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ABSTRACT 

A fully functional nervous system requires assimilation of sensory modalities to 

adequately interpret stimuli and determine appropriate motor responses. Two such regions 

responsible for multimodal integration are found in the auditory system, the cochlear nucleus 

(CN) and the inferior colliculus (IC). The lateral cortex of the IC (LCIC) in particular receives a 

diverse multimodal input array to discrete modular/extramodular zones. Staining for certain 

neurochemicals, including GAD, a marker for GABAergic neurons, reveal this 

compartmentalized LCIC organization. The present study utilizes fluorescent anterograde tract-

tracing techniques to determine the development of a somatosensory brainstem projection from 

the spinal trigeminal nucleus (Sp5), to multimodal aspects of the CN and LCIC. The results 

indicate somatosensory innervation of these structures parallels that of developing auditory 

afferents and that auditory-somatosensory convergence described in the adult in these areas is 

likely set prior to acoustic experience. Immunohistochemical GAD staining and expression 

studies for molecular guidance molecules (EphA4, ephrin-B2, ephrin-B3) reveal early LCIC 

modularity during the period of bimodal projection shaping. Such findings suggest an emergence 

of LCIC domains early in development that may in part be guided by Eph-ephrin protein 

interactions. Understanding the neuronal development of converging auditory and somatosensory 

maps is essential for understanding their presumed roles in suppression of self-generated sounds. 

Furthermore, a sound foundation for mechanisms guiding multimodal input array formation is 

necessary to improve noninvasive interactions that aim to reset maladaptive map plasticity 

underlying debilitating conditions like tinnitus.  

Keywords: inferior colliculus, GAD, somatosensory, auditory, multimodal  
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INTRODUCTION 

The auditory system is primarily responsible for deciphering complex sound characteristics such 

as pitch, frequency, and intensity. Interpreting precise signal attributes and computation of 

complex tasks requires multiple processing centers and cross communication among different 

sensory modalities. The inferior colliculus (IC), located in the auditory midbrain, is one such 

processing area classically described as an auditory relay hub. The three subdivisions of the IC, 

the central nucleus (CNIC), lateral cortex (LCIC), and dorsal cortex (DCIC) (Faye-Lund and 

Osen, 1985; Loftus et al., 2008), have been investigated to varying degrees. Well characterized is 

the tonotopic input array to the CNIC from other auditory centers (Merzenich and Reid, 1974; 

Roth et al., 1978; Semple and Aitkin, 1979; Schreiner and Langner, 1988; Kandler et al., 2009) 

resulting in distinct laminar inputs that are frequency dependent.    

 Although such frequency mapping is ideal for purely auditory nuclei, interpreting coded 

information in characteristic frequencies, this model appears less appropriate for multisensory 

regions within the auditory pathway. For example, the cochlear nucleus (CN) receives auditory 

input from the cochlea (Nelken, 2008) as well as somatosensory afferents from trigeminal 

ganglion (TG), dorsal column nuclei: cuneate (Cu) and gracilis (Gr), and spinal trigeminal 

nucleus (Sp5) (Itoh et al., 1987; Wright and Ryugo, 1996; Zhou and Shore, 2004; Haenggeli et 

al., 2005). Similarly, the LCIC not only receives auditory innervation from auditory cortex (AC), 

CN and CNIC (Aitkin et al., 1981; Ryugo et al., 1981; Saldaña and Merchán, 1992; Malmierca et 

al., 1995; Saldaña et al., 1996; Zhou and Shore, 2006) but also somatosensory innervation from 

Cu, Gr, and Sp5 across a variety of adult species including rat, cat, guinea pig, and monkey 

(RoBards et al., 1976; Robards, 1979; Coleman and Clerici, 1987; Wiberg et al., 1987; Weinberg 

and Rustioni, 1989; Shore and Zhou, 2006; Zhou and Shore, 2006). The LCIC cytoarchitecture is 
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not defined by distinct frequency laminae like its CNIC counterpart, but rather as modular (layer 

2) and extramodular (layers 1 & 3) zones as exhibited by a host of neurochemical expression 

patterns (Chernock et al., 2004; Hilbig et al., 2007, Lesicko and Llano, 2015).   

