James Madison University JMU Scholarly Commons

Senior Honors Projects, 2010-current

Honors College

Spring 2016

Clinical study of canine tear lacritin as a treatment for dry eye

Katherine E. Kelly James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/honors201019 Part of the <u>Amino Acids, Peptides, and Proteins Commons, Biotechnology Commons</u>, and the <u>Small or Companion Animal Medicine Commons</u>

Recommended Citation

Kelly, Katherine E., "Clinical study of canine tear lacritin as a treatment for dry eye" (2016). *Senior Honors Projects, 2010-current.* 169. https://commons.lib.jmu.edu/honors201019/169

This Thesis is brought to you for free and open access by the Honors College at JMU Scholarly Commons. It has been accepted for inclusion in Senior Honors Projects, 2010-current by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.

Clinical Study of Canine Tear Lacritin as a Treatment for Dry Eye

An Honors Program Project Presented to

the Faculty of the Undergraduate

College of Integrated Science and Engineering

James Madison University

by Katherine Elizabeth Kelly

May 2016

Accepted by the faculty of the Department of ISAT, James Madison University, in partial fulfillment of the requirements for the Honors Program.

FACULTY COMMITTEE:

HONORS PROGRAM APPROVAL:

Project Advisor: Robert McKown, Ph. D. Professor, ISAT

Bradley R. Newcomer, Ph.D., Director, Honors Program

Reader: Ronald Raab, Ph. D. Professor, ISAT

Reader: Stephanie Stockwell, Ph. D. Assistant Professor, ISAT

PUBLIC PRESENTATION

This work is accepted for presentation, in part or in full, at [venue] The ISAT Senior Capstone Symposium

on [date] April 15th, 2016.

TABLE OF CONTENTS

List of Figures	2
List of Tables	2
Acknowledgements	3
Abstract	4
Introduction	5
Background	5
Summary of Previous Work	6
Methods and Materials	11
Tear Collection and Elution	11
Total Tear Protein Concentration	11
Indirect ELISA Assay	11
Antibody Specificity and Titrations	12
SDS Polyacrylamide Gel Electrophoresis and Western Blots	13
Results	15
Total Tear Protein Concentration	15
Antibody Specificity and Titrations	17
Indirect ELISA Assay	19
Western Blots	22
Discussion	26
Bibliography	28
Appendix A- BCA Raw Data	30
Appendix B- ELISA Raw Data	38
Appendix C- ISAT Senior Symposium Presentation	59

LIST OF FIGURES

Figure 1. SDS PAGE and western blot anaysis of tears and samples	7
Figure 2. RT-PCR of canine lacritin gene, purification of recombinant canine lacritir	1,
and DEAE chromatography elution profile	8
Figure 3. Summary of indirect ELISA analysis	9
Figure 4. Western Blot analysis of normal and dry eye tears10	0
Figure 5. BCA Standard curve1	5
Figure 6. Titration of 6924 antibodies1	8
Figure 7. Checkerboard titration of 6924 antibodies	9
Figure 8. Standard Curve using 6924 antibodies20	0
Figure 9. Western blot analysis of dry eye and normal samples	3
Figure 10. Dry eye and normal total tear protein as a function of STT values	4
Figure 11. Dry eye and normal lacritin concentrations as a function of STT values 2	5

LIST OF TABLES

Table 1. Summary of total tear protein in dry eye canines.	16
Table 2. Summary of total tear protein in normal canines.	17
Table 3. Summary of lacritin concentrations in dry eye canines.	21
Table 4. Summary of lacritin concentrations in normal canines.	22

ACKNOWLEDGEMENTS

I would like to thank advisor Dr. Robert McKown for giving me the opportunity to conduct this research and for supporting me throughout this process. Dr. McKown has always been there to offer help and answer any questions I may have with patience and kindness. I would also like to thank my readers, Dr. Ron Raab and Dr. Stephanie Stockwell for their support, input and advice. I would like to give a special thanks to my collaborator Dr. Julie Disney for all the work she contributed and being such a pleasure to work with. I would like to thank all my lab mates, especially Eliza Gaylord, who was always willing to lend a helping hand in the lab. Lastly, I would like to extend a thank you to my parents for supporting me and my decision to come JMU and my friends who have always encouraged me to achieve my goals.

ABSTRACT

Keratoconjunctivitis sicca (KCS), the deficiency of tears also known as dry eye, is a prevalent disease that affects both humans and canines. The current treatment for dye eye, cyclosporine (Restatis®), only provides temporary relief, is often associated with discomfort and is inconsistently effective. Lacritin is a naturally occurring tear glycoprotein secreted from the human and canine lacrimal glands. It has been shown that lacritin stimulates basal tearing in rabbits when applied topically. This study characterized the amount and form of lacritin found in the tears of dogs with healthy and dry eyesinformation which may be applied to the development of a lacritin-inspired therapeutic for humans and canines. In collaboration with the Virginia-Maryland College of Veterinarian Medicine, tear samples were collected from dogs being treated at the veterinary clinic and transported to JMU for analysis. At JMU, the lacritin and other proteins found in the canine tears were analyzed by indirect Enzyme-Linked Immunosorbent Assay (ELISA), SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE), and western blot. A total of 64 tear samples were analyzed with 32 samples from healthy dogs and 32 samples from dogs clinically diagnosed with dry eve. ELISA revealed that canines with KCS had a significant decrease in tear lacritin. Western blot analysis detected prominent bands in healthy tears at approximately 18 kDa (corresponding to monomeric canine lacritin) that were absent or faintly observed in tears from dry eye dogs. This study provides clinical data reinforces the hypothesis that lacritin replacement may be an effective therapeutic for dry eye.

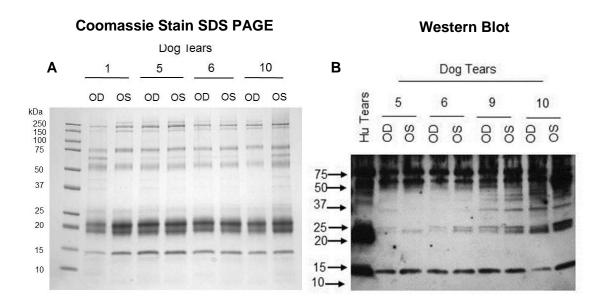
INTRODUCTION

Background

Keratoconjunctivitis sicca (KCS), the deficiency of tears also known as dry eye, is a prevalent disease that affects both humans and canines. Symptoms include dry, burning, itchy, scratchy, stingy, or tired eyes (Merck Manual, 2003). Dry eye is the most common eye disease, affecting the quality of life of over 25 million Americans, especially women and the geriatric population (Seifert *et al.*, 2012). Blepharitis is a complex inflammation of the eyelid associated with dry eye and meibomian gland dysfunction. Next to dry eye, it is one of the most common conditions seen by ophthalmologists. The current treatment for dye eye, cyclosporine (Restatis®), increases tear production, but only provides temporary relief. Additionally, some people have little or no effective reaction to the medication (Ofria *et al.*, 2009). A proteomics study recently discovered certain tear proteins were selectively down-regulated in tears of patients suffering from chronic blepharitis and dry eye (Koo *et al.*, 2005). Down-regulation of naturally occurring tear proteins may provide biomarkers for the diagnosis of ocular diseases and replacement therapeutic treatments for these disorders.

Lacritin is a naturally occurring human tear glycoprotein discovered and first characterized by Gordon Laurie at the University of Virginia as a novel secretion enhancing factor from the human lacrimal gland (Sangi *et al.*, 2001). It is a prosecretory mitogen that consists of 119 amino acids and is 12.3 kDa in size produced by the lacrimal gland that exits the gland through acinar secretory granules and flows through ducts to the surface of the eye (Ma *et al.*, 2008). It has been found that when lacritin is bound to corneal epithelial cells, it stimulates the lacrimal gland to produce tears (Sanghi *et al.*, 2001). The down-regulation of lacritin has been found in patients with blepharitis (Tsai *et al.*, 2006) and lacritin is the only prosecretory protein that is down-regulated in patients suffering from dry eye (Srinivasan *et al.*, 2012). Preclinical animal studies have shown that recombinant human lacritin produced in *Escherichia coli* promotes basal tearing in rabbit eyes upon topical application (Samudre *et al.*, 2011). Recently, a prototype clinical assay to quantify lacritin in human tear samples was developed (Seifert *et al.*, 2012) and used to detect a lacritin-like protein in horse tears (Laurie *et al.*, 2012). In addition, it was shown that a cleavage potentiated C-terminal fragment of lacritin is bactericidal against Gram positive

and Gram negative ocular pathogens (McKown *et al.*, 2014). Taken together, these observations suggest that tear lacritin may be an influential ocular surface protector.


KCS is a common ophthalmic disease in dogs, with the recent literature citing a prevalence of 4% in the general canine population (Williams *et al.*, 2008). Canine KCS can occur for a variety of reasons, the most common being decreased aqueous tear production from immune-mediated inflammation of the lacrimal gland (Williams *et al.*, 2008). As such lifelong therapy is typically necessary.

A consortium of researchers from James Madison University (JMU), the University of Virginia (UVa), Walter Reed Army Medical Center, Eastern Virginia Medical School, and other institutions investigate lacritin as a potentially new human therapeutic for the treatment of dry eye. With support from the 4-VA Collaborative, a new JMU—Virginia-Maryland Regional College of Veterinary Medicine collaboration was initiated in 2012 to study the role of lacritin in canine dry eye. As a result, a lacritin-like protein was detected in canine tear samples by human anti-lacritin antibodies. With scale-up funding from 4-VA, the gene encoding the canine lacritin ortholog was cloned, sequenced, and a recombinant form was expressed and purified in *E. coli*. Antibodies specific to canine lacritin were produced and a canine Enzyme-Linked Immunosorbent Assay (ELISA) was developed. Preliminary results of this assay have revealed that canine lacritin is down-regulated in tears from dogs with dry eye.

Summary of Previous Work

Summary of Work Accomplished by Alan C. Tate, Honors Thesis, 2014

Tear samples collected at Virginia-Maryland Regional College of Veterinary Medicine were shipped to JMU for analysis. Total protein was eluted from the wicks by means of centrifugation and total protein concentrations were determined by a bicinchoninic acid (BCA) assay. An ELISA, previously developed at JMU to detect human lacritin, was used to quantify lacritin in dog tears. Recombinant human lacritin was used as a protein standard in the assay. Of the two anti-lacritin human polyclonal antibodies tested, the one directed towards the N-terminus was the most effective at detecting canine lacritin in the samples. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blots were performed on the canine samples using the human antibodies. Forms of lacritin similar to those observed in human tears were observed (Figure 1).

Figure 1. SDS-PAGE and western blot analysis of canine tears. (A) Tear samples 1, 5, 6, and 10 were separated by SDS-PAGE and visualized with Coomassie blue stain. A molecular weight standard is shown on the far left of the gel. Approximate band sizes are labeled. (B) Tear samples 5, 6, 9 and 10 were separated by SDS-PAGE, transferred to nitrocellulose, incubated with anti-N-terminal hlacritin antibodies, and detected by chemiluminescence. "Hu Tears" refers to a control human tear sample. "OD" and "OS" refer to samples taken from the right versus left eye from an individual, respectively (Tate, Honors Thesis 2012).

In order to make recombinant canine lacritin, total RNA was extracted from normal canine lacrimal glands, reverse transcribed (using gene-specific primers?) and PCR amplified. The resulting cDNA was cloned into the bacterial expression vector, pTYB2. Recombinant canine lacritin was expressed in *E. coli* and purified by chitin affinity column and diethyl-aminoethyl (DEAE) chromatography (Figure 2).

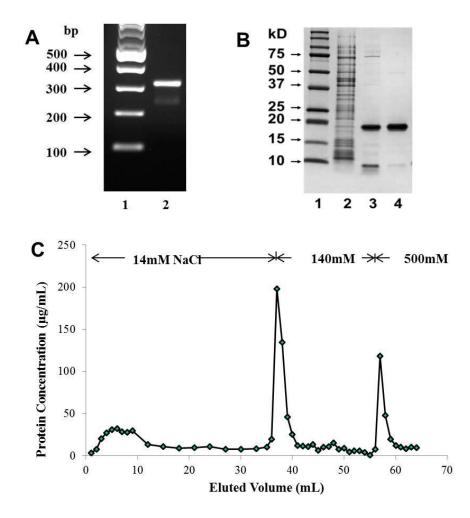
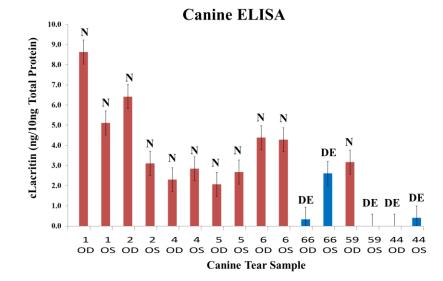
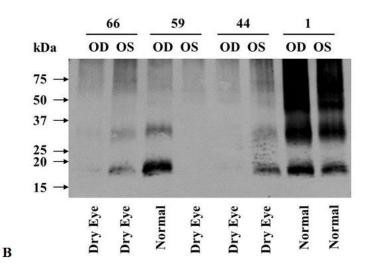



Figure 2. RT-PCR of canine lacritin gene, purification of recombinant canine lacritin, and DEAE chromatography elution profile. (A) Agarose DNA gel of the RT-PCR product. Lane 1 contains the 100 bp DNA ladder, with fragment sizes indicated. Lane 2 contains the amplified PCR product of the canine lacritin cDNA. (B) SDS-PAGE gel of 18 kD purified recombinant canine lacritin. Lane 1 contains the molecular weight standards, lane 2 contains the cleared cell lysate prior to chitin affinity chromatography, lane 3 contains the fraction extracted after chitin affinity chromatography, and lane 4 contains the eluted sample from the DEAE Sepharose column. (C) DEAE chromatography elution profile of recombinant canine lacritin. Following chitin affinity chromatography, protein fractions were pooled, dialyzed in 14 mM NaCl PBS, and loaded onto a DEAE sepharose column equilibrated with 14 mM NaCl PBS, pH 7.4. The column was eluted with 140 mM PBS and 500 mM NaCl PBS cuts. Protein concentrations of each fraction were determined using Pierce[™] BCA Protein Assay Kit (Tate, Honors Thesis 2012).


Summary of Work Accomplished by Alison M. Enghauser, Honors Thesis, 2015

Anitbodies directed against the N- terminus of canine lacritin were produced and purified. The N-terminus peptide of canine lacritin EGDSSDPAPGAAAADPGGL was synthesized with >90% purity and conjugated to keyhole limpet hemocyanin/bovine serum albumin (KLH/BSA) by Bio-Synthesis, Inc. (Lewisville, TX). Two New Zealand white rabbits, designated 6924 and 6925, were immunized and serum was collected over a 10 week period. Preimmune serum was collected before immunization and final antiserum was collected after 10 weeks. Protein A coupled with agarose beads (Bio-Rad Laboratories; Hercules, CA) was used to purify IgG antibodies from the anti-cLACRT NT antiserum. An indirect ELISA was used to titrate the anti-cLACT NT canine antibodies.

A preliminary study of canine tear lacritin was performed using the anti-cLACRT antibodies. Canine tear samples were obtained at the VA-MD Regional College of Veterinary Medicine at Virginia Tech, eluted off the wicks and total tear protein determined by a BCA assay. An indirect ELISA and western blot was used to quantify lacritin in healthy and dry eye canine tear samples. The ELISA was developed using 10 week anti-cLACRT NT PA purified antiserum (from rabbit 6924) as the primary antibody and the HRP-conjugated antibody as the secondary. A summary of lacritin concentrations in canine tear samples is shown in Figure 3, and western blot analysis in Figure 4. This work showed that the anti lacritin serum can successfully detect canine lacritn, as well as showing preliminary evidence that lacritin may be down regulated in the tears of canines with dry eye.

