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Abstract 

 Previous research has demonstrated that auditory and visual stimuli have individual 

effects on the accuracy of a person’s estimation of time-to-contact (TTC), the time at which two 

objects collide. Prior findings also suggest that there is cross-modal interference between vision 

and audition; however, this phenomenon has never been studied in a TTC situation. (Driver & 

Spence, 1998; Ichikawa & Masskura, 2006; Roseboom, Kawabe, & Nishida, 2013) In this study 

we attempted to fill in this research gap by examining the effect of auditory speed cues over 

visual speed cues in a two-dimensional TTC scenario, and by determining if an object’s temporal 

presence influences accurate perception of TTC by using occlusion. Our results indicate that in 

the presence of auditory and visual speed disparity, participants rely more heavily on auditory 

cues, but when auditory and visual speeds are equivalent, or when there is no audition present, 

participants rely more on visual cues. 

 Keywords: Time-to-contact, TTC, audition, vision, occlusion, cross-modal interference  
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 The purposes of this study were to examine the effect of auditory cues over visual cues in 

a two-dimensional time-to-contact (TTC) scenario and to determine if an object’s temporal 

presence influences accurate perception of TTC.  

 Time-to-contact, or time-to-collision, is used to explain the spatial localization of two 

objects by relating time and distance. It is defined as the remaining time before contact between 

two or more objects. TTC is typically used to define how quickly an object travels in a three-

dimensional plane toward an observer. In studies that examine this aspect of TTC, tau (τ), the 

inverse of the rate of expansion of an oncoming image on the retina, is the traditional unit of 

measure (Lee, 1976).  

 However, in studies such as this one that involve two objects colliding on a two-

dimensional plane rather than a three-dimensional plane, τ would be an invalid measure. In 

experiments that focus on two objects coming together on a two-dimensional plane, TTC is best 

determined by employing the equation TTC = d/v (distance to collision/approach speed) 

(Bootsma & Oudejans, 1993). Little research has been conducted with TTC on a two-

dimensional plane, and the research that has been done in this type of scenario has typically only 

examined the effect of one sensory modality. Since our study was concerned with how audition 

influences TTC perception, we investigated various visual and auditory effects on TTC as well 

as cross modal interferences. 

 A variety of visual effects have been studied in TTC settings. For instance, Calabro, 

Beardsley and Vaina (2011) examined the effect of the presence of a distractor object (an 

irrelevant horizontal movement) on TTC approximations. The irrelevant motion caused a 

significant decline in participants’ performance with a 1.4% per cm/s decrease in TTC 

estimation. Alexander, Barham, and Black (2002) analyzed visual effects in an applied TTC 
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research setting using a computer driving simulation. They found that if a leading car was red (as 

opposed to black, green, or yellow), a participant was better able to estimate TTC and prevent 

collision. Landwehr, Brendel, and Hecht, (2013) examined the visual aspects of luminance and 

object/background contrast in a three-dimensional TTC scenario. Despite previous findings that 

other animals are impaired by changes in contrast and environmental luminance, Landwehr, 

Brendel, and Hecht (2013) discovered no such decline in human TTC performance. Perhaps the 

most common visual aspect of TTC that has been studied however, is the perceived speed of 

colliding objects (Alexander, Barham, & Black, 2002; Bennett, Baures, Hecht, & Benguigui, 

2010; Bootsma, & Oudejans, 1993; Calabro, Beardsley, and Vaina, 2011; Pundlik, Peli, & Luo, 

n.d.). The general finding observed from these experiments is that TTC estimation is less 

consistent in situations involving faster TTC (Bennett, Baures, Hecht & Benguigui, 2010).  

