Space program that parses the input files and launches the kernel mode operations.

After the kernel module is loaded into the system, memexec takes as input an XML file

following the format described in Chapter 4, and performs the following activities:

1. Parsing the XML file into data variables

 Using the libxml2 library (see Makefile in Appendix E), the input file is parsed

and the information is saved in a memproc data structure, storing all the process artifacts

contained in the file. The structure is defined as follows:

struct memproc {

 unsigned long old_pid, state; /* PID and state */

 int flags; /* Process Flags */

 int seg_num; /* Number of Segments */

 int file_num; /* Number of Open Files */

 char * regs; /* Bytes holding the register set */

 char name[16]; /* Name */

 struct credentials memcred; /* process user credentials */

 struct vmstruct vm_map; /* Memory descriptor info */

 struct segments * seglist; /* Memory regions */

 struct open_file * filelist; /* List of open files */

 struct signals sig;

};

65

It is also at this stage that the base64 encoded data in the XML input file is transformed

back into binary streams.

2. Switching to Kernel Mode and restoring extracted artifacts

 After parsing the data from the XML file, the next step involves rebuilding the

saved process. Memexec then opens the device file /dev/memexec and through the

device‘s Input/Output Control (ioctl), it can execute kernel mode instructions. The

variable of type memproc containing the saved information is passed to the ioctl call. As

we mentioned earlier, the tool does not create a new process, rather it modifies the

program used to open the device file (also called memexec in our case). Next the task‘s

metadata is restored as follows:

General Information:

 When in Kernel Mode, the address of the task_struct of the currently running

process can be obtained using the macro current. Therefore it is simple to access and

replace fields of the process descriptor. For example, the name of the process (which is

the comm field of task_struct) is accessed with: current->comm.

Therefore, the name, process flags and execution state can all be restored by replacing the

value appropriate fields in the process descriptor by the corresponding data from the

saved process.

Concerning the process ID, the saved value must not be in use in the current system and

must not be larger than a maximum (can be found in /proc/sys/kernel/pid_max).

Thus, before the PID is replaced, some tests for availability must be made. Memexec does

66

not support restoring the PID of the process. This does not affect the resumption of our

test and test2 processes, but it might be problematic to a forensic investigation if the

task of interest uses its PID during its execution.

We mentioned in Section 5.1 that if the credentials associated with the task extracted

from memory should be restored, the corresponding users and groups (at least their IDs)

must exist on the host machine and have the same privileges on the resources used by the

resumed process. If this is satisfied, a new credentials data structure can be created with

the values obtained from the extracted process. Memexec does not support restoring the

credentials.

Process Address Space:

 First we have to restore the virtual memory structure. Each segment attribute has

to be replaced with its saved counterpart. The memory descriptor of the process can be

directly accessed through the mm field of the process descriptor. Therefore, the following

line of code will successfully change the address of the beginning of the code section for

the process (tmp holds vm_struct data for the current region as defined in Section

4.2.2). This can be repeated with the other segments to reconstitute the virtual memory

structure of the saved task:

current->mm->start_code = tmp.start_code;

 Each memory area is either mapped to a file or anonymously. In the first case, the

region can be restored by remapping the file in question. Of course, the requirement that

files on disk to be restored must exist on the host machine (see below and Section 5.1)

applies in this case. The following code carries out the task, using the kernel function

do_mmap_pgoff():

67

do_mmap_pgoff(f, vm_start, size, mmap_prot, mmap_flags, pgoff);

The argument f is of type file *, and represents the file to be mapped; vmstart is the

saved stating virtual address for the region; size is the amount of space to be mapped

(obtained by subtracting the saved start virtual address from the end address of the

memory area); mmap_prot designates the protection flags for the frames of the region;

mmap_flags specify what kind of region is mapped (for example, because stack regions

grow downwards, the macro VM_GROWSDOWN is used); pgoff is the offset at which the file

should be mapped.

For anonymously mapped regions, the do_mmap() kernel function first allocates the

needed amount of space, then the contents of the original memory area can be copied into

the reserved space using the function copy_to_user() (This function permits to copy

data from kernel space into a virtual memory location of the current process).

 Memexec creates these new mappings without getting rid of the existing ones on

the task being modified. Every time this was attempted, the process was killed by the

Operating System. Thus the memory regions of the modified process are still present in

memory after the address space is restored, except those that occupied virtual addresses

used by the extracted process (they were replaced by memexec).

CPU Registers:

The Linux kernel provides a convenient function to locate the register set (from the

kernel mode stack) of the currently running process: task_pt_regs(current), defined

in the source file arch/x86/include/asm/processor.h. Thus, the following lines of C

code will be enough to restore the CPU registers:

68

struct pt_regs * regs;

regs = task_pt_regs(current);

*regs = *tmp; // tmp is a pointer to the saved registers

Filesystem and Child Process Information:

 To recover the file table of the process extracted from a RAM image, all the

regular files must be reopened on the host machine and their position pointer moved to

the saved location. More importantly, because it is used by the task to refer to the file,

their file descriptor number must be restored as well. This can be done either by using

both the open() and dup() system call from User Space or by directly manipulating the

file table data structure in kernel mode [52].

As we mentioned in Section 5.1, the file in question must exist on the new system and

have the same pathname and permissions as in the initial machine. If for some reason the

pathname requirement is not an option (for example, subdirectories might not exist or

security concerns might exist), the investigator can manually change the location of the

file in the input data to suit his configurations.

Our experimental tool memexec does not support restoring the file table. Also, pipes and

sockets were not explored: they imply communications with other processes or other

machines, while our study was focused on the extraction and resumption of a single

process.

Similarly, reviving a group of potentially related tasks is not included in our proof-of-

concept. Therefore child processes were not considered. The general idea behind

resuming the execution of a group of processes involves resuming each thread separately

and reconstructing the links between them through kernel objects (parents, siblings,

and children fields of the task_struct for example).

69

5.2.3. Results

 After the process artifacts are restored, the kernel module can exit and yield the

execution back to User Space. At this point, the next instruction will be fetched from the

Instruction Pointer register and executed in the new context, which in theory will resume

the execution of the original process in the new host.

During our experiment, the process was successfully revived. Indeed, when memlkm

returned with no errors, rather than the next instruction of memexec (closing the device

file), the nested loop in our test and test2 processes was executed.

The rest of the program behaved differently depending on the initial compilation method:

5.2.3.1 Results for Dynamic Compilation:

 In our first attempt at the experiment, the test program was compiled

dynamically, the RAM acquired, the metadata of the test extracted with gettsk and the

process resumed.

In the original machine, while the nested loop of test process was being executed, we

were able to print its memory mappings using the Linux‘s /proc pseudo-filesystem as

seen in Fig. 11.

The top 4 lines on the picture represent the last lines of a ps command run on the system

to get the PID of test; then the /proc/PID/maps command was run to display the

mappings. The first column in the output represents the start and end virtual addresses

used by the region. The second shows the set of permissions associated with frames of

the area (read, write, execute and private). The third column is the offset in the file (if

70

any). The last three are respectively the device major and minor, the inode and the

pathname of the file mapped, if any.

Figure 11. Original Mappings for the Dynamically Compiled test Program

The same procedure was repeated when the process was resumed and it resulted in Figure

12. The bold lines show the mappings restored from the original test process. The other

mappings are associated with the process launched by memexec that were not deleted.

This picture also demonstrates that the name of the process was successfully modified.

Unfortunately, after the nested loop, the process threw a segmentation fault while

executing the open() function. We later discovered that every instruction that did not

involve a system call can be successfully run, suggesting that the problem was associated

with the dynamic linking of the shared libraries. We therefore opted to do the same

experiment with a statically compiled binary.

71

Figure 12. Restored Mappings for the Dynamically Compiled test Process

5.2.3.2 Results for Static Compilation:

 When a program is built statically, the needed libraries are merged into the binary

which thus becomes a standalone executable. The resulting binary is obviously larger

than its dynamic counterpart, but the dynamic loading mechanism is removed. Thus, the

airness@ubuntu:~/Desktop/Code/Memexec$ ps aux | grep test

airness 17908 0.0 0.2 5192 1280 pts/0 D+ 07:14 0:00 ./test

airness 17912 0.0 0.1 4012 760 pts/1 S+ 07:14 0:00 grep test

airness@ubuntu:~/Desktop/Code/Memexec$ sudo cat /proc/17908/maps

00110000-00112000 r-xp 00000000 08:01 921753 /lib/libdl-2.12.1.so

00112000-00269000 r-xp 00000000 08:01 921748 /lib/libc-2.12.1.so

0026a000-0026c000 r--p 00157000 08:01 921748 /lib/libc-2.12.1.so

0026c000-0026d000 rw-p 00159000 08:01 921748 /lib/libc-2.12.1.so

0026d000-00270000 rw-p 00000000 00:00 0 [heap]
00610000-00767000 r-xp 00000000 08:01 921748 /lib/libc-2.12.1.so

00767000-00768000 ---p 00157000 08:01 921748 /lib/libc-2.12.1.so

00768000-0076a000 r--p 00157000 08:01 921748 /lib/libc-2.12.1.so

0076a000-0076b000 rw-p 00159000 08:01 921748 /lib/libc-2.12.1.so

0076b000-0076e000 rw-p 00000000 00:00 0 [heap]

00823000-00847000 r-xp 00000000 08:01 921756 /lib/libm-2.12.1.so

00847000-00848000 r--p 00023000 08:01 921756 /lib/libm-2.12.1.so

00848000-00849000 rw-p 00024000 08:01 921756 /lib/libm-2.12.1.so

00974000-00990000 r-xp 00000000 08:01 921741 /lib/ld-2.12.1.so

00990000-00991000 r--p 0001b000 08:01 921741 /lib/ld-2.12.1.so

00991000-00992000 rw-p 0001c000 08:01 921741 /lib/ld-2.12.1.so

00b58000-00b59000 r-xp 00000000 00:00 0 [vdso]

00d2f000-00d42000 r-xp 00000000 08:01 917700 /lib/libz.so.1.2.3.4

00d42000-00d43000 r--p 00012000 08:01 917700 /lib/libz.so.1.2.3.4

00d43000-00d44000 rw-p 00013000 08:01 917700 /lib/libz.so.1.2.3.4

00d82000-00ea4000 r-xp 00000000 08:01 1050096 /usr/lib/libxml2.so.2.7.7

00ea4000-00ea8000 r--p 00121000 08:01 1050096 /usr/lib/libxml2.so.2.7.7

00ea8000-00ea9000 rw-p 00125000 08:01 1050096 /usr/lib/libxml2.so.2.7.7

00ea9000-00eaa000 rw-p 00000000 00:00 0 [heap]

00f01000-00f1d000 r-xp 00000000 08:01 921741 /lib/ld-2.12.1.so

00f1d000-00f1e000 r--p 0001b000 08:01 921741 /lib/ld-2.12.1.so

00f1e000-00f1f000 rw-p 0001c000 08:01 921741 /lib/ld-2.12.1.so

00fae000-00faf000 rwxp 00000000 00:00 0 [heap]

08048000-08049000 r-xp 00000000 08:01 919388 /home/airness/Desktop/test

08049000-0804a000 r--p 00000000 08:01 919388 /home/airness/Desktop/test

0804a000-0804b000 rw-p 00001000 08:01 919388 /home/airness/Desktop/test
0804b000-0804c000 r--p 00002000 08:01 541910 /home/airness/Desktop/Code/Memexec/memexec

0804c000-0804d000 rw-p 00003000 08:01 541910 /home/airness/Desktop/Code/Memexec/memexec

09b00000-09b63000 rw-p 00000000 00:00 0 [heap]

b7713000-b7714000 rw-p 00000000 00:00 0

b7721000-b7723000 rw-p 00000000 00:00 0
b77c4000-b77c6000 rw-p 00000000 00:00 0

b77d2000-b77d5000 rw-p 00000000 00:00 0

bfc4a000-bfc6b000 rw-p 00000000 00:00 0 [stack]
bfdf2000-bfe13000 rw-p 00000000 00:00 0

72

memory mappings do not include shared libraries anymore (see Fig. 13 for the mappings

of a test process run after a static compilation).