 While LCIC connectivity and neurochemical modularity has been described in adults, 

analogous studies regarding the emergence of modular fields and patterning of multimodal inputs 

are largely lacking. To date, there exist only a handful of studies that address auditory inputs to 

the LCIC. CN projects bilaterally to layer 2 LCIC modular zones extending into rostral extremes 

of the subdivision (Kandler and Friauf, 1993). Complementary to this pattern, descending inputs 

from AC (Torii et al., 2013) and intrinsic connections from the neighboring CNIC (Noftz et al., 

2014) (Figure 1) project primarily to ipsilateral, extramodular LCIC domains and are established 

prior to hearing onset.            

 In terms of developing somatosensory afferents to the LCIC, even less is known. Adult 

data regarding somatosensory LCIC inputs have focused on projections arising from Sp5 (Zhou 

and Shore, 2004, 2006; Shore and Zhou, 2006), which encodes proprioceptive information from 

facial, oral and vocal cord structures (Romfh et al., 1979; Capra, 1987; Jacquin et al., 1989; 

Nazruddin et al., 1989; Takemura et al., 1991; Suemune et al., 1992), and dorsal column nuclei, 

responsible for proprioceptive contributions from the limbs (RoBards et al., 1976; Coleman and 

Clerici, 1987; Wiberg et al., 1987; Weinberg and Rustioni, 1989; Hilbig et al., 2007). Pathways 

from the aforementioned somatosensory nuclei in adult species are primarily contralateral and 

target discrete LCIC modular fields (RoBards et al., 1976; Coleman and Clerici, 1987; Wiberg et 

al., 1987; Weinberg et al., 1989; Zhou and Shore, 2006; Hilbig et al., 2007). These patchy, 

discontinuous layer 2 patterns in the adult appear to be segregated largely with regard to heavy 

auditory inputs from AC and CNIC that preferentially terminate in layers 1 and 3 (Lesicko and 
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Llano, 2015).             

 The present study identifies an early somatosensory input from Sp5 to LCIC in newborn 

mouse. We discuss the timing of developing Sp5 inputs with that of emerging auditory afferents 

and LCIC modularity assessed by GAD staining and Eph-ephrin guidance protein localization. 

MATERIALS AND METHODS 

Animals 

Experiments were performed on C57BL/6J control mice (Jackson Laboratories, Bar Harbor, ME) 

prior to hearing onset at various postnatal ages (n = 9) in keeping with previously described time 

points for topographic inputs to the IC (Gabriele et al., 2000, 2007, 2011; Henkel et al., 2005; 

Fathke and Gabriele, 2009; Wallace et al., 2013). All experimental procedures were performed in 

compliance with National Institutes of Health Guide for the Care and Use of Laboratory Animals 

(NIH Publications No. 80-23, revised 1996) and received prior approval from the Institutional 

Animal Care and Use Committee.  

NeuroVue Tracing of Sp5-IC Projections   

Postnatal mice were given an overdose of ketamine (200 mg/kg) and xylazine (20 mg/kg) and 

perfused through the heart (physiological rinse followed by 4% paraformaldehyde solution, pH 

7.4). Brains were removed from the skull and post-fixed overnight at 4°C in paraformaldehyde 

fixative solution. Post-fixed tissue was blocked in the coronal plane just rostral to superior 

colliculus (SC) and caudally at the spinal cord brainstem junction before embedding (5 ml 8% 

gelatin in dH2O/10 ml egg yolk). Brains were then sectioned caudal to rostral at 75 µm on a 

Vibratome until Sp5 could be identified with brightfield microscopy. Slivers of lipophilic dye-

soaked filter paper (Molecular Targeting Technologies, West Chester, PA) were cut with Micro-
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Vannas surgical scissors with the aid of a dissecting microscope and were then placed in Sp5. It 

should be noted even with the care and precision taken with each dye placement that variations 

exist among cases regarding precise location and amount of dye delivered. Tissue blocks were 

incubated at 37°C for 1 month in the dark to facilitate dye diffusion. Fixative solution was 

replaced every two weeks to maintain tissue integrity. After incubating, the remaining block of 

tissue was sectioned at 75 µm and counterstained with bis-benzamide nuclear counterstain 

(Hoechst 33258; Invitrogen, Carlsbad, CA) for 5 min to visualize Sp5 and IC cytoarchitecture. 

