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III. Abstract 

 

Mammals rapidly withdraw their hind limb in response to noxious stimulation, which is a 

protective movement known as the nociceptive withdrawal response (NWR).  The NWR has 

been previously studied in spinalized, decerebrated and anesthetized non-human and human 

mammals; however, there is minimal information on the NWR in intact, unanesthetized non-

human mammals.    

The first specific aim was to identify the factors that determine the direction and 

magnitude of the NWR in intact, unanesthetized rats.  Based on previous studies, we 

hypothesized that the location of stimulation and the initial position of the paw preceding the 

NWR will influence the direction and magnitude of the NWR.  Rats were mechanically 

stimulated (“Von Frey” monofilament or 30-gauge needle) at five spots widely distributed over 

the plantar surface of the hind, left paw.  In response to heat or mechanical stimulation to the 

plantar surface of the paw, rats withdraw and then replace the stimulated paw on the surface.  

The NWR was quantified as the vector between the initial and final positions of the stimulated 

paw.  Unexpectedly, stimulus location did not significantly influence the direction of the 

response, falsifying our hypothesis.  However, the initial position of paw was variable, 

suggesting an influence on the direction of response.  Correlation between the initial position and 

the change in position rostral/caudally and lateral/medially revealed a significant and inverse 

effect on response direction.  Thus, if the paw was initially rostral, it would move caudal after 

stimulation; if the paw was initially caudal, it would move rostral. 

Second, after determining that the direction of the NWR depended on the initial position 

of the paw, we tested whether the rat used proprioceptive sensory feedback or corollary 

discharge to identify the position of the paw prior to stimulation.  Based on previous studies, we 
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hypothesized that proprioceptive sensory feedback, rather than corollary discharge, would 

underlie the dependence on initial paw position.  Rats were stimulated by heat with an infrared 

laser to a single region of the paw, which was placed on an independently movable glass plate.  

The plate was repositioned rostral-caudally (forward-backward) just before evoking the NWR to 

dissociate proprioceptive sensory feedback from corollary discharge.  The NWR was unaffected 

by repositioning the paw prior to the evoking the NWR, consistent with proprioceptive sensory 

feedback being used by the rat to determine the direction and magnitude of the NWR. 

Taken together, our results suggest the central nervous system in intact rats primarily uses 

proprioceptive information about limb posture, but not stimulus location, to determine the 

direction of the NWR movement.  Thus, the NWR appears designed to both maintain posture, as 

well as protect the paw from injury.  Since the NWR is the most widely used clinical test of 

reflexes, our results may enable improved understanding, diagnosis and treatment of 

neurological diseases and trauma. 
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IV. Introduction 

 Escape and withdrawal responses increase survival for animals in highly-predated and 

dangerous environments.  Escape responses, in which the animal moves away from a threat, 

include rapid forward and backward movements (Zucker, 1972), turning (Eaton & Emberley, 

1991; Domenici et al., 2008) and random changes in direction (Firestone & Warren, 2010).  As 

opposed to repositioning its entire body to escape a predator, some vertebrates and invertebrates 

withdraw only a part of their body away from the threat.  For example, humans will only 

withdraw the skin area that was directly affected by cutaneous heat and pressure stimuli 

(Andersen et al., 2001).  Similarly, leeches (Lewis & Kristan Jr., 1998), Caenorhabditis elegans 

(Mohammadi et al., 2013) and other common earthworms (Drewes, 1984) respond to the sense 

of touch by a bend of the segment away from the stimulus.  

For both escape and withdrawal responses, the direction of movement may be critical to 

success.  For some animals, the direction of the response is not surprisingly directly (Zucker, 

1972; Kanou et al., 2006) or partially away (Card & Dickinson, 2008) from the stimulus.  Other 

animals tend to escape toward shelters or in random sets of directions to confuse predators 

(Domenici et al., 2008).  However, other animals exhibit unexpected strategies, such as moving 

toward the threat (Stankowich, 2009).     

 Previous studies have explored the factors that determine the direction of the escape and 

withdrawal response in non-mammals (Kanou et al., 2006; Card & Dickinson, 2008; Domenici 

et al., 2008; Domenici et al., 2011a).  First, the directionality of the stimulus influences the 

direction in which the animal responds, although the response may not be directly away (Kanou 

et al., 2006).  The initial posture of the animal has also been shown to modulate the response 

directionality, specifically in tarantulas (Domenici & Blake, 1993; McGuire et al., 2007).  
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Another factor affecting the directionality of the withdrawal response is the type of stimulation 

delivered to the animal.  Herring (Clupea harengua) larvae have been suggested to produce more 

responses that are directly away from visual stimuli, as opposed to tactile and sound stimuli 

(Blaxter & Batty, 1985; Yin & Blaxter, 1987; Batty, 1989).  Modulation by the environment, 

including temperature and hypoxia, can also influence the direction in which the animal 

responds.  In fish, rapid cooling (Preuss & Faber, 2003) and reduction of oxygen (Domenici et 

al., 2007) have been shown to direct the response towards the stimulus.  Lastly, the conditions of 

the surrounding environment, such as the presence of obstructions, modulate the tactics which an 

animal utilizes to move away from a stimulus (Eaton & Emberley, 1991; Domenici, 2010).  For 

example, anurans avoid the direction in which a particular barrier was previously placed, in 

addition to keeping away from the obstacle when withdrawing from the stimulus (Ingle & Hoff, 

1990).   

Although mammals perform withdrawal responses upon recognition of a potential threat, 

the factors that determine the direction of the withdrawal response in mammals remain unclear.  

The overall research aim was to investigate two factors – stimulus location and posture – that 

may influence the direction of the nociceptive withdrawal response (NWR) in intact, 

unanesthetized rats.   

 While movement is regulated by diverse responses, the NWR may be the most crucial.  

As a protective response to avoid injury, the NWR is paramount for survival.  Further, the spinal 

and supraspinal neural circuits that mediate the NWR may also underlie both posture (Ellrich, et 

al., 2000) and locomotion (Duysens et al., 2013).  Clinically, the NWR is the most widely used 

test of reflexes (Sandrini et al., 2005).  Patients diagnosed with migraines and other primary 

headaches (Fields & Basbaum, 1978) and obesity (Pradalier et al., 1980 & 1981) had decreased 
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levels of NWR, as opposed to the upregulation of NWR seen in patients diagnosed with 

fibromyalgia (Desmeules et al., 2003; Banic et al., 2004) and spinal cord injuries (Schwindt, 

1981).  A better understanding of the NWR in normal and disease states may lead to improved 

diagnosis and treatment of neurological diseases and trauma.   

A. Nociceptive Withdrawal Response  

The NWR is a rapid withdrawal movement of a specified part of the body in response to 

noxious (potentially tissue-damaging) stimuli, which may protect the body part that is being 

withdrawn (Sherrington, 1910; Andersen, 2007).  The hind limb NWR incorporates coordinated 

rotation around the knee, hip and ankle, which results from the activation and inhibition of 

diverse muscles throughout the limb (Andersen, 2001; Baxendale & Ferrell, 1981; Kim et al., 

2007; Andersen, 2004).  Puncture, extreme pressure, heat and cold, or exposure to chemical 

irritants are examples of cutaneous noxious stimulation (Bessou & Perl, 1969).  The NWR has 

been demonstrated in varying animals, including rats (Cleland & Bauer, 2002; Chrzan, 2013; 

Seamon, 2015), rabbits (Harris & Clark, 2003), cats (Levinsson et al., 1999) and humans 

(Peterson et al., 2014).  

a. Nociceptors 

Nociceptors are specialized peripheral sensory receptors that transduce information about 

noxious stimuli of the skin of both vertebrates and invertebrates.  The evolution of nociceptors 

may have begun with Cnidaria, which developed abilities to respond to noxious mechanical 

stimuli through unmyelinated axons, and continued to mammals, which acquired capabilities of 

detecting responses to noxious mechanical, heat, cold and chemical stimuli with the use of both 

myelinated and unmyelinated nociceptors (Smith & Lewin, 2009).   
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Nociceptors are activated by noxious changes in temperature (>40°C), pressure to the 

skin and specific chemicals (e.g. capsaicin), as opposed to cutaneous receptors that respond to 

both non-noxious and noxious stimuli (Schepers & Ringkamp, 2009).  Central nociception and 

pain arise only from nociceptors (Cleland & Gebhart, 1996).     

