
James Madison University
JMU Scholarly Commons

Masters Theses The Graduate School

Fall 2016

Occurrence, antibiotic resistance, and survival of
fecal enterococci in turkey litter
Steven Glynn McBride II
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/master201019
Part of the Environmental Microbiology and Microbial Ecology Commons

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in
Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.

Recommended Citation
McBride, Steven Glynn II, "Occurrence, antibiotic resistance, and survival of fecal enterococci in turkey litter" (2016). Masters Theses.
469.
https://commons.lib.jmu.edu/master201019/469

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by James Madison University

https://core.ac.uk/display/153208032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://commons.lib.jmu.edu/?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/grad?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/50?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019/469?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu


 
 
 

 

 

Occurrence, Antibiotic Resistance, and Survival of Fecal Enterococci in Turkey Litter  

 

Steven Glynn McBride II 
 

 

 

 

A thesis submitted to the Graduate Faculty of  

 

JAMES MADISON UNIVERSITY 

 

In  

 

Partial Fulfillment of the Requirements  

 

for the degree of  

 

Master of Science 

 

 

 

Biology Department 

 

 

 

 

 

December 2016 
 

 

 
FACULTY COMMITTEE: 

 

Committee Chair:  Joanna Mott 

 

Committee Members/ Readers: 

 

Bruce Wiggins 

 

James Herrick 

 

 



 
 

ii 
 

Dedication 

To my loving wife, Jennifer McBride, who has supported me financially, and emotionally 

throughout our relationship and during my graduate work. To my daughter, Arianna Echo 

McBride, who has inspired me to be someone she would be proud to call her father. To 

my parents, Steven Glynn McBride I, Mary Franklin Cupp, Wayne Cupp, John Paul 

Jones, and Harriett Jones, my brothers Christopher Michael Jones, Michael James 

McBride, and Kody Mykl McBride, and my grandparents Quilla Dean Reidell, Edward 

Reidell, Peggy Ann Kimrey and Clarence Addison Kimrey for supporting me throughout 

my higher education.   



 
 

iii 
 

Acknowledgements 

I would like to thank my advisor, Joanna Mott, and my committee members, James 

Herrick and Bruce Wiggins, for guiding through the process of completing my Master’s 

Thesis. Additionally, Pradeep Vasudevan, Rickie Domangue, Grace Wyngaard, William 

Flint, and Christine May provided invaluable assistance. My lab mates, Benjamin 

Holland, Lindsey Toothman, Zack Zaykosky, David Taves, James Conrad, and Marc 

Carpenter, provided me with assistance troubleshooting and performing assays. And 

finally, the fantastic cohort of graduate students I had the pleasure of working with, Kyle 

Snow, Dehat Jalil, Will Noftz, Kevin Libuit, Tara Gallagher, and Andrew Loudon. They 

provided me with encouragement and discussion of ideas, experiments and life.  



 
 

iv 
 

Table of Contents 

Dedication  .......................................................................................................................... ii 

Acknowledgements  ........................................................................................................... iii 

List of Tables  ......................................................................................................................v 

List of Figures .................................................................................................................... vi 

Abstract ............................................................................................................................. vii 

Introduction ..........................................................................................................................1 

Research Questions ..............................................................................................................8 

Methods..............................................................................................................................10 

 Study Area .............................................................................................................10 

 Field Sampling .......................................................................................................10 

 Processing of Samples from the farm ....................................................................12 

 Species Identification .............................................................................................13 

 Microcosm Experiments ........................................................................................14 

 Dry Litter ...................................................................................................16 

 Wet Litter ...................................................................................................16 

 Incubation/ Extraction/ Filtration ...........................................................................17 

 Antibiotic Resistance Analysis ..............................................................................18 

 Data Analyses ........................................................................................................19 

 Statistical Analyses ................................................................................................20 

 Quality Assurance/ Quality Control .......................................................................21 

 Laboratory Duplicates ............................................................................................22 

  

Results ................................................................................................................................22 

 Field Study .............................................................................................................22 

Antibiotic Resistance .............................................................................................24 

Microcosm Experiments ........................................................................................27 

 Survival Model...........................................................................................29 

Discussion ..........................................................................................................................32 

Conclusion .........................................................................................................................35 

References ..........................................................................................................................38 

Appendix 1: Nutrient Analysis of Turkey Litter................................................................48 

Appendix 2: Supplementary Data ......................................................................................50 

Appendix 3: SAS Code for Linear Mixed effects model ...................................................55 

Appendix 4: SAS output for linear mixed effects model ...................................................64 



 
 

v 
 

List of Tables 

Table 1. List of antibiotics used used to develop Antibiotic Resistance Profiles for 

Enterococcus isolates .........................................................................................................19 

Table 2. Identified Enterococcus spp.................................................................................23 

Table 3. Estimate statements comparing the interaction between moisture and 

temperature on each day of the experiment .......................................................................30 

Table 4. Estimate statements comparing differences within one factor (temperature or 

moisture) not dependent on the other factor ......................................................................30 

Table 5. Estimate statements comparing differences among levels of one factor dependent 

upon a second factor. .........................................................................................................31 

Table A2A: Means and standard deviations of combined experiments ............................51 

Table A2B: Proportions of isolates with resistant or intermediate phenotypes .................53 

Table A4A. Raw data for survival experiments.................................................................65  



 
 

vi 
 

List of Figures 

Figure 1 Full factorial experimental design for E. faecium survival experiments. ............14 

Figure 2 Resistance to tetracycline, doxycycline, and gentamicin ....................................25 

Figure 3 Resistance to streptomycin, erythromycin, and ciprofloxacin ............................26 

Figure 4 Proportion of Isolates exhibiting resistance to one or more antibiotics ..............27 

Figure 5 Microcosm experiments depicting the survival curve of E. faecium ..................28 

Figure A2A. Comparison of duplicate runs of each experiment .......................................52 

Figure: A2B: Isolates exhibiting resistance+intermediate phenotypes to one or more 

antibiotic ............................................................................................................................53 

Figure A2C. Isolates exhibiting intermediate phenotypes to one or more antibiotics .......54  



 
 

vii 
 

 Abstract 

 
The United States Environmental Protection Agency’s National Water Quality Inventory and the 

Commonwealth of Virginia’s 305(b)/303(d) Water Quality Assessment Integrated Report show 

fecal bacteria to be the most common cause of impairment for both streams and estuaries. Human 

and animal sources have both been identified as significant contributors of pathogenic bacteria to 

surface waters. In this study, turkey litter from a farm in Shenandoah County, VA was surveyed 

for total culturable bacteria and total culturable enterococci before and after a transition to organic 

rearing practices. The enterococci were identified to species phenotypically using the Biolog 

Microbial Identification System and resistance to twelve antibiotics (ampicillin, doxycycline, 

chloramphenicol, ciprofloxacin, erythromycin, gentamicin, linezolid, quinipristin/dalfopristin, 

rifampin, streptomycin, tetracycline, vancomycin) was determined using the Kirby-Bauer disc 

diffusion method with automated image analysis using a BiomicTM plate reader. The effect of 

temperature (5◦C, 30◦C) and moisture (<10% H2O, ~35% H2O) on the survival of Enterococcus 

faecium in turkey litter was determined by inoculating sterilized turkey litter with a stock culture 

of bacteria and quantifying colony forming units over time. The transition to organic rearing 

practices resulted in a reduction in the proportion of enterococci resistant to doxycycline, 

gentamicin, and tetracycline, and an increase in the proportion of enterococci resistant to 

ciprofloxacin, erythromycin, and streptomycin. Enterococci isolated from the litter of organically 

raised birds were resistant to fewer antibiotics than enterococci isolated from the litter of 

conventionally raised birds. There was an interaction between moisture and temperature on the 

survival of E. faecium in turkey litter, with bacteria levels dropping most quickly in warm and dry 

conditions. The transition to organic practices has an immediate effect on antibiotic resistance 

patterns in enterococci, including an overall reduction from 4.02 to 3.45 antibiotic resistance 

phenotypes. Results of this study indicate that when applying turkey litter to land, fecal bacteria 

will likely survive for prolonged periods especially in cool moist conditions; therefore, it is 
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recommended that prior to land application bacteria loads in litter should be reduced by 

composting or other treatment. 



 
 
 

Introduction 

The United States Environmental Protection Agency’s (US EPA) National Water 

Quality Inventory report and the Commonwealth of Virginia’s 305(b)/303(d) Water 

Quality Assessment Integrated Report show fecal bacteria to be a leading cause of 

impairment for both streams and estuaries (US EPA 2009a; VA DEQ 2014). Human and 

animal sources have both been implicated as significant contributors of pathogenic 

bacteria to surface waters (Ferguson 2003; Tallon 2005). When recreational water bodies 

and drinking water sources are contaminated with fecal bacteria they pose a serious 

public health risk (US EPA 2009b, 2009c). Outbreaks of gastroenteritis and other 

illnesses have occurred due to fecal contamination of marine, fresh, recreational, and 

groundwater (Baron 1982; Berg 2000; Fleisher 1996; Koh 2011). These outbreaks can be 

attributed to the high density of pathogenic bacteria found in feces (Zoetendal 2004). A 

disparate group of pathogens may be present, including the bacteria Escherichia coli, 

Salmonella spp., Staphylococcus spp., Listeria spp., Campylobacter spp., Clostridium 

spp.; the protozoa Cryptosporidium parvum, and Giardia spp.; and the viruses 

enterovirus, and reovirus (Cox 2005; Hutchison 2005a; Ngodigha 2009).  

Animal manure has been shown to frequently be a source of fecal contamination 

of surface water (Heaney 2015; Mallin 2015). One type of manure of particular interest in 

the Shenandoah Valley of Virginia is poultry litter, a combination of bedding, excreta, 

feathers, and feed.  A diverse array of bedding materials has been evaluated for their 

effects on poultry growth and health (Atapattu 2007; Atencio 2010; Benabdeljelil 1996; 

Davis 2010; Sarica 2000; Swain 2000; Villagrá 2011; Willis 1997). However, the 
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microbiology of novel litter materials is often ignored during evaluation, other than 

investigating pathogens that directly affect the health of the birds.    

Bacterial levels in poultry litter generally rise steadily during the growth of the 

birds until finally leveling off after the first few weeks (Halbrook 1951; Macklin 2005). 

Bacteria excreted in feces are likely able to multiply in the litter environment (Schefferle 

1965). In one of the few examples where different poultry litter types were directly 

compared based on their microbiological quality, sand was found to harbor slightly lower 

levels of aerobic, anaerobic, and enteric bacteria than wood shavings (Macklin 2005). In 

contrast, another study found no microbiological differences between a variety of poultry 

litter materials (Schefferle 1965).  

Approximately 90% of the used poultry litter produced in the United States is 

applied to land (Mitchell 2005; Moore 1995; Sharpley 1993). This serves the dual 

purpose of disposing of large quantities of waste while simultaneously enriching the soil, 

as the litter contains high concentrations of available nitrogen and phosphorous, making 

it an effective fertilizer (Preusch 2002). Fertilizers from livestock waste can improve 

overall crop yields and are often cheaper than their industrial counterparts (Haynes 1998). 

However, in addition to adding nutrients to the soil, used litter carries high levels of 

aerobic and anaerobic bacteria (Halbrook 1951; Lovett 1971; Macklin 2005; Martin 

1998; Nodar 1990; Schefferle 1965; Soupir 2006; Terzich 2000). Enterococci and 

pathogenic bacteria are prevalent in poultry litter, with enterococci levels reaching as 

high as 106 CFU/g of litter at the end of rearing cycles (Brooks 2010; Schefferle 1965). 

Several species of enterococci have been isolated from the gut and litter of poultry with 

E. faecium and E. faecalis most commonly being the dominant species (Debnam 2005; 
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Devriese 1991; Graham 2009; Sapkota 2011). These fecal borne bacteria, if carried in 

used litter and spread over land, can ultimately contaminate surface and drinking water 

sources. 

The diversity of pathogens in feces has resulted in the development of assays that 

detect fecal indicator bacteria (FIB) (E. coli, Enterococcus spp. and fecal coliforms) as 

indicators of contamination, rather than individual bacterial or viral pathogens (Noble 

2003; Scott 2002; US EPA 1976). FIB are not usually pathogenic; however, they possess 

attributes that make them effective proxies for pathogen detection and indicators of fecal 

contamination (US EPA 1986, US EPA 2012). Elevated levels of FIB in recreational 

waters have shown a strong correlation with gastroenteritis in individuals exposed to 

contaminated waters (Aarestrup 2002; Heaney 2009; Heaney 2012; US EPA 1984). In an 

effort to mitigate exposure to fecal pathogens, the US EPA recommends use of 

Enterococcus for assessing marine surface waters and E. coli or Enterococcus for 

freshwaters, using either culture based methods or qPCR (US EPA 1986; US EPA 2012).   

FIB transported via agricultural and urban runoff can be deposited in streams, 

where they can persist in the water column (Anderson 2005; Stumpf 2010). Furthermore, 

fecal bacteria are able to utilize sediments and aquatic macrophytes as refugia allowing 

for their release back into the water column long after the original terrestrial 

contamination (Badgley 2010; Badgley 2011).  