Figure 13. Original Mappings for the Statically Compiled test Process

With a statically compiled test process, the resumption procedure worked correctly.

Indeed, all the instructions following the nested loop were successfully executed: the file

―sample.txt‖ was created and the string ―Done.‖ written into the file.

Similarly, for the test2 example, the resumption worked and the correct value (50044)

stored in the value variable was also printed into the output file, demonstrating that

program data were successfully preserved the procedure.

The only hiatus happened when the task was being terminated. The following errors were

displayed for the test process (a similar message was output for the test2 task):

*** glibc detected *** ./test: free(): invalid pointer: 0x080cee20 ***

Segmentation fault

This error message is usually thrown when an unallocated resource is being deleted,

suggesting that this might be a consequence to the data of the memexec process still

remaining in memory.

73

5.2.4. Limitations of Memexec

 Although memexec illustrates that it is possible to revive a process extracted from

an image of memory, there are restrictions, unsupported features and unexplored

possibilities still associated with this work. Some of them are listed below:

- Dealing with dynamic loading: The fact that memexec fails to execute system

calls at the resumption phase when the program is dynamically compiled is an

important shortcoming. Investigators will be faced, more often than not, with

dynamically-linked malware which are bound to make system calls to access

resources.

- Deleting unused data from the memexec process: As mentioned in Section 5.2,

the memory mappings of the process being modified by memexec are not all

expunged and their effects on the final result are unknown. This may be

problematic to a forensic investigation, as the evidence discovered using our

method might be rejected in court.

- Unsupported process artifacts: A number of process information is not

restored the tool such as open files, pipes and sockets, process ID, user

credentials and child processes data.

- Restrictions on the host system: The requirements that the host machine

should have, as described in Section 5.1, do not give much flexibility to the

investigator. For example, the memexec tool does not provide an alternative to

restoring the memory mappings when the Filesystem is not available, even

though their contents are saved in RAM.

6. CONCLUSION

 In this thesis, we demonstrated that given an image of the RAM of a Linux

machine, it is possible to extract enough information about a specific running process to

be able to resume its execution on another environment. We also presented two proof-of-

concept tools gettsk and memexec that respectively retrieve process artifacts from the

memory image and use the saved data to revive the program.

 Obtaining the memory image of a running machine in the first place is not easy.

Although researchers developed both hardware and software methods to acquire the

RAM, the constantly-changing nature of non-volatile memory pose a challenge to

investigators. However, most virtualization software allows users to take a snapshot of a

virtual machine and collect the contents of the memory from a file on disk. We took

advantage of this feature to create memory images of Linux systems that we used to

perform our experiments.

 When the memory image is available, the first step involves identifying which of

the tasks running on the machine, at the moment of capture, is of interest. This is done by

parsing the RAM for the circular doubly-linked list of process descriptors maintained by

the Linux kernel (from which all the other process-related kernel structures can be

obtained as described in Chapter 3), in order to get the list of all the tasks loaded in

memory. At this point, accessing the data is a question of determining the offsets of

specific fields in the kernel data structures. The gettsk tool proceeds to store the

obtained information in a file using the flexible and widely used XML format.

75

 To be able to resume the process extracted from the RAM, the receiving system

should be prepared adequately (see Section 5.1): the operating system, the underlying

hardware as well as other resources such as the filesystem (especially those used by the

task) should be similar to their equivalent in the original machine, to ensure a proper

continuation of the execution of the task. It is also an imperative that the host be separate

from production systems, so that potential infection is contained.

 The actual resumption procedure can be performed in Linux either form User

Space or Kernel Space, but making changes while in kernel mode allows direct access to

the data structures that need to be restored for the execution to continue. That‘s the reason

why the memexec toolset includes a loadable kernel module (memlkm) which does the

actual work of placing the saved process‘ artifacts in their appropriate locations.

 Although our experiment worked for our proof-of-concept configurations, both

tools gettsk and memexec fail to consider some process-related data that could come in

handy for an investigation such as open files and the ability to complete the resumption

when the initial process is dynamically compiled (see Sections 4.4 and 5.2.4). This work

is designed for a single process at the time and thus Inter Process Communications as

well as network connections are not supported. Moreover, the implementation is highly

dependent on the version of the kernel used during the experiment (Linux kernel 2.6.35)

and will not function correctly on different platforms.

Future Work:

 Our work described how a number of process-specific information can be

retrieved from a memory image and how they can be used to continue the execution of

76

the task on another host. This will increase the chances for an investigator to discover

and/or consolidate evidence, from a forensic analysis of the contents of the RAM. But as

the previous paragraph suggests, there is still room for improvement, including the

following:

- Dynamically compiled binaries and system calls: As discussed in Sections

5.2.3.1 and 5.2.4, our proposed solution does not work for dynamically

compiled programs, probably due to the remnants of the process being

modified during the resumption phase. This issue might be solved by restoring

the information of the extracted process using a task created from scratch. It is

worth noting that failures specifically occur when system calls are being

executed, which suggest discrepancies with the process‘ libraries and/or the

state of the kernel (which is not extracted by gettsk).

- Extract and restore the files opened by the process: Regular files, network

sockets and pipes (see Section 4.4). This category can also include providing

alternatives to recovering memory mappings. Our proposal requires that the

files mapped in memory be present at the same location in the host system,

but this might be difficult to fulfill, especially for included libraries. Since

their contents are actually stored in RAM, they could be harnessed at the

extraction phase to alleviate the requirement.

- Extend support to groups of tasks, their relationships and transactions

between them: Neither child, sibling, nor parent processes are taken into

account in our project, although they might be of use to a forensic

investigation. Extracting from memory and resuming the execution of a group

77

of running processes and their relationships is thus a desirable feature that

could be pursued in the future. Similarly, if the tasks of interest are involved

in inter-process communications, they should be captured and revived with

their transactions preserved.

- Extend support to different kernel versions and different platforms: Both tools

introduced in this document are very kernel-dependent, primarily due to

differences in data structures between versions of the Linux Kernel. A first

step towards solving this issue could be automating the determination of

fields‘ offsets in kernel structures, as discussed in Section 4.4. A more long

term solution could involve a method used by Volatility [50], which allows

the users to create and add profiles for specific kernel versions, thus providing

more flexibility and control to investigators.

APPENDIX A: OFFSETS AND OTHER CONFIGURATIONS

 The following Python declarations (config.py) represent the offsets of elements

in the kernel structures used during the experimental phase of this project. It also includes

hard coded configurations such as PAGE_OFFSET and the address of init_task found

in the System.map symbol table.

******************** CONFIG.PY ******************************

init_task = 0xc07c76e0 # "Swapper" address obtained from System.map

kernel_start = 0xc0000000 # PAGE_OFFSET

page_size = 0x1000 # Size of a Page: 4KB

page_mask = 0x00000fff

regs_size = 68 # size of register set

sig_action_size = 1280 # size of signal handler structure

"""

***** Task_struct Offsets: see include/linux/sched.h ********

"""

state_offset = 0

stack_offset = 8

flags_offset = 24

task_offset = 432

comm_offset = 752

pid_offset = 508

mm_offset = 460

parent_offset = 524

cred_offset = 724

sp0_offset = 808

fs_offset = 908

files_offset = 912

sighand_offset = 924

sigpending_offset = 952

sigblocked_offset = 928

"""

****** mm_struct Offsets: see include/linux/mm_types.h *********

"""

mmap_offset = 0

pgd_offset = 40

vmstruct_offset = 124 # Offset for memory mappings of vm structures

 # such as start_code, start_data, start_stack, etc...

"""

***** vm_area_struct Offsets : see include/linux/mm_types.h *****

79

"""

vm_mm_offset = 0

vm_start_offset = 4

vm_end_offset = 8

vm_next_offset = 12

vm_prev_offset = 16

vm_pgprot_offset = 20

vm_pgoff_offset = 72

vm_flags_offset = 20

vm_file_offset = 76

"""

 Files_struct, fdtable, file, dentry and inode Offsets:

 see: include/linux/fdtable.h

 include/linux/fs.h

 include/linux/dcache.h

"""

fdt_offset = 4 # File Table offset

fd_offset = 4 # Array of file descritpor (fd) offset

dentry_offset = 12

d_parent_offset = 28 # Dentry's parent offset

name_len_offset = 36

d_name_offset = 40 # Dentry's Name offset

********************** END CONFIG.PY *************************

APPENDIX B: LISTING RUNNING PROCESSES

 Source code in Python of ps.py that lists the running processes from a Linux

kernel 2.6.35 memory dump.

