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Abstract 

The metallization of Au onto plastics is an important processing step in applications such as the 

aerospace and automotive industries, the field of microelectronics, and the fabrication of 

microfluidic devices. While its corrosion resistance and excellent electrical and thermal 

conductivity make Au a useful choice, its inertness results in poor adhesion to polymer surfaces. 

Previous studies have indicated that exposing commercially available poly(methyl methacrylate) 

(PMMA) sheets to chloroform vapor following Au deposition significantly improves adhesion. 

In this study, we utilized electron-beam evaporation and magnetron sputtering to deposit Au thin 

films onto 1.50 mm thick PMMA and exposed the samples to vapor released from chloroform 

heated on a hot plate set at 70 °C. The force required to remove both treated and untreated Au 

thin films was determined by placing samples on a polisher spinning at 150 rpm and utilizing 

UV-VIS spectroscopy to measure the absorbance of light through the films to quantify their 

removal as a function of applied polishing force. The pressure required to polish Au from 

PMMA exposed to chloroform (CHCl3) after metal deposition was compared to the pressure 

required for pre-treated samples. Post-treated Au thin films were characterized during the 

polishing process using atomic force microscopy (AFM). AFM images demonstrated a 

progressive roughening of the surface corresponding to an increase in applied force. 

Additionally, these images support a model in which the chloroform treatment softens the 

PMMA surface, producing a softened layer that the polisher removes simultaneously with the Au 

thin film. The chloroform post-treatment procedure was then used to selectively pattern a series 

of PMMA samples. 
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Introduction 

The deposition of metal thin films onto polymeric substrates (plastics) to incorporate 

electrodes and connecting wires is an important processing step in the fabrication of sensors and 

microelectronic elements. These components are essential in the assembly of aeronautical and 

automotive vehicles, the development of devices such as smart phones and personal computers, 

and the fabrication of microfluidic devices for studying microbiological systems.
1-4

 Gold (Au) is 

an ideal metal for fabricating electrodes, interconnecting wires, and optical elements due to its 

high electrical and thermal conductivity,
1
 high corrosion resistance, and excellent reflectivity, 

particularly of infrared light. Polymers are widely used due to their manufacturability, low cost, 

high strength-to-weight ratio, and biocompatibility.
1,5-7

 Unfortunately, Au is an inert metal, and 

its adhesion onto polymeric surfaces is notoriously poor. The relatively strong cohesive forces 

holding the Au atoms together prevent chemical bonding between the adsorbed metal atoms and 

the polymer surface.
1-3

  

Process engineers in the semiconductor industry have previously utilized a metal 

adhesion layer for improving the adhesion of Au onto silicon-based substrates. This adhesion 

layer is deposited directly onto the silicon surface prior to Au deposition and consists of a 

reactive metal such as chromium or titanium. The layer can adhere to the Au atoms and bond 

with the polar atoms at the silicon surface. Because the polymeric substrates of interest are 

mostly nonpolar, the use of an adhesion layer is of limited utility. Researchers have instead 

developed modifications for enhancing Au adhesion by polarizing the polymer surface. Methods 

such as chemical etching, ultraviolet irradiation, and plasma treatment typically involve adding 

polar bonds or increasing surface roughness. Most of the aforementioned techniques have 

resulted in limited success and pose the risk of otherwise modifying the polymer surface.
1,3
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1. Utilization of polar solvents for improving the adhesion of Au onto PMMA. 

Previous studies conducted by the Hughes-Augustine Lab at James Madison University have 

focused on improving the adhesion of Au thin films onto sheets of poly(methylmethacryate) 

(PMMA), a commercially available plastic known as plexiglass or acrylic. In their initial 

discovery, Mo et al.
3
 enhanced Au-PMMA adhesion by spin-casting organic solvents directly 

onto the polymer surface. Samples were spun-cast with hexanes, toluene, or chloroform, listed 

here in order of increasing polarity. Within 10 minutes of treatment, a thin layer of Cr followed 

by a Au thin film was magnetron sputter deposited onto each PMMA sample through a shadow 

mask containing circular features. The Cr adhesive layer was 10 Å thick, and an average 

thickness of 540 Å was measured for the Au film.  

Au-PMMA adhesion was measured by performing a tape-pull test. A piece of clear tape 

was applied to each sample and abruptly ripped off in order to remove as much metal from the 

PMMA surface as possible. Pictures of the PMMA samples before and after the tape-pull test 

were obtained using a microscope and digital camera. The data were analyzed by comparing the 

number of black pixels before and after the tape-pull test, where each black pixel corresponded 

to an area of surface covered by Au atoms (Figure 1). Following the tape-pull test, only 20% of 

the area covered by Au remained coated on the untreated control sample. Treating the surface 

with O2 plasma only improved adhesion to 26% Au remaining, and the spin-casting of hexanes 

actually decreased the adhesion percentage to 2%. The samples spun-cast with toluene improved 

the adhesion percentage to approximately 50%, and the samples spun-cast with CHCl3 improved 

Au adhesion to nearly 90%. These results indicated that Au-polymer adhesion can be enhanced 

by spin-casting polar solvents onto the PMMA surface.  
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Figure 1. Optical micrographs depicting 11 X 11 Au dot arrays (~1.5 mm in diameter) on PMMA. The left column 

shows samples after Cr/Au deposition but before the tape-pull test. The right column depicts samples following the 

tape-pull test. a) control b) O2-plasma-treated c) hexane-cast d) toluene-cast e) CHCl3-cast. Taken from Mo et al.
3
 

 

2. Elucidation of a mechanism explaining the effectiveness of CHCl3 pre-treatment. 

A single chloroform molecule consists of a central carbon atom bonded to three chlorine atoms 

and one hydrogen atom (Figure 2). The element chlorine belongs to a group of reactive 

nonmetals known as the halogens. Because the PMMA samples spun-cast with CHCl3 yielded 

the best Au-PMMA adhesion results, Mo et al.
1
 explored the use of two other halogenated 

solvents, bromoform (CHBr3) and fluoroform (CHF3). PMMA samples spun-cast with CHCl3 or 

CHBr3 or exposed to gas-phase CHF3 were coated with 10 Å of Au or platinum (Pt) using 

electron-beam evaporation. While the CHCl3 and CHBr3 treatments increased the metal-PMMA 

adhesion for both Au and Pt thin films, the gaseous CHF3 exposure showed no improvement 

over O2 plasma-treated or untreated samples. Mo et al.
1 

also found that exposing Au-plated 

PMMA to room temperature CHCl3 vapor for 300 s improved Au-PMMA adhesion. 
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Figure 2. Chloroform (CHCl3). 

 

Mo et al.
1
 developed an explanation for the efficacy of halogenated solvent pre-treatment 

using a variety of experimental techniques and computational modeling. PMMA is a chain of 

repeating ester groups, each of which consist of a carbon atom double-bonded to an oxygen atom 

and single-bonded to a second oxygen atom (Figure 3). 

CH
3

OO

CH3

n  

Figure 3. Structure of poly(methyl methacrylate) (PMMA). 

  

Upon exposure to CHCl3 or CHBr3, residual solvent molecules remain on the PMMA surface 

long after most of the solvent evaporates. These molecules chemically activate the surface 

through the formation of a Lewis acid-base adduct between the single-bonded oxygen atom of 

the PMMA and the hydrogen atom of the solvent (Figure 4a). During metal deposition, a Au or 

Pt atom is introduced into the Lewis acid-base adduct and inserted into the C-Cl or C-Br bond 

(Figure 4b-c). The resulting bonding configuration consists of a metal atom situated between the 

single-bonded oxygen of the PMMA and the halogen atom of the solvent (Figure 4d). Chlorine 

and bromine are highly electronegative elements, meaning they tend to withdraw electrons from 
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other atoms in a chemical bond. When either halogen atom is bonded to a metal such as Au or Pt, 

the halogen withdraws electron density from the metal atom. This electron-deficient metal atom 

engages in an energetically stable interaction with the electron-rich single-bonded oxygen atom 

of the PMMA, and this stability accounts for the adherence of the metal onto the PMMA surface. 

 
 

Figure 4. Model of Au-CHCl3-PMMA interaction as determined by density functional theory. a) Formation of 

Lewis acid-base adduct between the CHCl3 molecule and the single-bonded oxygen of PMMA, b) introduction of 

Au atom into the Lewis acid-base adduct, c) insertion of Au atom into C-Cl bond of CHCl3 and d) O-M-Cl adsorbate 

remaining after solvent evaporation. Taken from Mo et al.
1
 

 

This mechanism also explains the failure of CHF3 gas-phase exposure to promote the 

adherence of Au and Pt onto PMMA. The energies of the bond strengths for Au-Cl and Au-Br 

are lower than the energies for C-Cl and C-Br, respectively. The fact that the energies of the 

reactants are higher than those of the products promotes the formation of a Au-halogen bond. 

Because the energy of the bond strength for Au-F is higher than the energy for C-F, the metal 

atom will not insert itself into the C-F bond.  

