
James Madison University
JMU Scholarly Commons

Masters Theses The Graduate School

Spring 2012

Blackstarting the North American power grid after
a nuclear electromagnetic pulse (EMP) event or
major solar storm
Joshua Good
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/master201019
Part of the Oil, Gas, and Energy Commons

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in
Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.

Recommended Citation
Good, Joshua, "Blackstarting the North American power grid after a nuclear electromagnetic pulse (EMP) event or major solar storm"
(2012). Masters Theses. 223.
https://commons.lib.jmu.edu/master201019/223

https://commons.lib.jmu.edu/?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/grad?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019/223?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu


 

 

Blackstarting the North American Power Grid  

 

After a Nuclear Electromagnetic Pulse (EMP) Event  

 

or Major Solar Storm 

 

Joshua Good 

 

 

 

 

 

 

 

 

A thesis submitted to the Graduate Faculty of 

 

JAMES MADISON UNIVERSITY 

 

In 

 

Partial Fulfillment of the Requirements 

 

for the degree of 

 

Master of Science 

 

 

Integrated Science and Technology 

 

 

 

 

 

 

May 2012



 

ii 

Acknowledgments 

There have been many hands in making this project possible.  First, I would like to thank 

the members of my graduate thesis committee:  Dr. George H. Baker III, Dr. Tony Chen, and Dr. 

Jeffrey Tang.  Dr. Baker has dedicated an enormous amount of his resources to ensure the success 

of this project.  I would also like to thank the Harrisonburg Electric Commission, and especially 

Mr. Brian O’Dell, for contributing to the background knowledge for completing this project.  I 

also would like to thank the James Madison University Department of Integrated Science and 

Technology, especially Dr. Geoff Egekwu, Dr. George Coffman, Dr. Ming Ivory and Ms. Mary 

Lou Cash, for their continued support throughout this project.  



 

iii 

Table of Contents 

 

Acknowledgments............................................................................................................................ ii 

List of Figures .................................................................................................................................. v 

List of Tables .................................................................................................................................. vi 

Abstract .......................................................................................................................................... vii 

1.0 Introduction ................................................................................................................................ 1 

2.0 Wide-Area Electromagnetic Phenomenology and Effects ......................................................... 2 

 2.1 Electric Power Grid Nomenclature ............................................................................... 2 

 2.2 EMP and Solar Storm Environments – Comparisons and Contrasts ............................ 2 

 2.3 EMP and Solar Storm System Consequences ............................................................... 3 

 2.4 EMP Effects .................................................................................................................. 7 

 2.5 Solar Storm Effects ..................................................................................................... 20 

3.0 Lessons from Past Geomagnetic Events .................................................................................. 27 

 3.1 Collapse of the Grid .................................................................................................... 27 

 3.2 Restoration of the Grid................................................................................................ 31 

4.0 Large Scale Blackstart Contingencies ...................................................................................... 37 

 4.1 Large Scale Blackstart Challenges .............................................................................. 38 

 4.2 Introduction to a Large Scale Blackstart ..................................................................... 39 

 4.3 Large Scale Blackstart Contingency ........................................................................... 41 

5.0 Major Challenges Associated with a Wide-Area Blackstart .................................................... 48 

 5.1 SCADA Systems ......................................................................................................... 52 

 5.2 Communication ........................................................................................................... 53 

 5.3 Fuel ............................................................................................................................. 54 

 5.4 Water and Wastewater Systems .................................................................................. 57 

 5.5 Staffing Issues ............................................................................................................. 58 

 5.6 Time ............................................................................................................................ 60 



 

iv 

6.0 Recommendations .................................................................................................................... 62 

 6.1 Wide-Area Electromagnetic Effect Mitigation Methods ............................................ 64 

 6.2 Developing a U.S. Canadian Cooperative .................................................................. 66 

Appendix 1: SCADA (Supervisory Control and Data Acquisition) Systems ................................ 71 

Appendix 2: Reactive Power ......................................................................................................... 85 

Works Cited ................................................................................................................................... 87 

  



 

v 

List of Figures 

Figure 1: Artist’s Concept of a High Altitude Nuclear Detonation ................................................. 8 

Figure 2: Schematic Representation of EMP in High Altitude Burst ............................................ 11 

Figure 3: EMP Waveform .............................................................................................................. 13 

Figure 4: SCADA Circuit Board Capacitor Damage from Pulse Testing ..................................... 16 

Figure 5: Snapshots from an Insulator Test Showing Damage due to Flashover .......................... 17 

Figure 6: Structure of the Frequency Control, Protection, and Equipment Damage Limits .......... 18 

Figure 7: Solar Storm ..................................................................................................................... 21 

Figure 8: GIC Currents Induced into Infrastructure ....................................................................... 24 

Figure 9: 100-Year Geomagnetic Storm – 50 Degree Geomagnetic Disturbance Scenario .......... 26 

Figure 10: Static Compensator ....................................................................................................... 28 

Figure 11: Map Post-GIC Event Conditions .................................................................................. 30 

Figure 12: Hydro-Quebec Failure Points ....................................................................................... 31 

Figure 13: Area Affected by 1989 Hydro-Quebec Collapse .......................................................... 31 

Figure 14: Map Showing At-Risk Transformer Capacity .............................................................. 49 

Figure 15: Nuclear Plant Step-up Transformer being Transported through Ohio ......................... 51 

Figure 16: Transformer on Specialty Rail Car ............................................................................... 52 

Figure 17: Critical Infrastructure Disruptions ................................................................................ 61 

Figure 18: Probability of a Geomagnetic Solar Storm ................................................................... 63 

Figure 19: Metal Oxide Varistors (MOVs) .................................................................................... 65 

Figure 20: Monolithic First-Generation SCADA System .............................................................. 78 

Figure 21: Distributed Second-Generation SCADA System ......................................................... 80 

Figure 22: Networked Third-Generation SCADA System ............................................................ 82 

Figure 23: Transformer Reactive Power Demand vs. GIC ............................................................ 86 

  



 

vi 

List of Tables 

Table 1:  Settings Altered to Mitigate Future Geomagnetic Events .............................................. 35 

 



 

vii 

Abstract 

 

The electric power grid is our most critical infrastructure.  This key resource provides the 

energy required for all other infrastructures to function.  In modern times, electricity has become 

necessary to sustain life.  The power grid in the U.S. is a target for terrorists and is vulnerable to 

naturally-occurring events.  Numerous assessments have been performed on the vulnerability of 

our national power grid to both manmade and natural events.
1
   

Two significant wide-area threats against our power grid are solar storms and 

electromagnetic pulse (EMP) attacks.  Solar storms are naturally-occurring events that have the 

potential to create large-scale blackouts that could potentially affect more than 50% of the U.S. 

population.
2
  EMP attacks occur when nuclear weapons are detonated at high altitudes; although 

there is no threat of direct blast or radiation dangers to humans, EMP events can wreck power 

grids.   

Although numerous studies have been conducted on the effects of EMP events and solar 

storms on the U.S. power grid, little has been done to plan for restarting or “blackstarting” the 

power grid after such an event.  If electricity from unaffected areas is not available, the blackstart 

process becomes much more challenging.   The procedures required to blackstart the power grid 

following a wide area outage are very different from the procedures used to restart the power grid 

following the major but limited blackouts that have occurred to date such as the 2003 Northeast 

blackout.  This document develops a starting point for blackstarting the U.S. power grid based on 

likely effects on critical infrastructures caused by solar storms and EMP events.  Previous 

regional blackstarts were assessed to glean empirical information on aspects that could be 

extrapolated to a national blackstart contingency.   

                                                           
1
 U.S. House of Representatives Committee on Government Reform. "Telecommunications and 

SCADA: Secure Links or Open Portals to The Security of Our Nation's Critical Infrastructure." Hearing 

Before the Subcommittee on Technology, Information, Policy, Intergovernmental Relations and the Census. 

March 30, 2004. http://www.gpo.gov/fdsys/pkg/CHRG-108hhrg95799/pdf/CHRG-108hhrg95799.pdf, p. 2. 
2
 CENTRA Technology Group. Geomagnetic Storms. Washington, D.C.: Office of Risk 

Management and Analysis, U.S. Department of Homeland Security, 2011, p. 9. 

http://www.gpo.gov/fdsys/pkg/CHRG-108hhrg95799/pdf/CHRG-108hhrg95799.pdf


 

 

1.0 Introduction 

Two wide area electromagnetic threats are capable of causing the collapse of a large 

portion of the North American electric power grid.  The electromagnetic pulse (EMP) from high 

altitude nuclear explosions and its natural analogue, major solar storms will be addressed in terms 

of their potential large scale effects on the power grid and the process that will be involved in 

restarting the grid from the large scale blackouts that could occur.  Such blackouts are more 

difficult to recover from because, unlike local blackouts that have occurred in the past, EMP and 

major solar storm events have the potential to shut down more than half of the U.S. power grid.
3
  

The North American power grid has never experienced a shutdown of this scale.  Since the last 

major solar storm and EMP test, the size and amount of power delivered by the North American 

power grid has grown more than a factor of ten and we have become much more dependent on 

electricity for critical human life sustainment functions.  A major blackout is complicated by the 

fact that large electric power sources are required to restart the grid and may not be available over 

considerable distances.    

There have been numerous studies in the past on the effects of such wide-area 

catastrophic events on the North American electric power grid. However, very little has been 

done to examine the challenges of restarting the grid and the blackstart tasks and sequences that 

would be required.
4
   It is the purpose of this paper to provide initial guidance on how a national 

blackstart process would work. 

                                                           
3
 Ibid., p. 8. 

4
 James Marusek, Solar Storm Threat Analysis, Bloomfield, IN: Impact, 2007. 



 

 

2.0 Wide-Area Electromagnetic Phenomenology and Effects 

2.1 Electric Power Grid Nomenclature 

For the purposes of this paper, the terms “power lines” and “power grids” refer to the 

electric transmission system.  The transmission system moves electric power from its source of 

generation to distribution facilities.  These power lines generally run at 230kV up to 765kV and 

can be as long as 1000 km or more.  Power lines begin at step-up transformers at generation 

stations and “step up” the voltage to move energy through the power grid more efficiently.  

Transmitting power at high voltages is done to lower the electric current and therefore power 

loss.
5
   

In order for electricity to be used in homes and businesses, the transmission voltage must 

be stepped down.  This is usually done at substations.  From substations, the electricity moves to 

the distribution system at voltages between 2,400 V and 69,000 V.  These lower voltage power 

lines are then routed to homes and businesses.
6
   

The power grid is dependent on itself- electricity is required to generate electricity.  It is 

extremely difficult to start power generation systems without electricity and products and services 

from other infrastructures that depend on electricity.  

2.2 EMP and Solar Storm Environments – Comparisons and Contrasts 

The two wide-area electromagnetic threats to the power grid are both caused by the 

interaction of charged particles with the Earth’s magnetic field.  These events behave somewhat 

differently in their interactions with the power grid in many respects.  However, there are also 

many effects on the power grid that are shared by both EMP events and solar storms.  The effects 

from both EMP and solar storm events can best be described as localized damage over a 

continental area. 

                                                           
5
 Naval Facilities Engineering Command, Electric Power Distribution Systems Operations, 

Alexandria, VA: Naval Facilities Engineering Command, 1990, p. 17. 
6
 Ibid., p. 18. 
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We have considerable experience on solar storm effects due to their continuing natural 

occurrence.  The same is not true for EMP Limited atmospheric data from the 1950s and the early 

1960s reveal that EMP has two major components - an early time component, E1, and a late time 

component, E3.  EMP’s E1 fields have fast rise times, and very short durations.  The broadband 

nature of these fields means they couple to electronic boxes, short cables, and antennas as well as 

long-lines.  E3 and solar storms, because of their extremely low frequency nature, couple 

significantly only to long lines. 

E1 field environments are different from any naturally-occurring electromagnetic 

environment.  Fields from nearby lightning strikes are the closest natural analog but lack the fast 

rise times associated with E1; therefore, we cannot easily compare EMP system effects with any 

natural analogs.
7
    Today we must rely on simulations and models to attempt to predict how a 

EMP event will affect the power grid.
8
   

The large number of variables involved in predicting EMP effects on the grid is 

problematic; thus, models give us only rough estimates of the potential problems created by an E1 

event.  Further testing of equipment thresholds will be important to better predict the types of 

effects that can occur.  Threshold data on individual components of the grid can then be 

combined in network models to determine large-scale effects on the grid.  From previous 

experiments completed in the 1960’s and testing completed at various national laboratories, we 

can determine that damage will be stochastic over large regions from the E1 pulse. 

2.3 EMP and Solar Storm System Consequences  

The advent of the national grid and the fact that, today, almost all infrastructures 

currently rely on the electric power infrastructure to function, makes continental-scale solar 

storms survival-threatening events analogous to nuclear EMP.  These wide-area electromagnetic 

                                                           
7
 James Gilbert, Edward Savage, and William Radasky, The Early-Time (E1) High-Altitude 

Electromagnetic Pulse (HEMP) and Its Impact on the U.S. Power Grid, Goleta, CA: Metatech Corporation, 

2010, p. 14. 
8
 Pfeffer, op.cit., p. 9. 
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effects engender a scale of catastrophe that has never occurred in North America.  In the U.S., 

power outages typically last 2-3 days or less.  

The consequences of being unprepared for EMP or geomagnetic disturbances are dire at 

best.  The main area of concern will be collapse of the power grid.  However, direct and 

cascading failures of other infrastructures also have life-threatening consequences.  Within days 

of such an event, it is likely that lack of life-sustaining infrastructure would lead to the breakdown 

of governance, resulting in general chaos, especially in urban areas.  Modern society depends on 

the electric grid to sustain life.  Direct and cascading electromagnetic effects on communication 

systems will greatly impede the ability of police and first responders to respond in emergency 

situations.  The most direct cascading problem vis-à-vis grid restoral is that most grid operators 

would not have communications to coordinate the restart of the grid or to assess damage to the 

grid.
9
    

Given these EMP and solar-induced critical infrastructure failures, the U.S. would 

essentially lose 150 years of technology advancement in a few days.  The resulting devastation 

and death rates have not been experienced since the bubonic plague in Europe.  Typical of other 

critical infrastructure sites, the vast majority of medical facilities have a limited amount of fuel on 

site for their backup generators.  In most locations, backup generation is used as a temporary 

power source during weather events and other short-term events lasting from hours to a few days.  

Without electricity, once on-site fuel is depleted, there is little ability to refill supplies because the 

United States relies almost entirely on electricity to pump various types of fuel including 

gasoline, diesel and natural gas.  The rapid breakdown in the transportation industry would inhibit 

our ability to provide critical supplies to most of the nation.  Because of the loss of the 

refrigeration systems required to preserve a large portion of our food supply (from the farm to the 

table), food shortages would become a major issue within days.   

                                                           
9
 NSTAC Report, op. cit., p. 5.  
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Perhaps the largest life-threatening impact from the debilitation of electric power grid 

would be the loss of drinking water supply systems critical to sustaining life.  Most municipalities 

supply drinking water by using electric pumps to move the water from its source to the area that it 

will be used.  When the electricity goes out, in most areas the water supply is limited to the 

amount of water held in water towers, which would be depleted within one or two days in most 

areas .
10

  The sanitation system we have come to rely is just as dependent on electricity to pump 

sewage to water treatment facilities.  Sanitation pumps generally do not have a backup power 

supply.  Therefore if a power failures were to last more than a few days, raw sewage would back 

up onto the streets and into homes.    

Due to advances in modern medicine (such as treatment for diabetes and beta blockers for 

those with heart conditions), many Americans with health problems can now live normal lives.  

