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Abstract 

 

Plasmids in agriculturally-impacted bodies of water may play a significant role in 

the dissemination of antibiotic resistance. Previously, Erika Gehr, as part of her M.S. 

thesis work in our laboratory, captured environmental plasmids without cultivation of 

host bacteria from stream sediment into Escherichia coli. Individual plasmids were 

capable of conferring resistance to a surprising array of antibiotics including 

aminoglycosides and extended-spectrum β-lactams. In this study, we developed a method 

to sequence multi-drug resistance plasmids using both Oxford Nanopore MinION and Ion 

Torrent Personal Genome Machine sequencers. Plasmid pEG1-1 was sequenced on both 

platforms and a hybrid assembly utilizing data from both sequencing platforms generated 

a single 73,320 bp contig that was annotated using automated and manual techniques. 

Analysis of the genome revealed pEG1-1 to be an IncP-1β plasmid with two mobile 

genetic elements – a a tn21-related transposon and an in104 complex integron – both of 

which carry multiple antibiotic resistance genes. These findings suggest that plasmids in 

stream sediment are prone to the incorporation of mobile genetic elements that introduce 

a broad range of antibiotic resistance genes into their genome. This could cause serious 

risk to human health since IncP-1β plasmids are capable of transferring into nearly all 

Gram-negative bacteria, including fecal pathogens that get introduced to stream sediment.  
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Introduction 

Antibiotics and the Threat of Resistance. Antibiotics have saved millions of 

lives around the world and have been recognized as one of the most successful forms of 

chemotherapy in the history of medicine (Aminov, 2010). Antibiotics have cured and 

prevented otherwise fatal diseases, enabled major advances in surgery, and even helped 

to extend the life expectancy of humans (Gould & Bal, 2013; Ventola, 2015). Morbidity 

and mortality caused by infectious diseases have drastically decreased in developing 

countries due to antibiotic use (World Health Organization (WHO), 2014). In the 1960’s, 

the use of antibiotics had such a drastic effect on public health that the Surgeon General 

of the United States of America, William Stewart, proclaimed “The time has come to 

close the book on infectious diseases. We have basically wiped out infection in the 

United States” (Upshur, 2008). Unfortunately, nearly fifty years later, the book on 

infectious diseases is wide open and a new chapter is unfolding. 

Antibiotic resistance (AR) has been deemed one of our most serious health threats 

(Centers for Disease Control [CDC], 2013). AR infections have been reported around the 

globe and the number of instances continues to rise (Ventola, 2015). In the United States 

alone, serious infections attributed to a pathogen resistant to at least one antibiotic have 

reached rates of more than 2 million patients a year, with at least 23,000 dying as a result 

(CDC, 2013). For example, methicillin-resistant Staphylococcus aureus is now one of 

America’s most lethal diseases, surpassing fatality rates of HIV/AIDS, Parkinson’s 

disease, emphysema, and homicide combined (Gross, 2013). Other organisms of 

particular concern due to their recently acquired antibiotic resistance or increasing 

pathogenicity include Mycobacterium tuberculosis; Streptococcus pneumoniae; 
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Acinetobacter spp., Stenotrophomonas maltophilia, and Pseueomonas aeruginosa (all 

intrinsically resistant to many antibiotics); Salmonella enterica and pathogenic E. coli; 

and Extended-Spectrum Beta-Lactamase- (ESBL) and Carbapenemase-Resistant 

Enterobacteriaceae (CRE).  

Efforts to combat the growing problem of antibiotic resistance are being carried 

out by national and international bodies around the world (WHO, 2014). In March of 

2015, the White House released the “National Action Plan for Combating Antibiotic-

Resistant Bacteria” (The White House Office of the Press Secretary, 2015). In this 

document, the U.S. government declared that research and surveillance of antibiotic 

research are critical factors that will lead to reduced instances of the deadliest multi-drug 

resistant organisms, including CRE and MRSA. They assert that, with a better 

understanding of how and why resistance spreads, policies can be made to curb its 

acceleration (The White House Office of the Press Secretary, 2015).  

The predominant factor contributing to the increasing prevalence of antibiotic 

resistance is thought to be the overuse of antibiotics, especially in agriculture (Zur 

Wiesch et al., 2011). In 2013, the Food and Drug Administration reported that 74% of the 

medically important antimicrobials sold were administered in animal feed—the majority 

of which is used for non-therapeutic growth promotion (United States Food and Drug 

Administration, 2012). The use of antibiotics as an additive to food has been shown to 

increase feeding efficiency, thereby promoting growth rate by up to 5% in dairy cattle, 

sheep and goats, relative to animals not treated with antibiotics (Khachtourians, 1998). 

However, these gains come with profound consequences. Agricultural use of antibiotics 

has been strongly linked to resistance (Smith et al., 2002). Antibiotic-resistant bacteria 
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have been isolated on animals treated with antibiotics (Aarestrup, 1999), food products 

(Chadwick et al., 1996), and even environments treated with animal waste (Chee-Sanford 

et al., 2001; Brooks, 2005).  

Work from our lab showed that the use of prophylactic antibiotics in turkeys 

increased the presence of antibiotic-resistant bacteria in litter (Brooks, 2005). Brooks 

quantified culturable bacteria resistant to tetracycline from the litter of tetracycline-

treated turkeys and turkeys not treated with tetracycline. His results showed that 

tetracycline-resistant bacteria were present in significantly greater numbers in litter from 

turkeys that received tetracycline treatment (Brooks, 2005). 

These data are especially concerning since contamination of agricultural soils can 

reach water systems through runoff. In Virginia, 68% of the state’s rivers that are 

designated as Impaired by the Virginia Department of Environmental Quality (DEQ) are 

degraded by fecal bacteria. In the Potomac-Shenandoah River basin, that number jumps 

to 80% (DEQ, 2014).  

Escherichia coli is used as an indicator of fecal contamination because it is not 

considered to persist in freshwater for more than a few days (Gordon et al., 2002). While 

this holds true for E. coli in the water column, this may not be the case in stream 

sediment. A 1979 analysis of E. coli populations in sediment compared to the water 

column in streams in southwestern Idaho indicated that the E. coli concentration was 2 to 

760 times greater in the sediment when compared to that in the water (Stephenson & 

Rychert, 1982). More recently, a mesocosm experiment was set up by inoculating water 

and sediment with fecal contaminants. By enumerating E. coli in the sediment and 
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freshwater over time, the authors showed that the decay rate of E. coli in sediment is 

about 70% lower than E. coli in water (Anderson et al., 2005). Work in our lab compared 

the E. coli colony forming units obtained from stream water versus stream sediment 

(Gehr, 2013). Over a three month span, Gehr demonstrated that stream sediment had a 

consistently higher number of E. coli colony forming units than stream water and that 

specific strains appeared to persist over time in the sediment only (Gehr, 2013).  

Persistence in stream sediment may allow fecal bacteria such as E. coli to interact 

with the large and diverse native microbial population (Nealson, 1997). Through 

horizontal gene transfer these fecal pathogens could introduce and/or gain access to the 

pool of genes present in bacterial populations native to stream sediment.  

Horizontal Gene Transfer and Antibiotic Resistance. Horizontal gene transfer 

is the exchange of DNA amongst mature bacteria through viral infection (transduction), 

direct uptake of free DNA (transformation) or the transfer of plasmids through direct cell-

to-cell contact (transconjugation). Whole-genome investigations of bacterial species have 

shown that significant portions of nearly all bacterial genomes contain foreign DNA that 

has been introduced via horizontal gene transfer (Ochman et al., 2000; Pallen & Wren, 

2007). For example, the sequencing of multiple, diverse E. coli genomes has revealed a 

conserved, “core genome” interspersed with multiple regions of high variability. These 

variable regions are strain-specific and often include mobile elements that code for 

increased virulence and pathogenicity (Dobrindt et al., 2010). In Salmonella, for example, 

sseI and sodCI genes have been found on prophages—genomes of bacteriophages that 

have been inserted into bacterial genomes (Figueroa-Bossi, 2001). 
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The horizontal exchange of genetic material offers a mechanism for some bacteria 

to rapidly adapt to changing environments (Claverys, 2000). The mass distribution of 

antibiotics in both medicine and agriculture has added a unique selective pressure to the 

environment. In response, horizontal gene transfer has aided in the emergence of 

resistance (Davies & Davies, 2010).  

The preeminent means of antibiotic resistance transmission is through plasmid 

conjugation (Davies & Davies, 2010). Plasmids are mobile molecules of circularized 

DNA that can carry genes involved in virulence, pathogenicity and antibiotic resistance 

(Kelly et al., 2009, Revilla et al., 2008). Plasmid-mediated resistance genes have been 

associated with most clinical antibiotics, including those of “last resort”, drugs reserved 

for infections exhibiting resistance to all other antibiotics. (Bennet, 2008). 

A major contributing factor to the dissemination of plasmid-mediated resistance is 

the capability of certain plasmids to conjugate into a broad-range of bacterial hosts. For 

example, plasmids from the incompatibility groups IncP can transfer and maintain 

themselves in nearly all Gram-negative bacteria (Dröge et al., 2000). Incompatibility 

(Inc) groups are based on replication and partitioning systems; plasmids belonging to the 

same Inc group cannot coexist in a single cell because of competing replication and 

partitioning genes (Shintani et al., 2010a). These genes are also contributing factors to a 

plasmid’s capacity to successfully conjugate into certain hosts.  

The replication and partitioning system shared by all IncP-1 plasmids allow for 

successful conjugation in a broad range of hosts (Shintani et al., 2010b). IncP-1 plasmids 

have been found in virtually all Gram-negative bacteria, including E. coli and 
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Pseudomonas spp., and in pathogens and commensals from a wide variety of sources, 

such as hospital and other clinical and veterinary settings, agriculturally-impacted soils 

and wastewater treatment plants (Bahl, 2009; Norberg et al., 2011). Along with their 

broad host range, IncP-1 plasmids can carry genes encoding antibiotic resistance 

(Popowska & Kraqczyk-Balska, 2013). These two factors make IncP-1 plasmids of 

particular interest to molecular and environmental biologists working to understand the 

underlying mechanisms driving the evolution and spread of antibiotic resistance.  

IncP-1β plasmids, a subgroup within the incompatibility group IncP-1, have been 

found to confer multi-drug resistance in a wide range of bacterial hosts (Lee et al., 2003). 

The Tra1 and Tra2 regions of the IncP-1β backbone—gene sequences that mediate 

conjugative transfer—are separated by regions of clustered restriction sites, hotspots for 

the integration of mobile genetic elements (Popowska & Kraqczyk-Balska, 2013). 

Transposons carrying antibiotic resistance genes, such as the aminoglycoside resistance 

Tn5393c transposon found on plasmid pB4 (Tauch A. et al., 2003), are commonly found 

between the Tra1 and Tra 2 regions of IncP-1β plasmids. 