#!/usr/bin/python

import os

import sys

import struct

from config import * # See Appendix A: config.py

def usage(arg):

 print ""

 print " Usage: %s <memory_file>" % (os.path.basename(arg))

 print ""

def printline(addr, f): # Print process info

 current = addr + pid_offset

 f.seek(current)

 ret, = struct.unpack('<L', f.read(4))

 print '%4d'.ljust(10) % ret ,

 current = addr + parent_offset

 f.seek(current)

 ret, = struct.unpack('<L', f.read(4))

 current = (ret - kernel_start) + pid_offset

 f.seek(current)

 ret, = struct.unpack('<L', f.read(4))

 print '%4d'.ljust(10) % ret ,

 if (debug):

 current = addr + cred_offset

 f.seek(current)

 current, = (struct.unpack('<L', f.read(4)))

 current = current - kernel_start + 4

 f.seek(current)

 print '%4d'.ljust(10) % (struct.unpack('<L', f.read(4))),

 print '0x%8x'.ljust(15) % (addr + kernel_start),

 current = addr + comm_offset

 f.seek(current)

 print '%16s'.ljust(25) % (f.read(16))

################################ MAIN #################################

debug = 0

line = ""

if (len(sys.argv) != 2):

 usage(sys.argv[0])

 sys.exit(0)

fields = "PID ".ljust(15) + "PPID".ljust(10) # print headings

if (debug):

 fields += "PID".ljust(10)

 fields += "ADDRESS(Hex)".ljust(20)

fields += "NAME".ljust(25)

print fields

init = init_task - kernel_start

dumpfile = open(sys.argv[1], "rb")

current_task = init

printline(current_task, dumpfile)

dumpfile.seek(current_task + task_offset)

val, = struct.unpack('<L', dumpfile.read(4))

current_task = (val - kernel_start) - task_offset

while (current_task != init):

 printline(current_task, dumpfile)

 dumpfile.seek(current_task + task_offset)

 val, = struct.unpack('<L', dumpfile.read(4))

 current_task = (val - kernel_start) - task_offset

dumpfile.close()

APPENDIX C: GETTSK SOURCE CODE

 This is the source code for the gettsk tool, made up of three files (the two files

structures.py and gettsk.py printed here, plus config.py in Appendix A).

******************** STRUCTURES.PY ******************************

import os

import sys

import struct

from config import *

from gettsk import *

class Structure: # Collection of items to simulate kernel structures

 def __init__(self, **kwds):

 self.__dict__.update(kwds)

 def __str__(self):

 state = ["%s = 0x%08x" % (att, value)

 for (att, value)

 in self.__dict__.items()]

 return '\n'.join(state)

class AddresSpace: # mm_struct in Unix

 def __init__(self, address):

 self.base_addr = address - kernel_start

 self.mmap_addr = self.base_addr + mmap_offset

 self.pgd_addr = self.base_addr + pgd_offset

 def getVmStruct(self, f): # Get vm structure for each Process Address Space

 f.seek(self.base_addr + vmstruct_offset)

 start_code, = struct.unpack('<L', f.read(4))

 end_code, = struct.unpack('<L', f.read(4))

 start_data, = struct.unpack('<L', f.read(4))

 end_data, = struct.unpack('<L', f.read(4))

 start_brk, = struct.unpack('<L', f.read(4))

 brk, = struct.unpack('<L', f.read(4))

 start_stack, = struct.unpack('<L', f.read(4))

 arg_start, = struct.unpack('<L', f.read(4))

 arg_end, = struct.unpack('<L', f.read(4))

 env_start, = struct.unpack('<L', f.read(4))

 env_end, = struct.unpack('<L', f.read(4))

 vmstruct = Structure(start_code = start_code, end_code = end_code,

 start_data = start_data, end_data = end_data,

 start_brk = start_brk, brk = brk,

 arg_start = arg_start, arg_end = arg_end,

 start_stack = start_stack,

 env_start = env_start, env_end = env_end)

 return vmstruct

 def getAllVmAreas(self, f): # A list of all Memory Regions

 seglist = []

 f.seek(self.mmap_addr)

 address, = struct.unpack('<L', f.read(4))

 vm = VmArea(address)

 check_addr = address - kernel_start

 vmarea = vm.getVmArea(f)

 stop = True

82

 while stop or vmarea.addr != check_addr :

 seglist.append(vmarea)

 vm = vm.getNext(f)

 if vm == None :

 break

 vmarea = vm.getVmArea(f)

 stop = False

 return seglist

 def getPgd(self, f):

 pgd_addr = self.pgd_addr

 f.seek(pgd_addr)

 pgd, = struct.unpack('<L', f.read(4))

 return pgd

class VmArea: # vm_area_struct in Linux

 def __init__(self, address):

 self.base_addr = address - kernel_start

 self.next = None

 self.prev = None

 def getNext(self, f): # Get next VmArea : vm_next

 f.seek(self.base_addr + vm_next_offset)

 addr, = struct.unpack('<L', f.read(4))

 if addr == 0:

 return None

 self.next = VmArea(addr)

 return self.next

 def getVmArea(self, f): # Get a memory region

 f.seek(self.base_addr + vm_start_offset)

 vm_start, = struct.unpack('<L', f.read(4))

 vm_end, = struct.unpack('<L', f.read(4))

 f.seek(self.base_addr + vm_pgprot_offset)

 vm_pgprot, = struct.unpack('<L', f.read(4))

 vm_flags, = struct.unpack('<L', f.read(4))

 f.seek(self.base_addr + vm_pgoff_offset)

 vm_pgoff, = struct.unpack('<L', f.read(4))

 vm_file, = struct.unpack('<L', f.read(4)) # file struct address or None

 vmarea = Structure(addr = self.base_addr, vm_start = vm_start,

 vm_end = vm_end,

 vm_pgprot=vm_pgprot, vm_flags=vm_flags,

 vm_pgoff = vm_pgoff,

 vm_file=vm_file)

 return vmarea

class File:

 def __init__(self, address):

 self.base_address = address - kernel_start

 self.start = None

 self.end = None

 def getFilePath(self, f): # Get File path and Name from File Descriptor

 filename = ""

 f.seek(self.base_address + dentry_offset)

 dentry, = struct.unpack('<L', f.read(4))

 dentry -= kernel_start

 f.seek(dentry + d_parent_offset)

 parent, = struct.unpack('<L', f.read(4))

83

 f.seek(dentry + name_len_offset)

 size, = struct.unpack('<L', f.read(4))

 name_addr, = struct.unpack('<L', f.read(4))

 name_addr -= kernel_start

 f.seek(name_addr)

 name = f.read(size)

 if name == "" :

 return ""

 while name != "/" and name != "anon_inode:":

 if filename == "" :

 filename = name

 else:

 filename = name + '/' + filename

 if len(filename) > 100:

 break

 dentry = parent - kernel_start

 f.seek(dentry + d_parent_offset)

 parent, = struct.unpack('<L', f.read(4))

 f.seek(dentry + name_len_offset)

 size, = struct.unpack('<L', f.read(4))

 name_addr, = struct.unpack('<L', f.read(4))

 name_addr -= kernel_start

 f.seek(name_addr)

 name = f.read(size)

 if name == "" or name == "anon_inode:":

 return filename

 filename = '/' + filename

 return filename

 def getFilevmAreas(self, seglist): # Return vm_areas of a file from list of

all vm_Areas

 l = []

 for vmarea in seglist :

 if vmarea.vm_file == (self.base_address + kernel_start) :

 l.append(vmarea)

 if self.start == None :

 self.start = vmarea.vm_start

 if self.end == None :

 self.end = vm_area.vm_end

 if self.start + vmarea.vm_pgoff * page_size > self.end :

 self.end = vmarea.vm_end

 return l

******************** END STRUCTURES.PY ******************************

*************************** GETTSK.PY ******************************
#!/usr/bin/python

import os

import sys

import struct

import getopt

import base64 # For data encoding

from xml.dom.minidom import Document

from config import *

from structures import *

def usage(arg):

 print " Usage: %s -f <memory_file> [-o <output_file>] [-v] -p <pid>" % (os.path.basename(arg))

 print ""

 print " -f <memory_file> : Memory image file."

 print " -o <output_file> : XML output file."

84

 print " -v : Verbose."

 print " -p <pid> : PID of process to extract."

 print ""

def check_options(argv): # Verify Command Line Options

 v = 0 # verbose

 p = 0 # pid

 f = "" # Memory Image File

 out = "output.xml" # Output File

 o = "hvf:o:p:"

 try:

 options = getopt.getopt(argv[1:], o)

 opts = dict(options[0])

 extra = options[1]

 if ((len(opts) == 0) or ("-h" in opts)):

 usage(argv[0])

 sys.exit(0)

 if ("-v" in opts):

 v = 1

 if (not "-f" in opts):

 raise Exception("Memory Image File not specified, use -h for help!")

 f = opts["-f"]

 if (not "-p" in opts):

 raise Exception("PID not specified, use -h for help!")

 p = int(opts["-p"])

 if ("-o" in opts):

 if os.path.exists(opts["-o"]):

 raise Exception("The output filename already exists!")

 out = opts["-o"]

 except getopt.GetoptError, error:

 print " Error: " + str(error)

 usage(argv[0])

 sys.exit(0)

 except Exception, ex:

 print " Error: " + str(ex)

 sys.exit(0)

 return (v, f, p, out)

def taskByPid(pid, f): # Returns task_struct address from PID

 init = init_task - kernel_start

 current_pid = 0

 current_task = init

 f.seek(current_task + task_offset)

 val, = struct.unpack('<L', f.read(4))

 current_task = (val - kernel_start) - task_offset

 f.seek(current_task + pid_offset)

 current_pid, = struct.unpack('<i', f.read(4))

 while (current_task != init and current_pid != pid):

 f.seek(current_task + task_offset)

 val, = struct.unpack('<L', f.read(4))

 current_task = (val - kernel_start) - task_offset

 f.seek(current_task + pid_offset)

 current_pid, = struct.unpack('<i', f.read(4))

 if (current_task == init):

 return None

 return current_task

def getCred(addr, f): # Retrieve process' credentials;

85

 # addr = cred address from

task_struct

 addr = addr - kernel_start

 f.seek(addr + 4)

 uid, = struct.unpack('<i', f.read(4))

 gid, = struct.unpack('<i', f.read(4))

 suid, = struct.unpack('<i', f.read(4))

 sgid, = struct.unpack('<i', f.read(4))

 euid, = struct.unpack('<i', f.read(4))

 egid, = struct.unpack('<i', f.read(4))

 fsuid, = struct.unpack('<i', f.read(4))

 fsgid, = struct.unpack('<i', f.read(4))

 cred = Structure (uid=uid, gid=gid, suid=suid, sgid=sgid, euid=euid,

 egid=egid, fsuid=fsuid, fsgid=fsgid)

 return cred

def getOpenFiles(addr, f): # Returns list of open files from file table

 l = []

 open_files = []

 filename = ""

 addr -= kernel_start

 f.seek(addr + fdt_offset)

 addr, = struct.unpack('<L', f.read(4)) # Pointer to File table

 addr -= kernel_start

 f.seek(addr + fd_offset)

 addr, = struct.unpack('<L', f.read(4)) # Pointer to array of fds

 addr -= kernel_start

 f.seek(addr)

 addr, = struct.unpack('<L', f.read(4))

 while addr != 0 :

 l.append(addr)

 addr, = struct.unpack('<L', f.read(4))

 for addr in l :

 """

 f.seek(addr + dentry_offset)

 dentry, = struct.unpack('<L', f.read(4))

 dentry -= kernel_start

 """

 file = File(addr)

 filename = file.getFilePath(f)

 if filename == "" :

 continue

 # print filename

 open_files.append(filename)

 return open_files

def getKernelModeStack(addr, f): # Get Top of stack containing process CPU registers

 addr -= kernel_start - 4 # -4 to include top of stack

 f.seek (addr - regs_size)

 buf = f.read(regs_size)

 # print buf

 return buf

def VirtToPhysical(addr, f, pgd) : # Translate from user mode Virtual to Physical

Address.

