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Abstract 

Hydrogen gas produced from the photoelectrochemical (PEC) decomposition of water, using 

sunlight as an energy source, is a promising approach for sustainable fuel production. This 

decomposition of water is also called artificial photosynthesis. A device that accomplished this  

process is sometimes call an artificial leaf, which mimics nature inasmuch as it stores solar 

energy as a chemical fuel (e.g., hydrogen) by splitting water, in this way imitating natural 

photosynthesis. In 2009, Dr. Keith Holland and Dr. David Lawrence of James Madison 

University (JMU) initiated a research program to investigate materials for the 

photoelectrochemical decomposition of water into hydrogen and oxygen, which is a critical 

component of the artificial leaf concept for the production of solar derived fuels.  Significant 

research is still required to develop the efficient and low-cost semiconducting photocatalyst 

materials required for PEC water decomposition. Recently, bismuth vanadate, BiVO4, has been 

identified as a potential low-cost and stable semiconducting oxide for the photooxidation of 

water.  While numerous studies regarding the PEC performance of BiVO4 have been reported in 

existing literature, few studies about manufacturing variability have been reported. Variability in 

the performance of the photoanodes has been observed during previous studies at James Madison 

University.  This study investigates one potential cause of variability in the manufacturing 

process- slight variations in the Bi:V ratio in precursor solutions used to fabricate the thin-film 

photoanodes. Small and controlled variations in the precursor solutions during the manufacturing 

process were observed to produce no significant effect on the PEC performance.  
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Introduction 

With increasing concerns over fossil fuel depletion, rising energy costs, and the cumulative 

effects of CO2 emissions, solar energy provides an attractive energy alternative. The challenge 

with utilizing solar energy is storing the converted energy. One method of storing solar energy is 

to use a photovoltaic (PV) cell to convert sunlight to electricity and using a battery to store the 

converted energy. The negative repercussion with this system is the costly and toxic materials, 

and short lifetime of the system. An alternative to using batteries to store the energy is to convert 

sunlight to a chemical based fuel. The combustion of H2, a chemical based fuel, results in only 

pure water as a byproduct, making this a clean fuel. Materials have been researched to convert 

sunlight to hydrogen. Previous studies completed at JMU (2) have shown PEC performance 

variations. Sources of variability have not yet been identified, but slight variations in precursor 

solutions during the manufacturing process could have an effect on the PEC performance. This 

project was initiated to investigate the effects of slight variations in the precursor solution 

composition on the PEC performance of BiVO4 photoanodes. 
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Literature Review 

In less than two hours, the sun delivers more energy to the Earth than all humans will consume 

within a year. In 2007, Global energy consumption was estimated to be 13 TW while the sun 

supplies the earth with 120,000 TW of unutilized power (3). Being able to capture, store, and 

transport this energy would be a step towards meeting worldwide energy concerns. With 

increasing concerns over fossil fuel depletion, rising energy costs, and the cumulative effects of 

CO2 emissions, solar energy provides an attractive energy alternative. The challenge with 

utilizing solar energy is storing the converted energy. One method of storing solar energy is to 

use a photovoltaic (PV) cell to convert sunlight to electricity and using an electrochemical 

battery to store the converted energy. However, large energy capacity battery systems can be 

costly and frequent cycling, resulting from intermittent solar resource availability, reduces the 

useful life. Further, since they are often comprised of environmentally toxic materials, significant 

costs are incurred in recycling or disposal at the end of life.  

 

An alternative to using electrochemical batteries is to convert captured solar energy to a chemical 

based fuel, such as hydrogen (H2). The combustion of H2 with oxygen (O2) results in the release 

of energy and the formation of pure water as a byproduct, making it ideal as clean fuel, since no 

pollutant or greenhouse gases are released during its combustion (4). 

 

Allen Bard and Marye Anne Fox (1994) described solar energy, when converted to hydrogen, as 

the “Holy Grail” of renewable energy. They identified the following set of parameters for a 

successful solar energy to hydrogen fuel conversion system: 
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i. Conversion efficiency of at least 10 % 

ii. Materials will not be consumed or degraded under irradiation for at least 10 years 

iii. Photochemical reactions performed with a recyclable catalyst 

iv. Be cost competitive with traditional fossil fuels 

Numerous research groups have demonstrated the materials that can produce the desired 

conversion efficiencies (5) (6); however, these materials are often consumed or destroyed during 

the solar energy to hydrogen fuel conversion process. To date, a suitable combination of 

materials that meets all of these criteria has not been discovered. 

 

Solar energy can be converted to a chemical based fuel by splitting water into oxygen, O2, and 

hydrogen, H2. The photodriven conversion of liquid water to gaseous hydrogen and oxygen can 

be expressed as a general equation (Equation 1). 