Sections were rinsed 3x for 5 min in PBS, mounted, and coverslipped while wet with GelMount 

(BioMeda, Foster City, CA). 

GAD Immunohistochemistry 

Animals were perfused as described above with an additional fixation step using 4% 

paraformaldehyde, 10% sucrose solution (pH 7.4). Brains were then removed and post-fixed 

overnight in the same solution followed by an additional overnight cryoprotection in 4% 

paraformaldehyde, 30% sucrose solution (pH 7.4). 50 !m thick sections were taken on a sliding-

freezing microtome in the coronal plane. Tissue processing began with an endogenous quench 

(3% H2O2 in PBS) of peroxidase activity for 5 min followed by three, 5 min PBS rinses. A 30 

min protein-blocking step (2.5 % Normal Horse Serum) followed, conducted at room 

temperature. Primary rabbit anti-GAD (Millipore AB1511 1:3000) was applied overnight at 4°C. 

This antibody labels both cellular GAD isoforms (67 & 65 respectively). Tissue was then 

equilibrated to room temperature and rinsed 3x for 5 min in PBS. Sections were then incubated 

at room temperature in an anti-rabbit IMPRESS reagent kit made in horse (Vector Laboratories 

MP-7401 IMPRESS reagent kit). An additional three PBS rinses for 5 min preceded incubation 

with ABC-DAB reaction kit (Vector Laboratories SK-4100). Sections were then rinsed 3x for 5 
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min in PBS and mounted on gelatin-subbed slides. Sections were rehydrated briefly in dH2O 

before being passed through a series of alcohol washes (50%, 70 %, 95%, 2x at 100%, for 10 

min each) and two, 10 min xylene clearing steps. Slides were coverslipped with Vecta-mount 

mounting media (Vector H-5000). 

Microscopy and Image Capture 

A monochrome cooled CCD CoolSnap HQ digital camera (Roper Scientific, Tuscon, AZ) and a 

Nikon TE 2000 microscope (Nikon, Melville, NY) were used to capture fluorescent images. R 

and B Phycoeythrin (NueroVue) and DAPI (bis-benzamide) filter sets (ChromaTechnology, 

Brattleboro, VT) were used to visualize both molecules. Two monochrome channels were 

acquired, merged digitally, and pseudocolored (green: NeuroVue axonal labeling; blue: bis-

benzamide nuclear counterstain).          

 Magnification series were collected throughout the rostrocaudal extent of the IC for Sp5 

dye labeling. For images 10x and higher Z-stacks were acquired to capture focused labeling 

throughout the entire 75 µm thick section. Three-dimensional Z-stacks (Elements Software; 

Nikon) were flattened into two dimensions using a maximum projection algorithm. Images were 

saved as JPEG 2000 files. Brightness/contrast values were manipulated in some cases for 

illustration purposes or to emphasize the bis-benzamide channel to assist in drawing 

cytoarchitectural boundaries (Adobe Photoshop, San Jose, CA).     

 GAD image capture was performed using brightfield microscopy with a Nikon Digital 

Sight Color Camera using DSFi1 filter set (Nikon, Melville, NY). White balances were 

performed on image series captured at 4x, 10x, 20x, 40x, and 60x (Adobe Photoshop, San Jose, 

CA).  
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RESULTS 

Sp5 Dye Placements 

Sticks were localized in Sp5. Additionally, variation in dorsal or ventral placements were made 

in an effort to establish Sp5-LCIC topography; however, these attempts revealed no obvious 

trends in these early connections. As such, neither ventral nor dorsal dye placements show more 

robust input to LCIC or targeting of spatially distinct LCIC regions. Rather, dye placement size 

was the critical factor in the number of labeled inputs with larger placements revealing more 

axon fibers. It should be noted that in all cases, Sp5 dye placements resulted in backfilling of the 

spinal trigeminal tract (sp5), thereby confirming placement in Sp5 nucleus (Figure 2).  

Sp5 Projections to CN 

 Anterograde experiments from Sp5 reveal inputs to anteroventral cochlear nucleus (AVCN) at 

P4 (Figure 3) and maintained at P8. At both ages inputs were ipsilateral dominant with heaviest 

terminal fields in AVCN marginal zones (Figure 3), as has been described in adult guinea pig 

(Zhou and Shore, 2004). 

