
James Madison University
JMU Scholarly Commons

Senior Honors Projects, 2010-current Honors College

Spring 2015

Effect of carbohydrate intake on pacing in
endurance cycling
Morgan A. Price
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/honors201019
Part of the Exercise Science Commons

This Thesis is brought to you for free and open access by the Honors College at JMU Scholarly Commons. It has been accepted for inclusion in Senior
Honors Projects, 2010-current by an authorized administrator of JMU Scholarly Commons. For more information, please contact
dc_admin@jmu.edu.

Recommended Citation
Price, Morgan A., "Effect of carbohydrate intake on pacing in endurance cycling" (2015). Senior Honors Projects, 2010-current. 81.
https://commons.lib.jmu.edu/honors201019/81

https://commons.lib.jmu.edu/?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors201019?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors201019?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1091?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors201019/81?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu


Effect of Carbohydrate Intake on Pacing in Endurance Cycling 

_______________________ 
 

An Honors Program Project Presented to 

 

the Faculty of the Undergraduate 

 

College of Health and Behavioral Studies 

 

James Madison University 

_______________________ 
 

 

by Morgan Ann Price 

 

May 2015 

 

 

 
Accepted by the faculty of the Department of Kinesiology, James Madison University, in partial fulfillment of the 

requirements for the Honors Program. 

 

FACULTY COMMITTEE: 

 

 

 

       

Project Advisor:  Michael J. Saunders, Ph.D., 

Professor, Kinesiology 

 

 

 

       

Reader:  Christopher J. Womack, Ph.D., 

Department Head and Professor, Kinesiology 

 

 

 

       

Reader:  Nicholas D. Luden, Ph.D., 

Assistant Professor, Kinesiology  

 

HONORS PROGRAM APPROVAL: 

 

 

 

       

Philip Frana, Ph.D., 

Interim Director, Honors Program 

 

 
PUBLIC PRESENTATION 

This work is accepted for presentation, in part or in full, at the JMU Honors Symposium on April 24, 2015. 

 



 

2 

 

. 

Effect of Carbohydrate Intake on Pacing in Endurance Cycling 

 

Morgan A. Price  

Michael J. Saunders  

Christopher J. Womack  

Nicholas D. Luden  

 

James Madison University  

 

 

 

 

 

 

 

 

 

 



 

3 

 I would like to dedicate this to my loving family and friends who have supported me 

throughout this wonderful journey. I would also like to dedicate this to my professor and advisor, 

Dr. Saunders. I could not have done it without all of your guidance and support.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

TABLE OF CONTENTS 

Acknowledgements                                                                                                    5 

List of Figures                                                                                                            6 

List of Tables                                                                                                             7 

Abstract                                                                                                                      8 

Chapter I: Introduction                                                                                              10 

Chapter II: Materials and Methods              14 

Chapter III: Manuscript             17 

References              32 

 

 

 

 

 

 

 

 



 

5 

ACKNOWLEDGEMENTS  

 I would like to thank Dr. Saunders for all of his assistance. You have been a great 

professor and advisor these past four years. I would also like to thank Dr. Hargens, Dr. Womack, 

and Dr. Luden for their advice and instruction with this project. I am grateful to the entire 

Kinesiology Department for this opportunity and for the excellent education that I have received 

here at James Madison University. Every professor that I have had has made a profound impact 

on my education and greatly prepared me for graduate school. I would also like to thank the 

Honor’s Program for giving me this opportunity.  

 

 

 

 

 

 

 

 

 

 

 



 

6 

LIST OF FIGURES  

Figures 

1       Changes in Power Output during 30 km Trial                                   21 

2A  Changes in Power Output during 30 km PL Trial                             22 

2B             Changes in Power Output during 30 km CHO Trial              23 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 

LIST OF TABLES  

Tables 

1                      Influence of Feeding Timing on Mean Power Output                      23 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

8 

ABSTRACT  

 PURPOSE: To study the influences of carbohydrate intake (CHO) on pacing in 

endurance cycling, as well as the effects of wearing metabolic headgear (HG) on power output. 