Previous studies have demonstrated the presence of two types of nociceptors: myelinated 

A-delta (Leem et al., 1993) and unmyelinated C-fiber nociceptors (Dubin, 2010).  A-delta fiber 

nociceptors respond to either heat or pressure, while C-fiber nociceptors respond to both heat and 

pressure; thus the mechanical and heat stimulation will evoke the NWR in intact, unanesthetized 

rats.  Although both A-delta and C-fiber nociceptors are present in the skin of the plantar surface 

of the rat (Fleischer et al., 1983), A-delta afferents are more numerous than the C-fiber 

nociceptors (Leem et al., 1993).     

b. Spinal Mechanisms 

The NWR can be evoked in animals with transection of the spinal cord (Eccles & 

Lundberg, 1959), demonstrating that the spinal cord is sufficient to mediate the NWR.  

Nociceptors’ actions are polysynaptic, and the pathway through the spinal cord can be as short as 

two interneurons to excite motoneurons and three interneurons to inhibit motoneurons (Eccles & 

Lundberg, 1959).  The spinal interneurons responsible for the NWR are located in lamina I, II 

and V of the dorsal horn (Schouenborg et al., 1995), and include both multireceptive (MR) and 

nociceptive specific (NS) neurons (Morgan, 1998).  

c. Long-Loop Reflexes 

Supraspinal reflexes, in which sensory information is conveyed to the brain and then back 

down to the spinal cord, are known as long-loop reflexes (Macefield, 2009), and operate in 

parallel to spinal reflexes.  Long-loop reflexes are distinguished by the presence of a long latency 
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in the muscle electromyogram (EMG) response; the long latency has been suggested to arise 

from the longer pathway of sensory information from the spinal cord to the brain and back to the 

spinal cord (Tracey et al., 1980).   

While little is known about long-loop NWRs, a previous study on the stretch reflex 

suggested the presence of a long-loop component.  The characteristic long latency peak was 

observed in the EMGs of the upper limb of monkey and human subjects (Lee & Tatton, 1975).         

Although there is limited evidence for the existence of a long-loop component of the 

NWR for normal human subjects, the EMG of the flexor reflex in the tibialis anterior muscle 

shows a second peak at a longer latency in response to electrical stimulation (Meinck et al., 

1985).  Nevertheless, the long latency, second peak, responses could still be mediated by multi-

synaptic spinal mechanisms (Tracy et al., 1980).     

d. Modulation 

Spinal reflex pathways can be influenced by modulatory synaptic actions that do not 

evoke a new response, but rather inhibit or facilitate the existing reflex.  Modulatory pathways 

can arise from spinal and supraspinal origins.  The NWR is extensively modulated by descending 

supraspinal pathways, arising in part from the rostroventral medulla (RVM) of the brain, 

specifically the medial nucleus raphe magnus (Gebhart, 2004).  Modulation acts as a protective 

mechanism, where the activation of descending facilitatory influences allows the protection of 

injured tissues from further damage (Gebhart, 2004).  In addition to controlling motor output, 

descending motor pathways, such as corticospinal, vestibulospinal, reticulospinal and rubrospinal 

pathways, have been suggested to modulate the transmission of neuronal information from 

afferent fibers to the brain (Schwindt, 1981), and may influence the NWR.     
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Previous studies suggested that descending influences from the brain stem principally 

inhibited spinal nociceptive processing (Reynolds, 1969); however, recent studies have shown 

that descending modulation of nociceptive information can either be facilitatory or inhibitory.  

The sign of modulation can even vary with reflex intensity; there is inhibition of the NWR when 

the rat hind foot is electrically stimulated at high intensity, but facilitation of the NWR at low 

intensities.  In contrast, mechanical stimulation at all intensities evoke both facilitation and 

inhibition of the NWR of the foot (Zhuo & Gebhart, 2002).  The excitatory influences descend 

from the RVM and to the ventral/ventrolateral spinal cord, whereas the inhibitory influences 

were seen to descend to the spinal cord in the dorsolateral funiculi (Gebhart, 2004).  

A recent study has suggested that modulation can also change the pattern of the NWR.  

Specifically, the spinalized rats exhibited a bias in the ventral direction, while the intact rats 

exhibited a bias in the dorsal direction when the NWR was evoked (Cleland & Bauer, 2002).     

B. Dependence of the NWR on Stimulus Location 

Early studies of non-human mammals demonstrated the independence of stimulus 

location on the NWR.  In the hind limbs of spinalized cats and dogs, Sherrington (1910) 

observed that flexor muscles were activated and extensor muscles were inhibited when the 

sensory nerves were electrically stimulated at high intensity, presumably exciting nociceptors.  

Significantly, muscle contractions and relaxations involved with the withdrawal reflex were 

largely independent of which nerve was stimulated.  Similarly, in spinal cord-injured humans, 

the NWR was also independent of stimulus location, as shown in experiments in which the 

location of electrical stimulation on the dorsal surface of the human foot did not influence the 

pattern of muscle activation in the NWR (Andersen et al., 2004).  The independence of stimulus 

location on the NWR leads to a minimal amount of choices for the animal to decide between, 
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thus the reduced time being spent on making a decision could result in less further damage to the 

animal (Schmidt & Lee, 1999).            

In contrast, more recent studies suggest that the NWR depends on the locations of heat, 

electrical and mechanical stimulation in decerebrated, spinalized and anesthetized non-human 

mammals (Schouenborg & Kalliomaki, 1990; Schouenborg et al., 1992; Cleland & Bauer, 2002; 

Harris & Clark, 2003).  Using movement as the measure of response, the direction of the 

withdrawal movement response of spinalized rat tails depended on the location of localized heat 

stimulation (Cleland & Bauer, 2002), and the evoked withdrawal movement in spinalized and 

decerebrated rabbits depended on the location of electrical stimulation on the plantar surface of 

the paw (Harris & Clark, 2003).  In both studies, the change in stimulus location resulted in a 

change in response, that directed the limb away from the stimulus.  Using EMG as a measure of 

response, the EMG responses in the ankle muscles of anesthetized (Schouenborg & Kalliomaki, 

1990) and spinalized (Schouenborg et al., 1992) rats depended on the locations of mechanical 

and heat stimulation to the hind limb.  The greatest EMG signals were observed in muscles that 

would withdraw the stimulated skin away from the noxious stimulus (Schouenborg & 

Kalliomaki, 1990; Schouenborg et al., 1992).  The dependence of stimulus location on the NWR 

causes the animal to move away from the stimulus, thus escaping from the threat with accuracy.      

The NWR in intact, unanesthetized humans has also been shown to depend on stimulus 

location.  In the lower limb, electrical stimulation at locations in the lateral region of the plantar 

surface of the human foot evoked eversion responses, while electrical stimulation at locations in 

the medial region evoked inversion responses; thus in both cases, the NWR caused the area of 

stimulated skin to move directly away from the stimulus (Andersen et al., 1999 & 2001).  In the 

upper limb, electrical stimulation of three different fingers of the human upper limb produced 
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different magnitudes and angles of force, resulting in the movement away from the stimulus 

(Peterson et al., 2014).     

