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Abstract 

Student learning is the primary desired outcome of a college education. To 

understand how educational programming and curricula affect students, colleges and 

universities must collect evidence of student learning gain. In this study, a longitudinal 

design was employed to investigate how a math and science general education curriculum 

impacted college students’ quantitative and scientific reasoning. Quantitative and 

scientific reasoning gain scores were computed and predicted from personal (i.e., prior 

knowledge, gender) and curriculum (i.e., number of completed courses in the domain) 

characteristics to uncover what factors relate to learning gain. Collapsing across personal 

and curriculum variables, gain scores were moderate (average of 3.72 out of 66 points) 

with little variation and were not predicted by personal or curriculum characteristics. 

Disaggregating gain scores by coursework revealed that students had modest learning 

gains after completing one course but did not gain with additional coursework. Given 

performance on the quantitative reasoning test has no personal consequence for the 

students (i.e., low-stakes test), low examinee effort could attenuate student learning gain 

estimates. Therefore, gain scores and gain score predictions were estimated again after 

data from unmotivated students were removed (i.e., motivation filtering). Test-specific 

and test-session specific motivation measures were used to filter unmotivated students; 

results were compared to determine if they are measure-dependent. The learning gain 

estimates derived from using the two motivation measures were not different from each 

other or the unfiltered estimates. Faculty expectations of learning gain estimates were 

assessed. Faculty overestimated the learning gains of students with quantitative and 
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scientific reasoning coursework. Findings imply that students are not learning as much as 

expected or desired from their coursework and further investigation is necessary to 

explain why.



 
 

 
 

CHAPTER ONE 

 

Introduction 

 

A college degree is more than a piece of paper; it is a time capsule of the 

academic experiences intended to form students into professionals, thinkers, and leaders. 

Stakeholders expect these experiences to lead to positive educational outcomes for 

students. Specifically, students, faculty, and higher education administration typically 

believe university curricula should lead to gains in knowledge and skill. Scant data exist, 

however, to support these beliefs. Educational researchers (e.g., Ewell, 1983; 1985) and 

the U.S. Department of Education (U.S. Department of Education, 2006) have been 

calling for the collection of student learning data for decades. As Astin and colleagues 

noted in the mid-nineties, “As educators, we have a responsibility to the publics that 

support or depend on us to provide information about the ways in which our students 

meet goals and expectations.” (Astin et al., 1996, p. 3). 

If faculty know how much or little students are learning, they may be energized to 

make improvements to curricula (Fulcher, Good, Coleman, & Smith, 2014). It is 

necessary that estimates of learning are of high psychometric quality to accurately inform 

curriculum modifications. Surprisingly, few institutions collect data that allow faculty to 

understand how much students are learning and what factors contribute to this academic 

growth. In this study, I estimated student learning gain across several cohorts of college 

students, and determined how an institution’s curriculum affected learning gain above 

and beyond personal characteristics (i.e., prior academic ability and gender). 

Additionally, faculty evaluated the leaning gain estimates to determine if the estimates 

aligned with their expectations. Faculty also provided suggestions on how to improve 
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learning. The results from this study should facilitate greater understanding of learning in 

college and encourage a culture of learning improvement. 

Conceptualizing and Measuring Student Learning  

 Before delving into the literature on how students’ skills and knowledge are 

currently assessed, I clarify the distinctions between student performance, student 

learning gain, and learning improvement. I also discuss how learning gain should be 

estimated to best support inferences about student learning.  

Student performance refers to knowledge and skills students have at the time of 

assessment. To measure student performance, practitioners collect data on proficiency at 

one point in time (e.g., students’ math skills during the spring semester of their second 

year). Additional data regarding students’ prior proficiency is not necessary to assess 

performance.  

Student learning, on the other hand, refers to change in knowledge and skills 

within individuals. A positive change in proficiency is a learning gain. Thus, practitioners 

must collect data on students’ prior proficiency as well as current proficiency (e.g., 

students’ math skills during the spring semesters of the first and second year). Estimates 

of student performance and estimates of student learning are closely intertwined – the 

difference in a student’s performance across multiple assessments is the student’s 

estimated learning gain.  

Student learning gains are also distinct from, yet related to, learning improvement 

(see Figure 1). Learning improvement is conceptualized as an increase in student learning 

gains between a cohort that experienced a modified program/curriculum and a cohort that 

experienced the original program/curriculum (Fulcher et al., 2014). These modifications 



3 
 

 

to improve the program are informed by previous student learning assessment results. 

After students have completed the modified program/curriculum, the program/curriculum 

is then reassessed to determine if the modifications increased student learning gains. 

Thus, the term ‘learning improvement’ applies to programs that have experienced 

effective program/curriculum modifications. The term ‘learning gains’, on the other hand, 

applies to students. However, these student-level learning gains may be aggregated across 

students participating in a particular program or who are enrolled at a specific institution. 

The comparison of aggregate student-level learning gains before and after program 

modifications inform inferences regarding learning improvement. Thus, student-level 

learning gains of different cohorts must be computed and assessed before and after 

interventions. The difference between these cohorts’ learning gains is used to determine 

the degree of improvement.  

To assess learning gains, faculty must select the appropriate data collection and 

measurement (i.e., experimental) design. Longitudinal designs are most appropriate 

because they allow faculty to track students over time and thus obtain an estimate of 

learning (Castellano & Ho, 2013). In a longitudinal design, students complete the same 

test or psychometrically equivalent tests both before (pretest) and after (posttest) 

completing coursework. Faculty can then calculate the number of additional items/tasks 

students completed correctly to determine how much students are learning. This 

difference between pretest and posttest scores is known as a raw difference score, gain 

score, or unstandardized learning gain estimate. Faculty can use this unstandardized 

estimate to discuss gains in terms of the test’s metric (e.g., students, on average, gained 
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four points on an 80-item test)1. The magnitude of this estimated gain can be evaluated by 

comparing the average gain score of students who have not completed the 

program/curriculum (i.e., comparison group) to the average gain score of students who 

have completed the program/curriculum (i.e., treatment group). Preferably, gain scores 

would also be compared to a predetermined faculty standard or expectation to determine 

if students’ learning gains are sufficient.  

To evaluate the magnitude of the gain scores, faculty need context regarding the 

tests’ stakes. Large-scale, low-stakes tests are regularly used to assess students’ abilities 

(Ewell, 2004). Students may not expend effort on low-stakes assessments because there 

are no personal consequences attached to poor test scores. Performance estimates (Wise 

& DeMars, 2005) and learning gain estimates (Finney, Sundre, Swain, & Williams, 2016; 

Wise & DeMars, 2010) have been shown to be attenuated by low test-taking motivation. 

Without correction for low test-taking motivation, faculty may come to the erroneous 

conclusion that students are not learning from coursework. Faculty or assessment 

practitioners should therefore control for low test-taking motivation to produce more 

valid estimates of student learning gain. These corrected estimates can then be regressed 

on personal and curriculum characteristics to better understand the effect of coursework 

on learning.  

Taking into consideration these practices, I compared estimated learning gains of 

students with quantitative and scientific reasoning coursework to students without such 

                                                           
1 The average raw difference/gain score can be divided by the estimated standard 

deviation of scores to produce Cohen’s d, the standardized difference between pretest and 

posttest scores (Cohen, 1992). These standardized effect sizes are useful for comparing 

learning gain estimates computed from different tests. 
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coursework, after controlling for low test-taking motivation. Moreover, faculty compared 

these empirical learning gain estimates to their expected and desired learning gains and 

provided reactions. 

Inferences about Learning Given Current Assessment Practice 

Faculty want to infer from assessment data that students are learning from 

coursework. Unfortunately, the data institutions currently gather do not allow for such 

inferences. Institutions often simply assess student performance (U.S. Department of 

Education, 2006) and attempt to infer student learning from data collected using cross-

sectional designs (Liu, 2011b). In these designs, a group of first-year students is typically 

compared to an independent group of upper-class students who have completed particular 

coursework. To make valid inferences about learning gains from this type of design, the 

prior academic ability (and other personal characteristics) of the upper-class group must 

be equivalent to the academic ability (and other personal characteristics) of the first-year 

group. However, this assumption, and therefore the decision to employ a cross-sectional 

design, may be untenable. That is, the difference between the two groups is most 

interpretable when this assumption is met (and the assumption is more often met by 

longitudinal designs). Moreover, the data to test this assumption (pretest scores for both 

groups) are likely not gathered. If one had the initial academic ability of the students to 

check this assumption, there would be no need for the cross-sectional design. Instead, 

learning gains could be computed for the upper-class group who experienced the 

coursework (i.e., a longitudinal design could be employed). 

That is not to say all higher education institutions use cross-sectional designs to 

gauge student learning. In 2006, the U.S. Department of Education encouraged states to 
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collect student learning data via the Spellings Report (U.S. Department of Education, 

2006). To accommodate this request, the state of Virginia briefly required its institutions 

to report how much they contributed to student learning and development (State Council 

of Higher Education for Virginia, 2007). Most Virginia institutions did so with a 

longitudinal design (Erwin & DeFilippo, 2010). However, little information exists on 

whether these institutions continue to use longitudinal designs (i.e., assess learning gain), 

or have reverted to cross-sectional designs (i.e., assess performance).  

Although the institutions themselves may not employ longitudinal designs, 

researchers have investigated student learning gains using this methodology. For 

example, Blaich and Wise, lead researchers on the Wabash National Study, collected 

student learning data over a span of four years from 19 American colleges and 

universities (Blaich & Wise, 2011). Their results indicated that, after four years, students’ 

estimated critical thinking gain was 0.44 standard deviations. Though the researchers 

measured students’ critical thinking skills at the end of each academic year, they did not 

link these skills to critical thinking coursework. Thus, they estimated the overall effect of 

college on students’ critical thinking.  

Because students may be learning from particular coursework, or their learning 

gains might be influenced by other variables (e.g., maturation, out of class activities), it is 

imperative that faculty who claim their students are learning from particular courses 

connect student learning gains to this coursework. Moreover, by connecting learning 

gains to coursework, faculty may be better able to direct resources to courses that need 

improvement.  
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Nonetheless, connecting learning gains to coursework, albeit necessary, is not 

sufficient for making valid statements about how courses affect student learning. Faculty 

can only make limited claims given student differences on personal characteristics (e.g., 

prior academic ability, motivation), which often affect how or when students complete 

the coursework2. Consequently, it is difficult to separate the effects of personal 

characteristics from the effects of coursework when examining learning gains 3. In their 

book Academically Adrift, Arum and Roksa (2009) stated that educational researchers 

need to measure learning longitudinally and investigate the effects of both curriculum 

and personal characteristics on learning gains. Informing the need for the current study, 

the authors also remarked how few researchers were conducting such studies. A review 

of the literature seems to support this statement. The Wabash National Study investigated 

how personal and curriculum characteristics related to student learning gain, finding that 

prior academic ability, gender, and type of coursework (though type of coursework was 

not specified) moderated student learning gains (Pascarella & Blaich, 2013).  

Most studies investigating the impact of curriculum and personal characteristics 

examine performance rather than student learning gains (e.g., Bray, Pascarella, & 

Pierson, 2004). Some researchers predict upper-class performance from these 

                                                           
2  Random assignment is one experimental solution that effectively minimizes differences 

in personal characteristics among student groups (Shadish, et al., 2002). However, 

randomly assigning students to courses is hardly feasible in higher education because 

students enroll in courses relevant to their majors and career goals. 
3 Though true experimental designs that employ randomization to control for confounds 

are the best methods available for making causal statements about the effects of 

coursework, other, albeit inferior, solutions are available. For instance, statistical 

modeling (i.e., regression) can be used to partition the effects of coursework on student 

learning gains from those of personal characteristics. This partitioning of variance does 

not support causal inferences unless students are randomly assigned to classes.  
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characteristics and then compare the predicted performance to students’ actual 

performance; they interpret this residual as “a measure of interpretable change” (e.g., 

Herzog, 2011, p. 28). However, this residual score (i.e., difference between predicted and 

actual performance) is not a learning gain estimate. The residual score only represents 

how well the model with those specific predictors was able to predict actual performance. 

A better estimate of learning gain is the difference between posttest performance and 

pretest performance, which will be computed in this study. Without actual estimates of 

learning gains, faculty and practitioners likely cannot make valid claims about how 

curriculum affects student learning gains.  

Exceptional Examples of Learning Gain Research 

Given contemporary assessment practices, most faculty, assessment practitioners, 

and policy makers cannot make valid claims about how college courses influence student 

learning. In the section below, I describe three studies that employ designs closest to the 

ideal methods discussed earlier. (i.e., assess learning gains longitudinally and investigate 

what characteristics affect learning gains). Each study can only support limited claims 

about how coursework affects learning due to inadequate or absent modeling of personal 

or curriculum characteristics, inadequate or absent correction for low test-taking 

motivation, or other methodological flaws. Thus, these studies and their limitations 

informed the need for the current study.  

Pastor, Kaliski, and Weiss (2007). Pastor, Kaliski, and Weiss (2007) estimated 

history and political science learning gains across five cohorts of college students. As part 

of the university’s general education curriculum, students were required to complete two 

history and political science courses before graduation. However, credit for these two 
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courses could be obtained through Advanced Placement (AP)/International Baccalaureate 

(IB) or transfer credit. Given no significant demographic differences among the cohorts, 

the authors conducted a meta-analysis to estimate the average history/political science 

learning gain. Students’ history/political science knowledge was assessed using an 81-

item test during a university-wide assessment of general education outcomes. This test 

was administered once before the students began their first year of college and again 

halfway through their second year. The authors computed both raw and standardized 

difference scores4 and related these learning gain estimates to coursework. Specifically, 

Pastor and colleagues (2007) examined how much students learned after completing 0, 1, 

or 2 courses in the domain. Additionally, the authors investigated how completing 

coursework outside the university (i.e., AP/IB credit, transfer credit) affected learning 

gains.  

After a year and a half, students who completed either the history or political 

science course had moderate standardized gains (d = 0.41 or 0.54). This standardized 

effect translates to an average increase of 4 points on the 81-item test. Students who 

completed both courses at the university had larger gains: d = 0.90, or an average 

increase of 7 points on the test. In contrast, students who received outside credit (i.e., 

AP/IB, transfer) had smaller learning gains (d = 0.04 and 0.18, respectively). The authors 

postulated that these students, who scored higher on the pretest than their peers, likely 

had smaller gains because they already completed coursework in that domain. Thus, these 

                                                           
4 Cohen’s d was computed as the raw pretest/posttest difference divided by the standard 

deviation of the pretest scores. 
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students had more history or political science knowledge and therefore less to master by 

posttest.  

Though the authors employed adequate methodology for investigating learning 

gains, the study is subject to several limitations. Pastor and colleagues (2007) did not 

examine how personal characteristics or interactions between personal characteristics and 

curriculum exposure affect learning gains. The authors also did not assess the influence 

of test-taking motivation on gain scores. Thus, it is possible that the reported gains are 

actually underestimates of students’ history/political science gains. The domain of 

interest, though not a limitation, is also a consideration. That is, history/political science 

learning gains may not need to be as heavily investigated as other domains. In fact, the 

Spellings Commission explicitly suggested more research on math and science learning 

gains (U.S. Department of Education, 2006). In the current study, I addressed the 

aforementioned limitations of Pastor et al. (2007) by assessing how students’ 

characteristics and test-taking motivation affects these estimates in the content domain of 

quantitative and scientific reasoning. Similar to Pastor and colleagues (2007), though, I 

examined how coursework influenced learning gains across several cohorts.  

Roohr, Liu, and Liu (2016). A decade after the Spellings Report and the Pastor 

et al. (2007) study, Roohr, Liu, and Liu (2016) investigated student learning gains across 

three cohorts of college students. Longitudinal data were gathered from students who 

completed the short-form of the ETS Proficiency Profile (EPP) in their first year of 

college and again after one/two years (cohort one; N = 44), three years (cohort two; N = 

39), or four/five years (cohort three; N = 85). In other words, Roohr and colleagues 

conducted three longitudinal analyses, one for each cohort. As the researchers explained, 
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the three cohorts were convenience samples. For each of the three cohorts, the 

researchers estimated unstandardized and standardized learning gains in the domains of 

critical thinking, reading, writing, and math5. Unlike Pastor and colleagues (2007), Roohr 

and colleagues (2016) did not examine how coursework impacted learning gains. Instead, 

they investigated how personal characteristics affected gain scores in each cohort across 

the four domains. Specifically, Roohr and colleagues (2016) predicted gain scores from 

gender, race, STEM major status, prior academic ability, and time in college.  

On the overall test (i.e., collapsing across the four domains), students’ average test 

scores ranged from about 451 points to about 459 points. Within each domain-specific 

test, students’ average scores ranged from about 113 points to about 123 points. 

Collapsing across the domains, the researchers found that students had a gain of d = 0.13 

after one/two years of college and an overall gain of d = 0.61 after four or five years of 

college. These standardized gains translate to raw score gains of 1.80 points and 10.88 

points, respectively. With respect to domain, students made similar gains reading (d = 

0.46 or 2.63 points after three years; d = 0.41 or 2.85 points after four/five years) and 

math (d = 0.42 or 2.72 points after three years; d = 0.41 or 2.70 points after four/five 

years). Roohr and colleagues (2016) found that prior academic ability (i.e., first-year 

GPA) statistically significantly but not practically predicted writing and reading gains (3-

                                                           
5 Cohen’s d estimates were computed by dividing the gain score by the standard deviation 

of the difference scores. Although desirable to compare the gains that Roohr and 

colleagues estimated to those from the Pastor and colleagues study, the two research 

teams used different standard deviations when computing d. Roohr and colleagues used 

the standard deviation of the difference scores, which put the effects on the gain score 

metric. Pastor and colleagues used the standard deviation of the pretest scores, which put 

the effects on the raw score metric. The two effect sizes are on different metrics; they 

cannot be compared. See Chapter 2 for a detailed explanation. 
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4% of variance explained in gains), and time spent in college statistically significantly but 

not practically predicted reading gains (4% of variance explained in gains). No personal 

characteristics statistically significantly or practically predicted math or critical thinking 

gains (e.g., gender explained 1% of variance in gains).  

Although unclear why students differed in learning gains across years in school, 

one can hazard a few guesses. The difference in learning gain between students with 

one/two years of exposure and the other cohorts could be due to sample composition due 

to attrition. Students who completed the posttest two years after the pretest were not the 

same students who completed the posttest five years after the pretest. Thus, students in 

the four/five year cohort did not contain those students who left the university due to poor 

grades, which the one/two year cohort is likely to contain. Consequently, students in the 

one/two year cohort may vary more in their academic ability  

It is equally likely that the difference in learning gains between cohorts is a 

function of maturation, coursework, or other unmeasured variables. The researchers 

speculated coursework may affect student learning gains. However, they examined how 

length of time in college, rather than curriculum, affects learning gain. Furthermore, 

students in this study were not randomly assigned to complete the test at different time 

points, which may have led to unbalanced attributes among the groups (e.g., motivation). 

In their discussion, they speculated that motivation may affect learning gain and 

recommended that motivation be examined in future research. In the current study, I 

examined how coursework related to student learning gains while holding length in time 

in college constant. Moreover, per Roohr and colleagues’ (2016) recommendation, I 

investigated the effect of test-taking motivation on learning gain estimates.  
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Hathcoat, Sundre, and Johnston (2015). While Roohr and colleagues (2016) 

were conducting their study, Hathcoat, Sundre, and Johnston (2015) were investigating 

learning gains in quantitative and scientific reasoning. As part of the university’s general 

education curriculum, students at the institution were required to complete 10 credit 

hours of quantitative and scientific reasoning courses. Two relatively large cohorts of 

students (N = 761, N = 867) were randomly assigned at the beginning of their first year to 

complete a 66-item quantitative and scientific reasoning test. They completed this test 

again halfway through their sophomore year of college. Similar to Pastor and colleagues 

(2007), Hathcoat and colleagues (2015) examined how fulfillment of quantitative and 

scientific curriculum coursework related to learning gains. They also examined estimated 

learning gains of students who received credit from other institutions. Although not 

reported in the study, the authors used motivation filtering to remove students from the 

sample (Hathcoat, personal communication, September 2016). This study design 

(sampling, assignment, and length of time) is almost identical to Pastor et al. (2007) 

except for the difference in content domain and use of motivation filtering.  

After a year and a half of exposure to college coursework, which may have 

included quantitative and scientific courses, students had moderate estimated 

standardized gains (d = 0.42 or 0.67, depending on the cohort)6, which corresponded to 

point increases of 3.13 to 3.23 points. Students who completed the 10 credit hour 

requirement also had moderate estimated standardized gains (d = 0.46 or 0.52, depending 

                                                           
6 Unfortunately, the researchers did not specify the denominator used to compute the 

standardized gain estimates. 
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on the cohort), which corresponded to point increases of 3.49 and 2.97 points, 

respectively.  

Estimated learning gains did not increase with additional quantitative and 

scientific reasoning coursework. In one cohort, students who completed the curriculum 

requirements (i.e., 10 credit hours) gained on average only 0.44 more points compared to 

those who had partially fulfilled the requirements. In the other cohort, students who 

partially fulfilled requirements gained on average 0.35 points more than those who had 

completed the curriculum.  

A few methodology concerns must also be addressed. First, the authors grouped 

students based on credit hour completion rather than number of courses. If results from 

learning gain studies are used to improve curriculum, it would be simpler for faculty to 

know how many courses, rather than credit hours, should be required to maximize 

learning. Second, akin to Pastor and colleagues (2007), the authors did not examine how 

personal characteristics affect learning gains (e.g., prior ability, gender). The researchers 

examined pretest scores to detect if differences in pretest performance were due to 

students’ prior academic abilities. Results indicated that students who received AP/IB 

credit came to college with higher academic ability than students with transfer credit or 

no credit at all. However, the researchers did not model the interactions between credit 

hour completion status and personal characteristics. Specifically, prior academic ability 

may moderate the impact of credit hour completion on learning gains (e.g., academically 

adept students may learn more than their non-adept peers as each group completes more 

courses). In the current study, I tested interactions among coursework, prior academic 
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ability, and gender when predicting learning gains to assess if learning gain is bivariately 

related to coursework or if the relationship is moderated by personal characteristics.  

The last limitation in Hathcoat et al. (2015) concerns students’ test-taking 

motivation. The level of student motivation was not reported in the published article. In a 

personal conversation, the first author explained that test-taking motivation data was 

collected and used for motivation filtering (J. Hathcoat, personal communication, 

September 2016). This technique entails measuring students’ motivation and removing 

data from students with motivation scores below a set threshold (Sundre & Wise, 2003). 

Hathcoat explained that the filtering methods were inconsistent across cohorts. Students 

were filtered using test-specific motivation scores, using test session-specific motivation 

scores, or if they completed less than 50% of the test. In the published study, however, 

the authors did not report the level of test-taking motivation (e.g., was motivation low for 

the majority of students) or explain the filtering process. In the current study, I report the 

level of test-taking motivation. Test-taking motivation was measured using two 

motivation measures: test specific motivation and test session motivation. Scores from 

both measures were used to filter unmotivated students from the sample and results were 

compared. 

Purpose of the Current Study and Hypotheses 

  Faculty can make more valid inferences about student learning gain and, in turn, 

more informed modifications to curriculum if learning gain data are appropriately 

collected and measured, potential moderators are assessed, and learning gain estimates 

are corrected for low test-taking motivation. However, documentation of appropriate 

measurement and informed curriculum modifications is sparse. In this study, I addressed 
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these issues. I estimated learning gains in quantitative and scientific reasoning for several 

cohorts of students. These students were randomly assigned to complete a quantitative 

and scientific reasoning test at the beginning of their first year of college and again after 

completing three semesters of college coursework. Thus, the samples represent the 

university population. I computed two learning gain estimates: Cohen’s d estimates and 

raw gain scores. Cohen’s d estimates from this study were compared to those from other 

studies (Pastor et al., 2007; Roohr et al., 2016). The unstandardized gain estimates were 

communicated to faculty to determine if desired or expected gains were observed.  

As low test-taking motivation may bias learning gain estimates, I employed 

motivation filtering using scores from test-specific and test session-specific self-report 

motivation measures. I compared results from the unfiltered and filtered samples to 

determine if filtering produced different estimates of learning gain, and if these estimates 

were affected by choice of motivation measure. The unstandardized gain estimates from 

the unfiltered and filtered samples were predicted from personal and curriculum 

characteristics to uncover what characteristics relate to learning gain. Specifically, I 

predicted learning gains from gender, prior academic ability, number of quantitative and 

scientific reasoning courses, and the interactions of these variables.  

Lastly, I discussed the learning gain estimates with faculty. I conducted 

interviews to assess faculty reaction to how the empirically estimated gains compared to 

faculty expectations of learning gains and faculty desired learning gains. 

Hypothesis 1: Collapsing Across Courses, Students Should Have Moderate Gains 

 I predicted that, collapsing across the number of courses completed, students 

experiencing three semesters of college coursework on average would have moderate 
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learning gain in quantitative and scientific reasoning. In math, gains of d = 0.22 have 

been reported after one/two years of college, which may or may not have included math 

coursework (Roohr et al., 2016). In research predating 1991, gains in math and science 

after four years of college have been reported between 0.22 SDs to 0.41 SDs; more recent 

work suggests this gain is about .55 SDs (Pascarella & Terezini, 2005). However, these 

gains were not tied to coursework. Most recently, gains of up to d = 0.32 and 0.48 have 

been reported after three semesters of college, which may or may not have included 

quantitative courses (Hathcoat et al., 2015). 

Given the students in this study completed a 66-item quantitative and scientific 

reasoning test, a moderate gain of 0.5 SD should be associated with an increase of only 

three items correct from pretest to posttest (Hathcoat et al., 2015)7. Support for this 

hypothesis would imply that students are learning in college, although the gain is not tied 

to how many courses students complete in quantitative and scientific reasoning. 

Therefore, testing this hypothesis had little value with respect to learning improvement. 

How much learning gain occurs due to specific coursework, arguably the answer most 

faculty and administrators want to know, requires separating learning gain estimates by 

coursework. This analysis is detailed below.  

Hypothesis 2: Gains Will Increase with Increased Coursework  

I predicted that gains in quantitative and scientific reasoning would increase as 

number of quantitative and scientific courses increased. Research in the domain of 

                                                           
7 In Cohen (1992), the author discusses the magnitude of effects between two independent 

groups. Gains of 0.2 SDs computed the within-groups standard deviation are considered 

small effects, gains of 0.5 SDs are considered moderate and gains of 0.8 SDs are 

considered large. 
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history/political science found that students who completed one course had moderate 

learning gains (d = 0.41 or 0.54) whereas students who completed two courses had large 

learning gains (d = 0.90). However, research in the domain of quantitative and scientific 

reasoning did not find this effect (Hathcoat et al., 2015). Given the incongruity between 

these findings, research is needed to determine how much students are learning from their 

quantitative and scientific reasoning courses. Thus, it is expected that learning gains will 

increase a small to moderate amount with each course that students complete. Support for 

this hypothesis would imply that quantitative and scientific reasoning coursework 

positively affects student learning gains.  

Hypothesis 3: Removing Unmotivated Students Will Increase Learning Gains  

     I predicted that, after removing unmotivated students via motivation filtering, 

estimates of learning gains in quantitative and scientific reasoning would increase. 

Performance estimates have been shown to double in size when unmotivated students are 

removed from the sample (Wise & DeMars, 2005). However, the research on the 

attenuating effects of low motivation on learning gains is mixed. Learning gain estimates 

have been shown to increase by 0.34 SDs when data from unmotivated students are 

removed (Wise & DeMars, 2010). In contrast, low motivation at pretest and posttest has 

been shown to attenuate estimated learning gain by less than 0.25 points on a measure 

where students scored about 222 points on average, even though 11% of the sample was 

removed due to low motivation (Wise, 2015). Researchers who employed motivation 

filtering have reported quantitative and scientific learning gains of 0.46 SDs, 

corresponding to a 3-point increase on a 66-item test, after three semesters of college 

(Hathcoat et al., 2015). Thus, I expected smaller estimates of learning gains before 



19 
 

 

filtering and larger estimates approximating 0.5 SD after filtering. Support for this 

hypothesis would imply that faculty must measure and control for low test-taking 

motivation when estimating student learning gains. 

Hypothesis 4: The Effort Measure Will Not Affect the Magnitude of Gain Scores 

I predicted that learning gain estimates of students with adequate test-specific 

effort would be similar to the learning gain estimates of students with adequate test 

session-specific effort. Test-specific and session-specific motivation measures assess 

similar but distinct types of motivation (r = 0.75), with test-specific effort being slightly 

more correlated with test performance than session-specific effort (r = 0.47 and r = 0.40, 

respectively; Hathcoat et al., 2015). Test-specific motivation measures tend to identify 

more students as unmotivated than test session-specific measures (Hathcoat et al., 2015; 

Swerdzewski et al., 2011). Nonetheless, the two measures produce similar filtered 

performance estimates (Hathcoat et al., 2015; Swerdzewski et al., 2011). The two 

measures also tend to similarly classify students as being motivated or unmotivated 

(78.7% agreement; Hathcoat et al., 2015). Given that students appear to be equally 

motivated on the test and the test battery, it is likely that filtering via test-specific 

measure will not produce larger learning gain estimates. Support for this hypothesis 

would indicate that either measure may be used to make more valid inferences regarding 

learning gains.   

Hypothesis 5: Coursework and Personal Characteristics Will Predict Gains 

I predicted that coursework significantly predicts learning gains after controlling 

for personal characteristics. Higher education researchers investigated the effects of 

personal characteristics on student performance, finding that gender (Pacarella & Blaich, 
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2013) and prior academic ability (Wholuba, 2014) affects student performance. Prior 

academic ability (Grigorenko, Jarvin, Diffley, Goodyear, Shanahan, & Sternberg, 2009) 

and gender (Finney et al., 2016) have also been shown to affect student learning gain 

estimates. Fortunately, some researchers have shown that students’ coursework affects 

student performance after controlling for prior academic ability (Bray et al., 2004). This 

latter result supports the premise of postsecondary education that college coursework 

affects student learning gains above and beyond the effects of personal characteristics. 

Thus, support for this hypothesis would suggest that college coursework does indeed 

foster student learning. On the other hand, lack of support for this hypothesis – that is, if 

coursework is not associated with larger learning gains – would indicate a need for 

learning improvement. 

Hypothesis 6: Faculty’s Expected Gain Scores Will Not Match Actual Gain Scores  

I predicted that when discussing learning gains with faculty, faculty’s expected 

and desired magnitude of learning gain would not align with the magnitude of 

empirically estimated learning gains. More specifically, I believed faculty would expect 

larger gains than those estimated. No research has been conducted regarding how much 

faculty expect students to learn from college coursework. However, research in K-12 

settings have found that teachers tend to either overestimate (e.g., Rubie-Davies, Hattie, 

& Hamilton, 2006) or accurately estimate (e.g., Hinnant, O’Brien, & Ghazarian, 2009) 

student performance. One can also make predictions about the overestimation from the 

literature on faculty perceptions of student attitudes and behaviors. Faculty commentary 

on students’ behaviors and performance in classrooms suggest that students are 

performing below expectations (Frame & Pearse, 2001). As these authors state, “Many 
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students don’t recognize that their personal standards and perceptions of quality are well 

below what is expected.” (p. 42).  