METHODS: Eight male endurance trained cyclists completed 120 min of constant load cycling 

at 55% Wmax, immediately followed by a simulated 30 km time trial, on two occasions. On one 

occasion, subjects consumed a CHO solution at regular intervals throughout the trial, while a 

placebo (PL) was consumed during the other trial (in a randomly counterbalanced design). For 

statistical analysis, the 30 km time trial was divided into 4 segments (S1 = 0-7.5 km, S2 = 7.5-15 

km, S3 = 15-22.5 km, and S4 = 22.5-30 km), with each segment immediately preceded by a 

beverage feeding. Further, each of these segments was sub-divided into early (EP) and late 

phases (LP). Power output (PO) was averaged for three-minute periods in each phase. In 

addition, PO was calculated for two five-minute periods during the time trial, when HG was 

worn (starting at 12 km) and not worn (starting at 20 km). RESULTS: In the 30 km time trial 

(both CHO and PL conditions), PO decreased significantly between S1 (240 ± 13) and S2 (227 ± 

11) (p = 0.019), and decreased further during S3 (216 ± 11) (p = 0.017). Subsequently, PO 

increased between S3 and S4 (234 ± 12) (p = 0.001), resulting in values in S4 which were not 

significantly different from S1 (p = 0.302). CHO ingestion resulted in significantly greater PO 

during the trial, versus PL (242 ± 10 W vs 217 ± 14 W; p = 0.044). In the CHO trial, PO did not 

decrease significantly across the four time segments (p>0.05), whereas in the PL trial PO 

decreased significantly from S1 to S2 (p = 0.008) and from S2 to S3 (p = 0.009), followed by a 

subsequent increase in PO between S3 and S4 (p = 0.001). PO was not significantly different 

between the early and late phase following beverage consumption (230 ± 12 W vs 229 ± 12 W; p 

= 0.709). There was no significant effect of HG on PO (HG = 216 ± 10 W, no HG = 221 ± 11 W; 
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p = 0.299). CONCLUSION: CHO ingestion improved endurance performance and influenced 

pacing in a general manner, by preventing decreases in PO over the first three quarters of the 

time trial. However, the ergogenic effects of CHO were not systematically different between 

early and late periods following each feeding. In addition, wearing headgear to measure 

metabolic measurements during exercise did not affect PO.  
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CHAPTER I: INTRODUCTION 

 Various pacing strategies are utilized by endurance athletes, and may have an influence 

on optimal performance levels. The specific pacing strategy chosen by an athlete can be affected 

by the distance or demands of the event, how the individual feels that particular day, the context 

of the endurance event (whether it is a high-level competition or not), as well as many other 

factors. Pacing strategies include all-out, negative, positive, even, and variable pacing (1). An 

all-out pacing strategy is where peak velocity is reached early in the event, and the athlete holds 

that pace for as long as possible (1). Negative pacing is when the athlete starts the event 

conservatively, and then increases the pace over time, and positive pacing is when an athlete 

starts the event quickly, and then decreases their speed over time (1). Even-paced strategies 

include a steady speed that the athlete holds for the entire event with minimum variations, 

whereas a variable-paced strategy consists of the athlete purposely varying their power output 

throughout the event (1).  

 Many studies have concluded that events lasting longer than 4-5 minutes require a more 

even-paced strategy in order for optimal performance results, compared to variable and all-out 

pacing (3, 4, 10, 14, 18, 24, 31). For example, high-level ultra-marathoners exhibited minimal 

variations in their running speed, keeping their starting pace for longer periods of time than 

lower-level performers (24). Studies of shorter events, lasting only a few minutes (such as 

cycling time trials of 1000m and 1500m) have reported that the all-out strategy works best (3, 14, 

19). Most studies of shorter events (between 1-5 minutes) have shown that faster starts result in 

better performance times (2, 4, 18, 23) possibly due to a greater amount of aerobic contribution 

to energy turnover which increases the time until the anaerobic contribution is depleted, thus 

increasing the time to exhaustion (23). Although there are inconsistent results regarding optimal 
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pacing methods, it generally appears that an all-out pacing strategy works best for shorter events, 

whereas an even-paced strategy results in the greatest performance results for longer distances. 