Figure 3. Lacritin concentrations in canine tears, as determined by indirect ELISA using anticLACT NT primary antiserum. "OD" and "OS" refer to samples taken from the right versus left eye from an individual, respectively. The origin of each sample is indicated: normal (blue, "N") or dry eye (red, "DE). (Enghauser, Honors Thesis 2014).

Figure 4. Western blot analysis of normal (1) and dry eye (66, 59, 44) tears from canine samples. A standard molecular weight ladder, with kilo-Dalton (kDa) band sizes indicated, is shown on the left. "OD" and "OS" refer to samples taken from the right versus left eye from an individual, respectively. The band corresponding to monomeric canine lacritin is seen at ~18 kDa (arrowhead). Bands with larger molecular weights represent cross-linked variations of lacritin . (Enghauser *et. al.,* 2014)

METHODS AND MATERIALS Tear Collection and Elution

Dr. Julie Disney, a resident in Ophthalmology at the Virginia-Maryland Regional College of Veterinary Medicine at Virginia Tech, collected canine tear samples from 64 animals—32 from healthy and 32 dry eye dogs. Wicks were placed on each of the the canine's eyes to absorb tears. Samples were eluted by placing 30 μ L of filter sterilized phosphate buffered saline (PBS) onto each wick, incubateding for 20 minutes, followed by centrifugation for 5 minutes at 13,000 rpm. Supernatants were collected as eluted tear samples and stored at -20° C.

Total Tear Protein Concentration

To determine the total tear protein concentration in each canine tear sample, the Thermo Scientific BCA Protein Assay Kit (Waltham, MA, USA) was used, as recommended by the manufacturer. Bovine serum albumin (BSA) Standards ranging from 20 to 2000 μ g/mL and experimental samples were analyzed in duplicate in a 96-well microtiter plate following incubation for 30 minutes at 37° C. The plates were read at 570 nm in a spectrometer. The standard protein concentrations were graphed versus the absorbance values and a line of best fit was determined. Based on the equation of the line of best fit, each sample's total tear protein concentration was calculated.

Indirect ELISA Assay

The purpose of the indirect ELISA was to quantify the lacritin concentration in each canine tear sample. The indirect ELISA comprised of two components, the standard curve and the experimental samples. To create the standard curve, lyophilized recombinant canine lacritin (cLAC) was resuspended with 100 μ L of deionized water, diluted with coating buffer (4.53 mL of 1.0 M NaHCO₃, 1.82 mL of 1.0 M Na₂CO₃, 93.65 mL dH₂O) and coated onto a 96-well microtiter plate with final concentrations of 0, 2, 4, 6, 8, 10, 12, 14, and 16 ng/mL. 100 μ L of each standard was plated in triplicate.

The experimental samples were diluted with coating buffer to normalize the total tear protein to 0.5 μ g/mL and 100 μ L was added in triplicate to the plate. Samples were divided into eight sets of eight, such that each 96-well plate held eight samples. Each plate had a mix of both normal and dry eye samples, Duplicate plates were performed for ELISA analysis. All samples underwent the same procedure, as follows:

Plates were incubated overnight at 4°C, then washed three times with PBS/0.3% Tween-20 (PBST). Three hundred microliters of blocking buffer (1% w/v BSA) was applied to the wells. The plates were then incubated at 37°C for one hour. Following incubation, the plates were washed three times with PBST and then 100 μ L of the primary antibody (6924 FB PANT) diluted 1:6400 in PBST was applied to each well. The plates were incubated again at 37°C for one hour. Next the plates were washed three times with PBST and 100 µL of the secondary HRP-conjugated goat anti-rabbit IgG antibody (Company or source) diluted 1:1200 in PBST was applied to each well. The plates were incubated for a third time at 37°C for one hour. Next the plates were washed three times with PBST and 100 µL of the o-phenylenediamine dihydrochloride (OPD) substrate was added. The OPD substrate was prepared by combining 6.0 mL of 0.1 M $C_6H_8O_7$, 6.5 mL of 0.2 M Na_2HPO_4 , 12.5 mL dH₂O, 10 µL H₂O₂, and two OPD tablets (Acros Organics, Geel, Belgium). Plates were incubated in the dark for 10 minutes then read in the spectrophotometer at 415 nm. The absorbances of the known recombinant canine lacritin solutions were plotted against their concentration and a standard curve with a best-fit line was generated. The absorbance values of the experimental samples were used in the best-fit line to determine lacritin concentrations.

Antibody Specificity and Titrations

Final bleed N-Terminal Protein A-purified (PANT FB) antibodies from rabbit 6924 were titrated against known concentrations of recombinant canine lacritin to determine their specificity and optimal dilutions for the standard curve for the ELISA. Recombinant canine lacritin was diluted from 0.1 to 1000 ng/mL in coating buffer and 100 μ L were applied to the wells of a 96-well microtiter plate. The 6924 PANT FB antibodies were diluted in PBST from 1:200 to 1:12800 and 100 μ L were added to the wells and the

secondary HRP-conjugate goat anti-rabbit IgG antibody was diluted to 1:800 in PBST and $100 \ \mu L$ were added to each well.

A checkerboard titration was performed to optimize the dilutions of the primary and secondary antibody refine the dilutions determined by the titration and determine the optimal dilution for the secondary antibody. Canine lacritin was diluted from 1.5 to 20 ng/mL in coating buffer and plated. 6924 PANT FB primary antibodies were diluted to 1:400 in PBST and the secondary HRP-conjugated antibody was diluted from 1:200 to 1:12800 in PBST and applied to the plate and developed using the standard ELISA protocol.

SDS Polyacrylamide Gel Electrophoresis and Western Blots

Western blots were used to visually detect lacritin in the canine tear samples. Samples were diluted in PBS to 200 μ g/mL and 20 μ L was added to the wells. 4 μ L of 6x loading dye was added. Ten microliter aliquots of the prepared samples were boiled for 5 minutes, and then loaded—along with 7 μ L of the protein ladder (Precision Plus Protein Kaleidoscope Standards, BioRad)—into an Any kDTM Mini-PROTEAN® TGXTM Precast Gel (Bio-Rad, ADD LOCATION) filled with Tris-glycine buffer and run at 200 volts until the samples reached the bottom of the gel. Proteins were then transferred onto a nitrocellulose membrane for western blotting. A Mini Trans-blot (COMPANY?), run for 60 minutes at 100 V, was used to transfer the samples from the gel to the membrane. The membranes were removed from the apparatus, wrapped in aluminum foil, and stored at 4°C overnight.

The blotted membranes underwent four 10-minute washes with PBST, and then incubated with the 1:1,000 dilution of primary antibody (6924 FB PANT) in PBST for one hour at room temperature. Next the membranes underwent four 10-minute washes in PBST, followed by a one hour incubation with the 1:5,000 dilution of secondary HRP-conjugated goat anti-rabbit IgG antibody in PBST. The membranes were then washed twice with PBST for 15 minutes each, followed by two 15-minute washes of PBS, then air-dried.

Blots were detected by chemiluminescence with Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific Inc., Rockford, IL), according to the manufacturer's recommendations. Membranes were soaked in substrate for one minute and covered in clear plastic wrap. Chemiluminescence was detected by X-ray film. Exposed film was dipped in developer solution, deionized water, fixer solution and deionized water (30 seconds each) with continuous agitation.

RESULTS

Total Tear Protein Concentration

A BCA assay was used to determine the total protein concentrations of the dry eye and normal tear samples. Dry eye protein concentrations ranged from $367.1-7655 \ \mu g/mL$, with a median of $1433.5 \ \mu g/mL$, and an average of $2127 \ \mu g/mL$. Normal protein concentrations ranged from $550.6-2485 \ \mu g/mL$, with a median of $1323 \ \mu g/mL$, and an average of $1379 \ \mu g/mL$. All BCA assays had standard curves with R² values above 0.98. Figure 5 shows a representative standard curve. Results from the dry eye and normal samples are shown in Table 1 and Table 2, respectively. Raw data are shown in Appendix A.

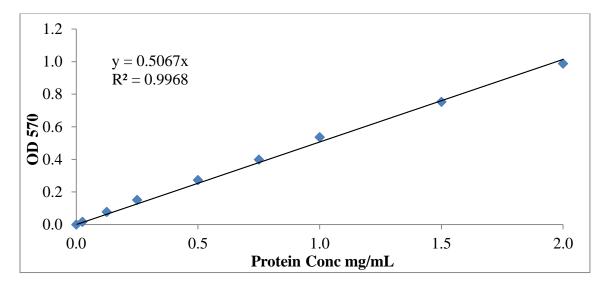
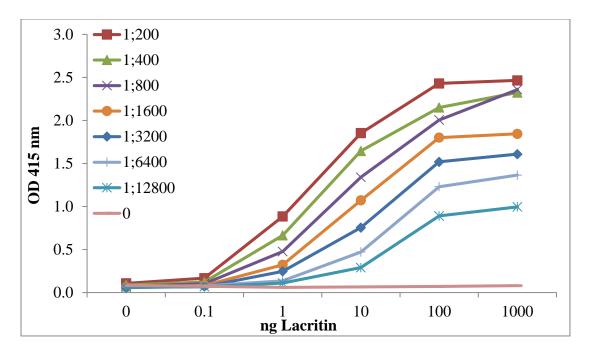


Figure 5. BCA Standard Curve. An example of a BCA assay standard curve.

Table 1. Summary of total tear protein in dry eye canines. The eye of origin (OD or OS) and concentration of each sample is indicated. Samples are listed in ascending order of average (left and right) total protein concentration.

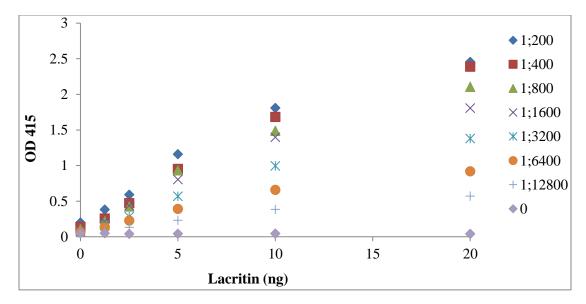
Sample		Total Protien	Sample	ple Total Pro	
ID	Eye	(ug/mL)	ID	Eye	(ug/mL)
92935	OD	367.1	134443	OD	2148
92933	OS	503.3	134443	OS	1165
137185	OS	833.2	134581	OS	1692
124839	OD	965.9	93777	OD	1485
124039	OS	783	93777	OS	1970
122428	OD	552.7	134918	OD	2479
122420	OS	1360	134910	OS	1067
134668	OD	1196	134882	OD	4807
134000	OS	1002	134002	OS	1772
130826	OD	1089	136361	OD	3725
130620	OS	1137	130301	OS	2968
135100	OD	1347	134989	OD	4055
131139	OS	1433	134909	OS	2956
134564	OD	1434	102059	OS	4084
114020	OD	1967	106007	OD	7018
114039	OS	1073	106997	OS	7655

Total Tear Protein in Dry Eye Canines


Table 2. Summary of total tear protein in normal canines. The eye of origin (OD or OS) and concentration of each sample is indicated. Samples are listed in ascending order of average (left and right) total protein concentration.

Sample		Total Protien	Sample		Total Protien
ID	Eye	(ug/mL)	ID	Eye	(ug/mL)
121747	OD	550.6	127/01	OD	1335
121/4/	OS	852.6	137481	OS	1577
102059	OD	799.2	137478	OD	1217
135303	OD	704.8	13/4/0	OS	1737
135303	OS	1032	119030	OD	1675
135570	OS	1057	119030	OS	1371
120039	OD	1175	117502	OD	1947
120039	OS	1091	117503	OS	1265
129754	OD	1284	114007	OD	1844
129/54	OS	1095	114897	OS	1490
125091	OD	1722	120415	OD	1817
125091	OS	769.7	128415	OS	1532
137477	OD	1201	101803	OD	1395
13/4//	OS	1311	101003	OS	2015
131139	OD	1273	135100	OS	2485
07()7	OD	1520			
87637	OS	1262			

Total Tear Protein in Normal Canines


Antibody Specificity and Titrations

A titration was performed on 6924 PANT FB to determine its specificity for recombinant canine lacritin and the optimal dilution for indirect ELISA. Dilutions of recombinant canine lacritin and the 6924 primary antiserum were created and used in a series of indirect ELISAs. The titration curve indicates that the antibodies detect lacritin at concentrations greater than 0.1 ng/mL (Figure 6).

Figure 6. Titration of 6924 antibodies. A titration curve of antibody 6924 PANT FB where Lacritin was diluted from 0.1 to 1000 ng/mL and the primary antibody 6924 was diluted from 1:200 to 1:12800. The titration curve indicates that the antibodies can detect lacritin at concentrations greater than 0.1 ng/mL and that there is saturation of the assay at 100 ng.

A checkerboard titration was performed on the primary antibody 6924 PANT FB to determine the optimal dilutions of the primary and secondary for the standard curve (Figure 7). Lacritin was diluted to 1.5 to 20 ng/mL, the primary antibody 6924 PANT FB was diluted to 1:400 and the secondary antibody was diluted from 1:200 to 1:12800. Based on the titrations, the optimal dilution of the primary antibody was 1:6400 and the secondary antibody antibody was 1:1200.

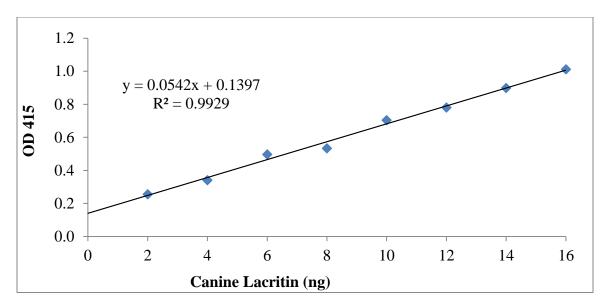


Figure 7. Checkerboard titration of 6924 antibodies. A checkerboard titration where lacritin was diluted from 1.5 to 20 ng/mL, the primary antibody was diluted to 1:400 and the secondary antibody was diluted from 1:200 to 1:12800.

Indirect ELISA Assay

An indirect ELISA was used to quantify lacritin in each tear sample. The assay was developed using 10 week Protein A purified anti-cLACRT NT antiserum from rabbit 6924 as the primary antibody and HRP-conjugated anti-rabbit secondary antibody. All standard curve R² values were above 0.96. Samples were run in triplicate with a standard curve done in duplicate plates. Due to technical limitations of the assay, 16 ng lacritin/50 ng total protein is the highest concentration that can be detected without extrapolation. Thus, samples that had concentrations higher than 16 ng lacritin are categorized as 16 ng or greater.

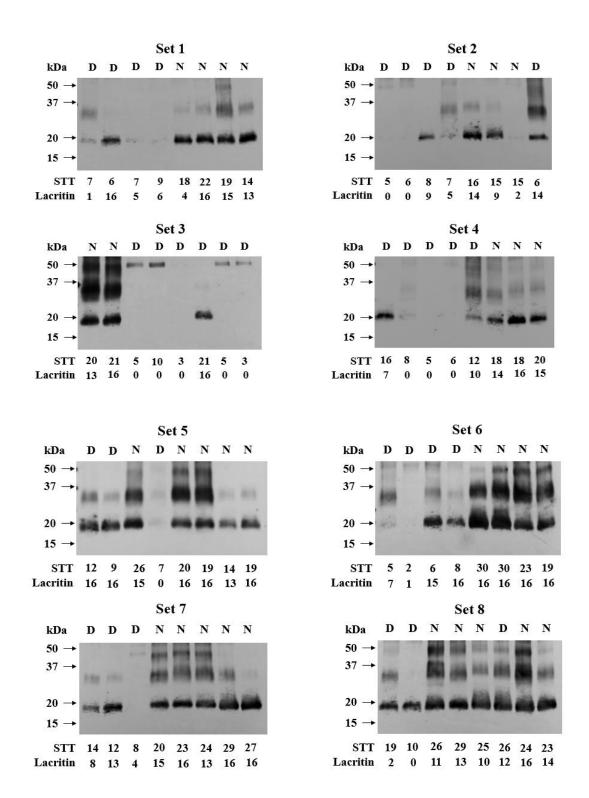
Lacritin concentrations in the 32 dry eye samples ranged from 0-16 ng /per 50 ng total tear protein (median 4.38 ng/50 ng total; average 5.80 ng/50 ng total). The range of lacritin in the normal samples was 2.32-16 ng lacritin per 50 ng total tear protein (median 14.83 ng/50 ng total; average 13.29 ng/50 ng total). Figure 8 shows a representative standard curve generated from indirect ELISA. Tables 3 and 4 show summaries of the lacritin concentrations in the dry eye and normal canines, respectively. Raw indirect ELISA data can be found in Appendix B.