Because it is typical to find these plasmids in agricultural sites, clinical settings 

and wastewater treatment plants, IncP-1 plasmids have an opportunity to transmit 

antibiotic resistance genes to human pathogens through HGT. An in vitro conjugation 

assay of pB10, an IncP-1β plasmid carrying two multi-drug resistant transposons, 

demonstrated that the plasmid could be transferred to the food-borne pathogens E. coli 

and Salmonella spp. (Van Meervenne et al., 2012). These data demonstrate the urgency 

to understand more about IncP-1 plasmids and their role in antibiotic resistance. The 

analysis of IncP-1 plasmid genomes has helped to uncover the importance of mobile 
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genetic elements, but the database is limited (Popowska & Kraqczyk-Balska, 2013). 

Currently, only five complete sequences of IncP-1β plasmids have been published 

(Popowska & Kraqczyk-Balska, 2013).  

Next Generation DNA Sequencing. Modern DNA sequencing began in 1975 

when the first complete sequence, that of bacteriophage phi X174, was published (Sanger 

& Coulson, 1975). Sanger & Coulson sequenced the phage DNA using their ‘plus and 

minus’ method of DNA sequencing. Two years later, Sanger et al. refined the ‘plus and 

minus’ method, creating a more efficient means of sequencing, termed the chain 

termination method (Sanger et al., 1977). Sanger sequencing has since been utilized to 

sequence a broad range of genomes, but the chemistry of Sanger sequencing made 

increasing throughput (i.e. the amount of DNA being sequenced per run) expensive. In 

2004, these constraints were lifted with the introduction of massively parallel sequencing 

technology, or next-generation sequencing (NGS) (Morey et al., 2013). 

What distinguishes NGS from Sanger sequencing is the capability of NGS 

platforms to produce read information on multiple samples of DNA in a single reaction 

(Morey et al., 2013). This enabled massive amounts of data to be produced in a single 

sequencing run, bringing costs to unprecedented lows. In 2004, it cost nearly $1,000 to 

sequence 106 bp. In 2015, thanks to improving technologies of NGS platforms, 

sequencing 106 bp cost less than a dime (National Institutes of Health, 2016).  

The massive data output of these second-generation sequencers is due to 

chemistries that produce sequence data through cyclic parallel readings of clonally 

amplified, spatially separated amplicons (Mardis, 2008). While the details differ between 
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platforms, second-generation sequencers operate under the same, basic workflow 

principles (Morey et al., 2013). First, sample DNA is clonally amplified and denatured 

into single-stranded fragments. Examples of clonal amplification techniques are emulsion 

PCR and bridged amplification. Clonally amplified products are then spatially separated, 

usually across microchips or flowcells. Next, polymerization of the amplified product’s 

complementary strand is initiated, releasing specific byproducts, e.g. hydrogen ion or 

pyrophosphate, upon the incorporation of a complimentary nucleotide. Since the sample 

DNA has been clonally amplified, polymerization byproducts are released in sufficient 

quantities to be detected. On NGS platforms, multiple samples of DNA can be sequenced 

in a single reaction since each reaction is occurring in a distinct spatial location, (Morey 

et al., 2013). With this innovative sequence chemistry, data could be produced more 

quickly and at a significantly lower cost than Sanger sequencing (NIH, 2016).  

However, this technology does have its limitations. Clonal amplification of 

sample DNA can introduce amplification biases that can drastically decrease the quality 

of sequence data (Acinas et al., 2005). Also, the chemistries of NGS limit the read 

lengths produced to <500 bp (Morey et al., 2013). Short read lengths can make 

assemblies of large genomes difficult and sometimes impossible (Whiteford et al., 2005). 

New sequencing technology has been introduced that no longer relies on clonal 

amplification and can produce reads upwards of tens of thousands of base pairs in length. 

This new wave of technology has established a third-generation of NGS platforms 

(Morey et al., 2013).  

The two third-generation platforms commercially available are the Pacific 

Biosciences’ Single-Molecule Real Time (SMRT) Sequencer and Oxford Nanopore 
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Technologies’ MinION. While these platforms employ drastically different chemistries, 

both sequence DNA through single-molecule processing (Heather & Chain, 2016). 

Rather than clonally amplifying sample DNA, third-generation platforms generate 

sequencing reads from the original, single molecule of DNA. Third-generation 

sequencers also apply partial separation of samples which, like second-generation 

platforms, allows for massively parallel reactions to occur. Unlike second-generation 

platforms, the problem of amplification bias is not an issue for third generation 

sequencers since there is typically no amplification step. Also common amongst third-

generation sequencers is the production of long sequencing reads. Long reads are 

particularly useful in assembling regions of a genome that contain large repeats (Heather 

& Chain, 2016).  

 The major drawback of third-generation platforms is their accuracy. Second-

generation machines have average error rates lower than 1%, but an evaluation of the 

SMRT Sequencer system showed error rates as high as 15% (Carnerio et al., 2013) and 

an assessment of the MinION reported an error rate of around 8% (Jain et al., 2015). 

Rather than rely on the low accuracy data generated on third-generation platforms, or the 

short-read data generated on second-generation platforms, some researchers perform 

hybrid assemblies that utilize data obtained from both second- and third-generation 

sequencers (Koren et al., 2012). 

 DNA Sequencing of Multi-Drug Resistance Plasmids. Previous work in our lab 

revealed the presence of multi-drug resistance plasmids in sediment of agriculturally-

impacted streams (Gehr, 2013; Herrick et al., 2014). Gehr used an exogenous capture 

method to capture (or conjugate) plasmids from samples of stream sediment of Shull 
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Run, a tributary of Mountain Run and Smith Creek in Rockingham County, Virginia 

(Gehr, 2013) direcly into E. coli cells without culturing the plasmid donor cells. She then 

used a modified Stokes susceptibility assay to determine the antibiotic resistance profile 

of the captured tetR plasmids (Gehr, 2013). Gehr demonstrated that some of these tetR 

plasmids conferred decreased susceptibility to a surprising array of clinical antibiotics, 

including cefepime, a fourth generation cephalosporin, suggesting that a significant 

reservoir of antibiotic resistance genes may be present in stream sediment impacted by 

agricultural runoff (Gehr, 2013).  

In this study, we sequenced a tetR plasmid captured by Erika Gehr, pEG1-1, and 

demonstrated how genome analysis of multi-drug resistance plasmids allows a better 

understanding of the reservoir of ARG present in stream sediment. We have developed 

methods to isolate plasmid DNA, sequence it on two NGS platforms—the Ion Torrent 

PGM and Oxford Nanopore Technologies’ MinION— combine the data for hybrid 

assembly, and annotate the genome. Using these methods, we were able to classify 

pEG1-1 as an IncP-1β plasmid and uncovered the presence of two complex mobile 

genetic elements: a unique tn21-related transposon and an in104 complex integron, each 

of which carries multiple antibiotic resistance genes.  
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Methods 

Plasmid pEG1-1. Plasmid pEG1-1 is a stream sediment plasmid captured and 

characterized by Erika Gehr as part of her M.S. thesis research (originally designated 

“p1-1” in her study) (Gehr, 2013). It conferred decreased susceptibility to tetracycline, 

tobramycin, kanamycin, ticarcilin, piperacillin, piperacillin-tazobactam, and cefipime 

(Gehr, 2013). It was exogenously captured from a stream sediment sample from Shull 

Run, a tributary of Mountain Run and Smith Creek in Rockingham County, Virginia. It 

was kept frozen at at -20°C in 100 µl sterile ddH2O. The antibiotic resistance profile of 

pEG1-1 was determined by Gehr (and verified in this study) using a modified Stokes disc 

diffusion antibiotic susceptibility assay (Gehr, 2013; Herrick, et al., 2014). Minimum 

inhibitory concentrations (MICs) of pEG1-1 were determined using Sensititre Gram 

Negative Xtra Plate Format (Trek Diagnostics Inc., Cleveland OH) according to the 

manufacturer's instructions and NCCLS standards. 

Plasmid isolation and purification. A plasmid preparation procedure previously 

developed in our laboratory for the isolation of large, native, single-copy plasmids (Gehr, 

2013) was scaled up in order to isolate and purify large quantities of pEG1-1. 

Transconjugant or transformant cells were grown in 30 ml of trypticase soy broth with 

shaking at 37º C overnight. Cells were harvested by centrifugation at 10,000 g for 5 min 

and resuspended in 2 ml of resuspension buffer (10 mM EDTA; 50 mM dextrose; 10 mM 

Tris-Cl, pH 8.0). Four milliliters of 0.2 M NaOH/1% SDS were added and the mixture 

kept at room temperature for 5 min to lyse the cells. Three milliliters of ammonium 

acetate and 3 ml of chloroform were added and the lysate immediately centrifuged at 

16,000 x g for 10 min. The supernatant containing plasmid DNA was added to 4 ml of 
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30% polyethylene glycol 8000/1.5 M NaCl and chilled on ice for 15 min. Plasmid DNA 

was pelleted by centrifugation at 16,000 g and resuspended in 1 ml of sterile ddH2O. This 

solution was kept at 4º C for at least 24 hours to allow plasmid DNA to fully resuspend 

and then the DNA was stored at -20° C in sterile ddH2O. 

The presence of plasmid DNA was confirmed by agarose gel electrophoresis. A 

0.7% agarose gel was cast by boiling 0.35 g of agarose in 50 mL of bionic buffer (Sigma-

Aldrich, St. Louis, MO) and adding 2.5 µL of 10,000X GelRed Nucleic Acid Gel Stain 

(Biotium, Hayward, CA). Ten microliters of plasmid DNA mixed with 2 µl of 6X loading 

dye was run on the gel at 3.5V/cm for 90 min. Gel photographs were taken with a Kodak 

DC 290 digital camera (Kodak, New Haven, CT) and analyzed using Kodak 1D 

Scientific Imaging System v.3.5.4. 

To remove chromosomal DNA, plasmid DNA was treated with Plasmid-Safe™ 

ATP-Dependent DNase (Epicentre Technologies, Madison, WI). Eight-hundred and forty 

microliters of the plasmid DNA were added to an Eppendorf® RNA/DNA LoBind 

microcentrifuge tube (Sigma-Aldrich, St. Louis, MO) and mixed with 3 µl of Plasmid-

Safe DNase, 100 µl of Plasmid-Safe 10X Reaction Buffer, 40 µl of 25 mM ATP solution 

and 6.25 µl of RNase A (Qiagen, Venlo, Netherlands). The mixture was incubated at  

37° C for 30 min and the enzymes were inactivated by incubation at 70° C for 30 min. 

Plasmid DNA was purified in 200 µL aliquots using a 1X concentration of Ampure XP 

Beads (Beckman Coutler, Brea, CA) according to manufacturer’s protocol and eluted 

using 30 µl of sterile ddH2O.  
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Electroporation. Plasmid DNA was precipitated with ethanol to remove residual 

salt and electroporated into the electrocompetent tetracycline susceptible (tetS) E.coli 

strain EC100 (Epicenter Technologies, Madison, WI using 1mm glass cuvettes) using a 

Bio-Rad GenePulser Xcell electroporator according to the manufacturer’s instructions 

(Bio-Rad, Hercules, CA). EC100 was maintained and prepared for electroporation 

according to protocol 6.1.1 of the Bio-Rad® Gene pulser instruction manual.  