However, the selection of optimal pacing strategies for a particular event remains controversial, 

as they can be affected by numerous factors, such as changes or fatigue in the muscle (1, 15), 

body temperature (15), brain responses to feedback (1, 4), the distance to be performed (1, 26), 

carbohydrate availability (15), or a combination of these mechanisms.  

 Carbohydrate ingestion is known to improve endurance performance but little is known 

on its potential effect on pacing strategies. Carbohydrate ingestion before and during prolonged 

exercise (≥2 hrs) has been shown to benefit performance by improving the time to fatigue (8, 11, 

12, 20), increasing average power output (13, 29), and increasing running speeds (27). 

Supplementing subjects with carbohydrate during exercise increases the amount of accessible 

carbohydrate towards the end of exercise (6, 11, 20, 21, 28) and limits the usage of endogenous 

stores of glucose (20, 22, 28), possibly maintaining glycogen levels in the liver and muscle (6, 

20, 28, 30), which all are important for maximizing the availability of carbohydrate as a fuel. 

Recent studies have shown that combinations of glucose and fructose may improve performance 

to a greater extent than solutions containing only glucose (13, 20). Glucose and fructose are 

absorbed from the intestines via different transporters, allowing increased total carbohydrate 

absorption, and resulting in increased exogenous carbohydrate oxidation (13, 20, 28). Because 

the ergogenic effects of carbohydrate are at least partially related to their influence on energy 

metabolism (i.e. blood glucose levels, and carbohydrate availability for the muscle), it is possible 

that an absorption-related lag-time may exist between carbohydrate feedings and their effect on 

power output. Therefore, carbohydrate ingestion may have a time-related effect on pacing during 

endurance exercise.    
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 Carbohydrate intake has also been shown to enhance power output and performance 

during shorter, higher-intensity bouts of endurance exercise (≥1hr) (7, 9, 16, 17, 25). These 

performance improvements have been observed, even when carbohydrate is rinsed in the mouth, 

and not swallowed (7, 8, 9, 17, 25). Chambers and colleagues (9) reported that subjects who 

rinsed with either glucose or maltodextrin solutions (independent of sweetness), improved their 

cycling performance by maintaining a higher power output for longer periods without having an 

increase in perceived exertion. These investigators provided evidence that oral receptors detect 

carbohydrate solutions in the mouth, activating the orbitofrontal cortex and striatum reward 

regions, communicating to the brain to continue the high intensity exercise (9). Carter et al. (7) 

discovered similar results when comparing cyclists who rinsed with either maltodextrin solution 

or water, and found significant improvements in performance time and power output in the 

carbohydrate trials (7). As demonstrated by the prior studies, there is growing evidence that 

carbohydrate may affect performance via its influence on the central nervous system. These 

benefits occur almost immediately after exposure to carbohydrate, but the longevity of these 

effects have not been investigated. Therefore, it is conceivable that carbohydrate ingestion may 

produce a short-lived effect on power output, causing feeding-related changes in pacing during 

endurance exercise.   

 Few studies have looked at pacing strategies in true endurance settings (>2 hours), nor 

have any studies directly investigated whether carbohydrate intake alters pacing during exercise. 

Thus the purpose of the current study is to examine the effects of carbohydrate ingestion during 

endurance cycling on pacing. Power output will be examined throughout endurance cycling, and 

compared between ‘immediate’ (immediately after beverage intake) and ‘delayed’ (10-15 min 

following beverage intake) time-periods in both carbohydrate and placebo trials. A secondary 
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purpose of this project is to determine if the experimental equipment that is worn to measure 

physiological measurements during cycling trials influences power output. We hypothesize that 

there will be increased power output averages during the early periods of the segments in the 30 

km time trial and decreased averages at time points where the metabolic head gear was worn.  
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CHAPTER II: MATERIALS AND METHODS 

 Data collection for this experiment was completed as part of a prior study which 

addressed a separate research question related to carbohydrate ingestion. All testing was 

completed after informed consent was obtained from subjects, and all experimental procedures 

were approved by the Institutional Review Board of James Madison University. The findings 

from the original study were recently published by Baur and colleagues (5), and detailed 

methodology can be obtained from this source. 

