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Abstract 

Previous studies show that 1,2-disubstituted cyclobutenes can be used in reaction with 

difluorocarbene to produce 1,3-difluorobenzenes. A pathway to the synthesis of these types of 

compounds is of interest due to their presence in fluoroquinolone antibacterials, resins, and 

insecticides. The synthesis is unique because the fluorine atoms from the difluorocarbene are not 

adjacent to each other when the ring expands to a benzene ring. This study focuses on the 

reaction of difluorocarbene with 1-phenyl-2-methylcyclobutene, which was synthesized in one-

pot in 4 steps starting from 1-phenyl-1-propyne and zirconocene dichloride. 
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Chapter 1 

Introduction 

One of the most unique elements that has yet to be fully explored is fluorine.  Since first 

being successfully isolated by Ferdinand Frederic Henri Moissan in 1886, it has been used in a 

variety of industries, from medicine and health, to agriculture and synthetic polymers.
1
 With an 

electronegativity value of 4.0, the highest of all the elements, fluorine has the capability of 

reacting with almost any element.  Despite its high reactivity, it can still form some of the most 

stable and inert substances, such as Teflon.  Some common applications include fluoride in 

toothpaste and drinking water, synthetic blood substitutes, and the production of insulators, 

flame-retardants, and batteries.
2
  

Elemental fluorine is extremely toxic and corrosive. When in contact with organic 

compounds, it will spontaneously combust or explode. Its unique smell, similar to a mixture of 

chlorine and ozone, is detectable by smell even at 10 ppm. Elemental fluorine is so unusual, it 

can even react with noble gases like krypton and xenon. Its homolytic dissolution into radicals 

makes it dangerous for living organisms but also contributes to its reactivity, causing high redox 

potentials. Due to its high electronegativity, smallest ion size (ion radius 133 pm) and being the 

least polarizable monatomic anion, it can stabilize other elements in their highest and otherwise 

inaccessible oxidation states. The compatible size also make it an excellent match for the 

corresponding 2s or 2p orbitals of carbon, producing a highly polar bond with a dipole moment 

of around 1.4 D. The strength of this bond (think Teflon) and the electrostatic interactions that 

result from the polarity lend themselves to be very useful in a variety of industries.
3
   

Interestingly, fluorine has been found to have an increasingly larger effect on the 

pharmaceutical industry over the past few decades. Despite its reactivity, the chemical and 
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physical properties of fluorine have been utilized to increase the efficacy of a number of drugs to 

treat all kinds of diseases (Figure 1).
4
 In general, pharmaceuticals depend on a specific 

interaction with a target structure in an organism. The strength of this interaction can be 

determined by the structure of the drug which then affects its function. Fluorine has become an 

obvious choice to replace a hydrogen atom. Both atoms are similar in size so the replacement 

will not significantly change the size or geometry of the molecule due to steric hinderance. 

However, because fluorine is so electronegative, it can greatly affect the functionality of a part of 

the molecule and change its interactions with other molecules.
3
 It changes the electron 

distribution of the overall molecule while also affecting the acidity or basicity of the neighboring 

groups.
5
  

The replacement of hydrogen with fluorine also increases the lipophilicity of the 

molecule, which affects resorption. This helps the drugs get to their target organ more quickly. 

Figure 1. Examples of fluorine-containing pharmaceuticals: non-steroidal anti-inflammatory drugs (Roflumilast, 

Celebrex), modulators of cholesterol metabolism (Cerivastatin, Ezetimibe), anti-depressants (Fluoxetine), 

antibiotic (Ciprofloxazin), and anti-virals (Efavirenz, Gemcitabine).
4
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Additionally, drugs that target the central nervous system need a specific lipophilicity to cross 

the blood-brain barrier so the degree of fluorination can be used to manipulate this property. The 

electronegativity of fluorine substituents on aromatic rings renders the other aromatic hydrogen 

atoms more acidic, contributing to their potential as hydrogen bond donors.
3
  

The replacement of hydrogen with fluorine can also prevent excessively rapid 

degradation of the drug. Metabolic pathways that usually depend on the functionality of 

hydrogen will be rendered useless with a fluorine in that position instead. The select placement 

of a fluorine atom can prevent the premature degradation of the drug, leaving the intended 

reaction sites open for the biological activation of the prodrug.
3
 For example, Figure 2 shows the 