In the event of a power outage of more than a few days, those with health conditions requiring 

medications to support life would be among the first to expire.  This would occur due to a lack of 

ability to cool insulin and lack of ability to transport pharmaceuticals.  Local pharmacies often 

receive daily shipments of medication to keep inventory costs down and reduce spoilage; without 

daily shipments and refrigeration, pharmacies would quickly be rendered useless.  

Nuclear facilities are a special concern.  These facilities can only keep active and spent 

fuel rods cool as long as they have backup power.  Japan’s Fukushima Daiichi nuclear reactors 

experienced this problem following the 2011 tsunami with disastrous consequences.  The tsunami 

destroyed the backup generators and caused a long-term power outage.  Due to the power outage, 

electric pumps were not able to circulate water to cool the reactor cores or spent rod pools and the 

fuel rods overheated and interacted with water to produce hydrogen gas which exploded, 

destroying the reactor buildings and spreading highly radioactive fission products into the 

surrounding region.  Inside reactors, heated fuel assemblies also breached the containment 

                                                           
10

 Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) 

Attack. "Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse 

(EMP) Attack: Critical National Infrastructures." Washington, D.C., 2008, p.8 
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vessels, resulting in a core meltdown.  In the United States, most nuclear facilities only have a 

few days’ of generator fuel stored on site for backup electric power.
11

  Once this is depleted, 

pumps used to cool spent fuel rods and reactors cannot be operated.  Thus, EMP or solar storms 

could result in Fukushima-type disasters in a large number (perhaps hundreds) of locations across 

the blackout region.
12

  .   

The key to sustaining a viable society after a severe solar storm or an EMP attack is 

ensuring infrastructure resiliency.  This means protecting vulnerable assets in a cost-effective 

manner, having spare replacement components when feasible, and having a plan of action to 

restore and restart the grid from scratch [i.e., “blackstart” the grid].  It is extremely important that 

this plan be modeled and field-tested.  The purpose of this research is to identify the challenges 

associated with restoring the power grid following an EMP or solar storm event and identify the 

sequence of actions required to restore and blackstart the U.S. power grid after a nationwide 

blackout.
13

 

Both EMP and solar storms couple to long-line networks and will damage heavy-duty 

power systems on the grid such as transformers, motors and generators.  However EMP, because 

of the broad-band nature of E1 will also couple to and damage microelectronics.    Damaging 

these pieces of equipment can have also affect the operation of heavy-duty power systems such as 

transformers and generation facilities.  In both instances, the “cascading” of these events through 

the entire electrical grid and other infrastructures makes them catastrophic events that can 

profoundly affect society.   

  

                                                           
11

 Josie Garthwaite, How Is Japan’s Nuclear Disaster Different?, March 16, 2011, 

http://news.nationalgeographic.com/news/energy/2011/03/1103165-japan-nuclear-chernobyl-three-mile-

island//  (accessed 13, 2012). 
12

 Matthew Stein, 400 Chernobyls: Solar Flares, EMP, and Nuclear Armageddon, 2012, 

http://www.whentechfails.com/node/1545. 
13

 North American Electric Reliability Corporation. High Impact Low Frequency Event Risk to the 

North American Bulk Power System: A Jointly Commissioned Summary Report of the North American 

Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop. North 

American Electric Reliability Corporation, 2010, p. 3. 

http://news.nationalgeographic.com/news/energy/2011/03/1103165-japan-nuclear-chernobyl-three-mile-island/
http://news.nationalgeographic.com/news/energy/2011/03/1103165-japan-nuclear-chernobyl-three-mile-island/
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2.4 EMP Effects 

2.4.1 EMP Test History.  In 1962 the U. S. Military detonated a hydrogen bomb 250 

miles above the Pacific Ocean, roughly 900 miles from Hawaii.
14

  This experiment, known as the 

Starfish Prime event, was based on the work of James Van Allen, who developed the theory 

concerning the belts of energetic particles surrounding the earth, now known as the Van Allen 

Belts.  Immediately after Van Allen published his theory, the military asked him to assist with 

high altitude nuclear weapon effects testing.
15

   

The Starfish Prime test was designed to determine if it would be possible to disrupt the 

Van Allen belts and, if so, the effects on satellites and radio transmission.  When the detonation 

took place, the effects were immediate.  Power outages were reported in Hawaii, as well as 

unusual behavior from electrical devices.  Garage doors raised and lowered without any 

assistance.  Burglar and fire alarms went off without being tripped, and a telephone system 

microwave link was damaged.  Several strings of street lights were tripped due to blown fuses.  

Analysis concluded that this was most likely caused by the Starfish Prime nuclear test.  The 

streetlight incidents had several characteristics consistent with damage from the early time (E1) 

wave of EMP, and they possessed several characteristics that made them more vulnerable to EMP 

(E1) effects.
16

  Post-test calculations of the EMP-induced line voltage indicated it peaked at the 

upper electrical code limits.  The lines were positioned to maximize horizontal E1 coupling.  The 

damage to the electrical and electronic systems was unexpected, as was the magnitude of the 

electromagnetic pulse.
17

 The military had deployed instruments to measure the size of the 

                                                           
14

 Robert Krulwich, A Very Scary Light Show: Exploding H-Bombs In Space, July 1, 2010, 

http://www.npr.org/templates/story/story.php?storyId=128170775 (accessed November 8, 2011). 
15

 Ibid. 

                
16

 Vittitoe, Charles. Did High Altitude EMP Cause the Hawaiian Streetlight Incident?  

Albuquerque, NM: Sandia National Laboratories, 1989 
17

 Jerry Emanuelson, Test 184, 2004, http://www.futurescience.com/emp/test184, p. 3 

http://www.futurescience.com/emp/test184
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electromagnetic pulse; however the pulse overwhelmed the instrumentation.  Other aspects of the 

test are still classified.
18

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Artist’s Concept of a High Altitude Nuclear Detonation
19

  

The Soviet Union closely monitored the Starfish Prime event, which prompted them to 

conduct additional EMP testing.  Soviet tests were conducted over Kazakhstan during the early 

1960’s.  Soviet Test 184 involved a nuclear detonation roughly 180 miles above the ground.  The 

EMP from the detonation instantly damaged Kazakhstan’s power and telephone infrastructure.  

The ceramic insulators on overhead lines were severely damaged, causing power lines to fall 

from the poles to the ground.  A power plant caught fire and a 600 mile underground power line 

was destroyed in this test.  Multiple diesel generators failed shortly after the blast, which was 

attributed to their windings failing from the late time EMP (E3) component that occurred 20 

seconds after the blast.  Telephone lines in Kazakhstan had currents induced in them of 1500 to 

3400 amperes, and radar systems were knocked out 600 miles from the detonation point.
20

 

                                                           
18

 Ibid., p. 3. 
19 http://www.atomicarchive.com/Effects/effects21.shtml. 
20

 Ibid., p. 4. 

http://www.atomicarchive.com/Effects/effects21.shtml
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An interesting aspect of the Russian event was that the prompt EMP (E1) component did 

not blow fuses in systems; rather, the E3 event blew every fuse in the telephone system.  The 

Russian test introduced geomagnetic field perturbations of 1300nT/min whereas the Starfish 

Prime test caused perturbations of 4800nT/min.  It is believed that the lack of more serious effects 

in the U.S. test was because the detonation took place over the ocean far from the Hawaiian 

Islands, whose small geographic size and associated power and communication line lengths 

limited the currents and voltages that could be induced by EMP.  If the North American continent 

were to be exposed to a Starfish Prime size detonation, it is estimated that roughly 40% of the 

population would instantly lose power.
21

   

It is worth noting that, at the time of their high altitude EMP tests, Russian 

communications and power systems relied primarily on vacuum tubes.  Vacuum tubes are much 

more resistant to electromagnetic overstress than the solid state electronics in use today.  Most of 

the results of the tests conducted by the Soviet Union are still classified and have not been 

released.  Also note that the Russian bomb was inefficient at producing an EMP. Had it been as 

efficient as the Starfish Prime test, the damage would have been more extensive.  The U.S. and 

Soviet nuclear test devices were both thermonuclear (fusion) weapons whose designs were not 

optimized for producing fast rising E1 components. Much smaller nuclear fusion weapons are 

capable of producing more severe E1 components using special designs.
22

  The U.S. and Soviet 

high altitude tests of the 1960’s confirmed that the EMP effect is real and can be exploited to 

debilitate electrical and electronic systems across wide areas.   

2.4.2 EMP Generation Physics.  EMP is produced by nuclear weapon detonations above 

30km.  E1 is produced when gamma rays from the nuclear weapon stream down into the 

atmosphere and liberate free electrons in the region between 20 and 40 km by a process known as 

the Compton Effect.  These “Compton electrons” are synchronously deflected by the earth’s 

                                                           
21

 Ibid., p. 5. 
22

 Ibid., p. 4.  



10 

 

magnetic field to generate a very high amplitude electromagnetic field.  The high altitude EMP 

field has a characteristically brief duration compared to that of solar storm fields.  This initial 

Compton effect EMP waveform rises in a few nanoseconds and decays in 100’s of nanoseconds.   

The late-time EMP field, referred to as magnetohydrodynamic EMP or E3, is produced 

by fireball and X-ray plasma effects, peaks in ten to twenty seconds, and lasts several minutes.
23

  

The fast, broadband E1 signal produces system effects that are more widespread and damaging 

than the electromagnetic effects produced by E3 or space weather events.  EMP events also 

produce an intermediate time waveform (referred to as E2) due to neutron interaction with the 

upper atmosphere.  This field waveform is similar in amplitude and content to fields radiated by 

lightning.   

Because of its very high amplitude and broadband characteristics, E1 is the effect of most 

concern relative to EMP events.  The pulsed electric field that develops travels at the speed of 

light to the earth’s surface.  The E1 pulse can cause damage in electrical devices over continental-

sized areas by inducing voltages on cables and antennas that penetrate connected electrical and 

electronic systems.
24

  The pulses severely affect the power grid because they use grid supervisory 

control and data acquisition (SCADA) systems and the interconnectedness of the power grid.
25

  

The most significant damage during an E1 pulse is the damage to solid state electronics.  The 

damage that a particular system sustains depends on the most intricate details of current paths and 

interior electrical connections.  Thus it is very difficult to predict the current flow and system 

effects before an event occurs.  The North American power grid has become dependent on digital 

microelectronics over the last 20 years.  Because these systems operate at low voltages, minor 

increases in voltages can destroy them.   

                                                           
23

 J.R. Pierce, Evaluation of Methodologies for Estimating Vulnerability to Electromagnetic Pulse 

Effects, Washington, D.C.: National Research Council, 1984, p. 11. 
24

 Ibid., p.75. 
25

 Nuclear and National EMP Scenario, “Consequences of Living Unprepared,” Situation Manual, 

2010, p. 13. 
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Figure 2:  Schematic Representation of EMP in High Altitude Burst

26
 

In summary, there are three phases of an EMP event.  The E1 occurs first, and is caused 

by gamma rays, followed by the slower, lower amplitude neutron induced signal known as E2. 

Expanding debris and a rising atmospheric plasma layer causes the final EMP signal referred to 

as E3, or magneto hydrodynamic (MHD) EMP.  The E1 component couples onto virtually all 

electronic equipment.  Because of its lower amplitude and similarity to lightning, E2 effects are 

limited relative to E1 and E3.  

2.4.3 EMP Effects on the Electric Power Grid.  The threat to the U. S. from an EMP 

(or severe solar storm) event arguably poses the most catastrophic failure scenario for critical 

infrastructure, due to the possible immediate collapse of the national electric power grid with 

damage to components requiring long periods to repair or replace.     This presents an unusually 

challenging problem because many of these grid components, such as large transformers, cannot 

be easily replaced:  the lead-time to manufacture and replace these components can be months 

and sometimes years
27

.  Many of these components are no longer manufactured in the United 

States, further complicating the replacement process
28

.  Because we depend on electricity for life-

supporting functions, many lives would be at risk in such scenarios. Because of their continental 

scale coverage, in the absence of planning and grid protection, these events have the potential to 

cause societal breakdown. 

                                                           
26

 http://accessscience.com/content/Electromagnetic-pulse-(EMP)/222550. 
27

 The President's National Security Telecommunications Advisory Committee. "Report to the 
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The high altitude nuclear burst E3 waveform is similar in effect to the electromagnetic 

environments produced by solar storms.  The E3 effect causes problems in long conductors and 

transformers, including half cycle saturation and transformer burnout.  This occurs because the 

relatively long duration of the E3 waveform can last for several minutes.  The E3 waveform and 

system effects are very similar to those of solar storms.  It is the E1 environment that 

distinguishes EMP effects and protection requirements from those of solar storms. 

Generally, devices connected to wires of less than 1 km in length only need to be 

concerned with E1 events.  EMP events differ from solar storms in that the E1 (gamma) signal 

has much higher frequency content and couples not only to long lines, but electronic control 

systems.  The faster than lightning rise time of an E1 event overcomes the ability of many of the 

power grid’s protection devices.  Available E1 energy density averages around 0.1 and 0.9 

joules/m
2
.
29

   A piece of equipment connected to a line several meters long can collect several 

joules of E1 energy.  A few microjoules of energy entering the input/output ports of equipment 

electronics is sufficient to cause component upset or permanent thermal breakdown failure.
30

  

The amplitude of long-line voltages induced by the E1 early time event peak can reach 

above a megavolt.
31

  The large current levels induced by E1 onto communications and power 

lines could destroy generators and transformers.
 32

  The scope of damage in terms of the diversity 

of systems affected by EMP is significantly more severe than for solar storms, based on E1’s 

broad-band characteristics and the amplitude and duration of the current induced on the grid.  The 

rapid rise time of E1 completely bypasses safety relays and lightning protection, and drives large 

currents and voltages into generation stations and step up transformers that may cause permanent 

damage due to winding breakdown and semiconductor failure.
33
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Figure 3:  EMP Waveform 
34

 

Because of their size and complexity, determining the vulnerability of the electric grid 

and electromagnetic coupling processes to an EMP or solar storm event is very difficult.  The 

size, type, and location of the weapon being detonated will have a significant impact on power 

grid behavior.  Other variables include soil conditions and the geography of the area.
35

  The 

geometry of powerlines relative to the direction of the electromagnetic fields is an important 

factor.
36

  System vulnerability is also contingent on the soundness of the engineering of exposed 

grid components.  Systems that are engineered to better resist other types of electromagnetic 

interference are thought to be more resilient to EMP events.
37

  Timing is also important:  E1 will 

have much a more devastating effect if it is timed to coincide with the peak of the grid’s 60 Hz 

sine wave.
38

   

The primary power grid systems affected by the early time E1 event in an EMP 

detonation are high voltage substations and communications, power controls and 
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communications, power line insulators, transformers, and generation facilities.
39

  The E1 voltages 

reach the control rooms of electronic control systems through field cables connecting the control 

rooms to grid equipment.  The voltage could wreak havoc on control rooms, due to the amount of 

voltage induced into microelectronics and the amount of wire used in a typical control room.
40

  

Connecting cables are generally long enough to allow coupled current to reach its maximum 

possible value.    If the peak field were 30kV/m, a piece of wire around 6 inches long could have 

5000 volts induced on it, which is sufficient to damage some types of electronic equipment.
41

   

Power generation facilities contain electronic control equipment similar to modern 

industrial processing plants.  Generation facilities now contain programmable logic controllers to 

control fuel supplies along with the SCADA systems used to control generation and transmission 

processes (see Appendix 1).  Tests have shown that SCADA components can fail when 

extraneous voltages as low as 3.3kV are introduced.
42

  It is likely that in the event of an EMP, 

some components of the SCADA system would be inoperable.  Idaho National Laboratories has 

conducted testing by injecting currents into SCADA systems commonly used within the power 

industry. They concluded that the possibility of 100 to 700 amperes being induced onto the 

Ethernet wires would have a dramatic effect.  Further testing would need to be conducted in order 

to accurately predict real world system behavior, because of the variety of communication 

standards and different SCADA manufacturers.
43

  EMP-induced currents on control systems 

could lead to improper control signals being transmitted, thereby resulting in inappropriate 

automated response and human actions taken.  The control system malfunctions alone in grid 

control and generation facilities could cause the grid to collapse.  In addition, early and/or late 

time EMP currents are capable of causing permanent damage to large transformers. The most 
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significant damage during an E1 pulse is the damage to solid state electronics.  SCADA system 

components are connected over both commercial and private lines, spanning long distances.  