Subjects 

 8 male endurance trained cyclists were recruited to participate in the study. Subjects’ 

cardiorespiratory fitness (VO2max) was measured via an incremental exercise test to exhaustion 

on a cycle ergometer. Power output at VO2max (Wmax) was determined, and used to set workloads 

for subsequent testing (described below) (5).  

Experimental Trials 

 As described by Baur et al. (5) the study consisted of four experimental trials including a 

placebo trial and three carbohydrate beverage trials. For the purpose of the current project, only 

data obtained from the placebo trial and a single carbohydrate trial (described below) were 

utilized. Each experimental trial was performed on a cycle ergometer and consisted of 120 min 

of constant load cycling at 55% of the subjects’ Wmax. Immediately following the 120 min of 

constant-load cycling, subjects completed a simulated 30 km time trial. Power output was 

recorded throughout the 30 km trials (5).  
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Treatments 

 As described by Baur et al. (5),  subjects consumed a 150 mL bolus of beverage every 15 

minutes in the constant-load cycling section of the trial, and in the 30 km time trial subjects 

drank the 150 mL bolus at three different segments (7.5, 15, and 22.5 km). The two treatments 

used in the study included: 

 1) Placebo trial (PL) - a non-caloric, artificially sweetened placebo. 

 2) Carbohydrate trial (CHO) - a 12% (2:1 ratio) glucose+fructose solution. The average 

 carbohydrate ingestion rates were 1.03 grams of glucose per minute and 0.52 grams of 

 fructose per minute.   

Each beverage also included 470 mg/L of sodium chloride and 200 mg/L of potassium chloride.  

Physiological Measurements 

 During the 30 km time trial, a metabolic apparatus (including headgear with a mouth 

piece similar to the end of a snorkel) was worn for five minutes at the 20 km point of the 30 km 

time trial to obtain measurements such as VO2, respiratory exchange ratio, and ventilation as 

described by Baur et al. (5).  

Power Output Analyses 

 Alterations in power output during specific segments of the 30 km time trials were 

compared between treatments. The 30 km time trial was divided into four segments (S1 = 0-7.5 

km, S2 = 7.5-15 km, S3 = 15-22.5 km, and S4 = 22.5-30 km), with each segment immediately 

preceded by a beverage feeding. Each of the four segments were further divided into early and 

late phases. The early period included the 3 minutes immediately following each feeding and the 
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late period included the 3 minutes prior to the next feeding. This segmentation allowed us to 

compare average power output over a 3 minute period during time-periods that occurred 

immediately (early) and ~10-15 minutes (late) following each beverage feeding. In addition, 

power output was averaged for a 5 minute period in which the metabolic apparatus was worn 

(starting at 12 km), and when it was not worn (starting at 20 km). This permitted us to determine 

the influence of the apparatus on power output.   

Statistical Analysis 

 The Statistical Package for Social Sciences (SPSS) Version 21 for Windows (SPSS Inc., 

Chicago, IL, USA) was used to perform all statistical analyses. A three-factor repeated-measures 

analysis of variance (RMANOVA) was implemented to determine the independent and 

interactive effects of treatment (CHO and PL), segment (S1, S2, S3, S4), and timing post-feeding 

(early, late) on power output. Separate two-factor RMANOVAs were also performed to examine 

the effects of trial segment (S1, S2, S3, S4), and timing post-feeding (early, late) on power 

output within each treatment (PL and CHO).  

 Changes in power output between early and late phases were calculated (within treatment 

and trial segment). A two-factor ANOVA (treatment, trial segment) was then performed on these 

change scores to determine how differences in power output between early-late phases were 

influenced between treatments. The potential influence of metabolic headgear on power output 

was investigated using a two-factor ANOVA (headgear condition, treatment).  