A few previous studies suggest hybrid patterns, in which there was both a relative 

dependence and independence of stimulation location on the NWR (Andersen et al., 2001; 

Cleland & Bauer, 2002).  Spinalized rats showed withdrawal responses that were directed 

broadly away from the location of localized heat stimulation, which demonstrated that the 

direction of the NWR depends on stimulus location.  However, the direction of the NWR 

remained confined to the ventral-lateral quadrant in support of independence of stimulus location 

(Cleland & Bauer, 2002).   

In support of a second, but different, hybrid pattern, Andersen et al. (2001) demonstrated 

that the location of electrical stimulation on the foot’s plantar surface influenced the pattern of 

the ankle, but not knee, muscle activity.  Even at the highest stimulus intensity, EMG of the 

biceps femoris, a muscle responsible for the flexion of the knee, remained constant across 

multiple stimulus locations.  In contrast, the EMG in the tibialis anterior, a muscle responsible 

for flexion of the ankle, was greatest when the stimulus was localized in the center of the foot 

(Andersen et al., 2001).  

Since previous studies showed dependence of stimulus location in decerebrated, 

spinalized and anesthetized human and non-human mammals, Chrzan (2013) and Seamon (2015) 

hypothesized a similar dependence for intact, unanesthetized mammals.  In their studies, 

conducted in our laboratory, rats were stimulated with heat at multiple locations along the plantar 

surface of the hind paw, resulting in brisk withdrawal and replacement movements of the 

stimulated limb.  The direction of the NWR was measured by the difference in the foot’s location 

before and after completion of the resulting NWR.  Unexpectedly, the location of stimulation 
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along the plantar surface of the rats’ hind paw did not significantly impact the direction of the 

NWR.  More specifically, the change in position in the rostral/caudal direction for rostral and 

caudal stimulus locations, as well as the change in position in the lateral/medial direction for 

lateral and medial stimulus locations, did not significantly depend on where the stimulus was 

applied on the plantar surface.  Similarly, the change in foot angle after the NWR for intact, 

unanesthetized rats did not significantly depend on the location of heat stimulation (Chrzan, 

2013; Seamon, 2015).  However, since these studies were done using heat stimuli; the 

dependence on the location of mechanical stimulation remained unknown for intact, non-human 

mammals.       

C. Dependence of the NWR on Initial Position 

 Posture has also been shown to influence the NWR of decerebrated and spinalized 

subjects.  Baxendale and Ferrell (1981) and Kim et al. (2007) showed that the NWR depends on 

the joint angle of the knee and hip, respectively.  In decerebrated cats, the non-noxiously evoked 

flexion withdrawal and crossed extensor reflexes were altered by the changes in knee joint 

angle, in which extension of the knee increased the activity of the flexor muscles of the lower 

limb (Baxendale & Ferrell, 1981).  Similarly, in spinally-injured human subjects, increase in hip 

extension resulted in larger NWR in the hip (Kim et al., 2007).      

 Previous studies have also tested the dependence of the NWR on initial position in intact 

subjects.  While applying electrical stimulation to the fingers of intact humans, the direction of 

the withdrawal response was altered based on the initial position of the upper limb; from flexion 

to extension of the limb, the NWR was in the posterior-lateral direction, and then shifted to the 

posterior direction, in which the limb moved further away from the electrical stimulus (Peterson 

et al., 2014).  In intact, unanesthetized rats, the direction of the NWR depended on the initial 
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position of the hind limb prior to movement.  For example, when the rat spontaneously placed 

the paw rostrally, or more forward, the paw moved caudal, or more backward, in response 

stimulation.  This inverse relationship was also seen in reverse; when the paw was initially 

caudal, the paw would move rostral in response to stimulation.  A similar pattern was observed 

when the rat placed its paw within the lateral-medial direction (Chrzan, 2013; Seamon, 2015). 

D. Proprioceptive Sensory Feedback vs. Corollary Discharge 

The mechanism of how the initial position determines the direction of the NWR, as well 

as what source of information the CNS (central nervous system) utilizes for this determination, 

remains unknown. The CNS may use two sources of information to determine the position of the 

limb before stimulation: proprioceptive sensory feedback from the limb and central corollary 

discharge.  Proprioceptive sensory feedback provides information about the muscle length, force 

and joint angles in the limb (Onushko et al., 2013).  Corollary discharge is an internal copy of a 

motor command that resides within the CNS (Crapse & Sommer, 2008); in this case, the 

command that moved the foot to its initial position.  

Proprioceptive information can arise from the sensory receptors in skin, joints, tendons 

and muscle spindles (Hasan, 1992).  Kim et al. (2007) proposed that hip primary spindle 

receptors increased the NWR in the human lower limb, due to observations of larger torque 

responses in the ankles when the hip joint was extended, compared to when the hip joint was 

flexed.  In contrast, in decerebrated cats, flexed and extended positions of the knee joint 

determined the intensity of the NWR, suggesting that knee joint afferent activity was responsible 

for this observed pattern.  Further, injection of a local anesthetic into the knee joint to block joint 

receptors abolished modulation of the NWR when a change in the knee joint angle occurred, thus 

supporting the role of knee joint receptors (Baxendale & Ferrell, 1981).  
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An alternative source of information about the location of the foot is corollary discharge.  

Although there is no evidence suggesting that corollary discharge modulates the NWR, previous 

studies have shown that corollary discharge regulates other reflexes.  For example, rapid eye 

movements, or saccades, have been suggested to be controlled by corollary discharge 

mechanisms within the CNS (Zaretsky & Rowell, 1979).  Similarly, in studies with fish, Sperry 

(1950) suggested that corollary discharge compensated for the retinal displacement of a visual 

image caused by voluntary movement.  In the context of the modulation of the NWR, corollary 

discharge could allow the animal to store the information of where the paw is initially located, 

and this information could be used to direct the paw after a stimulus has been delivered (Crapse 

& Sommer, 2008).   

E. Specific Aims 

The overall research goal was to investigate the factors and mechanism that determine the 

direction and magnitude of the NWR in intact, unanesthetized rats.  The direction of the NWR 

has been previously studied in spinalized, decerebrated and anesthetized non-human and human 

mammals; however, there is conflicting evidence on the dependence of stimulus location, 

minimal information about the underlying mechanisms and few reports on the NWR in intact, 

unanesthetized non-human mammals.   

The direction of the NWR for intact, unanesthetized rats was quantified by measuring the 

change in location of a rat’s hind paw before and after noxious heat or mechanical stimulation at 

multiple locations along the plantar surface of the foot.   

The first specific aim of the project was to determine whether the location of mechanical 

stimulation influenced the direction of the NWR.  Noxious stimuli, with a “Von Frey” nylon 

monofilament and a 30-gauge needle, were given at multiple locations along the plantar surface 
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of the hind paw to determine if the location of mechanical stimulation affected the final position 

of the rat’s paw.  Based on previous research using heat stimulation in a similar experiment 

(Chrzan, 2013; Seamon, 2015), we hypothesized that the initial position of the paw, rather than 

the location of mechanical stimuli, would alter the NWR.      