𝐻2𝑂
𝑠𝑢𝑛𝑙𝑖𝑔ℎ𝑡
→      𝐻2 +

1

2
𝑂2     (Eq 1) 

Solar hydrogen can be derived using three main methods: 

i. Electrolysis of water using a solar cell and metal electrodes, 

ii. Powdered photocatalyst  

iii. Semiconductor Liquid Junction 

These methods are briefly described, below.  

 

i. Electrolysis 

Electrolysis is the simplest method to harness solar energy. Two metal electrodes, the anode and 

the cathode, are immersed in water form an electrolysis cell. A power supply, such as a 

photovoltaic panel, provides the voltage bias necessary to decompose water into its constituents 
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and the electrical current necessary to sustain the decomposition reaction. The necessary voltage 

required to split water is approximately 1.23 V. Through electrolysis, including photolysis, 

oxygen is evolved on the anode, positive electrode, and hydrogen is evolved on the cathode, 

negative electrode. Although this system is simple, it is inefficient at converting all of the 

incident solar energy into stored hydrogen fuel energy. Furthermore, the photovoltaic (PV) 

panels and platinum electrodes are expensive. Figure 1 shows a simple schematic of electrolysis 

using a solar cell and two metal electrodes. 

 

Figure 1: Electrolysis using a solar cell and two metal electrodes (7) 

 

ii. Powdered Photocatalyst 

Using a powdered photocatalyst, or particles, to decompose water, is a simple task. Unlike the 

electrolysis method, solar energy is incident on small semiconductor particles that are suspended 

in the water. The oxidation and reduction of water (i.e., the conversion of water into O2 and H2, 

respectively), occur at the surface of these particles. This method is easy to scale up to large 

application (8). Once the decomposition reaction occurs, hydrogen can be collected by means of 
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selectively permeable membranes. A primary limitation of the powdered photocatalyst system is 

that recombination of photogenerated hydrogen and oxygen can occur in the water suspension, 

thus reducing the efficiency of the solar energy to hydrogen fuel production rates. Methods are 

currently being researched to reduce such recombination. A simple schematic of a particle 

photocatalyst system can be seen in Figure 2, below. 

 

Figure 2: Simple schematic of powdered photocatalyst system (7) 

 

iii. Semiconductor liquid junction 

A semiconductor liquid junction (SCLJ) combines aspects of the powdered photocatalyst and 

electrolysis methods. Ideally, in the SCLJ approach, two electrodes coated with photosensitive 

semiconducting materials are submersed in water. Using this approach, solar energy is utilized 

by the semiconducting material or photocatalyst to decompose the water at the semiconductor-

liquid interface. In theory, such direct conversion of solar energy, without the reliance on 

conversion via PV panels, as in the electrolysis approach, can more effectively utilize the 

available photons of solar energy (7). Although the ideal SCLJ system is comprised of two 

photoactive semiconductor materials, this is not required. Alternatively, one semiconducting 
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material can be used as the anode or cathode, while the other electrode is a metal, typically 

platinum. Figure 3 shows a SCLJ system using two semiconductors.  

 

Figure 3: SCLJ system using two semiconductors (7) 

 

In a practical implementation of this approach, the photoanode and photocathode could be coated 

on opposite sides of the same substrate, to create an “artificial leaf”. When immersed in water 

and illuminated with sunlight, hydrogen would be evolved on one side of the leaf, and oxygen on 

the opposite.  

 

Artificial Photosynthesis or Photoelectrochemical Decomposition  

Artificial photosynthesis mimics the process plants use to produce molecular forms of Hydrogen 

and Oxygen. This method follows the SCLJ system. Plants perform a conversion through 

photosynthesis to convert CO2 and water to oxygen and carbohydrates (9). Carbohydrates are 

nature’s way to store the hydrogen from the water splitting reaction (1).  

𝐻2𝑂
𝑠𝑢𝑛𝑙𝑖𝑔ℎ𝑡
→      𝐻2 +

1

2
𝑂2 

𝐸0 = 1.23𝑉 
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A band gap describes the energy difference (in electron volts) of the valence band and the 

conduction band in semiconductors. For example, at least 1.23 eV of energy is required to split 

water, therefore the energy gap of the semiconductor material must be larger than this value to 

successfully evolve hydrogen and oxygen.  

 

Figure 4: energy level requirements (a) Maitra et al 2014 (9) (b) Kudo et al (8) 

 

This potential difference, 1.23 eV, is equivalent to the energy radiated from the sun at a 

wavelength of 1000 nm. If an electrochemical system utilized solar energy effectively, it should 

be possible to split water with visible light (10). For artificial photosynthesis to occur, the 

following steps must occur (8). 

i. absorb photons in the semiconductor to form electron- hole pairs 

ii. charge separation and migration of photogenerated carriers to the semiconductors 

surface 

iii. surface chemical reactions 

iv. The photodriven conversion of liquid water to gaseous hydrogen and oxygen 
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The semiconductor material must absorb the sunlight transmitted through the water (5). Once the 

light is absorbed, electron-hole pairs will be formed. Charges (electrons and holes) must migrate 

from their position in the thin film to the surface of the film. Materials with ideal crystal 

structures allow for easy charge migration (6). This will increase carrier lifetime, i.e. the length 

of time charges can move without recombining. Once charges reach the surface of their 

respective electrodes, surface chemical reactions will occur (11). Electrons and holes at active 

sites on the surface of the semiconductor will recombine with each other if reduction and 

oxidation (redox) reactions do not occur. Redox reactions occur when electrons are transferred 

from one species to another. After redox reactions occur, gaseous hydrogen and oxygen will 

form on the cathode and anode, respectively (12).  

