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Abstract 

BAM2 is a chloroplast-targeted member of the β-amylase gene family that currently has 

an unknown function in starch hydrolysis. Previous research indicated that BAM2 did not have 

significant catalytic activity, but, because the gene is highly conserved and there is a starch-

excess phenotype in older plants lacking BAM2, it was hypothesized that BAM2 may instead 

have a regulatory function. Many regulatory proteins function by interacting with other proteins, 

so we wanted to test for potential protein binding partners for BAM2 using the yeast two-hybrid 

system. A plasmid containing the BAM2 gene from Arabidopsis thaliana was co-transformed 

into Y190-strain yeast (Saccharomyces cerevisiae) along with a second plasmid from a library of 

plasmids containing cDNA of mRNA isolated from mature Arabidopsis leaves and roots. If 

BAM2 interacts with any of the proteins encoded within the cDNA library, transcription in that 

co-transformed yeast is activated for certain reporter genes whose expression is monitored by 

growth on selective media and a colorimetric assay. We observed 23 colonies with expression of 

both reporter genes from the first cDNA library screen and 55 colonies from a second screen. 

Plasmids containing cDNA were extracted from these colonies and are being tested further for 

false positives. The cDNA insert in plasmids from 45 potential positive results were sequenced 

and analyzed to provide information about the validity of interaction with BAM2. One putative 

positive was identified as an uncharacterized chloroplastic protein, which, after further 

validation, may represent a previously unidentified protein involved in starch metabolism and 

may reveal the function of BAM2 in the process of starch hydrolysis. 
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Introduction 

            During the day, plants undergo photosynthesis, generating sugars. Of these sugars, about 

half are used immediately to provide the plant with energy while photosynthesis is occurring; the 

other half are stored as starch granules in the chloroplast. Starch granules are composed of a 

mixture of glucose polymers, amylose and amylopectin, which differ in the absence or presence 

of branching respectively (Zeeman et al., 2010). This starch is broken down at night, when 

photosynthesis is not occurring, to give the plant a continuous supply of energy in the form of 

sugar. Starch is primarily hydrolyzed to maltose by β-amylase (BAM) enzymes, the major family 

of hydrolytic enzymes involved in starch metabolism (Scheidig et al., 2002).  

In Arabidopsis thaliana, the β-amylase family of genes includes nine members, known as 

BAM1-9. BAM7 and -8 are targeted to the nucleus and act as transcription factors (Reinhold et 

al., 2011; Soyk et al., 2014). BAM5 is extrachloroplastic, expressed in phloem tissue, where its 

function is not known (Lin et al., 1988; Monroe and Preiss, 1990). BAM1, -2, -3, -4, -6, and -9 

are all predicted or known to be chloroplast-localized and, therefore, are situated to be involved 

in starch degradation (Lao et al., 1999; Fulton et al., 2008; Li et al., 2009; Scheidig et al., 2002; 

Sparla et al., 2006; Zeeman, personal communication; our unpublished results). 

            Of the chloroplast-targeted BAMs, BAM1 and -3 are the most catalytically active, with 

BAM1 primarily active during the day (Sparla et al., 2006; Fulton et al., 2008; Valerio et al., 

2011) and BAM3 active primarily at night (Smith et al., 2004; Fulton et al., 2008). BAM6 was 

previously found to have low expression in leaves of young plants (Fulton et al., 2008), but our 

recent work indicates that BAM6 may function in older plants (Monroe et al., 2014). On the 

other hand, previous work with BAM4, -9, and -2 indicated these proteins have little or no 

catalytic activity, and their functions are still unknown. Although BAM4 is catalytically inactive, 
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it still binds starch and is required for normal starch metabolism (Fulton et al., 2008; Li et al., 

2009). BAM9 is non-catalytic likely due to absence of some key amino acids that are conserved 

in active BAMs (Chandler et al., 2001). The function of BAM9 in starch metabolism remains 

unclear, although it is conserved among all flowering plants and its expression peaks at the 

transition between night and day (Chandler et al., 2001; Smith et al., 2005; Mockler et al., 2007). 

BAM2 was previously shown to have low expression in young leaves and to have low catalytic 

activity (Fulton et al., 2008), but our lab detected a phenotype in older plants. Because BAM4, -9 

and -2 all appear to lack significant catalytic activity and yet produce phenotypes when knocked-

out, it was hypothesized that these BAMs may be serving a regulatory function. 