Figure 2. Blocking of unproductive metabolic pathways by fluorination as a design tool for an orally active 

inhibitor of cholesterol absorption. The result of this rational approach (SCH 58235) is 50 times more active than 

the conceptual starting compound SCH 48461. (ED50 refers to reduction of liver cholesterol esters in hamsters).
6
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changes made in an orally active inhibitor of cholesterol absorption to prevent oxidation and 

increase efficacy. Without fluorine atoms on the left and right phenyl groups, one phenyl group 

is oxidated while the methoxy substituent becomes demethylated under normal biological 

conditions. The addition of fluorine atoms prevents this “non-productive” metabolism and helps 

activate the metabolism that is needed for the activation of the drug. It was found that this change 

increased activity by 50 times compared to the starting compound.
6
  

The presence of fluorine on aromatic rings (and thus the synthesis of aryl fluorides) is of 

particular interest. In fact, more than 20% of pharmaceuticals currently contain fluorinated 

aromatic substructures.
3
 These are mostly fluoroquinolones, which are a group of antibacterial 

drugs that are necessary to combat infections that have arisen due to the growing resistance to the 

traditional antibacterials like penicillins, cephalosporins, and tetracyclines. Norfloxacin was one 

of the first to be introduced in 1980. Since then, many more fluorine-containing antibacterials 

have been designed and produced. They have been found to treat a multitude of diseases, 

including lower respiratory, urinary tract, and prostate infections. The only current treatment for 

malaria, mefloquine has two trifluoromethyl groups attached to aromatic rings (Figure 3).
5
 

 

 

 

 

 

 

The agricultural industry has even more applications of fluorinated aromatic substances, 

making up more than 50% of newly introduced compounds. Although it can be more expensive 

Figure 3. Structure of mefloquine, used to treat malaria.  
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to make these compounds, the increased effectiveness greatly outweighs the cost. This reduces 

the amount of chemicals that need to be put into the environment, making it safer overall. 

Fluorine is found in herbicides, insecticides, and pesticides. Fungicides in particular have been 

synthesized with fluorine attached to a benzene moiety integrated into the molecule (Figure 4). 

They act as sterol biosynthesis inhibitors by blocking a crucial demethylation step in ergosterol  

biosynthesis. Insecticides like benzoylureas function by inhibiting chitin biosynthesis (Figure 5).
5
 

Figure 4. Examples of fluorinated fungicides that function as sterol biosynthesis inhibitors.
 5
 

Figure 5. Examples of the different types of fluorinated insecticides. From top to bottom: benzoylureas and 

pyrethroids.
5
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The use of fluoroaromatics in these various industries presents the need for an effective 

and selective synthetic method. Fluorobenzenes have proven to be especially difficult to 

synthesize.   Previous pathways of achieving this aromatic C-F bond resulted from the reaction 

of aromatic C-H bonds with F2; however, this reaction often produces large amounts of explosive 

waste.
3
 Another synthetic route is the Balz-Schiemann reaction, which is still the primary 

method of fluorinating benzene rings. This multi-step process involves the diazotization of an 

aromatic amine in the presence of tetrafluoroboric acid (Figure 6). However, this reaction also 

produces a large amount of waste, which is something to avoid, especially in a large-scale 

manufacturing industry. It has been a long-standing goal to make the production of 

fluoroaromatics more efficient in order to more easily capitalize on fluorobenzene as a reagent in 

further reactions.
7
  

 

 

 

 

The synthesis of fluorobenzene leads one to attempt to synthesize difluorobenzenes. This 

problem proves to be even more difficult due to the extreme electronegativity of the fluorine 

atoms and its directing influence during a typical electrophilic aromatic substitution reactions. 

During an EAS reaction, an electrophile interacts with the π system of the electron-rich benzene. 