 

Materials for SCLJ 

Materials suitable to successfully create a SCLJ system are still being researched. Some common 

materials that have been identified as potential PEC photoanodes are Titanium Dioxide (TiO2), 

Tungsten Oxide (WO3), Iron Oxide (Hematite) (Fe2O3), Bismuth Vanadate (BiVO4). Numerous 

other oxide and non-oxide materials have also been considered (5) (6). Each material has its 

advantages and disadvantages.  

 

Titanium Dioxide (TiO2)  

In 1972, Honda and Fujishima published research using Titanium Dioxide as a material to 

decompose water.  This novel work sparked interest in the photolysis of water. Due to a large 

bandgap, 3.2 eV (8), Titanium Dioxide is only active in the UV region of the solar spectrum. A 

small external voltage bias must be applied to the anodes. TiO2 is very stable in all ranges of pH 
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solution (7), making the thin films versatile. Due to its versatility in solutions, it is typically used 

to purify water, because it oxidizes organic material (8). 

 

Tungsten Oxide (WO3) 

Tungsten Oxide has a smaller band gap than TiO2, 2.8 eV (9), and is active in slightly longer 

wavelengths of the solar spectrum. It is, however, not stable in acidic solutions (7). While the 

material is limited in its spectral response, and solution stability, research is still being completed 

to improve the performance through the use of colored dyes and material additives.  

 

Iron Oxide (Hematite) (Fe2O3) 

Hematite has a smaller bandgap, at 2.2 eV (9), and is active in the visible light range. Hematite is 

not stable in acidic solutions (7), and lacks the ability to provide a long carrier lifetime. Carrier 

lifetime refers to how long the charges (holes and electrons) stay active, until they reach the 

surface of the material to react with the solution. This poor carrier lifetime limits the efficiency 

of this material. Recent works have suggested that carrier lifetime can be improved with 

selective coatings, dye sensitization, and nanostructuring (12). 

 

Bismuth Vanadate (BiVO4) 

Bismuth vanadate has recently emerged as a promising material for use as a photoanode (13). 

Bismuth vanadate with a monoclinic scheelite structure has a high activity as a visible light 

driven photocatalyst (14). The bandgap for bismuth vanadate is 2.4 eV (13), and it has been 

shown to have good charge carrier properties and has exhibited stability in a wide variety of 

conditions. 
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Fabrication Methods 

At JMU, Thin films of Bismuth Vanadate have been deposited using Ultrasonic Spray Pyrolysis 

(USP). This method is convenient, fast and economical technique to prepare films (14). The 

ultrasonic spray pyrolysis method is one of multiple chemical solution based synthesis 

techniques, including metal-organic decomposition, drop casting, spin coating, and dip-coating. 

BiVO4 has also been fabricated using electrochemical deposition techniques and vacuum 

deposition methods (13). 

 

Conclusion 

There are many methods to improve the photoelectrochemical properties of thin films. It has 

been shown that high temperature annealing improves PEC performance in BiVO4 thin films 

(13). Annealing thin films promotes formation of the monoclinic scheelite crystal structure (2). 

Thin films can be annealed in air and also a 3% hydrogen atmosphere. A research group at James 

Madison University studied the effects of tungsten doping on bismuth vanadate thin films. While 

some groups saw an improvement of PEC performance in the thin films, Holland et al results 

showed a decrease of performance. Performance variability was noted throughout the 

photoanodes, in the doped and undoped samples. This led to the proposal that the performance 

variability should be addressed before further research. It was identified that the source of the 

variability might occur during the spray pyrolysis BiVO4 deposition process. Two likely sources 

are slight variations in the nozzle height and the chemical composition of the precursor solutions.  
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Problem Statement 

In this work, the effect of slight precursor composition variations in the film deposition process 

on the PEC performance of BiVO4 photoanodes was investigated. This was done in an attempt to 

isolate a potential source of PEC performance variability that may be attributed to the fabrication 

process.   

  



 

18 

Procedures 

To investigate the effects of precursor solution variability on thin-film BiVO4 photoanodes 

produced via the ultrasonic spray pyrolysis method, a total of twelve different photoanodes were 

fabricated. These twelve samples were produced according to the fabrication methods outlined in 

the following sections. The PEC performance and material characteristics of these twelve 

samples were evaluated according to the testing methods described in the following sections. 