Transformed cells were plated on tetracycline- (25 µg ml-1) amended TSA plates 

and incubated for 48 hours at 37°C. Colony presence was considered indicative of 

successful transformation. Electroporated transformants were used for antibiotic 

resistance profiling. Plasmids from the tetR transformant isolates were isolated using the 

plasmid preparation protocol outlined above. 

Ion Torrent Personal Genome Machine Sequencing. A 400 bp PGM library 

was constructed for plasmid pEG1-1 using the Ion Xpress™ Plus Fragment Library Kit 

(Thermo Fisher, Waltham, MA). DNA was fragmented using the Ion Plus Fragment 

Library Kit & Ion Shear™ Plus Reagents Kit. Ligation of PGM adapters, nick-repair, size 

selection and purification of the library was performed according to the manufacturer’s 

instructions. Final library concentration was determined using the Qubit® dsDNA HS 

Assay Kit (Thermo Fisher, Waltham, MA). The prepared library was diluted to 100 pM 

with TE (10 mM Tris pH 8.0, 0.1 mM EDTA) and used to create a PGM template using 

the PGM™ Hi-Q™ OT2 Kit on the Ion OneTouch machine, according to manufacturer’s 

instructions.  
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Table 1. Ion Torrent PGM run-analysis options. 

aConverts sequence data to FastQ file format. 

The template was prepared for sequencing using the Ion PGM™ Hi-Q™ 

Sequencing Kit (Thermo Fisher, Waltham, MA) and loaded onto an Ion 318™ Chip. 

Using the Torrent Suite™ Software, a sequencing run was executed using the “Generic 

Sequencing” template and the parameters listed in Table 1. 

  

Oxford Nanopore Technologies’ MinION Sequencing. Plasmid DNA was 

fragmented using a partial restriction digest. Five-hundred-thirty seven microliters of 

purified plasmid DNA were mixed with 60 µL of NEBuffer 1.1 and 0.6 µL of 5,000 

U/mL Sau3A1 enzyme (New England BioLabs, Ipswich, MA) and incubated at room 

temperature for one minute. The enzyme was immediately inactivated by incubating the 

solution at 70° C for 30 min.  

The fragmented DNA was purified using a 1X concentration of Ampure XP 

Beads (Beckman Coutler, Brea, CA) according to the manufacturer’s protocol and eluted 

into 30 µl of sterile ddH2O. Successful fragmentation of plasmid DNA was confirmed by 

agarose gel electrophoresis (Figure 2) as described above. Fragmented DNA was 

quantified using the Qubit® dsDNA HS Assay Kit (Thermo Fisher, Waltham, MA). One 

PGM Analysis Summary 
Run Flows: 850 
Flow Order: TACGTACGTCTGAGCATCGATCGATGTACAGC 
Library Key: TCAG 
3' Adapter Ion P1B 
Chip Type: 318C 
Chip Data: Single 
Barcode Set: IonXpress 
Bead Loading Quality 
Threshold: 30% 
Plugins FileExportera 
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microgram of fragmented DNA was used to prepare a MinION sequencing library 

according to the manufacturer’s protocol (Sequencing kit SQK-005, Oxford Nanopore, 

Oxford UK).  

A sequencing run was created on MinKnow using the built-in python script 

“48Hr_Sequencing_Run_SQK_MAP005.py”. MinION sequencing solution was prepared 

by mixing 75 µL of 2x Running Buffer, 65 µL ddH2O, 4 µL Fuel Mix and 6 µL of the 

prepared MinION sequencing library, and the solution was loaded into a R7.3 flow cell 

(Oxford Nanopore, Oxford UK). The preparation and loading of sequencing solution was 

repeated four times every six hours allowing for a total 24 hour sequencing run. MinION 

raw sequence data was basecalled using the Oxford Nanopore Metrichor software (2D 

Workflow, revision 1.9.1).  

Genome Assembly and Annotation. PGM data were normalized to 100X 

coverage using the BBNorm normalization tool of the BBTool package (Bushnell, 2014) 

and MinION reads were error-corrected using Nanocorrect (Loman et al., 2015). 

Normalized PGM reads and Nanocorrected MinION reads were input into the SPAdes 

assembler V3.7 (Bankevich et al., 2012) for a hybrid assembly using k-mer lengths 43, 

53, 63, and 73 as well as the pipeline option “--careful”. The reads were assembled into a 

single 74,302 kb contig. Because the plasmid genome was circular, a repeated sequence 

on both ends of the assembly was anticipated. To identify this region, the contig was split 

in half and the two halves were aligned to one another using Mauve (Darling et al., 

2010). This revealed a 982 bp repeated sequence on both ends of the assembly that was 

removed from one end. The final 73,320kb contig was first annotated using the 

automated annotation software Prokka (Seemann, 2014) and then manually annotated.  
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Manual annotation consisted of first assessing each annotation made by Prokka on 

the basis of % identitiy to the matched reference (plasmid pB8; <90% was removed), % 

coverage of the matched reference (<90% was removed), and e-value (>10-6 was 

removed). Prokka annotates genes as “hypothetical proteins” if the predicted gene cannot 

be matched to a reference within the large protein databases UniProt or Pfam (Seemann, 

2014). These hypothetical proteins were manually extracted and locally aligned 

(BLASTp) to smaller, manually curated databases. The smaller databases used were 

CARD (McArthur et al., 2013) and INTEGRALL (Soares, M. et al., 2009). Areas of the 

genome >100 bp that did not receive a Prokka annotation were extracted and also aligned 

to the smaller databases described above. Prior to adding a manual annotation, the 

presence of a predicted protein-coding gene was verified using GLIMMER 2.1 (Delcher 

et al. 1999). Global alignments of homologous regions between pEG1-1 and the 

reference plasmid pB8 were also utilized to confirm annotations.  
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Results 

Methods Development to Prepare Plasmid DNA for Sequencing on Next-

Generation Platforms. The removal of RNA and chromosomal DNA contaminants was 

verified through agarose gel electrophoresis (Figure 1). Lane 1 of both gels contains the 

raw product of a plasmid prep protocol. In Figure 1b, RNA was observed as fragments 

<500bp and chromosomal DNA was observed as smears near the top of Lane 1. Lane 2 

of both gels contains plasmid DNA after Plasmid-Safe and RNase A treatment. In both 

gels, no RNA or chromosomal contaminants were observed in Lane 2.  

Large quantities of DNA are necessary to sequence a plasmid on multiple NGS 

platforms. The MinION sequencing protocol requires 1µg of sample DNA and the PGM 

protocol requires at least 0.10µg. The average yield from the plasmid miniprep developed 

in our lab was only around 0.3 µg (Figure 1). Running multiple plasmid preps one after 

another is impractical and time consuming, and running multiple preps in parallel is 

prone to error since many of the reactions within the protocol are time-sensitive. Instead, 

we elected to scale-up the original plasmid prep protocol by a factor of 20.  

The efficacy of the scaled-up protocol was verified through agarose gel 

electrophoresis (Figure 1b). Lane 1 contains the raw product of the scaled-up plasmid 

prep. Plasmid DNA in both a supercoiled state (band at ~20kb) and relaxed conformation 

(band at >20kb) was observed. Greater quantities of RNA and chromosomal DNA 

contaminants compared to the original protocol (Figure 1a) were also present, but both 

contaminants were fully removed after Plasmid-Safe and RNase A treatment (Figure 1b). 

Concentration and yield of the plasmid DNA were obtained by first fragmenting the 
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Concentration (ng/µL) 5.529 ± 0.547 
Yield (µg) 0.276 ± 0.0273 

Concentration (ng/µL) 4.44 ± 0.655 
Yield (µg) 4.442 ± 0.0655 

23,130bp

564bp

A 

23,130bp

564bp

B 1 2 1 2

Figure 1. Original and scaled-up plasmid preparation protocols. (A) Isolated pEG1-1 using 
the original protocol. (B) Isolated pEG1-1 using the scaled-up protocol. Samples were run 
with the following lane assignments - Lane 1: raw product from the plasmid prep, Lane 2: 
plasmid after Plasmidsafe and RNase treatment. The blue and red arrows indicate plasmid 
DNA in either a supercoiled or relaxed conformation, respectively. The molecular weights 
indicated to the left of each gel image are based on a Lambda DNA/HindIII marker run in 
each gel. The concentration of plasmid DNA was determined using the Qubit BR assay kit. 
The concentration was multiplied by the final volume of the sample to determine yield. The 
data shown is the average concentration and yield of 7 samples with a standard deviation 
expressed as a ± value. 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 

plasmid DNA with Sau3AI and then quantifying each sample with the Qubit dsDNA BR 

Assay Kit. The average yield of the scaled-up protocol was 4.44 µg, a nearly 20-fold 

increase compared to the average yield obtained from the original plasmid prep.  

All NGS platforms require sample DNA to be linear in order to ligate the 

appropriate oligonucleotide sequences and/or specialized adapter proteins required for 

each platform’s sequencing chemistry (Morey et al., 2013). In addition, the PGM requires 

shearing to an average size of 400 bp. The PGM sequencing protocol employs an 
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enzymatic fragmentation method that has been optimized and commercially available for 

over five years (Ion Torrent, 2014). Plasmid DNA that has been treated with Plasmid-

Safe and RNase can be input directly into the PGM protocol for successful sequencing. 

At the time of this study, however, the MinION sequencing protocol was still in beta 

testing through the MinION Access Programme and not yet optimized nor commercially 

available.  

The suggested method for fragmenting the DNA library to be sequenced by the 

MinION was to use the Covaris G-tube. The G-tube shears DNA by using centrifugal 

force to push the sample through a precisely manufactured pore. The size of the 

fragments produced is dependent on the amount of centrifugal force applied. 

Unfortunately, our attempts to fragment plasmid DNA with a G-tube were unsuccessful: 

sequence runs utilizing the G-tube resulted in almost zero reads, suggesting that the 

plasmid was not being sufficiently linearized for proper ligation of adapter proteins 

during library preparation. It was hypothesized that the supercoiled state of plasmid DNA 

impeded successful shearing through the G-tube. Instead, fragmentation was 

accomplished through the use of partial restriction digestion with the four-base restriction 

enzyme Sau3AI.  

Successful fragmentation was verified via agarose gel electrophoresis (Figure 2). 

Lanes 1 and 2 show the raw product of a scaled-up plasmid prep and circularized plasmid 

DNA after Plasmid-Safe and RNase A treatment, respectively. Lane 3 contains 

fragmented plasmid DNA after the partial restriction digest. A smear, indicating multiple 

fragments, from ~20kb to ~300kb was observed. 



	

	

20	

23,130bp

564bp

2 31

Figure 2. Plasmid DNA preparation for MinION sequencing. Lane 1: raw product from the 
scaled-up plasmid prep. Lane 2: purified plasmid product after Plasmidsafe and RNase 
treatment. Lane 3: fragmented plasmid DNA after partial digestion using the four-base 
restriction enzyme sau3AI. Molecular weights are estimates based on a Lambda DNA/HindIII 
marker run in the same gel.  