A carbocation intermediate is created but is stabilized by resonance and then an aromatic proton 

is lost to restore the aromatic six-membered ring (Figure 7). Fluorine has the ability to donate 

electrons to participate in resonance, stabilizing the ring, but also directing the next atom to 

attach to the ortho or para position, to yield 1,2- or 1,4-difluorobenzene (Figure 8). In addition, 

Figure 6. Balz-Schiemann fluorination of aryl diazonium tetrafluoroborates.
7
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once on the ring, fluorine deactivates the ring by inductively withdrawing electron density away 

from the ring, making it difficult to add any additional substituents. For fluorine (and the other 

halogens) the inductive withdrawal is great than the resonance donation, leading to a net 

deactivation towards electrophilic aromatic substitution.   

This leaves a large gap in the literature for methods to achieve a 1,3 orientation on a 

benzene ring. This moiety is present in compounds like Hexaflumuron, Ci-934, and Diflunisal. 

Hexaflumuron is sold as a commercially useful termite poison
8
 while compound CI-934 is a 

potent antibacterial agent against Gram-positive isolates
9

 and Diflunisal is a steroidal anti-

inflammatory drug. Used to treat arthritis pain, its mechanism of action involves preventing 

protein mis-folding that occurs due to minor mutations.
10

  

 

 

 

 

 

 

 

 

CI-934
9
 

Figure 9. Examples of industrially useful compounds with 1,3-difluorobenzene moieties.  

Hexaflumuron
8
 Diflunisal

10
 

Figure 8. Fluorine directed electrophilic aromatic substitution of a second substituent to the ortho position.  

Electrophilic aromatic substitution. Addition to the para position would yield similar resonance structures. 

Figure 7. Electrophilic aromatic substitution. 
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This leads to the purpose of this project – to improve the methodology of synthesizing 

1,3-difluorobenzenes but not by the reaction of elemental fluorine to an already intact benzene 

ring. We propose the reaction of substituted cyclobutenes with difluorocarbene to achieve a 

difluorobenzene with the fluorine atoms meta to each other.  In addition to adding to the 

literature by discovering more about the mechanism of this reaction, the resulting compounds 

have the potential to be used in a variety of industries.   
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Chapter 2 

Mechanistic and Synthetic Explanation 

In 1994, Lewis and Borden presented the use of difluorocarbene to synthesize a 

difluorobenzene via a cyclobutene intermediate. This ring expansion was achieved by the 

addition of Seyferth’s reagent (phenyl(trifluoromethyl)mercury(II)) to 1,2-diphenylcyclobutene 

(Figure 10). Later it was shown the synthesis could be successful using various substituted 

cyclobutenes.
11

 The use of a non-benzene precursor for the synthesis of fluorobenzenes 

eliminates the production of large amounts of explosive waste that comes from the                 

Balz-Schiemann reaction. Hopefully the ability to produce compounds with a larger variety of 

substituents can be realized using this approach.
7
 

 

Difluorocarbene is very reactive and has a short half-life on its own, justifying the use of 

Seyferth’s reagent, Ph-Hg-CF3. The precursor undergoes an SN2 style reaction in the presence of 

NaI, replacing the trifluoromethyl group with iodine. The leaving group, 
-
CF3, is unstable and 

spontaneously separates into a fluoride ion and difluorocarbene (Figure 11). The difluorocarbene 

is now free to attack the cyclobutene.  

 

 

Figure 10. Reaction of Seyferth’s reagent and 1,2,-diphenylcyclobutene to make 1,3-difluoro-2,4-diphenylbenzene. 

Figure 11. Formation of difluorocarbene from Seyferth’s reagent. 

I

NaI
Ph - Hg - CF3 Ph - Hg - I  +  CF3 F  +  CF2
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This reaction is believed to follow a cationic mechanism (Figure 12). When the 

difluorocarbene is added to the cyclobutene, it forms a strained housane intermediate. One 

fluoride ion leaves, allowing the ring to expand and relieving the strain. The allylic ion expands 

into a five-membered ring. A proton is immediately expelled, forming a double bond and leaving 

behind an even more stable, neutral fluorocyclopentadiene structure. A second equivalent of 

difluorocarbene is then added and reacts with the non-fluorinated double bond of the 

cyclobutadiene (Figure 13). It is thought that the non-fluorinated double bond is attacked in the 

second step because it is more electron rich than the other double bond, which is under the 

electron withdrawing effect of the fluorine substituent.
11

 The 1,3-difluorobenzene is complete 

with the loss of a fluoride ion and proton to form the aromatic ring. 