 When numerous visual manipulations of object motion are present, estimations of TTC 

appear to be more greatly impaired than when only one visual manipulation is present. Examples 

of visual manipulations studied in various combinations include: relative size of object, depth 

cues, motion parallax, occlusion, and height of object in the field (DeLucia, Kaiser, Bush, 

Meyer, & Sweet, 2003), as well as viewing time and monocular/binocular depth cues (Lόpez-

Moliner, Supѐr, & Keil, 2013). DeLucia et al., (2003) attributed the greater error of TTC 

estimation in these scenarios to the integration of visual information. From their experiments 

they hypothesized that when only a single visual cue is available, people utilize a selection 

process, but when multiple visual cues are available, people use an integration process that 

requires greater neural activity.  This greater neural activation leads to a loss of accuracy in each 

of the visual tasks that are integrated, thus resulting in a loss of accuracy in the overall TTC task.  
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 Since we were interested in determining if the amount of time that an object is present 

during a trail impacts accurate perception of TTC, we decided to use occlusions in our 

experiment as well as manipulations of visual and auditory speed. The interaction between 

various object speeds and occlusion were studied extensively by DeLucia et al., (2003). The 

researchers examined TTC on a three-dimensional plane with an object moving toward an 

observer. They found that when occlusion was present, the observer tended to estimate TTC 

significantly earlier than when contact would have actually occurred. In addition, the average 

difference in TTC estimates between observers was greater in the presence of occlusion.  

 However, we did not want to confine our experiment only to visual effects because visual 

and auditory events often occur together, especially in real-world applications of TTC such as 

driving. Therefore, we decided to examine the effects of audition on TTC as well. However, 

there has been much less research conducted on how different auditory stimuli affect TTC, and 

most of the research that has implemented audition variables has been examined in a three-

dimensional plane. For instance, in a driving study, it was found that if a collision warning signal 

(e.g. a constant intensity sound or car horn) was able to redirect the driver’s attention to the 

leading vehicle, the signal greatly decreased the odds that a rear-end collision occurred (Gray, 

2010). In a second part of the same study, Gray’s results also suggested that TTC can be signaled 

by a looming warning (a warning of growing intensity) which could increase or decrease a 

driver’s reaction to a potential collision. In another driving related study, experimental results 

indicated that having more than one auditory warning origin location, or placing sounds 

symmetrically behind and in front of a driver, increases the time needed for a driver to detect a 

visual target located in the same place as the sound (Wallace & Fisher, 1998).  
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 Although understanding the effects of auditory and visual stimuli independently was 

useful, since we were interested in the influence of auditory stimuli on visual TTC, we also 

examined previous findings regarding the impact of cross-modal interference. The overall 

finding of auditory and visual cross-modal research was that visual stimuli typically dominate 

over auditory stimuli in bimodal spatial perceptions, and auditory stimuli usually dominate over 

visual stimuli in bimodal temporal perception (Driver & Spence, 1998; Ortega, Guzman-

Martinez, Grabowecky & Suzuki, 2014). In a review article compiling research findings from 

previous cross-modal attention studies, Driver and Spence, (1998) explained how sound can 

dominate over sight. From the results of their study on cross-modal interference in visual 

direction discrimination, Driver and Spence (1998) claimed that a sudden auditory event at a 

specific location does not cause visual attention by stimulating a specific retinal location but 

rather, the sound stimulates a representation of the area of the retina that corresponds to the 

external location of the sound at the time of the auditory event. Since then, other claims 

regarding how auditory stimuli affect visual processing have been proposed.  

 Ichikawa and Masskura (2006) hypothesized that auditory stimuli alters the visual 

processing of motion by controlling spatiotemporal resolution and the amount of displacement. 

They tested this hypothesis by observing visual and auditory stimulus onset asynchrony and the 

resulting displacement of the visual stimulus. Their findings revealed an interaction between 

auditory stimulus frequency, visual stimulus frequency, and displacement. Ichikawa and 

Masskura (2006) claimed the reason for this displacement was likely due to the fact that, 

although vision is used more effectively than audition when determining the spatial location of 

stimuli, because there are also temporal factors involved in motion processing, audition can 

influence vision. If the visual system used for a specific task is associated with a temporal aspect 
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of an object (e.g. motion processing), auditory stimuli could impact not only the processing of 

the object’s temporal features, but the processing of spatio-temporal aspects as a whole 

(Ichikawa & Masakura, 2006).  Research has also shown that even spatially uninformative 

auditory signals can modulate the direction of the apparent visual motion of an object 

(Roseboom, Kawabe, & Nishida, 2013). Roseboom, Kawabe, and Nishida, (2013), suggested 

from these results that the organization of auditory stimuli facilitates the segmentation of visual 

event streams.  