Faculty at this university have high expectations for student competency in 

general education (DeMars, Sundre, & Wise, 2002). Considering quantitative and 

scientific reasoning competency, most students do not meet these desired competency 

levels (Hathcoat et al., 2015). Specifically, faculty expect that students who completed 

the quantitative and scientific reasoning curriculum requirements should answer 50 out of 

66 items correctly at posttest, but less than 60% of students with domain-specific course 

exposure meet this standard. With respect to learning gains, students at the university 

have demonstrated 3.49 point gains on a 66-item quantitative and scientific reasoning test 

(Hathcoat et al., 2015) and 7 point gains on an 81-point history/political science test 

(Pastor et al., 2007) after completing all required coursework in the domain. Although 

these gains are considered moderate by my values, faculty with more informed opinions 

may not find these gains to be moderate. Thus, I expected when discussing learning gains 

with the faculty that they would overestimate how much their students learn--that 

students’ actual learning gains would be less than desired by faculty. 

If faculty expected learning gain were less than their desired learning gains, I 

believed that explanations would center on lack of student interest or motivation. In an 

investigation into student characteristics, researchers found that college students spend 

less than 12 hours per week studying and 5 hours per week preparing for their courses 

(Arum & Roksa, 2009). One may easily assume that college students would spend more 

time engaging with academic material if they were interested in it. As well, middle and 

high school teachers have ascribed low student learning to lack of student motivation 
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(Harris, 2012; Falconer-Medlin, 2014). Although these teachers work with younger 

student populations, it is likely that college faculty perceive these same attributes in their 

undergraduate students.  

Addressing this hypothesis has several implications. Misalignment between 

faculty expectations and empirically estimated gains suggests that either more realistic 

expectations should be set for student learning in higher education or a need for learning 

improvement. Perhaps most importantly, if student learning gains are negligible, it would 

suggest that students are not learning from their college coursework. This finding is 

problematic for higher education, as it undermines the academic value of postsecondary 

education. If faculty observe what they consider minimal learning gains, they may be 

motivated to take part in the learning improvement process. 
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CHAPTER TWO 

Literature Review 

The Need to Assess Learning in Higher Education 

Student learning assessment has long been discussed in higher education circles, 

although most higher education administration and faculty were not particularly 

concerned with demonstrating student learning gains to external audiences. Peter Ewell, a 

champion of student learning assessment, drew attention to this need for most of the 

1980’s (e.g., Ewell 1983; Ewell, 1985; Ewell, 1987). In fact, he had written that “Only in 

rare cases, however, are students typically re-tested using the same (or any) instruments 

to ascertain the competency achieved, or to assess the effectiveness of remediation.” 

(Ewell, 1987, p. 15). Other notable figures in higher education assessment, such as 

Alexander Astin and Trudy Banta, had also attempted to impress upon their colleagues 

the need for both student learning assessment and data on student learning outcomes 

(Astin et al., 1996). Largely due to federal mandates enacted in the 2000s, greater 

attention from higher education administration and other stakeholders has focused on 

student learning outcomes assessment. In 2006, the U.S. Department of Education 

formed the Spellings Commission, named after U.S. Secretary of Education Margaret 

Spellings. The U.S. Department of Education assigned the Commission the task of 

investigating the status of higher education in the four areas of accessibility, affordability, 

quality, and accountability. Additionally, the Commission was tasked with using this 

information to recommend areas for improvement in higher education to the federal 

government. The impetus for this Commission stemmed from a number of reports 

generated earlier in the 21st century on the downward turn of American educational 
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outcomes and an absence of evidence that could explain why. The Commission’s final 

report noted the necessity for the restructure of higher education accountability systems: 

the U.S. ranked 12th in degree attainment among industrialized nations, employers 

complained that college graduates were entering the workforce without the skills 

supposedly taught at universities, and evidence from the National Assessment of Adult 

Literacy suggested a decline in students’ literacy abilities over time (U.S. Department of 

Education, 2006). Unfortunately, the systems used by universities to collect and 

disseminate student learning gain data were woefully inadequate to hold institutions 

accountable for providing quality instruction. Institutions regularly collected and reported 

on student competencies (i.e., performance) and other student outcomes (e.g., graduation 

rates), but not on students’ performance throughout their college careers. A few 

researchers external to these institutions had collected student learning gain data to obtain 

a national perspective on student academic learning gain (e.g., Pascarella & Terezini, 

2005). This aggregate data, however, could not fully capture the contributions of each 

institution to students’ academic development. Moreover, this lack of student learning 

gain data resulted in little to no information to explain why American students were 

performing poorly (U.S. Department of Education, 2006). The Commission lamented the 

absence of reported student learning gain data, as this information was key to both 

holding institutions accountable for the performance of their students and initiating 

conversations about learning improvement. As the Commission stated, “Compounding all 

of these difficulties is a lack of clear, reliable information about the cost and quality of 

postsecondary institutions, along with a remarkable absence of accountability 

mechanisms to ensure that colleges succeed in educating students.” (U.S. Department of 
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Education, 2006, p.vii). Consequently, stakeholders were left without intuition as to 

which institutions were most successful in teaching students.  

The Commission was not the only educational body to recognize the lack of 

sufficient student learning gain data. The National Center for Public Policy and Higher 

Education (2006), a nonpartisan, higher education organization, published a “national 

report card” on student financial and educational outcomes. This report card, Measuring 

Up, indicated weak student learning evidence in almost all states (The National Center 

for Public Policy and Higher Education, 2006). In the Measuring Up report card series, 

the National Center for Public Policy and Higher Education had hoped to address 

weaknesses in the U.S. education system and stimulate policy changes for learning 

improvement (Miller & Ewell, 2005). The Measuring Up authors were frustrated to find 

current state university assessments of student learning outcomes did not enable 

normative comparisons of student academic abilities across states. Interstate comparisons 

of college student academic ability were hindered by lack of a nation-wide measure of 

learning on which scores could be compared, much to the consternation of the report 

authors. A specific model of learning assessment had been recommended in past 

Measuring Up reports that included the National Assessment of Adult Literacy (NAAL), 

a measure of prose, document, and quantitative literacy. Although nine states did follow 

the recommended model and employed either the NAAL or its state-counterpart, the 

State Assessment of Adult Literacy (SAAL), the other 42 states did not apply these 

measures. The authors of Measuring Up dismissed the results from these 42 states as 

“incomplete” assessments of college student achievement because the assessments did 

not follow the recommended model of learning assessment. The evidence of achievement 
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presented was not sufficient to address student learning gains. America, to the chagrin of 

both higher education practitioners and the federal government, was lax in its assessment 

of student learning gains (Atwell, et. al., 2006; U.S. Department of Education, 2006).  

To put the U.S. educational system on track, the Spellings Commission advised 

the U.S. Department of Education to require institutions to empirically demonstrate 

student learning gains and development. American universities and colleges needed to be 

held accountable for how they prepared their students. Such assent from institutions was 

necessary to begin to reestablish the U.S. as a leader in education and to improve job and 

financial prospects for citizens. The Spellings Commission noted that it would be 

important for American universities to “embrace a culture of continuous innovation and 

quality improvement.” (U.S. Department of Education, 2006, p.5). As well, the 

Commission called for better measurement of educational outcomes and amended 

accountability systems to improve student learning gains, and recommended the U.S. 

Department of Education provide incentives for institutions that developed “outcomes-

focused accountability systems” to improve programming.  

American institutions had purportedly been held accountable for providing quality 

education, but the poor outcomes (i.e., low graduation rates, employer concerns, decrease 

in literacy) uncovered by the Spellings Commission called into question what occurred 

behind the closed doors of the academy. As stated by Ewell (2009), “Accountability 

requires the entity held accountable to demonstrate, with evidence, conformity with an 

established standard of process or outcome.” (p.7). Accreditation had long been the 

apparatus for accountability, and was meant to ensure the institutional quality of colleges 
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and universities. Something, however, was not adding up: why were accredited 

universities not able to empirically demonstrate their value to stakeholders?  

The Spellings Commission called for a revamp of the current accreditation 

framework to improve the U.S. education system, stating, “Accreditation agencies should 

make performance outcomes, including completion rates and student learning, the core of 

their assessment as a priority over inputs or processes. A framework that aligns and 

expands existing accreditation standards should be established to…require institutions 

and programs to move toward world-class quality relative to specific missions and report 

measurable progress in relationship to their national and international peers.” (U.S. 

Department of Education, 2006, p.34). Accrediting agencies are the watchdogs of 

accountability, but as the Spellings Commission pointed out, their scrutiny of institutional 

quality did not necessarily include student learning gains or student progress.  

Accreditation and Financial Aid 

Accreditation is the multi-year, federally delegated process that requires 

institutions to empirically demonstrate their value to stakeholders by meeting federal, 

regional, and state standards of institutional effectiveness and student performance 

(Eaton, 2011; Council for Higher Education Accreditation, 2002). Presently, these 

standards require measurement of student achievement as defined at the federal, regional, 

and state levels. Table 1 outlines what is currently required for accreditation and what is 

recommended by the federal government, the Southern Association of Colleges and 

Schools Commission on Colleges (SACSCOS; an accrediting body which oversees 

colleges and universities in the southeastern part of the U.S), and the state of Virginia. 

Evidence of student achievement in the form of student performance data (e.g., 
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competency) is required, whereas evidence of student learning gains is largely 

recommended.  

Currently, accredited status only ensures that students are performing at an 

acceptable level and implies that graduates of accredited institutions have achieved a 

standard level of skill (i.e., “evidence of student achievement”). For example, SACSCOC 

mandates that an institution provides evidence of improvement. However, this 

improvement could take the form of an increased percentage of students meeting the 

desired competency rather than a student increasing in skill from his first year to his last 

year. Many accreditors couch their standards in terms of improvement but are vague 

about what improvement means (Smith, Good, Sanchez, & Fulcher, 2015). As well, the 

State Council of Higher Education in Virginia (SCHEV) requires institutions to assess the 

value the institutions add, but do not explicitly state that the evidence should be in the 

form of student learning gains. As Erwin and DeFilippo describe SCHEV’s mandate, “As 

long as they [institutions] could demonstrate value added in accordance with the 

operating conception, a range of instruments and designs would be acceptable. So 

questions such as whether a longitudinal, cross-sectional, or residual-analysis approach 

would be taken were left to the institutions to settle (most institutions elected a 

longitudinal design).” (Erwin & DeFilippo, 2010, p. 42). Moreover, recent requirements 

from SCHEV emphasize an institution’s outputs (e.g., number of degree recipients, 

number of students enrolled) rather than the value it adds to students (e.g., SCHEV, 

2013). Thus, institutions may be able to measure student learning gains but are 

incentivized to assess other student outcomes. Furthermore, accreditation requires 

institutions to document and report changes made to programs based on past assessments, 
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but does not explicitly require institutions to document and report program 

improvements.  Accreditation does not ensure that students are gaining in what they 

know, think or can do as a function of college curricula (i.e., “evidence of student 

learning gains”). If an institution does not submit itself to the accreditation process, or 

does undergo the accreditation review but fails to meet the accrediting standards, federal 

financial aid is withdrawn and the institution is denied accredited status. Lack of 

accredited status casts the institution’s academic curriculum and value into doubt. Further 

repercussions include preventing credits to transfer from the unaccredited institution to 

any other university.   

Though federal money is involved, the federal government does not accredit 

publically-funded higher education institutions; this job is left to a third party of national 

or regional accreditors. National accreditors work to ensure the academic quality of for-

profit, non-degree granting higher education institutions (e.g., Advanced Technology 

Institute); regional accreditors assess the academic quality of non-profit, degree granting 

institutions (CHEA, 2002). Regional accreditors require each institution to collect and 

document evidence on how well it meets those standards and disseminate the results to 

the accrediting body. Accreditors review the report and conduct an on-site visit to 

determine if accreditation standards have been met. If standards are met, the institution is 

put on a public list and can then qualify for federal financial aid. The institution is 

monitored until a set date of reevaluation of status, which can range from five to ten years 

(Eaton, 2009; CHEA, 2002).   

There are six regional accrediting bodies; each works with the institutions in its 

area to specify institution-level standards particular to the region and to assess both these 
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standards and federal requirements. Federal requirements for institutions entail the 

collection of data related to degree completion and student retention. Conversely, as 

assessment expert Michael Middaugh (2010) describes, the standards specified by the 

collaboration of accreditors and institutions generally fall into three categories:  student 

learning outcomes, institutional effectiveness, and current strategic planning.  

These categories are not always distinct. For example, student learning outcomes 

and institutional effectiveness blend in SACSCOC’s standards. SACSCOC standards for 

accreditation require publically-funded higher education institutions within its region to 

meet SACSCOC “core requirements” and “comprehensive standards” as well as federal 

requirements (SACSCOC, 2012). Examples include facilitation of a review process for 

continual improvement (core requirement), the identification and assessment of student 

learning outcomes, identification and assessment of student competencies 

(comprehensive standards) and assessment of student achievement (federal 

requirements). The “comprehensive standards” align with both of Middaugh’s (2010) 

“student learning outcomes” and “institutional effectiveness” categories. Delineating 

further, “Institutional Effectiveness”, Standard 3.3 from the SACSCOC Principles of 

Accreditation: Foundation for Quality Enhancement (2012), calls for the identification, 

assessment, and evidence of student learning outcomes from an institution’s educational 

programs (SACSCOC, 2012). 

States also have input in how student learning outcomes are assessed. In Virginia, 

SCHEV works to improve the quality of the state’s institutions in order to assure regional 

accreditation standards are met. SCHEV’s initial guidelines for the assessment of student 

learning gains called for the documentation of student learning outcomes, as well as use 
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of results to improve student learning (SCHEV, 2007; see Table 1). These state standards 

differed from those put forth by federal and regional bodies in that they explicitly 

required institutions to gather value-added (i.e., learning) data. However, current state 

standards call for information on outputs (e.g., number of degrees granted) rather than 

student learning gain evidence (SCHEV, 2013).  

In sum, accreditation requires evidence of both student achievement and the 

documentation of data used to improve student achievement. It is not explicit whether 

evidence of student performance or actual student learning gains should be collected and 

reported to accrediting bodies. Given the ambiguity, institutions must make the call on 

what “student achievement” evidence to report. It has been suggested that the climate of 

accountability plays a large role in whether institutions report competencies (i.e., 

performance) or evidence of actual learning gains.  

Two Models of Assessment 

The Spellings Commission placed student learning gains in the national spotlight 

by requesting that “Student achievement, which is inextricably connected to institutional 

success, must be measured by institutions on a ‘value-added’ basis that takes into account 

students’ academic baseline when assessing their results.” (U.S. Department of 

Education, 2006, p.14). However, how this request is fulfilled is at the discretion of the 

institutions (e.g., SCHEV, 2007). Though accreditors have begun to develop a framework 

for student learning assessment (Ewell, 2009), the culture of accountability for 

accreditation still appears to predominantly drive assessment. When surveyed about the 

reasons why their institutions conducted outcomes assessment, university provosts 

consistently ranked accreditation as the most important reason for assessment (Kuh & 
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Ikenberry, 2009; 2013; Kuh, Jankowski, Ikenberry, & Kinzie, 2014). There also may be 

confusion as to what is sufficient evidence of student learning gain versus student 

performance. All regional accreditors mention student learning gains in their standards, 

but the standards are vague about what is sufficient evidence of student learning gains 

(Smith et al., 2015; Table 1).  

It would be unfortunate if institutions only cared about student achievement to the 

extent that student achievement granted them accredited status. Fortunately, the locus of 

assessment for accreditation has shifted somewhat in recent years. Institutions have been 

moving toward a model of accountability where student learning, rather than accredited 

status, drives the need for assessment (Ewell, 2009; Gaston, 2013). The transition has not 

been smooth. Instead of a seamless shift from assessing and reporting on student 

competencies to student learning gains, this relatively newer line of thought has produced 

two assessment models: one for accreditation and one for learning improvement. The two 

models can operate together or independently.  For example, institutions can report 

outcomes such as student competency and graduation rates for accreditation but 

internally assess student learning gains for their own purposes. Whether or not these 

institutions do assess student learning gains, however, is the question. The flaw in this 

two-model system is that one requires dissemination of information (accreditation model) 

whereas the other does not (learning improvement model). It is difficult to determine if 

institutions assess student learning gains without the type of information provided by the 

latter model.  

Assessment practitioners seem to believe they assess student learning gains. 

According to the National Institute for Learning Outcomes Assessment (NILOA; Kuh et 
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al., 2015, p. 20), “Colleges and universities are collecting a broader range of information 

about student learning, and more of it, than even a few years ago… The practical 

challenge is to translate this growing body of information into evidence that answers 

pressing questions about student and institutional performance in ways that will inform 

pedagogical changes and policy going forward.” Nonetheless, there is little evidence that 

institutions actually are measuring student learning gains in addition to what is required 

of them. Evidence of student learning gains is necessary to make inferences about student 

learning; evidence of student performance does not afford the same inferences.  

The Importance of Using Results for Improvement  

It is disheartening that improvement of student learning is federally recommended 

but largely missing from actual institutional assessment. If student learning outcomes are 

not measured, or are measured but then not reported or acted upon, assessment devolves 

from a powerful mechanism employed to advance academic progress of students into a 

bureaucratic chore. Assessment is an intuitive process for progressing curricula, 

pedagogy, and, in turn, student learning (Fulcher al., 2014). What if the federal 

government or regional accreditors required institutions to report on student learning 

gains? Ostensibly, it cannot be assumed that all methods used by every American 

institution can capture student learning gains. The manner in which student learning 

outcomes are assessed directly affects the validity of the inferences made about 

curriculum effectiveness (SCHEV, 2007). By measuring and reporting estimates of 

student learning gains, practitioners have necessary (yet not sufficient) data to both 

identify weaknesses in the curriculum and enact solutions to strengthen these flaws 

(Ewell, 2009; Fulcher et al., 2014; Kuh & Ikenberry, 2009).    
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It is likely that assessment data presently are not collected nor analyzed in a way 

that supports the measurement or use of student learning gain data. For instance, an 

institution may collect critical thinking data from its graduating class. This information 

conveys little about how students developed their critical thinking skills during their 

tenure at the university. On the other hand, tracking this group of students throughout 

their years of study would allow the institution to see the progression of critical thinking. 

As outlined in Table 2, however, learning gains can be conceptualized in a myriad of 

ways. Different data collection designs and methods of measurement correspond with 

certain conceptualizations of “learning gain”. Thus, the way in which “learning gain” is 

defined dictates the appropriate research design and method of measurement. 

Research Designs Used to Assess Learning 

Generally speaking, multiple research, or experimental, designs are available to 

collect data. However, not all designs are appropriate for higher education settings. For 

instance, the pretest/posttest control group design, a “true experimental” design, is 

considered to be one of the more methodologically sound experimental designs. Though 

practitioners may hope to employ this design in order to make valid inferences about 

student learning, it is not well-suited for applied settings for reasons elaborated in the 

sections below. Data collected to make inferences about student learning can be 

measured using one of several other designs: a nonequivalent comparison group design, a 

separate sample pretest/posttest design, one-group posttest-only design, a one-group 

pretest/posttest design, and a static-group comparison design. In that vein, the type of 

design applied determines whether inferences can be made about student performance, 

student learning gain, or both. The designs listed above are conceptually distinct and 
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provide different estimates of “learning” outcomes. Inferences about student outcomes 

are tied to these estimates and are therefore tied to the research design employed. In the 

sections below, I describe best practices to control for validity threats. I then describe 

each design, the research questions each answers, and, if applicable, what can be inferred 

about student learning based on results. I also discuss the pros and cons associated with 

each design.  

Best practice for good designs. Assessment practitioners must understand which 

experimental designs enable correct inferences about program or curriculum 

effectiveness; only certain designs afford causal inferences about how the curriculum 

affects student learning gains. Best practice necessitates that threats to both external and 

internal validity are controlled (see Table 3 for descriptions of these threats). External 

validity refers to the accuracy of generalizations made from results (Dawson, 1997). In 

higher education, one may aim to generalize assessment results from the measured 

sample of students to all students at the university. To achieve some degree of external 

validity, the researcher must obtain representative samples of the population. Random 

sampling is the best method of achieving this outcome. When sampling is random, each 

individual in the population has an equal chance of being selected for participation in the 

study (Shadish et al., 2002). Thus, responses from the sample should reflect those from 

the population. If the sample represents the population, the outcome likely reflects what 

occurs in the population. In other words, the inferences made from these responses about 

the population are externally valid. In the context of higher education, if a practitioner 

randomly samples from students at the university and assesses that sample, the 
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distribution of test scores from these students will be similar to the distribution of test 

scores from all students at the university.  

When a sample is not representative of the population, the estimate derived from 

the sample is biased. This bias is termed ‘sampling error’, because the estimate is “off” 

from what it would have been if the sample was representative of the population. 

Analyzing unrepresentative samples can lead to less externally valid inferences (Shadish 

et al., 2002). For example, if an assessment practitioner administers a science test to a 

group of males at a predominantly female institution, she may make less valid inferences 

about students’ science knowledge at the institution (assuming, of course, that males and 

females are from different populations). However, random sampling alone is not enough 

to create experimental conditions appropriate for making such desired inferences. Several 

common threats to external validity are described in Table 3; the researcher should try to 

minimize these threats as much as possible. 

Internal validity refers to the accuracy of inferences made about the causal effects 

of a treatment on an outcome (Shadish et al., 2002). Extending the example from above, 

suppose the assessment practitioner is interested in whether or not the students’ science 

coursework increases their science knowledge. Thus, she will need to ensure that 

coursework is the only experience that would affect students’ scores on the test. Random 

assignment of participants to experimental groups is used to improve internal validity. 

When random assignment is used to place participants in either the treatment or the 

control group, each individual has an equal chance of being assigned to either group. 

Random assignment distributes individuals between the groups in such a way that each 

group should be evenly matched on all variables (e.g., gender, ability, personality), 
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including those related to the outcome that may not be assessed during the experiment. In 

other words, equivalent groups are formed by the dispersion of preexisting differences; 

this dispersion is why cross-sectional estimates can approximate longitudinal estimates. 

Thus, researchers are able prevent, to an extent, confounding variables from differentially 

influencing the outcome of a study (e.g., from influencing student learning gains). By 

evenly dispersing individual differences, researchers can then infer that differences in the 

outcome across groups are driven by treatment (e.g., curriculum, programming, 

pedagogy) and not by other variables.  

Despite these approaches, random sampling and random assignment cannot 

account for other threats that may compromise either external or internal validity (see 

Tables 2 and 3). However, the data collection design that is chosen determines which of 

these other threats affects desired inferences. Below, I describe the designs available and 

their strengths and weaknesses with respect to validity. 

True experimental and quasi-experimental designs. Experimental designs tend 

to fall into one of two categories: true experimentalor quasi-experimental (Shadish et al., 

2002). True experimental designs isolate the treatment effect by controlling for all 

alternative explanatory variables through random assignment of students to treatment and 

occasionally through random sampling. Further controls may be employed through the 

use of a control group, where students are randomly assigned to not receive the treatment. 

Results obtained from this control group can then be compared to the results from the 

treatment group. Quasi-experimental designs, in contrast, do not involve random 

assignment of students to treatment.  In the experimental design literature, quasi-

experimental designs are described as “experiments that lack random assignment of units 
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to conditions but that otherwise have similar purposes and structural attributes to 

randomized experiments.” (Shadish et al., 2002, p. 104). Thus, these designs control for 

some, but not all, alternative explanatory variables. Quasi-experimental designs are 

common in applied settings where not all explanatory variables can be controlled or 

manipulated. To control for the explanatory variables that the researcher can manipulate 

in quasi-experimental designs, control groups are usually (although not always) formed.  

The section below describes common true experimental (pretest/posttest control 

group design) and quasi-experimental (nonequivalent comparison group design, separate 

sample pretest/posttest design, one-group posttest-only design, one-group pretest/posttest 

design, posttest only design with nonequivalent groups), and how they relate to higher 

education assessment.  

True experimental: Pretest/posttest control group design. One particularly 

powerful data collection design for making desired inferences is the pretest/posttest 

control group design. This design is longitudinal in nature, and is also referred to as a 

within-subjects design or repeated-measures design. To make inferences about the 

effectiveness of curriculum or educational programming, “pretest” scores on the outcome 

of interest are often gathered prior to experiencing the programming and “posttest” scores 

are often gathered upon completion of the programming (Campbell & Stanley, 1963; 

Shadish et al., 2002). The validity of inferences is further improved when pretest and 

posttest scores are collected and compared for a sample that experienced the 

programming (treatment group) and a sample that did not (control group). In general, the 

measurement of an individual or a sample of students at two time points allows 

researchers to estimate the learning gain for that particular individual or sample. Thus, in 
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higher education contexts, a researcher who employs a longitudinal or pretest/posttest 

design can answer the question, “How much do students change, or gain, from time one 

to time two?” With two groups, the design also answers, “Do students who experience 

the curriculum learn more than students who do not?” 

  The design can be conceptualized as follows: 

R: X1pre      T     X1post 

 

R: X2pre             X2post 

 “R” designates that the samples were randomly assigned to receive or not receive the 

treatment. “X1pre” is the measurement of Group 1 before receiving treatment or 

curriculum “T”.  “X1post” is the measurement of Group 1 after receiving treatment “T.” 

Note that Group 2 (i.e., control group) is assessed twice with a pretest (“X2pre”) and 

posttest (“X2post”) but does not actually receive the treatment.  

Pros. True experimental designs such as the pretest/posttest control group design 

are ideal because they suffer relatively few threats to internal validity. Thus, researchers 

are in a position to isolate the treatment effect from possible confounds. Random 

assignment makes this design powerful with respect to valid inference about curriculum 

effectiveness. By randomly assigning students to groups, practitioners are able to produce 

two groups of students that are equivalent, or balanced, on the variables that affect the 

studied outcome. By gathering data at multiple time points for both samples, practitioners 

are able to empirically demonstrate change in ability over time and compare change in 

ability across groups (Shadish et al., 2002).  
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Another strength of longitudinal designs in general is that each individual serves 

as her own control within each sample or group (Porter, 2012). That is, variations that 

naturally occur across groups (i.e., background characteristics, differences in academic 

experience) do not exist within groups. The aforementioned variations are held constant 

over time for each individual in each group (Zumbo, Wu, & Lui, 2012). Therefore, this 

design eliminates variability associated with individual differences and increases 

statistical power, which is the capability of detecting an effect that exists (Shadish et al., 

2002). According to Witte (1993), “…the variability within groups reflects only random 

error, that is, the combined effects (on the scores of individual subjects), of all 

uncontrolled factors, such as individual differences among subjects, slight variations in 

experimental conditions, and errors in measurement.” (p. 339). Consequently, the 

practitioner who employs this design may more accurately assess students’ learning 

gains.  

Cons. The pretest/posttest control group design theoretically can be used to 

compute learning gain across two time points (e.g., before and after experiencing 

curriculum) in higher education contexts. This design, however, requires random 

assignment of students to specific courses or course sequences, which can be unethical if 

students are unaware of this practice or do not consent. Unsurprisingly, this kind of 

random assignment is not done in practice. For example, higher education administrators 

cannot randomly assign students to complete certain courses or course sequences; 

students complete coursework based on their interests and academic schedules. Thus, true 

experimental designs are difficult to implement in university settings. Consequently, 

higher education practitioners and researchers may rely on quasi-experimental designs.  
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Although unaffected by internal validity threats, the pretest/posttest control group 

design is subject to several external validity threats (see Table 3 for examples of validity 

threats in higher education contexts). One such threat is the interaction of testing and 

treatment, where the pretest that the participant completes affects how he respond to the 

treatment (Campbell & Stanley, 1963; Dawson, 1997). Another threat is reactive 

arrangements, where participants attempt to produce behavior they believe the researcher 

wants to see. Lastly, the interaction of selection bias and treatment may also affect 

external validity. If participants in the treatment group differ from those in the control 

group even after random assignment, there is a chance that participants in one group will 

react differently to the treatment than the other.  

Quasi-experimental: Nonequivalent comparison group design. This design is 

also longitudinal because the same sample of students is measured at “pretest” and at 

“posttest” (Liu, 2011b). Practitioners can use the nonequivalent comparison group design 

to compare student performance estimates and student learning gain estimates, the latter 

of which can be computed across months in college or prior to and after coursework. In 

educational contexts, such designs may also be referred to as gain score models because 

they produce an estimate of a student’s learning gain (Castellano & Ho, 2013).   The 

design can be conceptualized as follows: 

X1pre      T     X1post 

 

X2pre             X2post 

 “X1pre” is the measurement of Group 1 before receiving treatment, or curriculum, “T”.  

“X1post” is the measurement of Group 1 after receiving treatment “T”. Group 2 is also 
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assessed with both a pretest (“X2pre”) and posttest (“X2post”) but does not actually 

receive the treatment. Notice that individuals are not randomly assigned to groups; the 

researcher is measuring groups that are already formed.  

Pros. By gathering data at multiple time points for both samples, or groups, 

practitioners have some empirical evidence to demonstrate change in ability and compare 

the change between groups (Shadish et al., 2002). These learning gain estimates provide 

more information about student progress than performance estimates (Gong, 2004; Zvoch 

& Stevens, 2006). For instance, students may gain at above average rates even if average 

performance levels are low at posttest (Zvoch & Stevens, 2006). A student who raises her 

class grade from an F to a C- over the course of a semester may not be considered 

proficient in the subject matter but has grown substantially. Clearly, this student is 

learning, even if she is not performing well at posttest; longitudinal designs enable 

researchers to observe this effect.  

By having a control group, practitioners can compare the learning gain estimates 

from both samples to make inferences about the effectiveness of the curriculum. Though 

practitioners cannot eliminate maturation from affecting either sample’s results, 

comparison of the two groups prevents maturation from affecting conclusions made 

about the curriculum. The effect of maturation on both samples’ learning gains estimates 

should be equivalent because both samples are maturing at the same rate. This design 

also enables practitioners to calculate the relationship between learning gain estimates 

and curriculum (e.g., Pieper et al., 2008). For instance, practitioners can collect learning 

gain data from samples that have taken one course, two courses, three courses, etc. in the 



43 
 

 

curriculum. The correlation between coursework and learning gain estimates can then be 

calculated to determine the relationship between the two variables. 