 

 

 

 

 

 

Figure 12. Proposed cationic mechanism of the addition of 1 mol difluorocarbene to disubstituted cyclobutene. 

Figure 13. Addition of the second mole of difluorocarbene. 
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This cationic mechanism is consistent with the results of reactions using symmetrically 

substituted cyclobutenes as precursors. This study investigates an asymmetric cyclobutene which 

will result in the possible formation of various isomers (Figure 14). By determining which 

isomer is the major one, the validity of the cationic mechanism can be determined. Using a 

cation-stabilizing substituent like benzene should allow for the control of the preferred location 

of the cation after the addition of the first mole of difluorocarbene.  

 

 

 

Investigation of the potential cyclopentadiene intermediates shows differences in stability 

based on the orientation of the π system. The presence of a phenyl group on the cyclopentadiene 

provides the possibility for conjugation or cross-conjugation. This is related to a conjugated π 

system, where an alternating pattern of single and double bonds allows the general delocalization 

of electrons. The flow of electrons through the system stabilizes the molecule, which is present 

in benzene for example. Cross conjugation occurs when only a limited number of a set of π 

bonds interact with each other. While these molecules may look like normally conjugated 

Figure 14. Possible isomers formed from the reaction of difluorocarbene with 1-phenyl-2-methylcyclobutene.  
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molecules, inspection of their resonance structures shows that not all the π bonds participate in 

resonance (Figure 15). The cross-conjugated molecules are higher in energy because of reduced 

intramolecular electron delocalization and resonance capability than are their fully conjugated 

systems relatives.
12

 Of the two potential intermediates that would be formed by the cationic 

mechanism, one is cross-conjugated and one is fully conjugated, leading to the formation of 

compounds 1 and 3 respectively (Figure 14). The identification of the major isomer formed will 

provide more evidence toward the validity of this cationic mechanism and the ability to use this 

synthesis for the production of 1,3-difluorobenzenes from disubstituted cyclobutene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Resonance structure differences between fully conjugated (top) and cross conjugated (bottom) 

systems.  

This double bond is not 

conjugated to the arene. 
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Chapter 3 

Results and Discussion 

The synthesis of 1,3-difluoro-2-methyl-4-phenylbenzene was achieved by the addition of 

Seyferth’s reagent (Ph-Hg-CF3) to 1-phenyl-2-methylcyclobutene (Figure 16). A solution of      

1-phenyl-2-methylcyclobutene (5) was added to dried NaI and Seyferth’s reagent. After heating 

to reflux for 24 hours, the reaction was filtered and concentrated.  

Previous attempts have shown this reaction with Seyferth’s reagent to be very 

temperamental. The reagent itself is not reliable to work on a consistent basis. The reaction will 

also only work if the starting cyclobutene is extremely pure. The purification of this molecule 

was found to be difficult, especially the separation from its starting material,            

Z-1,4-diiodo-4-phenyl-3-methyl-3-butene (4). Extreme care was taken to combine only the 

fractions of the column that had completely separated products. All reagents used in the ring 

expansion reaction were dried under vacuum to ensure the absence of water. Despite these 

efforts, trace contaminants could still prevent the production of the 1,3-difluorobenzene product.  

Figure 16. Overall reaction scheme. 

a. 2M EtMgBr/THF/-78°C 

b. Phenylpropyne/THF/0°C 

c. I2/THF/RT 

d. n-BuLi/ether/-78°C 

e. NaI/PhHgCF3/benzene/reflux 

CH3

I

I

CH3

Fa

CH3

Fb

d ea b c
ZrCp2Cl2

34 5

Ha

Hb
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 The product 3 was characterized using GC/MS, which showed the major peak at 6.5 

minutes with a parent ion peak having a 204 mass to charge ratio. This matches the expected 

value for either isomer of the difluorobenzene that was expected from this reaction. A 
19

F NMR 

confirmed the addition of two fluorine atoms and therefore the structure of 3 (Figure 16). 