Because there are many different types of SCADA systems used on the power grid, it is not 

known how effects would vary from one manufacturer’s equipment to another.  However, a small 

number of Programmable Logic Controllers (PLC’s) were tested; most failed when subjected to 

7kVvoltage transients.
44

   

SCADA vulnerability is compounded because the substations that utilize these 

components are not usually manned; if problems occur, there is no one available to take 

immediate action to correct the system.  Loss of these of components could cause the grid to 

destroy itself.  PC’s and other components used in power generation can be destroyed by as little 

as 600V.  This usually occurs at computer communication ports and other circuit boards used in 

SCADA systems.
45

   These currents will be induced into the components by field lines strung 

across substations and generation facilities.  
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Figure 4:  SCADA Circuit Board Capacitor Damage from Pulse Testing
46

 

Long transmission lines themselves do not transmit the E1 component over wide areas, as 

occurs during the E3 pulse.  The E1 pulse duration is several hundred nanoseconds which 

translates to a spatial coverage of several hundred feet.  Thus, the induced current pulse builds up 

only over this distance before the waveform stimulus ends.  The peak current tends to be more 

dependent on the field waveform’s duration than its rise time.   

The prompt E1 signal is large enough to permanently damage transformer windings.
47

  

E1-induced overvoltages in long lines are capable of causing flashover conditions in which the 

insulator fails due to thermal damage from electrical arcs causing pinhole punctures in insulator 

materials.  Prior analysis by Metatech indicates that E1-induced over voltages of 200 kV to 400 

kV can occur on the grid over geographically wide areas.
48

  Electrical arc energies are greatly 

enhanced if the flashover occurs at the peak of the grid’s 60Hz voltage transmission sine wave.  
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In this event, the full grid power at the location of the arc will follow the EMP arc path, causing 

major system damage.  Although the exact location at which an insulator will fail is unknown, we 

do know that repeated pulses from lightening lower the threshold at which flashover will occur.
49

  

Thus, older transformers have higher failure probabilities. 

Pole-mounted insulators are also susceptible to flashover and damage.  There are many 

manufacturers of insulators and several different types of insulators used on the North American 

power grid.  The effects of an insulator failure on a high voltage transmission line can cascade 

throughout the grid causing large-scale outages.    

 

Figure 5:  Snapshots from an Insulator Test Showing Damage due to Flashover
50
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Figure 6:  Structure of the Frequency Control, Protection and Equipment Damage Limits  

(Frequency in Hz)
51

 

Damage to system controllers could cause generators to substantially deviate from 60Hz, 

possibly resulting in physical damage.
52

  Mechanical vibration from off-frequency torques on 

rotating equipment would severely damage turbines, ensuring that they would not be operational 

without major time-consuming refurbishment.
53

  Figure 6 above shows the effects of deviation 

from the 60 Hz utility frequency synchronization.  For reasons previously discussed, an EMP 

event that occurred at the peak of the waveform would be detrimental to generators.  EMP 

voltages introduced into this system could render these facilities unusable for an extended period 

of time. Unfortunately, due to the cost of power generation facilities and step up transformers, 

there has not been significant testing done on this type of equipment to determine their 

susceptibility to damage.
54
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The effect that the E1 pulse has on transformers is not fully understood.  Preliminary 

studies indicate that, if the peak fast pulse induced line voltages are between 264 and 304 kV, 

damage can be severe.  Pulses of lower amplitude seem to have little effect on transformers.
55

  

The presence of lightning protection on transformers increases the amplitude of induced voltage 

that they can withstand.  Additionally, standard procedure in mounting lightning protection on 

transformers involves long lead wires between the arrestor and the transformer.  The inductance 

associated with long lead wires reduces the arrestors’ ability to protect transformers from the E1 

transmission line waveform. 

The point at which the E1 occurs can have much more devastating effects if it is timed to 

coincide with power grid 60 Hz waveform peak.  In order to connect various power systems, their 

frequencies must be synchronized.  The North America grid is tightly synchronized at 60Hz,
56

 

and this frequency is maintained using GPS signals.  The frequencies are adjusted on the half 

hour and hour to compensate for varying loads.  This information is well-understood and readily 

available.  If an E1 were timed to occur during the peak amplitude of the grid waveform, the 

damage to grid components would significantly increase.  Grid “power follow” through E1-

caused arc paths could cause severe damage to generators, step up transformers and substation 

transformers.
57

   

The damage to the power grid could be accelerated even further by simply watching a 

weather forecast and timing the detonation with unusually cold weather conditions across the 

U.S.  The heavy demand of electricity would increase damage to the grid because of the stress on 

the capacity of the system. The system would also be much more difficult to restart.  Breakers 

and equipment at substations are notoriously difficult to restart in cold weather.  Generation 

                                                           
55

 Gilbert, Kappenman, Radasky, and Savage, op. cit. 
56

 Ibid. 
57

 G. H. Baker, private communication 



20 

 

plants cool rapidly during cold weather, complicating the restart of the facility as the proper 

shutdown sequences cannot be followed.
58

  

2.5 Solar Storm Effects  

2.5.1 Solar Storm Phenomenology.  Solar storms occur naturally when plasma eruptions 

on the surface of the sun eject high energy charged particles toward the earth.  This flux of 

charged particles is referred to as the “solar wind.” Prior to the advent of electric technologies, 

critical infrastructure was prey to normal weather events such as droughts, floods, blizzards, and 

hurricanes.  With the advent of long line communication and power systems, the developed world 

discovered around the 19
th
 century that they were also vulnerable to “space weather.”

59
  

Technologically-developed nations first learned that space-weather disturbances were the culprit 

when they experienced periodic problems with telegraph systems.  Violent eruptions of the sun’s 

corona, or “coronal Mass ejections (CME’s),” are the root cause of major solar storm effects.
60

  

The shock waves that result from CME’s create solar energetic particles (SEP’s),
61

  which consist 

of high energy particles that include electrons and solar wind ions.
62

  If projected earthward, the 

charged particles are trapped by the earth’s magnetic field.  The presence of the trapped ionized 

particles distorts the earth’s magnetic field.  These changes in the earth’s magnetic field over time 

at the ground induces significant voltages and in long conducting lines.
63

  The magnitude of the 

induced voltages and currents is governed by Faraday’s law.  

In order for a geomagnetic storm to be dangerous to the electrical infrastructure, several 

factors must converge to maximize the intensity of the storm.  The CME must be launched from 
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the center of the sun in a path that will cause it to intercept the earth.
64

  The CME must also be 

fast-moving, at speeds greater than 100 kilometers per second.
65

  In order to produce a dangerous 

solar storm, the CME must be massive enough to transport a large amount of kinetic energy.
66

  

The magnetic field vector produced by the solar wind must be strong and oriented in the opposite 

direction of the earth’s magnetic field.  Disturbances that have these characteristics can be 

extremely destructive to the electric power grid.
67

  The CME particles excite the ionosphere by 

ionizing air molecules to cause an aurora.  Electrical currents generated from these events perturb 

the earth’s magnetic field.  The slowly varying magnetic field at the earth’s surface induces quasi-

DC voltages and currents on long conductors such as power lines, communication lines, and 

pipelines.
68

  

 

Figure 7:  Solar Storm
69
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The strength of geomagnetic storms is expressed in a negative value DST (Disturbance 

Storm Time) index
70

.  DST is a measure of the strength of the magnetic field produced by the 

solar wind.  It is expressed in nanoteslas, which is the general unit of measurement for magnetic 

fields.  DST values are based on the average value of the horizontal component of the Earth's 

magnetic field measured hourly at four near-equatorial geomagnetic observatories.
71

  Severe 

geomagnetic storms are those classified as having a DST absolute value of greater than 500 

nanoteslas (nT).
72

 By comparison, the Earth’s magnetic field strength ranges between 25,000 and 

65,000 nT, depending on location.   

It usually takes geomagnetic storms 2 to 3 days to reach the earth after initiating on the 

surface of the sun.  Typically, there are three phases of interaction once a geomagnetic storm 

reaches earth.  The first phase can last from a few minutes to an hour or more.  During this phase, 

the solar storm perturbation of the magnetic field typically reaches a maximum of tens of nT.  

The second phase produces the main effects.  During this “main phase” of a solar storm, 

perturbations of hundreds of nT can be produced, lasting between 30 minutes and several hours.
73

  

The third phase is the recovery phase and may last up to several weeks.  During this period, the 

Earth’s magnetic field returns to normal levels.
74

  Damage to long line power and communication 

systems can occur in all three phases; however, the second phase is by far the most destructive as 

half cycle saturation is the most severe. 

2.5.2 Solar Storm Effects on the Electric Power Grid.  Solar storms induce currents on 

the electric grid similar in nature to those induced by the late time component of nuclear EMP 

(E3).  The system effects described here for solar storms also apply to EMP’s E3 component.   
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Solar storm intensity and duration varies significantly and cyclically.  The “Carrington 

Event” was the most significant solar storm documented and occurred in 1859.
75

 This 

geomagnetic storm caused telegraphs to fail across North America and Europe.  In some cases, 

operators received electrical shocks and telegraph paper spontaneously caught fire due to storm-

induced electrical arcs.
76

   

Due to Faraday’s law, the voltage induced in long lines is proportional to the rate of 

change of the magnetic field in time.  As a result, higher values of nanoteslas per minute also 

correlate with higher induced current levels.  Very large currents may be induced in grounding 

conductors.  These currents are referred to as ground-induced currents or GIC’s. Large solar 

storm GIC’s can destabilize the power grid and even damage critical components.   

Based on prior solar storm experience, GIC effects are most pronounced in 

transformers.
77

  Severe geomagnetic storms at higher negative DST levels cause higher GIC 

surges with correspondingly faster effects on the grid.  A 1989 solar storm caused the Hydro 

Quebec grid to fail in about 1 minute.  Because the Earth’s magnetic field lines are more 

concentrated at higher geographic latitudes, areas of the globe closer to the poles are more 

susceptible to geomagnetic storm activity.  However, major geomagnetic storms can disrupt 

electric grids at mid-latitudes as well.  For example, damage from solar storms has occurred in 

U.S. Mid-Atlantic States, Japan and South Africa in the past.  In addition to the strength of 

normal geomagnetic fields, the geology and presence of igneous rock have a strong influence on 

GIC current levels and the resulting effects on the power grid. 
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Figure 8:  GIC Currents Induced into Infrastructure
78 

Predicting how a geomagnetic storm will affect the power grid on a large scale is an 

extremely difficult problem.  As previously explained, there are many parameters involved in 

predicting the geomagnetic storm environment alone.  The configuration of the power grid plays 

a key role in how the events play out.
79

  During a solar storm, currents flow onto the power grid at 

numerous points.  Solar storm-induced changes in the Earth’s magnetic field induce currents on 

long transmission lines and in the Earth itself.  Line and ground currents flow on and off of the 

grid at each earth-ground connection point and GIC’s in the hundreds of amperes have been 

measured in transformer neutral ground connections.  The largest current measured in a single 

transformer neutral occurred in Finland and exceeded 200 A.
80

  The largest future geomagnetic 

storms may induce neutral currents on the order of 500 A. 

The orientation of power transmission lines also affects how much current is induced in 

them.  Lines running east-west are far more susceptible then lines running north to south.   This 

occurs because of the polar orientation of the earth’s magnetic field.  The longer the line, the 

more voltage will be induced along its length.  Long transmission line systems are susceptible to 
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outages from solar storm-induced electric fields as low as 1 Volt/km.
81

  The amplitude of the 

corresponding current is influenced by the method of station grounding and geology-determined 

earth resistance.  Generally, the more voltage the line is designed to carry, the lower its line and 

ground resistance.  Thus, 745 kV (the highest transmission voltage currently in use) transmission 

lines and transformers are the most susceptible to solar storm effects.   

Long, high voltage lines typically require voltage regulating devices such as capacitor 

banks and volt-ampere-reactive (VAR) power compensators.  These devices are also highly 

susceptible to geomagnetic currents.  In the event of severe solar storms, these devices are likely 

to be prematurely tripped off-line by protective relays.  Grid protective relays are designed to trip 

when the power waveform deviates from its normal 60 Hz coherent sine wave.  Solar storm-

induced GIC’s introduce unusual harmonics in transformers by causing half cycle saturation of 

transformer cores, which force the transformers to operate in the nonlinear part of their hysteresis 

curve for half of every cycle, thus generating harmonics.   

In addition to generating grid-destabilizing harmonics, transformers themselves can be 

directly damaged by solar storm GIC’s.  After half cycle saturation occurs, the transformer core 

becomes loaded beyond its capacity.  The transformer magnetic field, normally confined to the 

core, now leaks into surrounding spaces and creates stray eddy currents that heat transformer 

windings, case and cooling oil.  The windings in the transformers can become hot enough to melt, 

and tank wall hot spots often occur.  The highest recorded transformer temperature was 347°F.
82
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Figure 9:  100-Year Geomagnetic Storm – 50 Degree Geomagnetic Disturbance Scenario
83

 

Because of the nonlinear nature of the saturated transformer behavior and cumulative 

degradation in older transformers, transformer damage is difficult to predict.  Past exposure to 

geomagnetic currents and other damaging events that were not strong enough to cause visible 

damage can weaken transformers, making them more susceptible to overstress from geomagnetic 

events.  Three phase transformers are less susceptible than three single phase transformers 

because three phase transformer designs cancel some of the harmonic-producing stray magnetic 

fields between the phases.  Transformer location is also an important parameter since 

geomagnetic storms are typically strongest in North America between 55°N to 70°N.
84
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3.0 Lessons from Past Geomagnetic Events 

To anticipate the process and effort involved in blackstarting the North American power 

grid, it is instructive to examine the events that occurred following the major solar storm of 1989, 

in which significant portions of the Hydro-Quebec grid failed.  On March 10, 1989, a solar flare 

erupted on the Sun’s surface.  Fifty-four hours later, on March 13, 1989 the effects were felt on 

earth.  The power grid in the Canadian province of Quebec suffered the most significant effects.  

The geomagnetic storm caused a total loss of 21,550 MW of power and nearly caused the entire 

Hydro-Quebec power grid to collapse.
85

  In order to understand how power was restored during 

the Hydro-Quebec incident, we must first understand how the Hydro-Quebec grid failed.  

3.1 Collapse of the Grid 

Hydro-Quebec’s geography, its 1,000 km transmission lines, and high latitude made it 

more susceptible to geomagnetic events than other grid systems.  The failure of the system began 

at 1:00 a.m. on March 13, 1989.  Due to transformer harmonics caused by quasi-DC solar storm 

currents, the grid became unstable at this time, threatening to trip breakers and relays.  Operators 

had sufficient time to perform the switching necessary to reduce the voltage on the system but 

failed to do so.  This would have lowered the load on the system by minimizing the wild voltage 

swings caused by geomagnetic-induced transformer harmonics.  At 2:45 a.m., a particularly 

intense geomagnetic disturbance took place that tripped or shut down seven static compensators.  