Carbon – Gray 

Hydrogen – White 

Chlorine – Green 

Oxygen – Red 

Au - Pink 
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The importance of the Lewis acid-base adduct in the aforementioned mechanism 

prompted Mo et al.
1
 to compare the viability of pre-treatments using complexing and non-

complexing solvents. For a complexing solvent, the Lewis acid-base interactions between the 

polymer of interest and solvent are limited, and polymer chains can aggregate to form a complex 

in solution. In the case of PMMA, the dipole moments of the polar ester groups account for the 

interactions between chains. A non-complexing solvent forms a strong Lewis acid-base adduct 

with a polymer and prevents interactions between the polymer chains by shielding the dipole 

moment. The three complexing solvents tested were hexanes, tetrahydrofuran, and carbon 

tetrachloride, and the two non-complexing solvents were CHCl3 and dichloromethane. As 

expected, exposure to the two non-complexing solvents improved Au-polymer adhesion 

significantly in comparison to the complexing solvents.  

 3. Introduction of post-chloroform vapor exposure. Most recently, Mo et al. have 

demonstrated that using CHCl3 post-treatment in place of pre-treatment also significantly 

improves the adhesion of the Au onto the plastic. They have developed a new vapor exposure 

method in which 60 Å of Au are deposited onto the PMMA using electron-beam evaporation and 

the sample is then exposed to CHCl3 vapor heated at 70 ºC for 5 seconds. Roughly half of the 

Au-plated surface is concealed by a sheet of poly(dimethylsiloxane) (PDMS) plastic during 

exposure so that the resulting surface contains both treated and untreated portions of Au. The 

PDMS is peeled off the PMMA surface following vapor exposure, and the metal thin film is 

removed by polishing the sample. Because the untreated Au disappears from the PMMA almost 

immediately and often completely before removal of the treated Au is readily apparent, this test 

provides excellent qualitative evidence for the efficacy of CHCl3 post-treatment. Quantitative 

data are still needed to demonstrate the usefulness of CHCl3 vapor exposure.  
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  This study reports the development and implementation of a method for obtaining 

quantitative data that measures the effectiveness of post-Au deposition CHCl3 vapor exposure in 

improving the physical adhesion of Au thin films onto PMMA. Both quantitative and qualitative 

data are presented to confirm the viability of CHCl3 post-treatment as a technique for improving 

the wear resistance of Au deposited onto PMMA. A comparison between implementing the 

CHCl3 vapor exposure prior to Au deposition versus post-deposition exposure is also reported. 

Finally, the ability to selectively pattern materials using CHCl3 vapor exposure will be discussed. 
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Experimental Section 

Substrate Preparation. PMMA sheets (1.50-mm thick, McMaster-Carr) were cut into 

2.54 cm x 2.54 cm squares using a VLS 3.50 laser cutter. Samples were cleaned by 

ultrasonication in 2-propanol for 10 minutes at room temperature and blown dry with N2 gas. 

Each sample intended for use as a blank during data acquisition was covered by a 2.54 cm x 2.54 

cm sheet of poly(dimethylsiloxane) (PDMS) film (600-µm thick, Stockwell Elastomerics). The 

2-propanol (Certified ACS Plus) was used as received from Fisher Scientific.  

 Au Deposition. PMMA samples were metallized with Au either by electron-beam (e-

beam) evaporation or by magnetron sputtering. Both methods are classified as physical vapor 

deposition (PVD), a family of processes in which gas phase atoms are deposited onto a solid 

substrate under vacuum.
8
 In e-beam evaporation, substrates are placed in a sample holder 

mounted to the ceiling of a vacuum chamber (Figure 5). A motor rotates the sample holder and 

ensures homogeneous deposition among the samples. The chamber floor houses a tungsten 

filament that emits a focused beam of high energy electrons (e-beam) when connected to a power 

supply. This e-beam is swept across a metal-containing crucible located directly beneath the 

sample holder. The energy transferred from the beam to the crucible vaporizes the metal atoms, 

which translate upwards and precipitate onto each substrate to produce a solid thin film.  

 

Figure 5. Electron-beam evaporation. Taken from Raimondo et al.
9
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Prior to deposition, air is evacuated from the chamber until the pressure reaches ~10
-5

 mbar. This 

low pressure environment allows the Au atoms to travel to the sample surface without colliding 

with other atoms and inhibits water vapor, oxygen gas, and other air-borne particulates from 

contaminating the metal thin film. Due to the high-energy nature of the electron beam, e-beam 

evaporation is ideal for depositing materials with high melting points such as Au.
8,10,11

 

Magnetron sputtering utilizes plasma instead of an e-beam to deposit metal thin films 

onto a substrate. A rotating sample holder is mounted to the ceiling of a vacuum chamber, and 

air is pumped out of the chamber until the pressure falls below 10
-4

 Torr. The plasma is 

generated by exciting argon gas to form positively charged ions. A direct current power supply 

generates a positive voltage that creates the plasma and accelerates the argon ions through an 

electric field towards a negatively charged electrode. This “target” is located at the bottom of the 

chamber and contains a solid metal plate of high purity (Figure 6). The positive ions strike the 

target with enough force to eject the metal atoms, which condense onto the bottom of each 

substrate to form a thin film. As with e-beam deposition, the low pressure reduces contamination 

by background gases and minimizes collision-induced energy losses that inhibit the metal atoms 

from reaching the substrate.
8,12

 

 

Figure 6. Magnetron sputtering. Taken from Mo et al.
13
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60 Å of Au were deposited onto PMMA at a rate of 1 Å/s using an mBRAUN e-beam 

evaporator. Au thin film thickness was monitored by a quartz crystal microbalance (QCM). 

140.7 ± 34.8 Å of Au were deposited onto PMMA for 90 s at 75 W using an Edwards AUTO 

500 magnetron sputtering system. Au film thickness was measured using a KLA Tencor P-7 

Stylus Profiler. For both PVD processes, samples covered with PDMS were placed in the 

chamber during deposition but were not metallized.  

CHCl3 Vapor Exposure. A CHCl3 vapor bath was prepared by pouring CHCl3 (~50 mL) 

into a glass petri dish (9-cm diameter) covered with a glass lid (9.5-cm diameter) and heating the 

liquid at 70 °C for 10 minutes. During the heating period, Au-plated and blank PMMA samples 

were mounted to the inside of a glass petri dish lid using a PDMS film. The samples were then 

exposed to the CHCl3 vapor by covering the dish for 5 s. For pre-treatment studies, PMMA 

samples were exposed to CHCl3 vapor within 10 minutes prior to Au deposition. For post-

treatment studies, PMMA samples were exposed to the CHCl3 vapor immediately following 

metallization. The CHCl3 (Certified ACS) was used as received from Fisher Scientific.  

 Au Thin Film Removal. To obtain quantitative data demonstrating the efficacy of 

CHCl3 vapor exposure, the amount of force required to remove the Au film from the surface of a 

CHCl3-treated sample was compared to the force required to remove Au from an untreated 

substrate. The Au was polished off each sample using an Allied High Tech Products polisher 

spinning at 150 revolutions per minute. The adhesive back polishing cloth (8 in.) was used as 

obtained from Allied High Tech Products. 

The quantity of force applied onto each sample was controlled using a specially designed 

force-measuring device. The first generation device was used to obtain quantitative data for Au-

plated PMMA samples prepared by e-beam evaporation. This apparatus consisted of a hollow 
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brass cylinder inserted into an aluminum metal bar. The cylinder contained a stainless steel 

spring attached to a steel screw and a sample mounting disk (Figure 7). 

 

       

Figure 7. First generation force-measuring device (left) and brass cylinder component (right). 

 

A PMMA sample was taped to the bottom of the disk using Scotch double-sided adhesive, and 

the force-measuring device was situated so that the Au-plated PMMA surface was directly above 

the polishing cloth (Figure 8). The device was zeroed by running the polisher and turning the 

screw until a slight scratching sound was heard. This sound indicated when the sample first came 

in contact with the polishing pad.  

 
 
Figure 8. Schematic depicting the polishing process using the first generation force-measuring device. The gray disk 

represents the polishing pad spinning counterclockwise, and the PMMA sample is mounted onto the bottom of the 
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stationary light blue disk. Compressing the spring increases the quantity of force applied onto the PMMA sample. 

Reproduced with permission from Harry Hu. 

 

Turning the screw clockwise compressed the spring, which in turn exerted a force on the 

mounted sample. This compression corresponded to a linear increase in force according to 

Hooke’s Law. Force increments were defined as a change in screw length (Figure 8) equal to 

approximately 0.10 mm. For each increment of force applied, the sample was polished for 5 s.  

Data for Au-plated PMMA samples prepared by magnetron sputtering were obtained 

using a second generation force-measuring device that incorporated a load cell into the design 

(Figure 9). A load cell is a sensor that generates a measurable electrical output, such as a voltage 

or current, in response to a mechanical force.
14

 The output can be converted into a digital reading 

and is directly proportional to the applied force.  

 

 

Figure 9. Complete Au removal setup using the second generation force-measuring device. 