 #

 # Returns the triplet (Paget table flags,

Type of page entry, Physical address of frame if any).

 #

 # The type of page table is:

 # - 0 for a page directory entry

 # - 1 for a page table entry

 #

 # This is used to rebuild the page tables

correctly.

86

 ret = ((pgd >> 12) << 12) + (addr >> 22)*4

 f.seek(ret - kernel_start)

 pgd_entry, = struct.unpack('<L', f.read(4))

 if (pgd_entry & 0b1 != 0b1):

 #print "PGD_ENTRY present flag is 0: Page frame not in memory ",

 #print hex(pgd_entry)

 return (pgd_entry & 0xfff, 0, 0)

 ret = ((pgd_entry >> 12) << 12) + ((addr >> 12) & (1 << 10)-1)*4

 f.seek(ret)

 pt_entry, = struct.unpack('<L', f.read(4))

 if (pt_entry & 0b1 != 0b1): # Not in Memory

 #print "PT_ENTRY present flag is 0: Page frame not in memory "

 #print hex(pt_entry)

 return (pt_entry & 0xfff, 1, 0)

 final = (((pt_entry >> 12) << 12) + (addr & (1 << 12) - 1))

 return (pt_entry & 0xfff, 1,final)

def dumpVmArea(vmarea, f, pgd): # Dump the contents of a memory region,

NOT USED NOW!!!

 addr = vmarea.vm_start

 dump = ""

 i = 0

 while addr < vmarea.vm_end :

 (flags, page_type, res) = VirtToPhysical(addr, f, pgd)

 if (not res):

 #print "Page could not be found: start = 0x%08x , end = 0x%08x" %

(vmarea.vm_start, addr)

 #print ""

 addr += page_size

 continue

 else :

 if (res & page_mask) :

 print " Oops! Page address 0x%08x not aligned" % addr

 print ""

 f.seek(res)

 dump += f.read(page_size)

 addr += page_size

 i += 1

 #print i

 return (dump, i)

def buildXml(task, output, f): # Build XML file from Process Structure

 out = open (output, "w")

 dirs = 'tsk_files/'

 regstring = 'region'

 if dump_map:

 if not os.path.isdir("./" + dirs):

 os.makedirs(dirs)

 if not os.path.isdir("./" + dirs):

 print "Cannot create \"tsk_files\" directory!! All memory segment related

files will be in current directory!"

 #dirs = './'

 doc = Document()

 proc = doc.createElement("process")

 proc.setAttribute("magic_number", MAGIC)

 proc.setAttribute("kernel_version", "2.6.35")

 proc.setAttribute("arch", "x86")

 doc.appendChild(proc)

87

 old_pid = doc.createElement("old_pid")

 proc.appendChild(old_pid)

 pid_t = doc.createTextNode(str(task.pid))

 old_pid.appendChild(pid_t)

 name = doc.createElement("name")

 proc.appendChild(name)

 comm = doc.createTextNode(task.name)

 name.appendChild(comm)

 state = doc.createElement("state")

 proc.appendChild(state)

 state_t = doc.createTextNode(str(task.state))

 state.appendChild(state_t)

 flags = doc.createElement("flags")

 flags.setAttribute("value", "0x%08x" % (task.flags))

 proc.appendChild(flags)

 cred = doc.createElement("credentials")

 proc.appendChild(cred)

 for (attr, value) in task.cred.__dict__.items():

 cred.setAttribute(attr, "%d" % value)

 buf = getKernelModeStack(task.kmstack, f)

 #print "%s" %buf

 buf = base64.standard_b64encode(buf)

 reg_set = doc.createElement("reg_set")

 proc.appendChild(reg_set)

 reg_set.setAttribute("encoding", "binary-base64")

 reg_stack = doc.createTextNode(buf)

 reg_set.appendChild(reg_stack)

 vmstruct = doc.createElement("vmstruct")

 proc.appendChild(vmstruct)

 for (attr, value) in task.vmstruct.__dict__.items():

 vmstruct.setAttribute(attr, "0x%08x" % value)

 ############################# seglist #########################

 segments = doc.createElement("segments")

 segments.setAttribute("number", "%d" % (len(task.seglist)))

 sp = task.sp_addr - kernel_start

 count = 0

 for vmarea in task.seglist :

 pgoff = 0 # Offset of page in file representing a region.

 #name = 'vm%d'%count

 if dump_map:

 regfilename = '%s%s%d'%(dirs, regstring, count)

 reg_file = open (regfilename, "w")

 #print "%s" %name

 region = doc.createElement("vm_region")

 region.setAttribute("vm_start", "0x%08x" % vmarea.vm_start)

 region.setAttribute("vm_end", "0x%08x" % vmarea.vm_end)

 region.setAttribute("vm_pgprot", "0x%08x" % vmarea.vm_pgprot)

 region.setAttribute("vm_flags", "0x%08x" % vmarea.vm_flags)

 region.setAttribute("vm_pgoff", "0x%08x" % vmarea.vm_pgoff)

 if dump_map:

 region.setAttribute("local_file", "%s" %regfilename)

 #(dmp, num) = dumpVmArea(vmarea, f, task.pgd)

 addr = vmarea.vm_start

 num = 0

 if vmarea.vm_file != 0 :

 file = File(vmarea.vm_file)

 filename = file.getFilePath(f)

 region.setAttribute("filename", filename)

 while addr < vmarea.vm_end : # For each frame, Present in memory or not!

88

 (flgs, ptype, res) = VirtToPhysical(addr, f, pgd)

 if (not res):

 #print "Page not present in memory: start = 0x%08x , end = 0x%08x" %

(addr, addr+page_size)

 present = 0

 addr += page_size

 continue

 #fname = name + '_frame%d'%num

 frame = doc.createElement("vm_frame")

 frame.setAttribute("vm_start", "0x%08x" % addr)

 frame.setAttribute("vm_end", "0x%08x" % (addr + page_size))

 frame.setAttribute("flags", "0x%08x" % flgs)

 frame.setAttribute("offset", "0x%08x" % pgoff)

 #if (ptype):

 # frame.setAttribute("entry_type", "pte")

 #else:

 # frame.setAttribute("entry_type", "pgd")

 present = 1

 if (res & page_mask) :

 print " Oops! Page address 0x%08x not aligned!" % addr

 f.seek(res)

 dmp = f.read(page_size)

 if dump_map:

 reg_file.seek(pgoff)

 reg_file.write(dmp)

 if vmarea.vm_file == 0 :

 dmp = base64.standard_b64encode(dmp)

 frame.setAttribute("encoding", "binary-base64")

 mem_contents = doc.createTextNode(dmp)

 frame.appendChild(mem_contents)

 region.appendChild(frame)

 addr += page_size

 pgoff += page_size

 num += 1

 region.setAttribute("num_pages", "%d" % num)

 segments.appendChild(region)

 count += 1

 # break

 proc.appendChild(segments)

 ############################### end seglist ########################

 open_files = doc.createElement("open_files")

 open_files.setAttribute("Number", "%d" % (len(task.open_files)))

 proc.appendChild(open_files)

 for p in task.open_files:

 var = doc.createElement("file")

 var.setAttribute("pathname", p)

 open_files.appendChild(var)

 signals = doc.createElement("signals")

 proc.appendChild(signals)

 sig_act = doc.createElement("sig_actions")

 sig_act.setAttribute("encoding", "binary-base64")

 signals.appendChild(sig_act)

 sig_hand_addr = task.sig_actions - kernel_start

 f.seek(sig_hand_addr)

 buf = f.read(sig_action_size)

 buf = base64.standard_b64encode(buf)

 sighand = doc.createTextNode(buf)

 sig_act.appendChild(sighand)

89

 blocked = doc.createElement("sig_blocked")

 signals.appendChild(blocked)

 blocked.setAttribute("value", "0x%016x" % (task.sig_blocked))

 pending = doc.createElement("sig_pending")

 signals.appendChild(pending)

 pending.setAttribute("value", "0x%016x" % (task.sig_pending))

 xml = doc.toprettyxml(indent=" ")

 out.write(xml)

 out.close()

 return 0

 ##

 # ***** MAIN ******** #

 ##

print ""

print " Gettsk version 0.1 "

print " By Ernest Mougoue <mougoued@dukes.jmu.edu>"

print ""

(verbose, fileString, pid, outString) = check_options(sys.argv)

print "Test: pid = %d, file = %s, out = %s, verb = %d " % (pid, fileString, outString, verbose)

dump_map = 0 # dump memory mappings to external files?

dumpfile = open(fileString, "rb")

if (pid == 0):

 print "Cannot extract \"swapper\", Please choose another process!"

 print ""

 sys.exit(0)

task_addr = taskByPid(pid, dumpfile) # Get the address of task_struct

if (task_addr == None):

 print "There is no process with PID: %d, Please choose another process!" % pid

 print ""

 sys.exit(0)

dumpfile.seek(task_addr + comm_offset) # Get Process' Name

i = 16

comm = ""

read = dumpfile.read(1)

while (i > 0) and (read != "\x00"):

 comm += read

 read = dumpfile.read(1)

 i -= 1

if (verbose):

 print ""

 print " The chosen Process is:"

 print " PID: %d" % pid

 print " Name: %s @ 0x%08x" % (comm, task_addr)

 print " Output File : %s" % outString

 print ""

if (verbose):

 print " + Getting Process' State....."

dumpfile.seek(task_addr + state_offset)

state, = struct.unpack('<L', dumpfile.read(4)) # Get Process' Running State

print "State = %02d" % state

if (verbose):

 print " + Getting Process' Flags....."

dumpfile.seek(task_addr + flags_offset)

flags, = struct.unpack('<L', dumpfile.read(4)) # Get Process' flags

print "Flags = 0x%08x" % flags

90

if (verbose):

 print " + Getting Process' Memory Mappings....."

dumpfile.seek(task_addr + mm_offset)

mm_addr, = struct.unpack('<L', dumpfile.read(4)) # Get Process' mm_struct Base Address

if mm_addr < kernel_start :

 print "This Process has an invalid memory map!!!"