Static compensators are reactive devices used to balance power oscillations and are 

relatively new products replacing synchronous condensers in the power grid.
86

  These 

compensators have no moving parts, unlike synchronous condensers.  Static compensators are 

much more efficient than synchronous condensers, however, because they are set to operate 

within much closer tolerance, they are much more vulnerable to malfunction in the presence of
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GIC induced currents.  Unfortunately, static compensators can act as an energy sink during 

geomagnetic storms.  During the wild oscillations caused by a geomagnetic event, static 

compensators overload and completely shut down.  This leaves the voltage on transmission lines 

unregulated.
87

  The figure below shows a simple static compensator schematic of the kind used in 

the Hydro Quebec system.  The design includes three capacitors controlled by a thyristor.  During 

the Hydro-Quebec incident the static compensators engaged instantly as designed, but they 

proved ineffective because of overwhelming reactive power produced by the geomagnetic storm-

induced quasi-DC current.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  Static Compensator
88

 

The 2:45 am geomagnetic disturbance occurred too rapidly for human intervention.  Two 

of the affected static compensators were at Hydro-Quebec’s Chibougamau substation.  It has been 

assumed that these static compensators were the first to fail.  Within seconds, four static 

compensators at the Albanel and Nemiscau substations failed.  Those failures caused the La 
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Verendrye substation’s static compensator to fail.  The failure of the static compensators caused 

one of the 735 kV lines at the La Grande transmission network to trip.  The La Grande facility is 

a large hydroelectric generating plant on the Hydro-Quebec system.  Shortly thereafter, three 

additional lines tripped from the La Grande network, causing the La Grande facility to become 

completely disconnected from the Hydro-Quebec network.  

In response to the lost transmission lines, two generating units at the La Grande complex 

automatically tripped off with a corresponding loss of 9,400 MW of generation.  The network 

connecting the Church Hill Falls and Manicougan then tripped, causing a remote load shedding 

signal to be sent to Montreal, which caused the entire system to collapse, shedding all loads.  A 

total of three hydro-electric generation facilities were shut down, including the La Grande 

Generation Complex, the Church Hill Generation Complex, and the Manicougan Generation 

Complex. 
89

  The figure below shows the status of the grid following the GMD, including areas 

continuing to provide electricity post-event and the areas that lost generation capabilities.  The 

area in the yellow circle in the lower left corner is the Gatineau Generation complex that was still 

operable but was completely isolated and unable to transmit electricity.  
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Figure 11:  Map Post-GIC Event Conditions
90

  

Once the system had completely collapsed, 430 MW of electricity was still available to 

supply the area.  The Abitibi generating system circled in black on the far left of Figure 11 

continued to produce 250 MW of power.  The Gran Mere and Shawinigan generating stations 

were able to produce 160 MW of power.  These areas are circled in black on the lower center of 

Figure 11.  The Hull 2 generating station located just above the Shawinigan station was able to 

produce 13 MW of electricity.  In addition, neighboring systems that were isolated from the failed 

portion of the network continued to generate 573 MW of electricity and remained in service.   

Strategic equipment on the Hydro-Quebec network was damaged due to the failure of the 

static compensators.  Once these compensators failed, voltage was not regulated on the Hydro-

Quebec grid, resulting in overvoltage damage to two step up transformers when the network 

separated.  A shunt reactor at Nemiscau was damaged so severely that the manufacturer had to be 

brought in to conduct the repairs.  Static compensators at the Albanel and Nemiscau substations 

suffered minor damage.  The thyristors were damaged at Nemiscau and the capacitor bank units 
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failed at Albanel.  Overvoltage damaged the SVC-C transformer at the Chibougamau substation, 

which occurred in addition to the SVC compensators failing at Chibougamau.
91

  Figure 12 below 

shows the locations of the failure points on the Hydro-Quebec system, and Figure 13 shows the 

area that was affected during the Hydro-Quebec blackout.   

 

Figure 12:  Hydro-Quebec Failure Points (red arrows) 
92

 

 

 
Figure 13:  Area Affected by 1989 Hydro-Quebec Collapse

93
 

3.2 Restoration of the Grid 

Restoration of the Hydro-Quebec grid depended heavily on the assistance of nearby 

generation facilities that were not affected.  Power assistance was received from New York as 

well as the Alcan and McLaren systems based elsewhere in Quebec.  These transmission systems 
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supplied Hydro-Quebec with the electricity needed to restart their generation, transmission, and 

distribution systems.  Industrial customers in the region voluntarily reduced power demands to 

allow the system to be restarted.  The restoration plan was significantly altered because of the 

equipment damage that occurred, and delays were encountered due to the unavailability of a 

replacement shunt capacitor at Nemiscau that was needed to restart the La Grande network.  

Operators restarted the system even though two step up generators at La Grande 4 were damaged 

from overvoltage.  Albanel and Nemiscau had damaged SVC’s, and the substation at 

Chibougamau also had a damaged SVC.
94

 

The following task sequence was required to restore the collapsed portion of the Hydro-

Quebec grid:
95

 

1. New England power sources and what little power was left in Quebec were 

switched to provide Quebec with emergency power. 

2. System engineers assessed the damage to the failed static compensators in the La 

Grande network.  

3. Protection settings were increased to enable the use of equipment’s overload 

capacity.  This was done to avoid the need to replace relays prior to restarting the 

system.  Utilizing overload capabilities is a short-term solution that reduces the 

lifespan of transformers and static compensators. 

4. The grid was reconnected in small steps, by connecting autonomous “island” 

networks one after another, thus expanding the basic grid in increments. 

There is not much available information explaining the details of the Hydro Quebec 

system blackstart.  There are many disincentives for power companies to publish such 

information.  Information indicating that the power grid is not resilient to these types of events is 

likely to lead to additional regulation.  The power industry has been staunchly opposed to any sort 
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of regulation.  In addition, information released by power companies is scrutinized, especially if 

grid reliability is questioned.
96

  This can lead to fines if there are any indication procedures and 

regulations were not followed.   

Power companies are expected to keep the power grid reliable. However, neither the 

Federal Energy Regulatory Council (FERC)’s 2000 Standard Market Design Proposal, nor the 

latest Wholesale Market Platform (WMP) establishes a clear cost-recovery model for 

transmission grid operators.
97

  Operators are not paid based on the reliable product they provide 

through the transmission network, but rather on how cheaply they can price energy and their 

current stock price.  Instead of developing solutions to grid problems, regulatory agencies fine 

operators when problems occur and offer them no opportunity to receive additional revenues to 

improve reliability.
98

  Additional regulations translate into lower profit margins and lower stock 

prices.
99

   

Hydro-Quebec has admitted that startup procedures were modified in order to restart the 

grid rapidly, which can be deduced from the relatively brief amount of time that it took to restart 

the grid. Due to the above mentioned reasons it would be unwise for a power company to publish 

the details of putting damaged components into service. This could result in sanctions from 

regulatory agencies as well as create liabilities in the event of the loss of power or component 

damage, possibly leading to lawsuits.   

It is not likely that replacements for the large HV transformers were available within the 

Hydro-Quebec system and, given the short duration of the outage, it would have been almost 

impossible to make field repairs.  The system was restarted in nine hours, which is significantly 

less time than it would have taken to repair a transformer of that size.  Even if backup 

transformers were available (older, functional transformers that have been replaced are often left 
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on- site), it is unlikely they could have been put into service.  The most probable scenario is that 

the damaged transformers were used until a later date during a planned outage to enable field 

repairs.   

Studies indicate that solar storms’ stress on transformers and other major grid 

components reduces their life span.  Estimates show that transformers fail 60% more often in 

New England than in other areas of the United States.
100

   This indicates that GIC currents could 

have a cumulative deleterious effect on the power grid.  It must be noted that the restart of Hydro-

Quebec was not a true blackstart, since significant power was available from adjacent areas.  

Also, basic communication and control systems had power, which may not be the case in a large 

scale EMP or solar storm blackstart.  As noted by Kappenman, all generation plants were 

hydroelectric facilities, which are relatively easy to bring back online.
101

 Finally, communications 

did not fail throughout the entire process, which made it possible to coordinate recovery.   

Despite the relatively limited effects of this blackout, it still took nine hours to restart the 

system.  Had a critical transmission line pathway been damaged beyond use, this event would 

have had a vastly different outcome.  In addition, the Hydro-Quebec incident occurred in March, 

neither in the deep winter or in the heat of summer, meaning the system was not under peak 

demand conditions.  Furthermore, the incident occurred at around 3:00 a.m., when demand for 

electricity is much lower than during the day and evening hours.  The consequences could have 

been far worse if the event had occurred in the winter months during the day when demand for 

electricity was high. Based on the restart experience following the 1989 Hydro-Quebec blackout, 

this event is better characterized as a near-miss GMD incident.    

To mitigate future GMD effects, Hydro-Quebec has installed protection in the form of 

series capacitors at a cost of $1.2 billion.  The series capacitors used by Hydro-Quebec have very 

high impedance for GIC current.  Short lines and most tie lines did not receive series capacitors, 
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leaving those lines presently unshielded
102

  AC voltage asymmetry is now monitored in four key 

locations, including La Grande 2.  The protection settings at Albanel and Nemiscau have been 

changed as indicated below. 

Type Of Protection Setting Before 3/13/1989 Current Settings 

H.V. XFO. O/C Protection 

1 p.u. = 236 A (rms)
1
 

1.27 p.u. 1.5 p.u. 

Capacitor bank overload 

protection 1 p.u. = 2,200 A 

(rms) 

1.35 p.u. 1.8 p.u. 

Capacitor and 3
rd

 harmonic 

filter overload protection 

1 p.u. = 2,200 A (rms) 

 

1.08 p.u. 1.8 p.u. 

Third harmonic filter resistor 

overload protection 

1.03 p.u.
1 

Trip 

1.25 p.u.
2 

Alarm Only 

Capacitor unbalance 

protection   for main and 3
rd

 

harmonic filter capacitor 

branch 

Alarm:  Loss of 3 units in 

main capacitor bank 

 

Loss of one unit in 3
rd

 

harmonic filter branch 

 

Trip:  Loss of 4 in main 

branch.  Loss of 2C in the 3
rd

 

harmonic filter branch 

Temporary adjustment for loss 

of 8
3
 filter-branch capacitors 

 

 

 

 

Loss of 9
4
 filter-branch 

capacitor 

Table 1:  Settings Altered to Mitigate Future Geomagnetic Events
103

 

1
RMS is defined as root meaning square 

2 
This protection initiated tripping of the SVC at Albanel substation. 

3 
Connected to the oscillograph for further analysis during GIC conditions.  

4
To take into consideration natural unbalance during normal conditions; compensating circuits                      

  will be installed in the near future.  
5
To comply with 1.1 p.u. overvoltage limit remaining units 
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In addition to the changes in Figure 14, upon detection of 3% voltage asymmetry, an 

alarm is sent to central operators in Montreal to allow them time to take action.  In the event of 

forecasted geomagnetic events, HVDC loading can be adjusted to between 40% and 90% of 

normal full-load rating.
104

  This indicates that Hydro-Quebec and regulators felt the incident was 

more of a reminder of what could occur due to more severe geomagnetic storms rather than the 

temporary effects of the 1989 event.
105

  Nonetheless, the steps that have been taken to prevent 

another failure of the Hydro-Quebec system are an improvement to reliability but short of what is 

needed for long term protection.   

The 1989 geomagnetic event produced a maximum 480nT/min., while the 1859 

Carrington event is estimated to be as high as 5000 nT/min.
106

  The last storm to hit North 

America that registered near the level of the Carrington event was in 1972.
107

  The power grid at 

that time was less than half its current size.  Moreover the present grid uses longer transmission 

lines that act as longer antennas, introducing larger GIC voltages and currents into the grid.
108

  

The new protection could save the Hydro-Quebec grid from a future geomagnetic storm that is 

close in size and intensity of the 1989 event.   

If a storm that had the magnitude of the Carrington event were to occur, the Hydro-

Quebec grid would most likely suffer severe damage more far-reaching than in 1989.  The 

adjusted protection settings would be insufficient to protect the grid from Carrington levels.  

Hydro-Quebec has installed some neutral blocking capacitors, but the extent of these retrofits 

does not appear to have been published. 
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4.0 Large Scale Blackstart Contingencies 

EMP and major solar storms pose blackout threats and cascading effects on critical 

infrastructures that are unprecedented.  No civilization with a reliable and developed electric grid 

has experienced a total grid failure with such a large number of key components damaged.  The 

fundamental difference between a “normal” blackstart and a blackstart following an EMP or 

major solar storm is the size of the affected area.  Due to the large size of the affected area, other 

infrastructures that would normally be available during a blackstart may not be available.  During 

a major EMP event, more than 50% of the total power customers in the U.S. could lose power.   

During previous blackout events, such as ice storms and hurricanes, neighboring utilities 

have retained grid functionality post-event.  During an EMP event, it is likely that neighboring 

power grids will also be mostly (if not completely) nonfunctional, precluding assistance from the 

“edges” of the affected area.  The lack of electricity available to blackstart the power grid is a 

major challenge that must be overcome to minimize the collateral damage from a geomagnetic 

storm or EMP event.   

The power grid must be restarted in a timely fashion to avoid the cascading effects of a 

long-term outage.  During the blackstart following a wide-area EMP or solar storm event, normal 

blackstart plans will not be adequate, as was discovered by field personnel following the Hydro-

Quebec geomagnetic storm.  Presently, no plans exist which details how to restart the grid 

following a wide-area EMP or solar storm catastrophe.  The closest applicable guidance relative 

to the North American grid is a NERC manual that mentions possible effects from geomagnetic 

storms - however the manual does not address the areas of a wide area outage.
109
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4.1 Large Scale Blackstart Challenges 

The solar storm that affected Hydro-Quebec was a localized near miss.  From a historical 

perspective it was a relatively weak solar storm, registering 480 nT/min.  By comparison, the 

Carrington event that occurred in 1859 registered 4800nT/min.  In addition to the Hydro-Quebec 

event, many lessons can be learned from the restoration effort that took place after Hurricane 

Katrina in 2005.   

The blackstart sequence outlined in the following sections uses the NERC blackstart 

guide, with modifications made to accommodate the vast area coverage of an EMP or solar storm 

event.  Lessons are drawn from the United Kingdom’s blackstart plan and Southern Company’s 

restoration efforts following Hurricane Katrina.   

Due to the uniqueness of the different power grids in the U.S., no two systems may be 

restarted in the same sequence.  Some systems will be more prepared to conduct a blackstart due 

to the type of generation and blackstart resources they have acquired before the event.  Other 

utilities may be simply at the mercy of neighboring systems ability to blackstart and then provide 

them the power they need to bring their equipment back online.  The stochastic nature of EMP 

and solar events will prevent accurate assessments of what post-event conditions will exist until 

utilities assess their individual system’s ability to withstand EMP and solar storm stresses.  The 

more rapidly a blackstart occurs, the fewer resources will be required to complete the process.  

Timeliness will determine success or failure of the operation.   

In order to put the resource needs into perspective, the total logistical acquisitions for 

Southern Company after Hurricane Katina included finding 4,800 beds for personnel (hotels, 

mobile trailers, dorms, military installations, tents, and cots).  Other acquisitions included 60 

tractor trailer loads of material and 65 buses put into service.  During the peak restoration period, 

32,500 meals were served each day, and 93,000 pounds of laundry were processed. These 
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resources were required to support 11,000 electrical workers.
 110

  On a national level, this is 

simply not possible. We do not have the personnel or resources to sustain a recovery of that 

magnitude.
111

   

Events such as Hurricane Katrina have exhausted our emergency management systems.  