 All reported values are mean±SE. An alpha level of p<0.05 was used to determine 

statistical significant for all analyses.  
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CHAPTER III 

Introduction  

 There are several pacing patterns that athletes can adopt during their sporting events to 

enhance performance, including all-out, negative, positive, even, or variable pacing (1). The 

optimal pacing strategy for athletic performance is dependent upon the duration of the event (1, 

27), muscle fatigue (1, 16), body temperature (16), brain responses to feedback (1, 4), and 

carbohydrate availability (16), and different pacing strategies are chosen by different athletes. 

Prior studies have generally concluded that longer events (>4-5 minutes) require athletes to use 

an even-paced strategy (3, 4, 11, 15, 19, 25, 33), where a relatively consistent speed is held 

throughout the full event (1). By contrast, shorter events (≤2 minutes) tend to prompt an all-out 

pacing strategy (3, 15, 20), where the athlete reaches peak velocity early in the event (1), in order 

to elicit the best performance results.   

 Carbohydrate ingestion before and during prolonged exercise (≥2hrs) has been shown to 

improve endurance performance. The ingested carbohydrate provides additional energy for 

muscle contraction, reducing the utilization of liver, and possibly muscle, glycogen (6, 21, 29, 

31). This increases the availability of carbohydrate accessible towards the end of exercise (6, 12, 

21, 22, 29). Because these influences on energy metabolism are dependent upon 

digestion/absorption of ingested carbohydrate, there may be absorption-related lag-time between 

the carbohydrate feedings and their effect on power output, hypothetically resulting in changes in 

pacing during exercise. 

 Carbohydrate intake during shorter bouts of endurance exercise (≥1hr) has also been 

shown to increase power output and improve performance (8, 17, 18). These ergogenic effects 

are believed to be related to effects on the central nervous system (8, 9, 10, 18, 26). Receptors in 
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the mouth sense the carbohydrate, activating brain divisions related to motor control (9, 10, 30) 

and feelings of reward (10, 21), pleasure (21), and motivation (8, 9) which may lead to increased 

power output and/or reduced perceived exertion (10).  With carbohydrate intake influencing the 

central nervous system, there could be immediate short-lived effects on power output 

immediately following carbohydrate feedings, which could also potentially alter pacing during 

exercise.  

 Although there is strong evidence in the literature supporting the ergogenic effects of 

carbohydrate ingestion, it is currently unclear whether these effects are due to systematic 

increases in power output, or due to short-term alterations in pacing due to factors such as those 

described above. Therefore the current study examined the effects of carbohydrate intake on 

pacing in endurance cycling, with a specific emphasis on changes in power output in the periods 

following carbohydrate feedings. As a secondary objective, we also examined whether the 

metabolic headgear commonly worn during exercise studies influenced power output during 

cycling.  

Methods 

 Data collection for this experiment was completed as part of a prior study which 

addressed a separate research question related to carbohydrate ingestion. The findings from the 

original study were recently published by Baur and colleagues (5), and detailed methodology can 

be obtained from this source.  

Subjects 

 8 male endurance trained cyclists completed an incremental exercise test to exhaustion on 

a cycle ergometer and VO2max was measured in order to determine their power output at VO2max 

(Wmax) which was used to set workloads for further testing (5).  
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Experimental Trials 

 Four experimental trials were conducted in the prior study (Baur et al.) including a 

placebo trial and three carbohydrate beverage trials. For the purpose of the current study, only 

data obtained from the placebo trial and a single carbohydrate trial were utilized. Each trial was 

performed on a cycle ergometer and consisted of 120 min of constant load cycling at 55% of the 

subject’s Wmax, immediately followed by a simulated 30 km time trial (5). Power output was 

measured in the 30 km time trials (5).  

Treatments  

 As described by Baur et al. (5),  subjects consumed a 150 mL bolus of beverage every 15 

minutes in the constant-load cycling section and in the 30 km time trial at three different 

segments (7.5, 15, and 22.5 km). The two treatments used in the current study were a non-

caloric, artificially sweetened placebo in the placebo trial (PL) and a 12% (2:1 ratio) 

glucose+fructose solution in the carbohydrate trial (CHO). For the CHO trial, carbohydrate 

ingestion rates were 1.03 grams of glucose per minute and 0.52 grams of fructose per minute. 

