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II. Abstract 

Arthropods such as cockroaches, locusts, and crickets exhibit various escape 

strategies in response to wind, tactile, and looming stimulation. Cockroaches 

typically run from aversive stimuli, while locusts execute large jumps away from 

stimulation, and crickets display a combination of both walking and jumping 

techniques in response to stimulation. Looming object stimulation is perhaps the 

best type of stimulation to obtain information about how arthropods would respond 

to aversive stimuli in a natural setting, as it most accurately represents the 

complexity of multimodal inputs received by arthropods from external sources of 

stimulation while being preyed upon in the wild.  

Previous studies regarding looming object stimulation have centered mainly 

upon the response direction of locusts to the aversive stimuli, while not much 

research has been done with crickets. Further, the few studies regarding the 

response of crickets to looming stimulation focused on the type of escape strategy 

executed by crickets as well as whether or not their escape was successful, while the 

escape direction of the cricket in response to looming stimulation has not been as 

widely studied. As a result, the specific aim of this study was to determine whether 

the escape direction of the cricket was dependent upon the angle of approach of the 

looming stimulus. 

In response to looming stimulation, crickets displayed a combination of 

turning and either walking or jumping away from the incoming stimulus (a black 
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ball). The degree of turn of the cricket’s body was significantly dependent upon the 

angle of the incoming stimulus, and crickets almost always moved away from the 

direction of the looming object.   
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III. Introduction 

The relationship between predator attack and prey response has been 

evolutionarily established. There are typically two outcomes to this relationship: 

either the predator makes a successful capture, or its prey achieves a successful 

escape. As a result, prey animals have had to develop escape strategies that enable 

them to successfully outrun their predators. There are several types of responses to 

predators that arthropods have evolved, which include offensive reactions, attacking 

the predator, doing nothing, and escaping or attempting to escape (Baba and 

Shimozawa, 1997; Okada and Akamine, 2012). 

Previous studies of arthropods have endeavored to determine both the search 

strategies of predators (Dangles et al., 2006) and the resulting escape strategies of 

their prey (Morice et al., 2013). While many experiments have attempted to study 

the response of arthropods to wind puff stimuli, with the exception of locusts (Rind 

and Simmons, 1992; Gabbiani et al., 1999; Gabbiani et al., 2004; Simmons et al., 

2010; Heitler and Burrows, 1977), there have been few studies on the response of 

arthropods to looming-object stimulation, which presents the animal with a 

complexity of multimodal sensory information that represents an incoming predator 

much more accurately than a mere puff of wind, touch, or visual stimulus. 

Typically, looming-object stimulation is represented by a ball or a piston 

approaching the animal to simulate an incoming predator. In particular, crickets 

present an interesting study for looming object stimulation because they can both 
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run and jump, while the cockroach and the locust are confined to only one type of 

movement.  

Sensory Structures Enable Escape Responses 

Escape responses produced by arthropods, such as orthopteroid insects 

(cockroaches, locusts, and crickets), are often governed by their sensory structures 

in reaction to a stimulus. Sensory modalities that arthropods may use to obtain 

information about incoming stimuli include their wind-sensitive cercal systems, 

their antennae, and their visual systems (Despommier et al., 2005).  

Cercal System 

The cercal system of arthropods is made up of wind-sensitive hairs on the 

hind legs that detect changes in air current. It is important to arthropods for 

detecting sensory information in the surrounding environment and conveying that 

information to interneurons in order to respond to stimulation. There are three 

groups of neurons that are sensitive to the direction and dynamics of stimuli such 

as air currents and work together to compute an escape response: mechanoreceptor-

coupled sensory neurons, local interneurons, and projection interneurons (Jacobs et 

al., 2008).   

Cockroaches (Periplaneta americana) have hundreds of filiform hairs 

containing wind-receptive sensory cells located on the ventral surface of their cerci 

that stimulate giant interneurons, which can process information from and produce 
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an escape response to an incoming stimulus (Camhi and Tom, 1978; Westin et. al, 

1977). It is thought that the seven bilateral pairs of giant interneurons that are 

excited by these wind-receptive cells play a role in the evasive behavior of the 

cockroach, helping it to determine its corresponding escape direction to an incoming 

stimulus (Ritzmann and Camhi, 1978).  

In order to determine the importance of the cerci in generating an escape 

response to wind puff stimuli, the filiform hairs located on the ventral surface of the 

cerci were covered with adhesive tape to prevent exposure to wind. As a result, 

cockroaches with covered cerci were not sensitive to wind stimuli compared to the 

control group (Camhi and Tom, 1978). In addition, no escape response was 

generated among cockroaches that were exposed to visual, auditory, vibrational, 

and olfactory cues from a predatory toad in the absence of wind, further suggesting 

that wind serves as the primary modality for detecting incoming predators in 

cockroaches (Camhi et al., 1978). However, it is possible that covering the cerci 

rendered the cockroaches desensitized to other modes of stimulation as they could 

have been distracted by the sensation of the tape. It has also been hypothesized that 

the cerci are involved in determining the turning direction of the escape response, 

as the direction of the cockroach’s turn and the direction of the leg movements 

correlate with the angle of the incoming stimulus relative to the cerci rather than 

the cockroach’s body (Camhi and Tom, 1978). 
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The cercal system of locusts communicates with merely four giant 

interneurons compared to the seven found in cockroaches and crickets (Boyan et al., 

1986). Their cerci are covered with approximately 200 microfiliform hairs that 

enable them to detect the direction and magnitude of an incoming threat by sending 

information to the terminal ganglion of the CNS via the cercal nerve (Boyan, 1988). 

The signals generated by these filiform hairs are induced by air displacements such 

as those caused by wind or low-frequency sounds (Rozhkova et al., 1984).  

Of the three types of arthropods, crickets appear to have the most wind-

sensitive cercal system. Like cockroaches, crickets have at least seven pairs of giant 

interneurons that are used to detect and generate responses to external stimuli 

(Boyan et al., 1986). These giant interneurons receive input from cercal receptors 

which are excited by filiform hairs on the cerci in response to wind stimuli, 

generating a response to stimulation (Kloppenburg and Horner, 1998).  