 

The load cell (Futek LSB200) was powered with 10.5-12 V from a BK Precision DC regulated 

power supply and sandwiched between a caliber and a stainless steel spring. Turning the caliber 
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clockwise compressed the spring, which in turn exerted a compressive force on the mounted 

PMMA sample (Figure 10). The load cell converted this force into a voltage that was digitally 

monitored using a Keithly 2000 multimeter. An increase in the voltage reading corresponded to 

an increase in the force applied onto the PMMA sample. A Cytron Technologies DC motor 

powered with 5 V from a BK precision DC regulated power supply was connected to the sample 

mounting disk. Rotating the sample clockwise while the polishing pad was spinning 

counterclockwise ensured that the Au-plated PMMA surface was polished evenly (Figure 10). 

The device was zeroed by running the polisher and turning the caliper until a slight scratching 

sound was heard. This sound indicated when the sample first came in contact with the polishing 

pad.  An increment of force was designated as an approximately 0.10 mV reading from the load 

cell. For every force increment applied, the sample was polished for 20 s. 

                    
 

 
Figure 10. Second generation force-measuring device (left). Schematic depicting the polishing process (right). 

While the polishing pad (light gray disk) is spinning counterclockwise, a motor rotates the mounted sample (light 

blue disk) clockwise to ensure the Au-plated surface is evenly polished. Compressing the load cell converts the 

mechanical force into a digital voltage reading that is directly proportional to the applied force. Reproduced with 

permission from Harry Hu. 
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Force-measuring Device Calibration. The force-measuring devices were calibrated 

using a Scout Pro 1000 g balance. The first generation device was clamped onto a milling 

machine table, and the sample mounting disk was situated directly above the balance. To zero 

the device, the screw was turned clockwise until the mounting disk barely touched the scale and 

the digital reading was 0.0 g. For every decrease in screw length of ~0.10 mm, the mass was 

recorded. The scale was placed on the polisher beneath the sample mounting disk (Figure 11). To 

zero the device, the caliper was turned clockwise until a scale reading of 0.0 g was obtained with 

the mounting disk just barely touching the scale surface. For every caliper rotation equivalent to 

0.20 mm, the mass reading on the scale and the corresponding voltage were recorded.  

 

Figure 11. Calibration setup for second generation force-measuring device.  
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UV-VIS Spectra Acquisition. For every force increment used to polish a Au-coated 

PMMA sample, quantitative data were obtained using ultraviolet-visible (UV-VIS) spectroscopy. 

A typical spectroscopic experiment utilizes the diffraction of white light into multiple 

wavelengths to analyze the contents of a specific compound (analyte). A beam of light 

containing visible wavelengths from a tungsten lamp source and ultraviolet light from a 

deuterium lamp is directed towards a quartz container (cuvette) containing the analyte solution 

(Figure 12).  

 

Figure 12. UV-VIS Spectroscopy. Taken from nanoComposix.
15

 

 

The light is either absorbed by the particles in solution, scattered, or transmitted through the 

solution. The transmitted light is separated into each of its component wavelengths using a 

diffraction grating, and the intensity (I) of each individual wavelength is detected electronically. 

This measurement is compared to the intensity of a reference beam (Io) that passes through a 

cuvette containing only solvent (the blank). Because the analyte solution contains more light-

absorbing particles than the pure solvent, the detected light from the sample is always less 

intense. The ratio I/Io is known as transmittance, and the % transmittance (%T) is calculated by 

the following equation:  

 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjFr8TGhJ7LAhUHUSYKHYf6B5UQjRwIBw&url=http://nanocomposix.com/pages/characterization-techniques&psig=AFQjCNFxRIXXAKVpOINXLHy9akohZ4Bxmg&ust=1456871805448301
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The spectrometer scans all wavelengths from 200-900 nm and plots the transmittance as a 

function of wavelength to generate a spectrum. The absorbance (A) measures the quantity of 

light trapped by the particles in solution and is calculated by the following equation: 

 

A positive linear correlation relates the absorbance of light by a solution to the concentration of 

that solution (c), according to the Beer’s Law equation: 

 

The molar absorptivity (a) of light is an inherent property of each solution, and the path length 

(b) is the distance the light must travel to pass through the sample. By obtaining spectra for 

solutions containing different concentrations of analyte, a linear calibration curve plotting the 

absorbance at a specific wavelength versus concentration can be generated. The wavelength of 

maximum absorbance is chosen to maximize linearity and sensitivity. This plot can be used to 

determine the concentration of analyte in an unknown sample through interpolation.
16,17

 

The theory behind UV-VIS spectroscopy can be applied to the removal of Au from 

PMMA. Polishing reduces the number of Au particles on the plastic surface and progressively 

allows more light to pass through the sample and reach the detector. The absorbance of light by 

the PMMA decreases as force applied onto the sample increases and reaches zero once all Au 

has been removed relative to a PMMA-only blank.  

Absorbance spectra were acquired using an Agilent Technologies UV-VIS 

Spectrophotometer. The path length was set at the thickness of the PMMA samples (0.15 cm). 

Initial spectra were obtained for each sample prior to gold removal, and further spectra were 

taken for every increment of force applied onto the PMMA. Blanks required for calibrating the 
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spectrophotometer were prepared by subjecting clear PMMA squares to the same temperature, 

pressure, and CHCl3 exposure conditions as the corresponding Au-plated samples. To observe 

the morphology of the samples during various stages of the Au removal process, atomic force 

microscopy (AFM) images were obtained using a Nanoscope Dimension 3100. 

  Selective Patterning. Selective patterning is a microfabrication technique that can be 

used to plate metal onto specific areas of a given surface. Patterned arrays were designed using 

CorelDraw and printed onto square PDMS masks (2.54 cm x 2.54 cm) using a VLS 3.50 laser 

cutter. Approximately 140.7 ± 34.8 Å of Au were deposited onto substrates using magnetron 

sputtering. After covering each sample with a PDMS mask, the chloroform vapor exposure 

described in CHCl3 Vapor Exposure was implemented. The masks were then removed, and each 

PMMA surface was wiped using a KimWipe. 
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Results and Discussion 

 Quantifying the efficacy of CHCl3 post-treatment using the first generation force-

measuring device. The calibration curve produced for the first generation force-measuring 

device is shown in Figure 13. The equation for the line of best fit was used to determine the 

pressure applied to every PMMA sample as controlled by the adjustment of a screw. The 

pressure was calculated from the force equivalent to a mass on a balance. The line of best fit is 

given by Equation 4: 

 

where x is the difference between the initial screw length and the caliper reading for a given 

force increment, and y is the mass corresponding to that increment. 
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Figure 13. Calibration of the first generation force-measuring device. This plot combines the data from two 

separately obtained mass-distance curves (Supporting Information, Figure S1). A value of 0.0 mm along the x-axis 

corresponds to the initial screw length and a 0.0 g reading when the force-measuring device is just touching the scale 
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surface. The change in distance for a given force increment is defined as the difference between the initial screw 

length and the current caliper reading. 

   

The y-intercept needed to correlate a mass of 0.0 g to a screw extension of 0.0 mm was 

determined by substituting the initial screw length for x and setting y = 0. The initial screw 

length varied among PMMA samples. The modified y-intercept was then substituted for the 

original intercept in Equation 4, and the mass corresponding to each 5 s polishing process could 

be calculated. To obtain the force in Newtons (N), each mass was multiplied by the gravitational 

acceleration constant according to Equation 5: 

 

where F is force (N), m is mass (kg), and g is the gravitation acceleration constant.  

The pressure in pascals was then calculated for each force increment using Equation 6: 

 

where P is pressure and A is the area of a PMMA square (m
2
).  

The absorbance spectra obtained for each polishing process for an untreated sample are 

shown in Figure 14. The spectral patterns obtained while polishing a sample exposed to CHCl3 

vapor exposure are displayed in Figure 15. The absorbance values observed at 850 nm for both 

samples were plotted as a function of applied pressure to generate two S-shaped curves (Figure 

16). A wavelength of 850 nm was chosen due to its proximity to the wavelength of maximum 

absorbance. While only the data for a single treated and single untreated Au-coated PMMA 

sample are presented here, additional pressure curves can be found in the Supporting Information 

(Figures S2 and S3). 
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Figure 14. Absorbance spectra obtained while polishing an untreated Au-plated PMMA sample. The decrease in 

absorbance values in the 400 – 900 nm range corresponds to a decrease in the number of Au particles on the PMMA 

surface. The sample was polished until the spectrum leveled out at approximately zero absorbance units.  
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Figure 15. Absorbance spectra obtained during the polishing of a Au-plated PMMA sample exposed to heated 

CHCl3 vapor following Au deposition. 
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Figure 16. Comparison between the pressure required to remove the Au from a PMMA sample exposed to CHCl3 

vapor and the pressure required to remove the Au from an untreated substrate.  