 print "Exiting"

 print ""

 sys.exit(0)

mm_struct = AddresSpace(mm_addr)

vmstruct = mm_struct.getVmStruct(dumpfile) # Get Memory Map Structure of process

pgd = mm_struct.getPgd(dumpfile) # Get Process' PGD

#print hex(pgd)

seglist = mm_struct.getAllVmAreas(dumpfile) # Get a list of vm_area_structs

if (verbose):

 print " + Getting Process' Credentials....."

dumpfile.seek(task_addr + cred_offset)

cred_addr, = struct.unpack('<L', dumpfile.read(4)) # Get Process' Credentials Base Address

cred = getCred(cred_addr, dumpfile)

print cred

if (verbose):

 print " + Getting Process' Kernel Mode Stack....."

dumpfile.seek(task_addr + sp0_offset)

kmstack_addr, = struct.unpack('<L', dumpfile.read(4)) # Get Process' Kernel Mode Stack Base

Address

if (verbose):

 print " + Kernel Mode Stack Pointer: 0x%08x" %kmstack_addr

sp_addr, = struct.unpack('<L', dumpfile.read(4)) # Get Process' Stack Pointer

if (verbose):

 print " + Stack Pointer: 0x%08x" %sp_addr

ip_addr, = struct.unpack('<L', dumpfile.read(4))

ip_addr, = struct.unpack('<L', dumpfile.read(4))

dumpfile.seek(ip_addr - kernel_start)

ip_addr, = struct.unpack('<L', dumpfile.read(4))

#print hex(sp_addr)

#print hex(kmstack_addr)

dumpfile.seek(task_addr + fs_offset)

fs_addr, = struct.unpack('<L', dumpfile.read(4)) # Get Process' fs_struct Base Address

if (verbose):

 print " + Getting Process' Open Files....."

dumpfile.seek(task_addr + files_offset)

files_addr, = struct.unpack('<L', dumpfile.read(4)) # Get Process' files_struct Base Address

open_files = getOpenFiles(files_addr, dumpfile) # Get a list of opened files

open_files = open_files[3:] # The first 3 are stdin, stdout and stderr

if (verbose):

 print " + Getting Process' Signals....."

dumpfile.seek(task_addr + sighand_offset)

sighand_addr, = struct.unpack('<L', dumpfile.read(4)) # Get Process' Signal Handlers address

sighand_addr += 4 # Address of Signal Actions

sighand = getSigHand(sighand_addr, dumpfile)

dumpfile.seek(task_addr + sigblocked_offset)

blocked, = struct.unpack('<d', dumpfile.read(8)) # Blocked signals

print "0x%016x" % blocked

91

dumpfile.seek(task_addr + sigpending_offset + 8)

pending, = struct.unpack('<d', dumpfile.read(8)) # Get Process' pending signals

-----All the infos about a Process in a structure--------------------

process = Structure(task_addr = task_addr, pid = pid, name = comm, state = state,

flags = flags,seglist = seglist, cred = cred, vmstruct = vmstruct, kmstack =

kmstack_addr,

 open_files = open_files, sp_addr = sp_addr, pgd = pgd,

 sig_actions = sighand_addr, sig_blocked = blocked,

sig_pending = pending)

if (verbose):

 print " + Building XML File....."

done = buildXml(process, outString, dumpfile) # Build XML File

if (done):

 print "An error Occured while saving the process!!!"

 dumpfile.close()

 sys.exit(0)

dumpfile.close()

print "Done. "

print " "

APPENDIX D: XML SCHEMA FOR GETTSK’S OUTPUT

<? xml version = “1.0”?>

<xs: element name=”process”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”pid” type=”xs:integer”/>

 <xs: element name=”name” type=”xs:string”/>

 <xs:element name=”state” type=”xs:integer”/>

 <xs:element name=”flags” type=”xs:integer”/>

 </xs:element>

 <xs:element name=”credentials”>

 <xs:attribute name=”uid” type=”xs:integer”/>

 <xs:attribute name=”gid” type=”xs:integer”/>

 <xs:attribute name=”euid” type=”xs:integer”/>

 <xs:attribute name=”egid” type=”xs:integer”/>

 <xs:attribute name=”fsuid” type=”xs:integer”/>

 <xs:attribute name=”fsgid” type=”xs:integer”/>

 <xs:attribute name=”suid” type=”xs:integer”/>

 <xs:attribute name=”sgid” type=”xs:integer”/>

 </xs:element>

 <xs:element name=”reg_set” type=”xs:string”>

 <xs:attribute name=”encoding” type=”xs:string” default=”binary-base64”/>

 </xs:element>

 <xs:element name=”vmstruct”>

 <xs:attribute name=”start_code” type=”xs:string”/>

 <xs:attribute name=”end_code” type=”xs:string”/>

 <xs:attribute name=”start_data” type=”xs:string”/>

 <xs:attribute name=”end_data” type=”xs:string”/>

 <xs:attribute name=”start_brk” type=”xs:string”/>

 <xs:attribute name=”brk” type=”xs:string”/>

 <xs:attribute name=”arg_start” type=”xs:string”/>

 <xs:attribute name=”arg_end” type=”xs:string”/>

 <xs:attribute name=”start_stack” type=”xs:string”/>

 <xs:attribute name=”env_start” type=”xs:string”/>

 <xs:attribute name=”env_end” type=”xs:string”/>

 </xs:element>

<xs:element name=”segments”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”vm_region” type”xs:string” minOccurs=”0”

maxOccurs=”unbounded”/>

 <xs:attribute name=”encoding” type=”xs:string” default=”binary-base64”/>

 <xs:attribute name=”vm_start” type=”xs:string”/>

 <xs:attribute name=”vm_end” type=”xs:string”/>

 <xs:attribute name=”vm_pgprot” type=”xs:string”/>

 <xs:attribute name=”vm_pgoff” type=”xs:string”/>

 <xs:attribute name=”vm_flags” type=”xs:string”/>

 <xs:attribute name=”num_pages” type=”xs:integer”/>

93

 <xs:attribute name=”filename” type=”xs:string” use=”optional”/>

 </xs:element>

 </xs:sequence>

 <xs:attribute name=”number” type=”xs:integer”>

 </xs:complexType>

</xs:element>

 <xs:element name=”open_files”>

 <xs:complexType>

 <xs:element name=”file” minOccurs=”0” maxOccurs=”unbounded”>

 <xs:attribute name=”pathname” type=”xs:string”/>

 </xs:element>

 <xs:attribute name=”Number” type=”xs:integer”>

 </xs:complexType>

</xs:element>

<xs:element name=”signals”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”sig_actions” type=”xs:strings”>

 <xs:attribute name=”encoding” type=”xs:string” default=”binary-base64”/>

 </xs:element>

 <xs:element name=”sig_blocked” type=”xs:strings”>

 <xs:attribute name=”value” type=”xs:string”/>

 </xs:element>

 <xs:element name=”sig_pending” type=”xs:strings”>

 <xs:attribute name=”value” type=”xs:string”/>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:elements>

<xs:attribute name=”arch” type=”xs:string” default=”x86”/>

<xs:attribute name=”kernel” type=”xs:string” default=”2.6.35.8”/>

<xs:attribute name=”magic_number” type=”xs:string” default=”FFC0”>

 </xs:sequence>

 </xs:complexType>

</xs:element>

APPENDIX E: MEMEXEC SOURCE CODE

 This is the source code of the 3 files constituting the memexec tool: memexec.c,

memexec.h and memlkm.c. Also included is the Makefile used to compile them.

******************** memexec.h ******************************
#include <asm/ptrace.h>

#include <linux/ipc.h>

#include <asm/param.h>

#define MEMPROC_SIZE sizeof(struct memproc)

#define MAX_FILENAME 256

#define MAX_PATH 256

#define PAGES 4096 // Page Size

/* IOCTL */

#define MAGIC_NUMBER 0xCC

#define IOCTL_RESTART _IOW(MAGIC_NUMBER, 1, struct memproc *)

#define MAX_IOC_NR 1

#define DEV_FILE "/dev/memexec"

struct credentials {

 int uid, gid, suid, sgid, euid, egid, fsuid, fsgid;

};

struct registers {

 int size;

 char *regs;

};

struct signals {

 int sig_actions_size;

 char *sig_actions;

 unsigned long sig_blocked, sig_pending;

};

struct vmstruct {

 unsigned long start_code, end_code, start_data, end_data;

 unsigned long start_brk, brk, start_stack, arg_start, arg_end;

 unsigned long env_start, env_end;

};

struct frames {

 unsigned long present;

 unsigned long flags;

 unsigned long offset;

 char entry_type[3];

 unsigned long vm_start, vm_end;

 char *contents;

};

struct segments {

 unsigned long vm_start, vm_end, prot, flags, pgoff;

 int num_pages;

 int vm_file;

 char local_file[MAX_PATH]; // Local file storing the contents of the segment.

 char filename[MAX_FILENAME];

 //char *contents;

 struct frames *framelist; /* Frames associated with each segment */

};

95

struct open_file {

 /* Not Fully supported - Now only shows open file's path */

 char * path;

};

struct memproc {

 unsigned long old_pid, state, flags;

 int seg_num; /* Number of Segments */

 int file_num; /* Number of Open Files */

 char name[16];

 struct registers reg_set;

 struct credentials memcred;

 struct vmstruct vm_map;

 struct segments *seglist;

 struct open_file *filelist;

 struct signals sig;

};

static inline void mem_strncpy(char * src, const char * dest, int size) {

 int i;

 for (i = 0; i < size; i++) {

 src[i] = dest[i];

 }

}

******************** End memexec.h ******************************

******************** memelkm.c ******************************

/* Standard in kernel modules */

#include <linux/smp.h>

#include <linux/kernel.h> /* We're doing kernel work */

#include <linux/module.h> /* Specifically, a module */

/* For character devices */

#include <linux/fs.h> /* The character device

 * definitions are here */

#include <linux/cdev.h>

#include <linux/binfmts.h>

#include <asm/mman.h>

#include <asm/uaccess.h> /* for KERNEL_DS and get_fs() */

#include <linux/file.h>

#include <linux/sys.h>

#include <linux/syscalls.h>

#include <asm/page.h>

#include <asm/msr.h>

#include <linux/mount.h>

//#include <linux/swapops.h>

#include <linux/sched.h>

#include <linux/mm.h>

#include <linux/slab.h>

#include <linux/vmalloc.h>

#include "memexec.h"

/* verbose printks */

const int verbose = 1;

static inline unsigned long get_mmap_flags(unsigned short vm_flags) {

 return MAP_FIXED |

 (vm_flags & VM_MAYSHARE? MAP_SHARED : MAP_PRIVATE) |

 (vm_flags & VM_GROWSDOWN) |

 (vm_flags & MAP_FIXED) |

96

 (vm_flags & VM_EXECUTABLE)

 ;

}

/*

 Restart a process.