While originally not thought to be a human health concern some species of FIB, 

such as vancomycin resistant enterococci, are now recognized as important nosocomial 

pathogens (Arias 2012). The risk for infection by FIB in water is a real possibility as 

virulence factors and antibiotic resistance genes have both been detected in enterococci 
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isolated from surface and drinking water (De Niederhäusern 2013; Schwartz 2003). One 

method to mitigate human morbidity and mortality is to reduce the introduction of FIB 

and other pathogens from livestock into waterways. 

Considerable research has been conducted on the efficacy of creating buffers and 

reservoirs to prevent runoff into waterways as a mechanism to reduce fecal bacteria 

contamination (Coyne 1995; Coyne 1998; Jamieson 2002; Malard 1994; Mallin 2002; 

Stout 2005; Sullivan 2007). For example, vegetated buffers between agricultural lands 

and surface water have been found to decrease the load of bacteria entering the water by 

98-99% (Coyne 1995; Coyne 1998; Sullivan 2007). However, the buffers do not lessen 

FIB entry to surface waters sufficiently for the water to subsequently be considered safe 

(Coyne 1995; Coyne 1998). On-farm practices such as tillage also have the ability to 

minimize the levels of fecal bacteria reaching surface waters (Entry 2010; Gagliardi 

2000). Early work demonstrated that the decay rate of FIB in soils is the primary factor 

determining fecal bacteria transport into surface waters (Reddy 1981). In view of the 

challenges at the field and riparian steps, the best strategy for reducing bacterial loads in 

manure may be to treat the manure before it reaches the field. 

Composting, deep stacking and windrowing have been widely adopted as industry 

standards to reduce pathogens in livestock waste (Chaudhry 1998; Imbeah 1998; Kelleher 

2002). However, not all of these are effective in reducing risks associated with fecal 

contamination. Graham (2009) found that enterococci and antibiotic resistance 

determinants could persist in untreated, stored chicken litter for up to 120 days, 

demonstrating that storage alone is not a sufficient method to reduce bacterial loads to a 

safe level. The addition of alum, a chemical used to reduce phosphorous solubility and 
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ammonia volatilization, has been shown to reduce many types of bacteria in litter 

(Rothrock 2008). Most studies pertaining to the survival of indicator organisms in 

livestock wastes focus on after treatment effects (Chen 2014; Entry 2005; Sobratee 2008; 

Wichuk 2007). Various composting procedures such as aerating the compost and 

ensuring that internal temperatures exceed 55°C have been shown to be effective at 

eliminating pathogens (Bernal 2009; Hartel 2000; Tiquia 2002; Wichuk 2007). One 

challenge is that due to the heterogeneous nature of the compost heap, treatment often 

does not succeed in reducing the bacterial load to zero, with some pathogens surviving at 

low levels, despite implementing the above practices (Chen 2014; Hutchison 2005b; 

Macklin 2006, 2008; Shepherd 2010). In addition, after composting of poultry litter is 

complete, bacteria may regrow (Wilkinson 2011).  Therefore, even treated litter 

amendments can introduce pathogens to soil. 

The persistence and regrowth of fecal bacteria in poultry litter may account for 

the high level of these bacteria detected in agricultural runoff (Edwards 1994; Jenkins 

2006; Soupir 2006). This hypothesis is supported by the fact that E. coli from livestock 

waste have been found to regrow once added to soil (Anderson 2005; Van Donsel 1967; 

Howell 1996). Once manure has been added to soil it is unclear how long FIB will 

persist; estimates range widely, from a few days to seven months probably due to 

variable soil edaphic properties and environmental conditions (Brooks 2009, Jenkins 

2006; Lau 2001; Mishra 2008). For example, factors such as texture and depth in the soil 

column have both been shown to contribute to survival of bacteria in soil (Cools 2001; 

Stocker 2015). Furthermore, there is evidence of seasonal variation in bacterial survival 

in manure-amended soils (Lau 2001). This is probably due to ambient temperature and 
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soil moisture, which seem to be the overriding factors in the survival of fecal bacteria 

(Cools 2001; Desmarais 2002; Gerba 1975; Reddy 1981).  

The survival of E. coli and fecal coliforms in livestock waste has received more 

attention than that of enterococci, as the former are FIBs most routinely monitored for in 

freshwaters (Nicholson 2005; Himathoongkham 2000). However, Enterococcus spp. are 

a genus of bacteria that are part of the normal intestinal flora of mammals and birds.  The 

genus Enterococcus was originally characterized using the species E. faecium and E. 

faecalis (Schleifer 1984).  Enterococci are Gram-positive, catalase-negative, facultative 

anaerobic cocci, which can grow at temperatures between 10 and 45oC, in broth 

containing 6.5% NaCl, and at pH 9.6; they are also able to hydrolyze esculin with the 

presence of bile salts; and present the Lancefield group D antigen (Facklam 2002). 

However, there are some notable exceptions to these general characteristics. Several 

species, including E. durans, E. cecorum, and E. saccharolyticus do not react with 

Lancefield group D antisera; E. cecorum, and E. columbae do not grow at 5◦C, while E. 

sulfureus, and E. dispar do not grow at 45◦C (Devriese 1993). Enterococci have the 

ability to utilize a variety of carbohydrates which can assist in phenotypic identification 

of individual species (Devriese 2006; Huycke 2002).  

Increasing levels of antibiotic resistance in bacteria can be attributed to the use 

and misuse of antimicrobial agents both in medicine and agriculture. Approximately 258 

million prescriptions for antibiotics were written in 2010 (Hicks 2013). Animal 

husbandry practices account for the largest proportion of antibiotics used in agriculture, 

with the total quantity administered to livestock animals being approximately 4 times 

greater than that given to humans. (US FDA 2013; US FDA 2015). There is a strong 
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relationship between antibiotics used in animal husbandry and the levels of antibiotic 

resistance of bacteria found in the manure of animals (Peak 2007). As much as 30-90% of 

all veterinary antibiotics are excreted in manure (Sarmah 2006). Locations receiving high 

levels of antibiotics and their metabolites have higher rates of antibiotic resistance (Zhang 

2015). Furthermore, the presence of specific antibiotics in manure, such as tetracycline, 

has been shown to select for resistance genes specific to that antibiotic (Schwaiger 2009).  

In the 1940s, researchers first demonstrated that antibiotics administered to 

healthy chicks could increase production weight (Moore 1946). Shortly afterwards, 

several researchers found that the addition of antibiotic-producing fungi to feed was more 

effective than their current growth promoter, B12, at increasing the weight of chickens 

(Hill 1950; Sunde 1951). In 1951 the United States Food and Drug Administration 

approved the use of antibiotics in agriculture without a prescription (Jones 2003). This 

change allowed poultry and livestock farmers to give sub-therapeutic levels of antibiotics 

to their animals regardless of their health, increasing growth rate and production in 

livestock. That same year there were reports of resistant bacteria in turkey poults (young 

turkeys) that were fed a growth promoting dosage of streptomycin (Starr 1951).   

Enterococcus spp. can exhibit a wide range of phenotypic and genotypic 

antibiotic resistance traits. They are particularly well suited for surviving in environments 

that have high levels of antibiotics such as hospitals because many species are 

intrinsically resistant to several antibiotics (Mundy 2000; Van Tyne 2014). Additionally, 

the enterococci are adept at incorporating and transmitting exogenous genetic elements 

such as plasmids and transposons, which often contain antibiotic resistance genes (Arias 

2012; Palmer 2010; Van Tyne 2014).  Consequently, the enterococci are now considered 



8 
 

 
 

important nosocomial pathogens (Arias 2012). Furthermore, the use of avoparcin, a 

glycopeptide, in animal husbandry in Europe lead to increased incidence of vancomycin 

resistant enterococci (VRE) on poultry farms, and in non-hospitalized carriers of VRE 

(Aarestrup 2001; Borgen 2000; Heuer 2002; van den Bogaard 1997). 

The transmission of resistant bacteria from poultry to humans has been 

documented in several studies (Levy 1976; Ojeniyi 1985; Ojeniyi 1989).  More 

specifically it has been shown that poultry farmers can share resistant fecal bacteria with 

the birds they raise (Bass 1999; Stobberingh 1999; van den Bogaard 2001; van den 

Bogaard 2002). In addition, antibiotic resistant fecal bacteria have been isolated from 

poultry products (Klibi 2012; Vignaroli 2011).  

  Recently, consumers have driven the market to offer more antibiotic-free and 

organic products (O’Donovan 2002; Yiridoe 2005). However, it is unclear whether these 

practices improve safety, as there is no clear consensus from the various studies 

performed (Van Loo 2012). The voluntary removal of antibiotics from farms can lead to 

a reduction in the prevalence of resistance to specific antibiotics as well as a reduction in 

multidrug resistant bacteria (Sapkota 2011). However, there can be legacy effects that 

persist for years after ceasing to administer antibiotics to livestock, including the 

persistence of clinically important organisms such as vancomycin resistant enterococci 

(Sørum 2006). 

There is a notable lack of information on the species composition of enterococci 

in turkey litter and the turkey gut. Likewise, the role that temperature and moisture 

content play in the survival of enterococci in turkey litter has yet to be defined. While 

some research has been performed on the survival of E. coli in the litter environment, 
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understanding how temperature and moisture content affect the survival of enterococci 

will help provide a more complete understanding of the potential for poultry litter to 

provide contaminants to surface water (Chen 2014; Wilkinson 2011). Some studies have 

shown a reduction in antibiotic resistant fecal bacteria and pathogens on farms that use 

organic practices rather than conventional practices (Sapkota 2011; Sapkota 2014). 

However, to date there have been no longitudinal studies performed on farms that 

transitioned from conventional to organic rearing practices. Understanding how the 

antibiotic resistance patterns of fecal bacteria change on farms transitioning to organic, 

antibiotic free, practices will help provide a more complete understanding of how rearing 

practices influence the antibiotic resistance of litter borne microbes. This study aims to 

provide policy makers and farmers with information integral to implementing best-

management practices for disposal of used poultry litter.  

Research Questions 

1. Are enterococci present in fresh or used litter on turkey farms? 

2. What are common species of enterococci in the litter of organically and 

conventionally raised turkeys? 

3. Is there a difference in the antibiotic resistance profile of enterococci isolated 

from the litter of organically and conventionally raised birds?  

4. Does the amount of moisture in turkey litter affect survival and persistence of E. 

faecium? 

5. Does ambient air temperature (5°C, 30°C) affect survival and persistence of 

Enterococcus in litter?  
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Methods 

Study Area 

 The study site was a turkey farm in Shenandoah Co, VA. The farm contained four 

poultry houses from which all samples were collected. Each house was divided into two 

parts. One end (50’ wide by 180’ long) was exclusively used for the first 4-6 weeks of 

rearing; it had cement floors and new wood shavings were brought in as bedding for each 

flock. The used bedding was moved to the other ‘finishing’ end of the house when the 

birds were transferred there after 4-6 weeks. The finishing end measured 50’ wide by 

525’ long; It had dirt floors and the bedding was changed after every three flocks. Each 

flock cohort comprised between 7,000 and 9,000 turkey poults. The poults at the farm are 

a hybrid breed from a cross between the British United Turkey and the Nicholas Turkey 

(Personal Communication, Virginia Poultry Growers Co-operative 2013). 

During the period of the study the farm transitioned from conventional practices 

including administration of the antibiotic oxytetracycline prophylactically, to an organic, 

antibiotic free, practice.  The first litter sample collections (July 2013) were taken from a 

house in which the birds were raised following conventional practices, the second 

(October 2013) during growth of birds without antibiotic treatments. The grow house was 

cleaned between the two cohorts. 

Field Sampling   

Fresh wood shavings were sampled on two occasions (07/02/2013 and 

10/30/2013), by collecting from the top five cm of the new, unused bedding prior to 

addition of the birds. Six composite samples were created using systematic random area 

sampling. The poultry house was divided using a grid to create three rows with each row 
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containing 14 blocks. One sample was collected from each row by randomly selecting 

three blocks in each of the three rows. One sample was created by randomly selecting 

three blocks from each outer column and combining them. The last two samples were 

collected by randomly selecting three blocks from each row and combining litter from all 

three columns. The composite samples were collected in sterile five gallon buckets, filled 

no more than half way. Each was mixed by vigorous shaking for 30 seconds and was then 

transferred into a one-gallon Whirl-Pak® bag which was filled half full, sealed, and 

placed on ice for transport to the laboratory. 

At the end of the two turkey grow cycles (17-19 weeks), used litter was collected. 

For the first sampling event on 07/02/2013 (conventional practice), three flocks of birds 

had been raised on the litter. The litter had been windrowed between flocks where it was 

turned three times, each successive turning occurred 72 hours after the previous turning 

and then spread. Litter collection followed the third flock. The litter had not been 

windrowed and was collected from the hard packed floor following the same sampling 

scheme, but using 52 blocks per row instead of 14. The top 5 cm was loosened using a 

sterilized hand tiller and garden spade that were disinfected with Sporicidin®, collected in 

bulk using the garden spade and placed in five gallon buckets that had been washed with 

a 10% bleach solution. Lids were snapped into place for transportation and stored at room 

temperature for use in microcosm experiments. 

On the second sampling date, 10/30/2013 (organic practice), with only one flock 

of turkeys raised on the litter, the litter had been stacked the previous day in three 

windrows approximately one-meter high. The litter was loose and easily collected; it had 
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only been used for one flock. These samples were collected using the same sampling 

scheme used to collect on 07/02/2013. 