 

The average absorbance and standard deviation at 700 nm were calculated for five 

untreated Au-coated PMMA samples and six treated samples prior to any polishing (Supporting 

Information, Table S1) The pressure at which the first significant Au removal was observed (P1) 

was defined as the pressure at which the absorbance was two standard deviations below the 

initial absorbance (Supporting Information, Table S2). The pressure at which the Au removal 

leveled off  (P2) was defined as the pressure at which the measured absorbance was two standard 

deviations above the final absorbance (Supporting Information, Table S2). P1 and P2 for the 

untreated sample were determined to be 0.000 ± 0.011 kPa and 0.144 ± 0.292 kPa, respectively 

(Supporting Information, Figure S4). P1 and P2 for the treated sample were calculated at 1.153 ± 
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0.222 kPa and 1.520 ± 0.221 kPa, respectively. Exposure to heated CHCl3 following metal 

deposition increased P1 by ~1.2 kPa and increased P2 by nearly 1.4 kPa. 

P1 and P2 values were calculated for six treated and five untreated samples polished using 

the first generation force-measuring device (Figures 17 and 18). While the difference in P1 for 

treated versus untreated Au is statistically significant within reason, the results obtained for P2 

are not so conclusive. Statistical agreement among P1 and P2 calculations for a given sample type 

is observed only because the error bars are on the same order of magnitude as the actual values 

(Figures 17 and 18). The inconsistencies of these results can be attributed to an inherent design 

flaw in the force-measuring device. Because the device contains no mechanism for accurately 

determining “zero force,” the initial application of force is not consistent across PMMA samples. 

The inability to polish each sample at the same starting point accounts for the imprecision 

associated with P1 and P2 values and severely limits the data acquisition method.  
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Figure 17. P1 values obtained for post-treated samples (blue) and untreated Au-plated PMMA samples (red) using 

the first-generation force-measuring device. 60 Å of Au were deposited onto samples 1-11 using the same e-beam 

evaporation parameters. Samples 1-6 underwent the same CHCl3 vapor exposure. Sample 1 and Samples 10-11 were 

polished after a modified spring system had been installed in the force-measuring device. The inconsistency in the 

initial force applied onto each sample accounts for the variability across treated P1 values.   
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Figure 18. P2 values obtained for post-treated samples (blue) and untreated Au-plated PMMA samples (red) using 

the first-generation force-measuring device. 60 Å of Au were deposited onto samples 1-11 using the same e-beam 

evaporation parameters. Samples 1-6 underwent the same CHCl3 vapor exposure. Sample 1 and Samples 10-11 were 

polished after a modified spring system had been installed in the force-measuring device. The inconsistency in the 

initial force applied onto each sample accounts for the variability across both treated and untreated P2 values. The 

formation of a cloudy residue on the PMMA surface following CHCl3 exposure also contributes to the imprecision 

across treated P2 values. 

 

The use of e-beam evaporation to deposit the Au thin films also posed an issue for the 

data acquisition process. The use of high-energy electrons when depositing Au by e-beam 

inherently generates a significant amount of heat. The exact temperature inside the vacuum 

chamber cannot be easily controlled or determined, and modifying parameters such as deposition 

rate and delay time before deposition can vary the temperature during deposition. PMMA 

undergoes a glass transition from its solidified, semi-crystalline state to a more fluid phase at 105 

°C, and if the temperature inside the vacuum chamber exceeds this value, the PMMA sample is 

subject to warping and discoloration. Warping induces light scattering, the spectroscopic effects 

of which are seen in Figure 15. Because the UV-VIS spectrophotometer outputs all non-
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transmitted light as absorbance, any significant scattering is incorporated into the spectral 

pattern. A sudden “absorbance” increase in the 400-600 nm region corresponds to the application 

of 1.081 ± 0.011 kPa of pressure and can be attributed to the scattering of light by scratches on 

the sample surface. These scratches are induced by the torque (rotational force) applied onto the 

sample during polishing. This change in spectral pattern is not observed for untreated samples 

because the force required to scratch the sample surface exceeds that required to polish 

unexposed Au. Because this increase is not seen at 850 nm, scattering caused by polishing alone 

does not impede data acquisition when generating an absorbance-pressure curve. However, 

warping-induced scattering does affect the spectra around 850 nm, producing spectral patterns 

that suggest the absorbance actually increases with Au removal once a given pressure has been 

applied. This scattering effect makes it impossible to obtain accurate curves for Au-plated 

PMMA samples that have undergone CHCl3 treatment.  

 

Quantifying the effectiveness of CHCl3 post-treatment using the second generation 

force-measuring device. The limitations associated with the first generation force-measuring 

device and e-beam evaporation necessitated both an improvement in device design and the use of 

a new metal deposition method. The calibration curve produced for the second generation force-

measuring device is shown in Figure 16. The equation for the line of best fit was used to 

determine the pressure applied to every PMMA sample as a function of the voltage output of the 

force sensor. The line of best fit is given by Equation 7: 
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The mass associated with each force increment was calculated by substituting in the observed 

voltage for x. The y-intercept needed to correlate a mass of 0.0 g, and therefore a pressure of 

0.000 kPa, to the initial voltage reading was calculated using Equation 8:  

 

Where 0 is the desired y value of 0.0 g, V is the initial voltage, and m is the slope of the mass-

voltage calibration plot (Figure 19). Once the mass associated with each polishing process was 

known, the pressure (kPa) of each force increment was calculated using Equations 5 and 6.   
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Figure 19. Calibration of the second generation force-measuring device. The slope of this linear fit and the slopes of 

two additonal calibration curves agree within error (Supporting Information, Figure S5). 

 

The absorbance spectra obtained for each 20 s polishing process for an untreated sample 

are similar to those from samples polished with the first generation device and are displayed in 

Figures 20 and 21 for reference. Additional absorbance-pressure curves for untreated samples 
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can be found in the Supporting Information (Figure S6). The absorbance values at 850 nm were 

plotted as a function of applied polishing pressure to generate two comparative S-shaped curves 

(Figure 22). P1 and P2 were determined to be 0.000 ± 0.006 kPa and 0.675 ± 0.067 kPa for the 

untreated sample, respectively. P1 and P2 were determined to be 1.241 ± 0.029 kPa and 2.048 ± 

0.021 kPa for the treated sample, respectively. Exposure to heated CHCl3 following metal deposition 

was found to increase P1 by ~1.2 kPa and P2 by nearly 1.4 kPa. 
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Figure 20. Absorbance spectra acquired for an untreated Au-plated PMMA sample. For generating the absorbance-

pressure plot, the absorbance of light at 850 nm was chosen due to its proximity to the wavelength of maximum 

absorbance.  
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Figure 21. Absorbance spectra acquired for a Au-plated PMMA sample exposed to heated CHCl3 vapor following 

Au deposition. 
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Figure 22. Comparison between the pressure required to remove the Au from a PMMA sample exposed to CHCl3 

vapor and the pressure required to remove the Au from an untreated substrate.  

 

Using the second generation device in place of the first generation device reduces the 

percent error associated with each pressure by 1 order of magnitude, and there is still excellent 

statistical agreement among P1 and P2 values obtained for untreated samples (Figures 23 and 24). 

While the accuracy is still limited by the crude method of using human hearing to establish when 

the sample first touches the polishing pad, the precision in the zero force is improved due to the 

incorporation of a load cell into the design. A comparison between the calibration curves 

obtained for each force-measuring device also affirms the superiority of the second generation 

design. The acquisition of an R
2
 value closer to 1 suggests a better linear fit and the range of 
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masses that can be accurately interpolated is increased by almost a factor of 3 (Supporting 

Information, Figures S1 and S4).  

The use of magnetron sputtering deposition in place of e-beam evaporation complements 

the improvements produced from the second generation force-measuring device. Because the 

metal films deposited by this technique are not subjected to the high temperature environment 

associated with e-beam evaporation, the problematic warping-induced spectral effects are 

eliminated. A comparison between the standard deviation of the initial absorbance values for 

both treated and untreated Au-coated PMMA samples provides further support for using 

magnetron sputtering over e-beam evaporation (Supporting Information, Table S1). The standard 

deviations of the absorbance for unpolished Au thin films deposited by magnetron sputtering are 

significantly lower, suggesting that this technique deposits more uniform thin films than does e-

beam evaporation.  
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Figure 23. P1 values obtained for post-treated samples (blue) and untreated Au-plated PMMA samples (red) using 

the second-generation force-measuring device. Au was deposited onto samples 1-6 using the same magnetron 

sputtering deposition parameters. Samples 1-3 underwent the same CHCl3 vapor exposure. The inconsistency in the 

initial force applied onto each sample accounts for the variability across treated P1 values. Because the percent error 
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of each treated P1 value is on the order of 10
-3

 mV, the error bars are minuscule and cannot be seen with the naked 

eye. 
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Figure 24. P2 values obtained for post-treated samples (blue) and untreated Au-plated PMMA samples (red) using 

the second-generation force-measuring device. Au was deposited onto samples 1-6 using the same magnetron 

sputtering deposition parameters. Samples 1-3 underwent the same CHCl3 vapor exposure. The inconsistency in the 

initial force applied onto each sample accounts for the variability across both treated and untreated P2 values. The 

formation of a cloudy residue on the PMMA surface following CHCl3 exposure also contributes to the imprecision 

across treated P2 values. Because the percent error of each treated P2 value is on the order of 10
-3

 mV, the error bars 

are minuscule and cannot be seen with the naked eye. The error bars for the untreated P2 values are on the order of 

10
-2 

mV and are therefore more visible. 