Due to their highly sensitive cercal system, which can detect an incoming 

predator from far away distances based on air flow, crickets are one of the most 

difficult species of prey to catch; in most cases even mild stimulation to the cerci 

results in an escape response produced by crickets that are being preyed upon 

(Morice et. al, 2013). Crickets are prey to a variety of predators, the most notable of 

which are birds and spiders (Dangles et al., 2006). Their abdominal cerci can have 

up to 3400 hairs used to detect air displacement, contributing to a highly sensitive 

mode of predator detection (Edwards and Palka, 1973). To counter this selective 
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advantage of crickets, it would be expected that their primary predators adopt a 

cautionary sit-and-wait attack strategy, since directly attacking the cricket may 

result in a successful escape after stimulation of receptors on the cerci. This is in 

fact observed in the wolf spider when it is preying upon the wood cricket Nemobius 

sylvestrus (Dangles et. al, 2006). The wolf spiders either opted to sit and wait for the 

crickets to come close enough for a successful attack, or attacked the crickets at 

high speeds that did not give the crickets time to escape.  

The  importance of the cerci in detecting wind stimuli was confirmed when 

crickets that underwent cercal ablation did not respond to air-puffs or attempt to 

escape up to 19 days (when the experiment ended) after the removal of their cerci 

(Kanou et al., 2006). In the absence of their cerci, crickets may have to rely upon 

tactile or visual cues to determine the appropriate escape response to incoming 

stimuli.  

Antennae 

The antennae of arthropods may also help to obtain information regarding 

aversive stimuli in their surrounding environment. There is evidence that 

cockroaches use their antennae to allow them to navigate around and away from 

obstacles. For example, cockroaches with intact antennae were able to judge their 

distance from a glass shelf as well as how high the shelf was from the ground, 

allowing them to successfully climb up onto the shelf with apparent ease (Knight, 

2009). Cockroaches that had their antennae removed in this study often used brute 
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force to ram themselves up onto the shelf, or waved their legs around wildly until 

they were able to scramble up onto the shelf, suggesting that antennae may be 

necessary to gain sensory information useful to navigate obstacles.  

Antennae might also be useful in processing sensory information obtained by 

an incoming predator, as the cockroach can determine the distance and height of an 

incoming predator based upon information obtained by its antennae.  Indeed, an 

incoming stimulus that deflected one antenna of the cockroach elicited an escape 

response away from the direction of antennal displacement caused by the stimulus 

(Ye et al., 2003).  

Locusts’ antennae are also sensitive to the direction of incoming stimuli. Air 

displacement has been found to deflect the antennae of locusts, alerting a field of 

sensory receptors to the direction of an incoming stimulus (Gewecke and Heinzel, 

1980). Avoidance reflex circuits exist to protect the antennae from damage by 

removing the antennae from the stimulus source (Saager and Gewecke, 1989). This 

typically results in the locust responding to an external stimulus either by removing 

its antennae or its entire body from the site of stimulation.  

The antennae of crickets also respond to external stimulation, allowing the 

cricket to both detect incoming predators and produce a necessary response to avoid 

predation. When field crickets (Gryllus bimaculatus) were stimulated by using 

tactile stimulation to their antennae, they displayed four types of responses: 

aversion, aggression, antennal search, and no response (Okada and Akamine, 2012). 
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This information, coupled with the antennae being used to track visual targets, 

suggests that antennae may play a role in escape strategies produced by crickets in 

response to external stimulation. However, crickets with ablated antennae that 

were exposed to an incoming piston showed no significant difference in the rate of 

detection from that of intact crickets, both when the stimulus approached from the 

front and from behind (Dupuy et al., 2011). This provides contradictory evidence 

that antennae may not play a key role in helping crickets to detect and avoid 

aversive stimuli.  

Vision 

In addition to the cerci and antennae, vision is thought to play a role in 

escape responses performed by cockroaches, locusts, and crickets. While vision is 

not essential for cockroaches to produce an escape response, it has been found to 

influence the positioning of the antennae as the stimulus approaches (Ye et al., 

2003). Therefore, cockroach vision has an indirect effect on the direction of the 

cockroach escape, as cockroaches may use the information obtained by their 

antennae to determine the direction of their response away from the stimulus.  

Several studies have focused on the visual system of locusts (Rind and 

Simmons, 1992; Gabbiani et al., 1999; Gabbiani et al., 2004; Simmons et al., 2010) 

to determine its role in their detection and escape from incoming stimuli. Birds are 

one of the major predators of locusts, and they provide them with dynamic visual 

stimulation when making their predatory attack (Simmons et al., 2010). The 
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descending contralateral movement detector (DCMD) is a visual neuron that 

responds to objects moving towards or away from the eye, although it responds 

more vigorously to stimuli approaching the eye than going away from it (Rind and 

Simmons, 1992).  The lobula giant movement detector (LGMD) is an accompanying 

visual neuron which serves as the major source of synaptic input to the DCMD and 

responds vigorously to objects approaching the animal on a collision course (Rind 

and Simmons, 1992; Gabbiani et al., 1999).  

Both the DCMD and LGMD neurons enable locusts to process visual sensory 

information to help produce escape responses to a looming threat (Rosner and 

Homberg, 2013). While the LGMD provides synaptic input to the DCMD, the 

DCMD gives directional responses to images of approaching versus receding objects; 

thus, locusts can tell the difference visually between an approaching object and a 

receding one (Rind and Simmons, 1992). The LGMD was found to be more selective 

to looming stimuli than receding objects due to several different mechanisms of 

action, including both lateral inhibition among presynaptic elements and intrinsic 

membrane properties (Simmons et al., 2010). This enabled locusts to determine the 

direction of an incoming looming stimulus based upon visual cues that were 

processed by the LGMD. The DCMD, which is acted upon by the LGMD, displayed 

peak activity at a fixed time after the size of the looming object reached an angular 

threshold (Gabbiani et al., 1999). Therefore, the visual information processed by the 

LGMD and DCMD may be used to elicit an escape response in locusts when an 

incoming visual stimulus appears to be an imminent threat. 
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While cricket vision has not been extensively studied, it is thought to also 

play a role in evading capture by a predator. Crickets with covered eyes had a 

significantly lower detection rate as compared to intact crickets when a piston was 

approaching from the front and from behind (Dupuy et al., 2011). Crickets that were 

exposed to large black disks in front of a white background tracked them with their 

antennae as they moved in front of the crickets in a visual angle of up to 48 degrees 

(Huber et al., 1989). This suggests that crickets are capable of visualizing a target 

that is moving in front of them, and also supports the idea that they use their 

antennae to keep track of incoming stimuli when they can see it. 