Aromatic fluorine atoms have a chemical shift in the -100 to -150 ppm region. Two signals were 

found at around -120 ppm which are consistent with expected peaks for the placement of the 

fluorine atoms on the benzene ring. With the purification of the product, exact peaks could be 

assigned but due to impurities, just the existence of signals in the aromatic region confirms the 

addition of two fluorine atoms to the benzene ring. The exact structure was confirmed by the 

cleaner 
1
H NMR.  

The 
1
H NMR showed interesting coupling due to the fluorine atoms and confirmed that 

isomer 3 was formed, with the methyl group situated between the two fluorine atoms on the 

benzene ring. Since fluorine is similar to hydrogen in size, there is very strong coupling between 

Figure 17. Magnified view of aromatic region of 
1
H NMR of 1,3-difluoro-2-methyl-4-phenylbenzene 3. 
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protons and fluorine atoms. Fluorine can couple up to seven bonds away due to electron pairs, 

causing extra splitting in the 
1
H spectrum. The peak assigned to the protons on the methyl 

substituent at 2.09 ppm (J = 5.16 Hz) appeared to be a triplet because of coupling from fluorine 

atoms on either side of it. The presence of a doublet in this peak would suggest only one fluorine 

neighbor and the formation of isomer 1, with the phenyl group in between the two fluorine atoms 

instead of the methyl group. 

A magnified view of the aromatic region of the 
1
H NMR of 3 showed two smaller peaks 

on either side of the multiplet assigned to the phenyl substituent group at 7.39 ppm (Figure 17). 

An apparent triplet was found at 7.14 ppm (J = 7.65 Hz) and a doublet of doublets was found at 

7.72 ppm (J = 8.34 Hz, J = 1.17 Hz). These were assigned to Hb, next to Fb, and Ha, next to the 

phenyl substituent, respectively. These splitting patterns are expected with the structure of this 

isomer. The atom Fb and Ha split Hb at 7.14 ppm into an apparent triplet while Fa and Hb split Ha 

at 7.72 ppm into a doublet of doublets. This splitting pattern combined with the splitting of the 

methyl substituent protons supports the formation of isomer 3 over isomer 1 and provides further 

evidence for the validity of a cationic mechanism with a fully conjugated fluorocyclopentadiene 

intermediate for the addition of difluorocarbene to an asymmetric disubstituted cyclobutene.   

It has not yet been confirmed whether Seyferth’s reagent can be recommended without a 

doubt for the use of this ring expansion reaction to make 1,3-difluorobenzenes. The lack of 

consistent success of the reaction invites further studies to improve the reaction. Other 

investigations are being done using differently substituted alkenes to make various cyclobutenes. 

This will demonstrate the regioselectivity of the reaction and how substituents with different 

sizes and properties affect the reaction. It is still a desire to declare with more certainty the 
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successful completion of this reaction for efficiency in production of various industrially useful 

compounds.  
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Chapter 4 

Experimental 

General Procedure 

All reagents were used as received from the manufacturer. All solutions were prepared in 

dry solvents from the solvent purification system separately right before use and cannula 

transferred to the reaction flask. All reactions were performed under inert gas conditions. Product 

concentration was accomplished using a Buchi Rotavapor R-114. An Agilent 6890N gas 

chromatograph with an HP-5MS 0.25mm x 30m x 0.25 um column coupled to an Agilent 6460 

triple quadrupole (QqQ) mass spectrometer was used to confirm products. A Bruker 400 MHz 

NMR was used to characterize all products. CDCl3 was used as the solvent, and chemical shifts 

are reported in ppm downfield from tetramethylsilane (δ scale). Procedures were modified from 

the original procedure by Morrison et al.
13

 

 

Preparation of Z-1,4-diiodo-4-phenyl-3-methyl-3-butene (4) 