 A significant limitation seen in the new method is the fact that the pressure calculations 

among different post-treated samples do not agree within error. A comparison between the 

absorbance-pressure curves of the three samples clearly indicate the source of the discrepancy 

(Figure 25). The most prominent factor contributing to this inconsistency is the unevenness of 

the PMMA surface arising from the manufacturing process. This induces an uneven polishing of 

the PMMA surface across different samples, which in turn varies the quantity of Au being 

removed from the area through which light from the UV-VIS source is transmitted. In the future, 
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developing a method for planarizing the PMMA surface, potentially through polishing, will 

alleviate this issue. The formation of a light-absorbing cloudy residue whose consistency varies 

from sample to sample also inhibits data acquisition. In fact, the difficulty of removing this 

residue prevents the complete polishing of the sample surface with respect to the PMMA blank. 

The agreement of P1 and P2 values among the untreated samples indicate that the aforementioned 

complications are specific to CHCl3-exposed samples. A final consideration is the 25% variation 

seen in the thickness of the Au thin films deposited by magnetron sputtering (140.7 ± 34.8 Å). 

During a metal deposition, the sample holder rotates to maximize the uniformity of the films. On 

a single PMMA surface, the thickness of deposited Au will vary based on its distance from the 

center of the rotary holder. To ensure consistency of the thin films across samples, the PMMA 

squares are placed in the same three or four sample positions closest to the center. During UV-

VIS spectra acquisition, situating each Au-plated sample in the exact same location of the sample 

holder ensures that the light passes through the same area of every PMMA sample. 

Implementing the two aforementioned procedures should minimize any quantitative 

discrepancies resulting from an uneven Au film. 
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Figure 25. Absorbance-pressure curves generated for post-treated Au-plated PMMA samples using the second 

generation force-measuring device. Au was deposited onto all samples using the same magnetron sputtering 

deposition parameters. The samples also underwent the same CHCl3 vapor exposure. The inconsistency in the initial 

force applied onto each sample, the formation of a cloudy residue on the PMMA surface following CHCl3 exposure, 

and the uneven surface of each sample account for the observed variability.  

 

Characterization of a Au-plated PMMA surface exposed to CHCl3. AFM images 

showing Treated Sample 6 during different stages of the polishing process provide insight into 

the mechanism behind the effectiveness of CHCl3 treatment. Due to time constraints, AFM data 

showing the entire Au removal procedure were only obtained for one sample.  

Figure 26a depicts a clear image of a separate, untreated Au-plated sample. The 

consistency in surface feature height (typically in the 50.0 nm range) across the image indicates 
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an even surface. By contrast, the exposure of Treated Sample 6 to CHCl3 vapor and subsequent 

initial polishing yields a blurry image in which the surface height varies from ~ 0.0 – 75.0 nm 

(Figure 26b). Additional Au-plated and blank PMMA surfaces were exposed to CHCl3 vapor, 

and because the AFM images for these samples also appeared blurry, it was concluded that 

CHCl3 vapor exposure induces the formation of a cloudy residual layer. Upon polishing with 

1.596 ± 0.015 kPa of pressure, the gradual removal of the cloudy layer is observed (Figure 26c). 

Scratches induced by the circular motion of the polishing wheel are also apparent, and the larger 

range of feature heights (~ 0.0 – 200.0 nm) indicates a roughening of the PMMA surface. The 

final AFM image for Treated Sample 6 was acquired after the sample was polished with 2.861 ± 

0.016 kPa of pressure (Figure 26d). Additional scratching is observed, and virtually all of the 

cloudy layer has been removed. 

The cloudy residue formed during CHCl3 vapor exposure may provide insight into the 

mechanism behind the efficacy of CHCl3 post-treatment (Figure 4). Because the cloudy layer 

was observed on both Au-plated and blank PMMA surfaces, it may correspond to the formation 

of the Lewis acid-base adduct between the PMMA and the CHCl3 (Figure 4a). When a Au atom 

enters the pocket created by the adduct and inserts itself into a C-Cl bond, a residual CHCl3 

radical is formed (Figure 4b-c). The subsequent behavior of this radical remains unsolved, and 

the cloudy residue may provide an answer. Future work will utilize spectroscopy to study the 

elemental composition of this residue in hopes of elucidating its nature.  

 

 

 



 

44 

a)      b)  

c)       d)  

Figure 26. AFM images depicting the CHCl3 vapor exposure and polishing processes. a) Au-plated PMMA square 

that has not been exposed to CHCl3 vapor. b) Au-plated sample exposed to heated CHCl3 vapor and polished with 

roughly 0 kPa of applied pressure. c) Vapor-exposed Au-plated sample polished with 1.596 ± 0.015 kPa of pressure. 

d) Vapor-exposed PMMA sample polished with 2.861 ± 0.016 kPa of pressure. 

 

Comparison between CHCl3 pre-treatment and post-treatment. Figure 27 depicts the 

pressure required to remove Au from a PMMA sample exposed to CHCl3 vapor prior to metal 

deposition. At this time, a full evaluation of the data comparing CHCl3 pre-treatment and post-
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treatment has not been generated, but the pressure-absorbance curves do yield some interesting 

qualitative observations. A steep drop-off is observed for the pre-treatment, indicating the quick 

removal of the outermost Au atoms. For a post-treated sample, the first significant Au removal 

requires the application of nearly 1.500 kPa of pressure. Despite the differences in initial Au 

removal, the leveling out of the absorbance spectra for both pre-treated and post-treated samples 

occurs following the application of ~ 3.000 kPa of pressure.  

For the pre-treated sample, this result agrees with the proposed mechanism for how 

CHCl3 vapor exposure improves Au-PMMA adhesion (Figure 4). If the PMMA surface is 

chemically activated prior to metal deposition, then the Au atoms that insert themselves into the 

PMMA-CHCl3 binding pocket first will best adhere to the surface, explaining the quick removal 

of the upper Au layer. The reason behind the slow removal of Au atoms from the post-treated 

surface remains unclear. One hypothesis suggests that the surface PMMA seeps up over the Au 

upon being softened by the CHCl3 vapor. The uppermost Au atoms then insert themselves into 

the PMMA-CHCl3 binding pockets and resist removal by polishing. Further study will utilize 

techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) to test this 

hypothesis, and different thicknesses of Au thin films will undergo testing to determine whether 

film thickness affects the efficacy of pre-treatment versus post-treatment.  
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Figure 27. Comparison between the pressure required to remove the Au from a PMMA sample exposed to CHCl3 

vapor following deposition (blue), the pressure required to remove the Au from an untreated substrate (red), and the 

pressure required to remove the Au from a PMMA sample exposed to CHCl3 vapor before deposition (green). All 

pressure measurements were obtained using the second-generation force-measuring device. 

 

Selective Patterning. In addition to improving the adhesion of bulk Au films onto 

PMMA, post-deposition CHCl3 vapor exposure can be used to allow millimeter-scale Au 

patterns to stick to a surface. Selective patterning encompasses the design and transfer of patterns 

onto a variety of different substrates and is important to the field of microfabrication (the 

assembly of small structures and devices).
18

 Materials used in microfabrication processes are 

chosen for their desirable thermal, electrical, and optical properties pertaining to certain design 

requirements. Because selective patterning provides control over the shape, size, and position of 

nano- and microstructures composed of these materials,
19 

 it is useful in a variety of 
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technological applications including flexible electronics,
21

 pixel device displays,
20

 sensors,
21 

and  

microfluidic
20 

devices used in biomedical studies.  

 A series of 140.7 ± 34.8 Å thick Au thin films were selectively patterned onto PMMA 

(Figure 28). The particular selective patterning procedure presented in Scheme 1 is a simple 

modification of the post-metallization CHCl3 vapor exposure. While only features on a mm-scale 

have been obtained, this work paves the way for utilizing CHCl3 post-treatment to generate 

microscale patterns. 

 

Figure 28. 140.7 ± 34.8 Å thick Au thin films patterned by post-deposition CHCl3 vapor exposure. 
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a)  

b) 

PDMS Mask	

Au

200 um PMMA

                           

 

 

                                                                                                                                              

Scheme 1. Selective patterning process. a) Au is deposited onto a 200 µm thick PMMA sample and covered with a 

patterned PDMS mask. b) The Au-plated PMMA surface is exposed to heated CHCl3 vapor through the mask. The 

CHCl3 only reaches the star-shaped patterns. The sample is then wiped clean with a KimWipe to remove the 

untreated Au from the sample surface. 
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Conclusions 

In conclusion, a reproducible and reliable quantitative method for measuring the effect of 

CHCl3 vapor exposure in improving the adhesion of Au thin films onto PMMA has been 

developed and implemented. Using a specially designed force-measuring device, the percent 

error associated with each pressure measurement was on the order of 10
-2

 kPa. While the P1 and 

P2 values among untreated samples agreed within error, the same could not be said for treated 

samples due to such factors as uneven polishing and the formation of a cloudy residue that 

affected spectral patterns. CHCl3 vapor exposure increased the amount of pressure required to 

remove Au from the PMMA surface by ~1.5 kPa (a 33% improvement), indicating that post-

treatment does in fact improve adhesion at the Au-PMMA interface. A comparison between pre-

treatment and post-treatment for 140.7 ± 34.8 Å  thick Au thin films shows a more immediate 

removal of the Au for the pre-treated sample but indicates that it takes roughly the same amount 

of pressure to remove all of the Au from both samples. AFM data suggest that the reaction 

between the PMMA surface and CHCl3 vapor yields a cloudy layer that is gradually removed 

during polishing. While this transformation has not yet been studied extensively, it may provide 

mechanistic insight into the vapor exposure process. The study of this cloudy layer and its 

implications will require spectroscopic studies such as XPS. In addition, selective patterning 

experiments have shown that CHCl3 post-treatment can be utilized to deposit Au onto specific 

areas of a given sample. 