 To summarize, there are three main sensory modalities that arthropods use 

to obtain information about and respond to stimuli in their environment: the cerci, 

the antennae, and vision. The cerci play a major role in detecting air displacement 

on the animal’s body, whereupon they send information regarding the stimulus to 

giant interneurons, allowing the animal to produce an escape response (Ritzmann 

and Camhi, 1978; Camhi and Tom, 1978; Boyan et al., 1986; Morice et. al, 2013). In 

comparison, the antennae are not essential for determining an appropriate escape 

response, but arthropods can use them to obtain information about their 

surrounding environment and incoming stimuli (Knight, 2009; Gewecke and 

Heinzel, 1980; Okada and Akamine, 2012). Vision can affect antennal placement in 

cockroaches (Ye et al., 2003) and crickets (Huber et al., 1989), and also in the case of 

locusts helps alert the animal to a looming threat (Rosner and Homberg, 2013).  
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Escape Strategies in Response to Stimulation 

Predators in the wild often present arthropods with a combination of 

multimodal sensory information as they carry out their attack. Not only do they 

present visual targets, but they cause air displacement and have the ability to touch 

their prey if it does not escape successfully. Arthropods have developed different 

escape strategies to various types of stimulation, which can be used independently 

or in conjunction with one another in response to stimuli (Dupuy et al., 2011). 

Resulting escape responses often allow the prey to avoid injury or predation. 

Wind puff stimuli 

Escape responses in arthropods, as well as their underlying mechanisms and 

escape trajectories, have been studied extensively with regards to wind-puff 

stimulation. Wind-puff stimulation usually involves a puff of air being directed at 

the insect from various angles and distances and is thought to imitate the quick 

puff of air created by an incoming predator as it launches an attack on its prey.  

Cockroaches, in response to wind-puff stimulation, turn away from the 

incoming stimulus and run away rapidly (Camhi and Tom, 1978). Cockroaches that 

were exposed to the predatory strike of a toad in a lab setting were most successful 

at avoiding capture when they made an initial pivot away from the toad, whereas 

those that pivoted towards the toad were most often captured by the projectile 

tongue (Camhi et al., 1978). This data suggests that pivoting away from the 

stimulus is actually a highly adaptive escape movement. The pivot occurred around 
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the posterior end of the animal to move its head away from the incoming wind 

source. In most cases, the angle of turn of the cockroach was not a full 180 degrees, 

although it did point them in a direction away from the incoming stimulus. 

Therefore, cockroaches may turn at an angle to achieve a successful escape from the 

incoming stimulus without having to make a full 180 degree turn away from the 

stimulus. 

Although cockroaches initially pivot away from the direction of the incoming 

stimulus, there is variability in the overall direction of the escape. Cockroaches 

have been found to keep their escape direction unpredictable by running along a 

preferred set of escape trajectories at fixed angles away from the direction of the 

incoming wind puff stimulus after the initial pivot (Domenici et. al, 2008). This 

could ensure that, while their initial pivot may be in response to the angle of the 

incoming stimulus, there is necessary variation in the direction of their overall 

escape to avoid injury or predation.  

In comparison to the running technique of cockroaches, locusts exhibit large 

jumps away from approaching stimuli, possibly because they cannot run away 

quickly in response to an external threat due to biomechanical constraints of their 

powerful hind legs (Tauber and Camhi, 1995). Few studies have examined the 

escape response of locusts to wind-puff stimuli. One study, which directed a fine air 

jet at Schistocerca gregaria locusts, found that there were wind-indicator and wind-

direction cells associated with interneurons that govern the locusts’ response to 
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wind-puff stimulation (Camhi, 1970). The information obtained by these cells allows 

for locusts to reposition themselves appropriately away from the incoming stimuli 

by rolling and yawing their bodies in order to direct their escape jumps up to 50 

degrees either side of a straight ahead trajectory in relation to their body axis 

(Santer et. al, 2005). The rapid movements of their forelegs allow for the escape 

trajectory of locusts to be determined at the last minute as the escape jump is 

triggered. Further, wind-puffs directed at both the head and the cerci of intact 

tethered locusts produced identical flight responses, suggesting not only that the 

neurons of the cercal system are directed to the flight motor, but the same motor 

circuit is activated by the two different pathways (Boyan et al., 1986).    

Crickets, which can walk and jump, exhibit both walking and jumping 

techniques in response to an incoming wind-puff stimulus, sometimes in 

combination with each other (Tauber and Camhi, 1995). Often, crickets that were 

exposed to the predatory strike of a wolf spider under experimental conditions 

would pivot away from the stimulus before walking or jumping, similar to the 

escape response demonstrated by the cockroach (Dangles et al., 2007). In a similar 

experiment, crickets that were exposed to an air-puff stimulus exhibited oriented or 

directional walking responses (Oe and Ogawa, 2013). This walking behavior often 

followed an initial turn or pivot in a direction away from the incoming stimulus 

angle. While this initial pivot seems time consuming, it may aid the cricket in 

escaping from natural predators, instead of just allowing it to escape in a straight 

line trajectory relative to the incoming stimulus. Indeed, while many crickets escape 
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in a direction away from an external wind stimulus, the direction that they escape 

in is not typically 180 degrees away from the incoming stimulus source, as was the 

case with cockroaches (Kanou et al., 2006).   