 

Bismuth Vanadate Photoanode Fabrication 

As previously described, the thin-film photoanodes are produced by nebulizing a precursor 

solution containing bismuth and vanadium compounds. To prepare the precursor solution for the 

ultrasonic spray deposition process, stock solutions of bismuth nitrate and vanadium oxysulfate 

were made. The bismuth source was a solution of 0.04 M Bismuth nitrate (Bi(NO3)3∙5H2O 

(99.999%, Alfa Aesar)) in 0.5 M HNO3 (Fisher Scientific). A solution of 0.04 M vanadium 

oxysulfate (VOSO4∙3.5H2O (99.9%, Sigma-Aldrich)) in 0.5 M HNO3 was prepared as the 

vanadium source. The precursor solutions were then prepared from these stock solutions by 

mixing the stock solutions in specific ratios to make the precursor solutions. Once deposited on 

the heated substrates, the bismuth nitrate reacts with vanadium oxysulfate, to form bismuth 

vanadate, and volatile byproducts that are carried away by exhaust gasses. Three precursor 

solution ratios were mixed from stock solutions: 1 Bi: 1 V, 1.005 Bi: 0.995 V, 0.995 Bi: 1.005 V. 

The 1 Bi: 1 V stock solution was mixed by combining 20 mL of the of bismuth nitrate and 20 

mL vanadium oxysulfate; The 1.005 Bi: 0.995 V stock solution was mixed by combining 20.1 

mL of the of bismuth nitrate and 19.9 mL vanadium oxysulfate; The 0.995 Bi: 1.005 V stock 

solution was mixed by combining 19.9 mL of the of bismuth nitrate and 20.1 mL vanadium 
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oxysulfate. Approximately 10 mL of the precursor solutions were used for each thin-film 

deposition, or fabrication, process. Before every deposition run, the precursor solution was 

refilled to ensure trial consistency.  

 

Test samples were produced for characterization using a variety of methods, including PEC 

performance, film thickness measurements, film morphology characterizations. For tests that did 

not require measurement the photoelectrochemical properties of the samples (i.e. film thickness, 

morphology), the thin-film was deposited on glass microscope slides. This was chosen as the 

substrate for such tests due to the inexpensive nature of glass slides. For measuring the electrical 

properties of the samples, glass substrates coated with a thin, nominally transparent layer of 

fluorine doped tin oxide (FTO)   were used. In particular, TEC 7, a manufacturer’s designation 

for the FTO coated glass substrates, were used for consistency with studies in the literature. In 

the past, JMU researchers have determined that FTO provides the best interface with the BiVO4 

thin film, as opposed to tin doped indium oxide (ITO), an alternative transparent conducting 

material reported in the literature. 

 

In preparation for deposition, all glassware and deposition system components were cleaned. 

Substrates on which the BiVO4 was to be deposited were cleaned to ensure that no residue (e.g. 

dust or fingerprints) was left on them. To begin the cleaning process, substrates were placed in 

an acetone bath. The acetone was agitated by an ultrasonic cleaner for approximately ten 

minutes. The substrates were then mechanically scrubbed, using a q-tip, with a solution of Dawn 

dish detergent and water. The cleaned substrates were then placed in another ultrasonic bath 
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containing deionized water for approximately ten minutes. Once the substrate cleaning process 

was completed, they were stored in isopropyl alcohol (IPA).  

 

For each BiVO4 deposition run, one glass slide and two TEC 7 (25 mm by 13 mm) substrates 

were placed on a hotplate at 425 °C. Caution was taken to ensure substrates did not shatter when 

plated on the hot surface. The nozzle of the ultrasonic spray pyrolysis device was positioned 

3mm above the substrates. The substrates were then positioned in line with the nozzle. The 

nozzle, when activated, swept back and forth linearly over a deposition area with a travel 

distance of approximately 1.5 inches. For each deposition performed in this study, the substrates 

were always placed in the same position on the hot-plate surface, as seen in Figure 5. 

  

Figure 5: Sample orientation on the hot plate used during deposition 

Glass slide 

TEC 7 center 

TEC 7 back 
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Approximately 10 mL of the precursor solution was then placed over the ultrasonic transducer.  

Small droplets of the precursor solution were formed via ultrasonic nebulization, which causes 

small vapor droplets to form at the air-liquid interface due to the agitation provided by the 

ultrasonic transducer. To date, at JMU, this droplet formation has been achieved by using 

ultrasonic nebulizer operating at 1.7 MHz to agitate the liquid precursor. The droplets formed by 

the nebulizer are then carried the substrate using dry, bottled air as a carrier gas at a flow rate of 

6.9 L/min for 10 minutes. Figure 6 shows the setup for the ultrasonic spray pyrolysis apparatus. 

The image on the left shows the ultrasonic transducer and the carrier gas while the image on the 

right shows how the precursor solution mist is directed to the substrate through the translating 

nozzle above the substrate on the hotplate surface.  