Figure 8. Standard Curve using 6924 antibodies. An example of a standard curve of canine lacritin concentrations used for indirect ELISA quantification.

Table 3. Summary of lacritin concentrations in dry eye canines The eye of origin (OD or OS) and concentration of each sample is indicated. Samples are listed in ascending order of average (left and right) lacritin concentration.

Sample ID	Eye	Lacritin (ng/ 50 ng total protein)	Sample ID	Eye	Lacritin (ng/ 50 ng total protein)
136361	OD	0.0	134443	OD	5.7
130301	OS	0.0	134443	OS	4.6
106997	OD	0.0	130826	OD	9.0
100997	OS	0.0	130020	OS	5.3
134918	OD	0.0	124002	OD	0.0
134910	OS	0.0	134882	OS	16.0
137185	OS	0.0	134668	OD	15.9
102059	OS	0.0	134000	OS	0.0
92935	OD	0.0	135100	OD	9.7
92935	OS	1.5	124839	OD	7.8
134564	OD	1.7	124039	OS	13.5
114039	OD	6.5	131139	OS	13.9
114039	OS	0.0	134989	OD	15.0
122428	OD	7.4	134909	OS	16.0
122420	OS	0.0	02777	OD	16.0
134581	OS	4.1	93777	OS	16.0

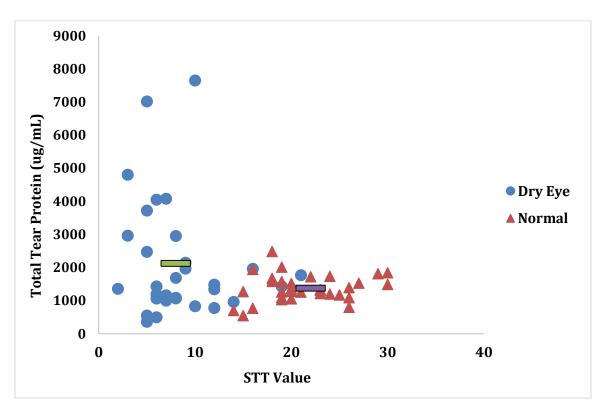
Lacritin Concentration in Dry Eye Canines

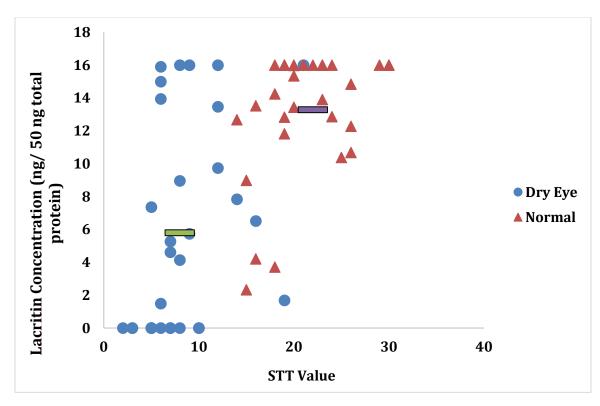

Table 4. Summary of lacritin concentrations in normal canines. The eye of origin (OD or OS) and concentration of each sample is indicated. Samples are listed in ascending order of average (left and right) lacritin concentration.

Sample ID	Eye	Lacritin (ng/ 50 ng total protein)	Sample ID	Eye	Lacritin (ng/ 50 ng total protein)
131139	OD	2.3	87637	OD	13.4
125091	OD	16.0	0/03/	OS	16.0
123091	OS	3.7	102059	OD	14.8
117503	OD	4.2	137477	OD	16.0
11/505	OS	16.0	13/4//	OS	13.9
121747	OD	13.5	135570	OS	15.4
121/4/	OS	9.0	119030	OD	16.0
120039	OD	10.4	119030	OS	16.0
120039	OS	12.3	129754	OD	16.0
101803	OD	10.7	129734	OS	16.0
101003	OS	12.8	114897	OD	16.0
135303	OD	12.7	114077	OS	16.0
133303	OS	11.8	137481	OD	16.0
135100	OS	14.2	13/401	OS	16.0
127470	OD	16.0	120415	OD	16.0
137478	OS	12.9	128415	OS	16.0

Lacritin Concentration in Normal Canines

Western Blots


A western blot was performed to visually detect lacritin concentration. Anti-cLACRT NT PA purified antiserum from rabbit 6924 was used as the primary antibody and HRP-conjugated antibody was used as the secondary antibody. Normal samples produced a prominent band at 18 kDa. This band was fainter, or absent, in dry eye samples. Western blots of all eight sets of samples are shown in Figure 9.


Figure 9. Western blot analysis of dry eye and normal samples. Western blot analysis of the samples with their Schirmer Tear Test (STT) values and lacritin concentrations, as determined by indirect ELISA. An STT value below 15 indicates dry eye, while values above indicate normal tearing levels. The band corresponding to monomeric canine lacritin is seen at ~18 kDa. Higher molecular

weight moeities are cross-linked variations of lacritin. D = Dry eye tear samples and N = Normal tear samples. Lacritin values are ng per 50 ng total tear protein as determined by the ELISA.

To better understand these western blot data, one must compare it to the Schirmer Tear Test (STT) values. A STT is a test used to measure tearing levels in both dogs and humans to help diagnose dry eye. For canines, any value under 15 indicates dry eye and any value above 15 indicates normal tearing. A scatter plot showing the correlation between total tear protein and STT values is shown is shown in Figure 10, and a scatter plot showing the correlation between lacritin concentration and STT values is shown in Figure 11.

Figure 10. Dry eye and normal total tear protein as a function of STT values. A scatter plot showing the total tear protein of the normal and dry eye samples. An STT value is a measure of tearing in the eyes and a value below 15 indicates dry eye and a value above 15 indicates normal tearing levels. The bar in the middle of each cluster of points represents the average for that data set.

Figure 11. Dry eye and normal lacritin concentrations as a function of STT values. A scatter plot showing lacritin concentration as determined by the ELISA as a function of STT values in the dry eye and normal samples. An STT value is a measure of tearing in the eyes and a value below 15 indicates dry eye and a value above 15 indicates normal tearing levels. The bar in the middle of each cluster of points represents the average for that data set.

DISCUSSION

In this clinical study, 64 samples of canine tears, 32 dry eye and 32 normal, were collected at the VA-MD Regional College of Veterinary Medicine at Virginia Tech by Dr. Julie Disney. The samples were sent to JMU and assayed for total tear protein by BCA assay and lacritin concentration by indirect ELISA. Lacritin was visually detected in samples using a western blot.

According to this study, canines with dry eye had variable total tear protein levels, ranging from $367.1-7655 \ \mu\text{g/mL}$ with a standard deviation of $1737.5 \ \mu\text{g/mL}$, while the normal tears had consistent total tear protein values between $550.6-2485 \ \mu\text{g/mL}$ with a standard deviation of $403.8 \ \mu\text{g/mL}$ (Figure 10). The three highest dry eye samples (7655, 7018 and $4807 \ \mu\text{g/mL}$) were collected from canines that are non-responsive to clinical treatment for dry eye. It is possible that their treatment may have stimulated excessive tear protein production, explaining the atypically high concentrations. It is also possible that canines with dry eye produce more tear proteins in an attempt to compensate for their condition.

Lacritin concentrations were reduced in dry eye samples compared to normal samples (Figure 11). Dry eye samples had an average of 5.8 ng and a standard deviation of 4.3 ng lacritin per total ng protein while normal samples had an average of 13.3 ng and a standard deviation of 3.8 ng lacritin (Figure 11). Interesting to note, the three highest dry eye total tear protein samples mentioned above had undetectable levels of lacritin by ELISA. Thus although these animals high total concentrations of tear proteins, lacritin is absent, which may be correlated with their lack of response to treatments. Variability within the sample set can be expected in a clinical study incorporating many different breeds, ages, and genders of canines. It is also important to note that samples were collected from canines during diagnosis or treatment of dry eye. Such variability in clinical progression can also explain variation within the data set.

Another point of interest is that some of the western blots detect lacritin complexes greater than 18 kDa. This indicates that the anti-canine LAC antibody is detecting a cross-linked lacritin. It has been shown that tissue transglutaminase cross-links (human?) lacritin and forms higher molecular weight complexes that appear above ~18 kD on western blots (Velez, 2013). Cross-linked lacritin has been shown to be inactive (Velez, 2013). Our ELISA does not detect the cross-linked lacritin, as some of the western blot samples with high

molecular weight forms of lacritin have undetectable concentrations of lacritin by ELISA. This is likely due to the denaturing step of the western blot, which is not performed in the ELISA. It is possible that upon crosslinking, the epitope detected by the antibodies must be buried and inaccessible. Additionally, two samples on the Set 2 western blot appear to be switched; the normal sample has a lacritin concentration of 2 ng and has the absence of the band where lacritin should be on the blot, while the dry eye sample has lacritin concentration of 14 ng and has a visible band where lacritin should be. It is possible that these samples accidently got switched or mislabeled during collection, or during the processing done at JMU.

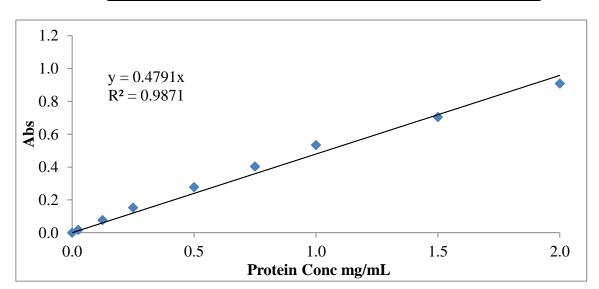
In conclusion, a system for detecting canine lacritin in canine tear samples was developed and used to quantify and visually detect lacritin concentrations. Dye eye samples had significantly lower concentrations of lacritin compared to normal samples, reinforcing the hypothesis that lacritin replacement may be an effective therapeutic for dry eye.

Future work to continue this project include both canine and human clinical trials, which are both needed to bring a drug to market. As for a canine therapeutic, the next step would be to conduct a study in which lacritin is topically applied to the eyes of healthy and dry eye dogs to see if it improves basal tearing levels. The ELISA which was developed in the study can be used to identify canines with low lacritin levels to enroll in the canine clinical studies. This ELSIA can also be used to monitor lacritin levels in the treated canines over time to assess the effectiveness of lacritin replacement therapy. Successful treatment of canine dry eye with lacritin holds promising results for treating human dry eye. Human clinical trials are needed to confirm the efficacy and safety of lacritin as a therapeutic in humans, and once passed, lacritin can be brought to market as a human therapeutic.

BIBLIOGRAPHY

- Enghauser, A. (2015). *Development of an immunodiagnostic assay for canine tear lacritin.* Unpublished B.S, James Madison University, USA.
- "Keratoconiuntivis Sicca". The Merck Manual, Home Edition. Merck & Co., Inc. 2003-02-01.
- Koo, B. S., Lee, D. Y., Ha, H. S., Kim, J. C., & Kim, C. W. (1006). Comparative analysis of the tear protein expression in blepharitis patients using two-dimensional electrophoresis Retrieved from 2005 May-Jun database.
- Laurie, D. E., Splan, R. K., Green, K., Still, K. M., McKown, R. L., & Laurie, G. W. (2012). Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a Cterminal-like fragment. *Investigative Ophthalmology & Visual Science*, 53(10), 6130-6136. doi:10.1167/iovs.11-8567
- Ma, P., Wang, N., McKown, R. L., Raab, R. W., & Laurie, G. W. (2007). Focus on molecules: Lacritin. *Experimental Eye Research*, *86*(3), 457-458. doi:10.1016/j.exer.2007.01.025
- McKown, R. L., Coleman Frazier, E. V., Zadrozny, K. K., Deleault, A. M., Raab, R. W., Ryan, D. S., et al. (0219). *A cleavage-potentiated fragment of tear lacritin is bactericidal* [Bacterial Metabolism; Cornea; Eye; Innate Immunity; Lacritin; Phosphatidylethanolamine; Protein Targeting; Serine Protease; Tears EDAT- 2014/06/20 06:00 MHDA-2015/02/20 06:00 CRDT- 2014/06/20 06:00 PHST- 2014/06/18 [aheadofprint] AID M114.570143 [pii] AID 10.1074/jbc.M114.570143 [doi] PST ppublish] Retrieved from 2014 Aug 8 database.
- McKown, R.L., Tate, A.C., Enghauser, A.M., Soyars C.L., Raab, R.W., Laurie, G.W., Herring, I.P.. (2015). Canine Tear lacritin is Down Regulated in Clinical Dry Eye. ARVO Poster Presentation, May 3, 2015.
- Ofri, R., Lambrou, G. N., Allgoewer, I., Graenitz, U., Pena, T.M., Spiess, B. M., Latour, E., et al. (2009). *Clinical evaluation of pimecrolimus eye drops for treatment of canine*

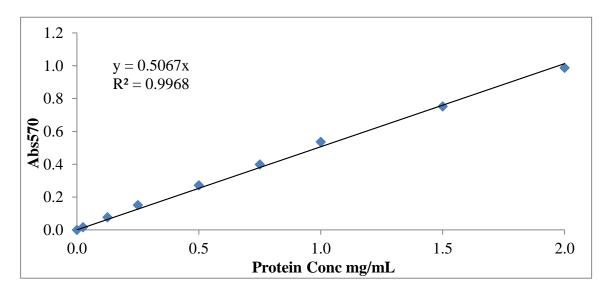
keratoconjunctivitis sicca: A comparison with cyclosporine A Retrieved from 2009 Jan database.


- Samudre, S., Lattanzio FA Jr FAU Lossen, Victoria, Lossen, V. F., Hosseini A FAU Sheppard, John D., Jr, Sheppard JD Jr FAU McKown, Robert, L., FAU, M. R., et al. (1005). *Lacritin, a novel human tear glycoprotein, promotes sustained basal tearing and is well tolerated* Retrieved from 2011 Aug database.
- Sanghi, S., Kumar, R. F., Lumsden, A. F., Dickinson, D. F., Klepeis, V. F., Trinkaus-Randall V FAU - Frierson, H.F., Jr, et al. (0809). *cDNA and genomic cloning of lacritin, a novel secretion enhancing factor from the human lacrimal gland* Retrieved from 2001 Jun 29 database.
- Seifert, K., Gandia, N. C., Wilburn, J. K., Bower, K. S., Sia, R. K., Ryan, D. S., et al. (2012). Tear lacritin levels by age, sex, and time of day in healthy adults. *Investigative Ophthalmology & Visual Science*, 53(10), 6610-6616. doi:10.1167/iovs.11-8729
- Tate, A. (2014). *Canine clinical study for tear lacritin as a treatment for dry eye.* UnpublishedB.S., James Madison University, USA.
- Tate, A.C., Soyars, C.L., Raab, R.W., Herring, I.P., McKown, R.L.. (2013). Canine Clinical Study for Tear Lacritin as a Treatment for Dry Eye. 4-VA Poster Presentation, September 26, 2013.
- Tsai, P. S., Evans, J. E., Green, K. M., Sullivan, R. M., Schaumberg, S. M., Dana, R. R., et al. (0328). Proteomic analysis of human meibomian gland secretions Retrieved from 2006 Mar database.
- Velez, V. F., Romano, J.A., McKown, R.L., Green, K. F., Zhang L., Raab, R,W., et al. (0514). *Tissue transglutaminase is a negative regulator of monomeric lacritin bioactivity* Retrieved from 2013 Mar database.
- Williams, D. L. (0512). *Immunopathogenesis of keratoconjunctivitis sicca in the dog* Retrieved from 2008 Mar database.