 

Tactile stimuli 

 While wind puff stimulation induces escape responses in arthropods, tactile 

stimulation provides an additional source of sensory information to be processed by 

the animal as the stimulus has the ability to touch the animal of interest in addition 

to causing air displacement. Tactile stimulation therefore typically produces similar 

escape responses in animals as wind puff stimuli, although the mechanisms for 

producing these escape responses may be slightly more complex. 

Cockroaches obtain sensory information via tactile cues using their antennae 

to avoid predation. However, cockroaches must be able to interpret this information 

to distinguish between predation, in which they escape away from the stimulus, and 

wall-following, which involves a continuous adjustment of movement towards the 

stimulus (Chapman and Webb, 2006). Tactile stimulation produces directional 

escape responses in the cockroach similar to those produced in response to 

stimulation by wind puffs (Comer et al., 1993). In one study, an incoming stimulus 

that deflected one antenna of the cockroach resulted in an escape response away 

from the direction of antennal displacement caused by the stimulus (Ye et al., 2003). 

Similar to wind-puff stimulation, cockroaches that were exposed to tactile stimuli 
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tended to escape in a direction away from the incoming stimulus.  This raises the 

question of whether the underlying neural circuits that are operating during both 

wind and tactile stimulation converge.  

Recent studies have indicated that the escape responses to tactile stimuli in 

cockroaches are potentially a result of convergence between wind and tactile 

stimulation, as the thoracic interneurons that receive input from the giant 

interneurons during wind-puff stimulation are also excited independently during 

tactile stimulation (Ritzmann and Pollack, 1994). Based upon the results obtained 

in one study that the cockroaches’ responses to stimuli coming from different 

directions were the same for both tactile- and wind-evoked escape behaviors, it has 

been suggested that the same control circuit is operating regardless of the sensory 

modality to which it is responding (Schaefer et al., 1994).   

Locusts also demonstrate evasive behavior in response to tactile stimulation 

when it is applied to their hind legs and antennae (Siegler and Burrows, 1986). 

According to one study, motor neurons that innervate the muscles in a hind leg are 

stimulated by tactile sensors on particular parts of the leg (Siegler and Burrows, 

1986). When the hairs on the hind leg are touched by an outside force, the motor 

neurons are excited and the locust can move in response to the tactile stimulation. 

In this study, the movements of the locust were aimed at avoiding or escaping from 

the tactile stimuli; when touched, the hind leg would move away from the direction 

of the incoming stimulus.  
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 Crickets displayed four types of responses to antennal tactile stimulation: 

aversion, aggression, antennal search, and no response (Okada and Akamine, 2012). 

When crickets were exposed to two successive tactile stimuli in one study, the first 

one gentle and the second much stronger, they mostly exhibited antennal search 

and aversion, respectively (Okada and Akamine, 2012). When mechanical tactile 

stimulation was applied to the wings of crickets, it induced an escape response in 

the crickets consisting of an initial jump followed by running away to avoid the 

stimulus (Hiraguchi et al., 2002). Among three types of tactile stimulation applied 

to the wings of the crickets (bending, touching with a paintbrush, and pinching with 

forceps), pinching evoked the most effective escape response, although the system 

responsible for detecting and responding to this type of stimulation remains 

unknown. 

Looming stimuli 

 Looming-object stimulation is perhaps the most complex form of stimulation 

applied to arthropods, as it may combine wind-puff, tactile, and visual stimulation. 

This often presents the animal with a combination of wind-receptive, visual, and 

mechanical cues to aid in forming an escape response. This stimulation is most 

representative of a natural predatory attack as the insect can both see and feel the 

incoming stimuli if they allow it to get too close. 

 When the escape behavior of cockroaches was studied in response to the 

predatory strike of a toad under semi-natural conditions, it was similar to the 
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aversive escape behavior produced in response to wind-puff stimuli (Camhi et al., 

1978). The toad presented the cockroaches with a looming stimulus as it moved 

towards them, also generating a rush of air current past the cockroaches from the 

approaching direction of the toad. As a result, cockroaches exhibited the same turn 

and run technique along a set of fixed trajectories away from the toad in response to 

this looming threat.  

In response to looming object stimuli, locusts often perform a series of 

postural changes in preparation for a jump away from the incoming stimuli (Heitler 

and Burrows, 1977). The postural adjustments are quickly followed by three hind 

leg actions (flexion, co-contraction, and triggering) that serve to store energy in the 

hind legs before quickly releasing it to jump away from the looming object.  

 Similar to locusts, fruit flies (Drosophila melanogaster) used visual 

information obtained from a looming object stimulus to position themselves in a 

way that allowed them to escape in a direction away from the incoming stimulus 

(Card and Dickinson, 2008). To do this, they performed a series of postural 

adjustments that allowed for them to shift their centers of mass and push off with 

their legs away from the approaching stimulus. These postural adjustments 

occurred even in instances when the flies chose not to jump. In addition, it was 

found that the motor adjustments to reposition the legs were sufficient enough to 

control the direction of escape without help from the wings, as flies who had their 

wings removed still jumped away from the incoming stimulus.   
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Researchers designed an experiment to evaluate the escape response in 

crickets to looming-object stimulation by using the controlled approach of a piston 

(Dupuy et al., 2011). This design enabled the researches to look at the crickets’ 

escape responses based upon both wind-generated and visual detection of the 

stimulus, and also allowed them to determine the success of the overall escape 

response. A significant amount of crickets showed signs of detecting the piston, but 

the proportion of crickets that detected the piston was higher than the proportion of 

crickets that successfully escaped. The escape success from the approaching piston 

was strongly affected by the direction of the approach, with more crickets 

successfully escaping when the piston approached from behind, suggesting that the 

cerci were more useful than the visual system in detecting the stimulus. 

Comparable to wind-puff stimulation experiments, crickets tended to escape in a 

direction away from the incoming looming stimulus.  