*/

static int restart(unsigned long clone_flags, unsigned long arg,

 unsigned long stack_size)

{

 struct memproc *mem;

 struct pt_regs *regs;

 struct pt_regs *tmp;

 struct pt_regs *tmp1;

 int ret;

 int err, i, k;

 mm_segment_t fs;

 sigset_t * blocked;

 struct sighand_struct *sig;

 mem = (struct memproc*)kmalloc(sizeof(struct memproc), GFP_KERNEL);

 // arg is the pointer to param

 if (copy_from_user(mem, (struct memproc *)arg, sizeof(struct memproc)))

 return -EFAULT;

 fs = get_fs();

 err = -ENOMEM;

 // Restore command name

 mem_strncpy(current->comm, mem->name, 16);

 printk(KERN_INFO "MEMEXEC: %s \n", current->comm);

 if (verbose)

 printk(KERN_INFO "MEMEXEC: Restoring Flags\n");

 current->flags = mem->flags;

 current->state = TASK_INTERRUPTIBLE;

 if (verbose)

 printk(KERN_INFO "MEMEXEC: Restoring vm areas\n");

 /* Map all the segments */

 for (i=0; i<mem->seg_num; i++)

 {

 unsigned long size;

 unsigned long mmap_prot, mmap_flags;

 struct file *file;

 int omode = O_RDONLY;

 set_fs(KERNEL_DS);

 size = mem->seglist[i].vm_end - mem->seglist[i].vm_start;

 mmap_prot = mem->seglist[i].flags & 7;

 mmap_flags = get_mmap_flags(mem->seglist[i].flags);

 set_fs(fs);

 if ((mmap_prot&PROT_WRITE) && (mmap_flags&MAP_SHARED) &&

 !(mmap_flags&MAP_DENYWRITE))

 omode = O_RDWR;

 if (mem->seglist[i].num_pages == 0)

 continue;

 if (mem->seglist[i].vm_file == 0)

 {

 down_write(¤t->mm->mmap_sem);

97

 if ((mmap_flags&MAP_GROWSDOWN) || !(mmap_flags&MAP_EXECUTABLE))

 ret = do_mmap(NULL, mem->seglist[i].vm_start, size, mmap_prot|PROT_WRITE,

 mmap_flags, 0);

 up_write(¤t->mm->mmap_sem);

 if (ret != mem->seglist[i].vm_start)

 printk(KERN_INFO "Error in mmap %08lx!! Received %d !\n",

mem->seglist[i].vm_start, ret);

 for (k=0; k<=mem->seglist[i].num_pages - 1; k++)

 {

 set_fs(KERNEL_DS);

 if (mem->seglist[i].num_pages == 0)

 break;

 if ((ret = copy_to_user((void *)mem->seglist[i].framelist[k].vm_start,

 mem>seglist[i].framelist[k].contents,

PAGE_SIZE)) > 0)

 printk(KERN_INFO "Fail Copy??... 0x%08lx, %d \n",

mem->seglist[i].framelist[k].vm_start, ret);

 }

 }

 else

 {

 set_fs(KERNEL_DS);

 file = filp_open(mem->seglist[i].filename, omode, 0);

 size = mem->seglist[i].vm_end - mem->seglist[i].vm_start;

 down_write(¤t->mm->mmap_sem);

 ret = do_mmap_pgoff(file, mem->seglist[i].vm_start, size, mmap_prot,

 mmap_flags, mem->seglist[i].pgoff);

 up_write(¤t->mm->mmap_sem);

 fput(file);

 if (ret != mem->seglist[i].vm_start)

 printk("Error in mmap %08lx!! Received %08x !\n",

mem->seglist[i].vm_start, ret);

 }

 }

 set_fs(fs);

 /* Restore the memory mapping */

 if (verbose)

 printk(KERN_INFO "MEMEXEC: Restoring vm structure\n");

 down_write(¤t->mm->mmap_sem);

 current->mm->start_code = mem->vm_map.start_code;

 current->mm->end_code = mem->vm_map.end_code;

 current->mm->start_data = mem->vm_map.start_data;

 current->mm->end_data = mem->vm_map.end_data;

 current->mm->start_brk = mem->vm_map.start_brk;

 current->mm->brk = mem->vm_map.brk;

 current->mm->start_stack = mem->vm_map.start_stack;

 current->mm->arg_start = mem->vm_map.arg_start;

 current->mm->arg_end = mem->vm_map.arg_end;

 current->mm->env_start = mem->vm_map.env_start;

 current->mm->env_end = mem->vm_map.env_end;

 up_write(¤t->mm->mmap_sem);

 if (verbose)

 printk(KERN_INFO "MEMEXEC: Restoring registers\n");

 regs = task_pt_regs(current);

98

 tmp = (struct pt_regs *)mem->reg_set.regs;

 tmp1 = (struct pt_regs *)kmalloc(sizeof(struct pt_regs), GFP_KERNEL);

 *regs = *tmp;

 /* FILES */

 //if (verbose)

 // printk("Restoring file table\n");

 /******************/

 /* SIGNALS */

 /******************/

 if (verbose)

 printk(KERN_INFO "MEMEXEC: Restoring signal handlers\n");

 sig = (struct sighand_struct *) mem->sig.sig_actions;

 atomic_set(&sig->count, 1);

 spin_lock_irq(¤t->sighand->siglock);

 for (i = 0; i < _NSIG; i++)

 {

 current->sighand->action[i] = sig->action[i];

 if (i== SIGSTOP-1 || i == SIGKILL -1)

 {

 current->sighand->action[i].sa.sa_handler = SIG_DFL;

 current->sighand->action[i].sa.sa_flags = 0;

 sigemptyset(¤t->sighand->action[i].sa.sa_mask);

 }

 sigdelsetmask(¤t->sighand->action[i].sa.sa_mask,

sigmask(SIGKILL)|sigmask(SIGSTOP));

 }

 spin_unlock_irq(¤t->sighand->siglock);

 blocked = (sigset_t *)&mem->sig.sig_blocked;

 for (i = 0; i < _NSIG_WORDS; i++)

 current->blocked.sig[i] = blocked->sig[i];

 // Restore Process' State

 current->state = TASK_RUNNING; //mem->state;

 if (verbose)

 printk(KERN_INFO "MEMEXEC: *** RESTART: done ***\n");

 err = 0;

 return err;

}

/* Device Declarations **************************** */

/* The name for our device, as it will appear

 * in /proc/devices */

#define DEVICE_NAME "memexec"

int memexec_open(struct inode *inode,

 struct file *file) {

 return 0;

}

int memexec_release(struct inode *inode,

 struct file *file) {

 return 0;

}

/*

 * ioctl impl. for checkpoint. Primary means to interact with device.

 */

int memexec_ioctl(struct inode * inode_i, struct file * file,

99

 unsigned int cmd, unsigned long arg) {

 /* Quick error checking. */

 if(_IOC_TYPE(cmd) != MAGIC_NUMBER) return -ENOTTY;

 if(_IOC_NR(cmd) > MAX_IOC_NR) return -ENOTTY;

 // do restart here

 if (cmd == IOCTL_RESTART)

 return restart(SIGCHLD, arg, 0);

 return -EINVAL;

}

/* Module Declarations ***************************** */

static int major;

struct file_operations memexec_fops = {

 owner: THIS_MODULE,

 ioctl: memexec_ioctl,

 open: memexec_open,

 release: memexec_release,

};

int memexec_init(void)

{

 int result;

 result = register_chrdev(0, DEVICE_NAME, &memexec_fops);

 if(result < 0){

 printk(KERN_ALERT "Registering Device Failed w/ major %d.\n", major);

 return result;

 }

 if(verbose)

 printk(KERN_INFO "*****Device Memexec Loaded!!!*****");

 major = result;

 return 0;

}

void memexec_cleanup(void)

{

 unregister_chrdev(major, DEVICE_NAME);

}

module_init(memexec_init);

module_exit(memexec_cleanup);

MODULE_LICENSE("GPL");

******************** End memlkm.c ******************************

******************** memexec.c ******************************
#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <ctype.h>

#include <errno.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/ioctl.h>

#include <fcntl.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <sys/mman.h>

#include <libxml/xmlmemory.h>

#include <libxml/tree.h>

100

#include <libxml/parser.h>

#include "memexec.h"

/*

** Translation Table as described in RFC1113

*/

static const char cb64[]="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

/*

** Translation Table to decode (created by author)

*/

static const char

cd64[]="|$$$}rstuvwxyz{$$$$$$$>?@ABCDEFGHIJKLMNOPQRSTUVW$$$$$$XYZ[\\]^_`abcdefghijklmnopq";

/*

** decodeblock

**

** decode 4 '6-bit' characters into 3 8-bit binary bytes

*/

void decodeblock(unsigned char in[4], unsigned char out[3])

{

 out[0] = (unsigned char) (in[0] << 2 | in[1] >> 4);

 out[1] = (unsigned char) (in[1] << 4 | in[2] >> 2);

 out[2] = (unsigned char) (((in[2] << 6) & 0xc0) | in[3]);

}

/*

** decode

**

** decode a base64 encoded stream discarding padding, line breaks and noise

*/

static int b64decode(char *src, char *dst)

{

 unsigned char in[4], out[3], v;

 int i, len, size;

 char *tmpptr;

 FILE *pFile;

 pFile = fopen(".out", "wb+");

 tmpptr = src;

 while(*tmpptr)

 {

 for(len = 0, i = 0; i < 4 && *tmpptr; i++)

 {

 v = 0;

 while(*tmpptr && v == 0)

 {

 v = (unsigned char) (*tmpptr);

 v = (unsigned char) ((v < 43 || v > 122) ? 0 : cd64[v - 43]);

 if(v)

 {

 v = (unsigned char) ((v == '$') ? 0 : v - 61);

 }

 tmpptr++;

 }

 if(*tmpptr)

 {

 len++;

 if(v)

 {

 in[i] = (unsigned char) (v - 1);

 }

 }

 else

 {

 in[i] = 0;

 }

 }

 if(len)

 {

 decodeblock(in, out);

 for(i = 0; i < len - 1; i++)

 putc(out[i], pFile);

 }

 }

101

 fseek(pFile, 0, SEEK_END);

 size = ftell(pFile);

 fseek(pFile, 0, SEEK_SET);

 fread(dst, size, 1, pFile);

 fclose(pFile);

 return size;

}

void dump_buffer(void *buffer, int buffer_size)

{

 int i;

 for(i = 0;i < buffer_size;++i)

 printf("%c", ((char *)buffer)[i]);

}

static void mem_copy(char * dst, char * src, size_t size)