APPENDIX A

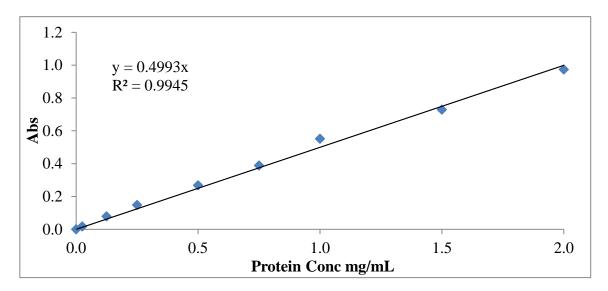
Raw data from the BCA assay is shown below. A darker shade of orange indicates a higher standard deviation of the absorbances. Mathematically, the corrected column represents the average absorbance with the background absorbance subtracted out.

ABS 1	ABS 2	AVG	ST. DEV.	Conc (mg/mL)	Corrected
0.986	0.983	0.985	0.002	2.000	0.909
0.804	0.757	0.781	0.033	1.500	0.705
0.653	0.567	0.610	0.061	1.000	0.535
0.484	0.475	0.480	0.006	0.750	0.404
0.360	0.348	0.354	0.008	0.500	0.279
0.229	0.228	0.229	0.001	0.250	0.153
0.156	0.150	0.153	0.004	0.125	0.078
0.092	0.095	0.094	0.002	0.025	0.018
0.074	0.077	0.076	0.002	0.000	0.000


BCA	Canine	Samples	2-17-16 Set 1	1
DUA	Campe	Samples	2-1/-10 Set 1	L

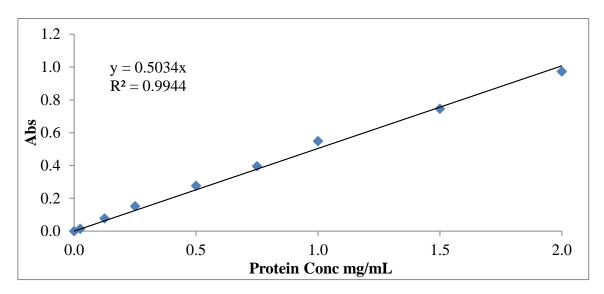
Sample	ABS 1	ABS 2	AVG	ST DEV	corrected	mg/mL	ug/mL	бx
OS 68	0.153	0.158	0.156	0.004	0.080	0.16698	166.98	1002
OD 68	0.171	0.171	0.171	0.000	0.096	0.19933	199.33	1196
OS 43	0.178	0.159	0.169	0.013	0.093	0.19411	194.11	1165
OD 43	0.251	0.243	0.247	0.006	0.172	0.35796	357.96	2148
OS 91	0.185	0.219	0.202	0.024	0.127	0.26404	264.04	1584
OD 91	0.229	0.197	0.213	0.023	0.138	0.28700	287	1722
OS 03	0.172	0.181	0.177	0.006	0.101	0.21081	210.81	1265
OD 03	0.222	0.240	0.231	0.013	0.156	0.32457	324.57	1947

ABS					
1	ABS 2	AVG	ST. DEV.	Conc (mg/mL)	Corrected
1.073	1.053	1.063	0.014	2.000	0.988
0.839	0.817	0.828	0.016	1.500	0.753
0.643	0.579	0.611	0.045	1.000	0.536
0.479	0.469	0.474	0.007	0.750	0.399
0.351	0.344	0.348	0.005	0.500	0.273
0.223	0.230	0.227	0.005	0.250	0.152
0.153	0.152	0.153	0.001	0.125	0.078
0.091	0.093	0.092	0.001	0.025	0.017
0.074	0.076	0.075	0.001	0.000	0.000


BCA Canine Samples 2-17-16 Set 2

Comula	ABS							
Sample	1	ABS 2	AVG	ST DEV	corrected	mg/mL	ug/mL	6x
OD 35	0.105	0.107	0.106	0.001	0.031	0.06118	61.18	367.1
OS 35	0.117	0.118	0.118	0.001	0.043	0.08388	83.876	503.3
OD 26	0.170	0.164	0.167	0.004	0.092	0.18157	181.57	1089
OS 26	0.172	0.170	0.171	0.001	0.096	0.18946	189.46	1137
OD 47	0.168	0.151	0.160	0.012	0.085	0.16677	166.77	1001
OS 47	0.153	0.141	0.147	0.008	0.072	0.14210	142.1	852.6
OD 139	0.183	0.182	0.183	0.001	0.108	0.21216	212.16	1273
OS 139	0.198	0.194	0.196	0.003	0.121	0.23880	238.8	1433

BCA Canine Samples 2-22-16 Set 3


ABS 1	ABS 2	AVG	ST. DEV.	Conc (mg/mL)	Corrected
1.053	1.049	1.051	0.003	2.000	0.974
0.823	0.788	0.806	0.025	1.500	0.729
0.674	0.583	0.629	0.064	1.000	0.552
0.474	0.457	0.466	0.012	0.750	0.389
0.350	0.339	0.345	0.008	0.500	0.268
0.228	0.222	0.225	0.004	0.250	0.148
0.154	0.158	0.156	0.003	0.125	0.079
0.094	0.094	0.094	0.000	0.025	0.017
0.076	0.078	0.077	0.001	0.000	0.000

Sample	ABS 1	ABS 2	AVG	ST DEV	corrected	mg/mL	ug/mL	6x
OD 37	0.203	0.204	0.204	0.001	0.127	0.25335	253.35	1520
OS 37	0.182	0.182	0.182	0.000	0.105	0.21029	210.29	1262
OD 97	0.690	0.632	0.661	0.041	0.584	1.16964	1169.6	7018
OS 97	0.760	0.668	0.714	0.065	0.637	1.27579	1275.8	7655
OD 82	0.505	0.449	0.477	0.040	0.400	0.80112	801.12	4807
OS 82	0.233	0.216	0.225	0.012	0.148	0.29541	295.41	1772
OD 61	0.329	0.445	0.387	0.082	0.310	0.62087	620.87	3725
OS 61	0.350	0.298	0.324	0.037	0.247	0.49469	494.69	2968

BCA Canine Samples 2-22-16 Set 4

ABS 1	ABS 2	AVG	ST. DEV.	Conc (mg/mL)	Corrected
1.043	1.058	1.051	0.011	2.000	0.973
0.848	0.799	0.824	0.035	1.500	0.746
0.683	0.570	0.627	0.080	1.000	0.549
0.483	0.465	0.474	0.013	0.750	0.397
0.362	0.347	0.355	0.011	0.500	0.277
0.235	0.224	0.230	0.008	0.250	0.152
0.156	0.156	0.156	0.000	0.125	0.079
0.093	0.093	0.093	0.000	0.025	0.016
0.076	0.079	0.078	0.002	0.000	0.000

Sample	ABS 1	ABS 2	AVG	ST DEV	corrected	mg/mL	ug/mL	6x
OD 039	0.240	0.245	0.243	0.004	0.165	0.32777	327.77	1967
OS 039	0.171	0.164	0.168	0.005	0.090	0.17878	178.78	1073
OD 18	0.363	0.208	0.286	0.110	0.208	0.41319	413.19	2479
OS 18	0.174	0.160	0.167	0.010	0.090	0.17779	177.79	1067
OD 100	0.192	0.189	0.191	0.002	0.113	0.22447	224.47	1347
OS 100	0.304	0.268	0.286	0.025	0.209	0.41418	414.18	2485
OD 30	0.214	0.222	0.218	0.006	0.141	0.27910	279.1	1675
OS 30	0.190	0.195	0.193	0.004	0.115	0.22845	228.45	1371

ABS	ABS				
1	2	AVG	ST. DEV.	Conc (mg/mL)	Corrected
0.995	0.993	0.994	0.001	2.000	0.916
0.783	0.762	0.773	0.015	1.500	0.695

1.000

0.750

0.500

0.250

0.125

0.025

0.000

0.532

0.398

0.260

0.148

0.077

0.013

0.000

0.088

0.018

0.018

0.001

0.002

0.001

0.001

0.672

0.463

0.351

0.225

0.153

0.092

0.077

0.548

0.488

0.325

0.227

0.156

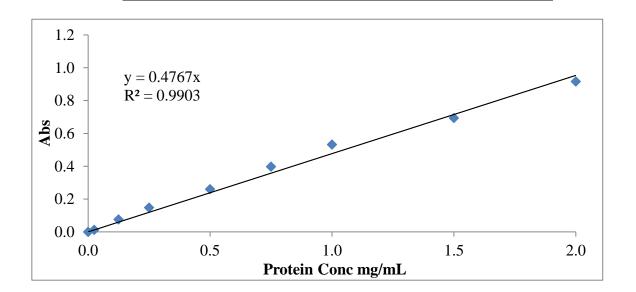
0.090

0.079

0.610

0.476

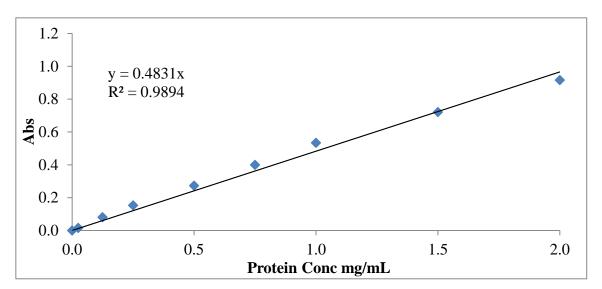
0.338


0.226

0.155

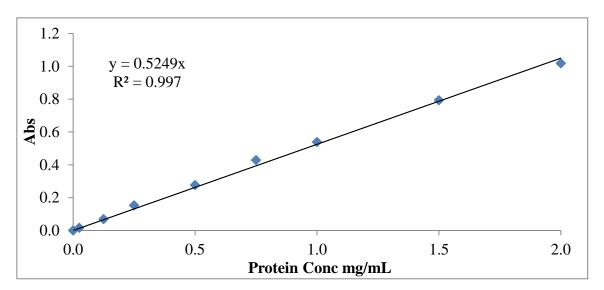
0.091

0.078


BCA Canine Samples 2-24-16 SET 5

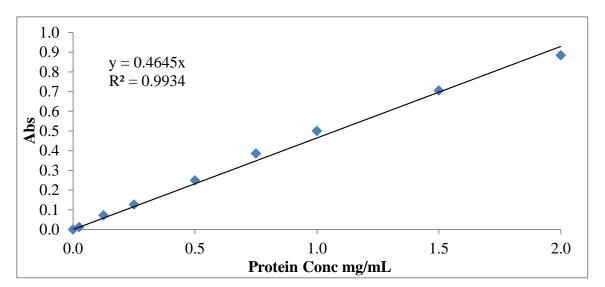
Samula	ABS	ABS						
Sample	1	2	AVG	ST DEV	corrected	mg/mL	ug/mL	бx
OD 777	0.202	0.190	0.196	0.008	0.118	0.24754	247.54	1485
OS 777	0.240	0.229	0.235	0.008	0.157	0.32830	328.3	1970
OD 059	0.146	0.137	0.142	0.006	0.064	0.13321	133.21	799.2
OS 059	0.548	0.257	0.403	0.206	0.325	0.68072	680.72	4084
OD 754	0.179	0.181	0.180	0.001	0.102	0.21397	213.97	1284
OS 754	0.167	0.163	0.165	0.003	0.087	0.18250	182.5	1095
OD 303	0.141	0.127	0.134	0.010	0.056	0.11747	117.47	704.8
OS 303	0.190	0.130	0.160	0.042	0.082	0.17202	172.02	1032

ABS	ABS				
1	2	AVG	ST. DEV.	Conc (mg/mL)	Corrected
0.973	0.968	0.971	0.004	2.000	0.916
0.782	0.769	0.776	0.009	1.500	0.721
0.656	0.521	0.589	0.095	1.000	0.534
0.456	0.453	0.455	0.002	0.750	0.400
0.330	0.325	0.328	0.004	0.500	0.273
0.207	0.208	0.208	0.001	0.250	0.153
0.137	0.133	0.135	0.003	0.125	0.081
0.070	0.070	0.070	0.000	0.025	0.016
0.054	0.055	0.055	0.001	0.000	0.000


BCA Canine Samples 2-24-16 SET 6

Samula	ABS	ABS						
Sample	1	2	AVG	ST DEV	corrected	mg/mL	ug/mL	бx
OD 428	0.099	0.099	0.099	0.000	0.045	0.09211	92.113	552.7
OS 428	0.150	0.178	0.164	0.020	0.110	0.22666	226.66	1360
OD 989	0.378	0.384	0.381	0.004	0.327	0.67584	675.84	4055
OS 989	0.271	0.314	0.293	0.030	0.238	0.49265	492.65	2956
OD 897	0.209	0.197	0.203	0.008	0.149	0.30739	307.39	1844
OS 897	0.174	0.175	0.175	0.001	0.120	0.24840	248.4	1490
OD 481	0.161	0.163	0.162	0.001	0.108	0.22252	222.52	1335
OS 481	0.215	0.148	0.182	0.047	0.127	0.26289	262.89	1577

ABS	ABS				
1	2	AVG	ST. DEV.	Conc (mg/mL)	Corrected
1.120	1.095	1.108	0.018	2.000	1.019
0.897	0.868	0.883	0.021	1.500	0.794
0.671	0.585	0.628	0.061	1.000	0.539
0.525	0.511	0.518	0.010	0.750	0.429
0.370	0.361	0.366	0.006	0.500	0.277
0.241	0.243	0.242	0.001	0.250	0.153
0.159	0.158	0.159	0.001	0.125	0.070
0.105	0.107	0.106	0.001	0.025	0.017
0.088	0.090	0.089	0.001	0.000	0.000


BCA Canine Samples 2-26-16 SET 7

Samula	ABS	ABS						
Sample	1	2	AVG	ST DEV	corrected	mg/mL	ug/mL	бx
OD 839	0.187	0.160	0.174	0.019	0.085	0.16098	160.98	965.9
OS 839	0.157	0.158	0.158	0.001	0.069	0.13050	130.5	783
OS 581	0.241	0.233	0.237	0.006	0.148	0.28196	281.96	1692
OS 570	0.181	0.182	0.182	0.001	0.093	0.17622	176.22	1057
OD 478	0.194	0.197	0.196	0.002	0.107	0.20290	202.9	1217
OS 478	0.274	0.208	0.241	0.047	0.152	0.28958	289.58	1737
OD 415	0.246	0.250	0.248	0.003	0.159	0.30291	302.91	1817
OS 415	0.221	0.225	0.223	0.003	0.134	0.25529	255.29	1532

ABS	ABS				
1	2	AVG	ST. DEV.	Conc (mg/mL)	Corrected
0.944	0.982	0.963	0.027	2.000	0.885
0.802	0.766	0.784	0.025	1.500	0.706
0.631	0.526	0.579	0.074	1.000	0.500
0.480	0.448	0.464	0.023	0.750	0.386
0.321	0.334	0.328	0.009	0.500	0.249
0.208	0.202	0.205	0.004	0.250	0.127
0.152	0.150	0.151	0.001	0.125	0.073
0.089	0.092	0.091	0.002	0.025	0.012
0.076	0.081	0.079	0.004	0.000	0.000

BCA Canine Samples 2-26-16 SET 8

Comple	ABS	ABS						
Sample	1	2	AVG	ST DEV	corrected	mg/mL	ug/mL	бx
OD 564	0.215	0.164	0.190	0.036	0.111	0.23897	238.97	1434
OS 185	0.145	0.141	0.143	0.003	0.065	0.13886	138.86	833.2
OD 803	0.186	0.187	0.187	0.001	0.108	0.23251	232.51	1395
OS 803	0.243	0.226	0.235	0.012	0.156	0.33584	335.84	2015
OD 0039	0.180	0.159	0.170	0.015	0.091	0.19591	195.91	1175
OS 0039	0.176	0.150	0.163	0.018	0.085	0.18192	181.92	1091
OD 477	0.166	0.177	0.172	0.008	0.093	0.20022	200.22	1201
OS 477	0.184	0.176	0.180	0.006	0.102	0.21851	218.51	1311