 

 

 

 

 

 

 

 

Sequencing on the Ion Torrent PGM. For PGM sequencing, two1 400 bp 

libraries were prepared using plasmid pEG1-1 DNA that had been isolated and purified 

of RNA and chromosomal DNA contaminants using the methods described in the 

previous chapter. The libraries were pooled together and clonally amplified through 

emulsion PCR on Ion Sphere Particles™ (ISP), which were then loaded onto an Ion 318 

Chip for sequencing on the Ion Torrent PGM. The sequence run diagnostics are presented 

in Figure 3. 

 The ISP Load and color map are measures of Ion Sphere Particles (ISP) loaded 

into the microwells of a sequencing chip (Figure 3a). The ISP Load is the percentage of 

microwells loaded with an ISP and is a metric of proper library preparation and chip-

																																																													
1Two	separate	PGM	libraries	were	prepared	with	the	assumption	that	each	library	was	generated	from	two	
different	plasmids.	However,	after	performing	a	Modified	Stokes	disk-diffusion	assay	(Gehr,	2013),	it	was	
revealed	that	the	two	libraries	were	both	generated	from	plasmid	pEG1-1.	Therefore,	the	PGM	data	from	both	
libraries	were	combined	for	assembly.		
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loading (Ion Torrent, 2015). An ISP Load of 30% is a quality threshold set by the Torrent 

Suite™ software (Ion Torrent, 2015). An ISP Load below 30% is indicative of a failed 

run. The ISP Load generated during the sequence run of plasmid pEG1-1 was 57%, 

exceeding the quality threshold.  

The color map is a representation of ISP loading distribution and is a second 

proxy for proper chip loading. The color blue indicates 0% ISP loading and red indicates 

100% ISP loading in the represented area. The map is represented as a square, but the 

chip has rounded edges. For this reason, the top left and bottom right corners are 

completely blue. According to the manufacturer’s protocol, an even distribution of ISP is 

ideal (Ion Torrent, 2015). The color map generated during the sequence run of plasmid 

pEG1-1 was a marbled mix of yellow and red, but contained a large region of blue on the 

bottom of the chip (Fig 3a). The chip-loading procedure was complex and dependent on a 

number of steps (Ion Torrent, 2014). The researcher conducting the chip-loading 

procedure had little experience at the time with such a protocol and it was assumed that 

the large region of low ISP density was a product of poor chip-loading technique.  

The PGM produced 4.180 million reads with an average read-length of 204 bp 

(Figure 3b). Two 400 bp libraries were prepared; thus an average read-length of 400 bp 

was expected. However, similar to the chip-loading protocol, the Ion Xpress™ Plus 

Fragment Library protocol consists of many procedures new to the researcher conducting 

the library preparation. Operator error, in addition to the uneven ISP density, may have 

led to improper size selection of DNA fragments.  
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Figure 3. Ion Torrent PGM sequence. (A) Map of Ion Sphere Particles (ISP) loaded onto the 
Ion 318™ Chip for sequencing of plasmid pEG1-1. Color indicates the percentage of wells 
occupied by an ISP in a given area. The ISP Load is the total percentage of wells loaded with 
an ISP. (B) Read-length histogram of sequence data produced. (C) FastQC-generated plot 
(Andrews, 2010) of the range of quality scores across all bases at each position. For each 
position a BoxWhisker plot is drawn. The central red line is the median value, the yellow box 
represents the inter-quartile range (25-75%), the upper and lower whiskers represent the 10% 
and 90% points, and the blue line represents the mean quality 

 

A 
ISP Load: 57% 

A 

Q-score, or Phred quality score, is the standard metric of read quality and has an 

inverse, logarithmic relation to the probability of error of a base call (Ewing, 1998). For 

example, Q = 10 indicates a 1 in 10 probability of error, Q = 20 indicates a 1 in 100 

probability of error, Q = 30 indicates a 1 in 1,000 probability of error and so on. A plot of 

the range of Q-scores across all bases at each position was generated on FastQC 

(Andrews, 2010) (Figure 3c). The average !-score of base calls in positions <300bp bp 
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was greater than Q = 20 (i.e. >99% base call accuracy). Thus, despite an average read-

length shorter than expected and regions of low ISP density, high quality reads were 

obtained from the PGM sequence run.  

Sequencing on Oxford Nanopore Technologies’ MinION. Plasmid pEG1-1 

was isolated, purified of RNA and chromosomal DNA contaminants and fragmented via 

partial digest using the methods described above. Fragmented pEG1-1 DNA was used to 

generate two2 MinION sequence libraries. As part of the library preparation protocol, a 

hairpin-adapter was ligated to the end of DNA fragments (Sequencing kit SQK-005, 

Oxford Nanopore, Oxford UK). The hairpin-adapter allows for both the template and 

complement strand of DNA to	traverse a nanopore during a sequencing run. Reads 

produced by combining data from both strands are known as 2D reads and have a higher 

accuracy compared to reads produced from just the template strand, termed 1D reads 

(Loman et al., 2015). For this study, only the higher quality, 2D reads.  

Two sequence runs (Run 1 and 2) were conducted for each library separately. 

Both runs were performed using R7.3 flow cells (Oxford Nanopore, Oxford UK). After 

sequencing, the raw data (i.e. current disruptions over time) of both runs were base called 

– i.e. converted to sequence reads – through the Oxford Nanopore program Metrichor 

(2D Workflow, revision 1.9.1), and separated into 1D and 2D reads. Sequence Run 1 and 

2 diagnostics a=are based on the data of 2D reads (Figure 4).  

The previous section showed that plasmid DNA can be fragmented to 20 kb using 

the methods we have developed. However, at the time of both sequence runs, the use of 

																																																													
2Two	sequence	runs	on	plasmid	pEG1-1	were	conducted	with	the	same	assumptions	as	noted	previously	with	
the	PGM	sequencing	(i.e.	it	was	falsely	assumed	that	the	two	libraries	were	generated	from	two	different	
plasmids).	As	with	the	PGM	data,	the	data	generated	fromoth	MinION	runs	were	combined	for	the	assembly.		
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Figure 4. Oxford Nanopore Technologies’ MinION sequence diagnostics. (A, B) Read-length 
histogram of sequence data produced in Run 1 and Run 2, respectively. (C, D) ) FastQC-
generated plot (Andrews, 2010) of the range of quality scores across all bases at each position 
in Run 1 and Run 2, respectively. For each position a Box Whisker plot is shown. The central 
red line is the median value, the blue line represents the mean, the yellow box represents the 
inter-quartile range (25-75%), and the upper and lower whiskers represent the 10% and 90% 
points. 
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restriction digestion had not been optimized to generate 20 kb fragments. Fragmentation 

of plasmid DNA used in Run 1 and Run 2 were visualized on an agarose gel prior to 

preparing the sequence libraries. The gels revealed fragmented plasmid DNA ranging 

from 7 kb to <500 bp for the DNA used in Run 1 and from 10 kb to <500 bp for the DNA 

used in run 2. This was consistent with the distribution of read-lengths produced during 

each run (Fig 4a,b). Run 1 generated 5,387 2D reads with an average read-length of 1,612 

bp and the largest read produced in Run 1 was 22,229 bp. Run 2 generated 2,103 2D 

reads with an average read-length of 4,019 bp and the largest read produced in Run 2 was 

36,364 bp. The average read-lengths from Run 1 and 2 exceed the average PGM read-

length by a factor of 10 and 20, respectively.  

As with the PGM data, a range of Q-scores across all bases at each position was 

generated on FastQC (Andrews, 2010) for both Run 1 and 2 (Fig 4c, d). Both plots show 

that the Q-score of all base calls averages are ~10, (i.e. ~90% base-call accuracy). 

Hybrid Assembly. Before combining PGM and MinION data for hybrid 

assembly, both datasets were adjusted to ensure optimal input-data quality (Figure 5) The 

PGM reads were normalized to 100x coverage using the program bbnorm (Bushnell, 

2014). This was done to	adjust for the uneven coverage bias associated with the platform 

(Quail et al. 2012). An assembly without normalization was attempted, but PGM depth-

of-coverage, or the number of times a specific base was sequenced, ranged from >2,000X 

to 50X. An uneven depth-of-converge as drastic as this hinders the assembly process and 

can introduce error into constructed contigs (Chen et al., 2013). MinION reads were 
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Figure 5. Sequencing, assembly and annotation pipeline for plasmid p1-1.  
Figure 5. Sequencing, assembly and annotation pipeline for plasmid pEG1-1. 

	
	
	
	
	
	
	
	
	
	
	
 

 

processed using Nanocorrect (Loman et al., 2015) to increase the quality of the low-

quality reads produced in the MinION sequence runs (Figure 4). Nanocorrect was 

designed to increase the quality of MinION reads through the use of a multiple alignment 

process and the raw signal traces produced during the sequence run (Loman et al., 2015). 

Loman et al. showed that Nanocorrected MinION reads increased the accuracy of a de 

novo assembly from 80.5% to 95.9% (Loman et al., 2015)  

SPAdes, a de Bruijin-graph based assembler that constructs contigs (a continuous 

sequence constructed by overlapping reads) by merging assemblies based on multiple k-

mer (substring of length k) sizes (Bankevich et al., 2012), was used to assemble the 

normalized PGM reads and Nanocorrected MinION reads into a single 74,212 bp contig 

(Figure 5). A 982 bp sequence was repeated on both ends of the contig, suggesting that a 

circular genome could be assembled. This region was removed from one end of the 

assembly, resulting in a final 73,230 bp contig.  
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Accurate de novo assemblies of bacterial genomes can be generated with a depth-

of-coverage as low as 50X (Desai et al., 2013), and the quality of SPAdes assemblies has 

been shown to drop with a depth-of-coverage over 700X (Lonardi et al., 2015). For these 

reasons, an acceptable depth-of-coverage range between 50X and 700X was established. 

Depth-of-coverage of the assembly was determined by mapping all input data to the 

generated contig. The average depth-of-coverage was found to be 287X. Two regions 

(549 bp and 33 bp in length) had a depth-of-coverage <50X and no area exceeded 700X.  

A BLASTn search (Altschul et al., 1997) of the entire pEG1-1 contig against the 

NCBI nucleotide collection database (accessible at: 

http://www.ncbi.nlm.nih.gov/nuccore) showed that our assembly matched most closely to 

plasmid pB8, a multi-drug resistance plasmid within the Incp-1β incompatibility group 

(Schlüter et al., 2005). IncP-1β plasmids have genomes that consist of a conserved 

backbone region, interspersed with variable regions – collectively known as the 

“accessory region” of the plasmid – that often contain genetic elements such as 

transposons and integrons (Popowska & Kraqczyk-Balska, 2013). Mauve (Darling et al., 

2010) was used to perform a global alignment between pB8 and the pEG1-1 assembly. 