Both beverages also included 470 mg/L of sodium chloride and 200 mg/L of potassium chloride 

(5).  

Physiological Measurements  

 During the 30 km time trial, a metabolic apparatus (including headgear with a mouth 

piece similar to the end of a snorkel) was worn for five minutes at the 20 km point of the 30 km 

time trial to obtain measurements such as VO2, respiratory exchange ratio, and ventilation as 

described by Baur et al. (5).  
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Power Output Analyses 

 Alterations in power output during specific segments of the 30 km time trials were 

compared between treatments. The 30 km time trial was divided into four segments (S1 = 0-7.5 

km, S2 = 7.5-15 km, S3 = 15-22.5 km, and S4 = 22.5-30 km), with each segment immediately 

preceded by a beverage feeding. Each of the four segments were further divided into early and 

late phases. The early period included the 3 minutes immediately following each feeding and the 

late period included the 3 minutes prior to the next feeding. This segmentation allowed us to 

compare average power output over a 3 minute period during time-periods that occurred 

immediately (early) and ~10-15 minutes (late) following each beverage feeding. In addition, 

power output was averaged for a 5 minute period in which the metabolic apparatus was worn 

(starting at 12 km), and when it was not worn (starting at 20 km). This permitted us to determine 

the influence of the apparatus on power output.   

Statistical Analysis  

 The Statistical Package for Social Sciences (SPSS) Version 21 for Windows (SPSS Inc., 

Chicago, IL, USA) was used to perform all statistical analyses. A three-factor repeated-measures 

analysis of variance (RMANOVA) was implemented to determine the independent and 

interactive effects of treatment (CHO and PL), segment (S1, S2, S3, S4), and timing post-feeding 

(early, late) on power output. Separate two-factor RMANOVAs were also performed to examine 

the effects of trial segment (S1, S2, S3, S4), and timing post-feeding (early, late) on power 

output within each treatment (PL and CHO).  

 Changes in power output between early and late phases were calculated (within treatment 

and trial segment). A two-factor ANOVA (treatment, trial segment) was then performed on these 
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change scores to determine how differences in power output between early-late phases were 

influenced between treatments. The potential influence of metabolic headgear on power output 

was investigated using a two-factor ANOVA (headgear condition, treatment).  

 All reported values are mean±SE. An alpha level of p<0.05 was used to determine 

statistical significant for all analyses.  

Results  

Influences of Trial Segment and Carbohydrate Intake on Power Output  

 Trial segment had a significant effect on power output (p = 0.000). As shown in Figure 1, 

power output decreased significantly between S1 and S2 (p = 0.019), and exhibited a further 

decrease between S2 and S3 (p = 0.017). Subsequently, power output increased between S3 and 

S4 (p = 0.001), resulting in power values in S4 which were not significantly different from S1 (p 

= 0.302).  

Figure 1 – Changes in Power Output during the 30 km Trial  

 

 * = decreased versus 1 (p < 0.05); # = decreased versus 2 (p < 0.05);      

 @ = decreased versus 4 (p < 0.05) 

190

200

210

220

230

240

250

260

1 2 3 4

P
o
w

er
 O

u
tp

u
t 

(W
) 

Time Segment  

* 
* # @ 



 

22 

 Average power output during the 30 km time trial was significantly greater (p = 0.044) in 

the CHO trial (242 ± 10 W) versus PL (217 ± 14 W). In addition, CHO altered the 

aforementioned changes in power output observed between time segments. In the PL trial 

(shown in Figure 2A), power output decreased significantly between S1 and S2 (p = 0.008), and 

declined further between S2 and S3 (p = 0.009). Although power increased between S3 and S4 (p 

= 0.001), the values in S4 remained lower than S1 (p = 0.019). In the CHO trial (shown in Figure 

2B), power output did not decrease significantly across the four time segments (p>0.05), and 

power output in S4 was greater than S3 (p = 0.008).  