A separate study found that crickets tracked the looming stimulus with their 

antennae, which may have helped to determine the direction of the escape response 

(Yamawaki and Ishibashi, 2013). Antennal pointing occurred more when the 

stimulus (a ball) was approaching from the front of the cricket, and also when a 

larger ball was used, supporting the previously mentioned theory stating that 

visual cues allowed for the antennae to track the incoming stimulus. Indeed, when 

the eyes of crickets that were exposed to a looming stimulus were covered, it 

resulted in a reduced rate of detection of the stimulus approaching from the front 
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despite having intact antennae, whereas ablation of the antennae alone did not 

reduce the rate of detection or successful escape (Dupuy et al., 2011).  

To summarize, the three different types of stimulation used in the lab setting 

- wind, tactile, and looming - induce escape responses in arthropods that take them 

away from the direction of the incoming stimuli. However, the mode by which the 

cockroach, locust, and cricket escape differs. While cockroaches initially turn away 

and then run from an approaching stimulus, locusts typically jump away, while 

crickets display a combination of turning, walking, and jumping away. Of the three 

types of stimulation used in the laboratory, looming object stimulation best 

represents the sensory complexity that would accompany an attack by an actual 

predator, as it combines sensory effects of both wind and tactile stimulation with an 

additional visual input.   

A New Approach to Looming Stimuli 

While extensive research has been performed surrounding wind puff 

stimulation, with the exception of locusts (Rind and Simmons, 1992; Gabbiani et al., 

1999; Gabbiani et al., 2004; Simmons et al., 2010; Heitler and Burrows, 1977), few 

studies have been done regarding the escape responses of arthropods to looming 

object stimulation. However, looming object stimulation, as previously noted, best 

represents the complexity of sensory information conveyed during an attack by a 

predator. Further, studying the escape strategies of crickets to looming object 

stimuli possibly can provide more information regarding underlying motor 
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programs than studying the response of cockroaches because the cricket can both 

walk and jump, whereas the cockroach does not jump.  

While the few studies regarding the escape responses of crickets to a looming-

object stimulus focused on the escape strategy and success of the crickets as a 

function of angle of stimulus approach (Dupuy et al., 2011), no work has been done 

to examine the angle of escape of the cricket in response to change in the angle of 

stimulus approach.  

The specific aim of this study was to use high speed video analysis to 

determine the relation between the angle of approach of a looming object (black 

ball) and angle of the resulting turn executed by the cricket.  
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IV. Methodology 

Animal Care  

Crickets were obtained from two different local pet stores (Petsmart and 

Petco). All crickets were kept in a covered plastic tub (dimensions 38.1x29.2x29.8 

cm) with constant access to food and water. Both male and female crickets were 

used for the experiment, with 2 male and 5 female crickets being used. Sub-adult 

(instar 8-9) crickets were used because full wings (adults) would interfere with 

tracking points on the body during data analysis. After each experiment, the 

crickets were euthanized by placing them in sealed bags and exposing them to the 

interior of a freezer. 

Experimental Setup 

Crickets were placed on a primed canvas glued to a wooden circular platform 

(diameter 25 cm) which was designed to provide traction so that they could move 

and not slip in response to stimulation. The platform was white to provide contrast 

against each cricket’s body during video recording. For each trial, one cricket was 

placed on the platform and exposed to the looming stimulus (Figure 1). A white 

cardboard square was cut out and placed behind the stimulus to provide contrast so 

that the cricket could detect the incoming stimulus. Each cricket was confined 

within a plastic tube up until the stimulus was released to ensure that it was in the 

desired location on the platform immediately before stimulation. A high-speed (650 
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fps) video camera (IDT/Redlake) using a wide angle lens (25 mm) was positioned 

above the platform at a 90 degree angle. The camera was 22 cm above the platform 

and was connected to a computer so that the images of the cricket’s movement could 

be digitally stored. 

The temperature was measured using a standard thermometer before each 

experiment. The average temperature for all experiments was 21.6 °C. An LED ring 

light was used to illuminate the cricket while minimizing heating from an external 

light source.  

 

Figure 1.  Diagram of experimental setup. The camera was positioned above 

and perpendicular to the platform bearing the cricket at a distance of 22 cm from 

the platform. The ball approached the cricket at an approximately 45 degree angle 

and an average speed of 94.1 mm/s. Video recordings were captured by the high 

speed (650 fps) video camera (IDT/Redlake) using a wide angle lens (25 mm). The 

camera was connected to a computer so that digital images of the cricket’s 

movement could be saved and used for analysis. An LED ring light was used to 

illuminate the cricket.  
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Stimulation and Movement Recording 

A black polyurethane ball (diameter 2.5 inches) was attached to the piston of 

an air cylinder (12 inch travel) that was driven by a solenoid controlled pressure 

source (nitrogen tank). Upon triggering the solenoid valve, the ball traveled towards 

the cricket at an approximately 45 degree angle and an average speed of 94.1 mm/s. 

This setup exemplified the concept of a looming-object stimulus (Figure 1).  

The movement of the ball and resulting escape response of the cricket were 

recorded using Motion Studio x64 software (IDT).  A trigger was used to capture 

recordings of the 5 frames before the stimulus and up to 3 seconds (1950 frames) 

after the stimulus was initiated. The resulting images were digitally saved to a 

computer for later tracking and analysis purposes.  

Protocol 

Crickets were stimulated by the ball facing the cricket from eight different 

initial directions: 0, 45, 90, 135, 180, 225, 270, and 315 degrees (Figure 2). The 

sequence of angles was randomized. If no response or a jump response was obtained 

during a trial, the initial angle of stimulation was repeated at the end of the other 

trials until an appropriate walk was obtained that could be tracked.  

Each cricket was placed just out of reach of the ball when the piston was fully 

extended (20 mm) so that it could not contact them if they did not attempt to escape 
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sufficiently quickly. Once the cricket was positioned correctly, the ball was released 

and the response was recorded. 

After stimulation, the cricket was quickly captured again using the plastic 

tube and allowed 2 minutes to recover before being positioned in preparation for the 

next trial. The tube was not removed until the cricket was stationary. When all 

eight initial stimulation angles had been successfully tested with the looming 

stimulus, the cricket was disposed of in the manner previously mentioned. 