 

Figure 6: Ultrasonic Spray Pyrolysis apparatus 

 

Once the thin films were formed, they were removed from the hot plate carefully (as to not 

damage the film formed or induce shattering of the glass substrates) and allowed to cool in 

ambient room air. The produced thin films then received two annealing treatments – once in an 
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air environment and then in a reducing hydrogen atmosphere.  It has been shown that annealing 

BiVO4 thin films in air (at 500 ºC for 3 hours) promotes the formation of the desired photoactive 

monoclinic scheelite phase (15). Annealing in a reducing environment (Air + 3 % hydrogen, 375 

ºC, 3 hours) has been demonstrated to increase the number of oxygen vacancies in the material, 

which is believed to result in increased electron transport through the material (15).  

 

Once annealed, samples for photoelectrochemical testing were prepared by affixing a wire to the 

exposed FTO substrate using a two-part silver epoxy (Epoxy Technology EE129-4). Samples 

were then baked for 75 minutes at 97 ºC to cure the silver epoxy. Resistance measurements were 

performed to ensure conductivity between the conducting substrate and the wire. Finally, the 

wires and exposed conducting substrate were coated with clear insulating epoxy (2 Ton 

insulating epoxy, Devcon) resulting in a BiVO4 photoanode samples with exposed surface areas 

ranging from 0.84 to 1.5 cm2. Figure 7 illustrates the silver epoxy, clear epoxy, and exposed area 

of a BiVO4 photoanode. 
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Figure 7:Illustration of the silver epoxy, clear epoxy, and exposed area of a BiVO4 

photoanode that is immersed in Na2SO4 electrolyte solution for PEC testing 

 

Photoelectrochemical Testing  

Photoelectrochemical (PEC) testing is used to characterize the ability of the material to  oxidize 

water in the presence of sunlight. The reaction rate for oxygen production is directly proportional 

to that for hydrogen production. That is, for every O2 molecule produced, two H2 molecules are 

produced. One method of characterizing the PEC performance is to measure the rate and total  

amount of oxygen (or hydrogen) produced. However, such a system to capture and monitor gas 

evolution rates was not available for this investigation. An alternative method for testing the 

photoelectrochemical performance of thin-films is to measure their electrical characteristics in a 

three-electrode electrochemical cell. Because the water splitting process results in the transfer of 

Silver Epoxy 

Clear Epoxy 

Exposed Area 
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ions, which in turn requires the transfer of electrons between the anode and cathode of the 

electrochemical cell, the electrical current produced is directly proportional to the hydrogen and 

oxygen evolution rate. Therefore, higher currents in the presence of sunlight indicate a greater 

oxygen evolution rate and a higher light energy to hydrogen conversion efficiency.  

 

Photoelectrochemical measurements were performed in a three electrode cell containing a 0.5 M 

Na2SO4 (99.5%, Fisher Scientific) electrolyte with a phosphate buffer (pH 7.00±0.02 at 25 ºC, 

Micro Essentials Laboratory).  Because pure, deionized water is not electrically conductive, an 

electrolyte solution is required for ion transport through the solution. However, the ions within 

the electrolyte solution must not be oxidized or reduced at a potential lower than the redox 

potential of water. The Na2SO4 solution meets this criterion, unlike NaCl, which will cause the 

formation of Cl2, instead of O2 at the photoanode.  Photoanodes of the produced BiVO4 films 

served as the working electrodes for the electrochemical cell. A 4 M KCl Ag/AgCl electrode 

(Accumet, Fisher Scientific) was used as a reference electrode and a platinum mesh served as the 

counter electrode. All potential measurements reported herein are with respect to the Ag/AgCl 

reference electrode.  

 

A Keithley 2400 SourceMeter configured as a potentiostat was used to perform linear sweep 

voltammetry at a sweep rate of 10 mV s-1. A potentiostat is a power supply that maintains a 

desired set potential between the sample (or working electrode) and the reference electrode by 

continuously adjusting the potential applied across the working electrode and the counter 

electrode. For these tests, it was programmed to perform a linear sweep from  -0.5 V to 1.5 V 

across the working electrode with respect to the reference electrode. Voltammograms, or 
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measurements of current vs. applied potential, were obtained for all of the samples when 

illuminated by simulated solar radiation with an intensity of 0.1 W cm2 at the sample surface. 

The simulated solar illumination was produced with an Oriel 96000, 150 W solar simulator 

(Newport) with an AM1.5 filter. The three electrode cell was placed 25.4 cm away from the solar 

simulator to ensure the photoanode would receive approximately 0.1 W/cm2. A pyranometer was 

used to confirm that the irradiance from the solar simulator was in fact 0.1 W/cm2, ensuring that 

the testing setup mimicked natural sunlight.  