Future work will focus on exposing Au-plated PMMA samples to CHCl3 vapor at varying 

temperatures with different exposure times in order to optimize Au-PMMA adhesion. Further 

study will also concern the viability of post-treatment and pre-treatment as a function of Au film 

thickness. Finally, the newly developed quantitative method will be used to conduct adhesion 
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studies concerning different noble metals deposited onto PMMA, additional organic polar 

solvents, and plastics that are structurally similar to PMMA.  
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Appendix: Supporting Information 
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Figure S1. Calibration curves generated for the first generation force-measuring device 

following the incorporation of a modified spring system. These two curves were combined to 

construct the plot presented in Figure 13. 
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Figure S2. Absorbance-pressure curves generated for untreated Au-plated PMMA samples using 

the first generation force-measuring device. Data for untreated samples 4 and 5 were obtained 

following the incorporation of the modfied spring system into the device. Because the results 

obtained with the modified spring were deemed to be more precise, untreated sample 4 was 

chosen to be shown in Figure 14. 60 Å of Au were deposited onto all samples at a rate of 2 Å /s 

using e-beam evaporation. The inconsistency in the initial force applied onto each sample 

accounts for the variability between curves.  
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Figure S3. Absorbance-pressure curves generated for post-treated Au-plated PMMA samples 

using the first generation force-measuring device. The data for treated sample 1 were obtained 

following the incorporation of the modfied spring system into the device. Sample 1 is presented 

in Figure 15. Because the results obtained with the modified spring were deemed to be more 

precise, treated sample 1 was chosen to be shown in Figure 15. 60 Å of Au were deposited onto 

all samples at a rate of 2 Å /s using e-beam evaporation. All samples were exposed for 5 s to 

CHCl3 vapor heated at 70 °C for 10 minutes. The inconsistency in the initial force applied onto 

each sample and the formation of a cloudy residue on the PMMA surface following CHCl3 

exposure accounts for the variability between curves.  
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Error Calculations 

The resolution of the UV-VIS spectrophotometer yielded a standard deivation on the order of  

10
-5 

for each absorbance value, rendering the error negligible. The following equation was used 

to calculate the percent error associated with each pressure: 

 

where D is the caliper reading, Error D is the error associated with the caliper reading, m is the 

slope of the calibration curve used to calculate the pressure for a given force increment, and 

Error m is the error associated with the slope. For the second generation device, the voltage 

reading and associated error were used in place of distance measurements. The slope of the 

calibration curve generated for the unmodified first generation force-measuring device was 

determined to be 48.392 ± 0.705 kPa
-1

. The slope of the calibration curve obtained after 

installing the modified spring system was 43.885 ± 0.46 kPa
-1

. The slope of the best linear fit for 

the second generation device was determined to be -93.323 ± 0.142 kPa
-1

.  
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Pressure 1 and 2 Calcuations  

Second generation device 

 

First generation device 

 
Untreated   Treated   Untreated   Treated   

1 0.608 1 0.697 1 0.279 1 0.182 

2 0.621 2 0.724 2 0.286 2 0.264 

3 0.614 3 0.684 3 0.334 3 0.213 

Average: 0.614 4 0.703 4 0.306 4 0.159 

1 SD 0.007 5 0.697 5 0.287 5 0.184 

2 SD 0.013 6 0.704 Average: 0.298 6 0.167 

    7 0.716 1 SD 0.022 7 0.185 

    8 0.678 2 SD 0.045 Average: 0.193 

    9 0.642     1 SD 0.036 

    10 0.653     2 SD 0.071 

    Average: 0.690         

    1 SD 0.026         

    2 SD 0.052         

 

Table S1. Average absorbance and standard deviation at 700 nm (first generation device) and 

850 nm (second generation device) for a series of unpolished Au-plated PMMA samples. 60 Å of 

Au was deposited via e-beam evaporation onto the samples polished using the first generation 

force-measuring device. 140.7 ± 34.8 Å of Au was deposited via magnetron sputtering onto the 

samples polished using the second generation force-measuring device. 
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Absorbance  
Pressure 

(kPa) 

0.678 N/A 

0.681 0.000 

0.680 0.146 

0.681 0.288 

0.681 0.430 

0.679 0.558 

0.677 0.705 

0.674 0.850 

0.665 0.965 

0.666 1.116 

0.615 1.276 

0.534 1.415 

0.270 1.561 

0.214 1.705 

0.220 1.850 

0.197 1.992 

0.114 2.137 

0.099 2.283 

0.112 2.424 

0.114 2.713 

0.113 2.862 

 

Table S2. Absorbance at 850 nm and corresponding pressure for second generation treated 

sample 1. Two standard deviations from the mean was determined to be ± 0.052 absorbance 

units for unpolished, CHCl3-exposed Au thin films that were 140.7 ± 34.8 Å thick. P1 was 

calculated by first subtracting 0.052 from the initial absorbance to yield an absorbance of 0.626. 

The absorbance measurements between which this value fell and the corresponding pressure 

(highlighted in red) were used to find P1 via linear interpolation. P2 was calculated by first adding 

0.052 to the final absorbance measurement to yield a value of 0.165. The absorbance 

measurments between which this value fell and the corresponding pressure (highlighted in blue) 

were used to find P2 via linear interpolation. 
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Figure S4. Linear interpolation between two points to calculate P1 (red) and P2 (green). 

The slopes acquired in Figure S4 were used to calculate P1 and P2 using the point-slope formula: 

 

 

where y1 and x1 are one of the absorbance-pressure pairs used in the interpolation (Table S2), m 

is the slope, x is the absorbance that is two standard deviations below the initial value (P1) or two 

standard deviations above the final measurement (P2), and y is the pressure being solved. The 

error associated with P1 or P2 is calculated using the following equation: 

 

 

where m is the slope, Error m is the associated error, P is the calculated P1 or P2 value, and Error 

P is the associated error calculated using Equation S1.  
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Figure S5. Calibration curves constructed for the second-generation force-measuring device. 

The slopes of these two plots agree with the linear fit presented in Figure 16 within error.  
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Figure S6. Absorbance-pressure curves generated for untreated Au-plated PMMA samples using 

the second generation force-measuring device. Sample 2 is presented in Figure 20. Au was 

deposited onto all samples using the same magnetron sputtering deposition parameters. 
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Figure S7. Calibration curve generated for the first generation force-measuring device prior to 

installing the modified spring system. Pressure 1 and 2 values for post-treated samples 2-6 and 

untreated samples 1-3 were calculated using this linear fit. The x-axis values represent the screw 

length caliper reading and are designated as negative to indicate an increasing change in distance 

from the initial caliper reading.  
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Appendix: Electron-beam Evaporation: Gold Deposition 

Last Edited: 3/5/2014 

 

1. Start up the computer. 

2. Click on the green START icon located in the bottom left corner of your desktop, and 

proceed to click on the MB_EVAP icon. 

3. A pop-up screen should appear. Click on “RUN.” Note: you don’t need a password, so 

just click “Ok” whenever you’re asked to provide one.  

4. You should now have three main windows open: a window in the bottom left-hand corner 

named SQS-242, a System Parameters window in the upper left-hand corner, and an 

MBraun Vacuum System Controller window that takes up the entire right side of the 

screen.  

5. In the Vacuum System Controller window, there are two buttons at the bottom of the 

screen, “Auto” and “Manual” Click on the “Manual” setting. 

6. Turn on the nitrogen source. On the side wall to the left of the monitor, there is a column 

of three levers with red handles, each of which should be pulled down parallel to the wall. 

Flip the top-most and bottom-most levers (not the middle one!!!), making sure the 

handles are perpendicular to the wall. 

7. Go to the Vacuum System Controller window, and proceed to click on the “vacuum map” 

tab. Turn on the mechanical pump and press “Refill.” Fill the chamber until the pressure 

reaches 1000 mbar (look at the Chamber Gauge for this information).  
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8. Once the pressure reached 1000 mbar, you can open the door to chamber. DO NOT 

OPEN THE CHAMBER IF THE INTERNAL PRESSURE IS LOWER THAN 1000 

MBAR!!! 

9. When opening the chamber, align the flat edge of the handle with the door. Vacuum out 

the chamber to remove any loose debris. 