 

                                      

Figure 2. The angle of stimulation with respect to the cricket. Each cricket 

was stimulated with a looming object (black ball) at angles 0, 45, 90, 135, 180, 215, 

270, and 315 degrees. The order of angles of stimulation was randomized for each 

cricket.  
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Movement Data Tracking and Analysis 

Digitally saved videos of the crickets’ movement were tracked using 

ProAnalyst computer software (ProAnalyst, Xcitex, Boston). Three separate points 

of each cricket’s body were tracked manually using ProAnalyst: the tail, the middle, 

and the head. In order to do this, video data from one trial was uploaded, converted 

from pixel to mm, and tracked individually for each cricket. Tracking occurred from 

five frames before the start of movement to the final frame or when the cricket 

stopped moving.  

Analysis of the movement of the three body parts was completed using 

Matlab, Microsoft Excel, and Sigmaplot. In custom programs written in Matlab, the 

angles of the cricket’s abdomen and head were calculated over time (Figure 6). 

Graphing and statistics were conducted in Sigmaplot, Oriana, and Matlab.  
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V. Results 

The results are divided into two different sections. The first section addresses 

the dependence of the change in angle of the cricket’s body on the angle of the 

approaching stimulus. The second examines whether the head and the body move 

independently of one another in response to stimulation. The occurrence of jumps 

versus walks for each angle of stimulation was also noted.  

A. Dependence of Movement on Stimulus Location 

When exposed to the looming object stimulus, crickets displayed one of three 

behaviors: either no response, a response involving a turn and walk, or a response 

involving a turn and jump. Clips from video recordings of these responses are shown 

in Figure 3, with the exception of no response. The cricket responded by turning 

away from the stimulus and either walking (Figure 3A) or jumping (Figure 3B). In 

Figure 3A, the cricket turns approximately 45 degrees counterclockwise before 

walking away from the ball. In Figure 3B, the cricket turns approximately 30 

degrees counterclockwise before jumping away from the ball.  Figure 4 shows the 

movement of three features of the body over time in response to various angles of 

stimulation: the tail, the middle, and the head. It is clear from these images that 

the cricket begins by making an initial turn away from the stimulus before either 

walking or jumping away.  
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Crickets typically produced escape responses to all eight angles of 

stimulation, raising the question of whether the response of the cricket was 

dependent upon the stimulus angle. Representative initial and final positions of the 

cricket are shown to illustrate the movement of the cricket in response to the ball 

when it approached from angles 0, 45, 90, 135, and 180 degrees (Figure 5). The 

cricket typically turned or moved in a direction away from the ball when it 

approached from all angles; there was only one instance where one individual 

cricket turned towards the ball when stimulated at 45 degrees, indicative of an 

aggressive response (Figure 5). However, video analysis showed that, while the 

cricket turned towards the ball, it shifted its apparent center of mass away from the 

ball to avoid contact.  
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Figure 3. Representative example of a walk and a jump response in a 

cricket. Single select sequential frames from video recordings of a cricket 

responding to the stimulus (coming from the right) by walking (3A) and jumping 

(3B) are shown. Crickets typically turned before walking or jumping in a direction 

that took them away from the incoming looming stimulus. The images show the 

change in position of the cricket over time in response to stimulation.  
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Figure 4. Representative examples showing the movement of the cricket in 

response to stimulation. The crickets were stimulated from 0, 45, 90, 135, and 

180 degrees by the looming object (black ball). The lines with clear circles indicate 

the head, middle, and tail of the cricket before stimulation. The lines with the filled 

in circles represent the movement of the cricket over sequential 20 frame 

increments (20x1/650s). Arrows show the direction of the incoming stimulus while 

the numbers above the arrows indicate the degree of the approaching stimulus 

angle. Crickets appear to turn away from the stimulus before moving in a direction 

that takes them away from the stimulus.  
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Figure 5. Representative examples of the initial and final position of a 

cricket to lateralized angles of stimulation. Crickets were exposed to the 

looming stimulus at 0, 45, 90, 135, and 180 degrees. The initial and final positions 

of a cricket are shown here for all angles of stimulus approach to show how the 

animal moved in response to stimulation. Crickets typically ended up facing away 

from the direction of the incoming stimulus. When stimulated at 45 degrees, the 

cricket appears to turn towards the ball (5B).  
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The degree of turn of the cricket’s body in response to stimulation was 

quantified by measuring the change in body and head angles. Figure 6 shows the 

change in angle over time for the body and head. The beginning of the plateau on 

the resulting graph, which illustrated the point at which there was no further 

change in angle of the body or the head over time, was used to measure turn angle.  

To determine whether the angle of resulting escape depended upon the angle 

of incoming stimulation, the stimulus angle was plotted in relation to the angle of 

body response (Figure 7). The graph shows that turn angle of the cricket depended 

upon the stimulus angle. Most points show that the animal is turning away from 

the incoming stimulus. For example, when stimulated at 180 degrees (from behind), 

the cricket has a turn angle of 0 degrees (moves directly forward) as it is already 

facing away from the stimulus, while a stimulation angle of 90 degrees resulted in a 

turn angle of -90 degrees away from the stimulus. However, in a few cases the 

cricket appears to turn towards the stimulus (seven points in the top right and 

bottom left quadrants). While there is a correlation between stimulus angle and 

turn angle based upon the graph as a whole, the relationship is less clear within 

each quadrant. This is important because each quadrant represents the response of 

the cricket to the stimulus when approaching from the front (0 degrees) through the 

side of the cricket (90 degrees) to the rear of the cricket (180 degrees). The top left 

quadrant represents the stimulus approaching from the right side of the cricket, 

while the bottom right quadrant represents the stimulus approaching from the left 

side.  
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There appears to be left/right symmetry between the angle of stimulation and 

the turn angle of the cricket when stimulated from each side. Although the response 

direction depends on whether the stimulus approached from the left or the right, it 

is unclear whether the laterality of the incoming stimulus angle has an effect upon 

the turn angle of the cricket. To determine whether the angle of response depended 

upon the laterality of the stimulus angle, the response of the cricket’s body was 

plotted against stimulus angles reflected to the right hand side of the cricket’s body 

(Figure 8). The cricket still appears to turn slightly away from the angle of 

stimulation, without making a full 180 degree turn away. For example, when 

stimulated at 0 degrees (from the front), the average turn of the cricket was 90 

degrees, while a stimulation angle of 135 degrees resulted in a response turn of 

approximately 45 degrees away from stimulation. A linear regression was 

performed to determine the correlation between lateral stimulus angle and the 

angle of the cricket’s escape (slope=-0.57, R2=0.47). The plotted data had a slope of -

0.57, indicating that the cricket did not turn directly away from the stimulus each 

time. The angle of turn of the cricket is dependent on the laterality of the incoming 

stimulus angle (p<0.0005). Figure 8 also shows the occurrence of jump (black 

circles) versus walk (grey circles) responses to each angle of stimulation. It appears 

that there was a greater tendency for the cricket to jump when stimulated from the 

rear.  