Sp5 Projections to LCIC 

Sp5 sends afferent projections bilaterally to LCIC during circuitry development (Figure 4). Fiber 

trajectory was consistent in all cases at all ages (Figure 5). Labeled contralateral fibers ascend for 

a short distance before crossing the midline and passing just dorsal to the lateral superior olive 

(LSO) (Figure 5, A). Fibers then enter the IC (Figure 5, B) and project to medial, lateral, or 

rostral LCIC regions (Figures 6 & 7). Interestingly, rostral regions of LCIC, caudal to 

intertegmental nucleus (ITN), receive the heaviest inputs in all cases and show increased axonal 
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branching compared to medial and lateral aspects of the LCIC (Figure 7).      

 While synaptic inputs are present at P0 (Figure 4), no clear organization of Sp5 fibers 

into LCIC modular fields was observed. Similarly, Sp5 projection patterns at P4, while 

substantial, still showed no obvious specificity regarding projection distribution. At P8, 

preliminary observations suggest some refinement, but discrete modular organization of axonal 

afferents remains lacking. Further experimentation at slightly older developmental stages should 

determine when Sp5 inputs to LCIC organize into distinct layer 2 modules.  

GAD Immunohistochemistry 

GAD immunohistochemistry reveals GABAergic modules at P4 in LCIC (Figure 8). The GAD-

positive area present in layer 2 (Figure 8, B) contains positive soma and terminal puncta (Figure 

8, C) indicative of GABAergic input and output. These findings suggest an early modular LCIC 

organization despite lack of patchy somatosensory inputs at these ages.  

DISCUSSION 

This study presents the first developmental time course for somatosensory innervation to the CN 

and IC. While these nuclei receive somatosensory and auditory input at similar developmental 

stages, the emergence of somatosensory patterns (i.e. modules) appears to be delayed relative to 

auditory pattern formation. In addition we show neurochemical evidence for GAD-positive zones 

during development suggesting adult neurochemical expression patterns form during the critical 

period prior to hearing onset. 
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Dye Placements and Fiber Trajectory 

Placements in Sp5 reveal fiber trajectories consistent with mature circuitry in guinea pig (Zhou 

and Shore, 2004, 2006), cat (Wiberg et al., 1986), and monkey (Wiberg et al., 1987) albeit in 

dissimilar proportions. These adult trajectories are predominantly contralateral, whereas our 

developmental findings suggest bilateral pathways. It remains to be determined if aspects of the 

observed ipsilateral projections are subsequently refined at later developmental stages or with 

experience.           

 Of particular note is the contralateral fiber trajectory at the level of LSO (Figure 5, A). 

Axonal fibers pass dorsal to this nucleus before entering the lateral lemniscus (LL) en route to 

the IC. Previously, we described LCIC modular input from LSO (Wallace et al., 2013). 

Considering the fiber trajectory of somatosensory pathways and dye placements reviewed in 

Wallace (2013), the described modular input in LCIC was likely due to clipping of adjacent 

somatosensory fibers from Sp5 (Itoh et al., 1987; Wiberg et al., 1987; Jain and Shore, 2006; 

Zhou and Shore, 2006, present study) and perhaps dorsal column nuclei (Robards, 1979; 

Coleman and Clerici, 1987; Weinberg and Rustioni, 1987; Wiberg et al., 1987; Weinberg et al., 

1989).             

 Also worth mentioning are the retrogradely labeled ipsilateral cell bodies of the 

mesencephalic nucleus (Me5) observed in all cases regardless of age (Figure 6, A).  Me5 targets 

upper cervical spinal cord areas via sp5 tract (Veazey and Severin, 1980; Raappana and 

Arvidsson, 1993; Pombal et al., 1997).  Based on the close proximity of sp5 tract to Sp5 nucleus, 

dye likely diffused into the sp5 tract labeling Me5 cells via their efferent axons.  
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Projections to CN  

Anterograde tracing studies from Sp5 reveal ipsilateral dominant projections to AVCN (Figure 

3) consistent with findings in adult guinea pig (Zhou and Shore, 2004). The described projection 

pattern through the sp5 tract is also conserved for fibers terminating in AVCN marginal zones 

(Zhou and Shore, 2004) suggesting mammalian continuity in pathway formation and that such 

pathways are established early in development. Zhou and Shore (2004) also presents terminal 

puncta labeling in dorsal cochlear nucleus (DCN) and posterior ventral cochlear nucleus 

(PVCN). Such projection patterns are lacking in our developmental mouse cases and require 

additional trials to identify such pathways. CN also receives descending auditory input from the 

superior olivary complex (SOC) and CNIC (Shore et al., 1991) as well as reciprocal connections 

with the opposing CN (Shore et al., 1992). Thus, auditory and somatosensory convergence may 

provide a multimodal center allowing for better sound source localization based on 

proprioceptive information.         