10. Place your samples on the purple rotary holder.  

11. Screw rotary holder into the top of the chamber, with the purple side of the holder facing 

upward. Make sure to insert the two washers between the holder and the screw. Turning 

the screw counterclockwise tightens the screw; a clockwise turn loosens the screw.  

12. Check rotary holder to make sure it is spinning properly. Go to the “evaporator 

functions” tab in the Vacuum System Controller window. Click on “Evaporator Rotary 

Holder.” The rotary holder should be spinning when this button is green.  

13. Check the substrate shutter to make sure it can open and close properly. Go to the 

“evaporator functions” tab and click on “Evaporator Substrate Shutter.” This button 

should be red when the shutter is closed and green when the shutter is open.  

14. Close the chamber door. Go back to the “vacuum map” tab and click on “Evacuate.” You 

are now evacuating the chamber using the mechanical pump. Wait until the pressure 

reaches 1x10
-1

 mbar. 

15. While you’re waiting, record the following parameters: deposition rate (A/s), thickness 

deposited (A), rp (pressure after using mechanical pump), and cp (pressure after using the 

cryo pump). Include your initials and the date.  
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16. When the internal pressure reaches 1x10
-1 

mbar, turn off the mechanical pump (click 

“Evacuate” and turn on the cryo pump (click “Hi Vac Valve”). Wait until the pressure 

inside the chamber is 5 x 10
-5

 mbar. 

17. While you’re waiting, go to the SQS-242 window. Click [Edit => Process]. The process 

should be set to gold sputtering (goldsp). Makes sure the deposition rate is correctly set, 

typically at 1 A/s. [Set Pt]. Also, make sure the desired thickness of the Au thin film is 

set, typically either at 0.060 kA or 1.000 kA [Final Thick]. 

18. When the internal pressure reaches 5x10
-5 

mbar, focus your attention on the black circuit 

box located beneath the monitor. Flip the Main Power switch located in the bottom left-

hand corner of the circuit box. 

19. Wait 2-3 minutes. 

20. Press the ON button located in the top right-hand corner of the circuit box under 

“Voltage/Emission.”  

21. If the entire power supply cuts off, you have open the cabinet located next to the circuit 

box and flip the switch. Wait at least 10 minutes before attempting to turn on the power 

again.  

22. Go to the SQS-242 window and click on “Start Process.” 

23. Wait for 3 minutes and 30 seconds while the Ramp 1, Soak 1, and Ramp 2 phases 

proceed. 

24. Go the “evaporator functions” tab. When the “Shtr Delay” phase is reached, be ready to 

open the substrate shutter by clicking on “Evaporator Substrate Shutter.” The Shtr Delay 

phase typically lasts about 40 seconds. 

25. Keep the shutter open during the deposit phase. 
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26. Record the temperature of the cryo pump during deposition. 

27. Close the substrate shutter after depositing the desired amount of Au onto your samples. 

The area that says “Thick[kA]” tells you the amount of gold in kA that has been 

deposited.  

28. Press the OFF button, located right next to the ON button, and wait for 2 minutes. 

29. Turn of the main power supply. 

30. Turn off cryo pump (Press “Hi Vac Valve” under the “vacuum map” tab) Press “Refill” 

and fill the chamber until the pressure reaches 1000 mbar. 

31. Open the substrate shutter (“Evaporator Substrate Shutter”) and stop the rotary holder 

(“Evaporator Rotary Holder”). 

32. You can now open the chamber and remove your samples.  

33. Close the chamber door and evacuate the chamber until the pressure reaches either 10 or 

20 mbar.  

34. Press “Auto” in the Vacuum System Controller Window. Turn off the mechanical pump 

(but not the cryo pump!) 

35. Turn the nitrogen off. 

36. Exit out of the program. 

37. Shut the computer off. 

 

Troubleshooting: 

1. If the power cuts off when you press the ON button, check for flipped switch and wait for 

10 minutes.  
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2. If it takes 30 minutes or more for the scroll pump to evacuate the chamber to 1X10
-1

 

mbar, something needs to be replaced. Find Harry Hu for assistance.  

3. In the SQS-242 window, click “view” and then “sensor” reading. If the lifetime is 20% or 

less, the supply of gold is too low. 

4. Make sure the door of the cabinet with the switches is latched tightly.  

5. Vacuum up loose debris from vacuum chamber. 

6. Clean & use nitrogen air compressor.  
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  Simplified Instructions for Operating the Edwards Auto 500 Magnetron Sputtering System (a.k.a. 

Magnetron Sputtering for Dummies) 

Last Edited: 10/12/2015 

 

Important Terminology 

 

          

 

 

      

 

 

Vacuum Chamber and Turbo Pump Magnetron Control Center DC Power Supply 

Gas Flow Control Panel Big Black Control Panel 
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Turning on the Instrument 

 

1. Turn the water on. The water flow meter is located behind the Magnetron, next to an 

electrical outlet and a vent. Pull the yellow handle up so that the float in the water flow 

meter is at 0.5 to 0.6 GPM. It may be noisy, but don’t panic!! This is typical.     

              

Edwards AUTO 500 Magnetron Sputtering System Control Panel 

Vacuum System Control Panel 
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2. Press the green “On” button, which is located on the Edwards AUTO 500 Magnetron 

Sputtering System Control Panel. At this point, the green “Vacuum System” and “Control 

Cabinet” indicators should light up.  

               

3. Rotate the black switch from “0” to “1.” This switch is located at the top of the Big Black 

Control Panel. 

              

4. Go to the Vacuum System Control Panel. First press the “Reset” button, then press the 

“Start” button. 

5. Take the black key, insert it into the black keyhole located underneath the vacuum 

chamber, and turn the key a ¼ turn counterclockwise. 

              

 

6. Once you’ve opened the door, you should see a blue “Start/Stop” button. If the green 

light does not turn on within 5-10 minutes, press the button.                                            
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7. The turbo pump should start spinning up. A series of four lights is present on the same 

control box as the “Start/Stop” button.  As soon as the pump has spun all the way up, the 

two right hand lights should appear orange and the two left hand lights should appear 

green. You can then proceed to fill the vacuum chamber. 

              

 

Filling the Vacuum Chamber 

1. You will see three red valves located behind the Magnetron. To turn on the nitrogen gas 

supply, flip the bottom two valves so that they are pointing outward from the wall. The 

top valve opens the N2 supply to the e-beam deposition system, so you DO NOT need to 

flip this valve. 
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2. To fill the chamber with N2, press the “Vent” button, which is located on the Vacuum 

System Control Panel. The pressure inside the chamber should reach 760 Torr (as shown 

in the image below). 

                     

3. To open the chamber, pull up on the black handle that’s attached to the right side of the 

chamber door. Even though the chamber pressure gauge may read 760 Torr, if you cannot 

open the door, then the pressure inside the chamber has not reached atmospheric 

pressure. Wait until you can push up the handle and open the door with little effort.  

 

Placing Samples in the Chamber 

1. Unscrew the purple rotary sample holder from the chamber ceiling. Use the metal wrench 

with the red rubber handle. If the bolt/screw that holds the sample holder in place is not 

visible or accessible, see Step 4 to learn how to rotate the holder to access the bolt. 
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2. Place the plate (sample holder) on clean Berkshire© wipes on the table top. Load samples 

into the windows from the backside of the plate. Make sure that the side onto which 

you’re trying to deposit metal is facing downward. 

 

3. Slip the plate onto the shaft in the top of the chamber. When the screw on the holder is 

aligned with the groove in the shaft, use the wrench with a red handle to tighten the 

screw. The screw keeps the plate from slipping back off the shaft, so make sure it is snug. 

However, do NOT overtighten the screw.  

              

4. Go to the Big Black Control Panel. To start rotating the holder, press both the start button 

and the button located to the left of this button. Both of these buttons should be pressed 

IN. This should make the plate rotate. The green light located next to these buttons 

should come on.  
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5. Make sure the shutter over the target you plan to use is working. Shutter 1 is over the 

front left target, Shutter 2 is over the rear left target, and Shutter 3 is over the rear right 

target. The Big Black Control Panel contains two “Source Shutter” panels. If you need to 

use Target 1 or Target 2, go to the left panel and press either the SS 1 or SS 2 button, 

respectively. If you need to use Target 3, go to the right panel and press the SS 1 button. 

When the button is pushed IN, the shutter is open. When the button is pushed OUT, the 

shutter is closed. 

               

6. If you have dropped anything in the chamber, you MUST find it and remove it before 

proceeding. Seek assistance if necessary. Carefully look for metal flakes and metal 

peelings anywhere in the chamber and remove loose metal with the vacuum cleaner at the 

sticky side of adhesive tape.  

7. Once you’re sure that the shutter is working and the sample holder is rotating, close the 

chamber door.  

 



 

76 

Evacuating the Chamber 

1. Go to the Vacuum System Control Panel. Press the “Cycle” button, which is located 

directly next to the “Vent” button. At this point, you need to wait until the chamber 

pressure inside the chamber reaches 9.0 e
-5

 Torr. This process will take about 10-15 

minutes. About 2-3 minutes in, you’ll hear a small “pop.” Don’t be alarmed! This just 

means the pumping is switching from the mechanical pump to the Turbo pump. While 

you’re waiting, you can set the timer to the amount of time for which you would like to 

carry out the deposition. 