Cons. Quasi-experimental designs sacrifice some evidence of internal validity 

evidence for experimental feasibility (see Table 3). Regression to the mean, where 

participants who initially score highly on a pretest achieve a lower score on the posttest, 

is a concern in quasi-experimental settings, especially when participants are selected 

based on extreme scores. This outcome, though, is natural and not due to a negative 

treatment effect. For example, students who score highly on a math placement pretest 

complete a posttest after their coursework. However, the posttest scores of the high-

scoring students are closer to the posttest scores of their peers than before. These 

students’ coursework did not negatively affect their learning gains, though one might try 

to make such a claim; the decrease is merely a statistical artifact.  The interactions of 

typical internal validity threats (see Table 3) are also likely. Additionally, lack of random 

assignment to groups limits the inferences practitioners can make about learning gains 

and curriculum effectiveness. Individuals in each group are likely unequal on all 

variables if individuals are not randomly assigned to groups. The difference between the 

estimated average learning gains across groups may be driven by variables that affect 

learning gain other than curriculum. If a practitioner is able to randomly assign 

individuals to either receive the curriculum or not and measure the outcome both before 

and after the experiencing the curriculum, she has powerful evidence about student 

learning and the curriculum’s value. Without random assignment, it is especially 

important that this evidence is interpreted in context. 
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External validity threats are a concern as well. As with true experimental designs, 

an interaction effect of testing is one threat that may affect generalization. Another 

limitation is that the nonequivalent comparison group design, like most applied 

longitudinal designs, is susceptible to attrition, or mortality (Campbell & Stanley, 1963; 

Klein, 2010; Pieper et al., 2008; Shadish et al., 2002). Students who complete the pretest 

do not always complete the posttest (e.g., students drop out of the school). The sample 

size is reduced if the researcher decides to analyze data only from students who have 

completed both tests. Analysis of the smaller sample is not problematic if the reduced 

sample is representative of the student body, but attrition hardly scales down samples so 

favorably. Differential attrition negatively affects the principle of balanced groups that is 

inherent in random assignment (Shadish et al., 2002).  More often, students who have 

completed the pretest and posttest are stronger academically and have higher test scores. 

Learning gain estimates produced from this sample are upwardly biased; results are 

therefore sample dependent and would not generalize to all university students. 

Beyond validity threats, several other limitations exist.  Longitudinal models used 

for estimating student learning gain can quickly become complex for practitioners 

without a statistical background (Gong, 2004). Pretest/posttest designs are also less 

frequently employed than cross-sectional designs, in part because they can be costly to 

implement (e.g., collecting data over time for multiple groups or employing sophisticated 

analyses that require consultation; Seifert et al., 2010). 

Quasi-experimental: Separate sample pretest/posttest design. Another quasi-

experimental design is the separate sample pretest/posttest design. The name of the 

separate sample pretest/posttest design is slightly misleading. It is not a longitudinal 
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design but is a cross-sectional, or posttest, design. Cross-sectional designs (i.e., 

independent-samples designs, between-subjects designs) enable comparisons of 

performance estimates from two different samples of students (Castellano & Ho, 2013; 

Gravetter & Wallnau, 2009). A cross-sectional design serves to answer the question: 

“What is the average difference between Sample 1 and Sample 2?” When measuring 

performance for higher education accountability purposes, this question can be reframed 

as, “How does student performance differ, on average, between incoming students who 

have yet to complete the curriculum and upper-class students who have completed the 

curriculum?”  

The design can be conceptualized as follows: 

X1pre      T 

               T     X2post 

 “X1pre” is the measurement of Group 1 (the comparison group) before 

experiencing treatment “T”. “X2post” is the measurement of Group 2 (the treatment 

group) after experiencing treatment “T”. In higher education contexts, “X1pre” often 

refers to the measurement of first-year students and “X2post” often refers to the 

measurement of upper-class students Because the two groups are measured at the same 

time, entering or first-year students who complete the “pretest” are not the same as the 

upper-class students who complete the “posttest” (Liu, 2011b).  The assumption 

underlying this design is that if students are learning at an institution due to the 

curriculum they complete, average performance for students who have completed the 

curriculum should be greater than average performance for students who have not. 
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Pros. If differences in background characteristics are controlled through random 

assignment, the difference between the two performance estimates can approximate a 

learning gain estimate. That is, the two samples are likely equivalent on all variables 

related to the outcome. Moreover, with the separate samples pretest/posttest design, a test 

that measures desired student learning outcomes (e.g., quantitative reasoning) can be 

administered to both samples in the same academic year (Liu, 2011b). Administrators can 

then make relatively immediate comparisons between first-year and upper-class students.  

This design is frequently employed to investigate learning outcomes and to make 

institutional comparisons (Klein et al., 2007; Klein, 2010); it is an easy and relatively 

cheap design that can be used by any institution (Liu, 2011; SCHEV, 2007). Similar to 

actual pretest/posttest designs (i.e., longitudinal designs), practitioners can calculate the 

relationship between curriculum and performance. Specifically, practitioners can 

calculate the correlation between the number of courses completed and performance 

estimates. The outcome of interest, the performance difference between the two cohorts, 

is simple to compute; the average performance score or estimate of one cohort is 

subtracted from the average performance of another cohort (Gong, 2004). However, it is 

important to keep in mind that this design produces performance estimates, not a learning 

gain estimate. 

Cons.  This design is subject to multiple internal validity threats. In higher 

education, it is expected that performance estimates for the two groups (e.g., first-year 

students vs. upper-class students) are different because one sample of students 

experienced the curriculum and the other did not. However, differences between the 

samples in other constructs related to the outcome of interest, such as intelligence or 
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motivation, may drive the difference in performance. Students opt into courses and other 

activities; the institution does not assign students to these academic experiences. If 

students are not randomly assigned to groups, the difference between the performance 

estimates is difficult to interpret (Porter, 2012). Nevertheless, the separate samples 

pretest/posttest design does not use randomization. Consequently, the two groups have 

not similar distributions of background characteristics. Though possible that performance 

is affected by academic experiences, the conclusion that curriculum exposure caused the 

difference is not sound. 

Maturation effects are also a concern. Students who experience the curriculum 

(i.e., the upper-class students) will be systematically older than the students who have yet 

to experience the curriculum. Attrition affects are another concern; these upper-class 

students are likely more academically adept than the cohort of first-year students due to 

attrition. To elaborate, upper-class students may appear to have higher performance than 

first-year students because students with lower ability drop out of the university before 

achieving upper-class status. Thus, the upper-class performance estimate is based upon 

only those retained students and is therefore not representative of the student population. 

In contrast, the sample of first-year students analyzed includes both the students who will 

persist through college to their final year as well as the students who will not, thus more 

accurately reflecting the college student population.  History effects, where events prior 

to participation impact the outcome, are an additional problem For example, students who 

complete AP Calculus prior to being tested on college math proficiency and completing 

math courses at college will likely perform better on the test and in the classes. 

Instrumentation effects may be a problem if the pretest differs from the posttest. If the 
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test scores are not on the same metric (e.g., the pretest is more difficult than the posttest), 

incorrect inferences may be drawn about student ability and student learning gain.  

Other limitations with this design are also present. It may be tempting to use 

terminology such as ‘pretest’ and posttest’ to describe the tests administered to the pre-

treatment and post-treatment samples, respectively. It is equally appealing to refer to the 

difference between samples as an estimate of gain in knowledge or ability (e.g., U.S. 

Department of Education, 2006). Referring to the measurement time points by these 

terms, though, implies the data were measured longitudinally. Thus, this terminology is 

inappropriate. Most importantly, the students in one sample differ from the students in 

the other sample. This is the most important limitation of the separate samples 

pretest/posttest design (and cross-sectional designs in general) because it does not answer 

the question of how much students are gaining from their education. 

Quasi-experimental: One-group posttest-only design.  The one-group posttest-

only design is the simplest quasi-experimental design. One group or sample, non-

randomly formed, is measured after experiencing a treatment. Accordingly, the group 

completes a posttest but does not complete a pretest. In higher education, this design can 

be used to answer the question, “After experiencing the curriculum, are students meeting 

a standard of academic proficiency?” 

 

 

The design can be conceptualized as follows: 

T X1post 
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 Again, “T” refers to the treatment and “X1post” refers to the measurement of the 

sample after receiving the posttest. 

Pros. This design is useful if the researcher already has a pre-formed group of 

interest. The one-group posttest-only design is convenient when a measure is only 

available after the group has received the treatment. This design is relatively cheap to 

implement, and the researcher – if somehow not concerned about making causal 

inferences - does not have to worry about testing effects, reactive effects of experimental 

arrangements, instrumentation effects, or statistical regression effects. 

Cons. The one-group posttest-only design, however, is extremely limited with 

respect to internal validity. This design is subject to history effects, maturation effects, 

selection bias, and attrition. Subsequently, one cannot infer much from the posttest scores 

about the effect of the treatment. Results are likely sample-dependent and, as a 

consequence, inferences about the results unlikely to generalize to the student body.  This 

design also suffers from effects due to the interaction of selection bias and treatment. For 

instance, a researcher may measure students in a particular math course to understand 

math learning gains at the university. If these students opted to take this course due to 

interest in the material, they may be more likely to learn from the course. Researchers 

who use the one-group posttest-only design may therefore make less externally valid 

inferences about the desired outcome. Of primary concern, however, is whether this 

design can be used to assess student learning gains. Perhaps expectedly, it cannot. The 

one-group posttest-only design only provides an estimate of student performance because 

students are only measured once.  
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Quasi-experimental:: One-group pretest/posttest design. The one-group 

pretest/posttest design is considered a quasi-experimental design because students are not 

randomly assigned to the treatment group. This design is another longitudinal design. 

Similar to the non-equivalent comparison group design, a pre-formed group is measured 

before and after experiencing a treatment. Only one group, though, is measured.  

The design can be conceptualized as follows: 

Xpre      T     Xpost 

“Xpre” is the measurement of the sample before receiving treatment, or curriculum, “T” 

and “Xpost” is the measurement of the sample after receiving treatment “T”. This design 

addresses the question, “How much do students gain from time one to time two?” 

Pros. Because the one-group pretest/posttest design is a longitudinal design, it has 

several of the same benefits as the nonequivalent comparison group design. Similar to 

that design, the one-group pretest/posttest design produces student learning gain 

estimates. The relationship between learning gains and curriculum can be calculated to 

further investigate the curriculum’s effect. 

Cons.  This design has the same limitations as the nonequivalent comparison 

group design. In particular, inferences about student learning are affected by lack of 

random assignment, and other validity threats (see Table 2). Lack of a control group also 

means that history effects may influence how students receive the treatment. As well, this 

design can suffer from attrition effects. As explained above in the section on the 

nonequivalent comparison group design, attrition may upwardly bias learning gain 

estimates.  
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Additional limitations exist due to the measurement of only one sample. Unlike 

the nonequivalent comparison group design, this longitudinal design does not allow for 

comparisons of average gains between groups. The control group is needed to estimate 

the treatment effect. That is, it is impossible to parse out what effects can be attributed to 

curriculum and what effects occur naturally with time (i.e., maturation; Campbell & 

Stanley, 1963; Shadish et al., 2002). Though inferences can be made about student 

learning, they may be less valid.  Lastly, the one-group pretest/posttest design can be 

expensive to use, even with one sample, due to the extra effort involved when tracking 

students over time. 

Quasi-experimental: Posttest only design with nonequivalent groups. The 

posttest only design with nonequivalent groups is used to assess two groups at one time 

point. Therefore, it is similar to the separate samples pretest/posttest design.  This design 

attempts to address the question: “Are the outcomes of students different depending on 

the curriculum each student experiences?”  

This design can be conceptualized as follows:   

X1post 

T X2 post 

 “X1post” and “X2post” refers to the measurement of Group 1 and Group 2, respectively, 

after experiencing or not experiencing the treatment “T”. This design is often used to 

compare upper-class students who have yet to experience and who have experienced the 

treatment or curriculum (e.g., algebra test scores from upper-class students who have 

completed math coursework and from upper-class students who have not completed the 

math coursework; see Table 2).  
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Pros. The posttest only design with nonequivalent groups is easy to employ in 

higher education and is comparatively cheaper than longitudinal designs. It also provides 

relatively immediate results and can be used to effectively assess student proficiency in 

subject matter.  

Cons. This design is subject to multiple validity threats. Similar to the separate 

samples pretest/posttest design, the posttest only design with nonequivalent groups is 

subject to selection, attrition, and threat interactions, as well as an interaction effect of 

selection bias and treatment. Thus, the researcher who uses this design cannot be sure he 

has removed all confounding influences and also cannot generalize his findings back to 

the population. If used for higher education assessment, it is hard to make valid 

inferences about student performance and impossible to make valid inferences about 

student learning gain.  

How to determine the correct design for estimating learning gain. Assessment 

practitioners and institutions must obtain a valid estimate of student learning gain to 

demonstrate that their curricula facilitate student learning or, if not, to improve student 

learning gains. To obtain this estimate, students must be sampled and measured using an 

appropriate design.  

The posttest-only designs described introduce construct-irrelevant variance (e.g., 

differences in personalities, demographics, motivation), which contaminates the 

performance estimates or inferences made about the estimates. When two groups are 

measured at posttest, the differences between the groups’ performance estimates may 

stem from systematic differences in personal characteristics or curriculum characteristics 

(i.e., the treatment). In other words, the curriculum effects are confounded with the 
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differences in personal characteristics, thereby biasing the estimated effect of curriculum 

on performance. Furthermore, a pretest or posttest only provides an estimate of student 

ability at a particular point in time. Therefore, the separate samples pretest/posttest, 

posttest only design with nonequivalent groups, and one-group posttest-only design 

designs are inadequate for measuring learning gains.   

As has been emphasized, learning gains must be measured longitudinally to make 

valid inferences about learning. A longitudinal design, though, is necessary but not 

sufficient to make these inferences. In order to make inferences about the quality or 

effectiveness of the curriculum, the learning gains of students who complete specific 

courses must be compared to the learning gains of students who have not completed these 

courses. Without this comparison group, it is difficult to gauge the magnitude of learning 

gain. Given that the one-group pretest/posttest design cannot be used to compare 

curriculum effects, it loses some efficacy for measuring student learning gains.  

The pretest/posttest control group design can produce good estimates of learning 

gain because random assignment are employed. As elaborated, that the researcher can 

assume that confounding differences in background characteristics between groups are 

eliminated when random is employed. Random assignment, however, is difficult (if not 

impossible) to achieve in higher education contexts; it is not realistic to randomly assign 

students to courses.  

In comparison, the nonequivalent comparison group design is better suited for 

applied settings. Curriculum effectiveness can be determined by comparing the learning 

gains of groups who have and have not experienced the curriculum. Furthermore, this 

design addresses the questions, “Are students learning” and “How much are students who 
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experience particular curriculum learning compared to students who are not experiencing 

the curriculum”. Researchers should use this design to measure student learning gain, 

especially if improvements are to be made to the curriculum.  

Learning Gain Estimates 

When investigating student learning, interest lies in the estimated learning gain. 

The estimated learning gain is “how much a student has learned on an absolute scale” 

(Castellano & Ho, 2013, p.35). That is to say, how much a student has learned is 

compared only to his past performance and not compared to a peer’s performance. The 

estimated learning gain is also described as the difference between posttest and pretest 

scores (Castellano & Ho, 2013; Liu, 2011b). In the sections below, I describe several 

methods used to compute this estimate: the residualized estimate, the raw mean 

difference, and Cohen’s d. I also discuss concerns regarding the raw mean difference and 

Cohen’s d. 

Residualized estimate. The calculation of the residualized estimated learning 

gain is another approach to estimating student learning gain. This estimate can be used 

when performance is measured with different instruments. The residualized estimate is 

the difference between the observed score and the expected score that is predicted from 

prior performance (Castellano & Ho, 2013; Rogosa, 1995). It is computed by first 

predicting an individual’s posttest score from a pretest score via linear regression 

(Castellano & Ho, 2013). This predicted score is then subtracted from the observed 

posttest score. To illustrate, a researcher interested in quantitative ability collects data 

from a sample of incoming students at a college. He predicts the students’ senior 

quantitative GRE scores based on the students’ quantitative SAT scores. Once the 
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students complete the GRE, the researcher subtracts the actual GRE scores from the 

predicted GRE scores.  

The difference between the estimates can be interpreted as how well the students 

actually performed on the GRE versus how well the researcher thought they would, given 

the SAT scores. Therefore, the residualized estimate is technically not an estimate of 

learning gain. This estimate is better suited to answer the question “How much did ability 

differ from what was expected?” and not “How much did ability change?” Nonetheless, it 

is often calculated by researchers attempting to measure learning gain (e.g., Herzog, 

2011).  

Raw mean difference. The first method produces the raw mean difference, or 

gain score, between posttest and pretest scores. The gain score is easy to calculate 

(posttest group mean minus pretest group mean) and it is comprehensible (e.g., the 

student gained X number of points on the measure from her first year to her last year of 

college). However, this mean difference loses interpretability if the pretest and posttest 

measures are on different scales. A common example is when researchers use SAT scores 

to measure ability when students are freshmen and GRE scores when students are seniors.  

Concerns regarding reliability of raw mean difference. A misconception is 

that these gain scores are unreliable and therefore should not be used to estimate learning 

gain. This is an unfortunate misjudgment that begs clarification.  

To explicate, the reliability of the raw mean difference is the ability of the 

measure to detect distinct rates of change. It is a function of the pretest and posttest 

reliabilities, correlations, and standard deviations (Bandalos, 2016; Rogosa, 1995; 

Williams & Zimmerman, 1996). There are several reasons for assuming that difference 
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scores do not yield reliable learning gain estimates. One such reason is that there is a low 

pretest/posttest correlation. Another, more prominent reason is that, although there is a 

high pretest/posttest correlation, the reliability of the gain scores is low.  

That is, the reliability for the gain scores will be low when, holding the 

reliabilities of the pretest and posttest constant, the pretest/posttest correlation is high and 

there is little variability in pretest and posttest scores (Bandalos, 2016; Rogosa, 1995; 

Williams & Zimmerman, 1996). If there is little variability in the pretest and posttest 

scores (i.e., pretest scores are similar and posttest scores are similar), the gain scores will 

be similar. Because the students change similarly, there will be little variability in the 

gain scores. Therefore, the change or gain rates will be nearly equivalent across all 

participants. One cannot detect differences in individual gain in this scenario because, for 

all practical purposes, there are no differences to detect (Bandalos, 2016; Rogosa, 1995). 

It follows that these learning gain estimates are reliable when there are actual variations 

in learning gains to be detected (i.e., not all students have the same gain scores). 

Additionally, holding the pretest/posttest correlation constant, the reliability of the 

difference scores will increase as the reliabilities of both pretest and posttest measures 

increase (Williams & Zimmerman, 1996).  

Although one might expect to see a strong relationship between pretest and 

posttest scores, a high correlation between the scores is not always desirable when 

measuring learning gains. For example, suppose a university assesses all students’ 

academic abilities with a pretest and a posttest. A group of students on academic 

probation participates in an academic intervention after receiving pretest results. After 

completing the intervention, these students score higher on the posttest than 
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nonparticipants. On one hand, this result speaks to the success of the intervention; 

students once lower in ability are now higher than their peers. On the other hand, the 

pretest and posttest scores of the entire sample will be less correlated and students’ rank-

order will differ.  

Fortunately, most institutions do not care about rank-ordering students by gain. 

Though there are situations where it is necessary to identify students who gain more or 

less, preoccupation with gain score reliability diverts attention from the biggest concern – 

whether or not students are learning. Thus, the researcher who is not interested in rank 

ordering individuals needs not be concerned with low gain score reliability.  

Cohen’s d. A third method of estimating learning gains is the computation of 

Cohen’s d (e.g., Hathcoat et al., 2015; Pastor et al., 2007; Roohr et al., 2016). As a 

standardized effect size, Cohen’s d can be used for institutional comparisons (i.e., 

comparing learning gain estimates of institutions that employ measures with different 

metrics). This standardized effect size can calculated by dividing the raw mean difference 

by the sample standard deviation of the difference scores (Cohen, 1992): 

d = 
x̅post−x̅pre

s𝑑
 

In the above equation, x̅post refers to the posttest group average, x̅pre refers to the 

pretest group average, and sd refers to the sample standard deviation of the difference 

scores. The resulting statistic d is an average learning gain estimate on the standardized 

gain metric and is interpreted in terms of standard deviations of the gain or difference 

scores. For example, d = 0.3 would be interpreted as a gain of 0.3 standard deviations on 

the standardized gain metric.  
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Although this metric is always standardized, the type of metric (e.g., gain) can change 

based on the standard deviation used in the denominator. As an aside, Cohen’s d can be 

used to compare performance estimates computed from a cross-sectional design. When 

performance estimates are compared, the pooled standard deviation of the groups is 

typically used as the denominator (Dunst & Hamby, 2012). When computing an estimate 

of learning gain, a variety of standard deviations can be used. Alternative standard 

deviations, such as the standard deviations of the pretest (e.g., Pastor et al., 2007) or 

posttest scores (Morris & DeShon, 2002), can be substituted in the denominator of the 

equation above. Using different standard deviations places the estimated learning gain on 

different standardized metrics and affects interpretation. For instance, if the standard 

deviation of the posttest scores is used is used, Cohen’s d would then be interpreted as the 

standardized learning gain estimate on the standardized posttest metric. 

Concerns regarding choice of denominator for Cohen’s d. The standard 

deviation of the gain scores, as illustrated above, can also be used.  Using the standard 

deviation of the gain scores as the denominator, though, is said to produce an 

overestimate of the effect (Lakens, 2013). This concern is most prominent in meta-

analytic studies, where results from both between-groups (e.g., cross-sectional) and 

within-subjects (e.g., longitudinal) studies are combined (Morris & DeShon, 2002). 

Researchers who aim to generalize their effect sizes want the cross-sectional Cohen’s d 

estimates to be of similar magnitude to the longitudinal Cohen’s d estimates. Generally 

speaking, the type of design used (cross-sectional versus longitudinal) should not greatly 

affect the magnitude of the effect size.  Subsequently, the effect size should be largely 

independent from the design used. 
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However, effect sizes computed with the standard deviation of the difference 

scores are not independent from the research design. This standard deviation tends to be 

small because it accounts for the correlation between the measurements present in 

longitudinal designs. Because the standard deviation of the difference scores is smaller, it 

produces a larger effect size than if other denominators were used. Denominators have 

been developed that do account for the correlation in longitudinal designs (see Cohen, 

1988) or ignore it entirely (average of the measurement standard deviations; Lakens, 

2013). The benefit of the latter is that it produces a similar effect size to that produced 

from a cross-sectional design, which enables the researcher who uses it to generalize his 

effect. On the other hand, some phenomena cannot be measured using cross-sectional 

designs, which makes the need for equivalent design effect sizes moot (Lakens, 2013). 

The obvious example here is student learning gain, which should only be measured 

longitudinally. In this scenario, the standard deviation of the difference scores will not 

produce an overestimate of the true effect and is an appropriate denominator.   

Beyond the computation of Cohen’s d, other misconceptions about standardized 

and unstandardized effect sizes abound. In 1989, Cohen reluctantly recommended 

benchmarks of d = 0.2 (small effect), 0.5 (medium effect), and 0.8 (large effect). These 

benchmarks, still used today, were defined arbitrarily. The classifications were made to 

distinguish effects that were easily visible (medium effect) and correspondingly smaller 

or larger (Cohen, 1992). Thus, the numerical estimates of 0.2, 0.5, and 0.8 were not 

intended to be permanent benchmarks. Newer guidelines suggest interpreting one’s 

computed effects relative to effect sizes already reported in the literature, as “large” 
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effects may not be substantial and “small” effects may have great importance 

(Thompson, 2007).  

Personal and Curriculum Characteristics Related to Learning Gains 

Multiple personal and curriculum characteristics affect how much students learn. 

Additionally, many personal and test characteristics affect estimates of academic learning 

gain. It should be noted that most published studies supposedly examining these personal 

and curriculum characteristics are not evaluating how these factors affect learning gain. 

Surprisingly little literature discusses factors that affect changes in ability or 

performance. This study will empirically investigate if and how these factors affect 

college students’ quantitative and scientific learning gains. Understanding how these 

factors affect student performance may help to better understand how these factors 

potentially impact student learning gain. In the sections below, I review the factors 

related to student performance, as well as some research on how these factors may relate 

to learning gains.  

Gender. Research has found that gender both predicts and moderates student 

performance. Bray and colleagues (2004) investigated how reading comprehension and 

attitudes toward literacy develop from the first year to the third year of college. 

Regressing gender, among other predictors, on third year scores, the researchers found a 

conditional effect of gender: male students who took professional or technical courses 

had significantly lower scores in reading than female or other male students. As well, 

female students had significantly higher attitudes toward literacy than males. However, 

females did not have significantly higher scores in reading comprehension. Differences in 

math performance have also been documented. Males and females may differ on tests if 
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the items assess male-dominant cognitive skills (e.g., math word problems) or if 

economic and social differences are not included in analyses (Buchmann, DiPrete & 

McDaniel, 2008). 

Pascarella and Blaich (2013) discovered a conditional effect of gender and high-

impact learning practices on critical thinking learning gains. Specifically, males increased 

their learning gains significantly more when they interacted with faculty whereas females 

did not benefit more from interacting with faculty. Toutkoushian and Smart (2001) 

assessed the effect of gender on student learning gains. The researchers used self-reported 

gains to gauge student learning gain in six outcomes: learning/knowledge, 

tolerance/awareness, grad school preparation, communication skills, and miscellaneous 

achievements. Results suggested that female students have significantly greater gains in 

communication skills than males after controlling for ethnicity, prior academic ability, 

and other various personal characteristics. On the other hand, males and females did not 

appear to differ in their self-reported learning/ knowledge gains after controlling for 

personal characteristics. In contrast, some work has shown that females have smaller 

learning gains in math and science than males (Finney et al., 2016; Hagedorn, Siadat, 

Nora, & Pascarella, 1996). In sum, males and females may develop their math skills at 

different rates. Research investigating the effect of gender on math gains is remarkably 

slim; much of the research investigates the effect of gender on performance rather than 

learning gains (e.g., Bray et al., 2004). The current study will address this issue by 

investigating the predictive power of gender on quantitative and scientific learning gain. 

Prior academic ability. Although it is desirable that all students leave college 

equally skilled, this outcome is not typical. In general, students with greater intellectual 
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abilities consistently outperform their less-adept peers (Seifert et al., 2007; Wholuba, 

2014). With respect to college-level learning gains, prior academic ability does not 

appear to affect self-reported learning gains (Toutkoushian & Smart, 2001). In contrast, 

empirical research has found that more academically adept students demonstrate smaller 

learning gains than their peers in high school (Grigorenko, Jarvin, Diffley, Goodyear, 

Shanahan, & Sternberg, 2009) and in college ( Pastor et al., 2007). Because these 

students are already performing highly, this result might stem from a ceiling effect. That 

is, these small gains may occur because these students have less to master during college 

or because the measures employed are not sensitive to learning gain. Both linear 

(Grigorenko et al., 2009) and nonlinear (Ryoo et al., 2014) models have been fit to rates 

of learning gain. To address this issue, the current study will examine the effect of prior 

academic ability on math and science learning gains. Linear and nonlinear predictors of 

academic ability will be included in the model.  

Coursework. Course content affects student learning gains both in that domain 

and beyond (Pascarella & Terezini, 2005). Generally, a diverse curriculum appears to 

encourage development of diverse skills. A wide-spread investigation of college general 

education curricula found that students who had under 40% of their total coursework 

from general education courses and an unequal distribution of content matter (e.g., more 

math general education courses than literature general education courses) had greater 

gains on the ACT COMP objective test (Knight, 1993).  

After controlling for prior academic ability, exposure to math and science courses 

is associated with higher scores in reading (Bray et al., 2004). Additionally, exposure to 

math and science courses is associated with higher critical thinking after controlling for 
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prior critical thinking ability (Terezini et al., 1995). If higher education truly causes 

learning gain, one would expect that a student’s learning gain would increase as the 

student completes more coursework. Existing research supports this claim (e.g., Hathcoat 

et al., 2015; Pastor et al., 2007).  

Major. Students’ chosen field of study is also linked to student learning gain. 

Students in particular fields demonstrate increased learning gain in content matter 

relevant to their declared majors; this effect is particularly pronounced for students in 

STEM majors (Pascarella & Terezini, 2005). However, these findings were not replicated 

in studies focused on verbal skills (Pascarella & Terezini, 2005).  

Additionally, student major tends to moderate learning gain in general skills 

(Pike, 1992) and domain-specific skills (Herzog, 2011). To be clear, general skills 

concern overall performance whereas domain-specific skills concern performance in a 

particular field of study. On measures of academic aptitude, business students have been 

shown to have the greatest gain in both general skills (Pike, 1992) and domain-specific 

skills (Herzog, 2011) than other majors. After business students, students majoring in 

physical sciences (e.g., physics, math) exhibit greater gain in domain specific skills than 

other majors (Herzog, 2011). It should come as no surprise that students who take courses 

related to their major tend to exhibit greater gains in that field. Students who are 

interested in the material tend to learn more (Wigfield & Eccles, 2002). One would 

expect that these students are interested in and willing to learn the material from these 

relevant courses.  
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Test-Taking Motivation and Learning Gains 

Practitioners are interested in how personal characteristics can affect student 

performance and learning gain. However, personal characteristics can also affect how 

accurately researchers estimate learning gain. One such characteristic of particular 

concern is motivation. According to Expectancy-Value theory (E-V theory; Wigfield and 

Eccles, 2000; 2002), motivation (or expended effort) is a function of two domain-specific 

components: expectancy and value. E-V theory can be applied to test-taking behavior 

(Sundre & Moore, 2002; Wolf & Smith, 1995). E-V theory is particularly useful for 

explaining test-taking behavior on low-stakes tests, which will be the focus of the 

remainder of this literature review. In low-stakes testing contexts, performance on the test 

is not associated with consequences for students. A student who does poorly on the test 

will not receive reprimands, and a student who does well will not receive rewards. 

However, scores from these low-stakes tests are often used by administration in high-

stakes situations (e.g., curriculum modifications and higher education accreditation). 

Because there are no consequences, students tend to put forth little effort on these tests.  

This amotivation can be described in terms of expectancy and value. Expectancy 

concerns students’ perceptions of their capabilities to complete the test; value concerns 

the significance of the test to the students. The value component can be further divided 

into four subcomponents: interest, usefulness, importance, and cost (Wigfield & Eccles, 

2002).  Expectancy is often dropped or disregarded in applications of E-V theory as it is 

not as closely associated with expended effort as test value (Eklof, 2010; Wigfield & 

Eccles, 2000). Expectancy is also much more difficult to manipulate than value, as 

students may not be able to accurately judge their capabilities on tests. Some research has 
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shown a weak relationship between expectancies and effort (Barry & Finney, 2016; 

Eklof, 2006). However, newer work suggests that there may be a stronger relationship 

between expectancy and effort than previously found (Penk & Richter, 2016). 