The second specific aim of the project was to determine the source of limb position 

information used by the CNS to determine the direction of the NWR; either proprioception or 

corollary discharge.  The experiment was designed to dissociate between proprioceptive sensory 

feedback and corollary discharge by changing the position of the paw immediately before 

evoking the NWR.  Based on limited previous studies (Baxendale & Ferrell, 1981; Kim et al., 

2007), we hypothesized that proprioceptive sensory feedback, rather than corollary discharge, 

would determine the direction of the NWR after heat stimulation was applied. 
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V. Methods 

A.   Animal Care 

Male Sprague Dawley rats (n=23; 426 mean ± 54 S.D. grams; 27 ± 12 weeks; Harlan, 

Indianapolis) were placed in separate or individual cages with continuous access to water and 

food, as well as exposure to 12 hours of light and 12 hours of darkness (7am-7pm).  Inspections 

of the room occurred daily in order to verify temperatures were between 68-79°F, humidity 

levels were between 30-70%, monitor cleanliness, and to check food and water availability.  The 

animal care facility and protocol were approved by the James Madison University Institutional 

Animal Care and Use Committee.  

B.    Rat Preparation 

For both sets of experiments, rats were restrained in an acrylic box and lightly 

anesthetized with exposure to a mixture of 2-5% isoflurane in 100% oxygen.  Anesthesia was 

necessary to shave the hind end of the rat and to mark the bottom of the paw with three to five 

stimulus locations and an approximate center of mass (COM) location for tracking using a black 

permanent marker.  Points, approximately 1 mm in diameter, were arranged rostral-caudally or 

along both rostral-caudal and lateral-medial axes (Figures 1A and 2A).  The sites of stimulation 

were marked to improve absorption of the heat stimulus and to restrict the stimulus to only 

blackened areas of the paw, as unmarked areas absorbed heat at a much slower rate.  The center 

of mass location was used to determine the distance and magnitude of movement of the response.  

Before beginning the experiment, there was a 45-minute recovery period in order to reduce any 

possible influence on rats’ behavior from the anesthesia (Hagbarth, 1952).  
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Figure 1. Methods – Mechanical Stimuli Experiments. A Localized mechanical stimuli were delivered 

to five locations (circles) along two dimensions on the plantar surface of the foot: rostral-caudal (3 

locations) and lateral-medial (3 locations). The center (checkerboard circle) plantar location, which 

represents the center-of-mass (COM) of the foot and was stimulated as part of both rostral-caudal and 

lateral-medial dimensions, was also utilized to quantify the movement of the foot after a stimulus was 

delivered. B The cartoon shows the experimental design. Intact rats were placed on a mesh platform, a 

fenestrated acrylic box was placed around the rat, and a conventional video camera (60 fps) was 

positioned underneath. Mechanical stimuli (Von Frey and needle) were delivered to the plantar surface 

of the foot through the wire mesh.  Illumination of the foot was provided by two LEDs from underneath 

the platform. C Measurements are reported in the Cartesian coordinate system for the frontal plane of the 

rat. The urinary orifice was used as the origin, with the axes as shown in the figure. 
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Figure 2. Methods – Moving Plate Experiments. A Localized mechanical stimuli were delivered to 

three closely spaced locations (circles) along the rostral-caudal dimension on the plantar surface of 

the foot. The checkerboard location, which represents the COM of the foot, was utilized to quantify 

the movement of the foot after a stimulus was delivered. B The cartoon shows the experimental 

design. Intact rats were placed on a glass platform, a fenestrated acrylic box was placed around the 

rat, and a conventional video camera (60 fps) was positioned underneath. The hind, left paw was 

placed on a separate glass plate, in order to independently move the paw along the rostral-caudal 

dimension. The heat stimulus (980 nm infrared laser) was delivered to the plantar surface of the foot 

at each of the three black targets through the glass plate. Illumination of the foot was provided by an 

LED from underneath the platform. 
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C.   Experimental Setup and Stimulation  

Rats were placed on either a mesh (Specific Aim 1; mechanical stimuli) or a glass 

(Specific Aim 2; heat stimuli) platform (2’ X 1’), both of which were supported by two 

horizontal steel bars.  Rats were loosely restrained on top of the mesh or glass surface by a 

fenestrated acrylic box to limit voluntary repositioning during and between trials.  There were 

two cutouts in the acrylic box: one on the left side to allow uninhibited movement of the hind, 

left paw, and one smaller cutout in the back to allow natural extension of the tail.  The platforms 

were raised 51 cm from the table to allow the video camera, light emitting diode (LED) lights 

and laser to fit underneath the rat (Figures 1B).  A light source underneath the mesh and acrylic 

platform was needed in order to capture the NWR and to easily identify the video frame for 

which the heat stimulation began.  One high-power, low heat, LED (SugarCube; Vergennes, VT) 

light illuminated the platforms from underneath, and for heat stimulation, the LED light was 

triggered to turn on at the same time as the delivery of the stimulus (Figure 2B).     

In the first set of experiments, two methods of mechanical stimulation were used to 

determine their effect on the direction of the NWR, a “Von Frey” nylon monofilament (Le Bars 

et al., 2001) and a 30-gauge needle (Anand et al., 1998).  The Von Frey monofilaments deliver a 

constant force that is proportional to the thickness of the nylon monofilament.  The needle 

stimulus was delivered through the mesh with constant and minimal pressure to minimize tissue 

damage, but to also induce a response, reddening with repeated stimulation on occasion.   

In the second set of experiments, a 980 nm infrared laser diode (v. Frey, 1897; Le Bars et 

al., 2001; BWTEK; Wilmington, DE), focused by a condenser lens, was positioned underneath 

the glass plate to deliver a 1 mm diameter heat stimulus (Figure 2B).  The infrared laser light was 

positioned directly over the specified blackened stimulus location, and the delivery of the 
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stimulus was activated by a foot switch.  Infrared lasers are known to quickly increase the 

temperature of the stimulated skin area; however, this method of stimulation appears to better 

match the natural aversive stimuli than electrical stimulation in evoking a NWR (Morch et al., 

2007).  The heat stimulus was delivered at intensities between 4-4.5 watts to evoke the 

NWR.  To obtain latencies between 1-3 seconds, the intensity of the heat stimulus varied during 

each trial.  For both experiments, the three to five locations along the plantar surface were 

stimulated in a random order, in which randomizing the stimulus order counter-balanced the 

effect that the order of stimulus location could have on the response (Nielsen & Arendt-Nielsen, 

1998).       

D.    Movement Recording 

Conventional video cameras (Sony HDR-CX130; 60 fps @ 1080p) were placed beneath 

the platform (mesh or glass) and directly facing the ventral surface of the rat.  The focus, 

exposure and zoom were manually adjusted prior to each experiment.  Movement was recorded 

in pixels on each video and later converted to millimeters.  To perform this calibration, one 

frame was recorded with a ruler placed on the glass plate and mesh plate in approximately the 

same location as where the rat’s hind limb would have been.  

E.    Experiment Protocol – The Effect of Mechanical Stimulation Location on the NWR 

The first specific aim was to determine whether stimulus location or initial location of the 

paw influenced the direction of the NWR in intact, unanesthetized rats using mechanical 

stimuli.  Rats were placed on the mesh to become adjusted to the new environment for 10 

minutes.  Once oriented in the proper direction, the fenestrated acrylic box was placed over the 

rat to restrict movement.  For each rat, (n=17) each of five locations were stimulated, and each 

individual location along the plantar surface was stimulated three to four times in a random order 
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(15-20 trials per rat).  Before the trials could begin using the Von Frey monofilament, thresholds 

had to be completed to determine which Von Frey monofilament to use.  

Once the trials were ready to begin, a Von Frey monofilament or 30-gauge needle was 

applied perpendicularly to the plantar surface at a specific stimulus location, which was 

determined through a random ordering of stimulus locations.  The conventional video camera 

underneath the mesh platform began recording approximately 30 seconds before the mechanical 

stimulus was delivered, and the camera was stopped once the rat’s paw returned to the mesh 

platform and was positioned completely flat (Figure 4).  After each trial, there was a 6-minute 

waiting period to minimize the influence of repeated stimulation on the NWR.     