APPENDIX B

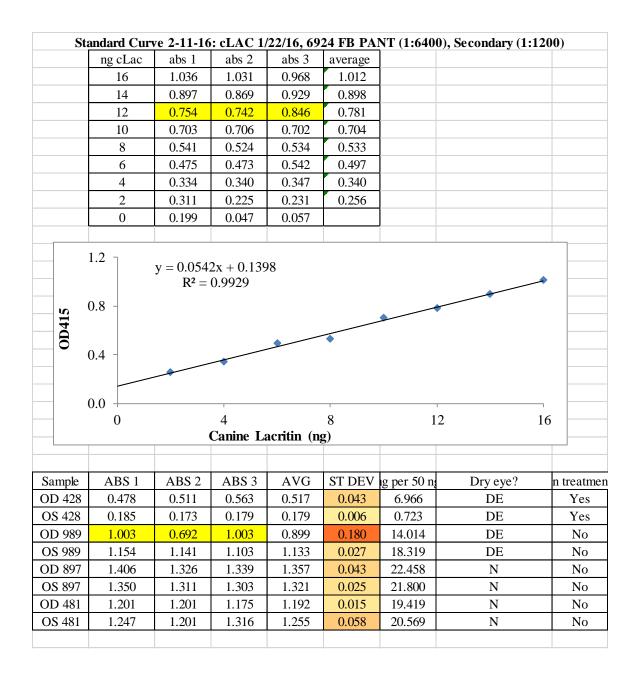
Raw data from the ELISA is shown below. Darker shades of orange indicate a higher standard deviation in the three absorbances measured from each sample.

	rd Curve 2	2-18-16: c	LAC 1/22	/16, 6924	FB PANT	(1:6400), Seconda	ry (1:1	200)
	ng cLac	abs 1	abs 2	abs 3	average			
	16	0.735	0.719	0.700	0.718			
	14	0.596	0.622	0.637	0.618			
	12	0.542	0.524	0.588	0.551			
	10	0.513	0.528	0.536	0.526			
	8	0.460	0.469	0.462	0.464			
	6	0.400	0.394	0.384	0.393			
	4	0.300	0.312	0.307	0.306			
	2	0.217	0.214	0.221	0.217			
	0	0.136	0.062	0.092				
00 415	y =	$0.0333x + R^2 = 0.984$	48		-	•		
0.0 -	•			0		12	16	
-)	4 Cani	ne Lacriti	8 in (ng)		12	16	
0.0 -		•	ne Lacriti	-		12	16	
0.0 -	ABS 1	•	ne Lacriti	-	ST DEV	12 ng per 50 ng		ry eye?
0.0 +		Cani		in (ng)	ST DEV 0.008			ry eye? DE
0.0 + 0	ABS 1	Cani ABS 2	ABS 3	AVG		ng per 50 ng		
0.0 + 0 Sample OS 68	ABS 1 0.199	Cani ABS 2 0.187	ABS 3 0.203	in (ng) AVG 0.203	0.008	ng per 50 ng 0.901		DE
0.0 + 0 Sample OS 68 OD 68	ABS 1 0.199 0.697	Cani ABS 2 0.187 0.728	ABS 3 0.203 0.733	AVG 0.203 0.733	0.008 0.020	ng per 50 ng 0.901 16.769		DE DE
0.0 + 0 Sample OS 68 OD 68 OS 43	ABS 1 0.199 0.697 0.313	Cani ABS 2 0.187 0.728 0.327	ABS 3 0.203 0.733 0.333	AVG 0.203 0.733 0.333	0.008 0.020 0.010	ng per 50 ng 0.901 16.769 4.793		DE DE DE
0.0 + 0 Sample OS 68 OD 68 OS 43 OD 43	ABS 1 0.199 0.697 0.313 0.361	Cani ABS 2 0.187 0.728 0.327 0.375	ABS 3 0.203 0.733 0.333 0.362	AVG 0.203 0.733 0.333 0.362	0.008 0.020 0.010 0.008	ng per 50 ng 0.901 16.769 4.793 5.662		DE DE DE DE
0.0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ABS 1 0.199 0.697 0.313 0.361 0.293	Cani ABS 2 0.187 0.728 0.327 0.375 0.307	ABS 3 0.203 0.733 0.333 0.362 0.290	AVG 0.203 0.733 0.333 0.362 0.290	0.008 0.020 0.010 0.008 0.009	ng per 50 ng 0.901 16.769 4.793 5.662 3.506		DE DE DE DE N

Standar	d Curve 2-2	18-16: cLA	AC 1/22/16	5, 6924 FI	3 PANT (1:	(0400), Secondary	(1:1200)
	ng cLac	abs 1	abs 2	abs 3	average		
	16	0.647	0.673	0.677	0.666		
	14	0.581	0.596	0.600	0.592		
	12	0.491	0.507	0.517	0.505		
	10	0.473	0.486	0.462	0.474		
	8	0.382	0.395	0.427	0.401		
	6	0.352	0.368	0.369	0.363		
	4	0.275	0.294	0.298	0.289		
	2	0.181	0.189	0.190	0.187		
	0	0.048	0.049	0.050			
D415 0.4		$R^2 = 0.9$	877			+	
517 0.4 0.0		R ² = 0.9	•	e Lacritin	(ng)	12	16
_			•	e Lacritin	(ng)	12	16
0.0			•	e Lacritin AVG	(ng) ST DEV	12 ng per 50 ng	16 Dry eye
0.0	0	4	Canine	e Lacritin			
0.0 Sample	0 ABS 1	4 ABS 2	Canine ABS 3	e Lacritin AVG	ST DEV	ng per 50 ng	Dry eye
0.0 Sample OS 68	ABS 1 0.167	ABS 2 0.191	Canine ABS 3 0.162	AVG 0.173	ST DEV 0.016	ng per 50 ng 0.823	Dry eye DE
0.0 Sample OS 68 OD 68	ABS 1 0.167 0.652	4 ABS 2 0.191 0.585	Canine ABS 3 0.162 0.647	AVG 0.173 0.628	ST DEV 0.016 0.037	ng per 50 ng 0.823 15.031	Dry eye DE DE
0.0 Sample OS 68 OD 68 OS 43	ABS 1 0.167 0.652 0.293	4 ABS 2 0.191 0.585 0.279	Canine ABS 3 0.162 0.647 0.296	AVG 0.173 0.628 0.289	ST DEV 0.016 0.037 0.009	ng per 50 ng 0.823 15.031 4.448	Dry eye DE DE DE DE
0.0 Sample OS 68 OD 68 OS 43 OD 43	ABS 1 0.167 0.652 0.293 0.334	ABS 2 0.191 0.585 0.279 0.336	Canine ABS 3 0.162 0.647 0.296 0.329	AVG 0.173 0.628 0.289 0.333	ST DEV 0.016 0.037 0.009 0.004	ng per 50 ng 0.823 15.031 4.448 5.813	Dry eye DE DE DE DE DE DE
0.0 Sample OS 68 OD 68 OD 43 OD 43 OS 91	ABS 1 0.167 0.652 0.293 0.334 0.274	ABS 2 0.191 0.585 0.279 0.336 0.262	Canine ABS 3 0.162 0.647 0.296 0.329 0.281	AVG 0.173 0.628 0.289 0.333 0.272	ST DEV 0.016 0.037 0.009 0.004 0.010	ng per 50 ng 0.823 15.031 4.448 5.813 3.917	Dry eye DE DE DE DE DE DE N

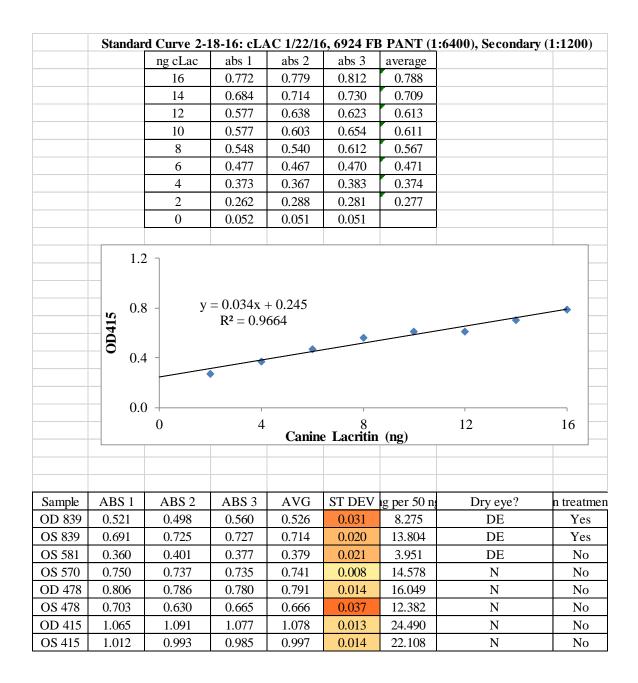
Stan	dard Curv	e 2-18-16	: cLAC 1/2	22/16, 692	24 FB PAN	NT (1:6400), Second	lary (1:1200)	
	ng cLac	abs 1	abs 2	abs 3	average			
	16	0.736	0.696	0.801	0.744			
	14	0.730	0.657	0.659	0.682			
	12	0.658	0.651	0.690	0.666			
	10	0.603	0.668	0.639	0.637			
	8	0.510	0.542	0.540	0.531			
	6	0.413	0.459	0.436	0.436			
	4	0.354	0.363	0.357	0.358			
	2	0.389	0.395	0.282	0.355			
	0	0.051	0.056	0.052				
1.2 1.2 0.8 0.4 0.0 0	•	0.0306x + 0 $R^2 = 0.956$ 4 Cani	0.2758 58 ne Lacriti	8 in (ng)	•	12	16	
 Sample	ABS 1	ABS 2	ABS 3	AVG	ST DEV	ng per 50 ng	Dry eye?	On treatment?
OD 35	0.356	0.359	0.367	0.361	0.006	2.773	DE	Yes
 OS 35	0.419	0.446	0.470	0.445	0.026	5.529	DE	Yes
 OD 26	0.728	0.731	0.717	0.725	0.007	14.691	DE	Yes
OS 26	0.563	0.517	0.574	0.551	0.030	9.004	DE	Yes
OD 47	0.118	0.117	0.132	0.122	0.008	-5.015	N	200
 OB 47 OS 47	0.902	0.706	0.132	0.848	0.124	18.688	N	
 OD 139	0.694	0.725	0.715	0.711	0.016	14.233	N	
 OS 139	0.757	0.725	0.691	0.724	0.033	14.658	DE	Yes
 00137	0.757	0.725	0.071	0.724	0.055	17.050		105

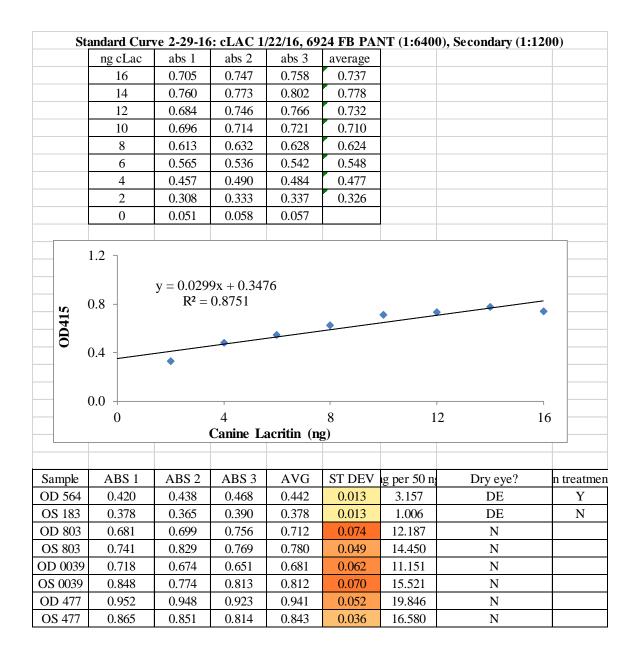
Stand							
	ng cLac	abs 1	abs 2	abs 3	average		
	16	0.647	0.650	0.673	0.657		
	14	0.551	0.575	0.606	0.577		
	12	0.552	0.554	0.607	0.571		
	10	0.532	0.530	0.555	0.539		
	8	0.427	0.436	0.477	0.447		
	6	0.359	0.392	0.398	0.383		
	4	0.330	0.342	0.349	0.340		
	2	0.217	0.239	0.239	0.232		
	0	0.048	0.049	0.054			
0 D415	.4 -				•		
00 413 0.		4	Canine	e Lacritin	(ng)	12	16
•	0	4	Canine	8 e Lacritin	(ng)	12	16
•	0	ABS 1	Canine ABS 2	8 e Lacritin ABS 3	(ng) AVG	12 ST DEV	16
•				e Lacritin			
•	.0 0 O Sample	ABS 1	ABS 2	ABS 3	AVG	ST DEV	ng per 50
•	0 0 0 Sample OD 35	ABS 1 0.299	ABS 2 0.279	ABS 3 0.287	AVG 0.288	ST DEV 0.010	ng per 50 3.717
•	0 0 Sample OD 35 OS 35	ABS 1 0.299 0.437	ABS 2 0.279 0.419	ABS 3 0.287 0.404	AVG 0.288 0.420	ST DEV 0.010 0.017	ng per 50 3.717 9.981
•	0 0 Sample OD 35 OS 35 OD 26	ABS 1 0.299 0.437 0.672	ABS 2 0.279 0.419 0.701	ABS 3 0.287 0.404 0.691	AVG 0.288 0.420 0.688	ST DEV 0.010 0.017 0.015	ng per 50 3.717 9.981 22.731
•	0 0 Sample OD 35 OD 35 OD 26 OS 26	ABS 1 0.299 0.437 0.672 0.540	ABS 2 0.279 0.419 0.701 0.519	ABS 3 0.287 0.404 0.691 0.511	AVG 0.288 0.420 0.688 0.523	ST DEV 0.010 0.017 0.015 0.015	ng per 50 3.717 9.981 22.731 14.897
•	0 0 0 0 0 0 0 0 35 0 0 35 0 0 26 0 0 26 0 0 47	ABS 1 0.299 0.437 0.672 0.540 0.100	ABS 2 0.279 0.419 0.701 0.519 0.097	ABS 3 0.287 0.404 0.691 0.511 0.117	AVG 0.288 0.420 0.688 0.523 0.105	ST DEV 0.010 0.017 0.015 0.015 0.011	ng per 50 3.717 9.981 22.731 14.897 -5.021


	Stan	dard Curv	e 2-18-16	cLAC 1/	22/16, 692	24 FB PAN	NT (1:6400), Secon	dary (1:1200)
		ng cLac	abs 1	abs 2	abs 3	average		
		16	0.685	0.743	0.714	0.714		
		14	0.591	0.619	0.532	0.581		
		12	0.538	0.539	0.550	0.542		
		10	0.512	0.514	0.537	0.521		
		8	0.449	0.458	0.450	0.452		
		6	0.386	0.402	0.413	0.400		
		4	0.284	0.304	0.316	0.301		
		2	0.183	0.165	0.195	0.181		
		0	0.068	0.054	0.057			
	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	•	.0335x + 0 R ² = 0.959	0.1604 01	8 in (ng)	•	12	
Sample	ABS 1	ABS 2	ABS 3	AVG	ST DEV	ig per 50 n	Dry eye?	On treatment?
OD 37	0.642	0.614	0.618	0.625	0.015	13.859	N	
OS 37	0.903	0.881	0.912	0.899	0.016	22.038	N	
OD 97	0.093	0.072	0.088	0.084	0.011	-2.271	DE	Yes
OS 97	0.065	0.062	0.065	0.064	0.002	-2.878	DE	Yes
OD 82	0.126	0.111	0.097	0.111	0.015	-1.465	DE	Yes
OS 82	0.894	0.908	0.835	0.879	0.039	21.451	DE	Yes
OD 61	0.058	0.067	0.062	0.062	0.005	-2.927	DE	No
OS 61	0.193	0.167	0.144	0.168	0.025	0.227	DE	No