Figure 2 – Changes in Power Output during the 30 km Time Trial  
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B – CHO  
 

 
 * = decreased versus 1 (p < 0.05); # = decreased versus 2 (p < 0.05);      

 @ = decreased versus 4 (p < 0.05) 

 

Influence of Feeding Timing on Changes in Power Output 

 Mean power output was not significantly different between the early phase (230 ± 12 W) 

and late phase (229 ± 12 W) following beverage consumption (p = 0.709). In addition, changes 

in power output between early-late phases were not significantly influenced by treatment (p = 

0.154), or interactions in treatment*trial segment (p = 0.189). Data are presented in Table 1 

below.  

Table 1 – Influence of Feeding Timing on Mean Power Output  
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Segment 1 Segment 2 Segment 3 Segment 4 

PL Early  233±16  218±14 204±15 208±16 

Late 237±15 207±14 198±15 229±17 

CHO Early  245±15 248±11 237±9 246±11 

Late 246±14 235±10 227±11 251±12 
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Influence of Metabolic Headgear on Power Output 

 Average power output was not significantly different (p = 0.299) between headgear (216 

± 10 W) and no-headgear (221 ± 11 W) conditions. In addition, there was no treatment*headgear 

interaction effect on power output (p = 0.857).  

Discussion 

 Many studies have examined the effects of carbohydrate intake on performance during 

prolonged endurance exercise (9, 12, 13, 14, 22, 23, 28, 29, 30, 31). Numerous studies have also 

investigated pacing strategies during exercise, and have generally reported that all-out strategies 

are most effective in short-duration events (2, 3, 4, 15, 19, 20, 24), and even-paced strategies are 

most effective in long-duration events (3, 4, 11, 15, 25, 33). To our knowledge, the present study 

was the first to examine the potential effects of carbohydrate intake on short-term changes in 

pacing during an endurance event. Power output was also compared between time periods in 

which metabolic headgear was worn and when it was not worn. The main findings of this present 

study were that, a) carbohydrate ingestion influenced pacing in a general manner, by preventing 

decreases in power output that otherwise occurred over the duration of the time trial, b) 

differences in power output between carbohydrate and placebo trials were not systematically 

different between early and late periods following each feeding, and c) wearing headgear to 

measure metabolic measurements during exercise did not have a significant effect on power 

output during cycling.  

 In the present study, mean power output was significantly higher during the carbohydrate 

trials compared to the placebo trials, demonstrating that carbohydrate ingestion improved 

endurance performance. These findings support prior studies which have examined the effects of 

carbohydrate intake consumed during prolonged and shorter-endurance exercise (≥1 hr) (8, 9, 10, 
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12, 13, 14, 17, 18, 21, 22, 26, 28, 29, 30, 31), suggesting that carbohydrate ingestion improves 

time to fatigue (9, 12, 13, 21), running speeds (28), and average power output during cycling (8, 

14, 17, 30). Recent studies have suggested that carbohydrate intake improves performance by 

preserving carbohydrate energy for the final stages of exercise (6, 12, 21, 22, 29, 30), due to 

increased rates of exogenous fuel utilization (23, 29, 30), sparing of liver glycogen (29, 30), and 

the possible sparing of muscle glycogen (6, 7, 29, 31). Other studies have indicated that oral 

receptors detect carbohydrate solutions in the mouth, activating divisions of the brain associated 

with reward (10, 21), motor control (9, 10, 30), pleasure (21), and/or motivation (8, 9), thus 

improving performance via influences on the central nervous system. 

 The primary purpose of the present study was to investigate the influence of carbohydrate 

intake on pacing during endurance cycling. As illustrated in Figures 2A and 2B, ingesting 

carbohydrate prevented the significant decline in power output observed in the placebo trial 

between S1 and S3. It is important to note that the 30 km time trial was preceded by 2 hours of 

constant load cycling at 55% of Wmax, which likely resulted in substantial depletion of 

endogenous carbohydrate reserves, and muscular fatigue prior to the onset of the time-trial. The 

observation that carbohydrate intake preserved power output throughout the trial is consistent 

with the concept that carbohydrate ingestion increased total carbohydrate availability in the late 

stages of exercise, as discussed previously. This idea is also supported by published data from 

the original study (Baur et al.), which reported higher RER values in the CHO trial at the end of 

constant-load cycling (0.89 ± 0.02 vs 0.84 ± 0.03), and during the 30 km time trial (0.89 ± 0.02 

vs 0.84 ± 0.02).  