Projections to LCIC 

Early developmental bilateral terminal fields in LCIC lack defined modular input arrangements. 

Axon bundles approach the CNIC, before deferring to medial, lateral, or rostral zones. This 

preference for termination in LCIC regions is consistent in adult species (Wiberg et al., 1986, 

1987; Zhou and Shore, 2006), yet inconsistencies arise when comparing projection laterality. 

Adult studies in cat (Wiberg et al., 1986), monkey (Wiberg et al., 1987), and guinea pig (Zhou 

and Shore, 2006) yield contralateral projections from Sp5 to LCIC forming conserved modular 

distribution patterns in layer 2. At birth (Figure 4), and as late as P8, substantial ipsilateral LCIC 

inputs from Sp5 persist. It remains to be seen whether ipsilateral inputs are pruned in later 
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developmental stages as contralateral terminations elaborate and organize into discrete modular 

distributions.           

 The heaviest labeling at all developmental ages was present in rostral LCIC just caudal to 

ITN (Figure 7) in line with findings in monkey (Wiberg et al., 1987). This transitional region is a 

pathway for a variety of sensory afferents to multimodal regions of SC. Therefore fibers from 

Sp5 may not only be terminating in LCIC but also passing through this nucleus en route to SC. 

However, clear varicosities on Sp5 axonal labeling in the LCIC suggest, at the very least, 

synaptic collaterals terminating in multimodal aspects of the LCIC.    

 The presence of auditory and somatosensory innervation of the LCIC supports a 

multisensory integration theory. In adult species ascending, horizontal, and descending auditory 

inputs terminate in layers 1 and 3 of LCIC (Ryugo et al., 1981; Saldaña and Merchán, 1992; 

Malmierca et al., 1995; Saldaña et al., 1996; Lesicko and Llano, 2015) with the exception of CN 

terminal zones in layer 2 (Zhou and Shore, 2006). The investigations regarding these same 

pathways during development reveals similar results (Kandler and Friauf, 1993; Gabriele et al., 

2000; Torii et al., 2013, Noftz et al., 2014).  Evidence of a multimodal topographic map in LCIC 

becomes evident when combining auditory and somatosensory input arrays (Figure 9). 

Moreover, developmental studies of auditory connectivity coupled with the results of this study 

imply this map forms before hearing onset.        

 The exact developmental time course for this proposed multimodal map remains to be 

established. Evidence presented here indicates somatosensory afferents from Sp5 are present at 

birth but are not completely refined as late as P8. It is likely continued modification of these 

inputs occurs between P8 and P12 based on fine-tuning of auditory inputs to the CNIC during 

this developmental window (Fathke and Gabriele, 2009). After discovering the post natal age at 
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which developmental Sp5 inputs to LCIC matches adult anatomy, double-labeling studies of 

auditory and somatosensory innervation of LCIC may reveal spatial and temporal relationships 

of the multisensory contributions to this region. This proposed study could potentially reveal if 

one sensory modality plays a role in coordinating the inputs of another.    

Eph-ephrin Expression Patterns and Axon Terminal Fields 

Our lab has also characterized modular/extramodular expression of Eph-ephrin signaling proteins 

reminiscent of reported adult neurochemically defined LCIC modules. This family of receptor 

tyrosine kinase signaling proteins utilize bidirectional signaling to encode place maps for 

complex sensory and motor systems prior to experience (Flanagan and Vanderhaeghen, 1998; 

Wilkinson, 2001; Cowan and Henkemeyer, 2002; Kullander and Klein, 2002). Within the LCIC 

EphA4 and ephrin-B2 expression patterns are isolated in layer 2 modules while ephrin-B3 

demonstrates extramodular expression in layers 1 and 3 (Noftz et al., 2014) (Figure 10).  