Processing of samples from the farm 

In the laboratory, subsamples were taken from each litter sample after thoroughly 

mixing samples within the Whirl-Pak® bags. Bacteria were then extracted from each 

subsample by combining 10 g of litter in a plastic stomacher bag with 95 mL of sterile 

phosphate-buffered saline (PBS) (112.1 mg Na2HPO4, 23.75 mg NaH2PO4 2H2O, 4.25 g 

NaCl, and 95 mL of deionized H2O) (Zuberer 1994). A separate 10 g of litter from each 

composite sample were weighed in an aluminum weigh boat and placed in a drying oven 

at 105oC for 24 hours to determine dry weight/wet weight ratio. Each stomacher bag was 

agitated in an Interscience BagMixer® for 2 minutes; then it was removed and gently 

squeezed to separate any aggregates of litter. This was repeated twice more for each 

sample. After the third agitation the bags were sealed and mixed by shaking by hand for 

20 seconds and 1 ml of supernatant was removed and added to sterile PBS for serial 

dilutions. Serial dilutions were performed to 10-9. A 100 µL aliquot of diluent was spread 

on either Tryptic Soy Agar (TSA) (236950; Becton, Dickinson and Company, Sparks, 

MD) or membrane-Enterococcus Indoxyl-β-D-Glucoside Agar (mEI) (215047; Becton, 

Dickinson and Company, Sparks, MD) plates. TSA plates were incubated at 35oC for 24 

hours ± 2 hours and mEI plates were incubated at 41oC for 24 hours ± 2 hours. Total 

culturable aerobic bacteria were quantified by counting all colonies on the TSA plates 

using 2-5x magnification and overhead lighting from a white fluorescent light, while total 

enterococci were quantified by counting all blue, purple, and pink colonies on mEI plates 

following EPA method 1600 (US EPA 2006). 
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Litter collected on 07/02/13 and 10/30/13 yielded presumptive enterococci (blue, 

pink, and purple colonies) on mEI plates. These colonies were re-streaked onto mEI 

plates and incubated for 24 h at 35°C. Pure cultures were stored on TSA slants at 4°C.  

Species Identification 

Carbon source utilization, a phenotypic fingerprinting method, was used to 

identify species of Enterococcus isolated from the litters using the Biolog System, 

following the manufacturer’s instructions (71102; Biolog, Inc., Hayward, CA). Isolates 

were transferred to Biolog Universal Growth Medium supplemented with 5% Sheep’s 

Blood (BUGTM+B) (71102; Biolog, Inc., Hayward, CA) and incubated at 33°C for 18-24 

h. Suspensions of each isolate were transferred into inoculating fluid-A (IF-A) (72401; 

Biolog, Inc., Hayward, CA) using a sterile swab (3321; Biolog, Inc., Hayward, CA) to 

achieve a transmittance between 90-98% (T) ± 2% at 590 nm in the Biolog turbidimeter 

(3531; Biolog, Inc., Hayward, CA). The resulting suspension was then pipetted into a 96-

well Biolog GEN III MicroPlate (1030; Biolog, Inc., Hayward, CA), and plates were 

incubated for 20-28 h at 33°C. After incubation, plates were read using the MicroLog 

Microbial Identification System 3, (Release 5.2; Biolog, Inc., Hayward, CA) (Biolog, 

2004) to obtain color intensity and +/- well reactions. Isolates that did not confirm to 

species level identification using the automated plate reader were also read manually to 

ensure correct identification. 

Confirmed Enterococcus spp. isolates were stored in cryogenic storage vials at -

80°C (2 ml, 66008-284; VWR, West Chester, PA). After incubation in TSB, 600 µl of the 

bacterial culture was mixed with 400 µl of a 50/50 combination of TSB and sterile 

glycerol. Duplicate vials were made of each isolate. 
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Microcosm Experiments  

The survival of enterococci in turkey litter under various conditions was evaluated using 

turkey litter microcosm experiments. The independent variables manipulated in these 

experiments were temperature and moisture content (Figure 1). All experiments were 

conducted using the American Type Culture Collection (ATCC) 19434 strain of E. 

faecium.     

Experiments were conducted at incubation temperatures of 5°C and 30°C to represent the 

high (summer) and low (winter) average temperatures in the Shenandoah Valley. Two 

moisture levels were used to simulate dry and wet conditions. Dry litter contained less 

than 10% water, while wet litter contained between 30% and 40% w/v water.  

5°C Dry  

Wet  30°C 

Figure 1: Full factorial experimental design for E. faecium survival experiments. Each 

temperature was paired with each moisture (Dry: ≤ 10% H20; Wet: 35-40% H20). 

Resulting temperature × moisture combinations were sampled at five time points 

(1 hour, 1 day, 7 days, 14 days, and 28 days) with three replicates per each treatment 

for a total of 15 microcosms per treatment.  

X X X 3 

Temperature Moisture Sampling times Replicates 

1 day 

7 days 

+1 hour 

14 days 

28 days 
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Experiment 1 consisted of 50 mL VWR light sensitive centrifuge tubes of 

autoclaved wet and dry litter inoculated with E. faecium which were incubated at 5°C. 

Experiment 2 was the same design, except that incubation was at 30°C. Each experiment 

was performed twice. Each experiment consisted of 40 litter microcosms (50 mL 

centrifuge tubes), 15 containing wet litter and 15 with dry. The remaining 10 centrifuge 

tubes were controls, consisting of un-inoculated litter - five centrifuge tubes of wet litter 

and five of dry litter. 

To prepare the bacterial culture BD Difco™ tryptic soy broth (TSB) (211825; 

Becton, Dickinson and Company, Sparks, MD) (5 mL) was inoculated with a pure culture 

of the ATCC 19434 strain of E. faecium, and incubated at 35°C in a culture rotator 

overnight, prior to creating litter microcosms. After incubation, two 1 mL aliquots of 

broth culture were centrifuged at 5000 RPM for 3 minutes, the supernatants were 

decanted and the cells were re-suspended in 1 mL of sterile PBS. The cells were washed 

a total of three times with PBS. The final cell suspension was added to sterile PBS 

dropwise and vortexed to mix. The optical density of the resulting solution was measured 

using a spectrophotometer, with the wavelength set at 625 nm and un-inoculated PBS as 

a blank. Once the PBS cell suspension reached an optical density between 0.080 and 

0.100, 3 mL was added to 37 mL of sterile PBS in a 250 mL culture bottle.  

The litter for the microcosms was prepared by sieving bedding from the end of the 

conventional grow cycle through 0.25” mesh to exclude large aggregates.  The sieved 

material was placed into metal trays to a depth of ~2 cm, covered with aluminum foil and 

autoclaved using a 60-minute gravity cycle. The cycle was repeated three days later. 

Once the litter had been autoclaved twice it was mixed with other autoclaved batches of 
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litter to make a composite sample. A subset of litter was removed, dried overnight in an 

oven at 105°C and autoclaved a third time, again using a 60-minute gravity cycle. 

Experiments were begun within one week of the final autoclaving. Litter was added to 

each centrifuge tube using a sterile scoop. A separate sample of litter was dried at 105°C 

for 24 hours to determine dry weight/wet weight ratios. 

A subsample of sieved litter before autoclaving and a subsample of litter that had 

undergone three autoclave cycles was sent to the Pennsylvania State University 

Agricultural Analytical Services lab for analyses to determine percent solids, total 

nitrogen (N), Ammonium N (NH4-N), Organic N, Total Phosphate (P2O5), and total 

Potash (K2O) (Appendix 1).  

Dry Litter 

One scoop of litter (~2 g), was added to each of the 15 centrifuge tubes. These 

microcosms were then inoculated with the prepared E. faecium (0.5 mL) culture. Another 

scoop of litter was added; then the tube was capped and shaken by hand 20 times. This 

process was repeated a second time and the microcosm was topped off with litter to bring 

the total mass to 16 g (litter and inoculum).  Finally, each microcosm was shaken 20 

times to disperse bacteria throughout the microcosm. An additional five control litter 

microcosms were created with sterile PBS in place of the E. faecium inoculum. 

Wet Litter        

     One scoop of litter was added to each of the 15 centrifuge tubes. These litter 

microcosms were then inoculated with the prepared E. faecium (0.5 mL) culture. Another 

scoop of litter was added to each tube. This was followed by adding 2 mL of sterile 

Millipore water, and then the tubes were capped and shaken by hand 20 times. This 
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process was repeated a second time, except 2.5 mL of sterile Millipore water were added, 

and the microcosm was topped off with litter to bring the total mass to 16 g (litter, water 

and inoculum). After completion, each microcosm was shaken 20 times to disperse 

bacteria throughout the microcosm. An additional five control litter microcosms were 

created with sterile PBS in place of the E. faecium inoculum.  

Incubation/ Extraction/ Filtration 

     Litter microcosms were incubated at one of two temperatures (5°C or 30°C). 

Three microcosms of each treatment (wet, dry) and the corresponding control, for a total 

of four microcosms per experimental treatment, were removed from the incubator at 

specific time points, (+1 hour, 1 day, 7 days, 14 days, and 28 days). Before transferring 

the contents of each microcosm into a shaker flask filled with 500 mL sterile PBS, 50 mL 

of the PBS was decanted into a sterile 50 mL conical tube. Each litter microcosm was 

then poured into a separate shaker flask. The litter microcosm container was rinsed up to 

six times with PBS from the conical tube until no litter remained in the litter microcosm. 

The remainder, if any, of the PBS used for rinsing was poured back into the original 

shaker flask so that the total amount of PBS and litter in the shaker flask was 500 ml and 

16 g respectively. This procedure was used for each microcosm. Using a Burrell Wrist 

Action Shaker™ (75-775-24; Model 75, Pittsburgh, PA), samples were shaken in the 1 L 

flasks for one hour (Zuberer 1994). Flasks were then removed and left to stand 

undisturbed for 30 to 60 minutes to allow the litter to settle out of solution. Following 

this, supernatant was extracted to create a serial dilution series in milk dilution bottles. 

The diluent was filtered following EPA Method 1600: Enterococci in Water by 

Membrane Filtration using membrane-Enterococcus Indoxyl-β-D-Glucoside Agar (mEI), 
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with the exception that PBS was used to rinse (US EPA 2006; Zuberer 1994).  Blue-

haloed colonies were counted after 24 h ± 2 h incubation at 41oC to determine numbers of 

enterococci in each sample. 

Antibiotic Resistance Analysis 

All isolates from mEI samples collected on 07/02/2013 and 10/30/2013 which 

were identified as members of the genus Enterococcus were analyzed for antibiotic 

resistance.  Pure cultures were transferred from TSA slants onto TSA plates. Cultures 

were streaked for isolation, and up to four isolated colonies of each isolate were selected 

from the TSA plate to inoculate 5 ml tubes of prepared TSB. After six hours of 

incubation, inoculated TSB suspension was added to blanked TSB-filled cuvettes until 

absorbency was between 0.08 and 0.10 at 625 nm. Once proper absorbency was 

achieved, each suspension was plated using a triple-lawn streak onto two Mueller Hinton 

Agar I (90006-573, Becton, Dickinson and Company, Sparks, MD) plates utilizing the 

standardized Kirby Bauer Disk Diffusion method (Clinical and Laboratory Standards 

Institute 2006a, 2006b, 2008, 2012). A panel of twelve different antibiotics, as 

commercially prepared discs (BD BBL Sensi-Disc Antibiotics; Becton, Dickinson and 

Company, Sparks, MD) (Table 1) was dispensed onto a plate, the plates were incubated 

for 18-24 h at 35oC. Antibiotics were selected based on the suggested grouping of 

antimicrobial agents and interpretive criteria for disk diffusion and dilution susceptibility 

testing for Enterococcus species according to the Clinical and Laboratory Standards 

Institute (CLSI) (CLSI 2014). Additionally, antibiotics were selected to include 

representatives from different groups of antibiotics and different uses among various 

animals. Diameters of zones of inhibition were measured in mm along with susceptibility 
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(S), intermediate (I), and resistant (R) patterns (S-I-R patterns) (Table 1), through 

automated image analysis by the BiomicTM plate reader which uses standard CLSI zone 

diameter information to categorize isolates into S/I/R.  (Giles Scientific Inc., Santa 

Barbara, CA). This also ensured uniformity for future comparisons with Enterococcus 

isolates from unknown sources.  

Table 1: List of antibiotics used to develop Antibiotic Resistance Profiles for 

Enterococcus isolates. Susceptible (S), Intermediate (I), and Resistant (R) zones of 

inhibition ranges (mm) for Enterococcus are based on CLSI standards (2014) and 

incorporated into BiomicTM plate reader software (CLSI 2014). 

Antibiotic Abbreviation Concentration S I R 

Ampicillin AM 10 µg ≥17 - ≤16 

Chloramphenicol C 30 µg ≥18 13-17 ≤12 

Ciprofloxacin CIP 5 µg ≥21 16-20 ≤15 

Doxycycline D 30 mg ≥16 13-15 ≤12 

Erythromycin E 15 µg ≥23 14-22 ≤13 

Gentamicin GM 10 µg ≥15 13-14 ≤12 

Linezolid LZD 30 µg ≥23 21-22 ≤20 

Quinupristin/ 

Dalfopristin 

SYN 15 µg ≥19 16-18 ≤15 

Rifampin Ra 5 µg ≥20 17-19 ≤16 

Streptomycin S 10 µg ≥15 12-14 ≤11 

Tetracycline Te 30 µg ≥19 15-18 ≤14 

Vancomycin V 30 µg ≥17 15-16 ≤14 

 

Data Analyses 

     Enterococci levels were reported in colony forming units per gram dry weight 

(CFU/gdw) using the formula:  
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CFU/ gDW = 
colony counts

dilution factor
x LDF x

1

calculated dry weight∗ 
 

 

*calculated dry weight =C-A/B-A  

 

where LDF (litter dilution factor) = 10.5 (This is unitless and indicates that 10.5 mL of 

diluent is displaced per gram of litter) A = empty dish weight (g), B = Dish + litter (g), 

and C = Dish + litter after drying (g) (Zuberer 1994). The DF was determined based on 

10g of dry litter displacing approximately 25 mL of buffer making total volume of the 

litter/buffer mixture 525 mL; so the calculation for the DF is (525 mL/ 50 gdw). 