Standa	aru Curve 2							
	ng cLac	abs 1	abs 2	abs 3	average			
	16	0.693	0.697	0.688	0.693			
	14	0.570	0.595	0.560	0.575			
	12	0.496	0.500	0.492	0.496			
	10	0.496	0.495	0.491	0.494			
	8	0.438		0.436	0.437			
	6	0.403	0.391	0.392	0.395			
	4	0.283	0.284	0.299	0.289			
	2	0.191	0.197	0.207	0.198			
	0	0.074	0.075	0.061				
0.4	4 -	$R^2 = 0.95$	•	•	•	•	-	
0.0 0.0		4	•	e Lacritin	(ng)	12	16	
)		•	e Lacritin	(ng)	12	16	
0.0)		•	8 e Lacritin AVG	(ng) ST DEV	12 ng per 50 ng	16 Dry 6	eye
0.0		4	Canine	e Lacritin				
0.0 Sample OD 37	0 ABS 1	4 ABS 2	Canine ABS 3	AVG	ST DEV	ng per 50 ng	Dry e	1
0.0 Sample OD 37 OS 37	0 ABS 1 0.558	4 ABS 2 0.581	Canine ABS 3 0.599	AVG 0.579	ST DEV 0.021	ng per 50 ng 13.014	Dry e	1 1
0.0 Sample OD 37 OS 37 OD 97	ABS 1 0.558 0.859	ABS 2 0.581 0.911	Canine ABS 3 0.599 0.833	AVG 0.579 0.868	ST DEV 0.021 0.040	ng per 50 ng 13.014 22.376	Dry c	I I E
0.0 Sample OD 37 OS 37 OD 97 OS 97	0 ABS 1 0.558 0.859 0.100	ABS 2 0.581 0.911 0.090	Canine ABS 3 0.599 0.833 0.112	AVG 0.579 0.868 0.101	ST DEV 0.021 0.040 0.011	ng per 50 ng 13.014 22.376 -2.527	Dry c N N D	I E E
0.0 Sample OD 37 OS 37 OD 97 OS 97 OD 82	ABS 1 0.558 0.859 0.100 0.074	4 ABS 2 0.581 0.911 0.090 0.086	Canine ABS 3 0.599 0.833 0.112 0.083	AVG 0.579 0.868 0.101 0.081	ST DEV 0.021 0.040 0.011 0.006	ng per 50 ng 13.014 22.376 -2.527 -3.166	Dry c N N D	I E E E
	ABS 1 0.558 0.859 0.100 0.074 0.107	ABS 2 0.581 0.911 0.090 0.086 0.123	ABS 3 0.599 0.833 0.112 0.083 0.113	AVG 0.579 0.868 0.101 0.081 0.114	ST DEV 0.021 0.040 0.011 0.006 0.008	ng per 50 ng 13.014 22.376 -2.527 -3.166 -2.083	Dry c N Dry D D D D	I E E E E

Star	ndard Curve	2-11-10:						
	ng cLac	abs 1	abs 2	abs 3	average			
	16	0.886	0.775	0.867				
	14	0.662	0.627	0.662	0.650			
	12	0.582	0.565	0.560	0.569			
	10	0.515	0.541	0.576	0.544			
	8	0.479	0.451	0.506	0.479			
	6	0.401	0.414	0.438	0.418			
	4	0.397	0.434	0.416	0.416			
	2	0.281	0.298	0.306	0.295			
	0	0.059	0.057	0.056				
415						•		
ō	0.4	•	4	8		12	1	
			4 anine Lac	eritin (ng)		12	1	6
	0.0			-		12	1	6
0	0.0			eritin (ng)				0 treatment
		C	anine Lac	-		12 ig per 50 n; 6.021	1 Dry eye? DE	
Sample OD 039	0.0 0 ABS 1 0.406	C: ABS 2 0.412	ABS 3 0.468	AVG 0.429	ST DEV 0.034	ıg per 50 n; 6.021	Dry eye?	On treatment Yes
Sample	0.0 0 ABS 1 0.406 0.184	Ca ABS 2 0.412 0.189	ABS 3 0.468 0.199	AVG 0.429 0.191	ST DEV 0.034 0.008	ıg per 50 n	Dry eye? DE	On treatment
00 039 OS 039	0.0 0 ABS 1 0.406	C: ABS 2 0.412	ABS 3 0.468	AVG 0.429	ST DEV 0.034 0.008 0.005	ig per 50 n; 6.021 -2.859 -7.499	Dry eye? DE DE	On treatment Yes Yes
Sample OD 039 OS 039 OD 18	0.0 0 ABS 1 0.406 0.184 0.061 0.136	C: ABS 2 0.412 0.189 0.067 0.129	ABS 3 0.468 0.199 0.071 0.136	AVG 0.429 0.191 0.066 0.134	ST DEV 0.034 0.008 0.005 0.004	ng per 50 ng 6.021 -2.859 -7.499 -4.986	Dry eye? DE DE DE DE	On treatment Yes Yes No
Sample OD 039 OS 039 OD 18 OS 18 OD 100	0.0 0 ABS 1 0.406 0.184 0.061 0.136 0.656	Ca ABS 2 0.412 0.189 0.067 0.129 0.808	ABS 3 0.468 0.199 0.071 0.136 0.763	AVG 0.429 0.191 0.066 0.134 0.742	ST DEV 0.034 0.008 0.005 0.004 0.078	g per 50 ng 6.021 -2.859 -7.499 -4.986 17.725	Dry eye? DE DE DE DE DE	On treatment Yes Yes No No
Sample OD 039 OS 039 OD 18 OS 18	0.0 0 ABS 1 0.406 0.184 0.061 0.136	C: ABS 2 0.412 0.189 0.067 0.129	ABS 3 0.468 0.199 0.071 0.136	AVG 0.429 0.191 0.066 0.134	ST DEV 0.034 0.008 0.005 0.004	ng per 50 ng 6.021 -2.859 -7.499 -4.986	Dry eye? DE DE DE DE DE DE	On treatment Yes Yes No No


Sta	ndard Curve	- 4-11-10.						
	ng cLac	abs 1	abs 2	abs 3	average			
	16	0.886	0.775	0.867				
	14	0.662	0.627	0.662	0.650			
	12	0.582	0.565	0.560	0.569			
	10	0.515	0.541	0.576	0.544			
	8	0.479	0.451	0.506	0.479			
	6	0.401	0.414	0.438	0.418			
	4	0.397	0.434	0.416	0.416			
	2	0.281	0.298	0.306	0.295			
	0	0.059	0.057	0.056				
C	0.8] y =	= 0.0268x $R^2 = 0.9$					-	
ō	0.4		4 anine Lac	* 8 ritin (ng)		12	1	l.6
	0.0			-		12	1	6
	0.0			-		12	1 Dry eye?	
C	0.0	C	anine Lac	ritin (ng)				
Sample	0.0 0 0 ABS 1	Ca ABS 2	anine Lac ABS 3	ritin (ng) AVG	ST DEV	ıg per 50 n	Dry eye?	On treatment
Sample OD 039	0.0 0 ABS 1 0.406	C: ABS 2 0.412	ABS 3 0.468	ritin (ng) AVG 0.429	ST DEV 0.034	ig per 50 n; 6.021	Dry eye? DE	On treatment Yes
C 00 039 05 039	0.0 0 ABS 1 0.406 0.184	C: ABS 2 0.412 0.189	ABS 3 0.468 0.199	ritin (ng) AVG 0.429 0.191	ST DEV 0.034 0.008	ng per 50 ng 6.021 -2.859	Dry eye? DE DE	On treatment Yes Yes
Sample OD 039 OS 039 OD 18	0.0 0 0 ABS 1 0.406 0.184 0.061	C: ABS 2 0.412 0.189 0.067	ABS 3 0.468 0.199 0.071	AVG 0.429 0.191 0.066	ST DEV 0.034 0.008 0.005	ig per 50 n 6.021 -2.859 -7.499	Dry eye? DE DE DE DE	On treatment Yes Yes No
Sample OD 039 OS 039 OD 18 OS 18	0.0 0 ABS 1 0.406 0.184 0.061 0.136	C: ABS 2 0.412 0.189 0.067 0.129	ABS 3 0.468 0.199 0.071 0.136	ritin (ng) AVG 0.429 0.191 0.066 0.134	ST DEV 0.034 0.008 0.005 0.004	ng per 50 ng 6.021 -2.859 -7.499 -4.986	Dry eye? DE DE DE DE DE	On treatment Yes Yes No No
Sample OD 039 OS 039 OD 18 OS 18 OD 100	0.0 0 ABS 1 0.406 0.184 0.061 0.136 0.656	C: ABS 2 0.412 0.189 0.067 0.129 0.808	ABS 3 0.468 0.199 0.071 0.136 0.763	ritin (ng) AVG 0.429 0.191 0.066 0.134 0.742	ST DEV 0.034 0.008 0.005 0.004 0.078	g per 50 n 6.021 -2.859 -7.499 -4.986 17.725	Dry eye? DE DE DE DE DE DE	On treatment Yes Yes No No


Standa	rd Curve	2-18-16: c	LAC 1/22	/16, 6924	FB PANT	(1:6400), Secondar	y (1:1200)
	ng cLac	abs 1	abs 2	abs 3	average		
	16	0.735	0.719	0.700	0.718		
	14	0.596	0.622	0.637	0.618		
	12	0.542	0.524	0.588	0.551		
	10	0.513	0.528	0.536	0.526		
	8	0.460	0.469	0.462	0.464		
	6	0.400	0.394	0.384	0.393		
	4	0.300	0.312	0.307	0.306		
	2	0.217	0.214	0.221	0.217		
	0	0.136	0.062	0.092			
0.0 5110 0.0 0. 0		0.0333x + R ² = 0.98			-	12	
C)	⁴ .	- •	8		12	16
		Cani	ne Lacriti	in (ng)			
Sample	ABS 1	ABS 2	ABS 3	AVG	ST DEV	ng per 50 ng	Dry eye?
OS 68	0.199	0.187	0.203	0.203	0.008	0.901	DE
OD 68	0.697	0.728	0.733	0.733	0.020	16.769	DE
OS 43	0.313	0.327	0.333	0.333	0.010	4.793	DE
0010	1		0.362	0.362	0.008	5.662	DE
OD 43	0.361	0.375	0.302	0.001			
	0.361 0.293	0.375	0.362	0.290	0.009	3.506	N
OD 43							
OD 43 OS 91	0.293	0.307	0.290	0.290	0.009	3.506	N

Standar	d Curve 2-1	10-10. CLF					
	ng cLac	abs 1	abs 2	abs 3	average		
	16	0.647	0.673	0.677	0.666		
	14	0.581	0.596	0.600	0.592		
	12	0.491	0.507	0.517	0.505		
	10	0.473	0.486	0.462	0.474		
	8	0.382	0.395	0.427	0.401		
	6	0.352	0.368	0.369	0.363		
	4	0.275	0.294	0.298	0.289		
	2	0.181	0.189	0.190	0.187		
	0	0.048	0.049	0.050			
115		$R^2 = 0.9$	077				_
0.4 00915		K = 0.9	•	8		12	16
			•	e Lacritin	(ng)	12	16
0.0	0	4	Canine	e Lacritin			
0.0 Sample	0 ABS 1	4 ABS 2	Canine ABS 3	e Lacritin AVG	ST DEV	ng per 50 ng	Dry eye
0.0 Sample OS 68	ABS 1 0.167	4 ABS 2 0.191	Canine ABS 3 0.162	AVG 0.173	ST DEV 0.016	ng per 50 ng 0.823	Dry eye DE
0.0 Sample OS 68 OD 68	ABS 1 0.167 0.652	4 ABS 2 0.191 0.585	Canine ABS 3 0.162 0.647	AVG 0.173 0.628	ST DEV 0.016 0.037	ng per 50 ng 0.823 15.031	Dry eye DE DE
0.0 Sample OS 68 OD 68 OS 43	ABS 1 0.167 0.652 0.293	ABS 2 0.191 0.585 0.279	Canine ABS 3 0.162 0.647 0.296	AVG 0.173 0.628 0.289	ST DEV 0.016 0.037 0.009	ng per 50 ng 0.823 15.031 4.448	Dry eye DE DE DE DE
0.0 Sample OS 68 OD 68 OS 43 OD 43	ABS 1 0.167 0.652 0.293 0.334	4 ABS 2 0.191 0.585 0.279 0.336	Canine ABS 3 0.162 0.647 0.296 0.329	AVG 0.173 0.628 0.289 0.333	ST DEV 0.016 0.037 0.009 0.004	ng per 50 ng 0.823 15.031 4.448 5.813	Dry eye DE DE DE DE DE DE
0.0 Sample OS 68 OD 68 OS 43	ABS 1 0.167 0.652 0.293	ABS 2 0.191 0.585 0.279	Canine ABS 3 0.162 0.647 0.296	AVG 0.173 0.628 0.289	ST DEV 0.016 0.037 0.009	ng per 50 ng 0.823 15.031 4.448	Dry eye DE DE DE DE
0.0 Sample OS 68 OD 68 OS 43 OD 43	ABS 1 0.167 0.652 0.293 0.334	4 ABS 2 0.191 0.585 0.279 0.336	Canine ABS 3 0.162 0.647 0.296 0.329	AVG 0.173 0.628 0.289 0.333	ST DEV 0.016 0.037 0.009 0.004	ng per 50 ng 0.823 15.031 4.448 5.813	Dry eye DE DE DE DE DE DE
0.0 Sample OS 68 OD 68 OS 43 OD 43 OS 91	ABS 1 0.167 0.652 0.293 0.334 0.274	ABS 2 0.191 0.585 0.279 0.336 0.262	Canine ABS 3 0.162 0.647 0.296 0.329 0.281	AVG 0.173 0.628 0.289 0.333 0.272	ST DEV 0.016 0.037 0.009 0.004 0.010	ng per 50 ng 0.823 15.031 4.448 5.813 3.917	Dry eye DE DE DE DE DE N