 Findings such as those by Roseboom, Kawabe, and Nishida, (2013), Driver and Spence 

(1998), and Ichikawa and Masskura (2006) that claimed auditory information can alter 

perception of visual information served as the preliminary basis for the outline of our study. In 

order to assess the influence of audition over vision in a TTC scenario, we decided to examine 

the effects of TTC on a two-dimensional plane since most of the prior TTC research was 

conducted on a three-dimensional plane. Because there has been no previous research focusing 

on TTC and sensory interference, it is unknown if audition has a greater effect than vision in a 

TTC situation. In order to test this idea we examined the interaction between TTC perception, 

auditory speed, and object speed. We hypothesized that disparities between the speed of auditory 

and visual stimuli would effect a participant’s estimation of TTC. 

 The secondary purpose of our experiment was to look at occlusion time and TTC 

estimates to determine if the amount of time that an object is visible on the screen effects TTC 

perception. We hypothesized that the later the occlusion occurred, the more accurate TTC 

perception would be.  
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Method 

Subjects 

 Our experiment was conducted with 17 undergraduate students from James Madison 

University (15 females and 2 males) ages 18-25 (average of 21 years). Students were recruited 

for the study by word of mouth. All participants had unimpaired or corrected sight and hearing. 

Apparatus 

 In all of the trials for this experiment, a black square was located at one of three 

positions: at the left of the screen, in between the middle of the screen and the left of the screen, 

and in the middle of the screen. This square moved toward a stationary black square on the right 

hand side of the screen. As soon as the square on the left started moving, one of three auditory 

stimuli speeds (slow, medium, or fast) began. An occlusion appeared at one of two times before 

the moving black square collided with the stationary square (Figure 1). 

 Short video files for this experiment were created using Microsoft PowerPoint. Each trial 

was composed of an animated PowerPoint slide with an audio file imbedded into it. The 

PowerPoint slides were then converted into WAV files and imported into a DirectRT Empirisoft 

program. We chose a visual TTC of 2.2s for our trials because this value was within the range of 

TTC times used in previous research (1-3s: Landwehr, Brendel, & Hecht, 2013; 0.4-1.3s: 

Bennett, Baures, Hecht, & Benguigui, 2010; 2.5s: Bootsma & Oudejans, 1993). Although a TTC 

value of 2.2s was slower than the majority of TTC values in previous research, we wanted to 

make sure that our results were due to participants’ TTC perception, not their reaction time 

abilities.  
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Visual stimuli. The visual component of each trial was created entirely in Microsoft PowerPoint. 

The visual element of the trials consisted of two 0.5in x 0.5in black squares on a white 

background. For all trials one square was located on the left-hand side of the screen, and the 

other square was located on the right-hand side of the screen. During each trial, the square on the 

left-hand side of the screen was animated so that it moved linearly toward the stationary square 

on the right-hand side of the screen. Since the two squares collided at the same time in all trials 

(2.2s), the starting position of the animated square in relation to the center of the screen (-8in, -

4in, 0in) determined object speed. For trials including an auditory stimulus, the sound 

commenced simultaneously with the movement of the square. A white 1in x 2in rectangle 

appeared at one of two times (1.69s or 1.96s), obstructing the view of the animated black square 

before it could collide with the square on the right-hand side of the screen (Figure 1).  

Auditory stimuli. The specific sound of the auditory stimuli was created using Ableton Live9 

programming (https://www.ableton.com/en/live/new-in-9/) and a Camel Audio plug in, Alchemy 

v.1.55.0 (http://www.camelaudio.com/faqs/Alchemy/Alchemy_Release_Notes). The attack and 

release of the AHDSR component of the sound were altered so that there would not be a delayed 

onset or termination of the auditory stimuli. The attack was changed to a linear on-ramp of 20ms 

and the release was changed to a linear off-ramp of 20ms. The fundamental frequency of the 

sound was also altered in this plug in so that the auditory stimuli would not be irritating to the 

participants. The original auditory stimulus was a 220 Hz saw tooth frequency. A low pass 2 pole 

biquad LPZ-BQ filter and a 2498 Hz cutoff filter were applied to the original stimulus. Another 

plug in, Wavearts Panorama_5 (http://wavearts.com/products/plugins/panorama/) was used to 

define the spatial orientation of the auditory stimuli. We decided to use headphone mode HRTF 