2. Once the pressure reaches 9.0 e
-5

 Torr, proceed to complete this next series of steps, 

which can be completed in any order.  

a. Turn the yellow handle of the water flow meter up so that the water level is all the 

way up above 2.0. The green “Water Cooling” light should come on. 

b. Go to the right hand blue-green gas tank located behind the E-beam. The white 

label should indicate that the tank contains compressed argon. Turn the knob at 

the top of this tank a few rotations counterclockwise. The other tank contains 

Ar/O2, which is needed only when depositing metal oxides.  
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c. Go to the Gas Flow Control Panel. Flip the “Power” switch up. 

                            

d. Go to the “1” switch. This switch has three positions: down, level, and up. Pull 

this switch up so that it is in the “level” position. 

                                   

 

3. Go to the DC Power Supply. Press in the “Power” button so that the red light turns on. 

              

4. At this point, check the chamber pressure. Once the pressure is at or below 7.0 e
-5

 Torr, 

record both this pressure and the back pressure. You view the back pressure reading by 

pressing the down arrow button. You can then return to viewing the chamber pressure by 

pressing the up arrow button.  

              

Down Level Up 
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5. Press the “Seal” and then the “Process” button. If you do this properly, the green 

“Sputtering Enabled” light will come on. At this point, all four system interlocks present 

on the Edwards AUTO 500 Magnetron Sputtering System Control Panel should be lit up.  

              

6. Shortly after the “Sputtering Enabled” light turns on, the green “Gas Control Enabled” 

light will come on. This indicator is located next to the Gas Flow Control Panel. Once 

this occurs, you can press the “Gas 1 Enabled” button. 

 

 

Metal Deposition 

1. Make sure you know which DC Power Supply you need to use.  The upper supply 

provides power to Target 3. The lower supply provides power to Target 1 or Target 2. 

The “RF & DC Power Selector Switch” in the Big Black Control Panel must be set to 

Source 2 DC in order to use Target 2.  

2. Go to the “Right Display” area on the DC Power Supply and press the “SETPT” button. 

Turn the black “Level” knob to adjust the power. Turning the knob clockwise increases 

the power. Set the power to 30W. 
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3. Go to the “Output” square present on the DC Power Supply and press the “On” button. 

The four indicators shown here should light up.  

                 

4. To generate the plasma, go to the Gas Flow Control Panel and turn the “1” switch to the 

“up” position. If the red “PLASMA” indicator does not light up in Step 3, then 

implementing Step 4 will cause this to happen.  

5. Turn the “1” switch back down to the “level” position. 

6. Go back to the DC Power Supply and turn the “Level” knob until you reach the desired 

wattage, but no more than 300W. With the “SETPT” button, the set wattage will read two 

watts higher than the actual power. You can press the “ACTUAL” button to view the 

actual wattage. The “SETPT” button can also be used to view the current and the voltage. 

Simply press the button until you reach the desired parameter, which is indicated to the 

right of the digital reading.  

7. Start the timer and press the shutter button IN at exactly the same time. This opens the 

shutter and starts depositing metal.  
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8. While you’re waiting for the timer to go off, record the chamber pressure, the back 

pressure, and the Argon gas flow, which is in units of sccm and can be read off the Gas 

Flow Control Panel. 

              

9. Press the shutter button back OUT as soon as the timer goes off. This closes the shutter 

and stops the metal deposition. 

10. Go to the DC Power Supply and turn the “Level” knob counterclockwise until the 

wattage is back down at 30W. You can then push the “off” button located in the Output 

box and the power button.  

11. Press the “Gas 1 Enabled” button so this light goes off.  

12. Go to the Gas Flow Control Panel. Push the “1” switch to the “down” position, and flip 

the power switch so that the lever is down. Go to the Ar gas tank and turn the knob 

clockwise until you can no longer turn it.  

13. Go to the water flow meter and push down the handle so that the float in the water flow 

meter is at 0.5 - 0.6 GPM.  

 

Removing Samples from the Vacuum Chamber 

1. Go to the Vacuum System Control Panel. First press the “Seal” button, the press the 

“Vent” button. Wait until the chamber pressure reaches 760 Torr. Once again, the 

chamber door will automatically unlock. DO NOT try to force the door open. 
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2. Go to the Big Black Control Panel and press the rotary holder buttons OUT. Time this so 

that the rotary holder stops spinning with the screw facing towards you. Remove the 

rotary holder from the vacuum chamber.    

3. Once you have taken your samples out of the rotary holder, screw the holder back into 

the chamber and close the door. Repeat Step 1 from Evacuating the Chamber. While 

you’re waiting for the pressure to reach 9.0 e
-5

 Torr, turn off the N2 gas by flipping the 

two red valves down. 

4. Once the chamber pressure reaches 9.0 e
-5 

Torr, go to the Vacuum System Control Panel 

and press the “Seal” button. At this point, you do not have to shut the instrument off if 

you plan on using it in the imminent future. 

 

Shutting the Sputtering System Off 

1. If nobody is planning on using the Magnetron for a while (at least for a weekend), then 

you need to completely shut the instrument off. First, go to the Vacuum System Control 

Panel and press the “Stop” button after pressing the “Seal” button. At this point, the turbo 

pump will power down. This can take up to an hour, so find something else to do while 

you’re waiting! 

2. You can proceed to the next step once all four of the lights present on the turbo pump 

control box have gone off. Go to the Big Black Control Panel and turn the black switch 

from “1” back to “0.”  

3. Press the red “Off” button, located under the green “On” button on the Edwards AUTO 

500 Magnetron Sputtering System Control Panel. 

4. Make sure the door located underneath the vacuum chamber is locked. 
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5. Go to the water valve and push down the yellow handle until you’ve turned the water 

supply off. Do NOT cut off the water supply as long as the turbo pump is running!!!!!! 

 

A Few Notes about Using the Timer 

1. There are two yellow switches present on the right side of this timer. The bottom switch 

controls which timer is being used (T1, T2, or T3). The top switch has two settings: 

“Lock” and “Set.” Use “Set” when setting the timer. Use “Lock” once you’ve set the 

desired time and are ready to run the timer. 

2. You need to use considerable force when pressing the “Clear,” “Memory,” or 

“Start/Stop” buttons.   

      

IMPORTANT NOTES 

Choosing a Metal Target 

 As you’ve probably noticed, there are two DC Power Supply panels. The top panel 

controls Targets 1 and 2. On the Big Black Control Panel, there is a knob that controls 

which target is in use (see image below). Use either “Source 1 DC” or “Source 2 DC.” 

The bottom panel controls Target 3. 
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 As of 5/28/15, Target 1 contains manganese, Target 2 contains chrome, and Target 3 

contains gold. This is subject to change at any time. Check the Magnetron Sputtering 

System lab notebook to see the most updated schematic of each target. 

 

Troubleshooting 

 The most important step of the sputtering process is ensuring that the float in the water 

flow meter is ALL THE WAY ABOVE 2.0 DURING PLASMA GENERATION AND 

METAL DEPOSITION!!!! Water is needed to cool the pump and the target guns, so 

overheating is very bad.  

 Because the water used to cool the system comes from a public source, fluctuations of the 

water level can result from the use of a sink or the flush of a toilet. Regularly monitor the 

water level during both the plasma generation and metal deposition steps. 

 Once the chamber pressure has reached 7.0e
-5

 Torr or lower, you are supposed to press 

the “Seal” and then the “Process” button. Sometimes, if you wait too long to press the 

“Seal” button, the “Sputtering Enabled” light will not come on. If this light does not 

come on after 5 minutes, press the “Seal” button and then the “Cycle” button, then wait 

until the pressure reaches 7.0e
-5

 Torr again.  
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Suggested Recipes for Gold Sputtering 

 75W for 90s – approximately 300 Å 

 150W for 7 min. – approximately 1300 Å 

 

Vacuuming the Chamber 

 If you start seeing metal flakes appear at the bottom of the chamber, vacuum out the 

chamber floor. Especially make an effort to remove flakes from the ¼ inch disk that is the 

valve of the Turbo pump. Flakes can get sucked into the pump, and this needs to be 

avoided at all costs.  

 If flaking occurs on the walls, use scotch tape to rip off the metal. Store pieces of tape in 

the appropriate Zip Lock bag, which is located in the beige supply cabinet.  

 

Format for Recording Parameters in Lab Notebook 

Date    Initials    Chamber Pressure before Deposition    Back Pressure before Deposition 

                            Power during Deposition                          Ar Gas Flow 

                            Chamber Pressure during Deposition    Back Pressure during Deposition  

                            Time of Deposition                                    Rotation On 

 

Example: 

 

5/28/15     KK    Pch = 7.0e
-5

      Pback = 4.2e
-2

 

                           75W                Ar flow = 4.81 

                           Pch = 2.3e
-3        

Pback = 6.0e
-2

 

                            90s Dep.         Rot. On.                                 
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