Standa	rd Curve 2-1	18-16: cLA	AC 1/22/1	6, 6924 FI	B PANT (1	l:6400), Se	condary (1:1200)	
		ng cLac	abs 1	abs 2	abs 3	average		
		16	0.702	0.730	0.783	0.738		
		14	0.674	0.691	0.695	0.687		
		12	0.543	0.538	0.588	0.556		
		10	0.581	0.556	0.576	0.571		
		8	0.532	0.522	0.522	0.525		
		6	0.468	0.432	0.443	0.448		
		4	0.360	0.379	0.382	0.374		
		2	0.265	0.266	0.278	0.270		
		0	0.058	0.062	0.059			
	0.4 0.0 0.0 00 00 00	•	0.0311x + 0 R ² = 0.960		• 8 in (ng)		12	16
Sample	ABS 1	ABS 2	ABS 3	AVG		ng per 50 ng	Dry eye?	On treatment?
OD 839	0.489	0.415	0.512	0.472	0.051	7.408	DE	Yes
OS 839	0.633	0.657	0.659	0.650	0.014	13.121	DE	Yes
OS 581	0.364	0.372	0.392	0.376	0.014	4.322	DE	No
OS 570	0.731	0.747	0.751	0.743	0.011	16.122	N	No
OD 478	0.749	0.761	0.756	0.755	0.006	16.519	N	No
OS 478	0.638	0.669 0.991	0.662	0.656	0.016	13.335	N	No
00 11-	I 0.075	0 001	1 1 1 1 1 1 1 1 1	1 0000	11110	111 (2020)	NI	
OD 415 OS 415	0.975 0.959	0.991	1.029 0.996	0.998 0.967	0.028	24.332 23.325	<u>N</u> N	No No

andard Cur	ve 2-29-16:							
		ng cLac	abs 1	abs 2	abs 3	average		
		16	0.695	0.754	0.766	0.738		
		14	0.757	0.768	0.840	0.788		
		12	0.687	0.676	0.759	0.707		
		10	0.654	0.697	0.724	0.692		
		8	0.638	0.625	0.765	0.676		
		6	0.569	0.528	0.569	0.555		
		4	0.461	0.486	0.492	0.480		
		2	0.336	0.351	0.355	0.347		
		0	0.050	0.06	0.058			
						· · · · · · · · · · · · · · · · · · ·		
0.0 00412 0.0 00412	R ² :	= 0.8595		•	•		•	
0D415	•	4	•	•		2	•	
0.0 -	•	4	Canine La	•		2	16	
0.0 -	•	4	Canine La	•	()		16 Dry eye?	Dn treatme
0.0 +0.0)	4		critin (ng	()	2 g per 50 n 3.555		Dn treatme
0.0 +	ABS 1	4 ABS 2	ABS 3	acritin (ng AVG	s) ST DEV	g per 50 n	Dry eye?	
0.4 - 0.0 - 0.0 - 00 564	ABS 1 0.476	4 ABS 2 0.433	ABS 3 0.498	AVG 0.469	s) ST DEV 0.033	g per 50 n 3.555	Dry eye? DE	Y
0.4 - 0.0 - 0.0 - 00 564 0S 183	ABS 1 0.476 0.404	4 ABS 2 0.433 0.392	ABS 3 0.498 0.410	AVG 0.469 0.402	ST DEV 0.033 0.009	g per 50 n 3.555 1.187	Dry eye? DE DE	Y
Sample OD 564 OD 803	ABS 1 0.476 0.404 0.808	4 ABS 2 0.433 0.392 0.769	ABS 3 0.498 0.410 0.741	AVG 0.469 0.402 0.773	ST DEV 0.033 0.009 0.034	g per 50 n 3.555 1.187 14.285	Dry eye? DE DE N	Y
Sample OD 564 OD 803 OD 803 OD 0039	 ABS 1 0.476 0.404 0.808 0.806 0.771 	4 ABS 2 0.433 0.392 0.769 0.803 0.786	ABS 3 0.498 0.410 0.741 0.848 0.777	AVG 0.469 0.402 0.773 0.819 0.778	 ST DEV 0.033 0.009 0.034 0.025 0.008 	g per 50 n 3.555 1.187 14.285 15.922	Dry eye? DE DE N N	Y
Sample OD 564 OS 183 OD 803 OS 803	ABS 1 0.476 0.404 0.808 0.806	4 ABS 2 0.433 0.392 0.769 0.803	ABS 3 0.498 0.410 0.741 0.848	AVG 0.469 0.402 0.773 0.819	ST DEV 0.033 0.009 0.034 0.025	g per 50 n 3.555 1.187 14.285 15.922 14.473	Dry eye? DE DE N N N	

Star	ndard Curv	- 2-27-10.						
	ng cLac	abs 1	abs 2	abs 3	average		-	
	16	0.707	0.736	0.748	0.730			
	14	0.637	0.671	0.630	0.646			
	12	0.528	0.593	0.716	0.612			
	10	0.537	0.573	0.583	0.564			
	8	0.535	0.526	0.532	0.531			
	6	0.445	0.447	0.459	0.450			
	4	0.342	0.336	0.342	0.340			
	2	0.229	0.238	0.244	0.237			
	0	0.058	0.054	0.054				
0 D415	0.4 -		-					
		•						
			4	8		12	1	6
	0.0		4 anine Lac	•		12	1	6
	0.0		-	•		12	10	6
	0.0		-	•		12	1	5
0	0.0 0	C	anine Lac	ritin (ng)				
Sample	0.0 0 0 ABS 1	Ca ABS 2	ABS 3	ritin (ng) AVG	ST DEV	ıg per 50 n	Dry eye? DE	On treatment?
Sample OD 35	0.0 0 0 ABS 1 0.146	C: ABS 2 0.111	ABS 3 0.109	ritin (ng) AVG 0.122	ST DEV 0.025	ng per 50 ng -2.960	Dry eye? DE	On treatment? Y
Sample	0.0 0 0 ABS 1 0.146 0.112	C: ABS 2 0.111 0.099	ABS 3	ritin (ng) AVG	ST DEV 0.025 0.012	ng per 50 ng -2.960 -3.641	Dry eye?	On treatment?
00 35 OS 35	0.0 0 0 ABS 1 0.146	C: ABS 2 0.111	ABS 3 0.109 0.088	ritin (ng) AVG 0.122 0.100	ST DEV 0.025	ng per 50 ng -2.960	Dry eye? DE DE	On treatment Y Y
Sample OD 35 OS 35 OD 26	ABS 1 0.146 0.112 0.477	C: ABS 2 0.111 0.099 0.456	ABS 3 0.109 0.088 0.460	ritin (ng) AVG 0.122 0.100 0.464	ST DEV 0.025 0.012 0.021	ng per 50 ng -2.960 -3.641 7.477	Dry eye? DE DE DE DE	On treatment ⁶ Y Y Y
Sample OD 35 OS 35 OD 26 OS 26	0.0 0 ABS 1 0.146 0.112 0.477 0.456	C: ABS 2 0.111 0.099 0.456 0.502	ABS 3 0.109 0.088 0.460 0.465	ritin (ng) AVG 0.122 0.100 0.464 0.474	ST DEV 0.025 0.012 0.021 0.272	ng per 50 ng -2.960 -3.641 7.477 7.782	Dry eye? DE DE DE DE DE	On treatment ⁶ Y Y Y
00 35 OD 35 OD 26 OS 26 OD 47	ABS 1 0.146 0.112 0.477 0.456 0.925	Ca ABS 2 0.111 0.099 0.456 0.502 0.931	ABS 3 0.109 0.088 0.460 0.465 0.867	ritin (ng) AVG 0.122 0.100 0.464 0.474 0.908	ST DEV 0.025 0.012 0.021 0.272 0.325	ng per 50 ng -2.960 -3.641 7.477 7.782 20.993	Dry eye? DE DE DE DE DE N	On treatment ⁶ Y Y Y
Sample OD 35 OS 35 OD 26 OD 26 OD 47 OS 47	ABS 1 0.146 0.112 0.477 0.456 0.925 0.341	Ca ABS 2 0.111 0.099 0.456 0.502 0.931 0.336	ABS 3 0.109 0.088 0.460 0.465 0.867 0.308	ritin (ng) AVG 0.122 0.100 0.464 0.474 0.908 0.328	ST DEV 0.025 0.012 0.021 0.272 0.325 0.066	g per 50 ng -2.960 -3.641 7.477 7.782 20.993 3.330	Dry eye? DE DE DE DE DE N N	On treatment ⁶ Y Y Y
Sample OD 35 OS 35 OD 26 OD 26 OD 47 OS 47 OD 139	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C: ABS 2 0.111 0.099 0.456 0.502 0.931 0.336 0.213	ABS 3 0.109 0.088 0.460 0.465 0.867 0.308 0.177	ritin (ng) AVG 0.122 0.100 0.464 0.474 0.908 0.328 0.203	ST DEV 0.025 0.012 0.021 0.272 0.325 0.066 0.176	ng per 50 ng -2.960 -3.641 7.477 7.782 20.993 3.330 -0.491	Dry eye? DE DE DE DE N N N N	On treatment ^t Y Y Y Y Y
Sample OD 35 OS 35 OD 26 OD 26 OD 47 OD 139 OS 139	ABS 1 0.146 0.112 0.477 0.456 0.925 0.341 0.219 0.597	Ca ABS 2 0.111 0.099 0.456 0.502 0.931 0.336 0.213 0.500	ABS 3 0.109 0.088 0.460 0.465 0.867 0.308 0.177 0.573	ritin (ng) AVG 0.122 0.100 0.464 0.474 0.908 0.328 0.203 0.557	ST DEV 0.025 0.012 0.021 0.272 0.325 0.066 0.176 0.017	ng per 50 ng -2.960 -3.641 7.477 7.782 20.993 3.330 -0.491 10.292	Dry eye? DE DE DE DE N N N N N DE	On treatment ^t Y Y Y Y Y

Standard Curv	e 2-29-16: d	LAC 1/22	2/16, 6924	FB PANT	r (1:6400)	, Seconda	ry (1:1200)	
		ng cLac	abs 1	abs 2	abs 3	average		
		16	0.804	0.786	0.829	0.806		
		14	0.667	0.732	0.698	0.699		
		12	0.621	0.674	0.709	0.668		
		10	0.584	0.574	0.607	0.588		
		8	0.528	0.534	0.597	0.553		
		6	0.459	0.415	0.440	0.438		
		4	0.349	0.359	0.370	0.359		
		2	0.245	0.27	0.267	0.261		
		0	0.050	0.052	0.051			
	5100 0.8 0.4 0.0		$0.0372x + R^2 = 0.983$	38	•	-	12	16
			1	Canine	Lacritin	(ng)		
Sample	ABS 1	ABS 2	ABS 3	AVG	ST DEV	g per 50 n	Dry eye?	On treatment?
OD 35	0.127	0.108	0.115	0.117	0.010	-2.565	DE	Y
OS 35	0.100	0.083	0.093	0.092	0.009	-3.228	DE	Y
OD 26	0.385	0.423	0.484	0.431	0.050	5.875	DE	Y
OS 26	0.447	0.459	0.466	0.457	0.010	6.592	DE	Y
OD 47	1.048	0.975	0.943	0.989	0.054	20.875	Ν	
OS 47	0.348	0.337	0.321	0.335	0.014	3.313	Ν	
OD 139	0.208	0.195	0.215	0.206	0.010	-0.164	Ν	
OS 139	0.579	0.530	0.533	0.547	0.027	9.012	DE	Y
OD 747	0.963	0.907	0.921	0.930	0.029	19.307	Ν	
OS 747	0.736	0.675	0.721	0.711	0.032	13.402	Ν	
OD 415	0.896	0.8	0.794	0.830	0.057	16.610	Ν	

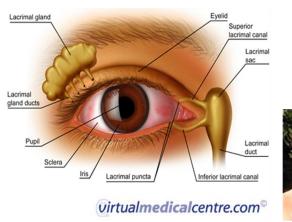
Stan	dard Curve					- (()
	ng cLac	abs 1	abs 2	abs 3	average			
	16	0.779	0.836	0.830	0.815			
	14	0.733	0.750	0.808	0.764			
	12	0.646	0.648	0.781	0.692			
	10	0.636	0.692	0.746	0.691			
	8	0.601	0.606	0.599	0.602			
	6	0.522	0.509	0.553	0.528			
	4	0.379	0.391	0.398	0.389			
	2	0.362	0.379	0.287	0.343			
	0	0.157	0.050	0.054				
					٠			
	0.4 -		4	8		12	1	6
0		Ca	4 anine Lac	-		12		6
0	0.0			-		12	1	6
0	0.0			-		12]	6
0	0.0			-		12	1	6
0		Ca	nnine Lac	ritin (ng)	ST DEV			
Sample	0.0 0 0 ABS 1	Ca ABS 2	ABS 3	ritin (ng) AVG		ıg per 50 n	Dry eye?	On treatment
Sample OD 564	0.0 0 0 ABS 1 0.351	Ca ABS 2 0.378	ABS 3 0.336	ritin (ng) AVG 0.355	0.019	ıg per 50 n; 1.764	Dry eye? DE	On treatment Y
Sample OD 564 OS 185	0.0 0 0 ABS 1 0.351 0.170	Ca ABS 2 0.378 0.161	ABS 3 0.336 0.172	ritin (ng) AVG 0.355 0.168	0.019 0.006	ıg per 50 nş 1.764 -3.698	Dry eye? DE DE	On treatment
Sample OD 564 OD 803	0.0 0 0 ABS 1 0.351 0.170 0.660	Ca ABS 2 0.378 0.161 0.671	ABS 3 0.336 0.172 0.674	AVG 0.355 0.168 0.668	0.019 0.006 0.066	ig per 50 n; 1.764 -3.698 10.899	Dry eye? DE DE N	On treatment Y
00 564 00 564 05 185 0D 803 0S 803	ABS 1 0.351 0.170 0.660 0.748	Ca ABS 2 0.378 0.161 0.671 0.780	ABS 3 0.336 0.172 0.674 0.724	AVG 0.355 0.168 0.668 0.751	0.019 0.006 0.066 0.049	ig per 50 ng 1.764 -3.698 10.899 13.299	Dry eye? DE DE N N	On treatment Y
Sample OD 564 OD 803 OS 803 OD 0039	ABS 1 0.351 0.170 0.660 0.748 0.702	Ca ABS 2 0.378 0.161 0.671 0.780 0.654	ABS 3 0.336 0.172 0.674 0.724 0.634	AVG 0.355 0.168 0.668 0.751 0.663	0.019 0.006 0.066 0.049 0.060	ng per 50 ng 1.764 -3.698 10.899 13.299 10.753	Dry eye? DE DE N N N	On treatment Y
Sample OD 564 OS 185 OD 803 OS 803 OD 0039 OS 0039	0.0 0 ABS 1 0.351 0.170 0.660 0.748 0.702 0.788	Ca ABS 2 0.378 0.161 0.671 0.780 0.654 0.753	ABS 3 0.336 0.172 0.674 0.724 0.634 0.751	AVG 0.355 0.168 0.668 0.751 0.663 0.764	0.019 0.006 0.066 0.049 0.060 0.083	ig per 50 ng 1.764 -3.698 10.899 13.299 10.753 13.688	Dry eye? DE DE N N N N N	On treatment Y
Sample OD 564 OS 185 OD 803 OD 0039 OS 0039 OD 477	ABS 1 0.351 0.170 0.660 0.748 0.702 0.788 1.010	Ca ABS 2 0.378 0.161 0.671 0.780 0.654 0.753 0.910	ABS 3 0.336 0.172 0.674 0.724 0.634 0.751 0.918	AVG 0.355 0.168 0.668 0.751 0.663 0.764 0.946	0.019 0.006 0.066 0.049 0.060 0.083 0.123	ng per 50 ng 1.764 -3.698 10.899 13.299 10.753 13.688 18.994	Dry eye? DE DE N N N N N N N	On treatment Y
00 564 00 564 00 803 00 803 00 0039 00 0039	0.0 0 ABS 1 0.351 0.170 0.660 0.748 0.702 0.788	Ca ABS 2 0.378 0.161 0.671 0.780 0.654 0.753	ABS 3 0.336 0.172 0.674 0.724 0.634 0.751	AVG 0.355 0.168 0.668 0.751 0.663 0.764	0.019 0.006 0.066 0.049 0.060 0.083	ig per 50 ng 1.764 -3.698 10.899 13.299 10.753 13.688	Dry eye? DE DE N N N N N	On treatment Y

andard Curv	ve 2-29-16:	cLAC 1/2	2/16, 6924	FB PAN	Г (1:6400)), Seconda	ry (1:1200)	
		ng cLac	abs 1	abs 2	abs 3	average		
		16	0.863	0.866	0.918	0.882		
		14	0.775	0.811	0.825	0.804		
		12	0.689	0.735	0.727	0.717		
		10	0.692	0.691	0.695	0.693		
		8	0.627	0.646	0.627	0.633		
		6	0.515	0.522	0.529	0.522		
		4	0.395	0.419	0.425	0.413		
		2	0.279	0.281	0.296	0.285		
		0	0.049	0.052	0.051			
0.0 - 0.0 -	R ²	403x + 0.2 = 0.9698	556	•	•			
(0	4	Canine L	8 acritin (n		12	16	
				acriuii (ii	g)			
C				AVC		50	D	b., (
Sample	ABS 1	ABS 2	ABS 3	AVG		g per 50 n	Dry eye?	On treatmen
OD 564	0.344	0.304	0.314	0.321	0.021	1.615	DE	Y
OS 185	0.177	0.167	0.179	0.174	0.006	-2.017	DE	N
OD 803	0.678	0.639	0.714	0.677	0.038	10.457	N	
OS 803	0.744	0.781	0.736	0.754	0.024	12.359	Ν	
OD 0039	0.675	0.666	0.636	0.659	0.020	10.010	Ν	
OS 0039	0.733	0.641	0.707	0.694	0.047	10.870	Ν	
OD 477	0.922	0.883	0.889	0.898	0.021	15.940	Ν	
OS 477	0.777	0.801	0.779	0.786	0.013	13.153	Ν	
054//								
OD 100	0.386	0.413	0.377	0.392	0.019	3.385	DE	N