F. Experimental Protocol – The Determination of Information Used by the CNS 

After determining that stimulus location did not have an effect, the second specific aim 

was to determine whether proprioceptive sensory feedback and corollary discharge information 

influenced the direction of the NWR in intact, unanesthetized rats using heat stimuli.  For each 

rat, (n=6) each of three locations were stimulated, and each individual location along the plantar 

surface was stimulated five to six times in a random order (15-20 trials per rat).  In the second set 

of experiments, three closely spaced distinct stimulus locations were used to minimize tissue 

damage.  Experiments on an individual rat were conducted over a 7-day period, at all times of 

the day.   

Rats were placed onto an acrylic plate to adjust to the new environment for 10 

minutes.  Once the rat was oriented in the proper direction for recording and stimulation, the 

acrylic box was placed over the rat.  The left, hind limb was placed on the separate glass plate, 

and no other paws were on this plate during trials (Figure 2B).  For trials where the rats’ paw was 

repositioned, the camera started recording before the paw was moved either 10 mm forward or 
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backward.  A heat stimulus was applied along the rostral-caudal direction on the plantar surface 

about 4 seconds after movement, and the camera stopped recording once the paw reached the 

glass surface.  After each trial, a 4-minute interval was initiated before the next trial, as other 

studies have utilized randomized intervals between 10 and 30 seconds in between heat stimulated 

trials (Morch et al., 2007).     

Two types of trials were conducted in order to distinguish between proprioception and 

corollary discharge.  In half of the trials, the paw was stimulated after it was positioned by the 

rat.  In the other half of the trials, the paw was repositioned manually by the experimenter for 

approximately 5 seconds before stimulation.  Repositioning directions were approximately 10 

mm and usually based on the initial posture of the paw along the rostral-caudal direction.  When 

the paw appeared to be positioned more forward, the experimenter would reposition the paw in 

the backward direction, and the same was true when the paw appeared to be positioned more 

backward.         

G.    Movement Tracking    

Video files were converted to a series of “jpeg” image files using Video Mastering Works 

5 (TMPGEnc) in order to be compatible with ProAnalyst software.  The onset of illumination 

from the LED lights was used to determine the frame number when the heat stimulus application 

began.  Videos were cut approximately 50 frames before the NWR, and for heat-stimulated trials 

with repositioning, videos were cut several frames before the movement.  For each trial, images 

were analyzed using ProAnalyst (Xcitex, Cambridge, MA) in order to quantify the initial and 

final positions of the paw.  Prior to analysis, a Cartesian coordinate system was produced for 

each rat by setting the origin at the urinary orifice, the positive X axis at the medial and the 

positive Y axis at the center of the rat in the rostral direction (Figure 1C).  The withdrawal 
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response consisted of a rapid removal of the rat’s paw from the surface, followed by quick 

replacement of the paw on the surface in a new location.  The changes in initial and final 

positions of the NWR were analyzed by recording the rostral-caudal (X) and lateral-medial (Y) 

coordinates of the heel, COM and directly beneath the middle toe prior to and following the 

movement.   

        Coordinates from ProAnalyst were recorded onto an Excel spreadsheet, where the 

direction and magnitude of the response vector were calculated.  Analysis and graphing were 

conducted using SigmaPlot (Systat Software, San Jose, CA) and custom programs in Matlab 

(Mathworks, Natick, MA) developed by Dr. Corey Cleland.  Significance, indicated as α, was set 

to a p-value of 0.05, and error bars were standard errors of the mean.  Parametric and non-

parametric statistics were selected based on the distribution conformity.  Directional data were 

analyzed using circular statistics.  Some data were presented using boxplots, in which the line in 

the center of the box represented the median, the upper and lower boundaries of the box 

indicated the 75th and 25th percentiles, the whiskers demonstrated the 90th and 5th percentiles.   
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VI. Results 

A. The Effect of Mechanical Stimulation Location on the NWR 

 The NWR resulting from mechanical stimulation applied to the plantar surface of the paw 

of intact, unanesthetized rats was characterized by rapid removal and replacement of the paw on 

the mesh platform (Figure 3).  Typically, the withdrawal and replacement of the paw occurred 

within 50 milliseconds.     

 In order to represent the two-dimensional nature of the movement in the frontal plane of 

the rat, the responses are shown as vectors (Figure 4A), for both Von Frey (n=178 trials) and 

needle (n=101 trials) stimulation.  The origins of the vectors represent the initial position of the 

rat’s paw prior to the stimulation, and the arrow ends of the vectors represent the paw’s final 

position following replacement on the mesh platform.  Overall, the rat moved its paw in all 

possible directions (Figure 4B).  The frequency histogram of the response directions is clearly 

bimodal and suggests a preference for movement in the caudal-lateral direction for needle 

stimulation and in the rostral-medial direction for Von Frey stimulation.  Statistically, the 

direction of the responses significantly differed between the methods of mechanical stimulation 

used (Figure 4F, p=0.001, circular Watson-Williams F-test).  The frequency histograms of the 

response magnitudes (Figure 4C) suggest that there is a larger change in the position of the paw 

with needle stimulation (median=10.4 mm) than with Von Frey stimulation (median=6.4 mm).  

Statistically, the magnitude of the responses significantly differed between the methods of 

mechanical stimulation used (Figure 4E, p=0.002, Mann-Whitney test).  Strikingly, there appears 

to be a relationship between the direction and magnitude of the NWR; responses in the caudal-

lateral and rostral-medial directions were the largest in magnitude (Figures 4B and 4D).  
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Figure 3. NWR movement of the hind limb. Video recording from the rat’s left side illustrates 

the NWR evoked by stimulation (heat) of the plantar surface of the hind, left paw. Typically, 

the withdrawal and replacement of the paw occurred within 50 milliseconds. Video from below 

the animal shows the initial position of the hid limb before the stimulus (A, C) and following 

the stimulus-induced movement (B, D). The initial position prior to the stimulus is represented 

by the shaded region. The illustration shows the initial and final positions of the paw viewed 

from below the rat. The green arrow represents the movement vector describing the NWR. 
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Figure 4. Nociceptive withdrawal responses for Von Frey and needle stimulation. A Vectors show the 

directions and magnitudes of the changes from initial to final positions of the paw, separately for Von 

Frey (blue, n=178 trials, n=9 rats) and needle (red, n=101 trials, n=8 rats) stimulation. The scatter plot 

better depicts the short vectors. B The polar frequency histogram visualizes the distribution of the 

direction of response vectors separately for Von Frey and needle mechanical stimulation delivered to the 

plantar surface (bin width = 18°; frequency represented by the radius of the wedge).  The mean 

directions of responses, averaged over 2-5 replicates within each animal, were significantly different for 

Von Frey (median=197.6°) and needle (median=229.8°) stimulation (F, p=0.001, n=9, circular Watson-

Williams F-test). C The frequency histograms represent the distributions of the magnitudes of responses 

for the Von Frey and needle mechanical stimulations.  The distances of responses, averaged over 2-5 

replicates within each animal, were significantly different for Von Frey (median=6.4) and needle 

(median=10.4) stimulation (E, p=0.002, Mann-Whitney test). D The distance of the response, shown as 

a function of response direction, is largest for movement downwards and to the left (caudal-lateral), 

which matches the downward-left peak in directions shown in B. 
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 The first question asked in this study was whether or not the stimulus location on the 

plantar surface of the paw determined the direction and magnitude of the NWR in intact, 

unanesthetized rats.  Stimulation at each of all five locations produced responses with diverse 

directions and magnitudes (Figure 5), suggesting no difference between the five stimulus 

locations. 
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Figure 5. Nociceptive withdrawal responses for individual stimulus locations. Response vectors 

grouped by location according to each of the 5 plantar rostral-caudal and lateral-medial stimulus 

locations and grouped by color for Von Frey (n=178 trials) and needle (n=101 trials) stimulation. 