Statistical Analyses 

Each microcosm experiment was evaluated to determine a) if there was any growth, a 

significant increase in the mean CFU/gdw of enterococci in the microcosms between any 

two time points and b) if there was decay, a significant decrease in the mean CFU/gdw of 

enterococci in the microcosms between any two time points. This was determined by 

comparing means using a two sample t-test. Each of the above analyses were carried out 

using R version 3.8.2. A linear mixed effects model was used to compare each treatment 

in the microcosm experiments. The model specified temperature, moisture, sampling day, 

and all 2- and 3-way interactions as fixed effects and random effects were specified as the 

individual replicated experiments nested within each temperature and moisture 

combination, the combination of sampling day and individual replicated experiment 

nested within each temperature and moisture combination and a default residual random 

error. Estimate statements were written to compare the interaction between the main 

effects temperature and moisture on each sampling day. Log10 transformed data were 

used to meet normal distribution and homoscedascity. The Kenward and Roger (1997) 

method was used for determining degrees of freedom.   
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Chi-square analysis was conducted to compare proportions of isolates resistant to 

each of the 12 antibiotics. This analysis was performed with resistant and intermediate 

isolates combined and with resistant isolates alone. The isolates from each litter source 

were aggregated and mean of antibiotic resistant phenotypes (not including intermediate 

phenotypes) was compared using the Wilcoxon-t test.  

Quality Assurance/ Quality Control 

Quality control samples were run (i.e. positive controls, negative controls, and 

blanks) for each selective medium lot, as well as positive controls and sterility checks for 

all batches of media prepared. Positive and negative control cultures for mEI and mE 

agars were E. faecalis ATCC 19433 (positive) and Escherichia coli ATCC 11775 

(negative). Media log sheets indicating date, medium, volume, pH, and lot numbers were 

kept for all prepared media. All inoculated plates, tubes, broths etc. were autoclaved in 

biohazard bags with indicator tape for at least 30 min at 121°C prior to disposal. Media 

that supported the growth of negative controls, did not support the growth of positive 

control, failed sterility checks, or failed pH values were discarded and remade.  

Quality controls for carbon source utilization were followed according to the 

protocol described in the MicroLogTM System Release 4.0 User Guide (Biolog 1999). 

Each lot of BUG/B and GP2 MicroPlatesTM had been tested for internal quality control 

standards before being released for sale. Internal quality controls for BUGTM+B 

conducted by Gibson Laboratories, LLC., tested gel strength, bioburden performance, pH 

(7.3 ± 0.1), and biological performance utilizing Streptococcus pyogenes ATCC 19615, 

Streptococcus pneumoniae ATCC 6305, Staphylococcus aureus ATCC 25923, and 

Escherichia coli ATCC 25922 (Gibson Laboratories, LLC, Lexington, KY). Following 
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BIOLOG recommendations, a set of four control strains, 2 Gram-negative, and 2 Gram-

positive organisms, were streaked onto BUG/B plates, inoculated onto GEN III 

MicroPlatesTM, and analyzed via the Biolog MicroStationTM Reader for quality control 

purposes. These strains were Escherichia coli ATCC 11775, Paenibacillus polymyxa 

ATCC 842, Staphylococcus epidermidis ATCC 12228, and Stenotrophomonas 

maltophilia ATCC 13637. 

Laboratory Duplicates 

     All analyses (quantification, species identification, and membrane filtration) were 

performed with one duplicate for each treatment at each filtration event (1 hour, 1 day, 7 

days, 14 days, 28 days) during the experiment. Each survival experiment was conducted 

twice. 

Results 

Field Study 

In order to determine if enterococci were present in turkey litter, total culturable 

aerobes and enterococci were quantified in fresh bedding and in used litter. Technical 

replicates were collected at each sampling date; however since all samples came from the 

same house, statistical analysis and variability were not calculated to avoid 

pseudo-replication. Fresh bedding contained 2.36 x 103 CFU/gdw total culturable aerobes 

on the first sample date while enterococci were below the detectable limit; the total 

culturable aerobes were slightly higher at the second sampling, 3.98 x 104 CFU/gdw; 

however, enterococci remained undetectable. Used litter contained appreciably higher 

total culturable aerobes at each sampling date, 7.96 x 108 CFU/gdw and 

2.72 x 108 CFU/gdw respectively; Enterococci data were only obtained for the second 
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used litter sample collection (10/30/2013) and were present at concentrations of 

1.39 x 105 CFU/gdw. 

E. faecium was the most common species of Enterococcus identified from the 99 

isolates obtained from the litter of conventionally raised turkeys, and 53 isolates obtained 

from organically raised turkeys (Table 2). E. durans and E. faecalis comprised a higher 

proportion of isolates collected from the litter of conventionally, than organically, raised 

birds (Table 2). The litter of organically raised birds contained a higher prevalence of E. 

pseudoavium and E. asini (Table 2). There were a total of eight different species of 

Enterococcus identified, of which two were only found in litter from conventionally 

raised birds (E. ratti and E. gallinarum) and one was only found in the litter of 

organically raised birds (E. mundtii) (Table 2). 

Table 2: Identified Enterococcus spp.. Values reported are the percentage of 

Enterococcus spp. isolated from the litter of conventionally (n=99) and organically 

(n=53) raised turkeys. 

Species Conventional Organic 

E. faecium 43.3 54.7 

E. durans 29.9 9.4 

E. faecalis 18.5 9.4 

E. pseudoavium 3.1 11.3 

E. ratti 2.1 0.0 

E. gallinarum 2.1 0.0 

E. asini 1.0 13.2 

E. mundtii 0.0 1.9 
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Antibiotic resistance 

The proportion of isolates resistant to each antibiotic was viewed in aggregate. Of 

the 12 antibiotics tested, the proportion of isolates resistant to six of those antibiotics 

(ampicillin, chloramphenicol, linezolid, quinipristin/dalfopristin, rifampin, and 

vancomycin) was not significantly different between farming practices (Appendix 2). The 

proportion of resistant isolates from the litter of organically raised turkeys was 

significantly lower for tetracycline, doxycycline, and gentamicin than from the 

conventionally raised turkey litter (both resistant alone, and resistant and intermediate 

isolates combined, for all three antibiotics) (Figure 2). Conversely, the proportion of 

isolates resistant to streptomycin (both resistant alone, and resistant and intermediate 

isolates combined), erythromycin (only when resistant and intermediate isolates 

combined), and ciprofloxacin (only resistant alone) was significantly higher in the litter 

of organically raised turkeys (Figure 3).  
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Figure 2: Resistance to tetracycline, doxycycline, and gentamicin of enterococci isolated 

from litter used in conventional (CON) vs. organic (ORG) rearing.  

*Significant difference between treatments when comparing proportions of resistant 

isolates and proportion of resistant+intermediate isolates; p<0.05 
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Figure 3: Resistance to streptomycin, erythromycin, and ciprofloxacin of enterococci 

isolated from litter used in conventional (CON) vs. organic (ORG) practice.  

* Significant difference between treatments when comparing resistant isolates, not 

resistant when comparing resistant+intermediate isolates; p<0.05. 

+ Significant difference between treatments when comparing resistant+intermediate 

isolates, not significant when comparing only resistant isolates; p<0.05. 

¥ Significant difference between treatments when comparing proportions of resistant 

isolates and proportion of resistant+intermediate isolates; p<0.05. 

 

Isolates from the litter of conventionally raised turkeys were resistant to more 

antibiotics than isolates from the litter of organically raised turkeys according to the 

Wilcoxon test (W=3243.5; p=0.0145) (Figure 4). When comparing resistant+intermediate 

isolates from the litter of conventionally raised turkeys were still resistant to more 

antibiotics (W=3116; p=0.0499); however, when comparing only intermediate isolates 
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there was no significant difference between treatments (W=2504; p=0.6276) (Appendix 

2). 

 

Figure 4: Isolates exhibiting resistance to one or more antibiotics. Only resistant 

phenotypes were included; (W=3243.5; p=0.0145).   

 

Microcosm experiments 

Survival of E. faecium differed by treatment (Figure 5). The four experiments (30◦ C wet, 

30◦ C dry, 5◦ C wet, 5◦ C dry) were each performed twice and the treatment results in each 

individual experiment followed the same trend (Appendix 2). However, there was a large 

amount of variation between the duplicate experiments in the 30◦C dry experiment, as can 

be seen by the SE bars and shown in the Appendix 
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Figure 5: Survival curves of E. faecium in microcosms sampled over the course of 28 

days.  Error bars represent standard error. Each experiment was conducted twice. 

 

 Growth (i.e. increase in CFU/gdw litter) of 1.24 log
10

 (CFU/gdw) was observed 

for the first 14 days in the 30◦C incubated wet litter experiment, but no growth was seen 

in the other treatments (Figure 5; Appendix 2).  

Decay (i.e. reduction in CFU/gdw litter) was observed over the duration of the 

experiments for both the 30◦C dry and 5◦C wet treatments. While significant decay, as 

compared to day 0, was first observed on day 7 in the 30◦C dry experiment, it was not 

observed until day 14 in the 5◦C wet experiment (Figure 5; Appendix 2). In the 30◦C dry 

experiment there was a reduction in the enterococci of 1.69 log
10

 (CFU/gdw) over the 28-

day experiment. Although, the decrease was significant, the reduction was only 0.28 log
10
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(CFU/gdw). There was significant decay between day 14 and day 28 in the 30◦C wet 

experiment (Figure 5; Appendix 2). During that time frame the enterococci were reduced 

by 1.11 log
10 

(CFU/gdw) In contrast there was no significant reduction in the population 

of E. faecium in dry litter at 5◦C, the bacteria persisted throughout the 28-day period of 

the experiment (Figure 8; Appendix 2). 

Survival model 

A mixed effects model was used to compare the survival of E. faecium in each 

treatment (Appendix 3; Appendix 4). There were no significant interactions on day 0 or 

day 1 (Table 3).  Additionally, there were no significant differences between the levels of 

main effects on day 0 and day 1 (Table 4). There was a significant interaction between 

temperature and moisture on days 7, 14, and 28 (p ≤ 0.1) (Table 3). On day 7 there were 

significant differences in bacteria levels between the dry and wet treatments at 30◦C 

(Table 5). However, there were no significant differences in bacteria numbers between 

the levels of moisture at 5 ◦C or between the levels of temperature at either moisture level 

(Table 5). On day 14 there were significant differences between the dry and wet 

treatments at 30◦C and between the 5◦C and 30◦C treatments with dry conditions (Table 

5). However, there were no significant differences between the levels of moisture at 5. ◦C 

or between the levels of temperature with wet moisture (Table 5). On day 28, as on day 

14, there were significant differences between the dry and wet treatments at 30◦C and 

between the 5◦C and 30◦C treatments with dry moisture (Table 5). However, there were 

no significant differences between the levels of moisture at 5 ◦C or between the levels of 

temperature with wet moisture (Table 5).   
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Table 3: Estimate statements comparing the interaction between moisture and 

temperature on each day of the experiment. SE=Standard Error, DF= Degrees of 

Freedom *p ≤ 0.10. 
 Estimate SE DF t Value p- value 

Day 0 0.2552 0.9823 7.36 0.26 0.8021 

Day 1 0.8273 0.9823 7.36 0.84 0.4262 

Day 7 2.2996 0.9927 7.65 2.32 0.0506* 

Day 14 3.242 0.9852 7.45 3.29 0.0122* 

Day 28 2.3738 0.9855 7.46 2.41 0.0448* 

 

Table 4: Estimate statements comparing differences within one factor (temperature or 

moisture) not dependent on the other factor. SE=Standard error, DF= Degrees of freedom 

*p ≤ 0.10. 

Comparison Day Estimate SE DF t value p-value 

Temperature (5 v 30) 

averaged over 

moisture 

Day 0 0.1168 0.4912 7.36 0.24 0.8185 

Moisture (Dry v Wet) 

averaged over 

temperature 

Day 0 -0.3707 0.4912 7.36 -0.75 0.4738 

Temperature (5 v 30) 

averaged over 

moisture 

Day 1 0.255 0.4912 7.36 0.52 0.6189 

Moisture (Dry v Wet) 

average over 

temperature 

Day 1 -0.63 0.4912 7.36 -1.28 0.2385 
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Table 5: Estimate statements comparing differences among levels of one factor 

dependent upon a second factor. SE=Standard error, DF= Degrees of freedom *p ≤ 0.10. 