 Considering known developmental roles in other systems it is plausible Eph-ephrins 

present in the LCIC coordinate formation of discrete multimodal maps within this IC 

subdivision. When comparing expression data with differing sensory terminal fields it appears 

dissimilar sensory inputs localize to specific Eph-ephrin territories. Experiments consisting of 

Eph-ephrin mutant animal studies could support this theory thus providing valuable insights into 

mechanisms underlying the establishment of LCIC architecture.  

GAD Expression  

Neurochemical markers have proven helpful in revealing LCIC layers and modular/extramodular 

fields. GAD expression patterns characterized in adult rat (Chernock et al., 2004) and mouse 

(Lesicko and Llano, 2015) reveal distinct layer 2 modules. Here, we show GAD-positive zones 
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as early as P4 in LCIC (Figure 8). Intriguingly, GAD-positive cell bodies and terminal puncta are 

apparent (Figure 8, C) in agreement with findings in guinea pig (Nakamoto et al., 2014). 

 GAD-positive modules at P4, while present, are not yet completely distinct entities. It is 

likely that separation of modules occurs after P4 as observed for Eph-ephrin modular expression 

(Gabriele et al., 2011). Furthermore, it is not known whether Eph-ephrin and GAD-positive 

manifestations colocalize, interdigitate, or overlap. Multiple labeling studies for both 

neurochemicals can provide useful perception regarding the compartmentalization of the LCIC 

and whether they serve as a substrate for input-output arrays.  

LCIC Functionality 

The LCIC responds to complex auditory stimuli across a broadly tuned spectrum (Aitkin et al., 

1975, 1981, 1994; Aitkin and Zimmermann, 1978; Syka et al., 2000; Suta et al., 2003; Ota et al., 

2004) in addition to somatosensory stimuli (Aitkin and Zimmermann, 1978; Aitkin et al., 1981). 

Direct electrical stimulation to Sp5 (Zhou and Shore, 2004) also induces LCIC responses. Even 

so, understanding the functional significance of Sp5 projections to LCIC requires an appreciation 

for known Sp5 inputs. Facial and oral structures, such as the vocal tract, tongue, and jaw convey 

proprioceptive information (Romfh et al., 1979; Capra, 1987; Jacquin et al., 1989; Nazruddin et 

al., 1989; Takemura et al., 1991; Suemune et al., 1992) to Sp5 via the TG (Dehmel et al., 2008). 

Combining these findings with LCIC innervation from Sp5 provides a polysynaptic pathway that 

may be responsible for proprioceptive sensory input to the LCIC from body regions responsible 

for sound production. Therefore, Sp5 inputs to LCIC GABAergic zones, originating from intra-

oral structures, could act as a priming mechanism for the presence of self-made vocalization, 

which may in turn activate inhibitory pathways that selectively suppress certain primary circuits 
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tuned to voice-specific characteristics consequently increasing attentiveness to non-self auditory 

stimuli.  

Potential for Tinnitus Treatment 

Tinnitus, or the perception of a non-existent auditory stimulus, is a debilitating disease affecting 

millions of Americans. In addition to age related tinnitus onset, somatic tinnitus can occur due to 

plastic changes in neural circuitry. This particular type of tinnitus is not marked by aging but 

rather changes in somatosensory inputs affecting the central gain in auditory pathways (Levine, 

1999; Eggermont, 2005; Saunders, 2007). Such changes in mapping can be attributed to 

whiplash, temperomandibular joint syndrome, or bruxism. Understanding the normal anatomy 

behind properly functioning sensory circuits can provide insights to anatomical deviation in 

tinnitus disease states. At the same time, knowing somatosensory circuitry can cause auditory 

dysfunction offers potential to exploit somatosensory pathways to alleviate symptoms. For 

example, stimulation on the skin at the level of C2 vertebrae activates a polysynaptic circuit that 

passes through Sp5 and onward to LCIC. Consistent stimulus at C2 could therefore change 

affected topography back to a normal conformation ultimately achieving tinnitus relief.  Finding 

other somatosensory regions that innervate auditory modalities could aid in field progression of 

tinnitus treatment.  
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Figure Legends 

Figure 1. A.  Anterograde, ipsilateral labeling at P8 from CNIC to LCIC layers 1 and 3. Modular 

zones in layer 2 (dashed contours) are devoid of input and are known to receive somatosensory 

input in the adult. Scale bar = 500 µm. 