 

Both front side illumination and through-substrate illumination conditions were investigated and 

compared to dark current measurements. The front side of the sample is the side with the 

exposed thin film. The back side of the sample is the TEC 7 substrate. Illumination from both 

sides of the BiVO4 films were performed  to study the electron transport through the BiVO4 film. 

During each test, as the applied bias was varied from -0.5 V to 1.5 V, the light from the solar 

simulator was intermittently blocked using an automated shutter system. The shutter closes and 

opens at 0.05 V bias voltage intervals to obtain the dark current of the sample, for a total of 20 on 

off cycles. The dark current obtained represents the current that is not produced due to the 

incident light. To compare the photoelectrochemical performance of the different size BiVO4 

photoanode samples, the measured current was normalized by the area exposed to the electrolyte 

solution to obtain photocurrent density, J (mA/cm2). 

 

All electrodes were rinsed in deionized (DI) water and dried with N2 gas prior to PEC testing. 

The solar simulator was turned on and allowed to warm up. The three electrodes (BiVO4 

photoanode, platinum mesh counter electrode, and reference electrode) were placed in 



 

26 

approximately 200 mL of the electrolyte solution. The photoanode was placed directly in the 

middle of the beam from the solar simulator. The reference electrode was tested to ensure a flow 

of KCl electrode solution through the frit. All electrodes were connected to the Keithley 

Sourcemeter. A LabVIEW ™ interface that was programmed to control the Keithley 

Sourcemeter, record data, as well as control the shutter was used to collect the data. A screenshot 

of the LabVIEW interface used can be seen below (Figure 8) along with a picture of the PEC 

testing setup (Figure 9). 

 

Figure 8: Data Acquisition Control Panel 

Voltammogram Start  

Raw data 
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Figure 9: Photoelectrical chemical testing setup 

 

Once data acquisition was completed for a sample, the resulting raw data files were saved. This 

procedure was completed for every sample for the front and back side illumination conditions. 

Once a PEC test was completed, each electrode was rinsed in DI water and dried in N2 gas. The 

electrolyte solution was covered and the solar simulator was turned off.  

 

Material Characterization 

Thickness measurements were taken using a KLA Tencor P-7 surface profiler. Glass slides from 

deposition runs were used to measure the thickness of the films by removing a tiny portion of the 

thin-film to expose the glass substrate. This was done by making a small scratch down the edge 

of the sample. This scratch allows the apparatus to measure the thickness of the film with respect 

Connection for 

Keithley 

Solar Simulator 

3 electrode cell 

shutter 
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to the exposed glass slide. A small stylus is dragged across the surface of the thin film, as 

illustrated schematically in Figure 10a, and the height of the stylus is recorded. The difference 

between the height of the glass and the height of the rough BiVO4 material is used to determine 

the film thickness. Thickness measurements are taken seven times (Figure 10b) per sample, to 

ensure that a representative average thickness was obtained for each sample.  

 

 

Figure 10: Surface thickness measurement (a) stylus and (b) locations on slides 

 

Figure 11: Lauren Phillips performing thickness measurements 

 

A LEO 1430VP scanning electron microscope (SEM) with an Oxford energy dispersive X-ray 

spectrometer system (EDS) was used to analyze film morphology and chemical composition. For 
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examination with a SEM, small fragments were broken from a coated glass slide and a coated 

TEC7 substrate and attached to a SEM mounting stub. The samples were coated with gold in a 

low pressure argon environment. This was done to eliminate sample charging during SEM 

imaging. The morphology of samples was investigated at 2000X-5000X magnification. 
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Results 

Samples produced fall into one of three categories, based on the liquid precursor stoichiometric 

ratios. Sample identification is presented in Table 1.  

Table 1: PEC testing sample names 

1 Bi: 1 V 1.005 Bi: 0.995 V 0.995 Bi: 1.005 V 

BiVOx-115 BiVOx- 118 BiVOx- 121 

BiVOx- 116 BiVOx- 119 BiVOx- 122 

BiVOx- 117 BiVOx- 120 BiVOx- 123 

 

Three deposition trials were performed for each Bi:V ratio tested. Each trial was given its own 

identifier. Samples deposited on TEC7 from the same deposition trial were distinguished by their 

location on the hot-plate (b- back, c-center) during the deposition process (see Fig. 5). 

 

Sample Area 

Areas of samples were approximated by measuring the length and width of the exposed (not 

covered with 2-ton epoxy) BiVO4 surface and assuming the area to be rectangular. Figure 12 

illustrates the definition of the exposed BiVO4 surface area. 



 

31 

 

Figure 12: Sample exposed area calculation for BiVO4-123b 

𝐴𝑟𝑒𝑎 =  𝐿𝑒𝑛𝑔𝑡ℎ ∗  𝑤𝑖𝑑𝑡ℎ =  0.8 𝑐𝑚 ∗  1.5 𝑐𝑚 =  1.2 𝑐𝑚2 

The exposed sample areas for all of the fabricated photoanodes are shown in Table 2. Exposed 

sample areas ranged from approximately 0.84 cm2 to 1.5 cm2. 