(head related transfer function) based on MIT Kemar data to define our spatial parameters. The 
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distance from the center of the participant’s head to the space out in front of him/her where the 

auditory stimuli sounded was four feet. This distance was greater than the distance between the 

participant and the computer screen so that the change in sound localization during the trials 

would be easier to perceive. The horizontal distance of the auditory stimuli spanned -2.42ft to 

+2.42 ft with 0ft representing the center of the participant’s face. Three conditions were created: 

-2.42 ft to +2.42 ft, -1.21 ft to +2.42 ft, and 0ft to +2.42 ft. The auditory stimuli were extended 

horizontally beyond the screen distance so that the auditory traveling distance between the left 

and right side of the headphones was slightly exaggerated. Therefore, the auditory stimulus from 

-2.42 ft to +2.42 ft was comparable to the visual stimulus with a start position of -8 in, -1.21 ft to 

+2.42 ft to -4 in, and 0ft to +2.42 ft to 0in. Final changes to the auditory stimuli were made in 

Adobe Audition v.3 (http://www.adobe.com/support/downloads/product.jsp?platform 

=Windows&product=92). The silence at the end of the file was trimmed off at 2.7s and the file 

was compressed to a duration of 2.66s. The auditory stimuli were intentionally created to last 

slightly longer than the TTC of the two black squares so that participants could not use the end of 

the sound to accurately estimate TTC. 

Design   

 Independent variables for this experiment included: object speed (slow: object start 

position 0in, medium: object start position -4in, fast: object start position -8in), auditory speed 

(slow: sound movement 0ft to +2.42 ft, medium: sound movement -1.21 ft to +2.42 ft, fast: 

sound movement -2.42 ft to +2.42 ft, and none: no auditory stimulus), and occlusion time (later: 

appears at 1.96s, and sooner: appears at 1.69s). Each combination of these variables was 

represented within 18 different trials. Each trial within the set of 18 was randomized for each 

participant using DirectRT. The set of 18 trials was then run three times for each participant. Six 
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control trials, without an auditory stimulus, of every combination of object speed and occlusion 

time were randomly run at the beginning and end of the experiment. The control trials were not 

interspersed with experimental trials so that the participants would not be disrupted by the lack 

of auditory stimuli. Three practice trials (control type trials in which response time was not 

recorded) were provided for the participant before any other trials in order to minimize practice 

effects. Overall, there were 3 practice trials, 12 control trials, and 54 experimental trials. 

 The dependent variable studied was estimated TTC. It was quantified as the time at 

which the participant pressed the spacebar, his/her best approximation of the moment of collision 

between the two squares. The time at which the participant pressed the spacebar was recorded in 

milliseconds using DirectRT. 

Procedure 

 This experiment was held in a vison studies laboratory with the lights on. Once a 

participant entered the room, he/she was provided basic information about the study. Participants 

signed an informed consent form and then filled out demographics paper. These two forms were 

stored separately. The participants sat down in a chair and rested their heads on a chin rest 15in 

from a 16in x 12in computer monitor. They then placed a set of headphones over their ears. The 

volume on the computer was set at 35. Instructions for the experiment were provided on the 

computer screen. The participants were asked to read the instructions and then press the spacebar 

on the keyboard below to begin the practice trials. At the end of the three practice trials, the 

participants were instructed to press the spacebar to begin the experiment. After each trial, a 

screen appeared informing the participant to press the spacebar when they were ready to start the 

next trial. Separate instruction screens were provided for the participant before a set of trials with 
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an auditory stimulus began and when these trials ended and control trials resumed. Once the 

experiment was completed, the participant was debriefed.  

Results 

 When running analyses, object speed and auditory speed were condensed into one 

variable comparing auditory speed to object speed (auditory speed faster, auditory speed equal, 

auditory speed slower, no auditory stimulus) because without condensing the two variables, the 

design would not be orthogonal (Figure 2). A 4x2 within subjects analysis of variance (ANOVA) 

was used to determine the results of this study. The variables we examined were auditory speed 

compared to object speed (levels: auditory faster, auditory equal, auditory slower, and no 

auditory) and occlusion time (levels: sooner, later). Our results indicated that there was a main 

effect of auditory time compared to object speed [F(3,14, MSE= 46.70) = 33.91, p<0.001, partial 

η
2
= 0.879]. Our data did not reveal a main effect of occlusion time [F(1,16, MSE= 46.16) 

=1.621, p=0.221, partial η
2
= 0.092], and there was a marginally significant interaction between 

auditory time compared to object speed and occlusion time [F (3,14, MSE=48.21) = 2.99, p= 

0.067, partial η
2
= 0.390] (Figure 3).  