The four value sub-components also take on their own meanings in low-stakes 

contexts. Interest is how much enjoyment examinees get out of taking the test; usefulness 

is how worthwhile the test is to achieving future goals; importance is how important 

examinees believe the test to be; and cost is what examinees had to give up in order to 

take the test (Eklof, 2010). Value tends to be positively associated with test-taking effort. 

Specifically, importance (Cole, Bergin, & Whittaker, 2008; Knekta & Eklof, 2014; Thelk 

et al., 2009) and usefulness (Penk, Pohlmann & Roppelt, 2014) have been shown to be 

positively correlated with effort. Students who place higher importance on the test or 

believe test scores can help them achieve their goals tend to try harder on the test. Most 

research investigating motivation focuses on the relationship between importance and 

effort. Work has been done to ensure these factors are distinct (Finney, Mathers & Myers, 

2016; Thelk et al., 2009). Researchers have also developed measures of motivation that 

assess both perceived test importance and test-taking effort (e.g., Student Opinion Scale; 

Sundre & Moore, 2002).  

What test-taking motivation affects.  Test-taking motivation affects test-taking 

behavior. This behavior, in turn, affects test performance and, potentially, learning gain 

estimates. That is, learning gain estimates may be attenuated by low test-taking 

motivation. Thus, test-taking motivation can impact the validity of inferences about 

student performance and may impact the validity of inferences about learning gain. In the 

following sections, I discuss in detail how test-taking motivation affects estimates of 
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performance and learning gain, as well as the impact of perceived test importance on 

performance and learning gain. 

Test-taking motivation is positively related to test performance (Knekta & Eklof, 

2014). Students who put forth more effort on tests perform better than students who put 

forth less effort (Eklof, 2007; Penk et al., 2014; Sundre & Kitsantas, 2004; Wise & 

DeMars, 2005; Wise & DeMars, 2010; Wise & Smith, 2011; Wise, Wise & Bhola, 2006). 

In fact, motivated students can perform up to half a standard deviation better than 

unmotivated students (Wise & DeMars, 2005).  

Researchers have empirically demonstrated that importance has an indirect effect 

on performance through effort (Cole et al., 2008; Mathers, Finney, & Myers, 2016; 

Myers, Finney, & Mathers, 2016; Zilberberg et al., 2014). That is, how highly a student 

values a test relates to how much effort the student puts forth on the test. Test-taking 

effort, in turn, relates to how well the student performs on the test. Thus, it would be 

expected that a student who believes a test to be important would put forth good effort 

and perform well, and a student who does not value a test would not try to do well and 

therefore perform poorly.  

Given these relationships, it can be difficult to make valid inferences about 

students’ abilities from test scores. As previously outlined, students demonstrate higher 

levels of test-taking motivation when test has meaning to students. That is, students could 

perform better on these tests if they were more motivated.  It can reasonably be assumed 

that performance estimates of unmotivated students may be underestimates of these 

students’ abilities. If so, low test-taking motivation has become construct-irrelevant 

variance.  
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Construct-irrelevant variance.  Construct-irrelevant variance (CIV) is a 

predictable, quantifiable (i.e., systematic) error that clouds estimates of the construct of 

interest (Haladya & Downing, 2004). Consider the following scenario. A student with 

poor English skills is given a math test. However, the test consists mostly of word 

problems, and the student has a difficult time understanding what the problems require 

her to do. Although her score on this test is meant to be an indication of her math skills, it 

is more indicative of her reading comprehension. In this scenario, reading comprehension 

is CIV and undermines her estimated math ability. Low test-taking motivation functions 

the same way. The test is not meant to measure low test-taking motivation, yet low test-

taking motivation still undermines test scores.  

One can ascertain how much test-taking motivation may affect performance 

estimates by examining the relationship between test-taking motivation and performance. 

Hathcoat et al. (2015) found test-taking motivation to be moderately correlated with 

performance (r = 0.47). Myers et al. (2016) found that the indirect effect of perceived test 

importance on test performance through test-taking effort accounted for up to 30% of the 

variance in test scores. Wise and DeMars (2005) found that students’ mean test 

performance increased by almost four points as they raised their desired level of effort on 

the SOS.  

Test-taking motivation and learning gains. It is equally important to ensure low 

test-taking motivation does not affect estimates of learning gain. Low test-taking 

motivation can also account for the difference between seeing no gain in performance 

versus seeing a moderate gain in performance (Wise & DeMars, 2010). That is, low test-

taking motivation may also attenuate learning gain estimates. This outcome can occur if a 
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student is unmotivated on a pretest, on the corresponding posttest, or on both of these 

measures. If a student is unmotivated on the pretest but motivated on the posttest, only 

her pretest score will be attenuated. Thus, the difference between her pretest and posttest 

scores will be artificially larger; it will appear that she has learned more than she has. If 

she is unmotivated at the posttest or on both measures, the difference between her two 

scores will be artificially smaller; it will appear as if she has learned less than she actually 

has. It is therefore critical that researchers investigate how test-taking motivation affects 

learning gain estimates in applied settings. Some work has been done in this area. 

Research has found that motivation is positively associated with change in performance 

(Gottfried et al., 2007; Taasoobshirazi & Sinatra, 2011). Furthermore, change in 

motivation has been found to relate to change in math performance (Gottfried et al., 

2007). Finney et al. (2016) found that change in importance and change in effort were 

positively correlated with value-added estimates of quantitative and scientific reasoning. 

Corresponding research conducted by Williams (2016) corroborated the effect of 

changing importance on learning gains. She also found a stronger effect between change 

in effort than change in importance on learning gain.  

Fortunately, researchers have developed a method to reduce the attenuating 

effects of low motivation on learning gains. When data from unmotivated students are 

removed from analyses, results computed from the remaining data are more indicative of 

student learning gain. This technique, motivation filtering, is described in the section 

below. 
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How to Address Low Test-Taking Motivation: Motivation Filtering 

To produce trustworthy estimates of learning gains, it is critical to eliminate the 

attenuating effects of low motivation. Researchers have proposed statistical adjustment of 

test scores, where motivation would be included as a predictor in a regression analysis 

(Wise & DeMars, 2005). This technique, however, has not been put into practice as 

researchers are concerned about the implications of such artificial inflation of test scores. 

Motivation filtering, on the other hand, has garnered both positive attention and 

legitimacy in the struggle against low test-taking motivation. 

Motivation filtering is a method of removing CIV in order to obtain better 

estimates of students’ abilities (Wise & DeMars, 2005). It leads to more precise estimates 

of ability (i.e., decreased SDs; Wise et al., 2006). Motivation filtering also leads to 

increases in average test scores when scores have been attenuated by low motivation 

(Wise et al., 2006). There are several ways to conduct motivation filtering. In computer-

based testing (CBT), response-time effort (RTE) is often used to identify unmotivated 

students (Wise & DeMars, 2010). RTE refers to the amount of time a student takes to 

answer an item. It is assumed that the amount of time spent corresponds to the student’s 

effort. A lower time indicates that a student is not putting forth effort (i.e., exhibiting 

rapid guessing behavior). Typically, a threshold is set for examinee’s rapid-guessing 

behavior. The assumption is that if students were providing valid responses, they would 

require more time to read the item and respond thoughtfully (Swerdzewski et al., 2011). 

To determine the boundary between rapid-guessing and effortful responding, a time 

threshold is set for each item (Wise & Kong, 2005). The threshold reflects the minimum 

amount of time a student will spend answering an item if he is motivated. Students who 
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fall below the threshold are removed from the analysis because it is assumed that they are 

not motivated to perform well (Swerdezwski et al., 2011; Wise & DeMars, 2010). For 

example, a researcher could set a threshold for an item at 4 seconds. Students who spend 

at least 4 seconds on the item are assumed to exhibit good effort. After the data have been 

collected, the researcher would filter out examinees who took less than 4 seconds to 

respond to the item.  

Self-report measures can also be used for motivation filtering in either CBT or 

paper and pencil modalities. Motivation filtering via self-report measures is conceptually 

similar to motivation filtering via RTE. That is, both methods involve calculating a 

threshold of motivation and filtering out unmotivated students from the sample who do 

not meet that threshold. With self-report measures, a cutoff score (i.e., threshold) is used 

to identify unmotivated students. Students whose reported motivation falls below this 

score are removed from the sample. Some deprecate self-report measures for their 

sensitivity to response bias and inability to account for changes in effort during the test 

(Wise & Ma, 2012). On the contrary, self-report measures have been shown to have 

utility when conducting motivation filtering (Rios et al, 2014; Swerdzewski et al., 2011; 

Wise & Kong, 2005). The Student Opinion Scale (SOS), developed under E-V theory, is 

one such measure (Sundre & Moore, 2002). This scale demonstrates good psychometric 

properties (Thelk et al., 2009). As well, it can be used to identify unmotivated students 

(Sundre & Wise, 2003; Swerdzewski et al., 2011).  

The SOS can be either test-specific (administered following the test) or test 

session-specific (administered following a battery of tests). Both measures have been 

used for motivation filtering (Hathcoat et al., 2015). Motivation filtering has been 
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conducted using the test session-specific total SOS score (Sundre & Wise, 2003). 

However, it is not recommended that examinees are filtered using their total motivation 

score because the total score confounds information about perceived test importance with 

expended effort. That is, an examinee who believes the test to be very important but who 

expends little effort (and therefore has little motivation) may achieve the same SOS total 

score as an examinee who does not believe the test to be important but who puts forth 

effort (and therefore is highly motivated). Thus, highly motivated examinees may 

inadvertently be filtered from the sample. Instead, examinees should be filtered based on 

effort scores. Only students who expend little effort will then be filtered from the sample.  

However, the measures may classify different students as motivated or 

unmotivated. That is, filtering using the test-specific measure may produce different 

results than filtering using the test-session specific measure. Specifically, the two 

measures have been found to identify 78.7% of the same motivated students (Hathcoat et 

al., 2015). In the aforementioned study, however, 8.9% of students reported adequate 

effort on the test-specific measure but were unmotivated by the end of the battery. These 

students were therefore not retained when the test session-specific measured was used to 

filter data. Furthermore, the researchers found evidence to suggest that test-specific and 

test session-specific effort scores are not redundant (i.e., do not measure the same type of 

motivation). However, filtering using the two measures produces similar performance 

estimates (Hathcoat et al., 2015). Unfortunately, few studies compare motivation results 

from these two self-report measures. At the current author’s institution, data from both 

the test-specific and test session-specific measures of motivation are collected. The 
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current study will assess how filtering using test-specific and test-session specific 

measures affects learning gain estimates. 

Determining an Adequate Amount of Learning Gain 

Learning gain estimates can shed light on how college coursework affects student 

learning, but only if context is provided for the estimated learning gains. Estimated 

learning gains that are reported without reference to a predetermined standard have little 

utility.  Put simply, estimated learning gains that are reported without reference to a 

standard do not inform stakeholders of whether students are adequately learning.  

Who should determine what is an adequate amount of learning gain, and how 

should they determine this standard? An adequate amount of learning gain should be 

determined by those who develop and administer the curriculum: faculty. Faculty 

involvement in student learning assessment is necessary to improve student learning 

(Banta & Blaich, 2009). In fact, their roles in student learning assessment extend far 

beyond the classroom. Faculty should be involved in selecting or developing measures to 

assess student learning gain (e.g., Ewell, 2009; Schmeiser & Welch, 2006) and 

determining desired scores (or level of ability) on those measures (Castellano & Ho, 

2013). Faculty should also be able to use results to determine the amount of learning gain 

they would like or expect to observe as a result of their pedagogy. 

Unfortunately, little has been done by higher education administrators or faculty 

to determine how much learning gain should be expected if students are learning from the 

curriculum. At the same time, there has been a push to make learning gains comparable 

across institutions (Roohr et al., 2016; U.S. Department of Education, 2006), which is 

valuable information for the higher education community. After all, in the current 
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student-as-consumer higher education climate, this information can affect where students 

enroll. Feasibly, students, parents, and other stakeholders are also eager to know how 

much students can expect to learn after attending a given institution. Yet, institutions 

themselves lack a standard of absolute learning gain. For an institution to be able to 

demonstrate its effectiveness, it is important that the institution provides evidence that 

students are learning and meeting learning gain expectations. Evidence of effectiveness 

can be provided in the form of a standard of learning gain. 

Standard setting. Current practice for performance standard setting involves 

faculty setting a cut score for criterion-referenced tests to determine student proficiency 

at one time point (e.g., DeMars et al., 2002; Hathcoat et al., 2015). However, setting a 

performance cut score has limited utility for determining adequate learning gain. 

Knowing whether or not a student is minimally proficient does not assist in knowing how 

much that student changed over time. A student may grow substantially yet still fall 

below the performance cut score.  Therefore, it may be more appropriate to set a learning 

gain standard rather than a performance standard in order to gauge curriculum impact. A 

learning gain standard can be set by referring to current learning gain estimates (Gong, 

2004). Additionally, procedures for setting learning gain standards have been described; I 

discuss these procedures below. 

There are three types of procedures for learning gain standard setting: scale-based, 

target-based, and norm-referenced (Castellano & Ho, 2013). Scale-based setting classifies 

learning gain into different categories (e.g., “low” v. “high”) based on cut points. A group 

of faculty determines these cut points by examining the institution’s distribution of 

student learning gains and basing categories on typical learning gains. Target-based 
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setting also classifies learning gain into categories but takes into account whether or not a 

student is on target to achieve a set standard (e.g., one group of students is “on track” to 

meet a college readiness standard by the time they are in 11th grade, whereas another 

group is not). Norm-referenced setting involves comparing the distribution of student 

learning gain estimates to the distribution of a control group. For example, suppose the 

learning gain estimates from the control group are normally distributed. Researchers can 

compare a score from the treatment group to this distribution to determine if the student’s 

gain is typical or atypical. This control group should come from the same or similar 

population. The scale-based approach is most appropriate for determining a standard of 

absolute learning gain. However, this method has a major limitations: if faculty are 

unaware of how much their students are learning, they cannot make any decisions about 

what would be an adequate (or inadequate) amount of gain.  

What faculty expect with respect to learning gains. To the author’s knowledge, 

no research has been conducted on faculty expectations of learning gain. Extensive 

research has been conducted on teacher expectations in K-12 settings, which may provide 

some insight into how much college-level faculty expect of their students.  

Though this body of literature may provide some insight, research in K-12 

educational settings is mixed on whether teacher expectations align with student 

performance.  Teacher expectations have been found to significantly overestimate 

reading performance of minority primary school students (Rubie-Davies et al., 2006). In 

a study on teacher perceptions of elementary school performance, however, teachers 

tended to have similar median expectations to students’ observed math performance; 

math performance was operationalized as students’ scores on the Woodcock Johnson 
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Applied Problems subtest (Hinnant et al., 2009). These researchers also found that, for 

students whose families were low income, teachers’ expectations of math performance 

significantly and positively predicted their math performance in later grades. This result 

implies that how teachers expect students to perform may impact students’ learning, and 

that teachers with high expectations may encourage greater learning in their students. A 

study on Dutch primary schools found that teacher expectations correlated highly with 

students’ performance on high-stakes national test (Timmermans, de Boer, & van der 

Wer, 2016). However, it is important to keep in mind that the current study focuses on 

results from a low-stakes test.  

Research also indicates that middle school teachers do believe their students can 

achieve relatively high performance-based standards (Harris, 2012). However, these 

teachers described challenges that might prevent their students from reaching their 

expectations, such as students’ academic abilities, problems at home, and “lack of student 

responsibility for their own learning or motivation” (Harris, 2012, p. 138). A sample of 

high school teachers, when questioned about the decline in academic achievement of 

their African American students, also attributed the decline to family-influenced factors 

(e.g., “lack of parental support in the home”; Falconer-Medlin, 2014, p.88) and student-

influenced factors (e.g., “lack of interest in school or low motivation”, p.88). These high 

school teachers additionally attributed the decline to school-influenced factors (e.g., 

“curriculum is not engaging, relevant, or culturally-inclusive”, p. 88). 

At the college level, frameworks for student learning outcomes have been 

proposed. One such framework is the Degree Qualifications Program (DQP), a resource 

that describes what students should be able to know or do after obtaining an Associate 
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Bachelors’, or Master’s degree (Kuh et al., 2015; Lumina Foundation, 2011). For 

example, a student at the bachelor’s level “translates verbal problems into mathematical 

algorithms and constructs valid mathematical arguments using the accepted symbolic 

system of mathematical reasoning.” (Lumina Foundation, 2011). Though the DQP may 

be helpful in identifying what level of performance is expected, it does not illustrate what 

level of learning gain is expected.  

Instead, faculty expectation research centers on why faculty believe students are 

or are not learning at college.  In their work on student learning gains in higher education, 

Arum and Roksa (2009) gave the impression that faculty do not have faith in their 

students’ motivation to learn. Leaning on research in sociology, the researchers warned 

that students’ peer groups may affect their willingness to learn. Arum and Roksa 

furthered explained that “Many students come to college not only poorly prepared by 

prior schooling for highly demanding academic tasks that ideally lie in front of them, but  

- more troubling still – they enter college with attitudes, norms, values, and behaviors that 

are often at odds with academic commitment.” (Arum & Roksa, 2009, p. 3). Chickering 

theorized that poor student learning stems from poor pedagogy (Chickering, 1999). In his 

seminal work, Chickering outlined the various academic and personal stages of 

development that college students move through to become intellectuals. He argued that 

lecture-based coursework and conventional examinations only moved students through 

’simpler’ stages of development, and did not support student learning. Although the 

author did not elaborate on whether or not college students learn at their schools, his 

stance seemed to imply that students are not learning as much as they could. 
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However, other work has shown that faculty do believe in their students’ 

academic capabilities. Darby and Newman (2014) conducted a study on faculty who 

taught service-learning courses. The researchers asked these faculty their opinions on 

questions ranging from what they perceived were the benefits of service-learning 

coursework to what affected their motivation to teach such courses. Faculty elaborated 

that they were motivated by student-based outcomes, such as integration of knowledge 

and connection of course material to real-world experiences. These faculty believe that 

their pedagogy is effective, and that their students can both retain and apply the material 

learned in their courses.  

Although a substantial body of research exists in the K-12 education domain, 

there is little literature regarding faculty expectation of how much students should be 

learning. Instead, the faculty expectation literature focuses on whether faculty believe 

students can learn and what affects student learning. Given this gap in the literature, the 

current study will investigate how much faculty expect students to learn from their 

coursework. Faculty will be asked to estimate how much they think students at the 

institution learn, as well as how much they would like students to learn. 
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CHAPTER THREE 

Methods  

This study employs a mixed methods design. That is, I employed quantitative 

analyses and then used results from the quantitative analyses to inform the qualitative 

analyses. Mixed methods research, however, constitutes more than use of quantitative 

and qualitative research methodologies, or strands. One of the primary features of mixed 

methods research is that the researcher articulates her paradigms, or her views on what 

knowledge is and how knowledge is gathered (Creswell & Plano Clark, 2011; Merriam & 

Tisdell, 2016)8. In this study, I adopt a post-positivist paradigm for the quantitative strand 

and a constructivist paradigm for the qualitative strand (Creswell & Plano Clark, 2011; 

Merriam & Tisdell, 2016). The post-positivist paradigm acknowledges that knowledge or 

reality is not always adequately captured, but still posits that there is one reality and that 

it can be measured. In adopting this paradigm, I assert student learning gains are real 

phenomena to be assessed and predicted. With respect to weighting, I prioritized the 

quantitative strand (QUAN9). In contrast, the constructivist paradigm asserts that 

knowledge and reality are socially constructed. In adopting this paradigm, I assert that the 

opinions of faculty at this institution, with respect to their expectations and desires of 

student learning gains, are constructions that stem from each faculty’s teaching 

experience. I weighted the qualitative strand less than the quantitative strand (qual).  

                                                           
8 To date, there are four paradigms a researcher may adopt: post-positivist, constructivist, 

critical research, and postmodern (Merriam & Tisdell, 2016).  
9 For researchers unfamiliar with mixed methods terminology, please consult Creswell 

and Plano Clark (2011) for an in-depth description.  
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  To adequately assess learning gains and faculty expectations, this study employs a 

multiphase embedded design. In an embedded design, a secondary strand is added to 

address a research question that cannot be answered by the primary strand (Creswell & 

Plano Clark, 2011). My qualitative strand is embedded within my quantitative strand; the 

qualitative hypothesis is distinct from the quantitative hypotheses but cannot be 

addressed without results from quantitative analyses. The current study begins with 

quantitative analyses followed by qualitative analyses. Below, I provide information on 

data collection for each strand.  

Participants and Procedures for Estimating Growth (Phase 1) 

At the public, Mid-Atlantic university where this study was conducted, the 

effectiveness of the general education curriculum has been assessed for over twenty years 

during the biannual Assessment Day. Assessment Day is held once before the start of the 

fall semester and again several weeks into the spring semester. Incoming first-year 

students are tested during the fall. Upper-class students are tested during the spring once 

they have accumulated between 45-70 credit hours. These longitudinal data allow for the 

computation of gain scores, which can be used for both accountability purposes and, just 

as importantly, the improvement of the general education curriculum.  

All incoming students are assessed during the mandatory assessment day in the 

fall. Given time constraints, however, each student does not complete all tests. Students 

are randomly assigned to a testing room based on the last few digits of their student ID 

number. Each testing room corresponds to a specific battery of tests. Test batteries are 

comprised of both cognitive and noncognitive measures. A majority of these measures 

were developed by faculty to align with general education learning outcomes at the 
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university. Each test battery takes approximately two hours to complete. Assigning 

students to test configurations by their student ID enables university assessment experts 

to assign students to the same battery at both testing sessions (at the start of their college 

career and again a year and a half later after accumulating between 45-70 credit hours).  

If a student fails to attend Assessment Day, a hold is placed on the student’s 

account and the student must attend a makeup session. With the exception of this 

repercussion, no other consequences exist for students. Performance on the tests does not 

affect graduation or course grades. For example, if a student performs poorly on a math 

and science test administered during Assessment Day, it does not affect her Calculus 

course grade. Thus, the tests administered on Assessment Day are low stakes for 

students; they have no personal consequences to the student.  

Data used in this study were collected from cohorts 2007-2009, 2008-2010, 2013-

2015, 2014-2016, and 2015-2017 during the regular Assessment Day (i.e., not from 

makeup testing; see Table 4). I analyzed data from these five cohorts to gauge the 

stability of the estimates of student learning gains in quantitative and scientific 

reasoning10. For students in each of the five cohorts, I gathered the number of math and 

science courses completed at the time of the second testing (number of courses completed 

ranged from zero to seven). By computing the gains based on number of courses 

completed, I was able to evaluate if collapsing across coursework masks the effects of the 

curriculum (i.e., if increased coursework affects the magnitude of the learning gain). Due 

to few students having completed either zero or at least five courses by their sophomore 

                                                           
10 All datasets are distinct from the data analyzed in published studies by Hathcoat and 

colleagues (2015) and Finney and colleagues (2016).  
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year, I collapsed across the cohorts to determine how much students gain after 

completing or not completing quantitative and scientific reasoning coursework.  

Measures for Estimating Growth (Phase 1) 

Natural World, Version 9. Quantitative and scientific reasoning was assessed 

using the Natural World 9 (NW9), a 66-item quantitative and scientific reasoning test 

developed by faculty and university assessment consultants (Sundre, Thelk, & Wigtil, 

2008). In use since 2007, this test intentionally aligns with the general education 

quantitative and scientific reasoning curriculum. The test yields one total quantitative and 

scientific reasoning score (Sundre et al., 2008). In past studies, total scores have been 

shown to have good reliability (e.g., α = .77, Finney et al, 2016). Adequate reliability was 

also evidenced across the five cohorts at both testing occasions, as shown in Table 5.   

I subtracted students’ quantitative and scientific reasoning pretest scores from 

their posttest scores to estimate individual learning gain on the metric of the NW9 test. I 

then computed the unstandardized average learning gain for the total sample (collapsing 

across the cohorts and number of quantitative and scientific courses) and for each cohort 

(collapsing across number of quantitative and scientific courses). I consider a 3-point 

gain on the NW9 a moderate unstandardized learning gain. I based this unstandardized 

learning gain value on prior quantitative and scientific reasoning studies (e.g., Hathcoat et 

al., 2015) and reports (e.g., Curtis, 2016) from this institution, where 3-point gains on this 

particular test are associated with moderate standardized learning gain estimates.  

I then standardized these average unstandardized gain scores (i.e., Cohen’s d 

estimate) using the standard deviation of the gain scores and again using the standard 

deviation of the pretest scores. Using the standard deviation of the gain scores allowed 
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comparisons to Roohr and colleagues’ (2016) findings, whereas using the standard 

deviation of the pretest scores allowed comparisons to Pastor and colleagues’ (2007) 

findings. In line with Cohen’s benchmarks and findings from Pastor et al. (2007), I 

consider a standardized gain of 0.50 on the standardized pretest metric a moderate 

standardized learning gain. In their discussion on student learning gain estimates, Roohr 

et al. (2016) considered their standardized math gain estimate of d = 0.41 on the 

standardized gain metric to be moderate. Thus, I also consider a standardized gain of 0.40 

SDs on the standardized gain metric a moderate standardized learning gain. 

Number of courses completed. Given that coursework is predicted to have the 

greatest impact on learning gains, the number of relevant courses completed was gathered 

from university records. University faculty designed a set of math and science general 

education courses intended to increase quantitative and scientific reasoning. This math 

and science curriculum covers the three topics of “Quantitative Reasoning”, “Physical 

Principles”, and “Natural Systems”, and includes a lab component. Example courses are 

“Calculus I” (Quantitative Reasoning course), “Concepts of Chemistry” (Physical 

Principles course), and “Biological Anthropology” (Natural Systems course). Students 

must complete a course in each of the three topics in addition to a lab. At minimum, these 

courses must amount to 10 credit hours. Three courses usually are enough to satisfy the 

10-credit hour requirement (i.e., one course = 3 credit hours, one course with lab 

component = 4 credit hours), but some students may complete four courses if they 

complete the lab separately. In the current study, I gathered data on the exact number of 

relevant courses students completed upon the second testing occasion. Given that number 

of courses completed was collected from university’s records, all students had complete 
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data. The number of courses completed ranged from zero to seven, excluding lab-only 

courses. 

Academic ability. Academic ability estimates, as reflected via SAT or ACT, were 

gathered from university records to estimate the effect of academic ability on learning 

gains. Students’ pre-college academic achievement tends to affect college performance 

(Seifert et al., 2007; Wholuba, 2015) and may affect learning gains (Grigorenko et al., 

2009; Ryoo et al, 2014). Thus, regressing estimated learning gains on these scores allows 

for estimates of the effect of coursework on learning gains while controlling for academic 

ability. 

 SAT subscale scores range from 200 to 800 (Dorans, 1999). Both SAT Math and 

SAT verbal scores were summed to create one total SAT score. If a student completed the 

ACT instead of the SAT, and the ACT composite score was unavailable, ACT Math and 

ACT Reading scores were summed to create one ACT score. Most students in the five 

cohorts had SAT data. For those students that did not have SAT data but completed the 

ACT (n = 25), ACT scores were converted to the SAT metric using concordance tables 

made available by ACT and College Board (ACT, 2009). Students who did not have SAT 

or ACT data were deleted from the regression analyses (n = 282, unfiltered condition; n = 

48, filtered condition).   

Gender. Gender data were gathered from university records to determine how 

gender affects learning gains and if gender moderates relationships between learning 

gains and other predictors (i.e., number of courses, prior ability). Research has suggested 

differential performance between males and females on science and math tests 

(Buchmann et al., 2008), as well as differences in self-reported learning gains 
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(Toutkoushian & Smart, 2001). Therefore, learning gain estimates were regressed on 

gender and the interactions among gender, prior academic ability, and number of courses. 

I dummy coded gender (male = 0, female = 1). Gender data were available for all 

students in all cohorts. 

Student Opinion Scale. To assess the impact of low effort on learning gain 

estimates, I removed NW9 data from examinees who reported low expended test-taking 

effort. Test-taking effort was assessed via the Student Opinion Scale (SOS; Thelk et al., 

2009). Based on expectancy-value theory (Wigfield & Eccles, 2002), the 10-item SOS 

was created to measure examinees’ perceived test importance (i.e., task value) and 

expended effort (i.e., motivation).  

Two versions of the SOS are available: a test session-specific measure and a test-

specific measure. The test session-specific SOS is administered at the end of a battery of 

tests to assess student motivation across all tests in the session. The test-specific SOS is 

administered at the end of a test to assess student motivation on that particular test. 

Instructions for the two measures differ slightly to distinguish the context (session or test) 

and the items on the measures are essentially identical (see Appendix A). Research 

supports the two-factor structure of perceived test importance and expended effort for the 

test session-specific SOS (Thelk et al., 2009) as well as the test-specific SOS (Finney et 

al., 2016). The test session-specific SOS (α = .80, importance subscale, α = .83 effort 

subscale; Thelk et al., 2009) as well as the test-specific SOS has been shown to have 

adequate reliability (α = .76, importance subscale, α = .82 effort subscale; Mathers et al., 

2016). In this study, reliability estimates ranged from α = 0.63 to α = 0.87 for test 
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session-specific effort and from 0.71 to 0.84 for test-specific effort (see Table 5). Test 

session-specific and test-specific importance data were not collected for this study. 

SOS effort scores from both versions were used for motivation filtering. In this 

study, I filtered using test session-specific effort scores and test-specific effort scores (see 

Tables 6, 7, 8 and 9). Cohort One did not complete either effort subscale; therefore, 

Cohort One data were not used in analyses investigating the impact of low test-taking 

effort on learning gains. Some students in the 2008-2010 cohort only completed the test-

session specific SOS; other students in this cohort only completed the test-specific SOS. 

For this cohort, I filtered students using their scores on whichever measure they 

completed. For each cohort, I computed three gain estimates: unfiltered gain, test-session 

filtered gain, and test-specific filtered gain.   

Researchers who employ motivation filtering must select a cut score to 

distinguish between students who are “motivated” and “unmotivated”. The cut score on 

the SOS effort subscale should not be too high nor too low (Wise et al., 2006). A 

suggested test for overfiltering (i.e., removing so many students that the resulting sample 

does not resemble the population) is to compare the SAT scores of the filtered sample to 

the unfiltered sample (Wise et al., 2006). That is, students’ level of motivation should not 

be related to students’ prior academic ability (Rios et al., 2014; Wise et al, 2016). If the 

cut score value is too high and too many students are removed, I would inflate the 

estimated learning gains (i.e., overestimate learning occurring on campus) and produce an 

artificial relationship between prior academic ability and motivation. If too low, few 
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unmotivated students would be removed and learning gain estimates would be attenuated 

by low motivation11.  

Researchers have recommended cut scores of 15 (Swerdzewski et al., 2011; Wise 

et al., 2006), 14 (Hathcoat et al., 2015) and 13 (Rios et al., 2014) on the SOS effort 

subscale which ranges from a possible low score of 5 to a possible high score of 25. 