The occurrence of jump and walk responses were counted with respect to 

stimulation angle (Figure 9). It appears that the cricket has a tendency to jump 
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instead of walk away from the looming stimulus when stimulated from the rear. 

However, there is no significant effect to support this data, possibly due to the small 

number of jumps (n=6).  

 

 

 

 

 

 

 

 

Figure 6. Representative example of the cricket’s turn over time in 

response to stimulation. The change in angle of the cricket’s body and head were 

plotted against frame number. The graph shows how the cricket turned in response 

to stimulation, as well as how long it took the cricket to complete the initial turn. 

The dark grey line represents the angle of the body, while the light grey line 

represents the angle of the head. The point that the cricket stopped turning occurs 

at the beginning of the plateau, as there is no change in angle over time at this 

point.  
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Figure 7. The angle of the cricket’s turn versus the angle of incoming 

stimulus. The change in body angle was measured against the incoming stimulus 

angle to determine the relationship. For each experiment, the cricket was 

stimulated at 45 degree increments between 0 and 315 degrees. The order of the 

angle of stimulation was randomized for each experiment. The cricket appears to 

turn away from the incoming stimulus, although there are a few points where the 

cricket appears to turn towards the looming ball. The response direction also 

appears to be dependent upon the incoming stimulus angle.  
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Figure 8. The absolute change in angle of the cricket’s body in response to 

lateralized stimulus angles. The change in angle of the cricket’s body was 

measured in response to stimulation from the lateralized stimulus angles. A linear 

regression was performed, indicating that the angle of turn was correlated with the 

angle of incoming stimulation (slope=-0.57, R2=0.47). The angle of stimulation has a 

significant effect on the angle of turn of the cricket (p<0.0005). Responses in which 

the cricket walked are shown in gray, while jump responses are shown in black. 

Crickets appear to jump when the stimulus is approaching from near the rear. 

There is no apparent difference in turn angle between walk responses and jump 

responses.  

 

 

 



 

41 

 

 

Figure 9. Counts of Jump and Walk Responses for all Reflected Stimulus 

Angles. The occurrence of jump and walk responses were counted with respect to 

all reflected stimulus angles. Walk responses are shown in grey, while jumps are 

shown in black. There appears to be a tendency for the cricket to jump when 

stimulated from behind, but there is no significant effect of stimulus angle on jump 

responses. This could be because an insignificant number of jumps were obtained 

(n=6).  
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B. Dependence of the head movement on body movement.  

The segmentation of the cricket’s body raised the question of whether the 

cricket turned its head and body as one unit, or whether one feature moved 

separately from the other. In order to determine whether there was a difference in 

the angle of turn between the head and the body, these two features were plotted 

against one another (Figure 10). A linear regression was performed to determine 

the degree of correlation between the angle of turn of the head and the body. The 

angle of turn of the head was found to be significantly correlated with the angle of 

turn of the body (slope=0.94, R2=0.99, p<0.001), meaning that the change in body 

angle and change in head angle were similar.  

Interestingly, it appears that, while the head and the body turn the same 

amount of degrees in response to stimulation, the cricket often turns with its head 

leading the body (Figure 6). This can be seen in representative examples of the 

movement of the cricket in response to stimulation (Figure 4). Before the initiation 

of stimulation at 0, 45, 90, 135, and 180 degrees, the head and body of the cricket 

were collinear (aligned). In the following sequences, representing the position of the 

cricket 20 frames (0.031 seconds) later, the head is bent away from the direction of 

stimulation with respect to the body. However, in the final frame, the head and the 

body are aligned once more.  
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Figure 10. The relationship between the degree of turn of the cricket’s 

body and the degree of turn of the cricket’s head. The degree of turn of the 

cricket’s body and head were plotted against each other to determine if there was 

any correlation between the angles of turn of the two features. Based upon the 

results of a linear regression (slope=0.94, R2=0.99), there is a significant correlation 

between the degree of turn of the head and the body (p<0.0001).   
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VI. Discussion 

Summary 

 The results of this study indicate that the angle of escape of a cricket is 

dependent upon the angle of approach of a looming object stimulus. Crickets turned 

their bodies away from the stimulus before either jumping or walking away from 

the direction of stimulation. Crickets usually walked away, but had a tendency to 

jump instead of walk when stimulated from behind, although this tendency was not 

significant. While, as expected, the angle of turn of the head is significantly 

correlated with the angle of turn of the body, the head appears to lead into the turn 

as the cricket turns away from the direction of stimulation.  

Comparison to Previous Results 

The specific aim of this study was to use high speed video analysis to 

determine the relationship between the angle of approach of a looming object and 

the angle of the resulting turn executed by a cricket. Previous studies regarding 

looming object stimulation have mainly focused on the response of locusts (Rind and 

Simmons, 1992; Gabbiani et al., 1999; Gabbiani et al., 2004; Simmons et al., 2010; 

Heitler and Burrows, 1977; Santer et al., 2005) and fruit flies (Card and Dickinson, 

2008), while exposure of crickets to looming stimuli has been minimal (Dupuy et al., 

2011; Yamawaki and Ishibashi, 2013). 
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Locusts that were stimulated with a black ball being rolled down a ramp 

towards them at 0, 45, 90, 135, and 180 degrees often exhibited escape responses 

that took them in a direction away from the looming stimulus (Santer et al., 2005). 