Vectors, not to scale with the foot, show the varying directions and magnitudes of the changes in 

foot stimulus location from initial to final positions. 
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 In order to determine if the stimulus location had a significant effect on the direction and 

magnitude of the response, the responses were averaged over 2-5 replicates at each stimulus 

location within each animal and graphed separately for Von Frey and needle stimulation.  For 

Von Frey, the stimulus locations did not significantly affect the direction (Figure 6A, p=0.9, 

circular Mardia-Watson Wheeler Test) or the magnitude (Figure 6B, p=0.7, ANOVA on Ranks) 

of the response.  Similarly, the direction (Figure 6C, p=0.09, circular Mardia-Watson Wheeler 

Test) and the magnitude (Figure 6D, p=0.6, ANOVA on Ranks) of the NWR did not depend on 

the location of needle stimulation.  Combining the results to increase the statistical power still 

showed no significant effect on the stimulus location on the direction (Figure 6E, p=0.5, circular 

Mardia-Watson Wheeler Test) and magnitude (Figure 6F, p=0.6, ANOVA on Ranks) of the 

NWR when the data was combined for Von Frey and needle stimulation.  Together, these results 

falsified the hypothesis that stimulus location influenced the direction or magnitude of the NWR.  
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Figure 6. The effect of stimulus location on the magnitude and direction of the NWR for Von Frey, 

needle and combined stimulation. Direction and magnitude (n=279 trials, n=17 rats) from each trial 

are represented as both boxplots and individual data points. For Von Frey, stimulus location did not 

significantly affect direction (A, p=0.9, circular Mardia-Watson Wheeler Test) or magnitude (B, 

p=0.7, ANOVA on Ranks) of the NWR. Similarly, the direction (C, p=0.09, circular Mardia-

Watson Wheeler Test) and the magnitude (D, p=0.6, ANOVA on Ranks) of the NWR did not 

depend on the location of needle stimulation. When the data is combined for Von Frey and needle 

stimulation, there continues to be no significant dependence of stimulus location on direction (E, 

p=0.5, circular Mardia-Watson Wheeler Test) and magnitude (F, p=0.6, ANOVA on Ranks) of the 

NWR. 
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It is possible that the differences in the initial position of the rat’s paw could have 

obscured a relationship between the stimulus location and direction and magnitude of the NWR.  

To test this possibility, multiple regressions were used to “subtract” the effects of initial position 

from the effects of stimulus location.  However, for comparison between movement in both 

rostral-caudal and lateral-medial directions, there was still no dependence on stimulus location.    

 Since stimulus location did not significantly affect the direction nor the magnitude of the 

response, other variables may determine the diverse directions and magnitudes of the NWR.  We 

observed that the rat positioned its stimulated paw (hind, left) in various positions between trials 

(Figure 7), suggesting the hypothesis that the initial position of the paw might influence the 

magnitude and direction of the NWR. 
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Figure 7. Initial positions of the paw prior to mechanical stimulation. The initial positions of the COM 

of the paw are shown in the lateral-medial and rostral-caudal planes, and the variability reflects 

distribution of initial paw positions before stimulation. 
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 From analysis of the change in direction between the initial and final positions of the rat’s 

paw, there appears to be an effect of initial position on the direction of the NWR, following 

mechanical stimulation applied to the plantar surface.  The changes in directions for each 

individual trial are represented by vectors (Figure 8A, n=279 trials); similarly, the origins of the 

vectors represent the initial position of the rat’s paw, and the arrow ends of the vectors represent 

the paw’s final position.  To minimize the amount of overlap, the vectors’ lengths were scaled 

down, which makes the vectors appear smaller in size.  The changes in directions for each 

individual trial are clearly represented by vectors (Figure 8B), where each vector represents an 

average of the vector tails that fall within a designated 5mm X 5mm box on the graph.  The 

directions of the vectors suggest a pattern similar to Chrzan (2013) and Seamon (2015); when the 

rat spontaneously placed the paw rostrally, or more forward, the paw moved caudal, or more 

backward, in response stimulation.  This inverse relationship was also seen in reverse; when the 

paw was initially caudal, the paw would move rostral in response to stimulation.  A similar 

pattern was observed when the rat placed its paw within the lateral-medial direction.    
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Figure 8. Spatial distribution of response vectors after mechanical stimulation. Vectors show the 

directions, represented by the orientation, and magnitudes, represented by the length, of the changes 

from initial to final COM positions of the paw. The origins of the vectors represent the initial COM 

positions, while the arrow ends of the vectors represent the final COM positions. A Each vector 

represents an individual trial, for both Von Frey and needle (n=279 trials) stimulation. To minimize 

the amount of overlap, the vectors’ lengths were scaled down. B Each vector represents an average of 

the vector tails that fall within each 5mm X 5mm box on the graph. 
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        To determine if the initial position of the paw significantly affected the withdrawal 

response, regression and correlation were performed on the initial position of the paw and the 

resulting change in position separately for the rostral-caudal and lateral-medial directions for 

Von Frey and needle stimulations.  Within a single rat (Figures 9A, B, E and F), there appears to 

be a negative slope trend, for both coordinate directions and methods of mechanical stimulation, 

which suggests the pattern of response from Figure 8.  The initial position of the paw 

significantly affected the change in position of the paw in the lateral-medial (Figure 9G, r2=0.2, 

p=0.04, slope=-0.2 mm/mm, n=178 trials, Pearson Correlation and Linear Regression) and 

rostral-caudal (Figure 9C, r2=0.4, p=<0.0001, slope=-0.4 mm/mm, n=178 trials, Pearson 

Correlation and Linear Regression) directions after stimulation with the Von Frey.  The initial 

position of the paw when stimulated with the needle also displayed a significant effect on the 

change in position of the paw in the lateral-medial (Figure 9H, r2=0.5, p=<0.0001, slope=-0.6 

mm/mm, n=101 trials, Pearson Correlation and Linear Regression) and rostral-caudal (Figure 

9D, r2=0.4, p=<0.0001, slope=-0.5 mm/mm, n=101 trials, Pearson Correlation and Linear 

Regression) directions.  These results show that when the rat spontaneously placed the paw 

rostrally (more forward), the paw moved caudally (or more backward) in response to stimulation.  

Similarly, when the paw was initially caudal, the paw would move rostrally in response to 

stimulation.  A similar pattern was observed when the rat placed its paw within the lateral-medial 

direction.   
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Figure 9. The effect of initial rostral-caudal and lateral-medial paw position on the magnitude of the NWR. 