Comparison Days  Estimate SE DF t Value p-value 

Temperature (5 v 30) 

at moisture (dry) 
Day 7 

1.2894 0.6873 7.06 1.88 0.1024 

Temperature (5 v 30) 

at moisture (wet) 
Day 7 

-1.0102 0.7162 8.26 -1.41 0.1949 

Moisture (Dry v Wet) 

at temperature 5 
Day 7 

-0.1262 0.6861 7.01 -0.18 0.8593 

Moisture (Dry v Wet) 

at temperature 30 
Day 7 

-2.4258 0.7173 8.31 -3.38 0.0091* 

Temperature (5 v 30) 

at moisture (dry) 
Day 

14 
1.7131 0.6873 7.06 2.49 0.0412* 

Temperature (5 v 30) 

at moisture (wet) 
Day 

14 
-1.5289 0.7058 7.84 -2.17 0.0629* 

Moisture (Dry v Wet) 

at temperature 5 
Day 

14 
-0.1133 0.6861 7.01 -0.17 0.8735 

Moisture (Dry v Wet) 

at temperature 30 
Day 

14 
-3.3553 0.707 7.89 -4.75 0.0015* 

Temperature (5 v 30) 

at moisture (dry) 
Day 

28 
1.9923 0.6878 7.08 2.9 0.0228* 

Temperature (5 v 30) 

at moisture (wet) 
Day 

28 
-0.3815 0.7058 7.84 -0.54 0.6038 

Moisture (Dry v Wet) 

at temperature 5 
Day 

28 
-0.1464 0.6861 7.01 -0.21 0.8372 

Moisture (Dry v Wet) 

at temperature 30 
Day 

28 
-2.5202 0.7074 7.91 -3.56 0.0075* 

 

There was no significant difference in bacteria levels due to moisture (wet or dry) 

at 5◦C but there were significant differences at 30◦C between moisture treatments, with 

bacterial survival being significantly greater in wet than dry litter. This can be attributed 

to the fact that growth occurred initially at 30◦C in the wet microcosms but declined to 

near initial inoculation levels by the end of the 28-day incubation. The bacteria levels in 

30◦C dry incubations decreased steadily from the onset of the experiment.  
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Discussion 

In this study, enterococci were isolated from the litters of turkeys reared using 

conventional and organic practices. Since enterococci were not found in fresh wood 

shavings (unused litter material) it is possible that the isolated enterococci found in the 

used litter were due to farmer contamination, present in the food, or present in the water. 

However, due to previous evidence that enterococci were harbored in the excrement of 

turkeys, it is most likely that the main source of enterococci in the turkey litter samples 

was turkey feces. The concentrations found in the turkey litter were in the same range as 

those found in previous studies (Brooks 2010; Schefferle 1965). Although it cannot be 

concluded that the enterococci grow while in the litter, Schefferle (1965) noted that in 

their study the concentrations of enterococci were actually higher in the litter than in the 

feces of the birds; however, these data were not corrected for moisture content.  

The dominance of E. faecium in both litter types (Table 2) is consistent with 

previous reports of enterococci species in poultry litter and poultry intestines (Devriese 

1991, Debnam 2005).  E. hirae, E. cecorum and E. casseliflavus were not identified in 

our samples which differs from the findings of Devriese (1991) who identified E. 

casseliflavus and E. hirae in low proportions in all age groups of broiler chickens and 

found E. cecorum as the most common species in the oldest age class. This may be due to 

the low number of isolates identified to species in our study (Table 2). Differences in 

enterococci species (i.e. a higher proportion of E. durans and E. faecalis were collected 

from the litter of conventionally raised birds while a higher proportion of E. pseudoavium 

and E. asini  were collected from the litter of organically raised birds (Table 2))  between 

the two sets of litter may be attributed to the treatment (i.e. organic or conventional), or 
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could be attributed to other differences in how the litter was handled; for example, the 

litter from the conventional birds had been used to grow two previous flocks of birds, and 

was composted in between each flock (Table 2).  

There were a total of eight different species of Enterococcus identified in this 

study, of which two were only found in litter from conventionally raised birds (E. ratti 

and E. gallinarum) and one was only found in the litter of organically raised birds (E. 

mundtii) (Table 2). We have no evidence that E. ratti, E. pseudoavium, or E. asini have 

been isolated from poultry litter (Devriese 1991; Hayes 2004; van den Bogaard 2001). E. 

ratti, has been previously associated with enteric disorders in rats, E. pseudoavium has 

been isolated from cows with bovine mastitis, and E. asini was isolated from a fistulated 

donkey (Teixeira 2001; Collins 1989; de Vaux 1998).  In contrast to our finding of E. 

faecium as the most abundant species in litter, some studies have found E. faecalis to be 

the most common species in the fresh or stored litter of birds raised using organic 

practices (Graham 2009, Sapkota 2011). This may be due to differences in the survival of 

the two species in litter, difference in litter compositions, or types of turkeys used in the 

other studies. Several factors such as pH, litter temperature and moisture content have 

been shown to be key in determining the overall community structure in broiler litter 

(Lovanh 2007). Although they were closely related, E. faecium and E. faecalis exhibit 

different growth responses and metabolic activity under a variety of pH and temperatures 

(Morandi 2005). Thus, physicochemical properties of different litters may account for 

variations in both quantities of enterococci and species distribution. 

None of the enterococci isolated in this study were resistant to linezolid, 

chloramphenicol, or vancomycin and only a few isolates were resistant to ampicillin, 
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rifampin, or quinipristin/dalfopristin, other than those species (E. faecalis, E. gallinarum) 

that were intrinsically resistant to quinipristin/dalfopristin. Under conventional practices, 

the farm protocol was to administer oxytetracycline to turkey poults prophylactically. 

This was discontinued when the farm transitioned to organic practices, probably 

explaining the significant reduction in the proportion of isolates resistant to the related 

antibiotics doxycycline and tetracycline from the organic litter (Figure 2). Gentamicin 

resistance has also been shown to be linked to tetracycline resistance on plasmids found 

in pseudomonas (Herrick 2014). The turkeys no longer received prophylactic antibiotics, 

therefore the enterococci excreted onto the litter had not been exposed to antibiotic 

residues or metabolites. Previous exposure has been linked with increasing antibiotic 

resistance (Schwaiger 2009; Zhang 2015).  

Increases in resistance to streptomycin, erythromycin and ciprofloxacin were less 

marked - this finding may be due to sample size (Figure 3). It is also possible that 

increased resistance to the three antibiotics was random as each can be conferred by point 

mutations (Leavis 2006; Occhialini 1997; Traub 1968). Furthermore, it may be due to 

competition with antibiotic producing bacteria and fungi such as Streptomyces. As in the 

present study, in a survey comparing Enterococcus isolates from turkey farms, 

conventional farms had higher proportions of resistant isolates than newly organic farms; 

however, isolates from organic farms did exhibit a greater proportion of resistant isolates 

to some individual antibiotics (Sapkota 2011). 

Individual isolates were likely to exhibit resistance to more antibiotics if they 

were obtained from the litter of conventionally raised turkeys (Figure 3). Resistance 

profiles (i.e. the individual antibiotics an isolate is resistant to) varied by rearing practice 
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(data not shown), which is consistent with previous comparisons of organic and 

conventional poultry farms (Sapkota 2011; Sapkota 2014). 

This study suggests that there can be a rapid effect on levels of antibiotic 

resistance in enterococci when farms switch to organic practices. This is not unexpected, 

as the grow house was completely emptied of all litter, cleaned, and refilled with fresh 

wood shavings between turkey cohorts, and a new source of birds was used. Future 

studies should investigate multiple farms that were transitioning to organic practices to 

determine if the changes seen in this study were specific to the site or were common in 

farms rearing birds organically, and antibiotic-free. Additionally, resistance genotypes 

should be characterized for conventional and organic litter isolates and resistance genes 

should be quantified in the litter before and after the transition to organic practices. 

 Growth and persistence of E. faecium in turkey litter was affected by both 

temperature and moisture.  Temperature was a significant factor in determining the 

survival time, with slower die-off at 5°C. Previous studies have also shown enteric 

bacteria persist longer in soil and sand at colder temperatures (Cools 2001; Howell 1996; 

Ishii 2006). At 30°C moisture affected length of time of survival. In moist litter E. 

faecium grew steadily for 14 days, followed by a rapid die-off during the next two weeks.  

It is possible that the enterococci rapidly mineralized labile, available carbon during the 

first two weeks due to increased microbial activity driven by the higher water content 

(Orchard 1983; Davidson 1998). It is also possible that available nutrients were easier to 

access in the higher water content (Orchard 1983).  However, in dry litter the bacteria 

died off steadily over the course of one month. Moisture content and temperature have 

been shown to be the primary factors controlling the survival of fecal organisms in soil, 
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animal waste, and soils amended with organic wastes (Cools 2001; Desmarais 2002; Gerba 

1975; Reddy 1981). Experiments using sterilized soil and sand have shown less die-off of 

FIB (Carpenter 2013; Hartz 2008). This is possibly due to reduced competition for 

resources with other microbes, as well as lack of top-down population control by 

bacterivores.  

In all treatments E. faecium was still detectable after 28 days, suggesting a risk of 

survival in stored litter over considerable time (Figure 5). Additionally, there was a 

significant interaction between temperature and moisture such that litter should be land 

applied during warm and dry periods (Table 3; Table 4; Table 5). Zaleski (2005) showed 

re-growth of enterococci and other pathogens after composting. Thus, depending on 

storage time, untreated turkey litter applied to the land may pose a significant risk of 

contaminating drinking and recreational waters with FIB for up to a month or more after 

application.  

This study has demonstrated that under certain environmental conditions litter can 

act as a reservoir for the fecal indicator bacterium Enterococcus. In some circumstances 

enterococci can persist or even grow for an extended period of time. Best management 

practices for processing used turkey litter including composting, and windrowing were 

important to reduce bacterial levels before amending soil with the litter. Policy makers 

and farmers may be able to utilize this information to determine the best season and 

under which conditions litter should be applied to the land. 

 

Conclusion 



38 
 

 
 

This study has answered five research questions outlined earlier as follows. Were 

enterococci present in fresh or used litter on turkey farms? Enterococci were not present 

in detectable concentrations in fresh wood shavings, however, after turkeys were reared 

on the bedding, enterococci were detectable in high concentrations. What were common 

species of enterococci in the litter of organically and conventionally raised turkeys? E. 

faecium was the most prevalent species in litter from both conventionally and organically 

raised turkeys. The significance of differences in proportions of other species could not 

be assessed due to the limited numbers of these isolates. Is there a difference in the 

antibiotic resistance of enterococci isolated from the litter of organically and 

conventionally raised birds? The transition to organic rearing practices resulted in isolates 

resistant to fewer antibiotics (Table 3) and significant differences in the proportions of 

isolates resistant to 6 of the 12 antibiotics tested (Figure 2; Figure 3).  Does the amount of 

moisture in litter affect survival and persistence of Enterococcus? Enterococci in moist 

litter were able to grow at 30°C, while all dry litter experiments resulted in steady die-off 

of populations over time. Does air temperature (5°C, 30°C) affect survival and 

persistence of Enterococcus in litter? Yes, long term survival was found at 5°C, with 

shorter survival at 30°C depending on litter moisture, i.e. survival at 30°C is higher in 

wet conditions than in dry. E. faecium was able to persist at levels above 105 CFU/gdw 

which are still quite high and pose a risk of contaminating water or crops. 

     Results of the microcosm experiments suggest that enterococci persist in cool 

environments longer than warm environments. However, the interaction between 

moisture and temperature play an important role in determining the decay of enterococci 

in litter.  
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     Future research should include use of E. faecium isolates obtained from turkey 

litter, to determine if strain may be a factor in survival. Additionally, other species 

isolated from the litter, such as E. durans and E. faecalis, should be tested to assess the 

role that species plays in the persistence and decay of enterococci in litter.  Additional 

studies were needed to determine if competition with other bacteria and predation affect 

the survival of enterococci in litter. The possibility of enterococci surviving longer than a 

month in litter requires additional research to include longer incubation periods with 

more sampling dates to improve the resolution of the survival dynamics.  

Although the overall trends were the same in both experiments, there was some 

variability in the results of the two experiments incubated at 30◦C. This may be due to 

variations in the litter, such as available nutrient levels, that can result from multiple 

autoclave cycles, as used when preparing the medium or possibly undetected 

contamination that may have led to competition for resources. Additional studies should 

also be performed to determine if turkey rearing protocols affect the survival of 

enterococci. At the molecular level it will be important to determine which genes were 

upregulated when E. faecium is stressed under different environmental conditions. More 

farms transitioning to organic rearing practices should be sampled before and after the 

transition to garner a clearer understanding of how that transition affects the antibiotic 

resistance of enterococci in the turkey gut and in the litter.  
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Appendix 1: Nutrient Analysis of Turkey Litter 
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Appendix 2: Supplementary Data 

Table A2A: Means and standard deviations of combined experiments 

log10(CFU/gdw) 

Temperature Moisture Days incubated Obs Mean Std Dev 

5 dry 0 6 7.3627538 0.0931117 
  

1 6 7.5062380 0.2648951 

    7 6 7.3983153 0.1217711 

    14 6 7.2108631 0.1816043 

    28 6 7.2128926 0.2165498 

  wet 0 6 7.6058341 0.1156968 

    1 6 7.7226286 0.2079088 

    7 6 7.5245186 0.1287667 

    14 6 7.3241223 0.1038818 

    28 6 7.3592520 0.1232340 

30 dry 0 6 7.1183452 0.2574320 

    1 6 6.8376028 0.5483408 

    7 6 6.1088982 0.9246770 

    14 6 5.4977245 1.5655358 

    28 5 5.4283167 1.1609422 

  wet 0 6 7.6166698 0.0475249 

    1 6 7.8812680 0.8285410 

    7 4 8.4894668 0.3251655 

    14 5 8.8579016 0.2534215 

    28 5 7.7462145 0.5312883 
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Figure: A2A: Comparison of duplicate runs of each experiment. Bars represent 

standard error.  
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Figure: A2B: Isolates exhibiting resistance+intermediate phenotypes to one or 

more antibiotics (W=3116; p=0.0499). 
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Figure A2C: Isolates exhibiting intermediate phenotypes to one or more 

antibiotics (W=2504; p=0.6276).  
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Table A2B: Proportions of isolates with resistant or intermediate phenotypes. 