Compound 1 was prepared by dissolving 1.26 g ZrCp2Cl2 (4.3 mmol) in dry THF in a 

250 mL round bottomed flask. To this, 4.5 mL EtMgBr (8.6 mmol) in ether was added dropwise 

to the flask and reaction allowed to stir at -78°C for one hour. Phenylpropyne (0.5 g, 4.3 mmol) 

in dry THF was added and stirred at 0°C for 6 hours and at room temperature overnight. The 

reaction was brought back to 0°C before adding 3.28 g I2 (12.9  mmol) in dry THF and stirred at 

room temperature overnight. Work-up involved removal of THF under reduced pressure 

followed by the addition of ether. The ether solution was treated with 3M HCl and allowed to stir 

for 10 minutes. The organic layer was separated and sequentially washed with 10% NaHCO3 and 

10% Na2SO3. The organic layer was retained, dried over Na2SO4, gravity filtered, and 

concentrated. The crude product was purified on a silica gel column eluted with cyclohexanes to 



 

23 

give a yield of 64%. The structure of the product was confirmed by GC-MS and NMR analyses. 

1
H NMR (CDCl3) δ: 1.78 (s, 3H), 3.04 (t, 2H, J = 7.52), 3.35 (t, 2H, J = 6.96), 7.28 (m, 5H); 

GC/MS (EI) m/z = 272, r.t. = 18 min.  

 

Preparation of 1-phenyl-2-methylcyclobutene (5) 

Pure products of 1 were combined and solvent was removed in vacuo. Dry ether was 

added to 500 mg of product (1.837 mmol), followed by the syringe addition of 0.346 mL           

n-butyllithium (3.675 mmol, 2.5 M in hexanes). The reaction was stirred for 1 hour at -78°C, 

after which 1 mL H2O was added to quench the reaction. The reaction was allowed to stir until 

coming to room temperature. Crude product was purified on a silica gel column eluted with 

pentanes to give a yield of 17%. The structure of the product was confirmed by GC-MS and 

NMR analyses. 
1
H NMR (CDCl3) δ: 1.28 (m, 4H), 1.56 (s, 3H), 7.29 (m, 5H); GC/MS (EI)     

m/z = 115, r.t. = 7 min.  

 

Preparation of 1,3-difluoro-2-methyl-4-phenylbenzene (3) 

A large excess of NaI was ground into a powder in a mortar and pestle and then added to 

a    25-mL 3-necked round bottom flask with a stir bar. It was dried under vacuum at 150°C for 

24 hours. Phenyl(trifluoromethyl)mercury(II) (Seyferth’s reagent) (264 mg, 0.763 mmol) was 

added to the flask and dried under vacuum at room temperature for 24 hours. A solution of       

10 mL dry benzene (Na/benzophenone) added to 50 mg of 2 (0.347 mmol) was added to the 

reaction flask. The flask was heated to reflux for 24 hours. The structure of the product solution 

was gravity filtered. The product was confirmed by GC-MS and NMR analyses. 
1
H NMR 

(CDCl3) δ: 2.09 (apparent t, 3H, J = 5.16), 7.13 (t, 1H, J = 7.65), 7.39 (m, 5H), 7.72 (d, 1H,        

J = 8.34, J = 1.17); GC/MS (EI) m/z = 204, r.t = 6.5 min 
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Appendix 

 
 

 

Z-1,4-diiodo-4-phenyl-3-methyl-3-butene (4): GC/MS 
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Z-1,4-diiodo-4-phenyl-3-methyl-3-butene (4): 
1
H NMR 
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Z-1,4-diiodo-4-phenyl-3-methyl-3-butene (4): 
13

C NMR 
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1-phenyl-2-methylcyclobutene (5): GC/MS 
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1-phenyl-2-methylcyclobutene (5): 
1
H NMR 
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1-phenyl-2-methylcyclobutene (5): 

13
C NMR 
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1,3-Difluoro-2-methyl-4-phenylbenzene (3): GC/MS 
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1,3-Difluoro-2-methyl-4-phenylbenzene (3): 
1
H NMR 
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1,3-Difluoro-2-methyl-4-phenylbenzene (3): 
1
H NMR aromatic zoom 
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1,3-Difluoro-2-methyl-4-phenylbenzene (3): 
19

 F NMR 
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1,3-Difluoro-2-methyl-4-phenylbenzene (3): 
19

F NMR aromatic zoom 
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