The alignment revealed four homologous regions that completely encompass the 

conserved, backbone region of pB8 (Figure 6.)	

When considering only the backbone region , pB8 and pEG1-1 align with 

>99.99% identity; only one 24 bp region of the pb8 backbone was not identical to the 

pEG1-1 assembly. The high degree of similarity between the conserved backbone of pB8 

and the pEG1-1 assembly support the validity of the assembly. The accessory regions of 

pB8 have some similarity with the pEG1-1 assembly, but most was dissimilar. This was 	
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Figure 6. Global alignment of the pEG1-1 assembly and pB8. The pairs of colored boxes 
indicate homologous regions between the pEG1-1 assembly (top) and pB8 reference genome 
(bottom). A similarity profile that is inversely proportional to the average alignment entropy 
over a region of the alignment is drawn within each box. The backbone regions of pB8 have 
been marked at the bottom of the figure. An asterisk has been placed at the single dissimilar 
region of 24 bp between the pB8 backbone and the pEG1-1 assembly.  

	

	

	

	

	

	

	

	

 

not believed to be an indication of error, rather that pEG1-1 carries an accessory load that 

differs from pB8.  

Annotation. The pEG1-1 assembly was annotated using Prokka, an automated 

annotation software that generates gene annotations rapidly by predicting coding regions, 

translating those regions into an amino acid sequence, and comparing the amino acid 

sequence to databases of known proteins using BLASTp (Seemann, 2014). Predicted 

coding regions that match to a known protein with an e-value <10-6 are annotated as the 

matched reference. If no match is found to a predicted coding region, it is annotated as a 

“hypothetical protein”. Each annotation generated by Prokka was manually inspected to 

confirm its validity based on %ID to the matched reference, e-value, and presence of 

ribosomal binding sites. The homologous regions of pB8 were also a large factor in the 

manual annotation process of the plasmid pEG1-1 backbone. In total, 78 gene annotations 
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Table 2. Complete list of pEG1-1 genes.  

were made on the pEG1-1 assembly, of which 6 remained “hypothetical proteins” after 

both automated and manual annotation (Table 2).  

 

 

  

Genea Predicted Function Startb Stopb Strand 
Accessory Module 1 

    merR  involved in mercury resistance 363 512 R 
hypothetical protein unkown 627 1049 R 
hypothetical protein unkown 1152 2114 F 

strB aminoglycoside resistance 2320 2949 R 
repA IncU plasmid replicase  3005 3499 R 
mazF toxin/antitoxin system 3851 4174 R 
mazE toxin/antitoxin system 4174 4398 R 

hypothetical protein Uunknown 5182 5934 F 
neo aminoglycoside resistance 7199 8014 F 

hypothetical protein unknown 8698 8889 R 
hypothetical protein unknown 8952 9080 F 

tetC tetracycline resistance 9136 10326 R 
teteA tetracycline resistance 10419 11054 F 

Tnp IS200  transposase 11077 11412 R 
tnpA transposase 13091 14311 F 

Initiaiton Module 
    trfA  IncP-1β replication 14934 16154 R 

ssb  IncP-1_ replication 16201 16542 R 
Tra1 Module 

    trbA  IncP-1β transfer 16656 17018 F 
trbB  IncP-1β transfer 17328 18290 F 
trbC  IncP-1β transfer 18307 18771 F 
trbD  IncP-1β transfer 18775 19086 F 
trbE  IncP-1β transfer 19083 21641 F 
trbF  IncP-1β transfer 21638 22420 F 
trbG  IncP-1β transfer 22417 23337 F 
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Genea Predicted Function Startb Stopb Strand 
trbH  IncP-1β transfer 23340 23828 F 

virB10 IncP-1β transfer 23833 25233 F 
trbJ  IncP-1β transfer 25254 26018 F 
trbK  IncP-1β transfer 26028 26255 F 
trbL  IncP-1β transfer 26266 27984 F 
trbM  IncP-1β transfer 28002 28589 F 
trbN  IncP-1β transfer 28603 29238 F 
trbO  IncP-1β transfer 29267 29533 F 
trbP  IncP-1β transfer 29533 30231 F 

upf30.5  IncP-1β transfer 30247 30678 F 
upf31.0  IncP-1β transfer 30833 31507 F 

Accessory Module 2 
    intl1 Integrase 31754 32767 R 

aadA Aminoglycoside resistance 33225 34064 F 
qacEdelta1 Integron/antiseptic resistance 34228 34575 F 

sul1 Sulfonamide resistance 34569 35540 F 
floR Florfenicol resistance 35757 36971 F 
tetR Tetracycline resistance 37178 37804 R 
tetA Tetracycline resistance 37908 39083 F 
gltC Transposase 39173 39895 F 
Tnp Putative transposase 39987 41519 R 

groEL/inl1 Integrase fusion protein 41746 42399 R 
pse4 Betalactamase 42557 43471 F 
aadA Aminoglycoside resistance 43571 44380 F 

qacEdelta1  Integron/antiseptic resistance 44544 44891 F 
sul1  Sulfonamide resistance 44885 45724 F 

hypothetical protein Unknown 45852 46352 F 
tniB  Transposase 46321 47313 R 
tniA  Transposase 47316 48995 R 

Tra2 Module 
    traC Type IV secretion system 49546 53891 R 

traD  Type IV secretion system 53895 54284 R 
traE  Type IV secretion system 54306 56369 R 
traF  Type IV secretion system 56381 56917 R 
traG  Type IV secretion system 56914 58827 R 
traI  Type IV secretion system 58824 61064 R 
traJ  Type IV secretion system 61099 61473 R 
traK  Type IV secretion system 61847 62245 F 

Table 2. Continued.  



	

	

31	

aListed according to distance from oriV on the forward strand.  
bBase pair position from oriV. 
	

 

 

pEG1-1 Resistance Phenotype. A modified Stokes disc diffusion antibiotic 

susceptibility assay was used by Gehr to determine that plasmid pEG1-1 conferred 

decreased susceptibility to tetracycline, kanamycin, piperacillin, ticarcillin, tobramycin, 

piperacillin/tazobactam, and cefepime (Gehr, 2013). This resistance profile was 

confirmed in the present study. Minimum inhibitory concentrations (MICs) of 22 

antibiotics—including ticaracilin, tobramycin, piperacillin/tazobactam, and cefepime—

were determined for pEG1-1. Clinical levels of antibiotic resistance, as defined by 

NCCLS standards for Enterobacteriaceae, to ticarcillin and tobramycin were found: MICs 

of 4µg/mL and 64µg/mL, respectively. Clinical levels of resistance to the other 

antibiotics tested, including piperacillin/taxobactam and cefepime were not observed: 

Genea Predicted Function Startb Stopb Strand 

traL  
IncP-1_ type IV secretion 

system 62245 62970 F 

traM  
IncP-1_ type IV secretion 

system 62970 63410 F 
Regulation/Stability 
Module 

    kfrC  IncP-1_ regulation & stability 63613 64266 R 
kfrB  IncP-1_ regulation & stability 64295 64642 R 
kfrA  IncP-1_ regulation & stability 64813 65844 R 
korB IncP-1_ regulation & stability 66024 67073 R 
incC2  IncP-1_ regulation & stability 67070 67834 R 
korA  IncP-1_ regulation & stability 67831 68133 R 
kleF  IncP-1_ regulation & stability 68247 68777 R 
kleE  IncP-1_ regulation & stability 68779 69108 R 
kleB  IncP-1_ regulation & stability 69253 69468 R 
kleA  IncP-1_ regulation & stability 69527 69763 R 
korC  IncP-1_ regulation & stability 69923 70180 R 
klcB  IncP-1_ regulation & stability 70197 71402 R 
klcA  IncP-1_ regulation & stability 71454 71882 R 
kluA  IncP-1_ regulation & stability 72051 72320 F 
kluB  IncP-1_ regulation & stability 72699 72990 F 

Table 2. Continued.  
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2µg/mL for doxycycline and no growth observed on the MIC plate in the presence of all 

other antibiotics. 

Functional Modules of pEG1-1. The 78 genes found on pEG1-1 were classified 

into seven functional modules based on the cellular interactions of the encoded proteins 

(Figure 7). The initiation module was made up of two genes as well as the origin of 

vegetative replication (oriV). The module designated “regulation/stability”, was 

comprised of 15 genes encoding proteins with predicted functions involved in 

maintenance, partitioning, and plasmid control. The Regulation/Stability and Initiation 

modules are separated by Accessory Module 1, a functional module comprised of a 

single, large Tn21-related transposon. Genes encoding proteins involved in mate-pair 

formation and conjugative DNA-transfer are contained within two functional modules, 

Tra1 and Tra2. Tra1 consists of 10 genes and Tra2 was made up of 18 genes. The 

modules are separated by Accessory Module 2, a functional module comprised of a single 

complex integron, in104.  

The modules were divided into two categories: the backbone and accessory 

regions. The backbone is a conserved set of genes amongst IncP-1β plasmids and consists 

of the regulation/stability, Tra1 and Tra2 modules (Schlüter et al., 2005). A comparison 

between other IncP-1β plasmids showed that pEG1-1 possesses a complete set of 

backbone genes with an organization nearly completely identical to the backbone of pB8 

(Schlüter et al., 2005), suggesting pEG1-1 to be a part of the IncP-1β incompatibility 

group. This was confirmed using the integrated web tool PlasmidFinder (Carattoli et al, 

2014). The accessory region consists of the Accessory Modules 1 and 2.  
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Accessory Modules 1 and 2 contain unique mobile genetic elements that are not 

observed in any other sequenced IncP-1β plasmid (Schlüter et al., 2007), but have been 

observed on plasmid of other incompatibility groups (Douard et al., 2010; Nass et al., 

2013). Dramatic shifts in the average percent GC of these two modules suggest that these 

modules may have been recently incorporated into the pEG1-1 genome via 

recombination events (Figure 7).  

Initiation	

Figure 7. The seven functional modules mapped along the multi-drug resistance IncP-1β 
plasmid pEG1-1 genome. The origin of vegetative replication (oriV) is marked as a black 
circle at the top of the circle. The regulation/stability module (green), Tra1 (light blue), 
Tra2(dark blue) and replication module (yellow) make up the IncP-1β backbone genes. 
Accessory modules 1 & 2 make up the accessory region and are marked in red. The inner 
gray plot indicates the average GC% throughout the plasmid with the dotted line 
representing 50% GC content—inside the dotted line <50% GC.  
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.  

merR strB repA mazF mazE CDS3 tetA tetR IS200 tnpA aphA1 

IR IR 

Tn21-related transposon (15,054bp) 

CDS2 CDS3 CDS4 CDS5 

A. 