Antibiotic Phenotype Conventional Organic 

Ampicillin 

Resistant 0.10 0.13 

Intermediate 0.00 0.00 

Ciprofloxacin 

Resistant 0.34 0.60 

Intermediate 0.55 0.31 

Chloramphenicol 

Resistant 0.00 0.00 

Intermediate 0.00 0.00 

Doxycycline 

Resistant 0.67 0.44 

Intermediate 0.27 0.13 

Erythroycin 

Resistant 0.43 0.52 

Intermediate 0.04 0.23 

Gentamicin 

Resistant 0.73 0.27 

Intermediate 0.05 0.17 

Linezolid 

Resistant 0.00 0.00 

Intermediate 0.00 0.00 

Quinipristin/ 
Dalfopristin 

Resistant 0.24 0.10 

Intermediate 0.00 0.13 

Rifampin 

Resistant 0.03 0.00 

Intermediate 0.06 0.08 

Streptomycin 

Resistant 0.51 0.87 

Intermediate 0.05 0.12 

Tetracycline 

Resistant 0.98 0.58 

Intermediate 0.00 0.00 

Vancomycin 

Resistant 0.00 0.00 

Intermediate 0.02 0.00 
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Appendix 3: SAS Code for Linear Mixed effects model 

data survival; 

  input Rep $ Temperature  Moisture $ Experiment $ days_incubated Tube_ID $ Per_H20 DryWeight 

Calculation log10; 

datalines; 

A 30 dry 30D_A 0 ADM-A 0.090285578 14.61911076 7890926.828

 6.897128016 

A 30 dry 30D_A 0 ADM-B 0.090285578 14.53723647 7789765.746

 6.891524398 

A 30 dry 30D_A 0 ADM-C 0.090285578 14.52813932 7503254.953

 6.875249704 

A 30 dry 30D_A 1 ADM-A 0.090285578 14.50994503 2042277.436

 6.310114739 

A 30 dry 30D_A 1 ADM-B 0.090285578 14.55543076 2108605.866

 6.32399541 

A 30 dry 30D_A 1 ADM-C 0.090285578 14.55543076 2399448.054

 6.380111352 

A 30 dry 30D_A 7 ADM-A 0.090285578 14.58272219 312070.2208

 5.494252328 

A 30 dry 30D_A 7 ADM-B 0.090285578 14.58272219 108861.7049

 5.036875132 

A 30 dry 30D_A 7 ADM-C 0.090285578 14.4826536 197305.0022

 5.295138096 

A 30 dry 30D_A 14 ADM-A 0.090285578 14.49175075 15336.31125

 4.185720914 

A 30 dry 30D_A 14 ADM-B 0.090285578 14.54633361 12877.81547

 4.109842198 

A 30 dry 30D_A 14 ADM-C 0.090285578 14.58272219 8273.489575

 3.917688724 

A 30 dry 30D_A 28 ADM-B 0.090285578 14.55543076 13087.89848

 4.116869917 

A 30 dry 30D_A 28 ADM-C 0.090285578 14.57362504 16557.3081

 4.21898973 

B 30 dry 30D_B 0 ADM-A 0.098614399 14.36808648 19887825.73

 7.298587306 

B 30 dry 30D_B 0 ADM-B 0.098614399 14.55737746 20283529.84

 7.307143535 

B 30 dry 30D_B 0 ADM-C 0.098614399 14.39512805 27570091.68

 7.44043821 

B 30 dry 30D_B 1 ADM-A 0.098614399 14.38611419 20525000.43

 7.312283175 

B 30 dry 30D_B 1 ADM-B 0.098614399 14.38611419 24276882.23

 7.385192911 

B 30 dry 30D_B 1 ADM-C 0.098614399 14.33203106 20602453.26

 7.313918938 

B 30 dry 30D_B 7 ADM-A 0.098614399 14.4672389 9063754.385

 6.957308128 

B 30 dry 30D_B 7 ADM-B 0.098614399 14.4672389 9173485.068

 6.962534358 

B 30 dry 30D_B 7 ADM-C 0.098614399 14.38611419 8077580.814

 6.907281312 

B 30 dry 30D_B 14 ADM-A 0.098614399 14.52132203 7433896.153

 6.87121649 
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B 30 dry 30D_B 14 ADM-B 0.098614399 14.41315576 9178535.836

 6.962773408 

B 30 dry 30D_B 14 ADM-C 0.098614399 14.36808648 8691716.43

 6.939105549 

B 30 dry 30D_B 28 ADM-A 0.098614399 14.42216962 1056706.474

 6.023954368 

B 30 dry 30D_B 28 ADM-B 0.098614399 14.33203106 2584537.148

 6.412382779 

B 30 dry 30D_B 28 ADM-C 0.098614399 14.4672389 2340921.229

 6.3693868 

B 5 wet 5W_B 0 AWM-A 0.36306292 10.17825453

 4.77E+07 7.678761853 

B 5 wet 5W_B 0 AWM-B 0.36306292 10.23557887 5.21E+07

 7.716940602 

B 5 wet 5W_B 0 AWM-C 0.36306292 10.15914642 5.31E+07

 7.725335431 

B 5 wet 5W_B 1 AWM-A 0.36306292 10.2292095

 7.82E+07 7.893302197 

B 5 wet 5W_B 1 AWM-B 0.36306292 10.31838069 7.51E+07

 7.875522009 

B 5 wet 5W_B 1 AWM-C 0.36306292 10.2292095 9.16E+07

 7.961723672 

B 5 wet 5W_B 7 AWM-A 0.36306292 10.19736264

 4.67E+07 7.669347125 

B 5 wet 5W_B 7 AWM-B 0.36306292 10.19736264 3.53E+07

 7.547613528 

B 5 wet 5W_B 7 AWM-C 0.36306292 10.17188516 4.47E+07

 7.650689482 

B 5 wet 5W_B 14 AWM-A 0.36306292 10.21010139

 2.74E+07 7.437196347 

B 5 wet 5W_B 14 AWM-B 0.36306292 10.17825453 2.84E+07

 7.453111815 

B 5 wet 5W_B 14 AWM-C 0.36306292 10.17188516 2.22E+07

 7.34560063 

B 5 wet 5W_B 28 AWM-A 0.36306292 10.21647076

 3.11E+07 7.492442833 

B 5 wet 5W_B 28 AWM-B 0.36306292 10.17825453 1.90E+07

 7.279400257 

B 5 wet 5W_B 28 AWM-C 0.36306292 10.1846239 3.43E+07

 7.535191419 

A 5 wet 5W_A 0 AWM-A 0.365046669 10.10210749

 36143448.32 7.558029585 

A 5 wet 5W_A 0 AWM-B 0.365046669 10.15290376 30020968.12

 7.477424693 

A 5 wet 5W_A 0 AWM-C 0.365046669 10.12750562 30096255.82

 7.47851247 

A 5 wet 5W_A 1 AWM-A 0.365046669 10.15290376

 35024462.81 7.544371483 

A 5 wet 5W_A 1 AWM-B 0.365046669 10.10210749 35514866.61

 7.550410188 

A 5 wet 5W_A 1 AWM-C 0.365046669 10.09575796 32392317.78

 7.510442024 

A 5 wet 5W_A 7 AWM-A 0.365046669 10.12115609

 31056234.8 7.492148802 

A 5 wet 5W_A 7 AWM-B 0.365046669 10.12115609 29174038.75

 7.464996556 
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A 5 wet 5W_A 7 AWM-C 0.365046669 10.12750562 21004678.54

 7.322316039 

A 5 wet 5W_A 14 AWM-A 0.365046669 10.10210749

 18228869.59 7.260759738 

A 5 wet 5W_A 14 AWM-B 0.365046669 10.15925329 16876240.32

 7.227275701 

A 5 wet 5W_A 14 AWM-C 0.365046669 10.12115609 16626065.1

 7.220789477 

A 5 wet 5W_A 28 AWM-A 0.365046669 10.22274862

 18634909.95 7.270327298 

A 5 wet 5W_A 28 AWM-B 0.365046669 10.18465142 17769385.76

 7.249672416 

A 5 wet 5W_A 28 AWM-C 0.365046669 10.13385516 21304823.95

 7.32847795 

B 30 wet 30W_B 0 AWM-A 0.372732958 10.04881801

 38862779.64 7.58953386 

B 30 wet 30W_B 0 AWM-B 0.372732958 9.998636648 38422738.37

 7.584588314 

B 30 wet 30W_B 0 AWM-C 0.372732958 10.00490932 43793500.38

 7.641409659 

B 30 wet 30W_B 1 AWM-A 0.372732958 10.11781739

 577397256.5 8.761474716 

B 30 wet 30W_B 1 AWM-B 0.372732958 10.02372733 982553662.5

 8.992356279 

B 30 wet 30W_B 1 AWM-C 0.372732958 9.986091307 86798224.99

 7.938510844 

B 30 wet 30W_B 7 AWM-A 0.372732958 10.02372733

 190049064.3 8.278865736 

B 30 wet 30W_B 7 AWM-B 0.372732958 10.02372733 544807317.7

 8.736242932 

B 30 wet 30W_B 7 AWM-C 0.372732958 9.973545966 140070543.1

 8.146346813 

B 30 wet 30W_B 14 AWM-A 0.372732958 10.04254534

 284539417.4 8.454142438 

B 30 wet 30W_B 14 AWM-B 0.372732958 10.01745466 1362871155

 9.1344548 

B 30 wet 30W_B 14 AWM-C 0.372732958 10.00490932 952032616.9

 8.978651828 

B 30 wet 30W_B 28 AWM-A 0.372732958 10.00490932

 342731742.1 8.534954328 

B 30 wet 30W_B 28 AWM-B 0.372732958 10.01745466 12994817.99

 7.113770201 

B 30 wet 30W_B 28 AWM-C 0.372732958 10.05509068 39154296.31

 7.592779423 

B 5 dry 5D_B 0 ADM-A 0.089663761 14.58358655 3.07E+07

 7.487098499 

B 5 dry 5D_B 0 ADM-B 0.089663761 14.58358655 2.66E+07

 7.424239217 

B 5 dry 5D_B 0 ADM-C 0.089663761 14.62910336 2.63E+07

 7.419311392 

B 5 dry 5D_B 1 ADM-A 0.089663761 14.56537983 5.62E+07

 7.750041621 

B 5 dry 5D_B 1 ADM-B 0.089663761 14.62910336 5.30E+07

 7.723915848 

B 5 dry 5D_B 1 ADM-C 0.089663761 14.65641345 5.72E+07

 7.757319949 
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B 5 dry 5D_B 7 ADM-A 0.089663761 14.48344956 3.00E+07

 7.477592285 

B 5 dry 5D_B 7 ADM-B 0.089663761 14.48344956 3.38E+07

 7.528392439 

B 5 dry 5D_B 7 ADM-C 0.089663761 14.51075965 3.26E+07

 7.513239849 

B 5 dry 5D_B 14 ADM-A 0.089663761 14.63820672 1.91E+07

 7.280738526 

B 5 dry 5D_B 14 ADM-B 0.089663761 14.65641345 1.67E+07

 7.222206747 

B 5 dry 5D_B 14 ADM-C 0.089663761 14.53806974 1.97E+07

 7.293479491 

B 5 dry 5D_B 28 ADM-A 0.089663761 14.50165629 2.26E+07

 7.353163347 

B 5 dry 5D_B 28 ADM-B 0.089663761 14.51075965 2.84E+07

 7.453996933 

B 5 dry 5D_B 28 ADM-C 0.089663761 14.59268991 2.61E+07

 7.416789622 

A 5 dry 5D_A 0 ADMA 0.093707278 14.52787233 1.92E+07

 7.284024387 

A 5 dry 5D_A 0 ADMB 0.093707278 14.4191172 2.03E+07

 7.306592885 

A 5 dry 5D_A 0 ADMC 0.093707278 14.46443184 1.80E+07

 7.255256203 

A 5 dry 5D_A 1 ADMA 0.093707278 14.47349476 2.06E+07

 7.314298175 

A 5 dry 5D_A 1 ADMB 0.093707278 14.46443184 1.51E+07

 7.180291441 

A 5 dry 5D_A 1 ADMC 0.093707278 14.41005427 2.05E+07

 7.311561062 

A 5 dry 5D_A 7 ADMA 0.093707278 14.43724306 2.00E+07

 7.301300854 

A 5 dry 5D_A 7 ADMB 0.093707278 14.43724306 2.09E+07

 7.319983067 

A 5 dry 5D_A 7 ADMC 0.093707278 14.48255769 1.78E+07

 7.249383481 

A 5 dry 5D_A 14 ADMA 0.093707278 14.46443184 2.92E+07

 7.465293991 

A 5 dry 5D_A 14 ADMB 0.093707278 14.47349476 1.05E+07

 7.022411559 

A 5 dry 5D_A 14 ADMC 0.093707278 14.48255769 9.57E+06

 6.981048503 

A 5 dry 5D_A 28 ADMA 0.093707278 14.41005427 9.91E+06

 6.996290627 

A 5 dry 5D_A 28 ADMB 0.093707278 14.41005427 1.04E+07

 7.018245203 

A 5 dry 5D_A 28 ADMC 0.093707278 14.4191172 1.09E+07

 7.038870071 

A 30 wet 30W_A 0 AWM-A 0.374 10.0473 4.39E+07

 7.64270916 

A 30 wet 30W_A 0 AWM-B 0.374 10.03478 4.84E+07

 7.684927305 

A 30 wet 30W_A 0 AWM-C 0.374 9.9534 3.60E+07 7.556850716 

A 30 wet 30W_A 1 AWM-A 0.374 10.0473 1.23E+07

 7.090758967 

A 30 wet 30W_A 1 AWM-B 0.374 9.9847 1.97E+07 7.294800399 
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A 30 wet 30W_A 1 AWM-C 0.374 9.99096 1.62E+07 7.209706686 