Discussion 

 The results of our experiment support our hypothesis that disparities between the speed of 

auditory and visual stimuli effect a participant’s estimation of TTC. Overall participants 

perceived TTC more accurately (response time closer to 2,200ms) when the speed of the 

auditory stimuli and visual stimuli matched and when the auditory stimuli was faster than the 

visual stimuli (Figure 3). Participants were less accurate at perceiving TTC when the auditory 

stimuli was slower than the visual stimuli, and were least accurate when there was no auditory 

stimulus (Figure 3).  Because participants were most inaccurate in their perceptions of TTC 
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when no sound was present, the auditory stimuli may have facilitated more accurate perceptions 

of TTC. Since our experiment was a temporal task, these results correspond with previous 

findings that auditory stimuli usually dominate over visual stimuli in bimodal temporal 

perception (Driver & Spence, 1998; Ichikawa & Masskura, 2006; Roseboom, Kawabe, & 

Nishida, 2013).  

  Occlusion time was marginally significant; participants were most accurate in their 

estimations of TTC when the auditory and visual stimuli speeds matched and occlusion occurred 

later (Figure 3). This pattern in our occlusion data also supports the claim that auditory stimuli 

dominate over visual stimuli in temporal situations (Driver & Spence, 1998; Ichikawa & 

Masskura, 2006; Roseboom, Kawabe, & Nishida, 2013). Because the auditory stimuli in our 

trials displayed more of an impact when the auditory and visual stimuli were the same speed, or 

when there was no auditory stimuli, the visual cue of occlusion could have had a greater effect in 

those specific situations since there was less competition for sensory dominance. However, our 

occlusion findings did not match previous research that had specifically examined occlusion. 

DeLucia et al., (2003) found that when occlusion was present, participants tended to 

underestimate TTC. In all of our conditions, participants overestimated TTC (average error of 

TTC response time > 0.0 ms; Figure 3). There were a few potential problems in our study 

however that could account for this disparity between our findings and previous research that 

should be addressed in future studies. 

 One of the major limitations of our study was that since we were only able to create three 

different auditory speeds, there could be confounds within the collapsed variables of faster 

auditory speed and slower auditory speed (Figure 2). The auditory stimuli could also have 

created a ceiling effect of the participants’ response times. Despite instructions before the 
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experimental trials informing participants not to respond at the end of the auditory stimulus 

(2.66s), participants still could have done so. In addition, the time difference between our two 

occlusions (0.27s) might not have been significant enough to alter participants’ TTC perception.  

Because of these potential problems in our study, future research should examine TTC using a 

greater variety of auditory stimuli, providing auditory conditions faster, equal to, and slower than 

each object speed, as well as increasing the time difference between occlusions.   

 Overall, our study suggests that audition is useful in accurately perceiving TTC. When 

auditory stimuli and visual stimuli compete for temporal dominance, auditory stimuli appear to 

be more influential. However, if auditory stimuli is not competing with visual stimuli (e.g. in the 

auditory equal and no auditory conditions), later occlusion time allows for more accurate TTC 

perception.      
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Figure 1. A general diagram of a TTC trial (fast object 

speed, later occlusion). The arrow represents object 

movement and the dashed rectangle represents occlusion.  
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-4in -8in 

Figure 2. Difference between auditory start position 

(orange) and visual start position (blue) relating to speed. 

Numbers represent comparison between auditory and 

visual speeds (2= auditory twice as fast, 1= auditory one 

fourth faster, 0= auditory equal, 1= auditory one fourth 

slower, -2= auditory twice as slow).  The 2s and 1s were 

grouped to form a general faster auditory condition, and 

the -2s and -1s were grouped to create a general slower 

auditory condition. 
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Figure 3. Average error of TTC response time (in ms) as a function of 

auditory speed compared to object speed and occlusion time. Accurate TTC 

was 2200ms. Average SEM +/- 48.21.  
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