First responders were brought in from several states during that event.  Hurricane Katrina was a 

regional event. Had it been a national event, and first responders from other locations would have 

been busy dealing with problems in their own back yards, the response would not have 

progressed.  During an EMP event, even if other first responders were available, communication 

and a lack of transportation would present additional formidable challenges.   

During Hurricane Katrina, it quickly became apparent that supplies and personnel were 

inadequate for the level of demand.  This rapidly became a cascading problem that was eventually 

solved by pooling additional available resources; however, this did not happen in a timely 

fashion.  One can only imagine what would have happened if the additional resources were not 

available, as would be the case during a large scale power outage.  

4.2 Introduction to a Large Scale Blackstart 

Post EMP/solar storm event utilities must face the realities of the seriousness of the 

situation that they face.  Most likely, communications systems will not be functioning. This 

includes cell phones, land lines and other forms of commercial communications.  Utilities that 

own their own communication networks may have some localized communication with crews or 

other operators.  Assessment of the system must start immediately.  Initially, there will probably 

be a great deal of chaos and confusion, exacerbated by communication problems.  At first, 

operators will not know the geographic extent of the blackout or what initially caused the event, 

especially in the case of an EMP event.   
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The blackstart tasks will truly be a race against the clock.  With each passing hour, the 

grid will degrade further and the effects of the loss of other infrastructures, affected by power 

outages, will continue to grow.  Decisions made early in the event will affect the success or 

failure of the restart.  If communications are available, they should be used to contact NERC and 

coordinate with neighboring utilities.    Due to grid collapse and component damage, it is likely 

that SCADA systems will be unable to provide operators an accurate view of the current state of 

the grid.  These systems may be completely nonfunctional or send out inaccurate reports.  

Operators will need to send out personnel to perform visual assessments of the current state of the 

grid, and they will need to protect and stabilize any parts of the grid that are still operational.   

During the early phase, local and regional authorities should be immediately notified 

about the current situation, as well as any others who will need status information.  If it is known 

that the problem is widespread, federal authorities should be informed as soon as possible.  Local 

government officials should be used as for intermediary communication with federal authorities.  

One of the lessons learned from Hurricane Katrina is that the seriousness of the situation should 

not be underestimated when communicating with local authorities and emergency personnel.   

In retrospect, most of the grid restoration effort during Hurricane Katrina was successful. 

However, Southern Power underestimated the materials and manpower that would be needed to 

complete the restoration process and federal assistance did not arrive quickly enough to avert the 

cascading effects that occurred.
112

  Unlike Hurricane Katrina, federal assistance may not be 

available during an EMP event – it will depend on how widespread the effects are.  It will be 

imperative that everyone assisting in the restoration effort understands the need for self-

sufficiency in blackstarting the power grid.  The lack of communication with the general public 

also contributed to the chaos following Katrina.  Emergency personnel, together with utility 

operators, should explain the situation to the general public calmly (that is, in a way that does not 

create panic).   
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Employers should use any means necessary to summon their employees to work.  

Southern Company had a contingency plan after Hurricane Katrina for employees to report for 

duty.  If the problem is known to be severe, such as an EMP event or major solar storm, 

authorities should be notified so they can take appropriate action.  They should also be notified of 

the equipment and supplies that will be required to restart the power grid.    

If nuclear power plants operate within the transmission system, the determination of 

whether these plants have electricity and are still operational must be a top priority.  They must 

continue to receive electric power whether or not they are operational, because they require 

electricity to circulate cooling water within the reactor vessel and spent rod cooling pools in order 

to prevent release of radioactive material.   

4.3 Large Scale Blackstart Contingency 

Each electric utility operator will have to evaluate current conditions against their 

blackstart plan.  Utility operators must take into consideration their list of restoration priorities 

when developing this plan.  Their priority list may change due to the location and severity of 

damage to their systems, the information about each specific situation, and whether there are 

alternate priorities to restore other critical infrastructures.  For example, if service could be 

quickly restored to the public water system, this may be a higher priority than restarting a 911 

center, provided the emergency center has adequate fuel for backup generation.  The blackstart 

plan must be generated rapidly in real time, and should be flexible enough for changes to be made 

as field conditions change.  The plan must be thorough and well-practiced, because it will act as a 

guide for utilities through the entire blackstart process.  The more effective the plan, the more 

likely that restoration efforts will be efficient and successful.  Because resources will be limited, 

this plan should be exercised by the utilities by conducting mock drills and simulations as part of 

their regular, continuing training.  
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Reliability coordinators should establish priorities as stated in the NERC Electric 

Restoration Reference Document.
113

  The level of equipment damage will determine what aspects 

of the grid can be rapidly restored.  Nuclear power facilities will be a main priority as well, 

because they serve as a strong base power source for restarting other portions of the grid.  NERC 

will need to constantly evaluate progress and determine the next steps in the plans for local 

operators.  It will also need to remain flexible as the system rapidly changes.   

Personnel may need to be directed by NERC.  This authority is granted to NERC as listed 

in the Power Restoration Document section VII after initial generating stations are restarted.  As 

part of pre-event planning, NERC should appoint an agency to be in charge of supplies and 

determine where strategic fuel can be acquired.   

In the event a blackstart is required, all necessary resources must be secured.  Local, state, and 

federal government agencies should be informed about the equipment and personnel required to 

perform the blackstart.  Reliability coordinators need to be notified concerning the requirements 

for their particular sector of the grid to become operational.  They have the authority to lobby for 

more resources through NERC and the Department of Energy.  These agencies can be used to 

secure precious fuel needed for the restoration effort as well as arranging transportation for fuel 

and other materials.  Fuel needs cannot be over-emphasized. While restoring power after 

Hurricane Katrina, Southern Company used on average 80,000 gallons of fuel per day, with peak 

usage of 110,000 gallons per day.
114

   

In previous blackouts, one significant cause of delay has been a lack of communication 

between government officials and utility operators.  The utilities will need to quickly and 

effectively convey the message that assistance will be needed.  Resources will be more readily 

available at the beginning of the EMP or solar storm event rather than later, when resources 

become scarce due to the cascading effects of electric power outages on dependent 
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infrastructures.  Blackstart personnel will need food, water, and shelter.  Resource needs will be 

extensive and transportation availability limited.  For example, it is likely that air transportation 

will not be available due to outages within the air traffic control system.    

Infrastructure industries in the area should be immediately contacted to seek resources.  

Cable television and internet cannot operate without electricity, so these companies may have 

personnel and equipment they are willing to provide for restoration efforts.  Although most 

electric utility companies have ongoing relationships with utility contractors, it is likely that these 

resources would not be available:  because many of these contractors travel long distances to 

reach work sites, this may simply not be feasible under wide-area emergency conditions.  

However, local utility contractors will be more accessible; even if they have contracts out of 

town, they will likely be unable to honor those contracts.  Contractors in different industries will 

likely have equipment that is valuable in restoration efforts, including truck-mounted fuel transfer 

tanks.  Outside vendors such as catering companies and contractors may be more likely to lend a 

helping hand in the initial stages of a major power outage, rather than after a week or more has 

passed without replenished supplies.  At this point, it is possible that many organizations would 

start to hoard resources such as occurred during Hurricane Katrina.   

It is quite plausible that security will be needed to safeguard resources obtained by utility 

companies.  There is good reason to believe that law enforcement and other first responders will 

respond quickly, since they need electricity to continue their missions and provide essential 

services to the civilian population.  Law enforcement personnel may be able to assist in this 

operation; however, their resources will almost certainly be stretched immediately after the event.  

National Guardsman, where available, could assist in this operation.  Shortly after Hurricane 

Katrina, Southern Company brought in a security force to safeguard life and property.
115

  In the 

event of a wide-area power grid collapse, the threats to utility resources would be even greater.  
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Several issues need to be addressed before grid operators blackstart their portion of the 

grid.  The primary consideration is checking the status of generation stations and step -up 

transformers located at generation stations.  Generator power is worthless if it cannot be moved 

beyond the generating station.  The second consideration is ensuring that necessary fuel supplies 

are available at nuclear power plant sites.  If the nuclear power plant has a blackstart capability, 

this is less of a concern.  However care must be taken that all components of the nuclear plant 

blackstart system are functional.  The time required to restart a nuclear power plant with 

functioning blackstart capabilities is a minimum of 48 hours.
116

   

Because resources will be limited, available plants should be thoroughly inspected to 

ensure that, if restarted, they will function properly.  If it is determined that a non-nuclear 

generation facility cannot be put into service with the resources provided, then that station must 

be abandoned until more time and resources are available.  Prioritizing the blackstarting of 

generation stations utilizing natural gas should be done with extreme caution.  It is advisable to 

verify that sufficient quantities of natural gas will be available to permit the continued operation 

of these systems.  If natural gas pumping stations do not have power, then natural gas supplies 

will run out within a few hours.   

The best plants for blackstarting the grid are hydroelectric generation plants because they 

do not depend on fuel reserves.  Also, coal-fired generation plants usually have a 90-day supply 

of coal on hand.
117

  These plants should be sufficient to blackstart the grid, provided that damage 

to grid components is not extensive and their SCADA systems do not impede this operation.  

Once coal supplies run out, transportation networks must be available to replenish facilities’ fuel 

supplies.   

On a national grid level, the New England grid is the most logical place to initiate a 

blackstart.  The New England grid is divided into much smaller islands than the rest of the U.S. 
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grid.  These islands usually contain more than one interconnection node, reducing the incidence 

of single point failure locations.  Because New England experiences a cold winter climate, it is 

prudent to restart this region first during winter to avert cascading effects on the population and 

critical systems due to cold temperatures.  The New England power grid serves a large, 

concentrated population, so restoration of service in the region would provide the greatest good to 

the largest percentage of the population.  From experience, grid breakers and relays in the New 

England grid behave oddly in cold weather; they are more difficult to restart once tripped.  

Substations often have DC battery packs that can run equipment for a limited amount of time, but 

cold weather can reduce the period that batteries will last without recharging.
118

  However, the 

most significant benefit to restarting the New England grid first is preventing cooling problems at 

nuclear power plants.  There are a large number of nuclear power plants within the New England 

network (the nation’s most densely populated region), presenting an urgent threat to human life.    

Blackstart will need to begin at different times for different facilities. NERC should 

coordinate major blackstart sequences and plans.  In some locations where the blackstart is 

relatively straightforward, it may be feasible to blackstart immediately following the event.  

However, load shedding may be needed to prevent immediate shut down of some network 

sectors.  Most coal-fired plant operators should be blackstarted almost immediately following a 

blackout.   Because these plants are critical baseline components of the grid, they should be 

restarted within two hours of initial shut down.  Units that are “hot” should be prioritized, because 

they can be returned to service immediately, with secondary consideration for units that can be 

restarted within several hours.  Caution should be taken to ensure that sludge is not allowed to 

build up in the emission-controlling scrubbers because this could delay the blackstart process.  

Generation station operators must be prepared to blackstart several times.  It is possible 

that generators could immediately trip offline on the first restart attempt due to unidentified 

damages.  When small network islands are reconnected and load is placed on the system, some 
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generation stations will likely trip offline and need to be restarted.  Generator voltage regulators 

should be used in order to limit voltage oscillations.  

During the primary blackstart, the grid should be divided in small islands, ideally 

transferring power to local nuclear reactors and restarting other critical infrastructures.  The 

individual islands need not be frequency-synchronized with each other.  This will be aggravated 

by the lack of generators on the system.  As more power generation comes online, islands will 

tend to become more harmonically stable.  To increase stabilization, substantial load should be 

placed on these islands.  

Once the individual islands are stabilized, the systems needs to be prepared to be 

connected to the transmission system.  The most effective method for doing this after an EMP or 

solar storm event is to utilize “controlled operation.”  This will effectively limit the system to 

operating only those breakers needed to power the required transmission lines.  This method is 

preferable following an EMP or solar storm event, because there are still likely to be damaged 

components that were not identified during the initial system assessment.  This method also 

reduces the amount of switching required.  If the blackstart occurs during cold weather, manual 

operation will most likely be required because interlocks will prevent the operation of automatic 

controls, even if SCADA systems are functional.  The time frame for completing this switching 

process automatically in cold weather can be as short as 30 minutes.
119

   

Grid islands can be coordinated using handheld radios, reducing the need for land lines.  

The islands will not need to be synchronized with each other at this point, reducing the likelihood 

that generation stations will be tripped off line.  Loads should not be added in blocks that exceed 

5% of synchronized generating capacity.  The frequency must be maintained between 59.75Hz 

and 61.00Hz.  If necessary, manual load shedding should be utilized to keep the frequency above 

59.50Hz.
120
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The location of damaged components will become more apparent as power is restored.  

These components need to be evaluated to determine the most effective way to proceed with grid 

restoration.  If the components can be replaced or repaired in a timely manner, then those 

operations should be completed.  If not, the component should be evaluated to determine if it can 

be used in its damaged state without affecting other grid components or reducing stability.  If this 

is not possible, then it may need to be bypassed.  Both portable and make-shift towers can be used 

to divert transmission lines around damaged components.  Direct-bury transmission line can be 

used, but only in extreme emergencies.  The most useful line type for these applications is the 

self-contained, fluid-filled pipe, which is designed to go under water and is efficient at dissipating 

heat.  

The process of synchronizing and reconnecting the islands will determine the stability of 

the grid and the extent of its damage.  It is likely that component damage not identified during the 

initial assessment will now become apparent.  This is the riskiest step and will likely trip some 

generators.  After any remaining components are replaced, repaired, or bypassed, the grid should 

be relatively stable.   

To prepare the grid for total restoration, voltages should be maintained between 90% and 

110% of normal levels.  Field personnel should be used to visually verify breaker positions.  Once 

a line is energized, some local load should be introduced to reduce voltages.  Shunt capacitors 

should be used to manage reactive power.  Automatic relays need to be disabled to prevent 

automatic closure of lines placed into service.   



 

 

5.0 Major Challenges Associated with a Wide-Area Blackstart 

EHV (Extreme High Voltage) transformers will likely be primary failure points during an 

EMP or solar storm event.  These are large transformers most often found in the power 

transmission network and are used to step voltage up at generation facilities and to step voltage 

down at substations.  Transformers are generally considered to be EHV if their voltage rating is 

115 kV or above.  The largest EHV transformers used in North America have voltage ratings of 

765 kV.  These transformers can be extremely large and difficult to transport.  Figures 15 and16 

below shows an EHV transformer in transit.  Because of their size, it is extremely difficult to 

transport these units - they can be three stories tall and weigh as much as 300 tons.
123

 

Based on prior experience from solar storms, EHV transformers will likely sustain 

damage during wide area electromagnetic events.  This occurred in the Hydro-Quebec blackout 

and will likely occur in future events unless protecting them becomes a priority.  Because of the 

lack of test data, it is difficult to predict which EHV transformers will be affected.  What is 

known is they will be difficult to replace.   

The first obstacle to replacing the transformers is the scarcity of spare transformers.  The 

manufacture of EHV transformers has become a global business, with firms located in the U.S., 

Mexico, Korea, Europe, Japan and China.  The U.S. production of these transformers has slowed 

dramatically due to cheaper labor in China as well as the largest demand stemming from the 

developing economies of China and India.
124

  The lead time to obtain these transformers would 

likely be between 6 and 15 months.
125

  There are a few surplus transformers available; however, 

their typical age is 40 years and their voltages ranges from 115 kV to 230 kV, far below the 500 

kV and 765 kV range needed for the bulk power transmission system.  Due to the age of these 

transformers, there is no guarantee that this equipment will work once it is put into service.  Some 
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Figure 14:  Map Showing At-Risk Transformer Capacity (estimated at 365kV and larger) by State 

for a 4800 nT/min Geomagnetic Field Disturbance at 50° Geomagnetic Latitude.  Regions with high 

percentages of at-risk capacity could experience long duration outages that could extend multiple 

years.
 126

 

surplus transformers have been refurbished by the manufacturer, but many have been left onsite 

to avoid shipping costs.  
127

   

At EHV levels, the standard approach is to use three single phase transformers and 

purchase an extra single phase transformer to be used as a spare that can be switched in if one of 

the phases fails.  However, in cases where three-phase transformers are used or severe damage 

occurs in more than one phase of a single-phase triplet, replacement in a timely fashion is nearly 

impossible.  