However, these cut scores were determined using different techniques. Wise et al. (2006) 

and Hathcoat et al. (2015) selected the cut score where the SAT scores did not change by 

more than three points from the original sample. In contrast, Swerdzewski et al. (2011) 

and Rios et al. (2014) used the average, or slightly below the average, score of the effort 

subscale. Similar to Swerdzewski et al. (2011), I initially used the average of the effort 

subscale, a cut score of 15, and removed NW9 data associated with students who have an 

effort score below this value. Specifically, I filtered out students who had SOS effort 

scores lower than 15 at either the pretest or posttest.  

For each person removed, I recorded the reason for removal (low effort at pretest, 

low effort at posttest, low effort at both time points; see Table 10). After removing data 

from students with scores below 15, I examined average SAT scores to ensure I did not 

overfilter. If the SAT scores from the filtered sample were at least three points higher 

than the SAT scores from the students who were removed, I would need to lower the 

cutoff score to a number that does not artificially produce a relationship between 

motivation and academic ability. When motivation filtering was applied to data from 

                                                           
11 Although recent research has suggested there may be a relationship between motivation 

filtering and prior academic ability (Rios, Guo, Mao, & Liu, 2016), the study in question 

used RTE in lieu of self-reported motivation on scores from a high-stakes test 

administered at one institution.  
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Cohort 4, using a cut score of 15 for both the test-session specific and test-specific effort 

scores appeared to produce qualitatively different samples. Average SAT scores were at 

least six points higher than in the unfiltered sample; these initial SAT averages are shown 

in Tables 7-9. I conducted the analysis again using lower cut scores until the SAT scores 

of the filtered samples from Cohort 4 were roughly within three points of the original 

sample. Based on results from this process, I used cut scores of 12 on the test-session 

specific effort subscale and 13 on the test-specific SOS for Cohort 4. 

 Prior to deleting cases with missing motivation data, NW9 data were available for 

1554 students (see Table 6). Of these students, 0.31% identified as American Indian; 

5.32% as Asian; 3.76% as Black; 3.13% as Hispanic; 0.38% as Pacific Islander; 82.17% 

as White; and 4.94% were unspecified. Furthermore, 67.87% identified as female and 

32.13% identified as male. The average student age at pretest was 18.44 years, and the 

average at posttest was 19.91 years. Although there were slight demographics differences 

among the cohorts, these demographics align with the university demographics. SAT 

scores varied among the samples, ranging from 1117.39 (Cohort One) to 1146.81 (Cohort 

Four).  

Recall that Cohort One did not complete either SOS measure. Collapsing across 

Cohorts Two-Five and prior to filtering, 828 students had complete data on the test-

specific SOS and 564 students had complete data on the test session-specific SOS. After 

filtering for low test-specific motivation, NW9 data were available for 737 students (see 

Table 7). Thus, I filtered 91 out of 828 students (10.99%) due to low test-specific effort. 

Sample demographics changed slightly after filtering. Again, collapsing across the 

cohorts, 0.68% identified as American Indian; 6.38% as Asian; 5.02% as Black; 3.39% as 
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Hispanic; 1.09% as Pacific Islander; 84.40% as White; and 5.43% were unspecified. Of 

these students, 66.49% identified as female and 33.51% identified as male. The average 

age at pretest was 18.44 years, and the average at posttest was 19.90 years. 

After filtering for low test session-specific motivation, NW9 data were available 

for 511 students (see Table 8). Thus, I filtered 53 out of 564 students (9.40%) due to low 

test session-specific effort. Again, sample demographics differed slightly from the 

unfiltered sample. Of these students, 1.12% identified as American Indian; 7.61% as 

Asian; 6.49% as Black; 5.37% as Hispanic; 0.89% as Pacific Islander; 86.35% as White; 

and 2.24% were unspecified. Of these students, 65.75% identified as female and 34.35% 

identified as male. The average age at pretest was 18.45 years, and the average at posttest 

was 19.91 years.  

Furthermore, 489 students completed both the test-specific and test session-

specific SOS. After filtering, NW9 data were available for 413 students. Twenty eight 

students indicated both low test-specific and low test session-specific effort (see Table 

10). In total, I filtered 76 unmotivated students from this sample.  

Participants for Faculty Reactions 

Four quantitative and scientific reasoning general education faculty participated in 

this study12. To recruit faculty, I sent an email to nine faculty on the quantitative and 

scientific reasoning assessment committee informing them of the nature of my study and 

asking for participation. This email contained the following text:  

                                                           
12 Prior to recruiting participants, the protocol for the qualitative strand was sent to and 

approved by the Internal Review Board (IRB). This protocol included methods of 

recruitment, interview procedure, Forms A and B, intended data analyses and storage, 

and an interview guide.   
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“I am looking for 3 to 10 faculty members to participate in one-on-one interviews. 

Each interview will take no more than 45 minutes of your time. In each interview, I will 

give a brief introduction to the NW9, the test used to assess Cluster 3’s student learning 

outcomes. I will then ask how much you expect students to learn as a function of 

completing Cluster 3 courses. You will then observe the alignment between your 

expectations and the empirical estimates of learning gains. You will not be asked to 

provide identifiable information and your responses will be kept confidential. Personal 

benefits of participating in this study may include additional perspective on student math 

and science learning gains, information on how much students learn with each Cluster 3 

course completed, and the opportunity to participate in a relatively new area of research. 

This study will benefit the research area by contributing to the nonexistent literature on 

faculty opinions of student learning gains. Furthermore, this study has the potential 

benefits of highlighting the strengths of the Cluster 3 curriculum or improving the 

learning gains of students who complete Cluster 3 courses at JMU. Possible negative 

consequences of participation are anticipated to be minimal (e.g., personal expectations 

not being observed in the data).”  

 

After sending this email, I also asked these 9 faculty to participate during their 

monthly assessment meeting. Three committee members agreed to participate. I also 

invited via email an acquaintance who teaches quantitative and scientific reasoning 

general education courses at the institution to participate. All participants had taught at 

least 1 quantitative and scientific reasoning general education course within the past 10 

years and thus were relatively familiar with capabilities of the cohorts assessed in this 

study. However, two participants were not familiar with the general education assessment 

process at this institution. To alleviate this issue, I developed a presentation on the NW9 

that I showed to all interviewed faculty. This presentation included students’ average 

pretest performance, examples of test questions, and score reliability. This presentation 

took no more than five minutes of the interview. I also discussed how quantitative and 

scientific reasoning faculty developed the test with assessment experts and that faculty 

mapped items to quantitative and scientific reasoning learning objectives to ensure 

adequate objective coverage.  

Procedures and Materials for Faculty Reactions 
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I interviewed each faculty member one-on-one in his or her office. Each interview 

lasted no more than 45 minutes. Before the interview officially began, I gave faculty an 

IRB-approved consent form and asked them to read and sign it (see Appendix B). I then 

provided a brief presentation on the purpose of the study as well as on the NW9. After 

this presentation, I gave the faculty member a sheet of paper (Form A; see Appendix C) 

with several questions aimed at investigating faculty’s expected learning gains (e.g., 

“How many points do you expect students who have completed 1 quantitative and 

scientific reasoning course from Cluster 3 to gain on the NW9?) and desired learning 

gains (e.g., “How many points would you like students who have completed 1 

quantitative and scientific reasoning course from Cluster 3 to gain on the NW9?). I told 

the faculty member to answer these questions while keeping in mind the information 

about the NW9 as well as their own knowledge of and experience with the quantitative 

and scientific reasoning curriculum.  

If faculty said they could not estimate how much they expect and/or desire 

students to learn after completing 1.5 years of coursework or that estimating their 

expected and/or desired learning gain is difficult, I asked him/her to write and verbally 

explain why it is difficult. Two faculty members engaged in this activity. If faculty 

indicated that they required more information to produce their estimates, I asked him/her 

to write and verbally explain what information was needed to do so. One faculty member 

engaged in this activity. After the faculty member wrote these responses, I asked him/her 

to verbally explain the responses. I took notes during this part of the interview to collect 

faculty member’ verbal responses.  
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To analyze data, I employed an inductive content analysis. I developed codes, 

simple descriptive text categories, and themes, grouping of relevant codes (Charmaz, 

2006; Merriam & Tisdell, 2015) from the verbal and written responses from the four 

faculty. Because there is little literature regarding faculty expectations of student learning 

gains, I derived these codes from the transcript. Specifically, I utilized a line-by-line 

approach, where I assigned a code to each line of the transcript; each line of the written 

and verbal responses was summarized according to a descriptor, or code (Charmaz, 2006; 

Creswell & Plano Clark, 2011). Related codes were grouped together to determine 

emergent themes. Only those responses concerning expectation/desire alignment were 

coded using a priori codes (i.e., ‘aligned’ or ‘not aligned’) to reflect whether the 

responses are aligned (high desire and high expectation, low desire and low expectation) 

or not aligned (high desire and low expectation, low desire and high expectation). To 

ensure the themes I produced accurately captured faculty’s beliefs, I coded responses 

within faculty to ensure each faculty’s thoughts were adequately represented.  

Quantitative and qualitative strands were mixed during the dissemination of the 

results. Because only a few faculty were involved in this study and did not produce 

enough data points to conduct statistical tests, I report descriptive statistics. Additionally, 

the raw (not aggregate) data are reported. However, the raw data is not be attached to any 

identifying information.  

 Trustworthiness criteria. To ensure my codes and themes reflect faculty’s 

perspectives, I engaged in several processes oriented towards increasing trustworthiness, 

or the extent to which my results are unbiased, generalizable, and reliable. To increase 

transferability (i.e., generalizability of results) of faculty opinions, I recruited Cluster 3 
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Assessment Committee members and asked them to extend the invite to their non-

committee colleagues; I also reached out specifically to one of these non-committee 

members. To increase the credibility (i.e., accuracy of interpretations) of my results, I 

sent my results and my transcripts to my faculty interviewees. To increase credibility 

(i.e., that my coding accurately represented faculty’s beliefs), three of my colleagues, one 

of whom is external to the institution and area of study, reviewed my transcripts and 

codes.
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CHAPTER FOUR 

 

Results 

Hypothesis 1: Collapsing Across Courses, Students Should Have Moderate Gains   

Collapsing across the cohorts and number of courses, students, on average, 

gained 3.72 points on the 66-item NW9 test (see bottom of Table 11). On average, 

students scored 44.95 at pretest (about 68%) and 48.66 points at posttest (about 74%). 

This gain was statistically significant (F(1,1153) = 682.86, p < 0.001). The eta-

squared (η2) value indicated that 31% of the variance in NW9 scores could be 

explained by testing time point. Students gained 0.67 SDs on the standardized gain 

metric and 0.56 SDs on the standardized pretest metric. Thus, results supported 

Hypothesis 1; students had moderate gains, collapsing across number of courses. 

Cohort-specific average pretest scores ranged from 43.92 to 47.26 points, and 

average posttest scores ranged from 48.37 to 49.30 points. The pretest and posttest 

scores have comparable variability across and within the cohorts (see Table 11). 

Across cohorts, students tended to score about 5.50 points above or below the average 

pretest score, and about 6.00 points above or below the average posttest score. 

Cohort-specific unstandardized estimates ranged from an average difference score of 

1.43 to 3.67 points. The cohort-specific standardized estimates ranged from 0.28 SDs 

to 0.77 SDs using a standardized gain metric or 0.22 SDs to 0.62 SDs using a 

standardized pretest metric.  

To test whether the variance in the gain scores was related to cohort 

membership (and hence if the aggregate gain score was masking between-cohort 

differences in gains), I conducted a between-subjects ANOVA on the gain scores. 

Results from this ANOVA indicated statistically significant but not practically 
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different gain scores among the cohorts (F(4, 1549) = 5.851, p < .001, η2 = 0.02)13. In 

fact, only about 2% of the variance in gain scores could be explained by cohort 

membership (i.e., η2 = 0.02). Tukey’s post hoc tests indicated significant differences 

in gain scores between Cohorts One and Three, Cohorts Three and Five, and Cohorts 

Two and Three. However, the unstandardized effect sizes for the difference between 

the gains scores for Cohorts One and Three (unstandardized difference in gain scores 

= 3.02), Cohorts Three and Five (unstandardized difference in gain scores = -2.04), 

and Cohorts Two and Three (unstandardized difference in gain scores = 2.25) were 

small to moderate. Thus, students at this institution tend to demonstrate similar 

learning gain on this test across cohorts, which justifies the computation of the 

aggregate learning gain across cohorts.  

Hypothesis 2: Gains Will Increase with Increased Coursework  

It is hoped that, although students on average gain 3.72 points on the NW9, 

this average gain score differs across the levels of completed coursework. Students 

without any coursework may demonstrate gain scores smaller than 3.72 points, 

whereas students who have been exposed to multiple courses may demonstrate gain 

scores larger than this value. To assess the effect of coursework on learning gains, I 

disaggregated these gain scores by linking them to completed quantitative and 

scientific reasoning coursework. Specifically, I computed the unstandardized and 

standardized learning gain estimates for each number of classes collapsing across the 

cohorts (e.g., learning gain for students who completed one course) and within each 

cohort (e.g., learning gain for students who completed one course between the years 

2013 and 2015). Few students completed zero, five, six, or seven quantitative and 

                                                           
13 Ordinary least squares assumptions were checked. Data were distributed normally 

with no heteroscedasticity across the five groups. Observations were assumed to be 

independent.  
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scientific reasoning courses within any of the cohorts; consequently, these gains may 

be unstable. To produce more stable estimates of these students’ learning gains for 

each number of courses completed (zero through seven), I collapsed across cohorts to 

produce the average unstandardized and standardized gain estimate (see bottom of 

Table 11). 

Contrary to expectations, gain scores increased after students completed one 

quantitative and scientific reasoning course but then leveled off after multiple courses 

were completed. This trend tended to be observed across and within cohorts (see 

Table 11). For example, collapsing across cohorts, students who did not complete any 

quantitative and scientific reasoning courses gained 2.69 points on the test; students 

who completed one course gained 3.85 points; and students who completed three 

courses gained 3.78 points on the NW914.  

In contrast, the standardized learning gain estimates increased with each 

additional course completed. For example, students who did not complete any 

coursework gained 0.48 SDs on the standardized gain metric or 0.42 SDs on the 

standardized pretest metric; students who completed three courses gained 0.68 SDs 

using a standardized gain metric or 0.55 SDs using standardized pretest metric; 

students who completed six courses gained 0.98 SDs on the standardized gain metric 

or 0.51 SDs on the standardized pretest metric. The 0.98 SD learning gain estimate is 

due to low variation in gain scores (i.e., students who completed six courses had 

similar gain scores). Thus, results did not support Hypothesis 2; learning gain 

estimates did not increase as number of courses increased. 

                                                           
14 Only one student completed seven courses. This student gained 2.00 points 

on the test and also had low pretest (40.00 points) and posttest (42.00) scores. Thus, 

this student is likely qualitatively different from the student population. 
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Hypothesis 3: Removing Unmotivated Students Will Increase Learning Gains  

Although sample sizes were noticeably reduced after motivation filtering (see 

Methods and Tables 11, 12, and 13), gain scores did not increase. In the original 

unfiltered sample (N = 1554), students gained on average 3.72 points on the NW9. 

When I removed students who were unmotivated during the test battery, this estimate 

decreased (minimally) to 3.53 points (N = 444). Likewise, when I removed students 

who were unmotivated on the quantitative and scientific reasoning test, this estimate 

decreased (minimally) to 3.47 points (N = 737). When I removed students who were 

unmotivated on either the test or the test battery, the average estimate again decreased 

to 3.37 points (N = 413). The unexpected decrease in unstandardized learning gain 

estimates with the removal of unmotivated students is because the filtered samples 

have higher average pretest scores than the unfiltered sample. That is, students in the 

motivated samples scored higher at the pretest than students in the total sample (see 

Tables 11-14). Although students in the motivated samples also had higher posttest 

scores than students in the total sample, the difference between the pretest scores is 

larger than the difference between the posttest scores.  

The standardized estimates filtered for low test session-specific motivation 

(0.66 SDs on the standardized gain metric; 0.55 SDs on the standardized pretest 

metric) and low test-specific motivation (0.66 SDs on the standardized gain metric; 

0.55 SDs on the standardized pretest metric) were essentially identical to the 

unfiltered standardized estimates (0.67 SDs on the standardized gain metric; 0.56 SDs 

on the standardized pretest metric).  

Hypothesis 4: The Effort Measure Will Not Affect the Magnitude of Gain Scores 

I visually compared test session-specific filtered learning gain estimates to 

test-specific filtered learning gain estimates collapsing across cohorts with both test 
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session-specific and test-specific effort data (see Table 15). Students in Cohort Two 

either completed only the test-specific effort subscale or only the test session-specific 

effort subscale. Thus, I only inspected data from Cohorts Three, Four and Five to 

address this hypothesis. Given small frequencies in number of courses, I collapsed 

across Cohorts Three, Four, and Five to create one large sample (see Table 14). Due 

to the larger size of this aggregated sample, estimates produced from this sample are 

more stable than estimates produced from the individual cohorts.  

For students who completed both the test-specific and test session-specific 

SOS, I examined if removed students were unmotivated on one or both of these 

subscales (see Table 10). By examining this agreement, I was able to understand why 

the two measures produce similar estimates. As well, this examination allowed me to 

investigate two important outcomes: 1) if one measure identified more students as 

being motivated than the other at either or both time points, and 2) if the same 

students who were motivated on the quantitative and scientific reasoning test were 

still motivated by the end of the testing session, and vice versa.   

With respect to the number of students removed from the analyses, a total of 

76 students were removed from Cohorts Three-Five due to low motivation on either 

the test-specific pretest, test-specific posttest, test session-specific pretest, or test 

session-specific posttest (see Table 10).  An essentially equivalent number of students 

indicated low test-taking motivation on the test-specific SOS (N = 25 of the 76 total 

removed) as the test session-specific SOS (N = 23 of the 76 total removed). However, 

students who were motivated on the test rather than the test battery tended to have 

higher gain scores when gain scores were disaggregated by completed quantitative 

and scientific coursework. A small number of students in Cohorts Three, Four and 

Five indicated low test-taking motivation on both SOS versions (N = 28 out of the 76 
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removed using either test). As well, more students indicated low test-taking 

motivation at posttest than pretest.   

Results indicated that filtering using the test-specific effort subscale does not 

produce different learning gain estimates from the test session-specific effort subscale 

(see Table 15). Thus, the hypothesis that the two measures would produce similar 

learning gain estimates was supported. Collapsing across the three cohorts, the two 

filtered samples had similar overall unstandardized and standardized learning gain 

estimates (see Table 15). When these average learning gain estimates were 

disaggregated by coursework, negligible differences appeared between the filtered 

estimates. For example, students who were motivated on the test and completed one 

quantitative and scientific reasoning course gained 2.86 points. In comparison, 

students who were motivated on the test battery and completed one course gained 

2.91 points on the NW9. At most, the two filtered samples differed by 0.76 points in 

gain scores. This 0.76 differences corresponds to a standardized difference of 0.18 

SDs on the standardized gain metric or 0.13 SDs on the standardized pretest metric.  

Hypothesis 5: Coursework and Personal Characteristics Will Predict Gains   

I conducted a multiple regression analysis to determine if coursework predicts 

learning gains after controlling for personal characteristics. I collapsed across Cohorts 

Two, Three, Four, and Five to produce an aggregate sample. I dummy coded gender 

(0 = male, 1 = female). Prior to conducting analyses, I checked Ordinary Least 

Squares assumptions and these assumptions were met. 15  I retained cases from this 

sample if the cases did not have missing SAT data. Thus, data from 1001 cases were 

available for analysis.  

                                                           
15Results indicated normality and homoscedasticity. Furthermore, relationships 

between each predictor and the gain scores were linear and not moderated by other 

predictors.   
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Recall that there were minor increases in learning gains as students completed 

more courses (Hypothesis 2). This small effect will likely be further reduced after 

partitioning out the variance in gain scores shared with prior academic ability and 

gender. My intent in controlling for the effects of personal characteristics was to 

showcase the unique effect of coursework on gain scores. However, if coursework 

does not bivariately relate to gain scores, controlling for the effects of personal 

characteristics may be moot. Nevertheless, I present the results to test this hypothesis.  

Descriptive statistics for unfiltered sample. Students, on average, scored 

45.46 points on the pretest (SD of 6.51 points; see Figures 2-5 for distributions by 

cohort). By posttest, students on average scored 48.89 (SD of 6.85). Thus, students 

tended to gain 3.43 points (SD of 5.48 points). This distribution of gain scores 

indicated there is variability to be explained by number of courses, gender, and prior 

academic ability.  

I computed bivariate correlations among gain scores and my predictors (see 

Table 16). Expectedly, given the results above, coursework did not significantly or 

practically relate to gain scores (r = .03). Gender did not significantly or practically 

relate to gain scores (r = .02), nor did prior academic ability (r = -.03). As well, prior 

academic ability significantly but not practically related to gender (r = -.21). Gender 

significantly but not practically related to coursework (r = .10)  

In addition to examining the main effects of number of courses, gender and 

prior academic ability on gain scores, I also examined possible interactions between 

the three predictors. Before conducting the analysis, I mean-centered prior academic 

ability to reduce multicollinearity between prior academic ability and the interaction 

terms that involved prior academic ability (Aiken & West, 1991).  
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Regression. In the regression, I entered one block containing prior academic 

ability, gender, and coursework. I then entered a second block containing the three 

interaction terms (see Table 17). The full model explained a negligible amount of 

variance (R2 = .003, 95% CI for R2: .00, .01, F(6,994) = 0.47, p = 0.83). I conducted 

an Fchange test to determine if the interaction terms could explain significantly more 

variance in gain scores beyond the variance explained by coursework, prior academic 

ability, and gender. The interaction terms did not explain a significant amount of 

variance in gain scores (R2
change < .001, Fchange(3,994) = 0. 33, p = 0.80). Thus, the 

relationship between gain scores and prior academic ability did not appear to be 

moderated by gender. Likewise, the relationship between gain scores and number of 

courses was not moderated by gender or prior academic ability. 

 The reduced model (the model including only coursework, prior academic 

ability, and gender) also did not explain a significant amount of variance in gain 

scores (R2 = .002, 95% CI for R2: .00, .01, F(3, 997) = 0.61, p = 0.61). No individual 

predictors contributed to this reduced model (see Table 17).  

I fit this model to the test-specific filtered gain scores to assess if the utility of 

the model improved after controlling for low test-taking effort. After I removed cases 

with missing SAT data, 689 cases were available for analysis. Assumptions were 

rechecked for the sample of students who were motivated; again these assumptions 

were met16. I used the same procedures for mean-centering prior academic ability and 

dummy coding gender.  

                                                           
16 Data were normal and homoscedastic. Relationships between each predictor and 

learning gain were linear. The interactions of gender and coursework, and coursework 

and mean-centered SAT scores, were statistically significant but of negligible 

magnitude.  
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Descriptive Statistics for filtered sample. On average, motivated students 

scored 46.06 on the pretest (SD of 6.34). By posttest, students on average scored 

49.58 points (SD of 6.42 points). Students had an average gain score of 3.53points 

(SD of 5.30).  

Prior to conducting analyses, I examined the bivariate correlations among the 

variables (see Table 16). As in the unfiltered sample, coursework (r = .04) and gender 

(r = .05) did not significantly or practically relate to gain scores; prior academic 

ability did significantly but not practically relate to gain scores (r = -.08). 

Furthermore, these relationships did not greatly differ from the correlations computed 

in the unfiltered sample.  

Regression. In the motivated sample, the full model did not explain a 

significant amount of variance in gain scores (R2 = .02, 95% CI:  .00, .03, F(6, 682) = 

1.69, p = 0.12). I conducted an Fchange test to determine if the interactions could 

explain a significant amount of variance above that explained by coursework, prior 

academic ability, and gender. As in the unfiltered sample, the three interaction terms 

did not explain a significant amount of variance in gain scores (R2
change = .007, 

Fchange(3,682) = 1.23, p = 0.30). That is, the interactions of gender and prior academic 

ability, the interaction of coursework and prior academic ability, and the interaction of 

gender and coursework were not statistically or practically significant.  

The reduced model (including coursework, prior academic ability, and gender) 

also did not explain a significant amount of variance in gain scores (R2 = .01, 95% CI: 

.00, .02, F(3, 685) = 2. 15, p = 0.09). Note, this model explained (within rounding 

error) an equivalent amount of variance in the unfiltered and filtered samples.  

Hypothesis 6: Faculty’s Expectations Will Not Match Actual Gain Scores  
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Recall faculty were asked to state their expectations regarding learning gains. 

Expectations or predictions of learning gains were defined as the number of points on 

the quantitative and scientific reasoning test that faculty believed students would gain. 

Faculty were also asked to state their desired learning gains. Desired learning gains 

were defined as the number of points on the quantitative and scientific reasoning test 

faculty would like students to gain. 

Faculty tended to have similar expectations of student learning gain. Faculty 

expected that, after a year and a half of any college coursework, students should gain 

4 points on the NW9 (see ‘Overall’ row in Table 18). When asked to disaggregate the 

estimated gain scores by coursework, all interviewed faculty expected that students 

without any quantitative and scientific reasoning coursework should gain from 2 to 4 

points on the test. Furthermore, faculty expected learning gains to increase with each 

additional course completed (see Table 18).  

Contrary to the expected learning gain scores, faculty’s desired learning gain 

scores varied greatly. For example, Faculty Two desired students with one and a half 

years of college coursework to gain 21 points on the test. In contrast, Faculty Three 

desired students to gain 4 points on the test. When asked to disaggregate desired gain 

scores by coursework, all but Faculty Two desired that learning gains should increase 

with coursework completed. Faculty Two desired large and equivalent learning gains 

no matter the amount of coursework completed. 

For two of the four faculty interviewed, faculty’s expected gain scores were 

misaligned with their desired gain scores (see Table 18). Specifically, Faculty One 

and Two’s desired gain scores, collapsing across number of courses completed, 

exceeded their expected learning gain estimates. Additionally, Faculty One’s desired 

gain scores tended to become larger than his expected learning gain estimates as 
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number of completed courses increased. Note that Faculty One and Two also orally 

expressed that they perceived their desired gains as high but their expected gains as 

low. Faculty Three and Four’s desired learning gains aligned with their expected gain 

score estimates (i.e., they believed their expected and desired learning gains were both 

reasonable).  

Themes regarding expected and desired gain scores. I employed an 

inductive coding scheme, where codes were derived from transcribed responses rather 

than from previous studies. Using the written and oral responses from the four faculty 

members, I coded each faculty’s data to unearth why faculty’s expected and desired 

gain scores aligned or did not align, and grouped similar codes to form themes. I 

conducted several iterations of this coding scheme to ensure accurate representation 

of faculty responses. Within each faculty, I derived themes regarding their 

explanations for their expected and desired gain scores, as well as the alignment 

between these two estimates. I derived these themes from the coded responses to 

responses from Form A, where faculty estimated their expected and desired gain 

scores and explained why these estimates aligned or did not align (see Appendix C). I 

then linked common themes across the faculty. These themes are described below. 

Faculty One: Themes about expectations and desires. Within Faculty One, I 

derived the following themes: students will demonstrate learning gain in college, but 

learning gain is mostly facilitated by domain-specific coursework; unrealized high 

desires for student learning gain; expecting low gains but desiring high gains; and 

students completing different courses will have different learning gains. Prior to 

seeing the empirical learning gains, Faculty One elaborated that he believed the 

learning gains would increase with increased quantitative and scientific reasoning 

coursework, but warned that differences in faculty’s instruction of students might lead 
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to differences in student learning gains. He wrote, “With the wide variety of scientific 

and quantitative coursework, I believe that the gains made will vary across the courses 

[taught by other instructors].”  For example, a student who completed one biology 

course taught by Professor A might have greater science learning gains than another 

student who completed one biology course taught by Professor B. Faculty One was 

also concerned by what he perceived as differences in faculty expectations of students 

learning gain. That is, that faculty may teach more or less rigorously depending on 

how much they expect their students to be able to learn. Faculty One believed that 

these differences in expectation might lead to variation in student learning gain.  

Faculty One explained that the learning gains he desired of students were 

higher than the learning gains he expected of students “in the real world”. In other 

words, the learning gains he perceived students are making were lower than what he 

desired students to make. Thus, he had low expectations for gain scores but still 

desired high learning gains. Also when describing the misalignment between his 

expected and desired learning gains, Faculty One further attributed the differences in 

course instruction to the difference between what he expected and what he desired. 

That is, that students would gain less than he desired and closer to what he expected 

due to inconsistent pedagogical practices.  

Faculty Two: Themes about expectations and desires. Within Faculty Two, I 

derived the following themes: students do not have high learning gains, but should 

learn with increased coursework; high standards for student non-cognitive attributes; 

unrealized high desires for student learning gains; and expecting low gains but 

desiring high gains.  

At the beginning of our interview, Faculty Two lamented that students did not 

appear to be learning from their classes. He gave an example from his own class, 
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where students who had completed a statistics course could not explain a p-value. 

However, he still desired that students learn as they complete more quantitative and 

scientific reasoning courses. He held the conviction that student improvement (i.e., 

learning) does not necessarily mean that students will perform highly on the 

quantitative and scientific reasoning test. He also explained how he expected student 

to have integrity (i.e., should not cheat on their tests) and a desire to learn material 

(i.e., student non-cognitive attributes). Similar to Faculty One, Faculty Two expressed 

unrealized high expectations for student learning gains. As he elaborated, “I keep the 

bar high because I think that’s where it belongs.”  

With respect to gain scores, Faculty Two said that he had low expectations but 

high desired gain scores, a theme identical to that derived from Faculty One’s 

responses. He also desired high gain scores for all students, which is evidenced by his 

high quantitative estimates for students with any level of completed coursework. 

When writing these estimates, he positioned himself as an ‘idealist’ and explained that 

he would like students to answer all the items on the test correctly. I understood this 

to mean that the best possible scenario for Faculty Two is one where all students have 

high learning gains.  

Faculty Three: Themes about expectations and desires. Within Faculty 

Three, I derived the following themes: difficult to estimate learning gains; belief that 

expectations are reasonable; and students should learn from general and domain-

specific courses.  

Faculty Three found it difficult to estimate students’ gain scores for each 

number of courses completed, especially for students with one or two courses, saying, 

“It’s so hard!” However, she did not explain why she found it difficult. Nonetheless, 

she explained that the amount of learning gain that she expected was also the amount 
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of learning gain that she desired. She further elaborated that, even though her 

expectations were aligned with her desires, her estimated gain scores were reasonable 

(i.e., attainable). Faculty Three did expect that students should have some learning 

gain without completing quantitative and scientific reasoning courses, as quantitative 

and scientific reasoning skills are taught in other general education courses (e.g., 

economics). She also believed and desired that quantitative and scientific reasoning 

skills would increase due to increased courses in quantitative and scientific reasoning 

and increased courses in other domains. In other words, gain scores should increase as 

number of courses increase. 