A 

B 

Figure 8. Genetic map of Accessory Modules 1 & 2. (A) The Tn21-related transposon of 
AN1. (B) The In104 integron of AM2. The vertical black bars represent inverted repeat 
regions (IR). Coding regions are shown by arrows indicating the direction of transcription. 
Black arrows represent genes conferring antibiotic resistance, arrows with vertical stripes 
represent conserved transposon genes, arrows with diagonal stripes represent conserved 
integron genes, and white arrows represent coding sequences with no known function. The 
merR gene and repA gene of the AM1 transposon are represented as a dotted and gray arrow, 
respectively. The genes comprising the class 1 integrons and transposon elements of the In104 
integron are marked at the bottom.  

intl1 

IR 

aadA qacEΔ1 sul1 floR tetR tetA gltC tnp groEL/inI1 pse4 aadA qacEΔ1 sul1 CDS tniB tniA 

Class 1 integron 

Transposon element 

Class 1 integron 

In104 Integron(17,628bp) 

Transposon element 

IR 

 Accessory Module 1 (AM1) was made up entirely of a 15,054 bp transposon with 

structures related to the Tn21 family, a group of transposons associated with the global 

dissemination of antibiotic resistance (Figure 8a) (Liebert et al, 1999). Tn21 transposons 

 

 

 

 

 

 

	

	 	

	

	

	

	

are characterized by the presence of multiple antibiotic resistance genes, a tnpA 

transposase, a tnpR relaxase, a mercury resistance (mer) operon and a pair of Tn21-

specific inverted repeats flanking the transposon (Liebert et al, 1999). A tnpA transposon 

and a pair of Tn21 inverted repeats were observed within the AM1 transposon, but it 

lacked a tnpR relaxase and full mer operon—only the merR gene of the operon was found 

on the AM1 transposon. Also unique was the presence of the repA gene, encoding the 
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replicase enzyme of IncU plasmids (Nass et al., 2013). Six genes related to antibiotic 

resistance were found on the AM1 transposon: the genes strB and aphA1 confer 

resistance to ampicillin and streptomycin, tetC and tetR confer resistance to tetracycline, 

and the mazEF toxin-antitoxin system has been associated with decreased susceptibility 

to β-lactam antibiotics (Schuster et al., 2015).  

Accessory Module 2 (AM2) was made up entirely of a 17,628bp mobile genetic 

element classified as an in104 complex integron (Figure 8b). In104 complex integrons 

are found within the Salmonella genomic island 1 (SGI1) and contain two class 1 

integrons. Also characteristic of in104 complex integrons is the presence of transposase 

enzymes and inverted repeats flanking the entire element. All of these characteristics 

were observed in the AM2 element, as well as eight antibiotic resistance genes: the two 

aada genes confer resistance to aminoglycoside antibiotics such as streptomycin and 

spectomycin, the two sul1 genes confer resistance to sulfonamide antibiotics, both tetR 

and tetA confer tetracycline resistance, the floR gene confers resistance to 

chloramphenicol and florfenicol and the pse4 gene confers resistance to a broad range of 

β-lactam antibiotics. 
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Discussion 
 

Sequencing, Assembly and Annotation. Genome studies of multi-drug 

resistance plasmids can provide critical insight into the reservoir of antibiotic resistance 

genes present in stream sediment. Unfortunately, the plasmid miniprep previously 

developed in our laboratory produced low-yields of plasmid DNA that were 

contaminated with RNA and chromosomal DNA. These factors made this protocol 

initially an impractical option to prepare plasmid DNA for sequencing. In this study, we 

have shown that Plasmid-Safe™ ATP-Dependent DNase and RNase A enzymes can 

successfully remove the RNA and chromosomal DNA contaminants and that the plasmid 

miniprep protocol can be scaled up by a factor of 20 to obtain larger quantities of plasmid 

DNA. These methods allow one to obtain large quantities of pure plasmid DNA for 

sequencing on NGS platforms. In addition, we were able to develop a fragmentation 

method using partial restriction digestion to prepare plasmid DNA for MinION 

sequencing.  

The sequence data obtained from the PGM and MinION were typical of each 

platform (Acinas et al., 2005, Wei & Williams, 2015). The PGM reads were short (~200 

bp), but had high phred scores indicative of over 99% base-call accuracy (Figure 3). The 

MinION reads were long (mean ~1.6 kb and 4 kb for Run 1 and 2, respectively), but had 

lower phred scores indicative of only 90% base-call accuracy (Figure 4).  

The relatively complex Ion Torrent sequence protocol led to shorter read-lengths 

than anticipated and an uneven ISP Density across the sequencing chip used (Figure 3a), 

but the reads produced on the MinION were consistent with the DNA preparation 

protocols employed (Figure 4a,b). This suggests that the MinION sequencing protocol 
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was more reproducible compared to PGM sequencing. This is important to note if this 

protocol is to be adjusted for instructional-laboratory purposes. PGM sequencing requires 

a number of skillsets not commonly mastered by undergraduate students, such as DNA 

size selection via E-Gel® SizeSelect™ Gels (Thermo Fisher, Waltham, MA), precise 

dilutions to a picogram scale, making quality assessments through use of qPCR, emulsion 

PCR, and more (Ion Torrent, 2014). MinION sequencing, on the other hand, requires 

little more than proper pipetting technique (Sequencing kit SQK-005, Oxford Nanopore, 

Oxford UK).  

 Sequencing of multi-drug resistance plasmids can be conducted on the PGM and 

MinION using the methods developed in this study. Despite the more difficult protocol, 

the PGM run produced over 4 Mbp of data. On the MinION — between both runs — 

over 11 Mbp of 2D data were generated.  

The assembly generated in this study was validated by both depth-of-coverage 

and the percent identity to a reference sequence. Length-summary statistics on contig 

sequences, such as the N50 — a weighted median variable — are commonly employed to 

asses the quality of a de novo assembly (Earl et al., 2011). Unfortunately, these metrics 

are dependent on an assembly that has generated several contigs of various lengths. In 

this study, our sequence reads were assembled into a single contig, forcing us to employ 

depth-of-coverage and %ID to a reference genome to asses the assembly generated. For 

the pEG1-1 genome, these metrics were sufficient to allow us to assess the quality of the 

generated assembly, but our approach was dependent on high depth-of-coverage and an 

extant, related reference genome. These limitations may mean that this method of 

assessing assembly quality is particularly ill-suited for metaplasmidome studies in which 
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a mixed sample of multiple plasmids are sequenced and assessed in a single run (Li et al., 

2015). Having multiple plasmids in a single sample may lower the average depth-of-

coverage below 50X and if a novel plasmid is found within the metaplasmidome, we 

would not be able to validate the assembly. Instead, this approach is more appropriate for 

single-plasmid studies and may even benefit from the addition of plasmid 

incompatibility-group identification prior to sequencing so that reference sequences can 

be confirmed. However, if the goal is to isolate and assemble novel plasmids, alternative 

metrics to assess such an assembly will need to be established.  

Accessory regions of plasmid pEG 1-1. The isolation of an IncP-1β plasmid 

from an agriculturally-impacted stream sediment sample was consistent with other 

studies: IncP-1β plasmids are typical in bacteria isolated from agricultural sites (Bahl, 

2009) and their broad-host range makes exogenous capture into an E. coli recipient a 

logical outcome. However, the presence of the in104 complex integron within the pEG1-

1 genome was surprising. The in104 integron is a critical component of the Salmonella 

genomic island (SGI1), a multi-drug resistance chromosomal element that is largely 

responsible for the global dissemination of multiply-antibiotic-resistant Salmonella 

enterica serovar Typhimurium, especially the widely-disseminated multiresistance clone 

dT104, after which it was named (Levings et al., 2005). All of the resistance genes 

associated with SGI1 are contained within the in104 complex integron (Levings et al., 

2005). Most in104 complex integrons—including the one found on pEG101—carry the 

antibiotic resistance genes aadA, sul1, floR, tetA/R, and blaP1 and confer pentaresistance 

to aminoglycosides, sulfonamides, florifenicols, tetracyclines and β-lactam antibiotics, 

but in104 variants, due to insertion and transposition events, can differ in genotype 
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(Seibor & Neuwirth, 2013). Unlike typical integrons, which are not mobile elements, the 

in104 complex integron contains genes coding for transposase enzymes that allow it to be 

transposed into a host’s chromosome or another plasmid (Levings et al., 2005). An in 

vitro study of SGI1 demonstrated that the mobilization of SGI1 resistance depended 

specifically on the presence of IncA and IncC plasmids (Douard et al., 2010). Douard et 

al., explicitly demonstrated that IncP plasmids were unable to mobilize SGI1 resistance 

in repeated mating experiments (Douard et al., 2010) yet our analysis of the pEG1-1 

genome clearly indicates the presence of the in104 integron.  

This discovery suggests that in104 has undergone recent recombination events 

that enable mobilization through a broader range of plasmids. The first in104 integron 

described contained a tnpA transposase at the 3’end of the element (Boyd et al., 2001), 

but the tnpA gene was absent on the in104 integron of pEG1-1. Instead, tniA and tniB 

genes were found at the 3’ end of the integron (Figure 8b). This exchange between the 

tnpA and tniA transposase enzymes may be what has allowed the newly acquired 

mobilization of in104 on an IncP plasmid.  

The in104 complex integron also provides insight on what the original bacterial 

host of pEG1-1 may have been. The exogenous capture method used to isolate pEG1-1 

was limited in that it provides no evidence on the origin of the plasmid (Gehr, 2013). 

However, since the in104 complex integron has only been documented in Salmonella 

enterica (Boyd et al., 2001) and Proteus mirabilis, this suggests that pEG1-1 may have 

originated in one of these two members of the Enterobacteriaceae (Seibor & Neuwirth, 

2013).  
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Tn21 transposons are one of the most well-studied transposon families, yet the 

gene composition and order of genes within the tn21-related transposon of pEG1-1 was 

unlike any of the tn21 reference sequences available (Liebert et al, 1999). The unique 

arrangement of this tn21-related transposon suggests it may be a derivative of the tn21 

family that, similarly to the in104 integron found on pEG1-1, has undergone a number of 

recombination events. For example, the presence of the repA gene suggest that this 

transposon may have interacted with the backbone of a different plasmid. Other IncP-1β 

plasmids use the replicase enzyme encoded by the trfA gene and do not contain the repA 

gene within their backbone (Popowska & Kraqczyk-Balska, 2013). The repA gene on 

pEG1-1 may have originated from the backbone of an IncU plasmid, another plasmid 

incompatibility group associated with the dissemination of antibiotic resistance that relies 

on the repA gene for replication (Cattoir et al., 2008).  

The mazEF gene was another distinguishing feature that is not characteristic of 

Tn21 transposons. This was a particularly interesting feature since, as described above, 

the mazEF toxin-antitoxin (TA) system is attributed to decreased susceptibility to β-

lactam antibiotics (Schlüter et al., 2015). Additionally, TA systems are involved in 

plasmid-addiction systems (PAS), a phenomenon in which successful bacteria 

propagation is influenced by the vertical transmission of a plasmid (Van Melderen & De 

Bast, 2009). If a bacterium carries a plasmid with a TA system, both the toxin and 

antitoxin are passed on to daughter cells. However, if the plasmid is not also replicated 

and passed onto the daughter cell, the unstable antitoxin degrades and the stable toxin 

persists, killing the daughter cell. Thus the vertical transfer of the plasmid with the 

complete TA system is selected for. The mazEF TA system found on pEG1-1 may induce 
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a plasmid-addiction system that acts as a major contributing factor to the persistence of 

multi-drug resistance plasmids in stream sediment. 