The transportation of EHV transformers presents extremely challenging logistical 

problems.  The size and weight of these transformers prevents them from being airlifted; thus, 

they must be moved across the ocean by ship and across land by rail and truck.  Once the 

transformer is manufactured abroad, it takes several weeks by sea to reach the U.S. mainland.  
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Because of the size of the EHV transformers, their transport across the U.S. requires permission 

from municipalities.  This is because transport speeds are very slow and their size often exceeds 

highway and bridge weight and height restrictions.  Routes must be carefully planned before the 

move and road and bridge load-bearing capabilities must be certified by civil engineers.  In most 

cases, traffic lights and overhead lines crossing highways must be moved prior to transport.  It is 

not uncommon for trips to be planned and work with municipalities to begin six months before a 

move.
128

  Shipment across land by rail is also difficult because special rail cars must be used to 

meet height and weight limitations.  These rail cars often have additional axles and allow the 

transformer to sit lower than on a typical rail car.  Locating this equipment and mobilizing the 

limited number of these rail cars will be extremely difficult during a large scale power outage 

with limited transportation options.
129

  The absence of electricity and electric-powered 

infrastructure greatly complicates the transport process. 
130
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Figure 15:  Nuclear Plant Step-up Transformer Being Transported through Ohio
131

  

Once the transformer arrives on location, oil radiators and bushings must be installed, and 

the transformer must be filled with oil.  If the transformer is installed during cold weather, which 

is likely due to GIC being more severe in higher latitudes, the oil must be heated before it is 

pumped into the transformer.  A vacuum must then be placed on the oil system before the system 

is hermetically sealed.  Often, circulating pumps must be installed.  Bus systems must be 

modified because different heights and layouts of connections are required.  The replacement 

transformers themselves would have to be modified to fit the installation.  In the best conditions, 

with a fully staffed and trained crew, this process will take several days.  In the aftermath of an 

EMP or solar storm event, this situation will likely replicate itself hundreds of times. In the 

absence of electricity to complete simple tasks such as using air tools to loosen rust bolts or a heat 

source to heat transformer oil, the time involved will increase significantly.   
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Figure 16:  Transformer on Specialty Rail Car
132

  

A large proportion of the EHV transmission step-up transformer spares strategically 

placed or protected would greatly speed up the recovery process.  Unfortunately, the expense of 

these transformers, each costing several million dollars, has prevented the establishment of a 

significant spare inventory. 

5.1 SCADA Systems 

During a blackstart, the primary coordination functions will occur between power grid 

operators and communication system operators.  SCADA systems are so important to the power 

grid that some operations can simply not be accomplished without these systems.
133

  Most utility 

operators own their own communications for crew dispatch and generation; however, within the 

transmission network, SCADA systems are often mixed between utility-owned communication 

and commercially-leased lines.  Utilities have a variety of options to choose from when 

purchasing SCADA systems.  The trend is to run SCADA controls interfaces over the internet 

(“in the cloud”).  In an EMP or solar storm event, these controls may not be functional in the 
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restoration period.  EMP and solar storm electromagnetic fields do not couple to fiber optic lines; 

thus, those parts of the system that utilize fiber optic lines will be more resilient.
134

   

Most systems still have some level of manual control, which allows operators and 

personnel to take over the system if necessary.  The speed at which the SCADA system 

automatically reacts is a particular concern.
135

  SCADA systems that react quickly, beyond human 

monitoring capability, could cause the grid to self-destruct if controls are confused by EMP or 

solar storm-induced signals and cause improper generator or substation switching operations.  

This could occur much faster than operators could manually override the automatic controls.  

Unfortunately, the reaction of SCADA systems during a nuclear EMP or solar storm is not well 

understood and difficult to predict. 

5.2 Communication 

There are many interdependencies among the critical infrastructures in the U.S.  Most of 

these infrastructures depend on reliable electric power to be functional in the event of a large 

scale power outage (beyond a day).  Backup power longevity depends on whether control centers 

use battery or generators as a backup power supply.  Communication systems are of paramount 

importance during blackstart operations.  They would rapidly be rendered nonfunctional in the 

event of a wide area power outage, including internet and telecommunication systems.
136

  The 

degree of damage done to the communication systems will depend on the location and severity of 

the event.   

Nuclear EMP events would likely debilitate significant numbers of microelectronics used 

throughout the communications industry.
137

  Solar storms will directly damage only systems 
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connected to long lines.  In either case, electricity must be present for these systems to operate 

effectively.   

Cellular phone service, upon which the utility industry has come to depend, would be 

difficult to restore because cell phone tower locations are dependent on electricity.  These towers 

require both wired communications and electricity to produce a cell phone signal, and they may 

have neither following exposure to EMP or solar storms.  Most cell phone towers have battery 

backup; however, it is usually designed to provide power for up to four hours.
138

  The lack of 

communications will significantly hamper the coordination of grid blackstart activities in the 

event of a large scale power outage. 

5.3 Fuel 

In the event of large scale power outage, the lack of various types of fuels will be a 

significant problem, including the fuels our society has come to depend on to maintain the quality 

of life we currently enjoy.  Diesel fuel is used in many backup generators.  These generators are 

used by the government, utility industries, and private entities.  To a lesser extent, gasoline is also 

used for backup generation.   

In the absence of electricity, our ability to transport and refuel gasoline and diesel is 

severely limited.  Most large storage tanks for liquid fuels have electric pumps.  Once the onsite 

fuel storage units are depleted, replenishing fuel in generators or onsite fuel tanks used for 

equipment and transportation would be nearly impossible.  Regional fuel storage centers will not 

be able to move fuel to tanker trucks for transport.  Retail locations will not be able to move fuel 

from underground storage tanks to vehicles or other equipment.
139

   

Petroleum pipelines require pumping stations to pressurize the contents in order to create 

flow.  These pumps operate by either electricity or diesel; increasingly, electrical pumps are 
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replacing diesel pumps.
140

  Unless all the petroleum pumping stations from source to destination 

are powered by diesel fuel, which is unlikely, fuel will not move once the electricity goes out.  

Natural gas pipelines use either natural gas or electricity to power pumping stations.
141

  If all 

stations from source to destination are powered by natural gas, the system will still most likely 

function, provided SCADA systems do not interrupt operations; however, at some point, most 

systems utilize electrical pumps.  As time goes by and fuel supplies dwindle, fuel transportation 

will become a target for hijackers and theft.  This scenario has played during many other 

disruptions to fuel supplies, both in the U.S. and internationally.
142

   

Nuclear power plants also depend on fuel for backup generators to cool reactors and 

spent fuel rods should the grid fail.  These plants typically only have a one week’s worth of fuel 

available on site.  Once this fuel is depleted, if additional fuel cannot be delivered, the pumps that 

are used to pump water for cooling will fail.  This situation would be similar to what occurred 

during the Fukushima Daiichi facility accident.  The tsunami did not directly cause the meltdown; 

rather, it was the loss of electricity and damage to backup generators that prevented the cooling 

pumps from operating.
143

  The pools of spent fuel rods are far more dangerous than the reactors 

themselves.  Typically spent fuel rods remain in cooling pools from 3 to 5 years, after which time 

they can be moved to air-cooled storage.
144

  The “boil down time” for these containment pools is 

between 4 and 22 days,
145

  depending on the design of the system and when the last spent fuel 

rods were placed in the pool.  The spent fuel rod pools typically have larger quantities of 

radioactive material than the active reactors.  These pools have a zirconium cladding which, when 
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super-heated and exposed to air, burns like magnesium.
146

  When burning cladding is exposed to 

water, the reaction produces explosive hydrogen gas. 

In the event of a prolonged power outage, government agencies have promised around-

the-clock deliveries of diesel fuel for nuclear power plants.
147

  However, this fuel would most 

likely not be available in the event of a severe GMD event due to theft and the inability to pump 

fuel.  Just half of the world’s spent fuel rods melting down would be the equivalent of 400 

Chernobyls
148

   

In the U.S., the meltdown of just a single nuclear plant would be catastrophic, and the 

effects would be far worse if that plant were located near a densely populated area.  This scenario 

often occurs in New England, where solar storms are also likely to have the most significant 

affects due to the latitude and geological structure.  New York City is located just 24 miles from 

the Indian Point nuclear power plant.
149

  Unfortunately, other New England cities such as Boston, 

MA, New Haven CT, Hartford, CT, and White Plains, NY, are also located in close proximity to 

nuclear power plants.
150

   

One significant geomagnetic storm could replicate the Fukushima disaster ten times over 

in the most densely populated region of the U.S.  Evacuating the population in this area would be 

impossible in the best of times.  A massive power outage, combined with transportation 

problems, would make an evacuation inconceivable.  The only viable way to prevent massive loss 

of life would be the rapid restoration of power to cooling pumps at the nuclear facilities.  
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Natural gas will only be available for a few hours following a large scale power outage
151

.  

Currently, natural gas is transported through pipelines that utilize electric pumps to apply pressure 

to the gas, causing it to flow through pipelines.  Without electricity to power these pumps, only a 

few hours of gas will be available until the pressure of the gas lines drop below the threshold 

required to maintain flow.  The primary concern is the inability to restart gas-fired power 

generation plants.  These plants will not be able to be brought back online until electricity is 

restored to gas pumping stations.  The secondary concern is that natural gas is used in many 

homes for hot water, heating and cooking.  If an EMP event occurs during the winter months, the 

lack of home heating would accelerate social unrest and potentially contribute to loss of life.
152

  

This would occur as those vulnerable to the cold suffered from lack of heat.  Over time, others 

would improvise potentially unsafe methods to heat their homes, causing fires and carbon 

monoxide poisoning.  Civilian unrest and fire suppression would squander valuable resources that 

would be needed to fix the core problem of restoring electric service. 

As previously mentioned, coal-fired generation plants usually keep a 90-day supply of 

coal on site.
153

  Once this supply runs out, coal must be transported to the plant by rail or truck, 

both requiring diesel fuel to operate.  Railroads rely on automatic switching gear and other 

electricity-based systems.  Freight trains generally hold between 3,500 and 5,000 gallons of diesel 

fuel.  Fully-loaded, these trains can burn up to 165 gallons per hour.  If fuel for refueling rail 

transportation is unavailable, coal transportation would quickly fail.  Transporting coal by truck is 

much less efficient, and also subjects the product and equipment used to transport it to social 

unrest and a possibly disrupted highway transportation system. 

5.4 Water and Wastewater Systems 

In most metropolitan areas, clean water and sewage systems rely on electricity to remain 

functional.  Water is usually pumped with electricity and water treatment facilities must have 
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electricity in order to treat potable water.  Sewage systems are also dependent on electricity to 

operate pumps and waste treatment facilities.  In the event of large-scale power outages, water 

reserves would quickly be diminished, perhaps within a few days.  This would not only affect the 

general population, but also those attempting to restore the power grid.  The human body can only 

survive without water for 3 days.  The lack of sanitation would rapidly result in disease outbreaks.  

When water supplies run out, society would turn to non-potable sources, further accelerating the 

outbreak of disease.  In addition, those with water supplies will become vulnerable to attack from 

those lacking potable water.
154

  

5.5 Staffing Issues 

In the event of a natural disaster, an individual’s primary reaction is to protect their 

families and ensure that they are safe before tending to other duties.  During Hurricane Katrina, 

first responders and other essential personnel quickly left their posts and evacuated.  Many of 

those who did stay left their posts and discontinued their duties after the storm.  Many felt they 

had few options after basic resources became very difficult to obtain.
155

   

Utility companies once maintained and built their own transmission lines and substations, 

and also constructed or managed the construction of their generation stations; however, 

deregulation changed this.  The utility industry has shed roughly 40% of its staff since 1990, and 

utility companies now rely heavily on contractors, primarily due to deregulation and the pressure 

to operate leaner organizations.  The positions that have been eliminated have occurred in 

technical fields such as lineman, ground man, and substation personnel (first responders) as well 

as professional fields such as engineering.
156

 During a recent severe snow storm, one utility in a 
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major metropolitan area had 600 of its own workers call out sick.  In order to restore power, the 

company had to recruit 1,200 employees from neighboring utilities and contractors.
157

   

During a large scale EMP event, there will not be enough qualified personnel to handle 

the situation.  First, a large number of linemen, engineers, and operators, would most likely not 

report for duty.  Second, it is unlikely that personnel would be shared among utility companies, 

because the surrounding utility companies will probably be shorthanded as well.  This scenario 

actually occurred during Hurricane Katrina.  During the storm, Mississippi Power had estimated 

that, in a worst-case scenario, they would need 5,000 outside personnel to complete restoration.  

Once it was evident the storm would make a direct impact, they attempted to recruit lineman.  

Within 7 days, 10,800 outside workers were brought in from 23 states and Canada.
158

  

Unfortunately the events that occurred in New Orleans are common.  Utility companies 

maintain a skeleton staff and then subcontract work to outside vendors during major events.
159

  It 

generally takes lineman four years to complete their training, including classroom sections and an 

apprentice program.  During a large-scale event, there would not be enough qualified personnel to 

complete restoration in a timely fashion.   

In addition to major fuel shortages and other transportation-related problems, companies 

will find it difficult to motivate employees who are experiencing difficult situations at home to 

leave their homes to travel hundreds of miles.  Again, this situation became apparent during 

Hurricane Katrina:  Mississippi Power immediately mobilized support teams from within the 

company to help employees’ families arrange housing, repair homes, move furniture to storage 

and other essential tasks.  Southern Company, the parent company to Mississippi Power, arranged 

these services to ensure workers stayed on the job.
160
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5.6 Time 

The most critical issue hindering a rapid blackstart following an EMP or solar storm 

event is response time.  Response time will govern success and failure, and will determine the 

depth of the problems the U.S. faces during and after a blackout.  The longer the response time, 

the more difficult it will be to restart the grid.  Several factors must be considered when 

determining a timely response.  Most importantly, the more time it takes to restart the grid during 

a blackout, the more likely it will be that other infrastructures become unusable.  Next, failed 

infrastructures lead to the inability to replace depleted resources.  As time passes, resources will 

need to be diverted from the blackstart operations as additional emergencies compete for those 

resources.  Additionally, social unrest will escalate as more infrastructures dwindle and resources 

are depleted.  Social unrest was not a factor in the 1989 Hydro-Quebec geomagnetic storm, 

because the affected region was relatively contained and the recovery time was only a few hours.       
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Figure 17:  Critical Infrastructure Disruptions
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6.0 Conclusions and Recommendations 

The threat of a wide-area electromagnetic catastrophe, whether manmade or naturally-

occurring, is real.  The likelihood that we will face the “big one” is unknown, but what is certain 

is that these events have occurred in the past.  During previous major solar storms, the power grid 

was either nonexistent or relatively uncoupled and localized.
162

  The very few EMP tests that 

have been conducted indicate that the electrical grid can be damaged, potentially on a large scale.  