Figure 2. A. Dye placement in left Sp5. Retrograde filling of axons in the sp5 tract (lateral 

region, dashed contour) confirm accurate placement in Sp5 nucleus. Scale bar = 500 µm. 

Figure 3. A.  Projections from Sp5 to ipsilateral AVCN are present at P4. Terminal fibers form 

connections in marginal zones (inset arrow). Scale bar = 500 µm. 

Figure 4. Bilateral terminations of Sp5 inputs to LCIC at P0. Arrows indicate terminal axons. A. 

Fibers enter medial and lateral regions of the LCIC, yet the majority project to lateral LCIC 

aspects. B. Contralateral labeling is present but not as robust as the ipsilateral side. Terminations 

still prefer medial and lateral areas of the LCIC. Scale bars = 200 µm.   

Figure 5. Contralateral fiber trajectory for projecting fibers from Sp5 en route to LCIC. A. 

Fibers cross the midline and pass dorsal to the LSO (inset arrows). B. Ascending Sp5 fibers 

entering IC via LL (inset arrows). Scale bar in A = 500 µm, B = 200 µm. 

Figure 6. Bilateral LCIC terminal fields present at P4. A. Ipsilateral fibers approach the rostral 

CNIC before deviating laterally or medially. Terminal zones are not yet modular in appearance 

but rather enter as a distinct fascicle. Me5 cells are retrogradely labeled on the ipsilateral side 

due to Me5 efferents present in the sp5 tract projecting to spinal cervical regions. B. 

Contralateral fibers are also present in medial (inset arrows) and lateral zones. Some axon 

collaterals were also observed in the CNIC predominantly towards the rostral pole. C, D are 
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higher magnifications of inset boxes in A, B respectively. Scale bar in A, B = 500 µm; Scale bar 

in C, D = 200 µm. 

Figure 7. Bilateral rostral LCIC terminal fields just caudal to ITN. Axon collaterals are most 

abundant in these rostral zones. Modular fields, however, remain absent. A. Ipsilateral 

projections appear more punctate and could potentially be traversing the tissue en route to ITN or 

SC. B. Contralateral fibers show full axons with branching collaterals. C, D are higher 

magnifications of inset boxes in A, B respectively. BIC = brachium of IC nucleus, bIC= 

brachium of IC tract. Scale bar in A, B = 500 µm; Scale bar in C, D = 200 µm.  

Figure 8. GAD-positive modules present in layer 2 of LCIC. A. GAD-positive zone in LCIC 

(inset arrow). B. Higher magnification of inset box in (A). Distinct GAD-positive module is 

apparent in LCIC layer 2. Discrete modules have not yet fully separated from one another. C. 

High magnification image of ventral most GAD-positive patch in (B). Both cell bodies and 

terminal puncta are positive for GAD suggesting both GABAergic input and output at the level 

of LCIC. Scale bar in A = 200 µm; Scale bar in B = 100 µm; Scale bar in C = 30 µm.  

Figure 9. Summary schematic comparing multimodal inputs to the IC during early development. 

This diagram combines data from the present study as well as Fathke & Gabriele (2009), 

Gabriele, Brunso-Bechtold, & Henkel (2000), Gabriele et al. (2011), and Kandler & Friauf 

(1993). DCN terminal zones are similar to Sp5 in their distribution to lateral and rostral regions 

of LCIC, however these fibers do not appear in medial aspects. DCN also projects bilaterally to 

laminar layers in CNIC along with other previously described inputs (e.g. LSO and DNLL).  
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Figure 10. Summary of ephrin-B2, EphA4, and ephrin-B3 protein expression. A, B. Ephrin-B2 

and EphA4 positive (dashed contours) LCIC modules, respectively. C. Ephrin-B3 extramodular 

labeling (negative modules, dashed contours). Scale bars = 200 !m.  
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Figure 2. 
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Figure 3. 
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Figure 4. 



!

""!

!

Figure 5. 
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Figure 6. 



!

"$!

!

Figure 7. 
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Figure 9. 
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