The antibiotic resistance profile of pEG1-1 can be attributed to the antibiotic 

resistance genes within the AM1 and AM2 modules. Resistance to tetracycline was most 

likely conferred by the multiple tetA/R complexes, kanamycin & tobramycin resistance 

may be conferred by the aada, strB, or aphA1 genes, and resistance to ticarcillin and 

piperacillin was most likely conferred by the pse4 gene. The observed decreased 

susceptibility – though not reaching clinical levels of resistance as judged by MICs – to 

piperacillin/tazobactam, and cefepime conferred by pEG1-1 may be explained by the 

presence of the mazEF TA system. In Staphylococcus aureus, the mazEF TA system is 

upregulated under stress conditions and is associated with the formation of small colony 

variants and persisters that reside in a drug-tolerant state (Schuster et al., 2015). Schuster 

et al. demonstrated that mutations of the S. aureus mazEF TA system led to increased β- 

lactam susceptibility (Schuster et al., 2015) but to this author’s knowledge, the mazEF 

TA has not been directly associated with clinical levels of β-lactam resistance, 

particularly in Gram-negative bacteria. The presence of genes associated with resistance 

to sulfonamide and florfenicol drugs suggest that pEG1-1 may also confer resistance to 

additional antibiotics that we have not yet assessed. 

Conclusion. The pEG1-1 genome demonstrates how genes conferring heavy 

metal resistance, agricultural antibiotic resistance, and human antibiotic resistance can be 

linked. This may be concerning for public health since current efforts to mitigate the 

emergence of antibiotic resistance focus heavily on the regulation of human antibiotics in 

agriculture (The White House Office of the Press Secretary, 2015). However, even in the 
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absence of direct selection, clinical antibiotic resistance may be spreading as a 

consequence of coselection in response to three different factors: agricultural antibiotic 

use—such as tetracycline—heavy metals in the soil—such as mercury—and the plasmid 

addiction phenomenon perpetuated by the mazE/F TA system.  

Additionally, the presence of the in104 complex integron and the Tn21-related 

transposon suggests that multi-drug resistance plasmids are not only capable of 

transmission between mature bacteria within stream sediment, but are also actively 

recombining. Thus, the increased incidence and new combinations of antibiotic resistance 

genes observed in clinical isolates may be only the tip of the vast “iceberg” of resistance 

genes actually found in populations of bacteria – and particularly their plasmids – found 

in natural environments.	

 

  



	

	

43	

Literature Cited 

Aarestrup, F.M. (1999). Association between the consumption of antimicrobial agents 
in animal husbandry and the occurrence of resistant bacteria among food animals. 
International Journal of Antimicrobial Agents 12:279-85. 
 
Acinas, S., Sarma-Rupavtarm, R., Klepac-Ceraj, V., & Polz, M. (2005). PCR-induced 
sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries 
constructed from the same sample. Applied Environmental Microbiology 71:8966–9. 
 
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990) Basic local 
alignment search tool. Journal of Molecular Biology 215:403-10. 
 
Aminov, R.I. (2010). A brief history of the antibiotic era: lessons learned and challenges 
for the future. Frontiers in Microbiology 1:134-41. 
 
Anderson, K.L., Whitlokc, J.E., & Harwood, V.J. (2005). Persistence and differential 
survival of fecal indicator bacteria in subtropical waters and sediments. Applied 
Environmental Microbiology 71:3041-8. 
 
Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. 
Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 
Accessed June 14, 2015. 
 
Bahl, M. I. (2009). All IncP-1 plasmid subgroups, including the novel e subgroup, are 
prevalent in the influent of a Danish wastewater treatment plant. Plasmid 62:134–9. 
 
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A, Dvorkin, M., Kulikov, A.S., 
Lesin, V., Nikolenko, S., Pham, S., Prjibelski, A., Pyshkin, A., Sirotkin, A., Vyahhi, 
N., Tesler, G., Alekseyev, M., & Pevzner, P. (2012). SPAdes: a new genome assembly 
algorithm and its application to single-cell sequencing. Journal of Computational Biology 
19:455-77. 
 
Bennett, P.M. (2008). Plasmid encoded antibiotic resistance: acquisition and transfer of 
antibiotic resistance genes in bacteria. British Journal of Pharmacology 153:S3470357. 
 
Bradley J. S., Garau, J., Lode, H., Rolston, K.V., Wilson, S.E., & Quinn, J.P. (1999). 
Carbapenems in clinical practice: a guide to their use in serious infection. International 
Journal of Antimicrobial Agents 11:93–100. 
 
Boyd, D., Cloeckaert, A., Chaslus-Dancla, E., & Mulvey, M.R. (2002). 
Characterization of variant Salmonella genomic island 1 multidrug resistance regions 
from serovars Typhimurium DT104 and Agona. Antimicrobial Agents and Chemotherapy 
6:1714-22. 
 



	

	

44	

Brooks, J.M. (2005). M.S. Thesis: Exogenous isolation and characterization of 
tetracycline resistant plasmid from poultry litter and litter amended soil. James Madison 
University. 
 
Bushnell, B. (2014). BBMap short read aligner and other bioinformatics tools. Available 
at: https://sourceforge.net/projects/bbmap/files/. Accessed: February 21, 2016.  
 
Carattoli, A., Zankari, E., García-Fernándeza, A., Larsenc, M.V., Lundc, O., Villaa, 
L., Aarestrupb, F.M., & Hasmanb, H. (2014). In Silico detection and typing of 
plasmids using PlasmidFinder and plasmid Multilocus Sequence Typing. Antimicrobial 
Agents and Chemotherapy 58:3895-903. 
 
Carnerio, M.O., Russ, C., Ross., M.G., Gabrial, S.B., Nusbaum, C., & DePristo, 
M.A. (2012). Pacific Biosciences sequencing technology for genotyping and variation 
discovery in human data. BioMed Central 13:375. 
 
Centers for Disease Control and Prevention, Office of Infectious Disease. (2013). 
Antibiotic resistance threats in the United States, 2013. Available at: 
http://www.cdc.gov/drugresistance/threat-report-2013. Accessed March 09, 2016. 
 
Chee-Sanford, J. C., Aminov, R. I., Krapac, I. J., Garrigues-Jeanjean, N., & Mackie, 
R. I. (2001). Occurrence and Diversity of tetracycline resistance genes in lagoons and 
groundwater underlying two swine production facilities. Applied and Environmental 
Microbiology 67:1494–1502. 
 
Chen, Y., Liu, T., Yu, C., Chiang, T., & Hwang, C. (2013). Effects of GC bias in next-
generation-sequencing data on de novo genome assembly. PLoS ONE 8:e62856. 
 
Claverys, J.P., Prudhomme, M., Mortier-Barriere, I., & Martin, B. (2000). 
Adaptation to the environment: Streptococcus pneumoniae, a paradigm for 
recombination-mediated genetic plasticity? Molecular Microbiology 35:251-9. 
 
Darling, A., Mau, B., & Perna, N.T. (2010). progressiveMauve: multiple genome 
alignment with gene gain, loss, and rearrangement. PLoS One 5:e11147. 
 
Davies, J. & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbial 
and Molecular Biology Reviews 74:417–33. 
 
Delcher, A.L., Harmon, D., Kasif, S., White, O., & Salzberg, S.L. (1999). Improved 
microbial gene identification with GLIMMER. Nucleic Acids Research 27:4636-41. 
 
Desai, A., Marwah, V., Yadav, A., Jha, V., Dhaygude, K., Bangar, U., Kulkarni, V., 
& Jere, A. (2013). Identification of optimum sequencing depth especially for de novo 
genome assembly of small genomes using next generation sequencing data. PLoS One 
8:e60204. 
 



	

	

45	

Dobrindt, U., Chowdary, M.G., Krumbholz, G., & Hacker, J. (2010). Genome 
dynamics and its impact on evolution of Escherichia coli. Medical Microbiology and 
Immunology 199:145–54. 
 
Douard, G., Praud, K., Cloeckaert, A., & Doublet, B. (2010). The Salmonella genomic 
island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid 
family. PLos ONE 5:e15302. 
 
Dröge, M., Pühler, A., & Selbitschka, W. (2000). Phenotypic and molecular 
characterization of conjugative antibiotic resistance plasmids isolated from bacterial 
communities of activated sludge. Molecular Genetics and Genomics 263:471-82. 
 
Ewing, B. & Green, P. (1998). Base-calling of automated sequencer traces using Phred 
II error probabilities. Genome Research 8:186–94. 
 
Figueroa-Bossi, N., Uzzau, S., Maloriol, D., & Bossi, L. (2001). Variable assortment of 
prophages provides a transferable repertoire of pathogenic determinants in Salmonella . 
Molecular Microbiology 39:260-71. 
 
Gehr, E. (2013). M.S. Thesis: The potential for replication and transmission of antibiotic 
resistance plasmids in an E. coli population in agriculturally impacted stream sediment. 
James Madison University. 
 
Gordon, D.M., Bauer, S., & Johnson, J.R. (2002). The genetic structure of Escherichia 
coli populations in primary and secondary habitats. Microbiology 148:1513-22. 
 
Gould, I.M. & Bal, A.M. (2013). New antibiotic agents in the pipeline and how they can 
overcome microbial resistance. Virulence 4:185–91. 
 
Gross, M. (2013). Antibiotics in crisis. Current Biology 23(24):R1063-5. 
 
Heather, J.M. & Chain, B. (2016). The sequence of sequencers: the history of 
sequencing DNA. Genomics 107(1):1-8. 
 
Herrick, J.B., Haynes, R., Heringa, S., Brooks, J.M. ,& Sobota LT. (2014). 
Coselection for resistance to multiple late-generation human therapeutic antibiotics 
encoded on tetracycline resistance plasmids captured from uncultivated stream and soil 
bacteria. Journal of Applied Microbiology 117:380-9. 
 
Heuer, H., Szczepanowski, R., Schneiker, S., Pühler, A., Top, E.M., & Schlüter, A. 
(2004). The complete sequences of plasmids pB2 and pB3 provide evidence for a recent 
ancestor of the IncP-1beta group without any accessory genes. Microbiology 150:3591-9. 
 
Ion Torrent. (2014). Ion Xpress™ plus gDNA fragment library preparation, user guide 
rev B.0. Publication Number MAN0009847. 
 



	

	

46	

Ion Torrent. (2015). Ion PGM™ Hi‑Q™ Sequencing Kit, user guide rev. D.0. 
Publication Number MAN0009816. 
 
Jain, M., Fiddes, I., Miga, K.H., Olsen, H.E., Patern, B., & Akeson, M. (2015). 
Improved data analysis for the MinION Nanopore sequencer. Nature Methods 12:351-6. 
 