Faculty Four: Themes about expectations and desires. Within Faculty Four, 

I derived the following themes: expectations framed through student familiarity; 

students will demonstrate learning gain in college, but learning is mostly facilitated by 

domain-specific coursework; and desire for students to learn from quantitative and 

scientific reasoning coursework.  

Faculty Four explained that his expectations resulted from his experiences 

with his students’ learning in his courses. When he had first started teaching, his 

expectations had been higher. Over time, however, his expectations had decreased due 

to his increased familiarity with how much his students were learning. Similar to 

Faculty One and Three, Faculty Four expected that, due to increased maturity, 

students without quantitative and scientific reasoning coursework should demonstrate 

some learning gains. Nevertheless, he explained he did not have an opinion on how 

much he desired students to learn. He expected and desired, though, that gains scores 

should increase with increased coursework.  

Prior to providing his answers, Faculty Four stated that it was difficult to 

estimate student learning gains without knowing how many quantitative and scientific 
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reasoning courses the students completed. He specified that students do not learn 

everything they are taught. Thus, he did not think that it was realistic for students to 

gain 20 points on the test. He explained that, given his familiarity with students, his 

expectations of their learning gains were reasonable.  

Common themes among the faculty. Though only three faculty verbally 

mentioned this belief, as evidenced by their written gain score estimates, all faculty 

believed that students without any quantitative and scientific reasoning coursework 

should demonstrate some learning gains. Furthermore, all four interviewed faculty 

expected to some extent that learning gains would increase with increased quantitative 

and scientific coursework. Faculty One and Two discussed their unrealized high 

expectations for student learning gain. These two faculty believed, given current 

faculty instruction and observed poor student learning, that they should expect low 

learning gains. Faculty Three and Four believed their expectations were reasonable 

and realistic. However, all faculty stated that they desired high learning gains for their 

students. In other words, all faculty believed that their desired gain scores were high. 

Numerical alignment between expected and empirical gain scores. 

Faculty’s expected and desired learning gain estimates were mostly misaligned with 

the empirical learning gain estimates. Collapsing across the number of courses 

completed, faculty’s expected learning gain estimates (median of 4 points) and 

desired learning gain estimates (median of 5 points) were slightly larger than the 

empirical learning gain estimates (3.47 points).  

However, disaggregating these estimates by coursework revealed greater 

misalignment (see Table 18). Faculty One, Two, and Three’s expected gain scores 

overestimated the empirical gain scores for students who completed at least one 

quantitative and scientific reasoning course. All faculty’s expected gain scores 
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increasingly diverged from the empirical gains scores as the number of course 

completed increased. That is, the faculty expected a relationship between number of 

courses completed and learning gains yet there was no empirical relationship. Faculty 

One, Three, and Four’s desired gain scores increasingly diverged from the empirical 

gain scores as the number of completed courses increased. Faculty Two’s desired gain 

scores consistently did not align with the empirical gain scores. 
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CHAPTER FIVE 

Discussion 

 

 

In this study, I investigated the impact of college coursework on student learning 

gains, a call put forth years ago by the higher education research community and the 

federal government. Specifically, this study was meant to address how much students 

change in knowledge and capabilities (i.e., learning gain) rather than what knowledge 

and capabilities students have at a particular point in time (i.e., student competency). 

Although both concepts are important outcomes, they are relatively independent (e.g., 

a student who is competent may not have learned and a student who has learned may 

not be competent) and answer two distinct questions. This study focused on 

answering the question of how much students are learning from their college 

coursework.  

Findings from this study imply that students’ average quantitative and scientific 

reasoning learning gains over the first two years of college may be larger than what 

has been found in previous studies but still less than desired. Students gained 3.72 

points on a 66-item test of quantitative and scientific reasoning, without taking into 

account the amount of completed quantitative and scientific reasoning coursework. 

Contrary to prediction, gain scores were unrelated to the number of quantitative and 

scientific reasoning courses completed. Moreover, and differing from the literature, 

the gain scores were also unrelated to students’ personal characteristics. 

Unexpectedly, learning gain estimates showed no discernable improvement when 

corrected for low test-specific or test session-specific effort. When the gain scores 

were disaggregated by completed coursework, these gain scores did not align with 

what quantitative and scientific reasoning faculty desired and expected. In sum, 
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although students are appear to be making modest gains  in quantitative and scientific 

reasoning, it does not seem that there is a link between these modest learning gains 

and students’ quantitative and scientific reasoning coursework. Given this summary 

of results, below I discuss these findings with respect to theory and prior research, as 

well as implications for student learning assessment and learning improvement 

processes. 

Collapsing Across Courses, Students Appear to Have Moderate Gains  

Based on the limited previous research on student learning gains (Blaich & Wise, 

2011; Pacarella & Terezini, 2005; Roohr et al., 2016 ), I hypothesized that students 

would have what I considered moderate learning gains in quantitative and scientific 

reasoning after experiencing one and a half years of any college coursework. Recall, 

students may or may not have completed courses in the domain of quantitative and 

scientific reasoning during the 1.5 years. Indeed, students demonstrated both 

unstandardized and standardized gain estimates that aligned with my standard of 

moderate gains. These moderate gains corresponded to an average of 3.72 points on a 

66-item test. Additionally, students at this institution demonstrated greater aggregate 

learning gains than what has been found in prior studies (e.g., Blaich & Wise, 2011; 

Pascarella & Terezini, 2005; Roohr et al., 2016). As an aside, this gain score 

aggregated across course completion was similar to what most faculty expected and 

desired when averaging student learning gains across students with different amounts 

of course exposure.  

The efficacy of coursework completed within the first two years of college had 

been called into question with learning gain results from Roohr et al. (2016). She and 

her colleagues found that students with one or two years of college coursework 

achieved statistically significant but practically small estimated learning gains (e.g., 
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standardized average math gain of d = 0.22). The authors explained that one or two 

years of college coursework had also previously been linked to small estimated 

learning gains; thus, it appeared students were not making learning gains in the first 

half of their college careers. Roohr et al. (2016) believed students’ acclimation to 

college may have led to this small effect: “At the beginning of their college career, 

students may need some time to get used to the environment (both academically and 

socially), so the learning gain during the first two years is comparatively low.” (Roohr 

et al., 2016, p. 11).  

Nonetheless, results from this study indicate that, whether or not they are 

acclimated to the college culture, students are demonstrating moderate learning gains.  

That is, this small learning gain in math after one/two years was not supported in the 

current study; students who had completed one and a half years of college coursework 

had average estimated standardized gains of d = 0.67 (standardized gain score metric) 

in quantitative and scientific reasoning. Second-year students in the current study, 

with the exception of one cohort, gained more than four/five-year students in the 

Roohr et al. (2016) study (d = 0.41 in Roohr et al., 2016).  

Improved sampling techniques in the current study may account for the 

incongruity in findings. A large number of students at this institution were randomly 

assigned to complete the quantitative and scientific reasoning test. Roohr et al. (2016) 

did not employ these methods; they obtained their estimates from a small, 

conveniently sampled group of students. Thus, it is likely that the Roohr et al. (2016) 

sample had smaller gains than the population.  It could also be that the curriculum 

completed by students in the Roohr et al. (2016) study was not as clearly tied to 

student learning outcomes or the instrument of measurement as both are at this 

institution. Furthermore, the small gains in the Roohr et al. (2016) study, compared to 
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those found in the current study, may be due to particular characteristics of this non-

random sample. When comparing the one/two year sample of students in Roohr et al. 

(2016) to the sample from this study, the Roohr et al. (2016) sample had a higher 

percentage of female students and a higher average SAT score (the two samples had 

similar percentages of white students.)  

The moderate estimated learning gains from this study suggest that students are 

learning in college. Given solely these aggregate learning gains, one may assume that 

learning does not need to be improved; thus, pedagogy or curriculum modifications 

do not need to be made. That is, one may believe that the current curriculum is 

adequately designed and structured to support student learning. As well, researchers 

who report aggregate gain estimates likely assume that these gains are due to college 

coursework. Nevertheless, not all students will complete courses in the specific 

domain on which they are tested. Thus, aggregate learning estimates do not 

adequately indicate how college affects student learning gains.  

Gains Did Not Increase with Increased Coursework  

Institutions must begin to assess the impact of coursework on student learning to 

ensure students are learning from their coursework. That is, it is not appropriate to 

assess overall student learning gains and infer these gains are due to coursework. 

Given previous research (Hathcoat et al., 2015; Pascarella & Terezini, 2005; Pastor et 

al., 2007) that indicated completing domain-specific coursework should lead to 

increased knowledge in that domain, I hypothesized that students’ quantitative and 

scientific reasoning learning gains would increase with additional quantitative and 

scientific reasoning coursework.  

Unexpectedly, estimated learning gains did not appear to increase after completing 

more than one quantitative and scientific reasoning course. Although students who did 



 
 

113 
 

 

not complete any courses gained less than students who completed coursework, 

students who completed coursework had similar estimated learning gains. For 

example, students who completed one quantitative and scientific reasoning course had 

similar learning gains to students who completed three quantitative and scientific 

reasoning courses.   

Results from Hathcoat et al. (2015) foreshadowed these results (partial credit 

completers gained d = 0.42 or d = 0.55 depending on the cohort assessed, credit 

completers gained d = 0.46 or d = 0.52 depending on the cohort assessed). However, I 

dismissed these findings due to the credit hour coding scheme the authors employed. 

Based on findings from Pastor et al. (2007), I expected that students who completed 

one course would have moderate learning gain estimates (d = 0.54 or d = 0.41 

depending on whether the history or political science course was completed, or 4 out 

of 81 points) and students who completed two or more courses would have large 

learning gain estimates (d = 0.90, or 7.52 out of 81 points).  

Why were the results from Pastor and colleague (2007) not replicated in the 

current study? Though these analyses provide no explanation as to why students are 

not learning, they instead lead to possible hypotheses; several of these hypotheses 

were addressed in the current study through motivation filtering and faculty 

interviews. First, Pastor and colleagues (2007) investigated history/political science 

learning gains rather than math/science learning gains. It is plausible that students at 

this institution do not learn as much from their quantitative and scientific reasoning 

courses as they do from courses in other domains. Thus, the relationship between 

magnitude of learning gains and coursework may be moderated by course domain. A 

second explanation is that students’ test-taking motivation augmented the estimated 

learning gains. That is, although Pastor et al. (2007) did not measure students’ effort 
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on the history and political science test, these students might have expended greater 

test-taking effort than students in the current study. As explained below, I addressed 

this possibility by computing the learning gains of motivated students.  

Third, the quantitative and scientific reasoning test may not align with the content 

taught in the quantitative and scientific reasoning courses. Items on the test are 

mapped to specific learning objectives of the quantitative and scientific reasoning 

curriculum (Curtis, 2016). However, the learning objectives do not appear to be 

mapped to the courses. Consequently, students may be learning quantitative and 

scientific reasoning concepts, but these concepts are not assessed on the test.  

A fourth, weighty possibility is that these college courses may not be as efficacious 

as previously believed. If students are not learning from their coursework, then 

learning improvement processes must be implemented. Given these undesirable 

learning assessment results, faculty should modify curricula (e.g., different pedagogy, 

additional courses, better course sequencing) and then reassess to evaluate if the 

modified curricula engenders greater student learning. In order to understand if 

faculty believed poor coursework failed to increase learning gains, I interviewed the 

faculty who design and teach these courses. The faculty interviews, discussed in 

further sections below, supports the need for learning improvement assessment.  

After Removing Unmotivated Students, Learning Gains Did Not Increase  

Given that learning gains did not increase as much as expected as quantitative and 

scientific reasoning coursework increased, one may question the quality of the data. 

Are the disaggregated, estimated gains inaccurate estimates of actual gains? Could the 

estimated gains be invalid due to low test-taking motivation? Empirically, students 

had similar learning gain estimates regardless of their level of motivation or 

completed coursework. Although motivated students did not gain more than the total 
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unfiltered sample of students, pretest and posttest scores of motivated students tended 

to be higher than those from the total sample of students. In other words, performance 

estimates – but not gain scores – were attenuated by low test-taking effort. 

Consequently, the lack of relationship between learning gains and coursework does 

not appear to a function of test-taking motivation. 

Even though students’ motivation did not appear to affect their learning gains, 

students’ pretest and posttest scores were influenced by low test-taking motivation. 

The effect of test-taking effort on test performance is well-documented (e.g., Cole et 

al., 2008; Mathers et al., 2016; Myers et al., 2016, Finney et al., 2016) and was 

supported in this study. Specifically, after filtering students who were unmotivated at 

pretest or posttest, average pretest and posttest scores increased. Nonetheless, the 

focus of this research is not on performance estimates but on learning gain estimates, 

which did not substantially change post-filtering.  

These results contrast with previous work on learning gains and test-taking 

motivation. DeMars and Wise (2010) found that low effort attenuated learning gain 

estimates (difference of d = 0.30). With the exception of students who completed four 

courses, these findings were not replicated in the current study. However, the current 

study used self-report scales to measure test-taking effort whereas the prior study used 

RTE. Although both types of measures are used for motivation filtering, perhaps the 

different conceptualizations of motivation (affect versus behavior) can account for 

this discrepancy.  

Furthermore, researchers have demonstrated that pretest effort relates negatively to 

student learning gain, whereas posttest effort positively relates to student learning 

gain (Finney et al., 2016). This result indicates that a student who put forth good 

effort at the pretest but failed to put forth effort on the posttest would have an 
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attenuated gain score estimate. In line with these findings, gain scores computed in 

this study decreased (minimally) after removing unmotivated students. Unmotivated 

students were filtered at pretest and posttest, which led to a higher average pretest 

score after filtering than prior to filtering, as well as a higher average posttest score 

after filtering than prior to filtering. However, more unmotivated students (not 

including those who were unmotivated at both time points, n = 30) were filtered at 

pretest (n = 91) than posttest (n = 60). Subsequently, the difference between pre-and 

post-filtered scores and pre- and post-unfiltered scores was greater for the pretest than 

posttest. Because the average pretest score increased more after filtering than the 

posttest scores, estimated learning gains (minimally) decreased after filtering.  

This small decrease provides better empirical evidence that researchers are 

underestimating performance estimates rather than misestimating learning gains. In 

other words, researchers who do not filter unmotivated students are unlikely to 

produce invalid learning gain estimates but are likely to produce invalid performance 

estimates. Consequently, these results necessitate that faculty and assessment 

practitioners work to increase students’ test-taking effort in order to ensure valid 

student performance estimates. However, researchers who are only interested in 

estimating learning gains do not need to be as preoccupied with students’ low test-

taking effort. 

Test-specific and Test Session-Specific Gain Scores Are Similar  

To further explore if test-taking effort impacted learning gain estimates, 

unmotivated students were filtered using two different measures of effort: test-specific 

effort and test session-specific effort. I hypothesized that the two measures would 

produce similar learning gain estimates. An equivalent number of students were 

removed due to low effort on the test, on the battery, or on both the test and battery. 
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Furthermore, few students indicated being unmotivated at both time points (i.e., 

unmotivated at pretest and posttest). The average learning gain estimates from these 

three samples (i.e., test-specific filtered, test session-filtered, and test-specific and test 

session-specific filtered) were essentially equivalent, even when disaggregated by 

coursework.  

 Results from this study partially corroborated findings from Hathcoat et al. 

(2015). Specifically, the authors found that more students indicated low test-taking 

effort on the quantitative and scientific reasoning test than the test battery. This result 

was not supported in the current study. In spite of this disproportion, students in the 

Hathcoat et al. (20150 study who were motivated on the test had similar performance 

estimates to students who were motivated on the battery. This result was supported in 

the current study. Together, findings from Hathcoat et al. (2015) and the current study 

suggest that using either measure to remove unmotivated students will result in the 

same inferences regarding student performance or student learning gains. 

Coursework and Personal Characteristics Did Not Predict Learning Gains   

I hypothesized that, after accounting for the effects of students’ personal 

characteristics, coursework would predict the quantitative and scientific reasoning 

gain scores. Results from hypotheses two through four indicated that coursework did 

not affect learning gains. In accordance with these results, coursework did not 

significantly predict gain scores when controlling for personal characteristics 

(whether predicting gains from unfiltered or filtered data).  

Although coursework did not predict learning gains, it was worthwhile to explore 

the impact of personal characteristics on learning gain. Unexpectedly, gender and 

prior academic abilities did not predict gain scores. Prior research found that male 

students gain more in math than female students (Finney et al., 2016) and students 
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with higher academic abilities tend to gain less than their lower-ability peers (Pastor 

et al., 2007). On the other hand, Roohr and colleagues (2016) found similar results to 

the current study; gender, prior academic ability, and time spent in college (their 

proxy variable for coursework) did not affect learning gain estimates. The gain scores 

estimated by Finney and colleagues (2016) were of similar magnitude and variability 

to those found in the current study; thus the lack of prediction was not due to range 

restriction.  Furthermore, the lack of a statistically significant relationship is 

evidenced by the small point-increase in mean gain score with each completed course. 

Nonetheless, it is surprising none of the theory-based variables in this study predicted 

gain scores given the adequate variability. However, the gain scores from Roohr et al. 

(2016) have much less variability than the gain scores in the current study. This lack 

of variation may explain the null results in the Roohr et al. (2016) study but does not 

assist in understanding the current study’s results.  

The null effects of personal characteristics on learning gains, if true, hold 

implications for theory and practice related to pedagogy/curriculum modifications as 

well as gain score modeling. A research question yet to be fully answered is the 

question of whether males are more adept at math and science than females. The 

insignificant effect of gender on learning gains suggests that there is not a math and 

science learning gap between male and female college students. Thus, pedagogy or 

curriculum modifications do not need to be made to increase the learning gains of one 

gender. The null effect of prior academic ability holds similar implications. If students 

of lower ability gained less, then remedial courses or modifications to pedagogy 

might have been called for. Given that higher and lower academic ability students 

have similar gains, the necessity of these interventions is moot. With respect to 

modeling, the effects of students’ gender and prior academic abilities on learning 
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gains may not need to be controlled for to accurately estimate the impact of 

coursework on learning. 

However, other variables not included in the investigated models may predict gain 

scores. Previous content exposure is one such characteristic that might affect student 

learning gains. In this study, I only included students who earned credit from this 

institution (i.e., did not have AP or IB credit), thus eliminating any covariance 

between previous content exposure and gain scores.  

Two other potential predictors related to coursework are student interest and self-

efficacy. Student interest might indirectly affect learning gain estimates through 

students’ engagement in previous and current course material. Self-efficacy is 

analogous to the expectancy component in EV theory. To reiterate, expectancy, or 

efficacy, refers to a student’s belief that he will be able to perform a given task. Thus, 

a student who believes he is able to learn in a course will likely have increased 

learning gains.  

If these variables do have  positive relationships with learning gains, then making 

course material relevant to students or bolstering students’ confidence in their 

quantitative and scientific reasoning skills may increase learning gains. An academic 

intervention used by Hulleman, Kosivich, Barron, and Daniel (2016) shows promise 

with respect to increasing students’ course interest. Hulleman et al. (2016) required 

students to make connections from course material to their lives while completing an 

introductory psychology course; this process was shown to increase students’ interest 

in course material.   However, the use of such interventions presents a thorny issue: is 

it the faculty’s responsibility to increase students’ interest in and engagement with the 

course material? Might this engagement be better assisted by allowing students to 
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complete the courses they are interested in?  This conversation is best left to faculty 

during learning improvement assessment, which I discuss below.  

Faculty’s Desired Gains Scores Did Not Match Actual Gain Scores  

As anticipated, faculty’s expected (i.e., how much they expected students to gain 

on the test) and desired (i.e., how much they hoped students to gain on the test) gain 

scores were larger than the empirical gain scores. Interestingly, faculty had similar 

expectations of student learning gain yet differed on whether they believed their 

expected learning gains were low or reasonable. This disagreement about what is 

considered low or reasonable learning gain may indicate that faculty need to discuss 

how much students should gain from their courses.  

Discrepancies in expected learning gains are problematic for other reasons, as well. 

Research has linked faculty expectations to magnitude of student performance 

(Timmermans et al., 2016). Consequently, a professor who has low expectations of 

student performance or student learning may inadvertently create a self-fulfilling 

prophecy. Faculty One, in fact, discussed this issue when explaining why he had low 

expectations for student learning gain even though he desired high learning gains. 

Another concern divulged by Faculty One relates to implementation fidelity 

assessment, the process of determining if a program or curriculum is taught and 

received in the intended manner (Gerstner & Finney, 2013). As Faculty One 

explained, students may have varying learning gains depending on the instruction they 

receive.  It is possible that disagreement over how much learning should be expected 

may indicate that students are not equally instructed in curriculum learning objectives. 

For example, a professor who does not think students are capable of learning a 

particular math concept may not emphasize that concept when teaching her courses, 

even if that concept is meant to be covered in all quantitative and scientific reasoning 
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courses. Thus, implementation fidelity assessment, as a part of learning improvement 

assessment, could be necessary to establish if students are receiving the intended 

curriculum. This additional assessment is especially pertinent given concerns as to 

whether the concepts taught in the quantitative and scientific reasoning courses are 

those concepts specified in the learning objectives. Implementation fidelity 

assessment can additionally be used to pinpoint areas of weakness in the curriculum if 

students are not receiving the intended curriculum (Gerstner & Finney, 2015).    

Given the misalignment between the empirical and expected/desired gain scores,  

pedagogy and curriculum modifications may be necessary. If the curriculum is not 

effective, which may be proved through implementation fidelity assessment, then 

faculty must modify the current curriculum to improve student learning.  The need for 

learning improvement also relates to the misalignment between expected and 

empirical gain scores. Thus, after discussing the misalignment between expected and 

empirical gain scores below, I then describe what this learning improvement process 

would entail.  

The implications of the misalignment between the empirical gain scores and 

faculty’s expectations are threefold and speak to the metric one uses when reporting 

gain scores, engaging faculty in setting expectations of growth, and assisting faculty 

in making curriculum-related modifications for learning improvement.  First, these 

findings call into question how learning gain estimates are reported and interpreted in 

the literature. Most researchers interpret their standardized estimates using Cohen’s 

(1988) values (e.g., Blaich & Wise, 2001; Roohr et al., 2016), likely for ease of 

comparisons with other studies as well as convention. As I have hopefully 

demonstrated in this study, solely interpreting standardized estimates does not provide 

a clear or accurate depiction of student learning gains. Recall that I aligned my 
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unstandardized gain score benchmarks with Cohen’s arbitrary but widely-used effect 

sizes (Cohen, 1992). That is, my three-point gain benchmark corresponded to 

conventional, moderate standardized learning gain estimates. Without interviewing 

faculty, I concluded that students at this institution demonstrated moderate learning 

gains. In contrast, two of the four faculty believed that their expected gain scores, 

which aligned with or were higher than my moderate benchmark, were low. As well, 

the two faculty with “reasonable” expectations also expected and desired gain scores 

larger than three points. Therefore, interpreting results on the test (i.e., 

unstandardized) metric provides a clearer understanding of student learning gain.  

The discrepancy between my learning gain benchmarks and faculty’s expected and 

desired learning gains, as well as the discrepancy between the empirical gain scores 

and faculty’s expected and desired learning gains, speaks to the second implication. 

That is, faculty must be involved when setting expectations of student learning gains 

and evaluating whether these standards are met. When describing best practices for 

student learning outcomes assessment, Banta and Blaich (2010) explicitly discussed 

the importance of involving faculty when conducting student learning outcomes 

assessment and interpreting assessment findings.  The authors state, “If faculty do not 

participate in making sense of and interpreting assessment evidence, they are much 

more likely to focuses solely on finding fault with the conclusions than on considering 

ways that the evidence might be related to their teaching.” (Banta & Blaich, 2010, p. 

24).  

I both disagree and agree with this statement. The faculty I interviewed were not 

defensive nor antagonistic when discussing the efficacy of the quantitative and 

scientific reasoning curriculum. I do, however, agree with Banta and Blaich’s (2010) 

comment that faculty must participate in interpreting assessment results. Again, I 
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considered student learning gains to be moderate (based on relatively arbitrary 

values). Faculty, on the other hand, did not consider the learning gains moderate.  

Moreover, if faculty participate in setting expectations related to student learning 

gain, they may be more likely to use these learning gain assessment results for 

program improvement; this possibility leads to the next implication.  

The third implication of the misalignment between empirical and faculty-estimated 

gain scores is the need to assist faculty during learning improvement assessment 

processes.  This assistance is paramount in order to improve either assessment of 

learning gains (if measure does not align with course content) or the quantitative and 

scientific learning gains at this institution (if the curriculum is not effective). As 

Fulcher et al. (2014) have explained, faculty often do not receive assistance on how to 

use assessment results to improve student learning. At the most basic level, using 

results requires faculty to implement modifications to pedagogy or curriculum after 

determining learning gains (as was done in this study). 

My interviews with the faculty indicate that, in order to facilitate student learning, 

faculty must first set an expectation of student learning gain as well as work with 

assessment experts to ensure the measure aligns with course content. Faculty at this 

institution have set performance standards for students’ quantitative and scientific 

reasoning abilities (Hathcoat et al., 2015). Students may meet performance standards, 

but it is possible for students to achieve competency yet gain little or less than 

expected. Furthermore, assessing competency answers a different question than 

assessing learning gains and can lead to different conclusions regarding students’ 

abilities and the coursework meant to enhance those abilities. It is therefore necessary 

that faculty set a learning gain standard in addition to a performance standard. 
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Assuming that the measure is aligned with course content, informed changes to the 

quantitative and scientific reasoning curriculum may be necessary. What would this 

modified curriculum entail? In their discussion about quantitative and scientific 

reasoning learning gains, Hathcoat et al. (2015) made the point that students at this 

institution are exposed to a breadth of quantitative and scientific concepts, but may 

not have experienced much depth in content. Thus, a greater depth of content may be 

required. Additionally, research on service-learning faculty (i.e., faculty who require 

their students to apply course material in real world settings) suggests that these 

faculty tend to find that student learning improves when students are able to apply 

their knowledge beyond the classroom (Darby & Newman, 2014). It could be that the 

course curriculum needs to be modified to facilitate these experiences and thus engage 

students in coursework and facilitate student learning.  

How would one know whether or not the modifications benefit students? In other 

words, how could faculty demonstrate learning improvement? First, faculty should 

come to a consensus on what aspects of the curriculum (e.g., content, structure, 

pedagogy) influence learning gains through use of implementation fidelity assessment 

and, moving forward, implement one or several modifications. As incoming and 

second-year students are both assessed during the academic year at this institution, 

assessment experts will be able to compute the learning gains of the first cohort of 

students to receive this modified curriculum. With the assistance of these assessment 

experts, faculty can compare the learning gains computed from this study to those 

learning gains from the cohort who experienced the modified curriculum. In other 

words, faculty and assessment experts, together, must re-assess student learning gains 

in determine whether student learning gains were improved by the modified 

curriculum.  
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Limitations  

As with most applied research, this study has several limitations. A doctoral 

candidate at this institution conducted a missing data study on Cohorts Three and 

Four. In these cohorts, only a small - albeit random - section completed the full NW9. 

Consequently, there is a chance that the learning gain estimates computed from these 

smaller subsections do not represent the learning gains of the students in these 

cohorts. Additionally, this study investigated learning gains at just one institution that 

also has an extensive history and strong culture of student learning assessment. More 

research on student learning gains is needed across different institutions. 

Several threats to validity were also present, due to the quasi-experimental 

nature of the study. Within each cohort, only a small number of students completed 

five or more quantitative and scientific reasoning courses. Even after collapsing 

across the cohorts, the total number of students who completed at least five 

quantitative and scientific reasoning courses remained relatively small. As well, 

students self-select to either complete or not complete these courses based on interests 

or what fits their academic schedules. A last threat to validity is attrition; the students 

in my sample may be more academically adept than students who are no longer 

enrolled at this institution. Findings based on students with these amounts of 

quantitative and scientific reasoning courses (magnitude of learning gain estimates, 

coursework as a non-significant predictor of learning gain) thus may be unstable or 

sample-dependent.  

A similar issue is the need to assess coursework effects over a greater period 

of time. That is, students may demonstrate larger learning gains after completing three 

or more courses in a given domain. Nonetheless, most students are assessed before 

they have completed their quantitative and scientific reasoning curriculum 
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requirements (i.e. completed 10 credit hours of quantitative and scientific reasoning 

coursework.  

To prevent academic ability from confounding results, I used different effort 

cut scores for Cohort Four. Thus, I retained more “unmotivated” students in this 

cohort. Only three of the five cohorts had data on both measures of test-taking effort. 

Consequently, not all available learning gain data could be used in this study (i.e., 

reduced sample size).  As mentioned above, sample sizes also decreased when 

unmotivated students were removed from the sample. Thus, the estimated gain scores, 

especially for students who completed five or six courses, may be unstable.   

Total ACT scores can be computed using ACT Math, ACT Reading, and ACT 

English scores (Dorans, 1999). However, the samples in this study tended to have data 

on either ACT Math and ACT Reading or ACT Math and ACT English. Thus, the 

total ACT scores computed in this study may not be accurate. As well, the ACT 

scores from students without SAT scores were converted to the SAT metric to 

compute one total prior academic ability indicator. As this transformation is not exact, 

there may have been loss of precision with respect to prior academic ability estimates.  

Half of the interviewed faculty were unaccustomed with how quantitative and 

scientific reasoning is assessed at this institution (e.g., unfamiliar with the NW9). I 

provided a brief overview of the data collection design and measure in order to assist 

faculty in developing their expectations. However, this overview may not have been 

sufficient training. Faculty’s gain score expectations may change with better 

understanding of the measure and the standard setting procedure. In this initial study, 

setting an expectation of student learning gain may have been more difficult than 

anticipated (as Faculty Three indicated). At this institution, faculty have worked with 

assessment experts to set performance (i.e., competency) standards. Being able to 
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shift from performance framework to student learning framework may require more 

than a 45 minute interview.  

Lastly, when coding qualitative data, researchers may bring their own biases 

into the data analysis. Although I hope that my position as a former student and 

assessment consultant at this institution has not clouded my data interpretations, this 

risk is still likely.  

 

Future Research 

Although this study adds to the literature on student learning gains, the field 

would benefit from continued applications of longitudinal methods. It is important to 

reemphasize that faculty considered the gain scores to be small. As this study should 

demonstrate, standardized learning gain estimates may misrepresent how much 

students are learning and confuse faculty. Likewise, other indices of “learning”, such 

as residualized gain scores or cross-sectional difference scores, may also prove 

difficult for faculty to interpret. This confusion could likely prevent use of assessment 

results, as faculty may draw erroneous conclusions about student learning from these 

indices.  Therefore, I recommend researchers evaluating learning in higher education 

estimate and interpreting both the unstandardized and standardized learning gain 

estimates. Future studies could also examine faculty reactions to the empirical gain 

scores after faculty provide their expected and desired gain scores. Another powerful 

study would be an investigation of how well faculty are able to interpret common 

indices of “learning”. That is, an investigation of how well faculty are able to interpret 

assessment results such as unstandardized gain estimates, standardized estimates, 

residualized gain scores, and cross-sectional difference scores. The current study was 

an initial exploration into setting expectations of learning gain. A next step would be a 
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formal standard setting study, where faculty set standards of learning gain rather than 

competency. 