	Standard Ct	irve 2-29-	16: cLAC	1/22/16, 6	5924 FB P.	ANT (1:640	0), Secondary (1	:1200)
	ng cLac	abs 1	abs 2	abs 3	average			
	16	0.793	0.781	0.808	0.794			
	14	0.670	0.688	0.688	0.682			
	12	0.557	0.587	0.607	0.584			
	10	0.556	0.551	0.600	0.569			
	8	0.530	0.542	0.593	0.555			
	6	0.434	0.439	0.466	0.446			
	4	0.309	0.334	0.350	0.331			
	2	0.229	0.243	0.245	0.239			
	0	0.052	0.051	0.054				
0D415	0.8 -	R²	= 0.9568		•	*	•	
	0.0 0	•	4 Comine La	anitin (n	8	12		16
		•	4 Canine La	acritin (n	•	12		16
				acritin (n	•	12		16
				acritin (n	•	12		16
Sample		ABS 2		acritin (na	g)	12 Ig per 50 n	Dry eye?	16 On treatment
	0		Canine La		g)			
Sample	0 	ABS 2	Canine La ABS 3	AVG	g) ST DEV	ıg per 50 n	Dry eye?	On treatment
Sample OS 35	0 ABS 1 0.265	ABS 2 0.250	Canine La ABS 3 0.271	AVG 0.262	g) ST DEV 0.011	ıg per 50 nş 1.717	Dry eye? DE	On treatment
Sample OS 35 OD 139	0 ABS 1 0.265 0.294	ABS 2 0.250 0.262	Canine L: ABS 3 0.271 0.291	AVG 0.262 0.282	g) ST DEV 0.011 0.018	ng per 50 ng 1.717 2.281	Dry eye? DE N	On treatment Y
Sample OS 35 OD 139 OS 139	0 ABS 1 0.265 0.294 0.671	ABS 2 0.250 0.262 0.679	ABS 3 0.271 0.291 0.755	AVG 0.262 0.282 0.702	g) ST DEV 0.011 0.018 0.110	ig per 50 ng 1.717 2.281 13.897	Dry eye? DE N DE	On treatment Y Y
Sample OS 35 OD 139 OD 826 OS 826	0 ABS 1 0.265 0.294 0.671 0.542	ABS 2 0.250 0.262 0.679 0.537	ABS 3 0.271 0.291 0.755 0.519	AVG 0.262 0.282 0.702 0.533	g) ST DEV 0.011 0.018 0.110 0.090	g per 50 ng 1.717 2.281 13.897 9.215	Dry eye? DE N DE DE DE	On treatment Y Y Y Y
Sample OS 35 OD 139 OS 139 OD 826 OS 826 OD 100	0 ABS 1 0.265 0.294 0.671 0.542 0.412 0.577	ABS 2 0.250 0.262 0.679 0.537 0.376	Canine La ABS 3 0.271 0.291 0.755 0.519 0.383	AVG 0.262 0.282 0.702 0.533 0.390	g) ST DEV 0.011 0.018 0.110 0.090 0.084	ig per 50 ng 1.717 2.281 13.897 9.215 5.272	Dry eye? DE N DE DE DE DE DE DE	On treatment Y Y Y Y Y Y
Sample OS 35 OD 139 OS 139 OD 826 OS 826 OD 100 OS 303	0 ABS 1 0.265 0.294 0.671 0.542 0.412 0.577 0.668	ABS 2 0.250 0.262 0.679 0.537 0.376 0.540	ABS 3 0.271 0.291 0.755 0.519 0.383 0.542 0.625	AVG 0.262 0.282 0.702 0.533 0.390 0.553	g) ST DEV 0.011 0.018 0.110 0.090 0.084 0.048 0.122	g per 50 ng 1.717 2.281 13.897 9.215 5.272 9.778 12.281	Dry eye? DE N DE DE DE DE DE N	On treatment Y Y Y Y Y Y
Sample OS 35 OD 139 OS 139 OD 826 OS 826 OD 100	0 ABS 1 0.265 0.294 0.671 0.542 0.412 0.577	ABS 2 0.250 0.262 0.679 0.537 0.376 0.540 0.637	ABS 3 0.271 0.291 0.755 0.519 0.383 0.542	AVG 0.262 0.282 0.702 0.533 0.390 0.553 0.643	g) ST DEV 0.011 0.018 0.110 0.090 0.084 0.048	ng per 50 ng 1.717 2.281 13.897 9.215 5.272 9.778	Dry eye? DE N DE DE DE DE DE DE	On treatment Y Y Y Y Y Y

······································	10 2-2)-		2/10, 0/2-	FD IAN	T (1:6400), Seconda	uy (111200)	·
		ng cLac	abs 1	abs 2	abs 3	average		
		16	0.882	0.941	0.907	0.910		
		14	0.785	0.765	0.801	0.784		
		12	0.698	0.681	0.690	0.690		
		10	0.614	0.609	0.652	0.625		
		8	0.629	0.608	0.630	0.622		
		6	0.514	0.517	0.512	0.514		
		4	0.392	0.399	0.405	0.399		
		2	0.287	0.283	0.282	0.284		
		0	0.054	0.053	0.052			
	0D415		$R^2 = 0.970$		•	•	•	• •
		0.0						
	(0.0	4		8		12	16
			4	Canine	8 Lacritin	(ng)	12	16
			4	Canine		(ng)	12	16
			4	Canine		(ng)	12	16
Sample	ABS	0	4 ABS 3	Canine	Lacritin			16 Dn treatment
Sample OS 35		0 1 ABS 2			Lacritin	(ng) g per 50 n 1.262	12 Dry eye? DE	
Sample OS 35 OD 139	ABS	0 1 ABS 2 5 0.284	ABS 3	AVG	ST DEV	g per 50 n	Dry eye?	Dn treatmen
OS 35	ABS 0.295	0 1 ABS 2 5 0.284 5 0.336	ABS 3 0.287	AVG 0.289	 Lacritin ST DEV 0.006 	g per 50 n 1.262	Dry eye? DE	Dn treatmen
OS 35 OD 139	ABS 0.295 0.326	0 1 ABS 2 5 0.284 5 0.336 9 0.831	ABS 3 0.287 0.339	AVG 0.289 0.334	 Lacritin ST DEV 0.006 0.007 	g per 50 n 1.262 2.368	Dry eye? DE N	Dn treatment Y
OS 35 OD 139 OS 139	ABS 0.295 0.326 0.789	0 1 ABS 2 5 0.284 5 0.336 9 0.831 3 0.604	ABS 3 0.287 0.339 0.800	AVG 0.289 0.334 0.807	Lacritin Lacritin ST DEV 0.006 0.007 0.022	g per 50 n 1.262 2.368 13.989	Dry eye? DE N DE	Dn treatmen Y Y
OS 35 OD 139 OS 139 OD 826 OS 826	ABS 0.295 0.326 0.785 0.598	0 1 ABS 2 5 0.284 5 0.336 9 0.831 3 0.604 4 0.474	ABS 3 0.287 0.339 0.800 0.573	AVG 0.289 0.334 0.807 0.592	 Lacritin ST DEV 0.006 0.007 0.022 0.016 	g per 50 n 1.262 2.368 13.989 8.707	Dry eye? DE N DE DE DE	Dn treatmen Y Y Y Y
OS 35 OD 139 OS 139 OD 826 OS 826 OD 100	ABS 0.295 0.326 0.785 0.598 0.444 0.649	0 1 ABS 2 5 0.284 5 0.336 9 0.831 3 0.604 4 0.474 9 0.639	ABS 3 0.287 0.339 0.800 0.573 0.437	AVG 0.289 0.334 0.807 0.592 0.452 0.632	Lacritin	g per 50 n 1.262 2.368 13.989 8.707 5.267 9.698	Dry eye? DE N DE DE DE DE DE	Dn treatment Y Y Y Y Y Y
OS 35 OD 139 OS 139 OD 826 OS 826	ABS 0.295 0.326 0.789 0.598 0.444	0 1 ABS 2 5 0.284 5 0.336 9 0.831 3 0.604 4 0.474 9 0.639 7 0.708	ABS 3 0.287 0.339 0.800 0.573 0.437 0.608	AVG 0.289 0.334 0.807 0.592 0.452	Lacritin	g per 50 n 1.262 2.368 13.989 8.707 5.267	Dry eye? DE N DE DE DE DE	Dn treatment Y Y Y Y Y Y
OS 35 OD 139 OS 139 OD 826 OS 826 OD 100 OS 303	ABS 0.295 0.326 0.789 0.598 0.444 0.649 0.727	0 1 ABS 2 5 0.284 5 0.336 9 0.831 3 0.604 4 0.474 9 0.639 7 0.708 0 0.930	ABS 3 0.287 0.339 0.800 0.573 0.437 0.608 0.663	AVG 0.289 0.334 0.807 0.592 0.452 0.632 0.699	Lacritin	g per 50 n 1.262 2.368 13.989 8.707 5.267 9.698 11.352	Dry eye? DE N DE DE DE DE DE N	Dn treatment Y Y Y Y Y Y

APPENDIX C


Below is the presentation that will be given at the ISAT Senior Symposium on April 15^{th} , 2016.

Clinical Study of Canine Tear Lacritin as a Treatment for Dry Eye

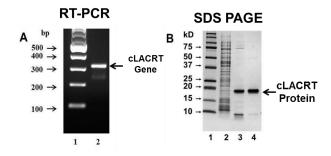
KATIE KELLY

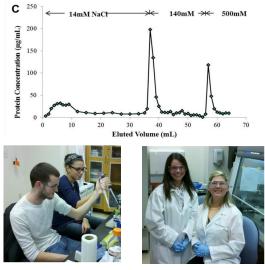
ISAT SENIOR CAPSTONE, HONORS THESIS ISAT SENIOR CAPSTONE SYMPOSIUM, APRIL 15TH, 2016 DEPARTMENT OF INTEGRATED SCIENCE AND ENGINEERING

Lacritin

- What is lacritin?
- Why are we interested in it?
- Formation of a Lacritin Consortium

Gordon Laurie, University of Virginia

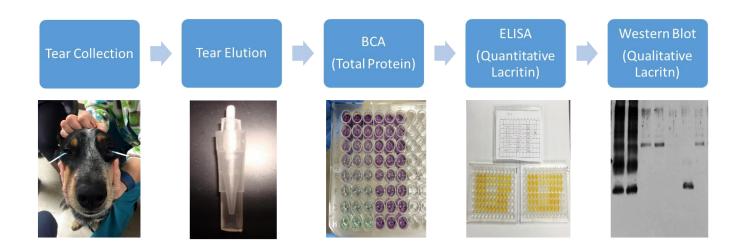

Dry Eye


- Affects both humans and canines
- Underdiagnosed and poorly understood
- Life long condition
- Affects 25 million Americans and 4% of the canine population

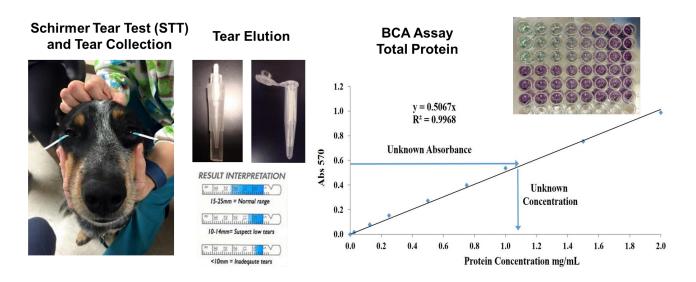
Canine Project Previous Work

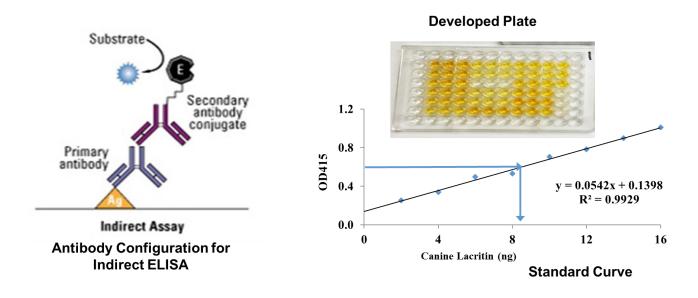
- Cloning
- Expression and Purification
- Antibody Production

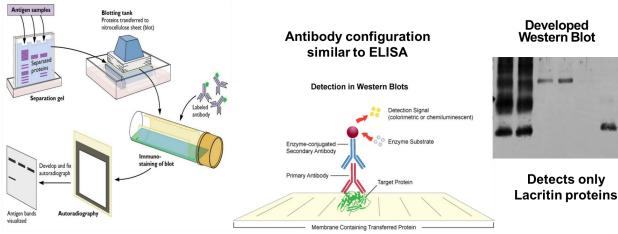
My Project

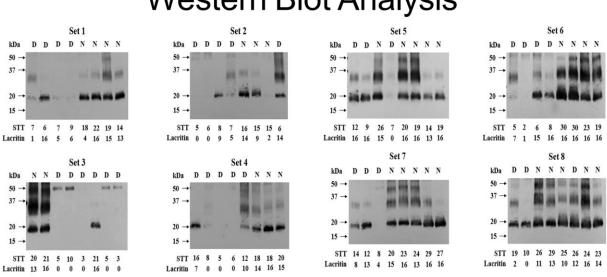

Serves Two Purposes:

- Animal Model System for a Potential Human Therapeutic
- Potential Canine Therapeutic

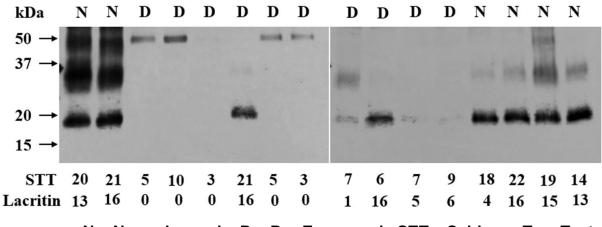



Process Flow

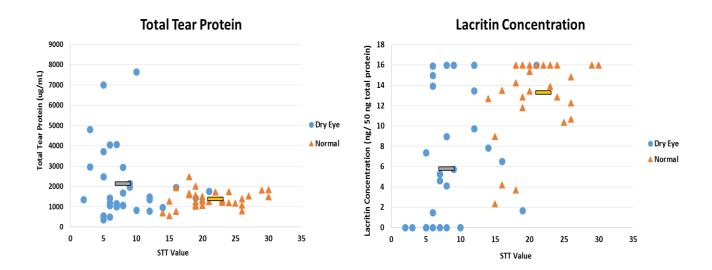

Tear Collection and Processing


Indirect ELISA Development

Western Blots


Process for Western Blots

Western Blot Analysis


32 Normal Tear Samples (N) and 32 Dry Eye Tear Samples (D)

Western Blot and ELISA Analysis

N = Normal sample, D = Dry Eye sample STT = Schirmer Tear Test Lacritin = ng/50 ng total protein by ELISA

What does it all mean?

64

Conclusions

- Developed a working diagnostic assay for lacritin in canine tears
- Used the process to analyze 64 clinical tear samples
- Found that lacritin was down regulated in dry eye tear samples

Summary of Lacritin Concentrations in 64 Samples

Sample	Range	Average
Dry Eye	0-16 ng	5.8 ng
Normal	2.32- 16 ng	13.3 ng

Next Steps

- Topical application in canines
- Human clinical trials
- Ultimate goal: bring drug to market

Thank You!!

- Dr. McKown
- Dr. Raab and Dr. Stockwell
- Dr. Julie Disney
- · Eliza Gaylord and lab mates
- Family and Friends

Funding provided by 4-VA grant

Questions?

Thanks for listening!