Plots A and B represent a single exemplary experiment from a single rat, each with 15 trials. The linear 

regression line has negative slopes for all four panels (slopes=-0.4, -0.9, -0.4, -0.5). Altogether with 17 rats, the 

initial position of the paw significantly affected the change in paw position along the rostral-caudal direction 

when the paw was stimulated with the Von Frey (C, r2=-0.4, p=<0.0001, slope=-0.4 mm/mm, n=178 trials, 

Pearson Correlation and Linear Regression) and the needle (D, r2=-0.4, p=<0.0001, slope=-0.5 mm/mm, n=101 

trials, Pearson Correlation and Linear Regression). Plots E and F also represent a single exemplary experiment 

from a single rat, each with 15 trials. Altogether with 17 rats, the initial position of the paw significantly 

affected the change in paw position along the lateral-medial direction when the paw was stimulated with the 

Von Frey (G, r2=-0.2, p=0.04, slope=-0.2 mm/mm, n=178 trials, Pearson Correlation and Linear Regression) 

and the needle (H, r2=-0.5, p=<0.0001, slope=-0.6 mm/mm, n=101 trials, Pearson Correlation and Linear 

Regression). The coefficients of determination (r2) for scatter plots C, D, G and H are low. 
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 Although statistically significant, the coefficients of determination (r2) were fairly low 

(rostral-caudal=0.4, 0.4; lateral-medial=0.5, 0.2).  These low r2 values could have been due to 

differences between rats, such as the weight or posture the animal adopted in the acrylic box.  In 

order to eliminate the variation between rats, each rat was analyzed individually.  

 Individual correlations for each of the 17 rats in the rostral-caudal (Figure 10) direction 

resulted in higher r2 (10 of 17 r2>0.4) values.  Importantly, of a total of 17 rats, with combined 

Von Frey or needle stimulations, 15 rats had a negative slope relating to the change in position in 

the rostral-caudal directions.  Similarly, individual correlations for each of the 17 rats, with 

combined Von Frey or needle stimulations, in the lateral-medial (Figure 11) direction resulted in 

higher r2 (6 of 17 r2>0.3) values, and 15 rats had a negative slope relating to the change in 

position in the lateral-medial directions.      

 The frequency distribution of the individual slopes (Figure 12) from each rat for the 

rostral-caudal (mean=-0.71) and lateral-medial (mean=-0.65) directions show more negative 

slopes, compared to positive slopes.  In order to test the effect of the paw’s initial position on the 

withdrawal response, the slope means were compared to a hypothesized population mean of 0, 

which is the value distinguishing between negativity and positivity.  The change in position of 

the paw showed a strong dependence on the initial position of the paw in the rostral-caudal 

(p=0.0001, n=17, one-sample t-test) and lateral-medial (p=0.00008, n=17, one-sample t-test) 

directions.  There was no significant difference between the method of stimulation in the rostral-

caudal (p= 0.2, n=17, Mann-Whitney test) and lateral-medial (p= 0.96, n=17, t-test) directions.      
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Figure 10. Relationship between initial rostral-caudal paw position and final paw 

position for individual rats. Each individual rat is shown on a separate graph, and the r2 

value and slope for each trail are displayed above the graph. There were negative slopes 

for 8 of the 9 rats that were stimulated with the Von Frey, and negative slopes for 7 of 

the 8 rats that were stimulated with the needle. 
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Figure 11. Relationship between initial lateral-medial paw position and final paw 

position for individual rats. Each individual rat is shown on a separate graph, and the r2 

value and slope for each trail are displayed above the graph. There were negative slopes 

for 7 of the 9 rats that were stimulated with the Von Frey, and negative slopes for all 8 

rats that were stimulated with the needle. 
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Figure 12. Combined slopes from individual rats demonstrate dependence of final paw 

position on initial position. Slopes from individual trials were combined and displayed on a 

frequency histogram, separately for rostral-caudal and lateral-medial axes. The graph shows 

that the number of negative slopes for the rostral-caudal and lateral-medial directions is 

large, compared to the number of positive slopes. The average slope is more negative than 

zero for the rostral-caudal (mean=-0.71, p=0.0001, n=17 rats, one-sample t-test) and lateral-

medial (mean=-0.65 p=0.00008, n=17 rats, one-sample t-test) axes. There was no significant 

difference between the method of stimulation and the slopes in the rostral-caudal (p= 0.2, 

n=17, Mann-Whitney test) and lateral-medial (p= 0.96, n=17, t-test) directions. 
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B. The Determination of Information Used by the CNS 

The direction of the NWR, as shown above, is influenced by the initial posture of the 

hind limb in intact, unanesthetized rats.  There are two alternative hypotheses (Figure 13A) for 

the mechanism used by the CNS to determine the initial posture of the foot.  In Figure 13A, the 

vertical dotted line corresponds to the starting position of the paw, and the arrow represents the 

repositioning of the paw just prior to heat stimulation.  The first hypothesis is proprioceptive 

sensory feedback, which is supported when the change in locations lies on the negatively-sloped 

linear regression line, showing no dependence on the initial position of the paw prior to 

stimulation.  The second hypothesis is corollary discharge, which is supported when the change 

in location does not lie on the linear regression line, showing dependence on the paw’s initial 

position. 

In order to determine the mechanism used by the CNS, the proprioceptive representation 

of the initial position of the foot was dissociated from the corollary discharge representation of 

the initial position of the foot.  From one individual rat (Figure 13B), the black data points 

represent the normal trials, and the red data points represent the movement trials.  The black 

linear regression line is from the data of the normal trials.  The perpendicular distances between 

two representative data points and the regression line from the normal trial data were measured 

to determine the type of information the CNS of intact rats utilizes.  If proprioceptive sensory 

feedback is supported, then the distances would be similar in value to each other.  If corollary 

discharge is supported, then the distances would be different in value to each other.  In this 

example, the movement (red) data point is further from the regression line, which would suggest 

corollary discharge.  Amongst the five other rats (Figure 13C), the analysis was completed 

likewise.      
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The distances from the regression line to the normal and movement trials were compared, 

and there was no significant difference between the two types of trials (Figure 13D, p=0.95, 

n=210 normal trials, n=169 movement trials, Mann-Whitney test).  The lack of a significant 

difference between the two types of trials indicates that the CNS uses the proprioceptive sensory 

feedback mechanism to determine the direction of the NWR in intact, unanesthetized rats.  
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Figure 13. Determination of the mechanism used by the CNS to assess the initial position of the stimulated 

paw.  A Two hypotheses for the mechanism used by the CNS are shown on the graph, using simulated data. 

The vertical dotted line corresponds to the starting position of the paw, and the arrow represents the 

repositioning of the paw by the experimenter just prior to heat stimulation. B One individual experiment, 

with a single rat, is shown on the graph. The distances were measured between two sample data points, 

normal (black) and movement (red) trials, and the regression line is for the normal data. In this example, the 

movement (red) data is further from the regression line, as would be expected for corollary discharge. C Each 

individual rat was separately analyzed, in which the regression line is from the normal data, and the 

perpendicular distances from the linear regression line to the normal (black) and movement (red) were 

calculated. D There was no significant difference between the two types of trials (p=0.95, n=210 normal 

trials, n=169 movement trials, Mann-Whitney test). 
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VII. Discussion 

 

A. Summary of Results  

a. Stimulus Location   

The effect of stimulus location on the NWR in intact, unanesthetized rats was determined 

by applying two mechanical stimuli – Von Frey monofilament and a 30-gauge needle – to the 

plantar surface of the hind, left paw at five different locations.  The withdrawal response 

generally consisted of rapid removal and replacement of the paw on the platform.  In contrast to 

previous literature, the stimulus location did not significantly influence the direction and 

magnitude of the NWR in intact, unanesthetized rats.   

b. Initial Position 

The effect of initial position on the NWR in intact, unanesthetized rats was determined by 

applying a mechanical stimulus to the paw following placement in a variety of different positions 

adopted voluntarily by the rat, and the withdrawal movement was observed.  Similar to the 

previous literature, the initial position of the paw prior to mechanical stimulation did 

significantly influence the NWR in intact, unanesthetized rats.  If the paw was initially placed in 

the rostral direction, it tended to move caudally, and similarly, if the paw began more caudally 

relative to the rat’s body, it would move in the rostral direction.  As the paw was positioned in 

the lateral direction, it moved medially, and similarly, if the paw was initially positioned in the 

medial direction, it tended to move laterally.   

c. Proprioceptive Sensory Feedback vs. Corollary Discharge 

The source of information used by the CNS responsible for the dependence on posture for 

the NWR was determined by by pre-determining the position of the rat’s paw before a heat 

stimulus was applied.  Previous research has not distinguished between the use of proprioceptive 
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sensory feedback and corollary discharge in intact, unanesthetized mammals, such as when the 

mammal spontaneously positions the paw.  When the distances from the regression line to the 

normal and movement trials were compared, there was no significant difference between the two 

types of trials.  The lack of a significant difference between the two types of trials indicated that 

the CNS uses the proprioceptive sensory feedback mechanism to determine the direction of the 

NWR in intact, unanesthetized rats.    