A 30 wet 30W_A 7 AWM-A 0.374 9.97844 6.26E+08

 8.796411836 

A 30 wet 30W_A 14 AWM-B 0.374 10.02852 7.91E+08

 8.898446893 

A 30 wet 30W_A 14 AWM-C 0.374 10.00348 6.67E+08

 8.823811916 

A 30 wet 30W_A 28 AWM-B 0.374 9.99722 8.89E+07 7.949022512 

A 30 wet 30W_A 28 AWM-C 0.374 10.05982 3.47E+07

 7.540546205 

; 

run; 

ods graphics off; 

proc print data = survival; 

run; 

symbol1 value = diamond color = red; 

symbol2 value = star color = black; 

proc gplot data = survival; 

   title1 'Temperature = 5 and Moisture = Dry'; 

   where temperature = '5' and moisture = 'dry'; 

   plot log10 * days_incubated = rep; 

run; 

proc gplot data = survival; 

   title1 'Temperature = 30 and Moisture = Dry';  

   where temperature = '30' and moisture = 'dry'; 

   plot log10 * days_incubated = rep; 

run; 

proc gplot data = survival; 

   title1 'Temperature = 5 and Moisture = Wet'; 

   where temperature = '5' and moisture = 'wet'; 

   plot log10 * days_incubated = rep; 

run; 

proc gplot data = survival; 

   title1 'Temperature = 30 and Moisture = Wet'; 

   where temperature = '30' and moisture = 'wet'; 

   plot log10 * days_incubated = rep; 

run; 

proc means data = survival mean std; 

  var log10; 

  class Temperature Moisture days_incubated; 

run;  

*  Model 1:    

     model statement specifies temperature, moisture, days_incubated and all possible interactions 

       (2 and 3-way) as fixed effects 

     random statement specifies Rep(temperature*moisture), Rep*Days_Incubated(Temperature*Moisture) 

       as random effects - model also includes a residual random error by default 

 

     outpred = PRED_SURVIVAL residual tells SAS to save the estimated residuals for checking of 

     assumptions of normality and homogenenous variances. 

 

     ddfm = kr specifies the degrees of freedom method to use for hypthesis tests 

 

     AIC = model fit for this model = 57; 

/* 

proc mixed data = survival; 

  class temperature moisture rep days_incubated; 
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  model log10 = temperature moisture days_incubated  

                temperature*moisture temperature*days_incubated moisture*days_incubated 

                temperature*moisture*days_incubated / outpred = PRED_SURVIVAL1 solution residual ddfm = 

kr; 

  random rep(temperature*moisture) 

         rep*days_incubated(temperature*moisture); 

  estimate 'moisture x temp interaction test at Day 0' 

           temperature     0  0 

           moisture        0  0 

     days_incubated  0 0 0 0 0 

     temperature*moisture    1 -1 

                            -1  1 

     temperature*days_incubated  0 0 0 0 0 

                                 0 0 0 0 0 

     moisture*days_incubated     0 0 0 0 0 

                                 0 0 0 0 0 

     temperature*moisture*days_incubated   1 0 0 0 0   

                                          -1 0 0 0 0 

           

 -1 0 0 0 0 

             

1 0 0 0 0; 

run; 

 

*  The following proc univariate and proc gplot check on normality of homogeneity 

     of variance for the residuals - there is some evidence that variance of residuals 

     changes with temperature*moisture combination; 

proc univariate data = PRED_SURVIVAL1 noprint; 

   var StudentResid; 

   histogram; 

   qqplot; 

run; 

SYMBOL1 value = circle; 

SYMBOL2; 

TITLE1; 

proc gplot data = PRED_SURVIVAL1;  

   plot StudentResid * Pred; 

   plot StudentResid * Moisture; 

   plot StudentResid * Temperature; 

   plot StudentResid * days_incubated; 

run;  

*/; 

* Model 2 was fit due to evidence of heterogeneous error variances in residual plots 

  from Model 1  -- repeated / group = temperature*moisture fits a separate residual 

  variance for each temperature*moisture combination 

  Better model fit with AIC = -6.3, thus tentatively use this model for inference, testing, etc 

  Histogram, QQ-Plot look better for normality 

  No more evidence of heterogeneous error variation 

  There is evidence of 3-way interaction, which means evidence that two-way interaction 

  exist and depends on levels of 3rd factor.  For example, there is evidence 

  that moisture and days incubated interact and this interaction depends on levels of 

  temperature.  Might look at some contrasts comparing 

  wet and dry at each day and then do this for each temperature; 

proc mixed data = survival; 

  class temperature moisture rep days_incubated; 

  model log10 = temperature moisture days_incubated  
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                temperature*moisture temperature*days_incubated moisture*days_incubated 

                temperature*moisture*days_incubated / outpred = PRED_SURVIVAL2 solution residual ddfm = 

kr; 

  random rep(temperature*moisture) 

         rep*days_incubated(temperature*moisture); 

  repeated / group = temperature*moisture; 

run; 

proc univariate data = PRED_SURVIVAL2 noprint; 

   var StudentResid; 

   histogram; 

   qqplot; 

run; 

SYMBOL1 value = circle; 

SYMBOL2; 

TITLE1; 

proc gplot data = PRED_SURVIVAL2;  

   plot StudentResid * Pred; 

   plot StudentResid * Moisture; 

   plot StudentResid * Temperature; 

   plot StudentResid * days_incubated; 

run;  

*ods pdf close; 

 * Model 3:  Same as Model 2, but written in equivalent form to  

            facilitate the writing of estimate statements to make 

            various comparisons at each Day; 

proc mixed data = survival; 

  class temperature moisture rep days_incubated; 

  model log10 = temperature*moisture*days_incubated / noint solution  ddfm = kr;  

  random rep(temperature*moisture) 

         rep*days_incubated(temperature*moisture); 

  repeated / group = temperature*moisture; 

* In all of the estimate statements below the sequence of 20 digits 

  correspond to the 20 combinations of temperature, moisture, and day: 

  1st set of 5 correspond to temp = 5, moisture = dry, five days(0,1,7,14,28) 

  2nd set of 5 correspond to temp = 5, moisture = wet, five days(0,1,7,14,28) 

  3rd set of 5 correspond to temp = 10, moisture=dry, five days(0,1,7,14,28) 

  4th set of 5 correspond to temp = 10, moisture=wet, five days(0,1,7,14,28); 

* The estimate statements below are appropriate for Day = 0 comparisons; 

* The one estimate statement below is for testing the two way interaction 

  between temperature and moisture at Day 0; 

  estimate 'interaction between moisture and temperature at Day 0' 

           temperature*moisture*days_incubated 

       1 0 0 0 0    -1 0 0 0 0    -1 0 0 0 0    1 0 0 0 0; 

* The two estimate statements below are appropriate if the interaction  

  between moisture and temperature at Day 0 IS NOT significant, then 

  compare temperatures (averaged over moisture) and compare  

  compare moistures (averaged over temperature); 

  estimate 'compare temperatures 5 versus 30 (averaged over moistures) at Day 0' 

           temperature*moisture*days_incubated 

            .5 0 0 0 0    .5 0 0 0 0   -.5 0 0 0 0   -.5 0 0 0 0; 

  estimate 'compare moistures dry versus wet (averaged over temperature) at Day 0' 

           temperature*moisture*days_incubated 

            .5 0 0 0 0   -.5 0 0 0 0   .5 0 0 0 0    -.5 0 0 0 0; 

* The four estimate statements below are appropriate if the two-way  

  interaction between moisture and temperature at Day 0 IS significant. 

  Then compare temperatures at each level of moisture and 
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    compare moistures at each level of temperature; 

  estimate 'compare temp of 5 versus temp of 30 at moisture=dry, Day = 0' 

           temperature*moisture*days_incubated 

      1 0 0 0 0    0 0 0 0 0    -1 0 0 0 0   0 0 0 0 0; 

  estimate 'compare temp of 5 versus temp of 30 at moisture=WET and Day = 0' 

           temperature*moisture*days_incubated 

      0 0 0 0 0    1 0 0 0 0    0 0 0 0 0   -1 0 0 0 0;  

  estimate 'compare moisture of dry versus wet at temp = 5, Day = 0' 

           temperature*moisture*days_incubated 

            1 0 0 0 0   -1 0 0 0 0    0 0 0 0 0   0 0 0 0 0; 

  estimate 'compare moisture of dry versus wet at temp = 30, Day = 0' 

           temperature*moisture*days_incubated 

            0 0 0 0 0    0 0 0 0 0    1 0 0 0 0   -1 0 0 0 0; 

* Additional estimate statements can be written for comparisons of temperature 

  and moisture at each of Days 1, 7, 14, 28; 

* The one estimate statement below is for testing the two way interaction 

  between temperature and moisture at Day 0; 

  estimate 'interaction between moisture and temperature at Day 1' 

           temperature*moisture*days_incubated 

       0 1 0 0 0    0 -1 0 0 0    0 -1 0 0 0    0 1 0 0 0; 

    * The two estimate statements below are appropriate if the interaction  

  between moisture and temperature at Day 1 IS NOT significant, then 

  compare temperatures (averaged over moisture) and compare  

  compare moistures (averaged over temperature); 

  estimate 'compare temperatures 5 versus 30 (averaged over moistures) at Day 1' 

           temperature*moisture*days_incubated 

            0 .5 0 0 0    0 .5 0 0 0   0 -.5 0 0 0   0 -.5 0 0 0; 

  estimate 'compare moistures dry versus wet (averaged over temperature) at Day 1' 

           temperature*moisture*days_incubated 

            0 .5 0 0 0   0 -.5 0 0 0   0 .5 0 0 0    0 -.5 0 0 0; 

  estimate 'interaction between moisture and temperature at Day 7' 

           temperature*moisture*days_incubated 

       0 0 1 0 0    0 0 -1 0 0    0 0 -1 0 0    0 0 1 0 0; 

 

       * The two estimate statements below are appropriate if the 

interaction  

  between moisture and temperature at Day 7 IS NOT significant, then 

  compare temperatures (averaged over moisture) and compare  

  compare moistures (averaged over temperature); 

  estimate 'compare temperatures 5 versus 30 (averaged over moistures) at Day 7' 

           temperature*moisture*days_incubated 

            0 0 .5 0 0    0 0 .5 0 0   0 0 -.5 0 0   0 0 -.5 0 0; 

  estimate 'compare moistures dry versus wet (averaged over temperature) at Day 7' 

           temperature*moisture*days_incubated 

            0 0 .5 0 0   0 0 -.5 0 0   0 0 .5 0 0    0 0 -.5 0 0; 

  estimate 'interaction between moisture and temperature at Day 14' 

           temperature*moisture*days_incubated 

       0 0 0 1 0    0 0 0 -1 0    0 0 0 -1 0    0 0 0 1 0; 

* The four estimate statements below are appropriate if the two-way  

  interaction between moisture and temperature at Day 14 IS significant. 

  Then compare temperatures at each level of moisture and 

    compare moistures at each level of temperature; 

  estimate 'compare temp of 5 versus temp of 30 at moisture=dry, Day = 14' 

           temperature*moisture*days_incubated 

      0 0 0 1 0    0 0 0 0 0    0 0 0 -1 0   0 0 0 0 0; 

  estimate 'compare temp of 5 versus temp of 30 at moisture=WET and Day = 14' 
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           temperature*moisture*days_incubated 

      0 0 0 0 0    0 0 0 1 0    0 0 0 0 0   0 0 0 -1 0;  

  estimate 'compare moisture of dry versus wet at temp = 5, Day = 14' 

           temperature*moisture*days_incubated 

            0 0 0 1 0   0 0 0 -1 0    0 0 0 0 0   0 0 0 0 0; 

  estimate 'compare moisture of dry versus wet at temp = 30, Day = 14' 

           temperature*moisture*days_incubated 

            0 0 0 0 0    0 0 0 0 0    0 0 0 1 0   0 0 0 -1 0; 

  estimate 'interaction between moisture and temperature at Day 28' 

           temperature*moisture*days_incubated 

       0 0 0 0 1    0 0 0 0 -1    0 0 0 0 -1    0 0 0 0 1; 

    * The four estimate statements below are appropriate if the two-way  

  interaction between moisture and temperature at Day 28 IS significant. 