The current research on BAM2 led us to believe that this BAM could have a regulatory 

role in starch degradation. Experiments conducted by Fulton et al. (2008) showed that starch 

hydrolysis activity of BAM2 was optimal at pH 6, but the specific activity was 25 times lower 

than that of BAM3 and 50 times lower than that of BAM1. Loss of BAM2 alone or along with 

other BAMs did not affect starch or maltose levels in young plants (Fulton et al., 2008). Due to 

the lack of phenotypic effect from the mutation of BAM2, Fulton et al. (2008) concluded that 

BAM2 had no function in young plants. However, our work has shown that there is an excess 

starch phenotype in older plants lacking BAM2, indicating that BAM2 may function in leaves of 

older plants or in other tissues (Monroe et al., 2014), and our most recent work has found that the 

β-amylase activity of BAM2 is salt-dependent (Monroe, unpublished). While we have recently 

found that BAM2 has some catalytic activity, it may still have a regulatory role.  

Phylogenetic analysis of the BAM2 gene grouped it with the nuclear-targeted BAM genes, 

BAM7 and -8, each having a core nine-exon structure (Fulton et al., 2008; Li et al., 2009; 

Monroe, unpublished). Moreover, our analysis suggests that the BAM7 and BAM8 proteins were 
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derived from BAM2 at about the time of the origin of seed plants. Further analysis indicates that 

BAM2-like sequences that are predicted to be targeted to plastids occur throughout land plants 

(Monroe, unpublished). The BAM2 gene also appears to have a conserved region of amino acids 

on the surface of the protein that could serve as a binding site for another protein. The fact that 

BAM2 is widely conserved implies that there is selective pressure for organisms to keep the gene, 

which also implies that BAM2 has a necessary function.  

BAM2 is the focus of this project because of its apparent involvement but unknown 

function in starch metabolism. The excess starch phenotype seen in leaves of older plants lacking 

BAM2 indicates that BAM2 is required for the normal functioning of the plant. Because BAM2 

was originally observed to have low catalytic activity, its phenotypic importance implied that 

BAM2 may instead have a regulatory function. Many regulatory proteins function by forming 

interactions with other proteins (Adrain and Freeman, 2012). For example, recently it was found 

that PTST (protein targeting to starch) functions by interacting with granule-bound starch 

synthase (GBSS) to localize it to the starch granule for elongation of amylose (Seung et al., 

2015). If BAM2 serves a regulatory function in which it binds to another protein, we are 

interested in identifying potential binding partners. Even if BAM2 proves to have a catalytic 

function in plants, as is possible given the recent activity assay results, BAM2 could still form 

protein interactions of interest. The yeast two-hybrid system was chosen to detect potential 

binding partners for BAM2.  

The classical yeast two-hybrid system is a method used to determine which protein(s) 

from a cDNA library interact with the protein of interest (Causier and Davies, 2002). One 

strength of the yeast two-hybrid method is that it allows for the screening of a large number of 

potential interaction partners from a cDNA library. Yeast cells, Saccharomyces cerevisiae, have 
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transcription factors with DNA-binding and transcription activation domains that can function 

independently. In yeast two-hybrid systems, the DNA-binding domain of a transcription factor is 

fused to the gene for the protein of interest in one plasmid, the “bait” vector, and the activation 

domain is fused to unknown proteins encoded in the library of cDNAs, generating a library of 

“prey” vectors (Causier and Davies, 2002) (Figure 1).  

These two plasmids are transformed into a yeast strain containing mutations in various 

amino acid biosynthetic pathways (Causier and Davies, 2002). The mutations allow for selection 

of transformant yeast because the bait and prey vectors contain genes that complement the 

mutations, allowing only the cells that have taken up the plasmids to grow on certain minimal 

media (Causier and Davies, 2002). The bait vector and the library of cDNA prey vectors are 

transformed into yeast cells on a large scale to promote the bait vector being co-transformed with 

each of the prey vectors. Resulting colonies are screened to find those that have interacting bait 

and prey proteins (Causier and Davies, 2002). If any of the unknown proteins from the cDNA 

library interact with the protein of interest, then the two domains of the transcription factor come 

close enough to stimulate transcription and expression of certain reporter genes (Causier and 

Davies, 2002) (Figure 2). Expression of reporter genes is detected by growth on selective media 

or presence of specific catalytic activity. In our BAM2 yeast two-hybrid experiment, the bait and 

prey genes are fused with the DNA-binding and activation domains of the GAL4 transcription 

factor, respectively (Causier and Davies, 2002) (Figure 2). The two reporter genes used are HIS3, 

a gene encoding a protein involved in histidine synthesis, and the lacZ gene. Expression of these 

reporter genes is detected by growth on media lacking histidine and presence of beta-

galactosidase activity against X-gal substrate, respectively. 
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Figure 1. Generation of cDNA library of prey vectors. cDNA created from the mRNA from 

mature Arabidopsis leaves and roots is inserted into prey vectors to generate a cDNA library of 

prey vectors.  
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Figure 2. Illustration of the yeast two-hybrid mechanism. BAM2- bait protein; BD- DNA 

binding domain of the transcription factor; AD- activation domain of the transcription factor; 

UAS- upstream activation sequence; reporter genes- HIS3 and lacZ. 