Table 2: Exposed sample area 

Sample ID Sample Area (cm2) Sample ID Sample Area (cm2) 

BiVOx-118c 0.84 BiVOx-123b 1.2 

BiVOx-118b 1.12 BiVOx-115b 1.02 

BiVOx-121c 0.98 BiVOx-115c 1.12 

BiVOx-121b 1.26 BiVOx-117b 0.91 

BiVOx-119c 1.26 BiVOx-120b 0.91 

BiVOx-116b 1.12 BiVOx-122c 1.5 

 

Sample Thickness 

Sample thicknesses were determined using a KLA Tencor P-7 surface profiler. Thicknesses were 

measured from the thin-films deposited on glass from various times in the fabrication processes 

(post deposition, post air annealing, or post air and hydrogen annealing). This allowed for change 

1.5 cm 
0.8 cm 

Epoxy 
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in thicknesses of films during fabrication to be determined. The measured sample thicknesses are 

shown Table 3, with notes as to stage of fabrication during which when they were recorded.  

Table 3: Sample thicknesses raw data 

 

 

PEC Performance 

The photoelectrochemical performance of each photoanode was determined from the 

voltommogram data. The raw data from PEC testing was normalized by the exposed sample area 

to obtain photocurrent density (mA/cm2) so that all film performances can be compared.  

 

The measured photocurrent density for all samples under front-side illumination at each voltage 

bias level is shown in Figure 13.   The different bias voltage conditions are: 0 V (bottom blue 

bar), 0.5 V (red bar), 1.0 V (green bar), and 1.5 V (top purple bar). This graph allows for all 

samples to be compared at multiple bias conditions. The samples fabricated from precursors with 

the same chemical composition have been grouped together. From this, it is noted that there is 

wide variability between samples of nominally identical compositions. This is most likely due to 

variations in uncontrolled aspects of the testing and deposition procedure 

Location 115 116 117 117 118 119 120 121 122 123

1 2.35 1.87 2.42 2.46 1.22 1.84 2.09 1.69 2.51 1.95

2 2.57 2.27 2.11 1.97 1.28 1.89 1.79 1.52 2.83 1.54

3 2.04 1.94 2.3 2.1 2.06 1.91 2.88 2.57 3.68 1.73

4 2.28 1.64 2.12 1.97 2.03 2.12 2.43 1.84 2.23 2.25

5 2.18 2.42 2.36 2.14 1.64 1.59 2.17 1.78 2.62 1.67

6 1.95 2.17 2.29 2.04 2.21 1.68 2.38 1.39 3.81 2.59

7 2.08 2.14 2.51 2.25 1.53 2.09 2.16 1.46 2.58 3.04

Avg. 2.21 2.06 2.30 2.13 1.71 1.87 2.27 1.75 2.89 2.11

stdev 0.211 0.264 0.148 0.175 0.395 0.195 0.340 0.398 0.609 0.548

As 

deposited Air& H2

As 

deposited Air& H2 Air& H2 Air& H2

As 

deposited

After air 

annealing

As 

deposited Air& H2

Sample thickness (μm)
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Figure 13: Front side illumination current density 

 

The backside illumination current density graph can be seen in Figure 14. The graph can be read 

similarly, i.e., the bias conditions are 0 V (bottom blue bar), 0.5 V (red bar), 1.0 V (green bar), 

and 1.5 V (top purple bar). The backside illumination current density is lower than for front side 

illumination, as expected due to light absorption and reflection by the glass substrate, and 

exhibits even greater variability.  

1 Bi: 1 V 1.005 Bi: 0.995 V 0.995 Bi: 1.005 V 
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Figure 14: Backside illumination current density 

 

Scanning Electron Microscopy 

A scanning electron microscope (SEM) was used to characterize the morphology of the spray 

deposited BiVO4 thin-films. It is typical for bismuth vanadate films to have a high surface 

roughness & complex morphology (2), as illustrated in Figure 15, which presents an SEM 

images obtained at 2000X-5000X magnification for sample BiVOx-117b. The small, partial 

spherical structures are consistent with morphologies of USP deposited films investigated in 

prior studies. It is believed that such a complex, highly porous morphology of the resulting films 

significantly enhances the surface area available for the photooxidation processes and may help 

to explain the state-of-the-art performance obtained from such samples. 

1 Bi: 1 V 1.005 Bi: 0.995 V 0.995 Bi: 1.005 V 
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Figure 15: SEM image for BiVO4-117b 

 

Energy dispersive X-ray spectroscopy (EDS) was used to determine the chemical composition of 

the resulting BiVO4 films. EDS measurements confirmed that the atomic composition of the 

deposited thin films were as expected. Table 4 shows the EDS results from the BiVOx-117b 

sample.  