 Differences in power output between treatments were quite similar between early-late 

periods across each of the trial segments, with no evidence of a systematic early-late effect from 
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the carbohydrate feedings. This suggests that there was no absorption-related lag-time effect 

between carbohydrate ingestion and its influence on power output (in which case, the ergogenic 

effects of CHO would be greater in the late-period). In addition, it also indicates that there was 

not a short-lived, immediate effect on the central nervous system elicited by the carbohydrate 

ingestion, which would have resulted in enhanced power output from CHO in the early-period. 

However, because carbohydrate feedings were provided every 7.5 km during the trial 

(approximately 10-15 min, depending on rider speed), we cannot rule out effects on the central 

nervous system which may have persisted between each feeding period – which could also 

hypothetically result in the maintenance in power output observed in the present study. This may 

also suggest that both a central nervous system and a metabolic effect were occurring (oral 

receptor effect followed by a metabolic effect).  

 In both the carbohydrate and placebo trials, there was a significant increase in power 

output between segments 3 and 4. This pacing pattern, characterized by a tendency for power 

output to be high at the start of the trial, decline throughout, and then increase near the end, is 

known as the “end spurt” (1, 4, 11, 32, 34). Tucker et al. (34) reported that in 5000m and 

10,000m world-record running events, competitors tended to follow a fast, slow, fast pacing 

pattern, where an end spurt is observed near the end of the race. Tucker et al. (34) suggested that 

the end spurt signifies that the athlete has a ‘reserve capacity,’ and whatever caused the athlete to 

slow down in the middle segments of the race can be overcome in the final segments when the 

reserve is utilized (34). Chambers and colleagues (10) termed the same pacing pattern a “sprint 

finish” and suggested (in agreement with the present findings) that when cyclists were provided 

carbohydrate during exercise, they were able to uphold consistent power outputs throughout the 

exercise, especially in the final periods (10). Corbett and associates (11), reported no evidence of 
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an end spurt pacing pattern in cyclists, but this study was conducted on much shorter events (3 

km and 4 km track races). In the present study, the basic pacing strategy utilized by cyclists did 

not appear to be affected by carbohydrate intake, as an end spurt was present in both the 

carbohydrate and placebo trials.  

 This present study was also the first to examine the potential effects of wearing metabolic 

headgear on power output during endurance cycling. No significant differences in power output 

were observed between time segments in which the headgear was worn (5 min at 12 km, 216 ± 

10 W) and when it was not worn (5 min at 20 km, 221 ± 11 W). Although it is potentially 

reassuring to conclude that the metabolic headgear has no effect on performance, it should be 

noted that the time periods in which headgear were worn in the present study were not 

counterbalanced between treatments. This is particularly relevant in the present study, based on 

the aforementioned tendency for power output to decline between segments 2 and 3 (where the 

headgear measurements were recorded). It is therefore possible that an interactive effect between 

time-segments (2 versus 3) and conditions (headgear or no headgear) may have masked a 

possible effect of the headgear. For example, it is possible that feelings of discomfort or 

claustrophobia from the mask could adversely affect a subject’s concentration, resulting in a 

negative effect on performance. Conversely, subjects could inadvertently increase their power 

output when headgear is worn, due to being more conscious of being ‘measured’ during these 

time periods. Therefore, further studies should be conducted to systematically examine the 

effects of wearing headgear on power output during cycling.  

 In conclusion, the primary findings from this study were that carbohydrate ingestion 

improved performance during endurance cycling compared to a placebo solution, by preventing 

declines in power output over a 30 km time trial (which immediately followed 2 hours of 
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submaximal cycling). However, carbohydrate intake had no impact on short-term changes in 

power output between feedings. In addition, wearing metabolic headgear during cycling had no 

significant effect on power output, although this last issue requires further systematic 

investigation.  
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