Kelly, B.G., Vesperman, A., & Bolton, D.J. (2009). Horizontal gene transfer of 
virulence determinants in selected bacterial foodborne pathogens. Food and Chemical 
Toxicology 47:969-77. 
 
Khachtourians, G. G. (1998). Agricultural use of antibiotics and the evolution and 
transfer of antibiotic-resistant bacteria. Canadian Medical Association Journal 159:1129-
36. 
 
Koren, S., Schatz, M.C., Walenx, B.P., Martin, J., Howard, J., Ganapathy, G., 
Wang, Z., Rasko, D.A., McCombie, W.R., Jarvis, E.D., & Phillippy, A.M. (2012). 
Hybrid error correction and de novo assembly of single-molecule sequencing reads. 
Nature Biotechnology 30:693-700. 
 
Lee, K., Yong, D., Yum, J. H., Kim, H. H., & Chong, Y. (2003). Diversity of TEM-52 
extended-spectrum beta-lactamase-producing nontyphoidal Salmonella isolates in Korea. 
The Journal of Antimicrobial Chemotherapy 52:493–6. 
 
Levings, R.S., Lightfoot, D., Partridge, S.R., Hall, R.M., & Djordjevic, S.P. (2005). 
The genomic island SGI1, containing the multiple antibiotic resistance region of 
Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed 
in other S. enterica serovars. Journal of Bacteriology 187:4401-9. 
 
Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J.M., & Zhang, T. (2015). 
Metagenomic and network analysis reveal wide distribution and co-occurrence of 
environmental antibiotic resistance genes. The International Society for Microbial 
Ecology Journal 9:	2490-502. 
 
Liebert, C.A., Hall, R.M., & Summers, A.O. (1999). Transposon Tn21, flagship of the 
floating genome. Microbiology and Molecular Biology Reviews 63:507-22. 
 
Loman, N., Quick, J., & Simpson, J.T. (2015). A complete bacterial genome assembled 
de novo using only nanopore sequencing data. Nature Methods 12:733-5. 
 
Lonardi, S., Mirebrahim, H., Wanamaker, S., Alpert, M., Ciardo, G., Duma, D., & 
Close, T.J. (2015). When less is more: 'slicing' sequencing data improves read decoding 
accuracy and de novo assembly quality. Bioinformatics 31:2972-80. 
 
Mardis, E. (2008). The impact of next-generation sequencing technology on genetics. 
Trends in Genetics 24:133–141. 



	

	

47	

McArthur, A., Waglechner, N., Nizam, F., Yan, A., Azad, M., Baylay, A., Bhullar, 
K., Canova, M.J., De Pascale, G., Ejim, L., Kalan, L., King, A.M., Koteva, K., 
Morar, M., Mulvey, M., O’Brien, J., Pawlowski, A., Piddock, L., 
Spanogiannopoulos, P., Sutherland, A., Tang, I., Taylor, P., Thaker, M., Wang, W., 
Yan, T., & Wright, G. (2013). The comprehensive antibiotic resistance database. 
Antimicrobial Agents and Chemotherapy 57:3348-57. 
 
Morey, M., Fernandez-Marmiesse, A., Castineiras, D., Fraga, J.M., Couce, M.L, & 
Cocho, J.A. (2013). A glimpse into past, present, and future DNA sequencing. Molecular 
Genetics and Metabolism 110:2-34. 
 
Moura, A., Soares, M., Pereira, C., Leitão, N., Henriques, I., & Correia, A. (2009) 
INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. 
Bioinformatics 25:1096–8. 
 
Naas, T., Bonnin, R.A., Cuzon, G., Villegas, M.V., & Nordmann, P. (2013). Complete 
sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. Journal of 
Antimicrobial Chemotherapy 68:1757-62. 
 
Nealson, K.H. (1997). Sediment bacteria: who’s there, what are they doing, and what’s 
new? Annual Review of Earth and Planetary Sciences 24:403-34. 
 
Norberg, P., Bergstrom, M., Jethava, V., Dubhashi, D., & Hermansson, M. (2011). 
The IncP-1 plasmid backbone adapts to different host bacterial species and evolves 
through homologous recombination. Nature Communications 2:1–11. 
 
Ochman, H., Lawrence, J.G., & Groisman, E.A. (2000). Lateral gene transfer and the 
nature of bacterial innovation. Nature 405:299–304. 
 
Pallen, M.J. & Wren, B.W. (2007). Bacterial pathogenomics. Nature 449:835-42. 
 
Perreten, V., Schwarz, F., Cresta, L., Boeglin, M., Dasen, G., & Teuber, M. (1997). 
Antibiotic resistance spread in food. Nature 389:801-2. 
Popowaska, M., & Krawczyk-Balska, A. (2013). Broad-host-range IncP-1 plasmids 
and their resistance potential. Frontiers in Microbiology 4:44. 
 
Revilla, C., Garcillan-Barcia, M.P., Fernandez-Lopez, R., Thomson, N.R., Sanders, 
M., Cheung, M., Thomas, C.M., & De La Cruz, F. (2008). Different pathways to 
acquiring resistance genes illustrated by the recent evolution of IncW plasmids. 
Antimicrobial Agents and Chemotherapy 52:1472-80. 
 
Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S. R., Connor, T.R., 
Bertoni, A., Swerdlow, H.P., & Gu, Y. (2012). A tale of three next generation 
sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina 
MiSeq sequencers. BioMed Central 13:341. 
 



	

	

48	

Sanger, F. & Coulson A.R. (1975). A rapid method for determining sequences in DNA 
by primed synthesis with DNA polymerase. Journal of Molecular Biology 94:441–8. 
 
Sanger, F., Nicklen, S., & Coulson, A.R. (1977). DNA sequencing with chain-
terminating inhibitors. Proceedings of the National Academy of Sciences 74:5463–7. 
 
Schuster, C.F., Mechler, L., Nolle, N., Krismer, B., Zelder, M., Götz, F., & Bertram, 
R. (2015). The mazEF toxin-antitoxin system alters the β-lactam susceptibility of 
Staphylococcus aureus. PLoS ONE 10:e0126118. 
 
Schlüter, A., Heuer, H., Szczepanowski, R., Schneiker, S., Pühler, A., & Top, E. 
(2005). Plasmid pB8 is closely related to the prototype IncP-1beta plasmid R751 but 
transfers poorly to Escherichia coli and carries a new transposon encoding a small 
multidrug resistance efflux protein. Plasmid 54:135-48. 
 
Schlüter, A., Szczepanowski, R., Pühler, A., & Top, E.M. (2007). Genomics of IncP-1 
antibiotic resistance plasmids isolated from wastewater treatment plants provides 
evidence for a widely accessible drug resistance gene pool. Microbiology Reviews :449-
77.  
 
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 
30:2068-9. 
 
Shintani, M., Takahashi, Y., Yamane, H., & Nojiri, H. (2010a). The behavior and 
significance of degradative plasmids belonging to Inc groups in Pseudomonas within 
natural environments and microcosms. Microbes and Environments 25:253–65. 
 
Shintani, M., Yamane, H., & Nojiri, H. (2010b). Behaviour of various hosts of the 
IncP-7 carbazole-degradative plasmid pCAR1 in artificial microcosms. Bioscience, 
Biotechnology and Biochemistry 74:343–9. 
 
Seibor, E. & Neuwirth, C. (2013). Emergence of salmonella genomic island 1 (SGI1) 
among proteus mirabilis clinical isolates in Dijon, France. The Journal of Antimicrobial 
Chemotherapy 68:1750-6. 
 
Smith, D. L., Harris, A. D., Johnson, J. A., Silergeld, E. K., & Morris, J. G. Jr. 
(2002). Animal antibiotic use has an early but important impact on the emergence of 
antibiotic resistance in human commensal bacteria. Proceedings of the National Academy 
of Science 99:6434-9. 
 
Stephenson, G.R., & Rychert, R.C. (1982). Bottom sediment: a reservoir of 
Escherichia coli in rangeland streams. Journal of Range Management 35, 119-23. 
 
 
 



	

	

49	

Tauch, A. Schlüter, A., Bischoff, N., Goesmann, A., Meyer, F, & Pühler, A. (2003). 
The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a 
chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the 
oxacillinase gene blaNPS-1, and a tripartite antibiotic efflux system of the resistance-
nodulation-division family. Molecular Genetics and Genomics 268:570–84. 
 
The White House Office of the Press Secretary. (2015). National Action Plan to 
Combat Antibiotic-Resistant Bacteria.. Available at: 
https://www.whitehouse.gov/sites/default/files/docs/national_action_plan_for_combating
_antibotic-resistant_bacteria.pdf. Accessed March 13, 2016. 
 
United States Food and Drug Administration, Department of Health and Human 
Services. (2012). Summary report on antimicrobials sold or distributed for use in food-
producing animals. Available at: 
http://www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/U
CM440584.pdf. Accessed March 09, 2016. 
 
Upshur, R. (2008). Ethics and infectious disease. Bulletin of the World Health 
Organization 86:8. 
 
Van Meervenne, E., Van Coillie, E., Kerckhof, F.-M., Devlieghere, F., Herman, L., 
& De Gelder L. S. P. (2012). Strain-specific transfer of antibiotic resistance from an 
environmental plasmid to foodborne pathogens. Journal of Biomedicine & Biotechnology 
2012:834598. 
 
Van Melderen, L. & Saavedra De Bast, M. (2009). Bacterial toxin-antitoxin systems: 
more than selfish entities? PLoS Genetics (3):e1000437. 
 
Ventola, C.L. (2015). The antibiotic resistance crisis part 1: causes and threats. 
Pharmacy and Therapeutics 40(4):277-83. 
 
Virginia Department of Environmental Quality. (2014). Draft 2014 305(b)/303(d) 
Water Quality Assessment Integrated Report. Available at: 
http://www.deq.virginia.gov/Programs/Water/WaterQualityInformationTMDLs/WaterQu
alityAssessments/2014305(b)303(d)IntegratedReport.aspx. Accessed March 14, 2016. 
 
Whiteford, N., Haslam, N., Weber, G., Prügel-Bennett A,. Essex J.W., Roach P.L., 
Bradley M., & Neylon C. (2005). An analysis of the feasibility of short read sequencing. 
Nucleic Acids Research 33:e171. 
 
World Health Organization. (2014). Antimicrobial resistance: global report on 
surveillance. Available at: 
http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf. Accessed 
March 15, 2016.  
 



	

	

50	

Zur Wiesch, P.A., Kouyos, R., Engelstadter, J., Regoes, R.R., & Bonhoeffer, S. 
(2011). Population biological principles of drug-resistance evolution in infectious 
diseases. The Lancet Infectious Diseases 11:236-47. 

 

 
	

 

 
 

 

 

 

 

 

 

 

 

 

 


	James Madison University
	JMU Scholarly Commons
	Spring 2016

	Next-generation sequencing of a multi-drug resistance plasmid captured from stream sediment
	Kevin G. Libuit
	Recommended Citation


	Microsoft Word - KGL Thesis Final.docx