Future studies could easily address the limitations described above. For 

instance, researchers should collect more data from students with at least five courses 

completed in a given domain. Researchers could also collect more precise estimates 

of prior academic ability. Although the two motivation measures used did not produce 

different learning gain estimates, this study did not investigate whether or not test 

session and test-specific effort are truly distinct constructs. An invariance study would 

easily provide insight into this issue.  

As a final recommendation, higher education would benefit from more 

research on faculty expectations of student learning gain. That is, more research is 

needed on whether students are gaining as much as faculty expect them to, rather than 

research on how many students are meeting competency standards at pretest and 

posttest. This research was a small section of the current study and thus was not fully 

explored. A phenomenological or grounded theory approach to investigating faculty 

expectations may be better suited to unpacking this phenomenon.  

Conclusions 

Results from this study provide a tenable answer to the U.S. Department of 

Education’s question of why American college students are falling behind their 

international peers (U.S. Department of Education, 2006). That is, students are 

making modest learning gains that may not be related to their coursework.  Higher 

education has been slow to assess student learning gains, and thus we have remained 

largely ignorant to the magnitude of student learning occurring on our college 

campuses.  
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Table 1. Mandates and recommendations regarding student learning data collection post-Spellings report. 

 Mandates Recommendations 

Federal “The institution evaluates success with respect to 

student achievement consistent with its mission. 

Criteria may include: enrollment data; retention, 

graduation, course completion, and job placement 

rates; state licensing examinations; student portfolios; 

or other means of demonstrating achievement of 

goals.” (SACSCOC, 2012, p.39) 

 

 

“Higher education institutions should measure student 

learning using quality-assessment data…in order to 

improve the quality of instruction and learning” (U.S. 

Department of Education, 2006, p.33) 

 

“The results of student learning assessments, including 

value-added measurements that indicate how much 

students’ skills have improved over time, should be made 

available to students and reported in the aggregate 

publicly.” (U.S. Department of Education, 2006, p.33) 

 

“Accreditation agencies should make performance 

outcomes, including completion rates and student learning, 

the core of their assessment as a priority over inputs or 

processes. A framework that aligns and expands existing 

accreditation standards should be established to (i) allow 

comparisons among institutions regarding learning 

outcomes and other performance measures, (ii) encourage 

innovation and continuous improvement…” (U.S. 

Department of Education, 2006, p. 34) 

Regional “The institution engages in ongoing, integrated, and 

institution-wide research-based planning and 

evaluation processes that (1) incorporate a systematic 

review of institutional mission, goals, and outcomes; 

(2) result 

in continuing improvement in institutional quality; and 

(3) demonstrate the institution is effectively 

accomplishing its mission” (SACSCOC, 2012, p. 18) 

 

“The institution has developed an acceptable Quality 

Enhancement Plan (QEP) that includes an institutional 
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process for identifying key issues emerging from 

institutional assessment and focuses on learning 

outcomes and/or the environment supporting student 

learning and accomplishing the mission of the 

institution.” (SACSCOC, 2012, p. 21) 

 

“The institution identifies expected outcomes, assesses 

the extent to which it achieves these outcomes, and 

provides evidence of improvement based on analysis 

of the results in each of the following areas: 3.3.1.1 

educational programs, to include student learning 

outcomes” (SACSCOC, 2012, p.27) 

 

“The institution identifies college-level general 

education competencies and the extent to which 

students have attained them” (SACSCOC, 2012, p.29) 

State “Each college or university may choose to employ 

either absolute assessment measures or those that 

demonstrate the value-added ‘contribution the 

institution has made to the student’s development.’” 

(SCHEV, 2007, p.2) 

 

“The Commission further identified six areas of 

knowledge and skills that cross the bounds of 

academic discipline, degree major, and institutional 

mission to comprise basic competencies that should be 

achieved by all students completing a degree program 

at a Commonwealth institution of higher education— 

namely, Information Technology Literacy, Written 

Communication, Quantitative Reasoning, Scientific 

Reasoning, Critical Thinking, and Oral 

Communication.”  (SCHEV, 2007, p.2) 

 

“Each institution should continue to be responsible for 

implementing an assessment program that is congruent 

with its mission and goals; provides the kind of data 

needed for informed decision-making about curricula; and 

offers both policymakers and the general public useful 

information on student learning.” (SCHEV, 2007, p.3) 

 

“Assessment should continue to fit, rather than drive, the 

institution. It should be reasonable in its requirements for 

time, resources, and personnel and should, ideally, be 

integrated with the institution’s larger framework for 

continuous improvement and public accountability. It 

should also employ both valid and reliable measurements 

of educational experiences and student learning.” (SCHEV, 

2007, p.3) 
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“The Code of Virginia, §23-9.6:1, charges the State 

Council of Higher Education for Virginia (SCHEV) 

with various duties and accords Council the authority 

to carry out those duties.  

Duty #6  

• To review and require the discontinuance of any 

academic program which is presently offered by any 

public institution of higher education when the 

Council determines that such academic program is (i) 

nonproductive in terms of the number of degrees 

granted, the number of students served by the 

program, evidence of program effectiveness, or 

budgetary considerations, or (ii) supported by state 

funds and is unnecessarily duplicative of academic 

programs offered at other public institutions of higher 

education in the Commonwealth…” (SCHEV, 2013, 

p.1) 

 

“Following completion of the fifth year enrollment 

data collection, SCHEV will provide official notice to 

four-year public institutions and Richard Bland 

College of academic degree programs that fail to meet 

quantitative standards for FTES enrollment and 

numbers of graduates.” (SCHEV, 2013, p.2) 

“Assessment should continue to focus on the improvement 

of learning while providing meaningful demonstration of 

accountability. It should continue to employ the six core 

areas and explore options to address the Council’s 

preferred ‘value-added’ approach that speaks to 

demonstrable changes as a result of a student’s collegiate 

experience.” (SCHEV, 2007, p.4) 

 

“Institutions can and, perhaps, should continue to define, 

set, and measure standards of performance for their 

students within a competency framework—incorporating 

into it a value-added component that builds on what is 

already a quite strong assessment foundation.”(SCHEV, 

2007, p.6) 

 

“Terming them “areas of core competency,” [Information 

Technology Literacy, Written Communication, 

Quantitative Reasoning, Scientific Reasoning, Critical 

Thinking, and Oral Communication] the group 

recommended that institutions conduct regular assessments 

of these areas, the results of which would be shared with 

the general public.” (SCHEV, 2007, p.2) 

Note. The first federal mandate included in a section of the SACSCOC report that describes the federal mandates institutions 

also have to assess. 
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Table 2. Designs used to measure student “learning” outcomes and the inferences each affords due to validity threats. 

Evidence of Student 

“Learning” 

Research Design Validity Threats Inference 

Student meets a set 

performance standard or cutoff 

score on a measure 

One-group posttest-only 

design. One sample, one time 

point. Students in the sample 

are measured only after 

completing the relevant 

coursework.  

 

Example Sample. A sample 

of senior math majors 

complete a department-wide 

math test in a capstone 

course. 

 

 

Internal. None.  

 

External. 

Interaction of 

testing and 

treatment 

Desired: Students have achieved mastery of a 

skill after experiencing the curriculum. 

 

     Example. As a function of completing the 

math major at Lord University, senior math 

students are capable of performing matrix 

algebra.  

 

Actual: Students have achieved mastery of a 

skill. The cause of mastery is unknown. Students 

could have mastered the skill from experiencing 

the curriculum, or the students could have 

mastered the skill prior to college.  

 

     Example. Senior math students at Lord 

University score highly on the matrix algebra 

section of the math test. Some of the students 

may have learned matrix algebra in a high school 

AP calculus course. Some of the students may 

have learned matrix algebra from experiencing 

the college curriculum.  

The average performance of a 

group of students that has 

experienced the institution’s 

curriculum compared against 

the average performance of a 

group that has not experienced 

the curriculum. 

Separate Sample 

Pretest/Posttest Design. Two 

samples, one time point. One 

sample is measured after 

completing the relevant 

coursework and the other 

sample is measured but did 

not complete the relevant 

Internal. History, 

maturation, 

mortality, and 

threat interactions. 

Possibly 

instrumentation. 

 

External. None. 

 

Desired: Students perform better after 

experiencing the curriculum.  

 

     Example 1. Senior math students are better at 

matrix algebra than the psychology majors 

because the math students completed the math 

courses at Lord University. 
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coursework. The samples can 

either be two groups of 

students at the same academic 

level (e.g., seniors), or one 

group of upperclassmen and 

one group of first-year 

students. 

 

     Example Sample(s) 1. A 

sample of senior math majors 

and a sample of senior 

psychology majors complete 

an institution-wide math test 

in their respective capstone 

courses. 

 

     Example Sample(s) 2. A 

sample of senior math majors 

and a sample of first-year 

math majors complete a 

department-wide math test on 

the first day of the semester. 

     Example 2. Senior math students are better at 

matrix algebra than first-year math majors 

because the senior students completed the math 

courses at Lord University. 

 

Actual: There is a difference in matrix algebra 

ability between students who completed the 

coursework and the students who did not 

complete the coursework. The cause of the 

difference in matrix algebra ability is unknown. 

The difference could be due to the curriculum, 

student background characteristics, other 

differences in college experience, etc.   

 

     Example 1. Senior math students are better at 

matrix algebra than the psychology majors.  

 

     Example 2. Senior math students are better at 

matrix algebra than first-year math majors.  

Estimating the learning gains 

of a group of students after 

they have experienced the 

curriculum, estimating the 

learning gains of a group of 

students who have not 

experienced the curriculum, 

and comparing the gain 

estimates.  

Nonequivalent comparison 

group design. Two samples, 

two time points. One sample 

is measured before and after 

completing the relevant 

coursework; the other sample 

is measured at the same times 

as the first sample. Both 

samples can be measured as 

first-year students and again 

as upperclassmen. If students 

Internal. Threat 

interactions. 

Possibly 

regression. 

 

External. 
Interaction of 

testing and 

treatment. Possibly 

interaction effect 

of selection bias 

Desired. Students are learning from the 

curriculum above and beyond that which can be 

explained by other effects (e.g., maturation).   

 

Example. Students who completed the matrix 

algebra course have increased in math skills, 

especially in comparison to students who 

completed the biology course; this greater 

increase in math proficiency is due to the 

assigned coursework. 
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in one sample are randomly 

assigned to coursework, the 

researcher can infer that 

coursework caused the 

difference in learning gains. 

 

     Example Sample(s) 1. At 

the beginning of their first 

year, students are randomly 

assigned to complete either a 

matrix algebra or introductory 

biology course. These first-

year students complete an 

institution-wide math test on 

the first day of the semester 

and again on the last day of 

the semester. 

 

     Example Sample(s) 2. At 

the beginning of their first 

year, students elect to 

complete either a matrix 

algebra or introductory 

biology course. These first-

year students complete an 

institution-wide math test on 

the first day of the semester 

and again on the last day of 

the semester. 

and treatment, and 

reactive 

arrangements. 

Actual. There is a difference in how the two 

groups of students change over time.  

 

     Example 1. Students randomly assigned to the 

matrix algebra course have increased in math 

skills, in comparison to students randomly 

assigned to the biology course. This greater 

increase in math proficiency is due to the 

assigned coursework. 

 

     Example 2. Students who opted to complete 

the matrix algebra course have increased in 

matrix algebra skills, in comparison to students 

who opted to complete the biology course. 

Estimating the learning gains 

of a group of students after 

they have experienced the 

curriculum. 

One group pretest/posttest 

design. One sample, two time 

points. The sample of 

students is measured before 

Internal. History, 

maturation, 

testing, 

instrumentation, 

Desired: Students are learning from the curriculum. 

 

     Example.  Graduating students in the math major are more 

adept at matrix algebra than they were during their first year; this 
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and after completing the 

relevant coursework. The 

sample can be measured as 

first-year students and again 

as upperclassmen.  

 

     Example Sample. A 

sample of first-year math 

majors complete a 

department-wide math test on 

the first day of the semester. 

These students complete the 

math test again on the first 

day of their senior year.  

and threat 

interactions. 

Possibly 

regression. 

 

External. 
Interaction of 

testing and 

treatment, 

interaction effect 

of selection bias 

and treatment. 

Possibly reactive 

arrangements. 

increase in proficiency is due to their multivariate math 

coursework.  

 

Actual. Student performance has changed over time. The change 

could be due to the curriculum, maturation, other college 

experiences, etc.  

     Example.  Graduating students in the math major are more 

adept at matrix algebra than they were during their first year.  
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Table 3. Description of internal and external validity threats to student learning inferences.  

Internal External 

History. Events that occurred before any testing (i.e., pretests 

or posttests) or before the treatment may influence the 

experiment’s outcome. For example, completing AP Calculus 

prior to being tested on college math proficiency and 

completing math courses at college. 

 

Interaction effect of testing. A pretest affects how well a 

participant responds to the treatment. For example, students 

complete a calculus pretest before completing a calculus 

course. The pretest, however, reinforced the calculus concepts.   

Maturation. Participants’ aging may influence the 

experiment’s outcome. For example, a college senior having 

better proficiency in math than he did during his freshman 

year because his math skills increased as he aged.  

Interaction effect of selection bias and treatment. Participants 

in the control group would react differently to the treatment 

than the treatment group. For example, female students might 

learn more in a calculus course than male students and thus 

perform better on a math posttest.  

 

Testing. Completing a test affects how the participant 

completes all subsequent tests. For example, a student 

completes a math posttest comprised of the same questions as 

a math pretest that he completed. The student recalls the 

correct answers from the pretest.  

Reactive effects of experimental arrangements. Participants try 

to produce the behavior they believe the experimenters want. 

For example, students who are asked how much effort they put 

forth on a math test may indicate that they put a great deal of 

effort into the test even if they did not.  

 

Instrumentation.  Changes in the choice of instrument may 

affect measurement. For example, a student completes a fairly 

difficult math test before completing college math courses. 

After the math courses, this students completes a fairly easy 

math test. 

 

Multiple treatment interference. Participants are exposed to 

multiple treatments, making it difficult to parse out the effects 

of one treatment from another. For example, a group of 

students completes a new math course but also receives one-

on-one tutoring. The students’ performance on a math test 

cannot be attributed to solely the math course or solely the 

tutoring.    

Statistical regression. Selecting participants on the basis of 

extreme pretest scores, when these scores regress to the mean 

at the posttest. For example, students who score highly on a 

math placement pretest are enrolled in an advanced math 
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course. All students then complete a posttest after their 

coursework. However, the posttest scores of the high-scoring 

students are closer to the posttest scores of their peers than 

before.  

Selection. The control, or comparison, group is comprised of 

participants who do not resemble the treatment group. For 

example, the math performance of a group of students who 

have completed a calculus course is compared to the 

performance of a group who has not. However, the group that 

did not complete the course consisted solely of female 

students, whereas the group that did consisted solely of male 

students. 

 

 

Experimental mortality. Also known as attrition; some 

participants drop out of the experiment. For example, college 

seniors have higher average SAT scores than college 

freshmen because academically struggling students drop out 

before reaching senior year.  

 

 

Threat interactions.  The threats mentioned above may 

combine to produce interactive or additive threats. For 

example, females becoming more adept at math than males 

(i.e., selection threat example from above) as time progresses 

(i.e., maturation threat).  

 

Note. Information in this table borrows heavily from Campbell and Stanley (1963) and Shadish, Cook, and Campbell (2002). 
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Table 4. Total NW9 data available in each cohort per semester. 

 Cohort One 

Fall 2007-Spring 

2009 

Cohort Two 

Fall 2008-Spring 

2010 

Cohort Three 

Fall 2013-Spring 

2015 

Cohort Four 

Fall 2014-Spring 

2016 

Cohort Five 

Fall 2015-Spring 

2017 

Fall 1177 1592 1269 384 704 

Spring 1113 1174 163 289 576 

Note. Counts are only comprised of students with no missing data on the NW9 and who do not have AP/IB or 

transfer credit. 
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Table 5. Cronbach’s alpha reliability estimates for the NW9 and SOS-effort 

subscale. 

 Cohort 

One 

Cohort 

Two 

Cohort 

Three 

Cohort 

Four 

Cohort 

Five 

NW9 Pretest 0.76 0.73 0.73 0.73 0.70 

NW9 Posttest 0.79 0.79 0.73 0.79 0.77 

SOS Effort Pretest 

Test-specific 

- 0.84 0.71 0.79 0.80 

SOS Effort Posttest 

Test-specific 

- 0.80 0.83 0.81 0.79 

SOS Effort Pretest 

Test session-specific 

- 0.81 0.83 0.84 0.78 

SOS Effort Posttest 

Test session-specific 

- 0.63 0.87 0.84 0.83 
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Table 6. Ethnicity, age, gender, and SAT data for students in each unfiltered cohort. 

 Cohort One Cohort Two Cohort Three Cohort Four Cohort Five 

American Indian 0.00% 5.73% 1.25% 1.14% 0.81% 

Asian 2.85% 2.51% 1.25% 6.82% 10.48% 

Black 2.85% 0.00% 6.25% 7.95% 5.24% 

Hispanic 2.64% 1.97% 5.00% 5.11% 5.24% 

Not specified 3.25% 9.32% 2.50% 0.57% 3.23% 

Pacific Islander 0.20% 0.00% 0.00% 1.70% 0.81% 

White 88.01% 79.39% 88.75% 88.07% 85.08% 

Age at pretest 18.46 18.43 18.41 18.44 18.46 

Age at posttest 19.93 19.92 19.87 19.91 19.91 

Female 68.50% 68.46% 70.00 % 64.77% 66.53% 

Male 31.30% 31.54% 30.00% 35.23% 33.47% 

SAT 1117.39 1126.50 1135.00 1146.81 1136.40 

N 492 558 80 176 248 
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Table 7. Demographic information for students with adequate test-specific motivation. 

 Cohort Two Cohort Three Cohort Four Cohort Five 

American Indian 0.00% 1.49% 1.22% 0.96% 

Asian 5.37% 0.00% 6.71% 9.62% 

Black 3.02% 5.97% 7.32% 5.77% 

Hispanic 1.01% 4.48% 4.88% 5.29% 

Not specified 9.73% 2.99% 0.61% 3.85% 

Pacific Islander 1.01% 0.00% 1.83% 0.96% 

White 79.87% 91.04% 87.80% 86.06% 

Age at pretest 18.43 18.41 18.43 18.47 

Age at posttest 19.92 19.87 19.90 19.92 

Female 66.11% 70.15% 65.24% 66.83% 

Male 33.89% 29.85% 34.76% 33.17% 

SAT 1124.91 1135.97 1130.61 1138.38 

N 298 67 164 208 

Note. Demographics were computed without students who were unmotivated on the 

test. For Cohorts Two, Three, and Five, students were removed if their test-specific 

effort scores were below 15. For Cohort Four, students were removed if their test-

specific effort scores were below 13.  
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Table 8. Ethnicity, age, gender, and SAT data for students in each test session-specific 

filtered cohort. 

 Cohort Two Cohort Three Cohort Four Cohort Five 

American Indian 0.00% 1.49% 1.19% 0.94% 

Asian 6.25% 1.49% 6.55% 10.38% 

Black 1.56% 7.46% 7.74% 5.19% 

Hispanic 0.00% 5.97% 5.36% 5.19% 

Not specified 7.81% 2.99% 0.60% 3.30% 

Pacific Islander 1.56% 0.00% 1.79% 0.47% 

White 82.81% 86.57% 87.50% 85.38% 

Age at pretest 18.56 18.40 18.43 18.44 

Age at posttest 20.03 19.87 19.90 19.89 

Female 67.19% 1134.76 1149.87 33.96% 

Male 32.81% 32.84% 35.71 66.04% 

SAT 1125.00 67.16% 64.29 1138.00 

N 64 67 168 212 

Note. Demographics were computed without students who were unmotivated on the 

test battery. For Cohorts Two, Three, and Five, students were removed if their test 

session-specific effort scores were below 15. For Cohort Four, students were removed 

if their test session-specific effort scores were below 12. 
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Table 9. Demographic information for students with adequate test 

session-specific and test-specific motivation. 

 Cohort Three Cohort Four Cohort Five 

American Indian 1.67% 1.23 1.05 

Asian 0.00% 6.79 9.95 

Black 6.67% 6.79 5.24 

Hispanic 5.00% 4.94 5.76 

Not specified 3.33% 0.62 3.66 

Pacific Islander 0.00% 1.85 0.52 

White 90.00% 87.65 85.86 

Age at pretest 18.40 18.43 18.45 

Age at posttest 19.86 19.89 19.90 

Female 68.33% 64.81% 67.02% 

Male 31.67% 35.19% 32.98% 

SAT 1135.97 1152.15 1141.41 

N 60 162 191 

Note. Demographics were computed without students who were 

unmotivated on the test and test battery. For Cohorts Three and Five, 

students were removed if their test-specific or test session-specific effort 

scores were below 15. For Cohort Four, students were removed if their 

test-specific effort scores were below 13 and if their test session-specific 

effort scores were below 12. 
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Table 10. Number of students removed for low test-taking effort. 

 Cohort Two Cohort Three Cohort Four Cohort Five 

Courses Test Session Test Session Both Test Session Both Test Session Both 

0 6 1 0 0 0 0 0 0 2 1 1 

1 23 6 4 2 1 2 0 0 6 3 6 

2 25 4 1 3 2 1 2 2 5 9 3 

3 10 2 1 0 3 0 0 3 1 1 5 

4 13 1 0 0 0 0 0 0 1 2 2 

5 1 0 0 0 0 1 0 0 0 0 0 

Overall 103 14 6 5 6 4 2 5 15 16 17 

Note. ‘Test’ indicates low motivation on only the test-specific measure. Students in Cohorts Two, 

Three, and Five were removed if their test-specific effort scores were below 15; students in Cohort 

Four were removed if their test-specific effort scores were below 13. ‘Session’ indicates low 

motivation on only the test session-specific measure. Students in Cohorts Two, Three, and Five 

were removed if their test session-specific effort scores were below 15; students in Cohort Four 

were removed if their test session-specific effort scores were below 12. ‘Both’ indicates low 

motivation on the test-specific and test session-specific measures. Students in Cohorts Three and 

Five were removed if their test-specific and test session-specific effort scores were below 15; 

students in Cohort Four were removed if their test-specific effort scores were below 13 or test 

session-specific effort scores were below 12. Students in Cohort 2 did not complete both measures.  
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Table 11.  Descriptive statistics regarding the unfiltered learning gain estimates.   

 Course 0 1 2 3 4 5 6 7 Overall 

Cohort 1          

Mean          

Gain Score 5.40 4.66 3.48 5.04 5.72 3.36 2.78 
 

4.45 

     SDgain 6.41 5.92 5.85 5.92 4.66 6.07 3.42 
 

5.80 

Pretest 44.13 43.68 44.29 43.63 45.00 40.18 44.22 
 

43.92 

SDpretest 8.98 7.02 6.86 7.63 7.03 3.95 6.48 
 

7.11 

Posttest 49.53 48.34 47.77 48.66 50.72 43.55 47.00 
 

48.37 

SDposttest 8.06 7.41 6.93 6.65 7.78 5.66 4.18 
 

7.13 

Cohen's d 
         

dgain 0.84 0.79 0.59 0.85 1.23 0.55 0.81 
 

0.77 

dpretest 0.60 0.66 0.51 0.66 0.81 0.85 0.43 
 

0.62 

N  15 157 147 107 46 11 9   492 

Cohort 2          

Mean 
       

 

 

Gain Score 1.70 3.81 3.85 3.27 4.34 4.92 2.73 2.00 3.67 

     SDgain 5.70 5.49 6.12 5.56 4.68 2.81 3.00   5.55 

Pretest 44.80 43.94 44.50 46.66 46.02 44.00 41.09 40.00 44.83 

SDpretest 5.35 6.43 6.95 6.47 6.97 4.51 5.20   6.62 

Posttest 46.50 47.75 48.35 49.93 50.36 48.92 43.82 42.00 48.50 

SDposttest 7.98 6.70 7.53 6.95 6.29 4.86 5.19   7.06 

Cohen's d                   

dgain 0.30 0.69 0.63 0.59 0.93 1.75 0.91   0.66 

dpretest 0.32 0.59 0.55 0.51 0.62 1.09 0.52   0.55 

N 30 164 175 100 64 13 11 1 558 

Cohort 3          

Mean 
       

 

 

Gain Score 0.50 1.24 -0.14 2.15 4.00 
 

5.00 
 

1.43 

     SDgain 0.71 4.66 6.16 4.96 4.81 
 

1.41 
 

5.15 
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Pretest 51.50 49.28 47.09 44.85 46.25 49.00 47.00 
 

47.26 

SDpretest 4.95 6.71 5.13 6.31 8.24 
 

5.66 
 

6.35 

Posttest 52.00 50.52 46.95 47.00 50.25 49.00 52.00 
 

48.69 

SDposttest 4.24 5.80 5.55 7.02 7.11 
 

4.24 
 

6.21 

Cohen's d 
         

dgain 0.71 0.27 -0.02 0.43 0.83 
 

3.54 
 

0.28 

dpretest 0.10 0.18 -0.03 0.34 0.49  0.88  0.22 

N 2 25 22 20 8 1 2   80 

Cohort 4          

Mean 
       

 

 

Gain Score 0.83 3.06 3.22 3.39 3.10 7.20   3.23 

     SDgain 5.12 6.32 5.23 4.71 7.03 6.30   5.59 

Pretest 41.83 46.75 47.24 43.00 45.70 44.00   46.07 

SDpretest 8.70 5.62 6.71 6.19 6.52 5.20   6.51 

Posttest 42.67 49.81 50.46 46.39 48.80 51.20   49.30 

SDposttest 10.71 6.29 6.25 7.29 9.47 5.54   6.97 

Cohen's d 
     

    
dgain 0.16 0.48 0.61 0.72 0.44 1.14   0.58 

dpretest 0.10 0.55 0.48 0.55 0.48 1.39   0.50 

N 6 48 79 28 10 5     176 

Cohort 5          

Mean 
       

 

 

Gain Score 3.22 3.61 4.07 3.04 2.29 3.00   3.47 

     SDgain 5.17 5.90 4.70 5.66 5.08 3.92   5.29 

Pretest 46.33 45.52 46.15 45.33 45.71 42.75   45.70 

SDpretest 4.12 6.89 5.52 6.67 5.72 5.32   6.12 

Posttest 49.56 49.12 50.22 48.36 48.00 45.75   49.17 

SDposttest 6.15 7.71 5.54 6.88 6.67 4.99   6.62 

Cohen's d          

dgain 0.62 0.61 0.87 0.54 0.45 0.77   0.66 

dpretest 0.78 0.52 0.74 0.46 0.40 0.56   0.57 
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N 9 66 86 55 28 4     248 

Overall          

Mean          
  Gain Score 2.69 3.85 3.51 3.78 4.28 4.38 2.95 2.00 3.72 

     SDgain 5.58 5.73 5.66 5.58 4.90 4.43 3.03 0.00 5.57 

   Pretest 44.79 44.66 45.26 44.93 45.65 42.76 42.91 40.00 44.95 

SDpretest 6.36 6.63 6.57 6.87 6.80 4.39 5.77 0.00 6.67 

   Posttest 47.48 48.51 48.76 48.71 49.94 47.15 45.86 42.00 48.66 

SDposttest 7.88 6.99 6.74 6.87 7.04 5.09 4.69 0.00 6.96 

Cohen's d          

dgain 0.48 0.67 0.62 0.68 0.87 0.99 0.98  0.67 

dpretest 0.42 0.58 0.53 0.55 0.63 1.00 0.51  0.56 

N 62 460 509 310 156 34 22 1 1554 
Note. ‘SD’ indicates standard deviation.  ‘Gain Score’ indicates the difference between the posttest and 

pretest scores. ‘dgain’ indicates that Cohen’s d estimates were computed using the standard deviation of the 

difference scores; ‘dpretest’ indicates that Cohen’s d estimates were computed using the standard deviation 

of the pretest scores. ‘N’ indicates the number of students in the cohort or sample. ‘Overall’ indicates that 

the values were computed collapsing across all the cohorts. Students could score at most 66 points on the 

NW9. 
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Table 12. Descriptive statistics regarding the test session-specific filtered learning gain estimates.  