  Then compare temperatures at each level of moisture and 

    compare moistures at each level of temperature; 

  estimate 'compare temp of 5 versus temp of 30 at moisture=dry, Day = 28' 

           temperature*moisture*days_incubated 

      0 0 0 0 1    0 0 0 0 0    0 0 0 0 -1   0 0 0 0 0; 

  estimate 'compare temp of 5 versus temp of 30 at moisture=WET and Day = 28' 

           temperature*moisture*days_incubated 

      0 0 0 0 0    0 0 0 0 1    0 0 0 0 0   0 0 0 0 -1;  

  estimate 'compare moisture of dry versus wet at temp = 5, Day = 28' 

           temperature*moisture*days_incubated 

            0 0 0 0 1   0 0 0 0 -1    0 0 0 0 0   0 0 0 0 0; 

  estimate 'compare moisture of dry versus wet at temp = 30, Day = 28' 

           temperature*moisture*days_incubated 

            0 0 0 0 0    0 0 0 0 0    0 0 0 0 1   0 0 0 0 -1; 

run;  
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Appendix 4: SAS output for linear mixed effects model 

Table A4A: Raw data for survival experiments 

Obs Rep Temperature Moisture Experiment days_incubated Tube_ID Per_H20 DryWeight Calculation log10 

1 A 30 Dry 30D_A 0 ADM-A 9.03% 14.62 7.89E+06 6.90 

2 A 30 Dry 30D_A 0 ADM-B 9.03% 14.54 7.79E+06 6.89 

3 A 30 Dry 30D_A 0 ADM-C 9.03% 14.53 7.50E+06 6.88 

4 A 30 dry 30D_A 1 ADM-A 9.03% 14.51 2.04E+06 6.31 

5 A 30 dry 30D_A 1 ADM-B 9.03% 14.56 2.11E+06 6.32 

6 A 30 dry 30D_A 1 ADM-C 9.03% 14.56 2.40E+06 6.38 

7 A 30 dry 30D_A 7 ADM-A 9.03% 14.58 3.12E+05 5.49 

8 A 30 dry 30D_A 7 ADM-B 9.03% 14.58 1.09E+05 5.04 

9 A 30 dry 30D_A 7 ADM-C 9.03% 14.48 1.97E+05 5.30 

10 A 30 dry 30D_A 14 ADM-A 9.03% 14.49 1.53E+04 4.19 

11 A 30 dry 30D_A 14 ADM-B 9.03% 14.55 1.29E+04 4.11 

12 A 30 dry 30D_A 14 ADM-C 9.03% 14.58 8.27E+03 3.92 

13 A 30 dry 30D_A 28 ADM-B 9.03% 14.56 1.31E+04 4.12 

14 A 30 dry 30D_A 28 ADM-C 9.03% 14.57 1.66E+04 4.22 
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15 B 30 dry 30D_B 0 ADM-A 9.86% 14.37 1.99E+07 7.30 

16 B 30 dry 30D_B 0 ADM-B 9.86% 14.56 2.03E+07 7.31 

17 B 30 dry 30D_B 0 ADM-C 9.86% 14.40 2.76E+07 7.44 

18 B 30 dry 30D_B 1 ADM-A 9.86% 14.39 2.05E+07 7.31 

19 B 30 dry 30D_B 1 ADM-B 9.86% 14.39 2.43E+07 7.39 

20 B 30 dry 30D_B 1 ADM-C 9.86% 14.33 2.06E+07 7.31 

21 B 30 dry 30D_B 7 ADM-A 9.86% 14.47 9.06E+06 6.96 

22 B 30 dry 30D_B 7 ADM-B 9.86% 14.47 9.17E+06 6.96 

23 B 30 dry 30D_B 7 ADM-C 9.86% 14.39 8.08E+06 6.91 

24 B 30 dry 30D_B 14 ADM-A 9.86% 14.52 7.43E+06 6.87 

25 B 30 dry 30D_B 14 ADM-B 9.86% 14.41 9.18E+06 6.96 

26 B 30 dry 30D_B 14 ADM-C 9.86% 14.37 8.69E+06 6.94 

27 B 30 dry 30D_B 28 ADM-A 9.86% 14.42 1.06E+06 6.02 

28 B 30 dry 30D_B 28 ADM-B 9.86% 14.33 2.58E+06 6.41 

29 B 30 dry 30D_B 28 ADM-C 9.86% 14.47 2.34E+06 6.37 

30 B 5 wet 5W_B 0 AWM-A 36.31% 10.18 4.77E+07 7.68 

31 B 5 wet 5W_B 0 AWM-B 36.31% 10.24 5.21E+07 7.72 

32 B 5 wet 5W_B 0 AWM-C 36.31% 10.16 5.31E+07 7.73 
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33 B 5 wet 5W_B 1 AWM-A 36.31% 10.23 7.82E+07 7.89 

34 B 5 wet 5W_B 1 AWM-B 36.31% 10.32 7.51E+07 7.88 

35 B 5 wet 5W_B 1 AWM-C 36.31% 10.23 9.16E+07 7.96 

36 B 5 wet 5W_B 7 AWM-A 36.31% 10.20 4.67E+07 7.67 

37 B 5 wet 5W_B 7 AWM-B 36.31% 10.20 3.53E+07 7.55 

38 B 5 wet 5W_B 7 AWM-C 36.31% 10.17 4.47E+07 7.65 

39 B 5 wet 5W_B 14 AWM-A 36.31% 10.21 2.74E+07 7.44 

40 B 5 wet 5W_B 14 AWM-B 36.31% 10.18 2.84E+07 7.45 

41 B 5 wet 5W_B 14 AWM-C 36.31% 10.17 2.22E+07 7.35 

42 B 5 wet 5W_B 28 AWM-A 36.31% 10.22 3.11E+07 7.49 

43 B 5 wet 5W_B 28 AWM-B 36.31% 10.18 1.90E+07 7.28 

44 B 5 wet 5W_B 28 AWM-C 36.31% 10.18 3.43E+07 7.54 

45 A 5 wet 5W_A 0 AWM-A 36.51% 10.10 3.61E+07 7.56 

46 A 5 wet 5W_A 0 AWM-B 36.51% 10.15 3.00E+07 7.48 

47 A 5 wet 5W_A 0 AWM-C 36.51% 10.13 3.01E+07 7.48 

48 A 5 wet 5W_A 1 AWM-A 36.51% 10.15 3.50E+07 7.54 

49 A 5 wet 5W_A 1 AWM-B 36.51% 10.10 3.55E+07 7.55 

50 A 5 wet 5W_A 1 AWM-C 36.51% 10.10 3.24E+07 7.51 
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51 A 5 wet 5W_A 7 AWM-A 36.51% 10.12 3.11E+07 7.49 

52 A 5 wet 5W_A 7 AWM-B 36.51% 10.12 2.92E+07 7.47 

53 A 5 wet 5W_A 7 AWM-C 36.51% 10.13 2.10E+07 7.32 

54 A 5 wet 5W_A 14 AWM-A 36.51% 10.10 1.82E+07 7.26 

55 A 5 wet 5W_A 14 AWM-B 36.51% 10.16 1.69E+07 7.23 

56 A 5 wet 5W_A 14 AWM-C 36.51% 10.12 1.66E+07 7.22 

57 A 5 wet 5W_A 28 AWM-A 36.51% 10.22 1.86E+07 7.27 

58 A 5 wet 5W_A 28 AWM-B 36.51% 10.18 1.78E+07 7.25 

59 A 5 wet 5W_A 28 AWM-C 36.51% 10.13 2.13E+07 7.33 

60 B 30 wet 30W_B 0 AWM-A 37.27% 10.05 3.89E+07 7.59 

61 B 30 wet 30W_B 0 AWM-B 37.27% 10.00 3.84E+07 7.58 

62 B 30 wet 30W_B 0 AWM-C 37.27% 10.00 4.38E+07 7.64 

63 B 30 wet 30W_B 1 AWM-A 37.27% 10.12 5.77E+08 8.76 

64 B 30 wet 30W_B 1 AWM-B 37.27% 10.02 9.83E+08 8.99 

65 B 30 wet 30W_B 1 AWM-C 37.27% 9.99 8.68E+07 7.94 

66 B 30 wet 30W_B 7 AWM-A 37.27% 10.02 1.90E+08 8.28 

67 B 30 wet 30W_B 7 AWM-B 37.27% 10.02 5.45E+08 8.74 

68 B 30 wet 30W_B 7 AWM-C 37.27% 9.97 1.40E+08 8.15 



70 
 

 
 

69 B 30 wet 30W_B 14 AWM-A 37.27% 10.04 2.85E+08 8.45 

70 B 30 wet 30W_B 14 AWM-B 37.27% 10.02 1.36E+09 9.13 

71 B 30 wet 30W_B 14 AWM-C 37.27% 10.00 9.52E+08 8.98 

72 B 30 wet 30W_B 28 AWM-A 37.27% 10.00 3.43E+08 8.53 

73 B 30 wet 30W_B 28 AWM-B 37.27% 10.02 1.30E+07 7.11 

74 B 30 wet 30W_B 28 AWM-C 37.27% 10.06 3.92E+07 7.59 

75 B 5 dry 5D_B 0 ADM-A 8.97% 14.58 3.07E+07 7.49 

76 B 5 dry 5D_B 0 ADM-B 8.97% 14.58 2.66E+07 7.42 

77 B 5 dry 5D_B 0 ADM-C 8.97% 14.63 2.63E+07 7.42 

78 B 5 dry 5D_B 1 ADM-A 8.97% 14.57 5.62E+07 7.75 

79 B 5 dry 5D_B 1 ADM-B 8.97% 14.63 5.30E+07 7.72 

80 B 5 dry 5D_B 1 ADM-C 8.97% 14.66 5.72E+07 7.76 

81 B 5 dry 5D_B 7 ADM-A 8.97% 14.48 3.00E+07 7.48 

82 B 5 dry 5D_B 7 ADM-B 8.97% 14.48 3.38E+07 7.53 

83 B 5 dry 5D_B 7 ADM-C 8.97% 14.51 3.26E+07 7.51 

84 B 5 dry 5D_B 14 ADM-A 8.97% 14.64 1.91E+07 7.28 

85 B 5 dry 5D_B 14 ADM-B 8.97% 14.66 1.67E+07 7.22 

86 B 5 dry 5D_B 14 ADM-C 8.97% 14.54 1.97E+07 7.29 
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87 B 5 dry 5D_B 28 ADM-A 8.97% 14.50 2.26E+07 7.35 

88 B 5 dry 5D_B 28 ADM-B 8.97% 14.51 2.84E+07 7.45 

89 B 5 dry 5D_B 28 ADM-C 8.97% 14.59 2.61E+07 7.42 

90 A 5 dry 5D_A 0 ADMA 9.37% 14.53 1.92E+07 7.28 

91 A 5 dry 5D_A 0 ADMB 9.37% 14.42 2.03E+07 7.31 

92 A 5 dry 5D_A 0 ADMC 9.37% 14.46 1.80E+07 7.26 

93 A 5 dry 5D_A 1 ADMA 9.37% 14.47 2.06E+07 7.31 

94 A 5 dry 5D_A 1 ADMB 9.37% 14.46 1.51E+07 7.18 

95 A 5 dry 5D_A 1 ADMC 9.37% 14.41 2.05E+07 7.31 

96 A 5 dry 5D_A 7 ADMA 9.37% 14.44 2.00E+07 7.30 

97 A 5 dry 5D_A 7 ADMB 9.37% 14.44 2.09E+07 7.32 

98 A 5 dry 5D_A 7 ADMC 9.37% 14.48 1.78E+07 7.25 

99 A 5 dry 5D_A 14 ADMA 9.37% 14.46 2.92E+07 7.47 

100 A 5 dry 5D_A 14 ADMB 9.37% 14.47 1.05E+07 7.02 

101 A 5 dry 5D_A 14 ADMC 9.37% 14.48 9.57E+06 6.98 

102 A 5 dry 5D_A 28 ADMA 9.37% 14.41 9.91E+06 7.00 

103 A 5 dry 5D_A 28 ADMB 9.37% 14.41 1.04E+07 7.02 

104 A 5 dry 5D_A 28 ADMC 9.37% 14.42 1.09E+07 7.04 
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105 A 30 wet 30W_A 0 AWM-A 37.40% 10.05 4.39E+07 7.64 

106 A 30 wet 30W_A 0 AWM-B 37.40% 10.03 4.84E+07 7.68 

107 A 30 wet 30W_A 0 AWM-C 37.40% 9.95 3.60E+07 7.56 

108 A 30 wet 30W_A 1 AWM-A 37.40% 10.05 1.23E+07 7.09 

109 A 30 wet 30W_A 1 AWM-B 37.40% 9.98 1.97E+07 7.29 

110 A 30 wet 30W_A 1 AWM-C 37.40% 9.99 1.62E+07 7.21 

111 A 30 wet 30W_A 7 AWM-A 37.40% 9.98 6.26E+08 8.80 

112 A 30 wet 30W_A 14 AWM-B 37.40% 10.03 7.91E+08 8.90 

113 A 30 wet 30W_A 14 AWM-C 37.40% 10.00 6.67E+08 8.82 

114 A 30 wet 30W_A 28 AWM-B 37.40% 10.00 8.89E+07 7.95 

115 A 30 Wet 30W_A 28 AWM-C 37.40% 10.06 3.47E+07 7.54 
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