Now, with the proliferation to nuclear weapons; there are nations that possess the capability to 

deliver such a nuclear weapon. Some of these nations have clearly indicated malicious intent 

toward the U.S., and, in one case, have conducted tests that appear to exercise a high-altitude 

detonation.
163

  At this time, it seems that planning and preparation has been minimal at all levels:  

local, state, national, and international.  Thanks to the efforts of the Congressional EMP 

commission and the National Academies of Science, there is a great deal of understanding of 

EMP and solar storms generation physics and system effects.  What is not understood is how 

infrastructure operators and public leaders will react during such an event
164

  The trend among 

most public officials has been to ignore EMP by dismissing its likelihood or downplaying its 

consequences.  However, the consequences of such an event are so severe in terms of economic 

damage and breakdown of governance that it must be taken seriously.  A simple analogy used by 

Congressman Roscoe Bartlett is that failure to protect the grid to wide-area electromagnetic 

effects is equivalent to a homeowner purchasing a home in the one hundred year flood plain and 

not purchasing flood insurance.
165

  Before deregulation, utility companies were rewarded cost 

recoveries for developing reliable power grids and maintaining adequate staffing levels.  
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Currently, grid operators are only responsible to shareholders and not to the individual 

customers that purchase the power they transfer across the nation.  This must change before the 

grid is truly resilient against wide-area electromagnetic threats. Warren Buffet, CEO, Berkshire 

Hathaway Incorporated claimed “most of deregulation was a mistake, in a deregulated market 

generators have a clear incentive to reduce power reserves.  The last thing they want is excess 

capacity”.
166

   

Figure 18:  Probability of a Geomagnetic Solar Storm
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Based on this research, at this time the U.S. is not prepared to deal with the impact of an 

EMP event or solar storm.  However, there are many options available to make the U.S. more 

resilient to such events.  

6.1 Wide-Area Electromagnetic Effect Mitigation Methods 

There are two basic strategies for mitigating the risks to the electrical power grid from an 

EMP event.  The first method is through operational procedures, which involves taking assets 

offline when space weather is in the forecast.  Operational procedures will most likely protect the 

power grid against mild solar storms, but they are limited in their ability to protect the power grid 

against severe solar storms.  There is also the question of whether or not grid operators could (or 

even would) initiate load shedding, given the short or nonexistent warning intervals for wide-area 

electromagnetic threats.
168

  In the past, operators have waited too long to initiate load shedding, 

thus missing opportunities to save the grid from major collapse.  As an example, the massive 

August 2003 Northeast power outage would not have occurred if the First Electric Corporation 

had taken the advice of neighboring power companies to shed load.  Due to the risk of penalties 

and lawsuits for initiating a deliberate power outage, load shedding is frowned upon by operators.  

There are also important questions of operational awareness:  when grid operators make decisions 

based only upon the circumstances they know about, rather than the complete state of the grid, 

serious operator errors can occur.   

The second method used to mitigate effects is limiting the consequences of wide-area 

electromagnetic threats through physical protection by installing passive devices or circuit 

modifications.
169

  Hardening against EMP or solar storm events is the most effective of 

protection, but it is also the most expensive method.  The Canadian government established such 

a measure for Hydro Quebec that had a total price of $1.2 billion
170
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Figure 19:  Metal Oxide Varistors (MOVs) mounted on transformers for lightning protection also 

moderate the effects of E1 
171

 

Cost estimates to protect the roughly 2000 major generation and transmission network 

transformers in the U.S. grid are in the $1 billion range.  Of these, the step up transformers at 

generation facilities are the highest priority.  Generation capacity is virtually useless if electricity 

cannot be transmitted beyond the power plant.  Generation units with blackstart capabilities are 

the most important units to protect, followed by units that supply power to nuclear generation 

facilities.  These assets cannot be replaced in a timely fashion because of the lack of spares and 

lead- time required to purchase new units.  Although the roughly $1 billion dollar price tag to 

protect the major EHV transformers on the grid seems excessive, remember that each of these 

transformers costs between one and ten million dollars to replace.  Just considering transformer 

replacements costs, the potential losses from an EMP or solar storm event dwarfs the protection 

costs by at least a factor of ten.  The total losses from a major long term outage are estimated in 

the trillions, not taking into account the effects of the breakdown of national governance. 

The average life of these EHV transformers can be 35 years or more.  Thus, protection 

will be largely devoted to retrofitting existing units that have a long operational life remaining.  It 
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will also be important for decision makers to realize that those facilities that are not hardened will 

experience additional stresses from DC current diverted from those facilities that have been 

hardened,
172

 which will increase damage to non-hardened assets.  Thus, it will be important to 

establish and enforce protection requirements that extend to all electric power providers. 

6.2 Developing a U.S. Canadian Cooperative 

To prevent complete chaos, planning for a wide-area blackstart event must begin before 

the event occurs.  The effects of EMP and major solar storms will likely involve both the U.S. 

and Canada.  The high consequences of such an event will require planning on an international 

level.
173

 It is important to note the current NERC blackstart plan only briefly mentions the threat 

from geomagnetic induced currents and also assumes that power will be available from 

unaffected regions to restart the grid.  This assumption negates the applicability of the plan for 

dealing with continental-scale events.  A new plan will be needed for wide-area blackstart 

contingencies.  The blackstart operational plan developed must be thoroughly tested, exercised, 

and kept up to date, taking into account grid expansion.   

International organizations need to understand their responsibilities and authority before 

such an event occurs.  First, an allocation process for replacing EHV transformers needs to be 

developed.  In addition, the international community needs to decide how these transformers 

would be rationed during such an event and the logistics of transporting them.  The potential for 

price-gouging and allocating transformers for political reasons will not be acceptable.   

Social impact studies will be needed to determine which areas are at the greatest risk for 

such events.  Each grid will need to be evaluated to determine that particular system’s 

vulnerability to EMP and solar storm events.  This should include SCADA systems that could be 
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debilitated by EMP.  The cascading effects to infrastructures dependent on electric power must be 

assessed and understood.
174

   

Each transmission and generation operator must develop a plan to explain how EMP 

events would most likely affect their operations.  This is especially important in areas that have 

single point failures.
175

  This plan must contain a database of facilities with blackstart capabilities, 

and this database must be updated constantly.  Back-up transformers need to be accurately 

tracked, and the information about their location, design details, age, and current operating 

condition must be kept up-to-date as well.  

Due to the international nature of the planning, that will be involved in the response to an 

EMP event, a federal agency should be responsible for coordinating the development and 

implementation of this plan. The Department of Energy probably best fits this role.  The actual 

execution of the plan within the U.S. will involve resources and activities that are quite different 

from prior experiences.  The U.S. Army might be best-qualified to complete such a large and 

complex task because of the vast resources that will be needed to complete the project.
176

  The 

effort will require an enormous amount of manpower, transportation resources, and logistics 

while dealing with a lack of most infrastructures.
177

  Post-Katrina, it became apparent very 

quickly that state and local agencies lacked the necessary resources to respond with an 

appropriate level of manpower. 

Communication during the restoration process will be very important, thus, operators 

must have access to reliable communication immediately after an EMP event or major solar 

storm, these systems should be initiated early on.
178

  Communications will also be important for 

determining post-event grid status and, once islands are restored, coordination and 
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synchronization of grid operating frequencies.  Coordination with the military should establish 

whether their resources can be used to ensure reliable communications during an EMP event.
179

    

In addition to communication issues, the military will have an important role in ensuring 

that fuel and transportation routes are available.  Due to the lack of electricity, fuel will be 

difficult to transfer and may need to be rationed.  Part of the national effort to develop an EMP 

recovery plan should be the development of a system to ensure that fueling areas have enough 

backup generation power to operate electrical fuel pumps.  It is probably not necessary that every 

gas station have backup capabilities; rather, areas in strategic locations should have back up 

capabilities.   

Roads could become impassible or extremely congested during an EMP event.  Traffic 

control will be important to move essential goods and manpower across our highways.  Also, 

commercial aviation will most likely be significantly limited as air traffic control and navigation 

systems are likely to be negatively affected and inoperable.  This is yet another area where 

military resources will be important.  This may be necessary to send smaller parts and rapidly 

transport manpower.
180

   

The British transmission system (controlled by National Grid) presents insights into the 

value of public-private partnerships in blackstarting the grid.  Based on the British model, it is 

important to insure that all blackstart generation facilities are functional.  The British plan 

designates dedicated blackstart capable facilities as strategic generation systems.  The National 

Grid organization has determined which facilities need to have blackstart capabilities, and these 

areas then construct a blackstart sequence and are required to practice this sequence nationally 

every two years.  Those generation facilities with blackstart capabilities practice their blackstart 

and ensure they can get electricity to the substation.  When they do get power to the substation, it 
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can be assumed that the generation station truly has a blackstart capability and at that point has 

everything necessary to transmit power through the power grid 
181

 

Obviously, the recommendations above come at a cost.  Utility companies do not have 

any way of recovering this cost in the current market-based model.
182

  There must be a cost 

recovery structure for securing the grid against EMP events that must fairly charge those who 

benefit from a resilient electrical grid.  In order to implement such as strategy, grid operators must 

be allowed to pass these costs on to their customers.  Currently, there is no uniform policy to 

accomplish this task, so it is often left to state commissions to determine whether rates can be 

raised or utilities can write off expenses incurred due to unusual events.
183

   

In the event a bulk transmission operator supplies only bulk power to separate 

distribution companies, the cost should be passed to the distribution company.  The distribution 

companies should then obtain authorization to charge their customers for the cost that was 

charged by bulk system operators through increased rates.  Because almost every structure in the 

U.S. is a power customer, this cost would not have a large effect in individual consumers.  

Dividing a billion dollars by every electric customer in the U.S. does not result in a very large 

amount per customer.  The cost recovery is perhaps the most significant challenge facing the 

implementation of EMP and major solar storm protection. 

The electric power grid is decidedly our most vital infrastructure.  This research has 

illuminated the causes and potential damage from wide area electromagnetic threats posed by 

EMP and major solar storms and explained the elements of alternative solutions.  These threats, 

in their worst case manifestations, have the potential to reverse the technological state-of-the 

nation by 150 years.   
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The cost to protect the grid is not large compared to the value of the infrastructure and 

services at risk.  However it will take major efforts in planning, coordination, and implementation 

from both the private sector and public sector.  Although this paper is not intended to be a step-

by-step manual on how to blackstart the North American grid, it is a starting point for evaluating 

which systems would be affected and approaches for addressing the problem.    Because of their 

high consequences and despite their uncertain likelihood, the threat from such events deserves the 

same level of concern devoted to higher likelihood, lower consequence events such as major 

hurricanes and earthquakes. 

The preferred approach to addressing these threats is protection.  New and existing 

products are available to protect the grid from wide-area electromagnetic threats.  These products 

should be evaluated for effectiveness, certified by testing, and then implemented.   

More research is needed to understand how the power grid will behave during an EMP 

event.  Specifically, little is known about the cascading failure of the grid or the specifics of how 

modern SCADA systems will react to direct effects of EMP and solar storms.   

The cascading effects caused by grid harmonics and failure of other infrastructures 

should also be studied further.  However, there is enough information available to conclude that 

the effects can be catastrophic and protection is feasible.  Thus far, policies have been developed 

that are intended to address the problem, but none of them have gained significant momentum in 

our political system.
184

  

After Hurricane Katrina, plans that had been made in the days before the storm moved 

across the Atlantic were found to be severely inadequate.  The predicted worst case scenario fell 

far short of the actual consequences
185

  Six years later and the gulf coast area has yet to fully 

recover.  Such lack of preparedness must not be allowed in the face of potential large scale 

collapse of the North American power grid. 
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Appendix 1: SCADA (Supervisory Control and Data Acquisition) Systems 

Introduction 

Supervisory Control and Data Acquisition (SCADA) systems are systems that the general 

public rarely hears about.  They are complex systems that control the vital resources we rely on to 

control and monitor many inter-related physical systems in the electronic age.  SCADA systems 

span America and connect our vital infrastructure to those of our neighbors to the south in 

Mexico and to the north in Canada.  The Committee on Government Reform of the United States 

Congress contends that, “The nation’s health, wealth, and security rely on these systems but, until 

recently, computer security for these systems was not a major focus.  As a result these systems on 

which we rely so heavily are undeniable vulnerable to cyber-attack or terrorism”.
1
  EMP also 

threatens the operation of these systems.   

Prior to September 11, 2001, not much thought was given to the plausibility of our 

nation’s infrastructure being used as a major target for economic and military strategic goals by 

enemies of the U.S.  SCADA systems control the electric grid and enable power to continuously 

to flow on days when the power grid is taxed to maximum capacity.  In many locations they also 

selectively cut electricity when lightning strikes occur to prevent entire cities from losing power.
2
  

The systems are now used to remotely control most components of the power grid.  SCADA 

systems are used in many industries, but this report will focus on their use on the electric power 

grid.  The grid was initially not designed to transmit power over long distances; however, this is 

the current business model used by utilities in the U.S.  Deregulation was directed to open 

generation markets, not to expand transmission networks.  As a result, we are transmitting more 

power over the same number of transmission networks and over longer distances.  Utilities are 

building generation facilities in rural areas where land and labor are cheap and regulations are lax.  

From those areas, the power is brought to areas where it is consumed via overtaxed transmission 
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lines.  Instead of expanding our transmission capabilities, we have implemented more complex 

SCADA systems that are capable of micromanaging the power grid to achieve higher outputs, 

while inputs to the system have remained the same.
3
  SCADA systems represent a double-edged 

sword – they improve the efficiency of the grid yet, at the same time, introduce additional 

vulnerabilities associated with the complexity of their design and operation. 

The North American Electric Reliability Corporation (NERC) has estimated that, unless 

serious changes are made, the excess capacity in the electric grid during peak demand periods 

will continue to diminish through 2016.
4
  Less slack in the grid will mean that SCADA functions 

will be more critical than ever in preventing major power outages.  Therefore, it is important to 

understand how these systems work and what their vulnerabilities are.  A collapse in the major 

SCADA systems that control the power grid could cause a catastrophic power failure.  These 

systems control all aspects of the grid, including generation facilities, transmission networks, and 

distribution facilities.  The systems that were once confined to the relatively small world of power 

transmission and generation facilities have now been expanded to connect to the outside world 

through the internet.  This provides opportunities for additional efficiencies that were not 

previously possible; however, it also creates vulnerabilities that the industry did not previously 

have to consider.
5
  

Evolution and History of SCADA Systems: 

There are two dominant types of SCADA systems:  traditional SCADA systems that 

function over a wide geographic area, and Distributed Control Systems (DCS) which tend to 

function over a small geographical control area; for example, a single generating facility.  In the 

past, DCS systems controlled processes in real time and SCADA systems did not control 

processes in real time; however, most modern SCADA systems now have the capability to 
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control systems in real time.  This causes the line between the capabilities of a DCS system and a 

SCADA system to become blurred.  There are very few aspects of SCADA systems that are 

universal; systems currently used on the U.S. power grid are diverse in function and technical 

capabilities.  With modern telecommunications technology, real-time processes can be completed 

over wide geographical areas.  The difference between SCADA systems and DCS systems has 

become more philosophical than task-based, due to the increased sophistication in SCADA 

systems.  In this paper, DCS systems are defined as systems that control processes in a small 

geographical area such as a single generation facility, instead of a SCADA system defined as a 

system that controls processes over a large geographical area.
6
   

SCADA systems, including DCS systems, all have a few basic components that are 

required for the system to function.  These four components are the Human Machine Interface 

(HMI), Remote Terminal Unit (RTU), Programmable Logic Controller (PLC), and the central 

host computer or central master station (CMS).   The HMI displays the information used to alert 

operators to problems within the system.  This system presents processed data to the human 

operator and allows the human operator to control processes.  The HMI often provides logistics 

information for a certain sensor, detailed schematics, and maintenance procedures or 

troubleshooting guides.  Almost all HMI systems present information to operators graphically, 

showing schematics and diagrams.  Operators obtain their decision-making information from the 

HMI, which can consist of a single computer monitor or multiple computer monitors, depending 

upon the type of SCADA system and the complexity of the system.  The HMI is generally part of 

an operator workstation; however, in some small SCADA systems the HMI can be connected 

directly to the CMS.
7
  Some small municipal utilities are configured in this way.  These small 

scale systems are proprietary in nature and are only connected to the outside world through a 
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manual switch that allows the vendor to install updates.  These systems are generally only used 

for transmission and distribution power networks that have a small geographical footprint, most 

often in a rural area without much complexity.  The primary function of the HMI is to convey the 

information the CMS has received to the operator.     