When stimulated from the rear at stimulus angles greater than 120 degrees, locusts 

displayed a 0 degree trajectory movement away from the stimulus, meaning that 

they did not turn but instead jumped directly ahead and away from the incoming 

ball. However, no precise correlation was found between the angle of escape and the 

angle of approach of the looming stimulus when it approached from the side.  

Fruit flies, when stimulated by a falling black disk, tended to jump away 

from the looming object and initiate a flight response (Card and Dickinson, 2008). 

When the stimulus approached from directly in front (0 degrees) or directly behind 

(180 degrees), the flies jumped directly backward or forward away from the looming 

object, respectively. However, when the disk approached from the side of the fly, the 

fly jumped in a direction that was halfway between directly away from the stimulus 

and directly forward (slope=0.44, 36<Ѳ<72 and 72<Ѳ<108). These values were 

significantly different from the fly jumping either directly forward or directly 

backward in response to stimulation (p=0.05).  

In this study, crickets displayed a similar direction of escape in response to 

the looming stimulus as the fruit flies and the locusts did to looming stimuli, as 

they did not move directly away from the black ball at all times, instead turning at 

an angle that was somewhere between 0 and 180 degrees away from the angle of 
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stimulation (slope=-0.57). The slopes obtained from the graphs of escape direction of 

the fly (0.44) and cricket (-0.57) in response to stimulus angle, which provide 

information about how much the animal turns, are comparable, further suggesting 

that the two types of arthropods escape from a looming stimulus in a similar 

manner that is partially away from the direction of the incoming stimulus.  

The few studies regarding the response of crickets to incoming stimulation 

have centered upon the type of escape response, as well as the success of the cricket 

in escaping away from the stimulus. In this study, most escape strategies involved a 

turn away from the looming stimulus before a walk or a jump was executed, which 

is consistent with previous findings suggesting that crickets turn, turn and walk, or 

turn and jump in response to stimulation (Dupuy et al., 2011; Camhi et al., 1978). 

Dupuy et al. (2011) qualified the escape of the cricket as being successful if the 

cricket did not get hit by the looming piston. For successful escapes, Dupuy et al. 

looked at the angle of escape response compared to the stimulus angle, and found 

that it spanned a wide range of angles when stimulated from behind (169° ± 7° ) and 

from the side (156° ± 12°) relative to the piston. These values indicate that the 

crickets moved away from the direction of incoming stimulation, which is consistent 

with the findings of this study, although the escape responses were not classified as 

being successful versus unsuccessful. The escape success of crickets could not be 

determined in the same manner in this experiment, as crickets were placed 20 mm 

away from the ball when the piston was fully extended, so that the ball could not 

touch them if they failed to execute an escape response.  
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Previous studies using aversive stimuli have never mentioned any separation 

between the movement of the head and the body of the cricket or other arthropods. 

Although the head and the body turned the same amount of degrees in response to 

stimulation in this study, the head appeared to lead the body into the turn for most 

trials. While the head began the turn earlier in most trials, the cricket ultimately 

ended up with its head and body aligned (Figure 4), suggesting that the body turned 

just as much as the head of the cricket, only more slowly.    

Mechanisms 

 Sensory structures that arthropods use to obtain information about their 

local environment include the cercal system, vision, and the antennae. In this study, 

the large surface area of the ball probably creates a substantial amount of wind as 

it moves towards the cricket. This movement of air most likely stimulated the wind-

sensitive receptors on the cricket’s cerci, especially when the ball was approaching 

from the rear where the cerci are located, alerting the cricket to a potential threat 

and thus generating an escape response.   

 In addition, vision probably plays a role in producing an escape response in 

the cricket upon stimulation with the ball. The ball was large (diameter 2.5 inches) 

and black, and was placed in front of a white square canvas to provide contrast so 

that the cricket could see it. Visual information obtained by the cricket as the ball 

was looming towards it could be used to direct the escape response away from the 
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angle of stimulation in conjunction with information regarding air displacement 

obtained by the cerci.  

Functional Implications 

 It is necessary to evaluate the escape strategy of the cricket in response to 

the looming stimulus to assess the functional implications of the escape. Although 

several crickets (n=6) turned and jumped away from the ball, the majority of the 

escape responses typically consisted of the cricket taking an initial turn away from 

the ball, walking a few steps, and stopping. This escape strategy did not take the 

cricket far away from the ball. However, it is important to note that once the ball 

was 20 mm away from the cricket, it stopped moving. The cricket might continue to 

walk or even produce a greater number of jumps away from the ball if the ball was 

allowed to get closer to the cricket. 

 The occurrence of walking versus jumping escape responses has some 

functional significance. Jumping is a time consuming escape mechanism that is 

energetically costly, while walking away from an incoming stimulus does not 

exhaust the cricket so quickly and enables it to travel a short distance away from a 

potential threat. Therefore, it would be expected that crickets walk more often than 

they jump away from a threatening stimulus. The frequency of jump responses was 

greater when crickets were stimulated from the rear. This could be because the 

wind-sensitive cerci are located towards the rear of the cricket, and thus can better 

detect wind displacement, alerting the cricket to a threat and allowing it to jump 



 

49 

 

away from the stimulus. Another potential explanation could be that, when the 

stimulus is approaching the cricket from the rear, the cricket does not need to turn 

away from the direction of the incoming stimulus, which can be time consuming, 

and therefore can use this extra time to prepare for a jump away from the incoming 

stimulus.   

While the degree of turn of the cricket’s body was significantly correlated 

with the degree of incoming stimulus angle, crickets did not turn directly away from 

the incoming stimulus every time they were stimulated (Figure 8, slope=-0.57). 

Instead, crickets turned their bodies at an angle that seemed to point them away 

from the incoming stimulus angle before walking or jumping away from the 

direction of stimulation. The degree of turn might point the cricket in a direction 

sufficient to avoid being touched by the stimulus, without wasting unnecessary 

energy on executing a 180 degree turn away from the direction of stimulation.  
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