Course 0 1 2 3 4 5 6 7 Overall 

Cohort 2           
Mean          

   Gain Score -1.40 4.19 5.42 4.53 1.29  1.50  3.80 

SDgain 4.28 4.35 4.46 7.10 3.04  2.12  5.24 

   Pretest 45.80 41.19 43.47 45.40 47.29  41.50  43.89 

  SDpretest 3.83 6.82 7.62 6.54 5.06  4.95  6.72 

   Posttest 44.40 45.38 48.89 49.93 48.57  43.00  47.69 

SDposttest 5.98 7.33 6.86 6.89 4.54  2.83  6.77 

Cohen's d          

      dgain -0.33 0.96 1.21 0.64 0.42  0.71  0.72 

      dpretest -0.37 0.61 0.71 0.69 0.25  0.30  0.57 

N 5 16 19 15 7   2   64 

Cohort 3          
Mean          

Gain Score 0.50 1.10 1.12 3.50 4.00 0.00 5.00  2.10 

      SDgain 0.71 4.77 5.89 4.08 4.81  1.41  4.85 

    Pretest 51.50 50.10 46.88 44.31 46.25 49.00 47.00  47.37 

SDpretest 4.95 6.81 5.40 6.30 8.24  5.66  6.60 

Posttest 52.00 51.19 48.00 47.81 50.25 49.00 52.00  49.48 

SDposttest 4.24 5.97 5.43 6.70 7.11  4.24  6.06 

Cohen's d          

        dgain 0.71 0.23 0.19 0.86 0.83  3.54  0.43 

   dpretest 0.10 0.16 0.21 0.56 0.49  0.88  0.32 

N 2 21 17 16 8 1 2   67 

Cohort 4          

Mean          

Gain Score 0.83 3.06 3.13 3.08 3.10 7.20   3.14 

      SDgain 5.12 6.32 5.08 4.89 7.03 6.30   5.57 

    Pretest 41.83 46.75 47.52 43.67 45.70 44.00   46.33 

SDpretest 8.70 5.62 6.58 6.42 6.52 5.20   6.45 

    Posttest 42.67 49.81 50.65 46.75 48.80 51.20   49.48 

SDposttest 10.71 6.29 6.16 7.75 9.47 5.54   6.98 

Cohen's d          

dgain 0.16 0.48 0.62 0.63 0.44 1.14   0.56 

  dpretest 0.10 0.55 0.48 0.48 0.48 1.39   0.49 

N 6 48 75 24 10 5     168 

Cohort 5          

Mean          
Gain Score 3.57 4.02 4.01 3.69 2.75 3.00   3.76 

     SDgain 5.88 5.58 4.84 5.59 5.02 3.92   5.21 

Pretest 47.29 45.91 46.59 45.29 46.04 42.75   46.01 
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SDpretest 4.23 6.58 5.58 6.88 5.77 5.32   6.12 

Posttest 50.86 49.93 50.61 48.98 48.79 45.75   49.77 

SDposttest 6.41 7.27 5.60 6.85 6.21 4.99   6.44 

Cohen's d          

dgain 0.61 0.72 0.83 0.66 0.55 0.77   0.72 

 dpretest 0.84 0.61 0.72 0.54 0.48 0.56   0.62 

N 7 55 74 48 24 4     212 

Overall          

Mean          
Gain Score 1.20 3.27 3.54 3.64 2.82 4.80 3.25   3.35 

     SDgain 4.73 5.57 4.99 5.41 5.11 4.72 1.77   5.28 

Pretest 45.70 46.29 46.68 44.78 46.18 44.00 44.25   46.03 

SDpretest 5.55 6.31 6.18 6.63 6.23 4.72 5.30   6.37 

Posttest 46.90 49.56 50.21 48.42 49.00 48.80 47.50   49.38 

SDposttest 7.38 6.75 5.94 7.04 6.79 4.77 3.54   6.61 

Cohen's d          

dgain 0.25 0.59 0.72 0.68 0.55 0.88 2.12   0.63 

 dpretest 0.24 0.52 0.57 0.55 0.45 0.92 0.59   0.53 

N 20 140 185 103 49 10 4 0 511 

Note. ‘SD’ indicates standard deviation.  ‘Gain Score’ indicates the difference between the posttest and 

pretest scores. ‘dgain’ indicates that Cohen’s d estimates were computed using the standard deviation of the 

difference scores; ‘dpretest’ indicates that Cohen’s d estimates were computed using the standard deviation 

of the pretest scores. ‘N’ indicates the number of students in the cohort or sample. ‘Overall’ indicates that 

the values were computed collapsing across all the cohorts. Students could score at most 66 points on the 

NW9. 
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Table 13. Descriptive statistics regarding the test-specific filtered learning gain estimates. 

Course 0 1 2 3 4 5 6 7 Overall 

Cohort 2                    

Mean                   

     Gain Score 1.00 3.60 4.61 2.63 5.09 3.20 2.00   3.84 

       SDgain 6.56 5.10 5.70 4.97 4.28 3.03 2.76   5.22 

Pretest 42.86 45.45 45.01 47.19 45.51 43.20 42.50   45.46 

SDpretest 8.59 5.93 6.80 6.43 7.01 5.22 6.28   6.52 

Posttest 43.86 49.04 49.62 49.83 50.60 46.40 44.50   49.30 

SDposttest 12.09 5.95 6.41 7.10 5.70 3.36 6.35   6.51 

Cohen's d                   

dgain 0.15 0.71 0.81 0.53 1.19 1.06 0.73   0.74 

 dpretest 0.12 0.61 0.68 0.41 0.73 0.61 0.32   0.59 

N 7 94 99 52 35 5 6   298 

Cohort 3                   

Mean                    

Gain Score 0.50 1.05 0.74 4.07 4.00 0.00 5.00   2.07 

           SDgain 0.71 5.01 6.01 3.65 4.81   1.41   5.00 

Pretest 51.50 50.20 46.53 44.73 46.25 49.00 47.00   47.39 

SDpretest 4.95 6.26 5.16 6.65 8.24   5.66   6.40 

Posttest 52.00 51.25 47.26 48.80 50.25 49.00 52.00   49.46 

SDposttest 4.24 5.31 5.67 6.96 7.11   4.24   6.00 

Cohen's d                   

dgain 0.71 0.21 0.12 1.11 0.83   3.54   0.42 

 dpretest 0.10 0.17 0.14 0.61 0.49   0.88   0.32 

N 2 20 19 15 8 1 2   67 

Cohort 4                   

Mean                   

Gain Score 0.83 2.85 3.03 3.08 3.10 9.50     3.07 

        SDgain 5.12 6.37 5.04 4.89 7.03 4.20     5.57 

Pretest 41.83 46.91 47.28 43.67 45.70 43.00     46.25 

SDpretest 8.70 5.67 6.68 6.42 6.52 5.42     6.52 

Posttest 42.67 49.76 50.31 46.75 48.80 52.50     49.32 

SDposttest 10.71 6.41 6.33 7.75 9.47 5.45     7.08 

Cohen's d                   

dgain 0.16 0.45 0.60 0.63 0.44 2.26     0.55 

  dpretest 0.10 0.50 0.45 0.48 0.48 1.75     0.47 

N 6 46 74 24 10 4     164 

Cohort 5                   

Mean                   

Gain Score 5.33 3.58 4.05 3.70 2.80 3.00     3.72 
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       SDgain 4.50 5.76 4.58 5.74 4.88 3.92     5.16 

Pretest 46.50 46.54 46.55 45.23 46.52 42.75     46.17 

SDpretest 4.04 6.05 5.55 6.33 5.49 5.32     5.80 

Posttest 51.83 50.12 50.61 48.94 49.32 45.75     49.89 

SDposttest 6.24 6.65 5.16 6.23 5.66 4.99     5.90 

Cohen's d                   

dgain 1.18 0.62 0.88 0.65 0.57 0.77     0.72 

  dpretest 1.32 0.59 0.73 0.59 0.51 0.56     0.64 

N 6 52 74 47 25 4     208 

Overall                   

Mean                   

Gain Score 2.14 3.19 3.74 3.23 3.99 4.71 2.75   3.47 

        SDgain 5.37 5.56 5.32 5.09 4.95 4.58 2.76   5.28 

Pretest 44.43 46.48 46.18 45.64 45.94 43.43 43.63   46.01 

SDpretest 7.45 6.05 6.37 6.48 6.51 4.93 6.09   6.33 

Posttest 46.57 49.67 49.92 48.88 49.92 48.14 46.38   49.48 

SDposttest 10.08 6.17 6.04 6.93 6.32 4.99 6.59   6.43 

Cohen's d                   

dgain 0.40 0.57 0.70 0.63 0.81 1.03 0.99   0.66 

  dpretest 0.29 0.53 0.59 0.50 0.61 0.96 0.45   0.55 

N 21 212 266 138 78 14 8   737 
Note. ‘SD’ indicates standard deviation.  ‘Gain Score’ indicates the difference between the posttest and 

pretest scores. ‘dgain’ indicates that Cohen’s d estimates were computed using the standard deviation of the 

difference scores; ‘dpretest’ indicates that Cohen’s d estimates were computed using the standard deviation 

of the pretest scores. ‘N’ indicates the number of students in the cohort or sample. ‘Overall’ indicates that 

the values were computed collapsing across all the cohorts. Students could score at most 66 points on the 

NW9. 
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Table 14. Descriptive statistics regarding the test session-specific and test-specific filtered 

learning gain estimates. 

Course 0 1 2 3 4 5 6 Overall 

Cohort 3         

Mean         

    Gain Score 0.50 0.82 1.25 4.14 4.00 0.00 5.00 2.25 

         SDgain 0.71 5.07 6.06 3.78 4.81  1.41 4.98 

     Pretest 51.50 50.94 46.81 44.21 46.25 49.00 47.00 47.50 

          SDpretest 4.95 6.27 5.56 6.58 8.24  5.66 6.63 

     Posttest 52.00 51.76 48.06 48.36 50.25 49.00 52.00 49.75 

         SDposttest 4.24 5.55 5.60 7.00 7.11  4.24 6.04 

Cohen's d         
     dgain 0.71 0.16 0.21 1.10 0.83  3.54 0.45 

     dpretest 0.10 0.13 0.22 0.63 0.49  0.88 0.34 

N 2 17 16 14 8 1 2 60 

Cohort 4         

Mean         
    Gain Score 0.83 2.85 3.04 3.08 3.10 9.50  3.07 

         SDgain 5.12 6.37 5.11 4.89 7.03 4.20  5.60 

     Pretest 41.83 46.91 47.50 43.67 45.70 43.00  46.33 

          SDpretest 8.70 5.67 6.55 6.42 6.52 5.42  6.47 

     Posttest 42.67 49.76 50.54 46.75 48.80 52.50  49.41 

         SDposttest 10.71 6.41 6.18 7.75 9.47 5.45  7.05 

Cohen's d         
     dgain 0.16 0.45 0.60 0.63 0.44 2.26  0.55 

     dpretest 0.10 0.50 0.46 0.48 0.48 1.75  0.47 

N 6 46 72 24 10 4   162 

Cohort 5         

Mean         

    Gain Score 6.20 4.04 4.11 4.09 2.91 3.00  3.97 

         SDgain 4.44 5.55 4.70 5.53 5.06 3.92  5.12 

     Pretest 47.20 46.35 46.94 45.11 46.35 42.75  46.21 

          SDpretest 4.09 6.15 5.53 6.31 5.70 5.32  5.86 

     Posttest 53.40 50.40 51.05 49.20 49.26 45.75  50.18 

         SDposttest 5.50 6.79 5.06 6.17 5.90 4.99  5.94 

Cohen's d         
     dgain 1.40 0.73 0.87 0.74 0.58 0.77  0.78 

     dpretest 1.52 0.66 0.74 0.65 0.51 0.56  0.68 

N 5 48 66 45 23 4   191 

Overall         
Mean         

    Gain Score 2.85 3.05 3.31 3.81 3.17 5.56 5.00 3.37 
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         SDgain 4.18 5.81 5.03 5.05 5.49 3.61 1.41 5.29 

     Pretest 45.38 47.29 47.19 44.54 46.17 43.56 47.00 46.45 

          SDpretest 6.35 5.97 6.01 6.39 6.40 4.77 5.66 6.21 

     Posttest 48.23 50.34 50.50 48.35 49.34 49.11 52.00 49.82 

         SDposttest 7.71 6.44 5.64 6.77 7.01 4.64 4.24 6.39 

Cohen's d         

     dgain 0.68 0.53 0.66 0.75 0.58 1.54 3.54 0.64 

     dpretest 0.45 0.51 0.55 0.60 0.50 1.16 0.88 0.54 

N 13 111 154 83 41 9 2 413 

 Note. ‘SD’ indicates standard deviation.  ‘Gain Score’ indicates the difference between the posttest and 

pretest scores. ‘dgain’ indicates that Cohen’s d estimates were computed using the standard deviation of 

the difference scores; ‘dpretest’ indicates that Cohen’s d estimates were computed using the standard 

deviation of the pretest scores. ‘N’ indicates the number of students in the cohort or sample. ‘Overall’ 

indicates that the values were computed collapsing across all the cohorts. Students could score at most 

66 points on the NW9. 
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Table 15. Comparison of unfiltered and filtered estimates collapsing across cohorts 3-5. 

 Courses 0 1 2 3 4 5 6 Overall 

Unfiltered         

     Gain Score 2.06 2.99 3.21 2.96 2.76 4.80 5.00 3.06 

     dgain 0.43 0.51 0.61 0.56 0.51 0.88 3.54 0.57 

     dpretest 0.31 0.46 0.54 0.46 0.44 0.96 0.88 0.49 

N 17 139 187 103 56 10 2 514 

Test-specific         

     Gain Score 2.71 2.86 3.20 3.68 3.09 5.56 5.00 3.23 

     dgain 0.56 0.48 0.64 0.71 0.58 1.06 3.54 0.61 

     dpretest 0.39 0.47 0.53 0.58 0.50 1.09 0.88 0.52 

N 14 116 168 84 43 9 2 436 

Test session-specific         

     Gain Score 2.71 2.91 3.20 3.72 3.09 4.80 5.00 3.24 

     dgain 0.56 0.49 0.64 0.72 0.58 0.88 3.54 0.61 

     dpretest 0.39 0.48 0.53 0.58 0.50 0.96 0.88 0.52 

N 14 117 168 85 43 10 2 439 

 Note. ‘dgain’ indicates Cohen’s d estimates, and that these estimates were computed using 

the standard deviation of the difference scores. ‘dpretest’ indicates Cohen’s d estimates, and 

that these estimates were computed using the standard deviation of the pretest scores. ‘N’ 

indicates the number of students in the cohort or sample. ‘Overall’ indicates that the values 

were computed collapsing across all the courses. Students could score at most 66 points on 

the NW9. 
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Table 16. Correlations among gain scores and potential predictors in the unfiltered and test-specific-filtered samples.  

 Course Gender SAT GenderxCourse GenderxSAT CoursexSAT 

 UF F UF F UF F UF F UF F UF F 

Gain Score .03 .04 .01 .05 -.03 -.08* .04 .08* -.02 -.07* -.03 -.09* 

Course   .10* .11* -.06 -.11* .69* .66* -.05 -.09* -.09* -.13* 

Gender     -.21* -.23* .80* .82* -.10* -.10* -.20* -.12* 

SAT       -.17* -.22* .82* .84* .88* .88* 

GenderxCourse         -.09* -.13* -.19* -.25* 

GenderxSAT           .74* .74* 

Note. ‘x’ denotes interaction between the predictors. * indicates significance at p < 0.05 ‘UF denotes correlation computed in the unfiltered 

sample. ‘F’ denotes correlation computed in the filtered sample. Filtered correlations have been corrected for low test-specific motivation. 
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 Table 17. Regression results in both the unfiltered and test-specific filtered samples. 

 F df p R2 b SE t p 95.0% CI for b sr 

Unfiltered Models         LB UB  

Reduced 0.61 (3,997) 0.61 0.002        

     Intercept      3.03 0.42 7.22 <0.001 2.21 3.85  

     Prior ability     -0.001 0.001 0.66 0.51 -0.004 0.002 -.02 

     Gender     0.18 0.38 0.48 0.63 -0.57 0.93 .02 

     Coursework     0.13 0.14 0.90 0.37 -0.15 0.41 .03 

Full 0.47 (6,994) 0.83 0.003        

     Intercept     3.39 0.64 5.25 <0.001 2.12 4.65  

     Prior ability     0.001 0.004 0.19 0.85 -0.01 0.01 .01 

     Gender     -0.31 0.78 0.39 0.69 -1.83 1.22 -.01 

     Course     -0.06 0.29 0.21 0.84 -0.62 0.50 -.01 

     Gender x Course     0.25 0.33 0.73 0.46 -0.41 0.90 .02 

Gender x Prior ability     <0.001 0.003 0.05 0.95 -0.01 0.01 -.002 

Course x Prior ability     -0.001 0.001 0.56 0.57 -0.003 0.002 -.02 

Filtered Models            

Reduced 2.15 (3, 685) 0.09 0.01        

     Prior ability     2.93 0.50 5.88 <0.001 1.95 3.91  

     Gender     -0.003 0.002 -1.78 0.08 0.01 0.00 -.07 

     Coursework     0.43 0.44 0.98 0.33 -0.44 1.30 .04 

     Intercept      0.14 0.17 0.81 0.42 -0.20 0.48 .03 

Full 1.69 (6, 682) 0.12 0.02        

     Intercept     3.91 0.77 5.07 <0.001 2.39 5.43  

     Prior ability     -0.001 0.004 -0.24 0.81 -0.01 0.01 -.01 

     Gender     -0.97 0.94 -1.03 0.30 -2.81 0.87 -.04 

     Course     -0.38 0.34 -1.11 0.27 -1.04 0.29 -.04 

Gender x Course     0.70 0.40 1.75 0.08 -0.09 1.48 .07 

Gender x Prior ability     -0.001 0.004 -0.31 0.76 -0.01 0.01 -.01 

Course x Prior ability     -0.001 0.001 -0.37 0.71 -0.003 0.002 -.01 

Note.  ‘x’ denotes interaction between variables. ‘LB’ denotes the lower bound of the confidence interval; ‘UB’ denotes the 

upper bound of the confidence interval. ‘sr’ denotes the semipartial correlation.   
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Table 18. Empirical learning gain estimates filtered for low test-specific motivation compared to faculty-based estimates, and the 

alignment of expected estimates and desired estimates. 
 

Actual 

Faculty One Faculty Two Faculty Three Faculty Four 

Expect Desire Aligned Expect Desire Aligned Expect Desire Aligned Expect Desire Aligned 

0 courses 2.14 2 2 

Not 

aligned 

3 21 

Not 

aligned 

4 4 

Aligned 

2-3 ? 

Aligned 

1 course 3.19 4 5 4 21 7 7 3-5 5 

2 courses 3.74 6 9 5 21 10 10 5-7 7 

3 courses 3.23 7 14 5 21 15 15 7-10 10 

Overall 3.47 4 5 4 21 4 4 - - 

Note. Gain scores refer to the point-gain on the NW9 for each number of quantitative and scientific reasoning courses. For example, 

students who did not complete any quantitative and scientific reasoning courses, on average, gained 2.14 points on the 66-item test 

(after controlling for low test-specific motivation) and students who completed three quantitative and scientific reasoning courses, on 

average, gained 3.23 points on the 66-item test (after controlling for low test-specific motivation). ‘Overall’ indicates that average 

learning gain collapsing across number of courses completed (i.e., after 1.5 years of any college coursework). ‘Aligned refers to the 

alignment between faculty’s expected and desired gain scores (i.e., whether or not the expected estimates matched the desired 

estimates). Faculty Four did not provide written estimates for students with zero courses because he did not have an opinion on how 

much these students should gain. Faculty Four also did not provide estimates collapsing across courses (i.e., overall). As he 

explained, it was difficult to produce these estimates without knowing how much relevant coursework students had completed.  
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Table 19. Themes derived from faculty interviews. 

 Faculty One Faculty Two Faculty Three Faculty Four 

Themes regarding alignment between expectations and desires 

 

Students will 

demonstrate learning 

gain in college, but 

learning gain is mostly 

facilitated by domain-

specific coursework. 

Students do not have 

high learning gains, 

but should learn with 

increased coursework. 

Difficult to estimate 

learning gains 

Expectations framed 

through student 

familiarity 

 
Unrealized high desires 

for student learning 

gains 

High standards for 

student non-cognitive 

attributes 

Belief that 

expectations are 

reasonable 

 

Students will 

demonstrate learning 

gain in college, but 

learning gain is 

mostly facilitated by 

domain-specific 

coursework. 
 

 Expecting low gains but 

desiring high gains 

Unrealized high 

desires for student 

learning gains 

 

Students should learn 

from general and 

domain-specific 

courses 

Desire for students to 

learn from quantitative 

and scientific 

reasoning coursework 

 

 

Students in different 

courses will have different 

learning gains 

 

Expecting low gains 

but desiring high 

gains 

 

  

Note. Bolded themes indicate themes that were shared across faculty. 
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Figure 1. Illustration of learning gain versus learning improvement. As can be seen, Cohort One gains on average five points more on the 

pretest than on the posttest after completing the original curriculum. Thus, Cohort One has a learning gain of five points. Cohort Two 

gains on average ten points after completing the new, modified curriculum. Thus, Cohort Two has a learning gain of ten points. However, 

Cohort Two gained five points more after completing the modified curriculum than Cohort One gained after completing the original 

curriculum (i.e., ten versus five points). The positive difference between the gain scores is an indication of learning improvement.  
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Figure 2. Cohort One unfiltered pretest, posttest, and difference scores (respectively). Bar widths represent intervals of the 

pretest, posttest, or gain scores. Smaller widths indicate smaller intervals. These latter two statements also apply to Figures 3-

14). 
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Figure 3. Cohort Two unfiltered pretest, posttest, and difference scores (respectively).  



162 
 

 

 

 

Figure 4. Cohort Three unfiltered pretest, posttest, and difference scores (respectively).  
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Figure 5. Cohort Four unfiltered pretest, posttest, and difference scores (respectively).  
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Figure 6. Cohort Five unfiltered pretest, posttest, and difference scores (respectively).  
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Figure 7.  Pretest, posttest, and difference scores (respectively) filtered for low test-specific effort in Cohort Two. 



166 
 

 

 

 

Figure 8.  Pretest, posttest, and difference scores (respectively) filtered for low test-specific effort in Cohort Three. 
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Figure 9.  Pretest, posttest, and difference scores (respectively) filtered for low test-specific effort in Cohort Four.  
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Figure 10.  Pretest, posttest, and difference scores (respectively) filtered for low test-specific effort in Cohort Five.  
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Figure 11.  Pretest, posttest, and difference scores (respectively) filtered for low test session-specific effort in Cohort Two.  
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Figure 12.  Pretest, posttest, and difference scores (respectively) filtered for low test-session specific effort in Cohort Three.  



171 
 

 

 

 

Figure 13.  Pretest, posttest, and difference scores (respectively) filtered for low test-session specific effort in Cohort Four.  
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Figure 14.  Pretest, posttest, and difference scores (respectively) filtered for low test-session specific effort in Cohort Five.  
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Figure 15. Empirical gain scores (filtered for low test-specific motivation) compared to the 

expected and desired gain scores of quantitative and scientific reasoning faculty. Estimated gain 

scores are located on the left y-axis; corresponding faculty member is located on the right y-axis. 

Number of completed courses are on the x-axis. Faculty Four did not provide a desired estimate 

for students who did not complete any courses. The empirical gain score is shown once in each 

faculty quadrant.  
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Appendix A 

 

 

Test-Session Specific SOS 

Please think about all the tests that you completed today. Mark the answer that best represents 

how you feel about each of the statements below. 

1. Doing well on these tests was important to me.  

2. I engaged in good effort throughout these tests.*  

3. I am not curious about how I did on these tests relative to others.  

4. I am not concerned about the scores I receive on these tests.  

5. These were important tests to me.  

6. I gave my best effort on these tests.* 

7. While taking these tests, I could have worked harder on them.* 

8. I would like to know how well I did on these tests. 

9. I did not give these tests my full attention while completing them.*  

10. While taking these tests, I was able to persist to completion of the tasks. * 

 

Test-Specific SOS 

Please think about the test that you just completed. Mark the answer that best represents how you feel 

about each of the statements below.  

 

1. Doing well on this test was important to me.  

2. I engaged in good effort throughout this test.*  

3. I am not curious about how I did on this test relative to others.  

4. I am not concerned about the score I receive on this test.  

5. This was an important test to me.  

6. I gave my best effort on this test. * 

7. While taking this test, I could have worked harder on it. * 

8. I would like to know how well I did on this test.  

9. I did not give this test my full attention while completing it. * 

10. While taking this test, I was able to persist to completion of the task. * 

*= item on the ‘effort’ subscale 
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Appendix B 

 

Consent Form 

Consent to Participate in Research 

Identification of Investigators & Purpose of Study   

You are being asked to participate in a research study conducted by Catherine Mathers and Dr. Sara Finney from James Madison 

University.  The purpose of this study is to understand faculty expectations of student learning gains, and whether these expectations align 

with empirical student learning gains.  This study will contribute to the researcher’s completion of her Master’s thesis. 

Research Procedures 

Should you decide to participate in this research study, you will be asked to sign this consent form once all your questions have been 

answered to your satisfaction.  This study consists of an interview that will be administered to individual participants in Lakeview Hall.  

You will be asked to provide answers to a series of questions related to your opinions of student learning gains in math and science.  

Time Required 
Participation in this study will require 45 minutes of your time.  

Risks  

Breach of confidentiality is a minor risk. However, your anonymity will be preserved. The investigator does not perceive 

more than minimal other risks from your involvement in this study (that is, no risks beyond the risks associated with 

everyday life).  

Benefits 
Potential benefits from participation in this study include additional perspective on student math and science learning gains, information 

on how much students learn with each Cluster 3 course completed, and the opportunity to participate in a relatively new area of research. 

This study will benefit the research area by contributing to the nonexistent literature on faculty opinions of student learning gains. 

Furthermore, this study has the potential benefits of highlighting the strengths of the Cluster 3 curriculum or improving the learning gains 

of students who complete Cluster 3 courses at JMU.  
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Confidentiality  

The results of this research will be presented at conferences. Identifying data (e.g., name, department) will not be collected. However, your 

verbal and written communications may be quoted to support qualitative analyses. The researcher retains the right to use and publish non-

identifiable data.  While individual responses are confidential, aggregate data will be presented representing averages or generalizations 

about the responses as a whole. All data will be stored in a secure location accessible only to the researcher and her advisor.   

Participation & Withdrawal  

Your participation is entirely voluntary.  You are free to choose not to participate. Should you choose to participate, you can withdraw at 

any time without consequences of any kind. 

Questions about the Study 

If you have questions or concerns during the time of your participation in this study, or after its completion or you would like to receive a 

copy of the final aggregate results of this study, please contact: 

 

 

Catherine E. Mathers    Sara J. Finney 

Graduate Psychology    Graduate Psychology  

James Madison University   James Madison University 

matherce@dukes.jmu.edu    Telephone:  540-568-6757        

  finneysj@jmu.edu 

Questions about Your Rights as a Research Subject 
Dr. David Cockley  

Chair, Institutional Review Board 

James Madison University 

(540) 568-2834 
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cocklede@jmu.edu 

Giving of Consent 

I have read this consent form and I understand what is being requested of me as a participant in this study.  I freely consent to participate.  

I have been given satisfactory answers to my questions.  The investigator provided me with a copy of this form.  I certify that I am at least 

18 years of age. 

 

 I give consent to have my verbal communication quoted in the researcher’s Master’s thesis and any subsequent scholarly articles.  

________ (initials) 

 

 

 I give consent to have my written communication quoted in the researcher’s Master’s thesis and any subsequent scholarly articles.  

________ (initials) 

 

______________________________________     

Name of Participant (Printed) 

 

______________________________________    ______________ 

Name of Participant (Signed)                                   Date 

______________________________________    ______________ 

Name of Researcher (Signed)                                   Date 

 

 

 

 

 

mailto:cocklede@jmu.edu
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Appendix C 

 

Form A 

 

Recall, students tend to score about 45 out of 66 points on the NW9 at the beginning of their first-year at JMU. 

 

1. How many additional points do you expect students who have not completed any quantitative and scientific reasoning 

courses from Cluster 3 to gain on the NW9? 

 

2. How many points do you expect students who have completed 1 quantitative and scientific reasoning course from 

Cluster 3 to gain on the NW9? 

 

3. How many points do you expect students who have completed 2 quantitative and scientific reasoning course from 

Cluster 3 to gain on the NW9? 

 

4. How many points do you expect students who have completed 3 quantitative and scientific reasoning course from 

Cluster 3 to gain on the NW9? 

 

5. How many points would you like students who have not completed quantitative and scientific reasoning course from 

Cluster 3 to gain on the NW9? 

 

6. How many points would you like students who have completed 1 quantitative and scientific reasoning course from 

Cluster 3 to gain on the NW9? 

 

7. How many points would you like students who have completed 2 quantitative and scientific reasoning courses from 

Cluster 3 to gain on the NW9? 

 

8. How many points would you like students who have completed 3 quantitative and scientific reasoning courses from 

Cluster 3 to gain on the NW9? 

 

Recall, over their first 1.5 years of college, students can complete from 0 to 3 Cluster 3 courses. 

 

9. How many points do you expect students who have completed 1.5 years of college coursework to gain on the NW9?  
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10. How many points would you like students who have completed 1.5 years of college coursework to gain on the NW9? 

 

 

11. Please explain why your expected learning gain estimates match or do not match your desired learning gain estimates 

for each of the above questions. 
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Appendix D 

 

Interview Guide 

 

Part A. 

Faculty participants are given the consent form. The researcher verbally explains the study and 

allows the interviewee to read and sign the consent form. 

 

Part B. 

After the consent form has been collected, the researcher provides background on the NW9 with 

respect to test development, average pretest scores, item difficulty, and test reliability. The 

researcher gives the interviewee the form shown in Appendix C; these questions are also listed 

below for easy reference. She then explains that she would like the interviewee to write down 

how much he/she expects students to gain on the NW9 and how much he/she would like students 

to gain on the NW9, taking into consideration the information just provided on the NW9 and 

his/her own familiarity with the Cluster 3 curriculum. She will also ask the interviewee to 

indicate when he/she has finished completing the form. After the interviewee has written his/her 

estimates, the researcher will ask the interviewee to verbally explain his/her estimates, and that at 

this time she will take notes to record the interviewee’s response.   

 

1. How many additional points do you expect students who have not completed any 

quantitative and scientific reasoning courses from Cluster 3 to gain on the NW9? 

2. How many points do you expect students who have completed 1 quantitative and 

scientific reasoning course from Cluster 3 to gain on the NW9? 

3. How many points do you expect students who have completed 2 quantitative and 

scientific reasoning course from Cluster 3 to gain on the NW9? 

4. How many points do you expect students who have completed 3 quantitative and 

scientific reasoning course from Cluster 3 to gain on the NW9? 

5. How many points would you like students who have not completed quantitative and 

scientific reasoning course from Cluster 3 to gain on the NW9? 

6. How many points would you like students who have completed 1 quantitative and 

scientific reasoning course from Cluster 3 to gain on the NW9? 

7. How many points would you like students who have completed 2 quantitative and 

scientific reasoning courses from Cluster 3 to gain on the NW9? 

8. How many points would you like students who have completed 3 quantitative and 

scientific reasoning courses from Cluster 3 to gain on the NW9? 

9. How many points do you expect students who have completed 1.5 years of college 

coursework to gain on the NW9?  

10. How many points would you like students who have completed 1.5 years of college 

coursework to gain on the NW9? 

 

11. Please explain why your expected learning gain estimates match or do not match your 

desired learning gain estimates for each of the above questions. 
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If faculty say that it is too difficult to estimate the gains, or that they cannot estimate the gain, the 

researcher will ask the following questions: 

1. What makes it difficult for you to estimate the gain? 

2. What would you need to know in order to estimate the gain? 

 

Part C.  

After the faculty participant has completed the form in Appendix C, the researcher will conduct 

the debriefing session.  The researcher will first collect the forms from the interviewee and thank 

him/her for participation. The researcher will allow for questions or comments. Afterward, the 

researchers will hand the interviewee a form that says the following:  

 

“Thank you for participating in the study. As you know, the purpose of this study is to 

understand how much faculty expect and want students to learn from their coursework. There 

has been very little research to date on the subject. However, previous research on student 

learning gains has called for improved student learning in higher education. Student learning 

cannot be improved, unfortunately, if faculty do not have an understanding of how much their 

students are learning. What’s more, there may not be a need to improve student learning if 

students are learning as much as their professors want. Your participation in this study will help 

to clarify this area and is greatly appreciated. If you have any questions or concerns, or would 

like to request results of this study when they are available, please contact Dr. Finney or myself.” 

 

Thank you, 

Catie 

 

Catherine E. Mathers    Sara J. Finney 

matherce@dukes.jmu.edu     Telephone:  540-568-6757   

       finneysj@jmu.edu 
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