B. Comparison to Previous Results  

a. Stimulus Location  

The NWR of intact humans has been shown to depend on stimulus location.  In the lower 

limb, electrical stimulation at locations in the lateral region of the plantar surface of the human 

foot evoked eversion responses, while electrical stimulation at locations in the medial region 

evoked inversion responses; thus in both cases, the NWR caused the area of stimulated skin to 

move directly away from the stimulus (Andersen et al., 1999 & 2001).  Another contrast to our 

studies is from Schouenborg (1992), who suggested that the EMG responses in the ankle muscles 

of spinalized rats depended on the location of mechanical and hear stimulation to the hindlimb.  

In contrast, our experiments suggested that there was no effect of stimulus location on the 

direction and magnitude of the response to mechanical and heat stimulation.  One possible 

explanation for the difference in results could be the difference in method of stimulation, as 

Andersen (1999 & 2001) applied electrical stimulation to intact humans and we applied 

mechanical stimulation to intact rats.  However, since the studies performed by Schouenborg 

(1992) used similar methods of stimulation, another possible explanation for the contrast of 

results is that Andersen (1999 & 2001) and Schouenborg (1992) measured the movement and 

EMG signals during the movement, which we did not necessarily do.  Instead, we simply 
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measured the direction and distance between the initial and final positions of the stimulated paw 

to quantify the NWR.    

Our results from the experiments testing the dependence of stimulus location on the 

NWR of intact, unanesthetized rats were similar to the results of studies with spinal cord-injured 

humans, in which the location of electrical stimulation of the dorsal surface of the human foot 

did not influence the pattern of muscle activation in the NWR (Andersen et al., 2004).  

Sherrington’s (1910) observations are in parallel to the behaviors seen in intact, unanesthetized 

rats; that is, the mammal withdrew the stimulated limb directly away from the delivered 

stimulus.  Sherrington (1910) suggested that the muscle contractions and relaxations involved 

with the withdrawal reflex were largely independent of which nerve was stimulated, which is 

proportional to our findings of the independence of location of stimulation on the NWR in intact 

rats.  However, the measurements of the NWR were varied between the two studies; our study 

used the direction and distance between the initial and final positions of the stimulated paw to 

quantify the NWR, while Sherrington (1910) observed the EMG signals of the flexor and 

extensor muscles in the hind limbs of spinalized cats and dogs.                

Correspondingly, Chrzan (2013) and Seamon (2015) also concluded that the location of 

heat stimulation along the plantar surface of the intact rats’ hind paw did not significantly impact 

the direction of the NWR, and we observed a similar independence with mechanical stimulation.  

Despite the type of stimulation, whether electrical, heat or mechanical, the stimulus location did 

not show an effect on the direction of the NWR.      

b. Initial Position 

Similar to our studies with intact, unanesthetized rats, the NWR of intact, unanesthetized 

humans has been shown to depend on the initial position.  After an application of electrical 
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stimulation to the fingers of intact humans, the direction of the withdrawal response was altered 

based on the initial position of the upper limb; from flexion to extension of the limb, the NWR 

was in the posterior-lateral direction, and then shifted to the posterior direction, in which the 

limb moved further away from the electrical stimulus (Peterson et al., 2014).  Likewise, for 

intact rats based on the results of Chrzan (2013) and Seamon (2015) using heat stimuli, the 

direction of the withdrawal response was altered based on the initial position of the lower limb; 

when the paw was placed rostrally, the paw moved caudally in response stimulation.  This 

inverse relationship was also seen in reverse; when the paw was initially caudal, the paw would 

move rostrally in response to stimulation.  A similar pattern was observed when the rat placed its 

paw within the lateral-medial direction.  

 The posture of decebrated and spinalized mammals has been also shown to influence the 

NWR after the delivery of a noxious stimulus, similar to the effects of modifying the posture of 

intact, unanesthetized rats.  In decerebrated cats, the non-noxiously evoked flexion withdrawal 

and crossed extensor reflexes were altered by the changes in knee joint angle, in which the 

extended position of the knee activated the flexor muscles’ activity of the lower limb (Baxendale 

& Ferrell, 1981).  Similarly, in spinally-injured human subjects, increase in hip extension 

resulted in larger torque responses in the hip (Kim et al., 2007).  Despite the conditions of the 

mammal, whether intact, unanesthetized, spinalized, or decerebrated, the initial posture of the 

limb had an effect on the direction of the NWR.          

C. Mechanisms 

Our results show that the CNS uses proprioceptive sensory feedback to assess the initial 

foot position, rather than corollary discharge.  When the CNS uses proprioceptive sensory 

feedback to determine the direction of the NWR of the hind limb in intact rats, information about 
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the muscle length, force, and joint angles in the limb is provided (Onushko et al., 2013).  When 

the hind limb is moved in the caudal direction prior to stimulation, the rat is aware of the change 

in the position of the hind limb, thus causing the rat to bring the paw more rostrally in response 

to the stimulation.   

Our results, however, do not show the receptors responsible for proprioceptive 

information and from which joint the information arises.  The sensory receptors in skin, joints 

and muscle spindles can be responsible for providing proprioceptive information to a mammal 

(Hasan, 1992).  From previous studies of the NWR in the human lower limb, observations of 

larger torque responses in the ankles when the hip joint was extended, compared to when the hip 

joint was flexed, suggested that the hip primary spindle receptors increased the NWR in the 

lower limb (Kim et al., 2007).  However, the flexed and extended positions of the knee joint of 

decerebrated cats determined the intensity of the NWR, suggesting that knee joint afferent 

activity explained the observed pattern.  Furthermore, when the joint receptors were blocked 

from the knee joint through the injection of a local anesthetic, there was no longer a modulation 

of the NWR when the knee joint angle was changed, thus supporting the role of knee joint 

receptors (Baxendale & Ferrell, 1981).  From the previous literature, the hip, ankle and knee 

joints can be suggested to provide proprioceptive sensory information to the rat; therefore, 

determining the direction of the NWR.  

D. Significance  

The ability of an animal to effectively withdraw a part of its body away from potential 

harmful stimuli is critical to survival.  However, in order for the withdrawal movement to be 

completely successful, the animal must also be able to maintain a proper balance of its body.  

The experimental results suggested that the animal’s posture has a significant influence on the 
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NWR; upon withdrawal of the limb, the animal replaces the stimulated paw in a position that 

allows the body to be in a more stable posture.   

In contrast to posture, stimulus location did not contribute to the determination of the 

direction and magnitude of the NWR.  These results suggest that maintaining stable posture after 

a potentially damaging threat is encountered is more important for survival, than optimizing the 

response direction based on stimulus location.  Further, there will be a minimal amount of 

choices of directions to respond in, thus potentially increasing the speed of the response to a 

noxious stimulation (Schmidt & Lee, 1999).      
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