The CMS is the processing unit of field data and commands field devices to take action.  

These actions can be automatically initiated such as closing a relay when voltage rises above a 

predetermined level or opening a relay when it drops below a predetermined level.  The CMS acts 

as a server for the SCADA application.  In all but the most basic SCADA applications, the CMS 

is connected to operator workstations which act as terminals to the CMS.  The terminals send and 

request information from the CMS.  The CMS usually host the SCADA software and terminals 

they also have a subset of this software installed on them.  Most CMS systems use Windows or 

UNIX-based operating systems; however, some SCADA vendors have proprietary systems that 

use only vendor-specific operating systems and applications.  Depending on the vendor, the 

software may come as a package and require all other components of the SCADA system to 

originate from that specific vendor, in order to interface with field components of the SCADA 

system, or it may be commercial off-the-shelf software (COTS) package.  COTS software 

packages generally have more flexibility and can often interface with field components from 

different vendors.
8
  This is a trend in SCADA systems that gives the utility more flexibility to mix 

and match components, which can provide significant cost savings.  SCADA systems that use 

COTS software packages are often less expensive to implement because the cost of developing 

the software can be divided among multiple industries.  These software systems are often more 

customizable and scalable.  They use standard protocols and can be deployed over commercial 

communication systems.
9
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The components mentioned above are the command posts of SCADA systems, while the 

field components are the eyes, ears and hands of the system.  Field components are composed of 

voltage and temperature monitors, actuators, and motor control switchboards.  Before an 

automatic process can occur, information must be passed from the field device to the CMS.  Once 

obtained by the field device, this information must be converted into the digital SCADA language 

to be understood by the SCADA software.  The Remote Terminal Unit (RTU) is a microprocessor 

that connects physical objects to the SCADA system.
10

  The RTU provides the language 

translation from the field device to the protocol that the SCADA system can understand.  Most 

modern RTU’s can send as well as receive signals. Therefore, they can be used to close or open a 

relay remotely, thus significantly reducing the number of personnel required for a task.  RTU’s 

also provide the CMS with information about the system.  Programmable Logic Controllers 

(PLC’s) are used to facilitate electromechanical processes such as engaging or disengaging 

switches.  PLC’s are used to acquire analog or digital data and execute a program loop while 

scanning inputs.  The PLC then takes action based upon the inputs that they receive from the 

system they are monitoring.
11

  

The difference between PLC’s and RTU’s has been blurred with the advancement of 

technology and requires some additional background information to fully understand.  PLC’s 

were developed in the automation industry and were initially used in manufacturing and 

processing industries.  Initially, the need for PLC’s to connect to external sources of 

communication was not very important, as these devices were used to replace relay logic systems 

and pneumatic controllers, whereas SCADA systems trace their origins back to early telemetry 

applications where it was important to know basic information about remote locations.  Initially, 

RTU’s connected to these systems to provide the function of connecting these devices to 

communications and had no need for control functions.  The control functions were held by the 
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relay switching logic.  It then became more efficient to influence the programming of the PLC 

through the use of a remote signal.  This is the supervisory aspect of a SCADA system:  the 

function where the PLC can be supervised from afar.  PLC’s store the program locally and only 

used the local program; as technology advanced, it became possible to store this program in the 

RTU.  While RTU’s were essentially performing the functions of PLC’s, the makers of PLC’s 

started to include communications modules in their product.  This led both PLC and RTU 

manufactures to manufacture a product that had the same functions and allowed them to compete 

with each other for market share.
12

  Over the past decade, RTU’s and PLC’s have evolved to 

become the same product.  There are still limitations to this evolution, because the products may 

complete the same tasks in different ways.  In practice, PLC usage is geared toward localized fast 

controls of discrete variables.  RTUs are usually designed for remote monitoring and have 

integrated control functions designed in them; they have a higher demand of application 

communications which results in more protocol flexibility.
13

  As a result of this trend, RTU’s tend 

to have faster processors, more programming flexibility and broader communication capabilities.  

Due to the nature of the power grid, and the importance placed on reliability of communications, 

redundant communication capabilities are important to utility operators.  RTU’s can communicate 

via dial-up phone lines, medium speed RF systems, and broadband (wired and wireless).
14

  This 

makes RTU’s very flexible and they can perform in remote areas that lack commercial 

communication.  In remote areas, radio communications may be the only economically feasible 

solution.  PLC’s performance advantage is demonstrated in sequential logic control applications 

with high discrete data counts.  PLC’s tend to have specialized designs which limits their CPU 

horsepower and hinders communication flexibility.
15

  Due to specialized design, PLC’s tend to 

not be easily scalable or modular in nature.  Because the difference between PLC’s and RTU’s 
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has become increasingly blurred, I will refer to the interface between a PLC and the SCADA 

system as an RTU, and a PLC as an automation programming device for the sake of clarity.  

As a whole, SCADA systems have evolved over the years together with the electric 

power industry’s business model.  As the electric industry began to develop in the 20
th
 century, 

generating facilities were only associated with local loads.  Municipalities that had electricity 

usually generated that electricity within or very close to the municipality.  They consumed the 

electricity they generated and had very little need to transport electricity over large distances.  

When a system failure occurred, electricity for the entire region was lost.  As the nation began to 

rely on electricity for lighting and other vital functions, the need for grid reliability increased, 

requiring additional safeguards to ensure reliable power.  Over time, the grid became 

interconnected.  Nearby towns would connect their grid to increase reliability and lower 

generation requirements.  Over time, substations were built and labor costs started to escalate as 

did the number of substations and other grid components.  This brought about the need for 

additional technology to provide real-time monitoring.  SCADA systems could monitor and 

eventually control parts of the grid, which reduced the number of operationally ready personnel 

needed to operate a utility company.
16

  

The first generations of SCADA systems were “monolithic” and were operated by 

mainframe computers.  There were two identical mainframe computers:  the primary mainframe 

did all the processing, while the standby systems monitored the primary function for failure and 

took over if a failure was detected.  When the standby computer was in “standby” mode, no 

processing took place except for the processing required to monitor the primary system for 

failures.  Monolithic SCADA systems were developed before networks.  Therefore, they only 

connected to proprietary components of the SCADA system.  The power companies installed 

their own cable network throughout the systems that they needed to control remotely.  These 

early systems used proprietary protocols and were very specific to the utility system they were 
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intended to control.  Local area networks were implemented to communicate with RTU’s - the 

network’s sole purpose.  The lines that controlled the SCADA system were managed and only 

utilized by the local utility company.  The interfaces were proprietary and connectivity to the 

master system was limited to equipment manufactured by that vendor.  Connections to the master 

system were done at the bus level by a proprietary adaptor plugged into the CPU.
17

   

 

Figure 20:  Monolithic First-Generation SCADA System
18

 

Second-generation SCADA systems were distributed.  They introduced networking 

technology which enabled the CMS to process multiple systems and used multiple mini computer 

stations.  In a distributed system, each station had a specific function.  The systems were 

connected to a local area network (LAN) and were able to share data in real time.  The mini 

computer stations were more cost-efficient and scalable than mainframe systems.  Each station 

had different functions, such as communicating with RUI’s or providing HMI’s.  This system was 
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much more complex and added additional capabilities that first-generation systems lacked.  Most 

second generation SCADA systems had dedicated mini computers devoted to calculation, 

processing, and database servers.  The multiple processors used in distributed SCADA systems 

provided more processing power than the single processors used in mainframe systems.  

Generally, communication was limited to the LAN.  These systems were not connected to the 

outside world and remained tied to cables installed by utilities for communication.  The LAN 

protocols were often proprietary to the vendor to allow the vendor to optimize that protocol for 

real-time traffic.  This technique prevented different SCADA systems from interacting with each 

other and limited connectivity.  These systems relied on hardware and software provided by their 

particular vendor.  Distributed systems are generally considered more redundant than monolithic 

systems, because all systems remain online at all times. In the event that a system failed, such as 

the HMI, another station could take over the failed systems task.  The system did not have to wait 

for a standby system to detect the failure and take over the tasks.
19
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Figure 21:  Distributed Second-Generation SCADA System
20

 

Third-generation SCADA systems use architecture that is similar to second-generation 

systems.  The primary difference between the two systems is the open-source architecture used in 

third-generation systems.  Both systems share master functions and use similar RTU’s.  The open 

standards used in third-generation SCADA systems eliminate many of the limitations imposed by 

the second-generation’s use of proprietary protocols.  Current SCADA systems can be distributed 

across a wide area network (WAN).  The open standard and COTS software makes it easier to 

connect to third party devices such as peripherals
21

.  Although RTU’s are still proprietary to the 

software, in a few situations there are third party solutions to link these to open sourced RTU’s.
22

  

Vendors that have traditionally manufactured complete SCADA systems have gradually exited 

the hardware business to focus on software.  Computer hardware manufacturers such as HP, Sun 
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Microsystems, and Lenovo have taken over this segment of the business.  The most significant 

improvement over previous SCADA systems is the addition of WAN protocols such as IP 

(Internet Protocol) for communication between the master station and communication equipment.  

This allows the part of the master station that is responsible for communications with field 

devices to be separated from the master station protocol across other communication devices such 

as back office systems.  Vendors are now producing RTU’s that can communicate with master 

stations, utilizing multiple forms of communication to create additional redundancy in the system.  

Additionally, networked SCADA systems have the benefit of disaster survivability.
23

  Due to 

distributed processing across physically separate locations, SCADA systems can be constructed 

to survive a total loss of any one location.  This can be critical for large transmission system 

operators due to the enormous size of their footprint.  Hydro-Quebec would fit this criterion 

because their transmission system provides power for a large portion of the population in the 

north east U.S, making system continuity critical.
24
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Figure 22:  Networked Third-Generation SCADA System
25

 

SCADA systems can be used by transmission operators to control parts of the grid that 

are hundreds of miles away; due to the increased capability of these systems, deployment in the 

power industry has rapidly declined over the years.  At one time, lineman and substation 

operators were switching relays across the grid by physically going to a location and flipping a 

switch, and each substation required almost daily visits to check that systems were operating 

correctly.  This is no longer the case:  these systems can be monitored from far away and 

switchgear is almost exclusively operated from afar.  Generation facilities often use distributed 

control systems (DCS) which are typically used within a single generating plant over a small 

geographic area.  These systems are used in generating facilities of varying size from small gas-

fired turbines to large-scale nuclear facilities.  Given the nation’s current dependence on SCADA 

systems, the grid would become inoperable if a large scale SCADA failure were to occur.
26
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EMP and Solar Storm Effects on SCADA Systems: 

SCADA systems are likely to be the weakest link in the event of a EMP event or solar 

storm.
27

  These systems can contribute to cascading failures during both EMP events and solar 

storms.  EMP events and solar storms will affect SCADA systems differently; however, both will 

contribute to the failure of the grid and hinder blackstart attempts.  These systems are becoming 

more complex and increasingly depend on leased communication lines and wireless technology to 

remain functional.  In the event of an EMP event, the power grid is vulnerable to first-order 

SCADA malfunctions such as damage to SCADA components and overcorrection.  Additionally, 

due to the dependence on leased commercial lines, the grid would also be vulnerable from 

second-order malfunctions, such as failure of land line and wireless communications that would 

prevent remote controllers and sensors from communicating with central operations.
28

     

EMP events cause direct damage to the microelectronics used by SCADA systems.  The 

various localized communication lines used by SCADA systems in substations and generation 

stations have the ability to induce voltages between 100 and 700 amperes into components.  The 

microelectronics used in these components would be rapidly destroyed by induced current of this 

magnitude. 
29

  The limited testing that has been completed has confirmed that induced current 

will severely damage these components.  When these systems fail, other components of the 

system automatically react to the false signals sent out by failed components.  There are many 

microelectronic devices in SCADA systems, some located at remote, unmanned locations.  If the 

SCADA systems failed, these remote locations would be impossible to control until personnel 

could be sent to the location to physically monitor the situation and manually take control.  Due 

to the interconnectedness of the power grid, this could cascade through large portions of the 

power grid, causing failure and damage to transmission and generating equipment.  Most modern 

SCADA systems rely on commercial communication systems to control equipment located in 

                                                           
27

 Communication Technologies, Inc., op. cit., p. 15.  
28

 Dobson, op. cit., p. 9. 
29

 Commission, “Report of the Commission to Assess the Threat,” op. cit., p. 14. 
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remote locations.  In the event of an EMP event, these systems would likely not be available, 

causing the system to fail.
30

 

During the 1989 Hydro-Quebec solar storm event, SCADA systems contributed to the 

failure of the Hydro-Quebec grid.  The SCADA systems reacted rapidly to the induced current in 

the transmission lines, which caused voltage regulation equipment to shut down and escalated the 

cascading effect of the Hydro-Quebec power grid.  Eventually, the failure of the voltage control 

systems allowed the harmonics to cascade through the entire Hydro-Quebec grid.  Several major 

components were damaged beyond repair during this incident.  Since this event, SCADA systems 

have been utilized to an even greater degree in the power grid.  These systems are not typically 

hardened against EMP events.  For the most part, it is not known how modern systems will 

behave during an EMP event.
31

  

  

                                                           
30

 Riswadkar and Dobbins, p. 8. 
31

 Ibid., p. 15. 
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Appendix 2: Reactive Power 

Reactive power occurs when the current waveform is “out of phase” with the voltage 

waveform due to inductive or capacitive loads.  Single lines in an AC power system oscillate at a 

frequency of 60Hz in North America.
32

  When voltage and current fluctuate (go up and down) at 

the same time, only real power is being generated.  When voltage and current fluctuate at 

different times, they are “out of phase” and reactive power is being generated.  Real power is the 

product of current and voltage and thus is maximized when they are in phase.  Reactive power is 

equivalent to the real power lost due to these phase differences and is stored in the electric and 

magnetic fields within capacitors and inductors.  This stored energy can actually be useful in 

sustaining power delivery during short interruptions of power delivery such as momentary trips of 

circuit breakers.  System operators use capacitor or inductor banks to create “reactive reserves” to 

handle such system contingencies.  Reactive power is measured using the volt-ampere reactive 

(var) unit. 

Solar storms induce quasi-DC currents in transformers that push them off their normal 

balanced operating point and create phase instabilities between the current and voltage 

waveforms in the transformer, leading to large amounts of reactive power being stored in the 

transformers themselves.  This stored energy is dissipated in the transformer windings and 

structure causing heating and, in some cases, damage to the transformer.  The absence of normal 

operation also generates harmonic frequencies that cause problems with grid control systems 

affecting grid stability.  With all transformers on the grid doing this at the same time, there is a 

significant risk of grid collapse.
33

   

                                                           
32

 Peter Sauer, What is Reactive Power? Champaign, IL: University of Illinois, 2003. 
33
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Figure 23: Transformer Reactive Power Demand vs. GIC
34

 

  

                                                           
34
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