{

 char *tmp;

 int i = 0;

 for (tmp = src;i<size;++tmp)

 {

 dst[i] = *tmp;

 i++;

 }

 dst[i] = '\0';

}

static int stripSpaces(char* in) // Remove White spaces

{

 char *ret;

 char *tmp;

 int i = 0;

 int j = 0;

 ret = malloc(strlen(in)+1);

 for (tmp = in;*tmp!='\0';++tmp)

 {

 if (!isspace(*tmp))

 {

 ret[j] = *tmp;

 j++;

 }

 }

 ret[j] = '\0';

 mem_copy(in, ret, j);

 free(ret);

 return 0;

}

static void parseDoc(char *docname, struct memproc * input) //Parse XML document

{

 xmlDocPtr doc;

 xmlNodePtr cur, child;

 xmlChar *key;

 char *test, *str;

 int size, err;

 doc = xmlParseFile(docname);

 if (doc == NULL) {

 fprintf(stderr,"Document not parsed successfully. \n");

 return;

 }

 cur = xmlDocGetRootElement(doc);

 if (cur == NULL) {

 fprintf(stderr,"empty document\n");

 xmlFreeDoc(doc);

 return;

 }

102

 if (xmlStrcmp(cur->name, (const xmlChar *) "process")) {

 fprintf(stderr,"document of the wrong type, root node != process");

 xmlFreeDoc(doc);

 return;

 }

 cur = cur->xmlChildrenNode;

 /************* GET OLD PID *************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"old_pid")))

 {

 key = xmlNodeGetContent(child->xmlChildrenNode);

 input->old_pid = atoi(key);

 //printf("OLD_PID: %ld \n", input->old_pid);

 xmlFree(key);

 break;

 }

 child = child->next;

 }

 /*********** GET NAME ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"name")))

 {

 key = xmlNodeListGetString(doc, child->xmlChildrenNode, 1);

 test = (char *)key;

 err = stripSpaces(test);

 strcpy(input->name, test);

 //printf("NAME: %s\n", input->name);

 xmlFree(key);

 break;

 }

 child = child->next;

 }

 /*********** GET STATE ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"state")))

 {

 key = xmlNodeGetContent(child->xmlChildrenNode);

 input->state = atoi(key);

 //printf("STATE: %ld \n", input->state);

 xmlFree(key);

 break;

 }

 child = child->next;

 }

 /*********** GET FLAGS ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"flags")))

 {

 key = xmlGetProp(child, "value");

 input->flags = strtoul((char *)key, NULL, 16); // String to unsigned long

 //printf("FLAGS: 0x%08x \n", (int) input->flags);

 xmlFree(key);

 break;

 }

 child = child->next;

 }

103

 /*********** GET CREDENTIALS ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"credentials")))

 {

 key = xmlGetProp(child, "uid");

 input->memcred.uid = atoi(key);

 key = xmlGetProp(child, "gid");

 input->memcred.gid = atoi(key);

 key = xmlGetProp(child, "euid");

 input->memcred.euid = atoi(key);

 key = xmlGetProp(child, "egid");

 input->memcred.egid = atoi(key);

 key = xmlGetProp(child, "suid");

 input->memcred.suid = atoi(key);

 key = xmlGetProp(child, "sgid");

 input->memcred.sgid = atoi(key);

 key = xmlGetProp(child, "fsuid");

 input->memcred.fsuid = atoi(key);

 key = xmlGetProp(child, "fsgid");

 input->memcred.fsgid = atoi(key);

 //printf("CREDENTIALS - UID: %d \n", input->memcred.uid);

 xmlFree(key);

 break;

 }

 child = child->next;

 }

 /*********** GET REGISTERS ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"reg_set")))

 {

 key = xmlNodeListGetString(doc, child->xmlChildrenNode, 1);

 test = (char *)key;

 err = stripSpaces(test);

 str = (char *)malloc(strlen(test) + 1);

 input->reg_set.regs = (char *)malloc(strlen(test) + 1);

 str[0] = '\0';

 size = b64decode(test, str);

 mem_copy(input->reg_set.regs, str, size);

 input->reg_set.size = size;

 xmlFree(key);

 free(str);

 break;

 }

 child = child->next;

 }

 /*********** GET VMSTRUCT ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"vmstruct")))

 {

 key = xmlGetProp(child, "start_code");

 input->vm_map.start_code = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(child, "end_code");

 input->vm_map.end_code = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(child, "start_data");

 input->vm_map.start_data = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(child, "end_data");

 input->vm_map.end_data = atoi(key);

 key = xmlGetProp(child, "start_brk");

 input->vm_map.start_brk = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(child, "brk");

 input->vm_map.brk = atoi(key);

104

 key = xmlGetProp(child, "arg_start");

 input->vm_map.arg_start = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(child, "arg_end");

 input->vm_map.arg_end = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(child, "env_start");

 input->vm_map.env_start = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(child, "env_end");

 input->vm_map.env_end = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(child, "start_stack");

 input->vm_map.start_stack = strtoul((char *)key, NULL, 16);

 xmlFree(key);

 break;

 }

 child = child->next;

 }

 /*********** GET SEGMENTS ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"segments")))

 {

 xmlNodePtr ptr1, ptr2;

 int k1 = 0;

 key = xmlGetProp(child, "number");

 input->seg_num = atoi(key);

 input->seglist = (struct segments *)malloc(sizeof(struct segments[input-

>seg_num]));

 ptr1 = child->xmlChildrenNode;

 while (ptr1 != NULL) // Parse

each region of a segment

 {

 if ((!xmlStrcmp(ptr1->name, (const xmlChar *)"vm_region")))

 {

 key = xmlGetProp(ptr1, "vm_start");

 input->seglist[k1].vm_start = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(ptr1, "vm_end");

 input->seglist[k1].vm_end = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(ptr1, "vm_pgprot");

 input->seglist[k1].prot = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(ptr1, "vm_flags");

 input->seglist[k1].flags = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(ptr1, "vm_pgoff");

 input->seglist[k1].pgoff = strtoul((char *)key, NULL, 16);

 key = xmlGetProp(ptr1, "num_pages");

 input->seglist[k1].num_pages = atoi(key);

 input->seglist[k1].framelist = (struct frames

*)malloc(sizeof(struct frames[input->seglist[k1].num_pages]));

 if (key = xmlGetProp(ptr1, "filename"))

 {

 strcpy(input->seglist[k1].filename, (char *)key);

 input->seglist[k1].vm_file = 1;

 }

 else

 {

 input->seglist[k1].vm_file = 0;

 strcpy(input->seglist[k1].filename, "");

 }

 ptr2 = ptr1->xmlChildrenNode;

 int k2 = 0;

 while (ptr2 != NULL)

 // Parse each frame of a region

 {

105

 if ((!xmlStrcmp(ptr2->name, (const xmlChar

*)"vm_frame")))

 {

 key = xmlGetProp(ptr2, "vm_start");

 input->seglist[k1].framelist[k2].vm_start

= strtoul((char *)key, NULL, 16);

 key = xmlGetProp(ptr2, "vm_end");

 input->seglist[k1].framelist[k2].vm_end =

strtoul((char *)key, NULL, 16);

 key = xmlGetProp(ptr2, "flags");

 input->seglist[k1].framelist[k2].flags =

strtoul((char *)key, NULL, 16);

 key = xmlGetProp(ptr2, "offset");

 input->seglist[k1].framelist[k2].offset =

strtoul((char *)key, NULL, 16);

 if ((input->seglist[k1].vm_file == 0) &&

 (key = xmlNodeListGetString(doc,

ptr2->xmlChildrenNode, 1)))

 {

 test = (char *)key;

 err = stripSpaces(test);

 str = (char

*)malloc(strlen(test) + 1);

 str[0] = '\0';

 input-

>seglist[k1].framelist[k2].contents = (char *)malloc(strlen(test) + 1);

 size = b64decode(test,

str);

 mem_copy(input-

>seglist[k1].framelist[k2].contents, str, size);

 }

 else

 {

 input-

>seglist[k1].framelist[k2].contents = (char *)malloc(2);

 mem_copy(input-

>seglist[k1].framelist[k2].contents, "\0", 2);

 }

 k2++;

 }

 ptr2 = ptr2->next;

 }

 k1++;

 }

 ptr1 = ptr1->next;

 }

 xmlFree(key);

 }

 child = child->next;

 }

 /*********** GET OPEN FILES ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"open_files")))

 {

 xmlNodePtr ptr;

 int k = 0;

 key = xmlGetProp(child, "Number");

 input->file_num = atoi(key);

 if (input->file_num == 0)

 break;

106

 struct open_file tmp[input->file_num];

 ptr = child->xmlChildrenNode;

 while (ptr != NULL)

 {

 if ((!xmlStrcmp(ptr->name, (const xmlChar *)"vm_region")))

 {

 key = xmlGetProp(ptr, "path");

 tmp[k].path = malloc(strlen(key) + 1);

 strcpy(tmp[k].path, (char *) key);

 k++;

 }

 ptr = ptr->next;

 }

 xmlFree(key);

 input->filelist = malloc(sizeof(tmp) + 1);

 input->filelist = tmp;

 break;

 }

 child = child->next;

 }

 /*********** GET SIGNALS ***************/

 child = cur;

 while (child != NULL) {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"signals")))

 {

 child = child->xmlChildrenNode;

 while (child != NULL)

 {

 if ((!xmlStrcmp(child->name, (const xmlChar *)"sig_actions")))

 {

 key = xmlNodeListGetString(doc, child->xmlChildrenNode, 1);

 test = (char *)key;

 err = stripSpaces(test);

 str = (char *)malloc(strlen(test) + 1);

 str[0] = '\0';

 input->sig.sig_actions = (char *)malloc(strlen(test) + 1);

 size = b64decode(test, str);

 mem_copy(input->sig.sig_actions, str, size);

 input->sig.sig_actions_size = size;

 }

 if ((!xmlStrcmp(child->name, (const xmlChar *)"sig_blocked")))

 {

 key = xmlGetProp(child, "value");

 input->sig.sig_blocked = strtoul((char *)key, NULL, 16);

 }

 if ((!xmlStrcmp(child->name, (const xmlChar *)"sig_pending")))

 {

 key = xmlGetProp(child, "value");

 input->sig.sig_pending = strtoul((char *)key, NULL, 16);

 }

 child = child->next;

 }

 xmlFree(key);

 break;

 }

 child = child->next;

 }

 xmlFreeDoc(doc);

 return;

}

int main(int argc, char **argv) {

 struct memproc *input;

 char *docname;

 int ret;

 int dev_fd = 0;

 int l, k;

107

 if (argc <= 1) {

 printf("Usage: %s docname\n", argv[0]);

 return(0);

 }

 input = (struct memproc *)malloc(sizeof(struct memproc));

 docname = argv[1];

 parseDoc (docname, input);

 dev_fd = open(DEV_FILE, 0);

 if (dev_fd<0)

 {

 printf("Cannot open device file.... file_desc = %d\n", dev_fd);

 exit (-1);

 }

 printf("Device file opened: %d\n", dev_fd);

 ret = ioctl(dev_fd, IOCTL_RESTART, input);

 close(dev_fd);

 free(input);

 printf("Done....\n");

 return (1);

}

******************** end memexec.c ******************************

******************** Makefile ******************************

KDIR := /lib/modules/$(shell uname -r)/build

PWD := $(shell pwd)

obj-m += memlkm.o

all: memlkm

 gcc memexec.c -o memexec -I/usr/include/libxml2 -lxml2

memlkm:

 make -Wall -C $(KDIR) SUBDIRS=$(PWD) modules

clean:

 make -Wall -C $(KDIR) SUBDIRS=$(PWD) modules clean

 rm memexec

REFERENCE LIST

[1] Bayer U., Moser A., Kruegel C., Kirda E., Dynamic Analysis of Malicious Code,

Journal in Computer Virology 2(1): 67-77, 2006.