Table 4: Energy Dispersive X-ray spectroscopy raw data for sample 117b (TEC 7) 

Trial 1 Trial 2 Trial 3 

Element Atomic % Element Atomic % Element Atomic % 

O 57.09 O 58.41 O 55.92 

V 14.66 V 14.85 V 14.24 

Sn 12.14 Sn 12.13 Sn 13.52 

Au 1.43 - - Au 1.92 

Bi 14.67 Bi 14.61 Bi 14.4 
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Table 4 shows the elements detected and their atomic proportions from three different locations 

on sample BiVOx-117b. This method, using EDS to determine chemical composition, is non-

ideal for rough samples. As seen in Figure 15, BiVO4 samples have a rough surface. The traces 

of tin (Sn) result from the FTO (Fluorine doped tin oxide) substrate. The traces of gold (Au) are 

from the gold coating that is applied prior to SEM analysis. The ratio of bismuth to vanadium is 

approximately 1:1.  The chemical composition for BiVOx-117b was intended to be 1:1 and 

within the uncertainty of the EDS measurement. The ratio of bismuth (and vanadium) to oxygen 

is approximately 1:4. The measured chemical composition of the film is consistent with the 

desired stoichiometric BiVO4 composition.  The variability in the measured composition is 

attributed to the film surface roughness, which can reduce the accuracy of EDS measurements.  

SEM imaging and EDS measurements of films with Bi:V ratios of 1.005:0.995 and 0.995:1.005 

have not yet been completed. 
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Analysis 

After raw data was organized into meaningful charts and graphs, the results were analyzed. 

Sample thickness results were organized based on chemical compositions.  

Table 5: Sample Thicknesses data organized by chemical composition 

Film Thicknesses 1:1 Ratio Bismuth rich Vanadium Rich 

Average (μm) 2.18 1.95 2.25 

Standard deviation 0.10 0.24 0.48 

 

Variations can be seen in the film thicknesses. This is likely due uncontrolled factors in the 

deposition process (e.g. the rate of atomization of the precursor by the ultrasonic transducer). 

 

The PEC current density graphs shown in the results section (Figure 13- Figure 14) showed no 

discernable trends with respect to chemical composition. Thus, it was concluded that small, 

controlled variations had little effect on the PEC performance. To further investigate the results, 

graphs were created based on film thickness and substrate location during deposition. 

 

Figures 16 and 17 show PEC performance of films from low thickness (BiVOx-118c) to high 

thickness (BiVOx-122c). 
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Figure 16: Front side illumination, organized from low to high film thickness 

 

Figure 17: back side illumination, organized from low to high film thickness 

 

As seen in Figures 16 and 17, little correlation between film thickness and PEC performance 

could be easily ascertained from the data. A slight decrease in PEC performance with thickness 

increase may be present, but is not significant compared to the sample-to-sample variations 

measured. 
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Samples that were created in the same deposition trial were also compared based on their 

location in the deposition chamber during the deposition process, as described in Figure 5. It can 

be seen in both front side illumination (Figure 18) and back side illumination (Figure 19) that the 

TEC 7 substrate placed in the ‘center’ position exhibited slightly higher photocurrents relative to 

those placed at the ‘front’ position.   

 

Figure 18: Front side illumination current density, organized by deposition placement 
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Figure 19: Back side illumination current density, organized by deposition placement 

 

There is not strong enough evidence from this project to make conclusions that samples placed in 

the ‘center’ during the deposition runs perform better, based on the limited number of samples 

produced; however, the data presented indicates that location within the deposition chamber may 

be more strongly correlated with PEC performance than the chemical precursor composition 

variations. Such performance variations may arise from temperature gradients or droplet flow 

patterns near the center of the deposition chamber, which may impact the formation of the 

BiVO4 film. Further investigation into the substrate placement is recommended to identify 

potential sources of performance variations.   
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Conclusion 

Twelve BiVO4 photoanodes were fabricated to investigate the effects of slight precursor 

stoichiometry variations on the PEC performance. Precursor ratios of 1 Bi:1V, 1.005 Bi:1 V, and 

1 Bi:1.005 V, were investigated. Based on the results presented herein, slight variations in the 

Bi:V ratio in the precursor solutions exhibited little to no effect on the PEC performance.  

 

Further investigation is suggested to determine the source of variability. Trends in data indicate 

that the position of the substrate within the deposition chamber may be correlated with the 

resulting PEC performance of the photoanodes. Specifically, substrates located at the center of 

the deposition chamber exhibited slightly increased performance relative to those positioned at 

the front of the chamber. Additional suggestions to improve the procedures and, to potentially 

identify the sources of sample variability are to standardize the surface area measurement for 

photocurrent normalization and to standardize the method in which photoanodes are placed in 

the 3 electrode cell and aligned with the solar simulator for PEC testing. 
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