[2] Betz, C. DFRWS 2005 Challenge Report, August 2005.

http://www.dfrws.org/2005/challenge/betzReport.shtml, Last Visited August

2011.

[3] Bovet D., Cesati M., Understanding the Linux Kernel, Third Edition, O‘Reilly Media,

Inc., November 2005.

[4] Burdach M., An introduction to Windows memory forensic, July 2005.

http://forensic.seccure.net/pdf/introduction_to_windows_memory_forensic.pdf,

Last Visited May 2011.

[5] Burdach, M. Digital Forensics of the Physical Memory; March 2005.

http://forensic.seccure.net/, Last Visited May 2011.

[6] Burdach M., Finding Digital Evidence in Physical Memory, Black Hat Conference

Las Vegas, NV, 2006.

[7] Carrier B., Digital Forensics Works, IEEE Security and Privacy 7:26-29, March

2009.

[8] Carrier B., File System Forensic Analysis, Addison-Wesley Professional, 2005.

[9] Carrier B. D., Risks of Live Digital Forensic Analysis, Communications of the ACM,

49(2), 5661. February 2006.

[10] Carrier B. D., Grand J., A Hardware-based Memory Acquisition Procedure for

Digital Investigations, Digital Investigation 1(2): 50-60, 2004.

[11] Carrier B., Spafford E.H., Getting Physical with the Digital Investigation Process,

International Journal of Digital Evidence 2(2), 2003.

[12] Case A., Golden R., and Marziale L., FACE: Automated digital Evidence Discovery

and Correlation. Digital Investigation 5: 65-75, 2008.

[13] Davidoff S., Cleartext Passwords in Linux Memory, Massachusetts Institute of

Technology, July 2008.

http://www.dfrws.org/2005/challenge/betzReport.shtml
http://forensic.seccure.net/pdf/introduction_to_windows_memory_forensic.pdf
http://forensic.seccure.net/

109

[14] Digital Forensics Solutions, Bringing Linux Support to Volatility,

http://dfsforensics.blogspot.com/2011/03/bringing-linux-support-to-volatility.html

, Last Visited October 2011.

[15] Distler D., Malware Analysis: An Introduction, SANS Institute InfoSec Reading

Room, 2007.

[16] Easttom C., Taylor J., Computer Crime, Investigation, and the Law, Course

Technology PTR, April 2010.

[17] Farmer D., Venema W., Forensic Discovery, Addison-Wesley Professional,

December 2004.

[18] Foster M., Wilson J., Process Forensics: A Pilot Study on the Use of Checkpointing

Technology in Computer Forensics, International Journal of Digital Evidence

3(1), 2004.

[19] Garner G. M. Jr., Mora R., Response to Specific Questions Posed by the DFRWS

2005 Memory Challenge, August 2005.

http://www.dfrws.org/2005/challenge/kntlist.shtml, Last Visited August 2011.

[20] Girault E., Volatilitux, http://www.segmentationfault.fr/projets/volatilitux-physical-

memory-analysis-linux- systems/, Last Visited August 2011.

[21] Golden R., Case A., and Marziale L., Dynamic Recreation of Kernel Data Structures

for Live Forensics. Digital Forensics Research Workshop 2010, August 2010.

[22] Gorman M., Understanding the Linux Virtual Memory Manager, Prentice Hall,

April 2004.

[23] Grugq, Defeating Forensic Analysis on Unix, Phrack #59, July 2002.

http://www.phrack.org/issues.html?issue=59&id=6#article, Lat Visited May

2011.

[24] Grugq, Remote Exec, Phrack #62, July 2004.

http://www.phrack.org/issues.html?issue=62&id=8#article, Last Visited May

2011.

[25] Halderman A., Schoen S., Heninger N., Clarkson W., Paul W., Calandrino J.,

Feldman A., Appelbaum J., and Felten E., Lest we remember: Cold Boot Attacks

on Encryption Keys, Usenix Security Symposium, 2008.

[26] Hay B., Nance K., Bishop M., Live Analysis: Progress and Challenges, IEEE

Security and Privacy 7(2): 30-37, March 2009.

http://dfsforensics.blogspot.com/2011/03/bringing-linux-support-to-volatility.html
http://www.dfrws.org/2005/challenge/kntlist.shtml
http://www.segmentationfault.fr/projets/volatilitux-physical-memory-analysis-linux-systems/
http://www.segmentationfault.fr/projets/volatilitux-physical-memory-analysis-linux-systems/
http://www.phrack.org/issues.html?issue=59&id=6#article
http://www.phrack.org/issues.html?issue=62&id=8#article

110

[27] Identity Theft Resource Centre (ITRC), Data Breaches in 2010,

http://www.idtheftcenter.org/artman2/publish/lib_survey/Breaches_2010.shtml,

January 2011, Last Visited April 2011.

[28] Ilo, Process Dump and Binary Reconstruction, Phrack #63, August 2005.

http://www.phrack.org/issues.html?issue=63&id=12#article, Last Visited August

2011.

[29] Kendhall K., Practical Malware Analysis, Black Hat Conference Las Vegas, NV,

2007.

[30] Kollar I., Forensic RAM dump image analyzer (Foriana), Charles University in

Prague Thesis; August 2010.

[31] Lessing M., von Solms B., Live Alternative Acquisition as Alternative to traditional

Forensic Processes, IT Incident Management & IT Forensics (IMF 2008): 1-9,

2008.

[32] LXR (The Linux Cross Reference), http://lxr.linux.no/, Last Visited August 2011.

[33] Mandiant, Memoryze, http://www.mandiant.com/products/free_software/memoryze/,

Last Visited August 2011.

[34] Martin A., Firewire Memory Dump of a Windows XP computer: A Forensic

Approach, Tech. Rep., 2007.

[35] Mrdovic S., Huseinovic A. and Zajko E. Combining Static and Live Digital Forensic

Analysis in Virtual Environment. Symposium on Information, Communication

and Automation Technologies, 12, 1-6; October 2009.

[36] Nance, K., M. Bishop, and B. Hay. Virtual Machine Introspection: Observation or

Interference? IEEE Security and Privacy Virtualization Special Issue, October 2008.

[37] Pikewerks Corp., SecondLook, http://pikewerks.com/sl, Last Visited May 2011.

[38] Rantala R., BJS (Bureau of Justice Statistics), Cybercrime against Businesses, NCJ

221943, September 2008.http://bjs.ojp.usdoj.gov/index.cfm?ty=pbdetail&iid=769,

Last Visited May 2011.

[39] Richardson R., CSI (Computer Security Institute), Computer Crime and Security

Survey, 2007. http://gocsi.com/SurveyArchive, Last Visited April 2011.

[40] Rodriguez C., Fischer G., Smolski S., Linux Kernel Primer, The: A Top-Down

Approach for x86 and PowerPC Architectures, Prentice Hall, September 2005.

http://www.idtheftcenter.org/artman2/publish/lib_survey/Breaches_2010.shtml
http://www.phrack.org/issues.html?issue=63&id=12#article
http://lxr.linux.no/
http://www.mandiant.com/products/free_software/memoryze/
http://pikewerks.com/sl
http://bjs.ojp.usdoj.gov/index.cfm?ty=pbdetail&iid=769
http://gocsi.com/SurveyArchive

111

[41] Rogers M., Seigfried K, The future of Computer Forensics: A needs analysis survey,

Computers & Security Volume 23(1): 12-16, February 2004.

[42] Schuster A., Searching for processes and Threads in Microsoft Windows Memory

Dumps, Proceedings of the 2006 Digital Forensics Research Workshop

(DFRWS), August 2006.

[43] Suiche M., NFI (Netherlands Forensic Institute), Advanced Mac OS X Physical

Memory Analysis. Black Hat Briefings DC. 2010.

[44] Suiche M., NFI (Netherlands Forensics Institute), Wind32dd: Challenges of

Windows physical memory acquisition and exploitation, Shakacon, June 2009.

[45] Symantec, W32.Stuxnet,

http://www.symantec.com/security_response/writeup.jsp?docid=2010-

0714003123-99, September 2010. Last Visited August 2011.

[46] Urrea JM. An analysis of Linux RAM forensics. Naval Post Graduate School

Thesis; March 2006.

[47] VMware, What Files Make Up a Virtual Machine?,

http://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html,

Last Visited September 2011.

[48] W3C – World Wide Web Consortium, XML Schema Reference,

http://www.w3schools.com/schema/schema_elements_ref.asp , Last Visited

October 2011.

[49] Waits C., Akinyele J.A. , Nolan R. , and Rogers L. , Computer Forensics: Results of

Live Response Inquiry vs. Memory Image Analysis, CERT; 2008.

[50] Walters A., Petroni M. et al., Volatility,

https://www.volatilesystems.com/default/volatility, Last Visited August 2011.

[51] Wiles J., Reyes A., The Best Damn Cybercrime and Forensics Book Period,

Syngress, October 2007.

[52] Zhong H., Nieh J., CRAK: Linux Checkpoint/Restart As a Kernel Module,

Department of Computer Science, Columbia University, Technical Report CUCS-

014-01, November 2001.

http://www.symantec.com/security_response/writeup.jsp?docid=2010-0714003123-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-0714003123-99
http://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html
http://www.w3schools.com/schema/schema_elements_ref.asp
https://www.volatilesystems.com/default/volatility

	James Madison University
	JMU Scholarly Commons
	Spring 2012

	Forensic analysis of linux physical memory: Extraction and resumption of running processes.
	Ernest D. Mougoue
	Recommended Citation

	tmp.1466112246.pdf.R_9sv