 

Currently, studies on BAM2 are limited, and its function is unknown. Our results with 

bam2 knockouts in older plants as well as BAM2’s widespread presence in land plant genomes 

caused us to be interested in the protein, and the objective of this study was to determine if 

BAM2 interacts with another protein, potentially as part of a regulatory function. Determining 

which protein(s) interact(s) with BAM2 will further our knowledge of the function of BAM2, 

thereby helping us understand how BAM2 contributes to starch degradation in plants. It could 

also identify the involvement of as-yet unknown proteins in starch metabolism. As starch is 

essential to maximal plant growth and is an important food and fuel source, understanding of 

starch degradation and the regulation of this process in plants may also apply on a grander scale 

to human diet and biofuels. Because plants are an important source of food for humans and a 

potential fuel source, it is important to know about the proteins involved in starch metabolism in 

order to maximize human benefit from plants. 
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Materials and Methods 

Generation of the Prey Vectors 

 A cDNA library constructed using mRNA extracted from mature Arabidopsis leaves and 

roots was purchased from the Arabidopsis Biological Research Center (ABRC). cDNA was 

excised from phage into plasmids according to the protocol provided by ABRC. 

 

Construction of the Bait Vector 

 The sequence encoding the mature form of BAM2, lacking the chloroplast transit peptide, 

was amplified by PCR from an existing expression vector with Deep Vent DNA Polymerase 

(New England Biolabs) using forward primer  

5’-AACATATGGCAGAGAGTACTGAGGAAGATCGAGTTCC-3’ and reverse primer  

5’-TTGGATCCTCACTCGGGGTTGGTCTCTTG-3’. The reactions were cycled at 94 ºC for 30 

seconds, 54 ºC for 30 seconds, and 72 ºC for 2 minutes, repeated ten times, followed by 25 

cycles of 94 ºC for 30 seconds, 58 ºC for 30 seconds, and 72 ºC for 2 minutes, with a final 

extension of 72 ºC for 6 minutes. The PCR product was purified by gel extraction using the 

Illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare) according to the 

manufacturer’s instructions. The BAM2 insert was then ligated into the pMOS vector using the 

pMOSBlue Blunt Ended Cloning Kit (GE Healthcare). BAM2-pMOS ligations were transformed 

into competent Escherichia coli cells provided with the kit according to the kit’s instructions. 

The transformants were plated on Luria-Bertani medium (LB) plates containing Carbenicillin 

(Carb), Tetracycline (Tet), Isopropyl β-D-1-thiogalactopyranoside (IPTG), and X-gal and 

incubated at 37 °C for 24 hours. White colonies, indicating insertion, were chosen from the 

transformation plates and tested using colony PCR using the same amplification primers used to 
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amplify BAM2 from the existing expression vector to confirm insertion of BAM2 into the pMOS 

plasmid by presence of a band around 1.5 kb on an agarose gel. The plasmid was miniprepped 

using the alkaline lysis protocol (Bimbiom and Doly, 1979). BAM2-pMOS was then digested 

using NdeI and BamHI to remove the insert. The pAS1 vector was digested with BamHI. The 

digested products BAM2 and linearized pAS1 were purified by gel extraction as described above. 

BAM2 and pAS1 fragments were ligated using the Roche rapid DNA ligation kit according to the 

manufacturer’s instructions. Ligations were transformed into competent E. coli cells and grown 

overnight. Resulting colonies were miniprepped according to the alkaline lysis protocol, but 

modified to resuspend the plasmid DNA in 25 µL of sterile dH2O. The miniprepped DNA was 

digested with BamHI and NdeI and run on an agarose gel to confirm insertion of BAM2 into 

pAS1. Upon gel confirmation of BAM2 insertion, the BAM2-pAS1 bait plasmid was sequenced 

by Eurofins Genomics using nested primers to obtain the entire BAM2 sequence. The 

sequencing primers used were 5’-GACAGCATAGAATAAGTGCG-3’,  

5’-CAGGCGTAACACTGAATGCC-3’, and 5’-ATGTTTAAGAAACATGATGC-3’. 

 

Transformation of Bait Vector into Y190-Strain Yeast 

 To insert the BAM2-pAS1 vector into the yeast, a transformation was conducted using a 

modified protocol from Tian et al. (2012). Y190-strain yeast, obtained from ABRC, was grown 

at 30 °C overnight in 2 mL of yeast extract peptone dextrose (YPD) media. The overnight culture 

was diluted with 4.5 mL YPD and 0.5 mL culture, then aliquoted into two tubes of 2.5 mL each 

and grown for an additional 2.5 hours. The solutions were transferred to a 15 mL tube and 

pelleted at 3000 rpm for 5 minutes at room temperature. The cells were resuspended in 4 mL 

sterile dH2O, then pelleted at 3000 rpm for 5 minutes at room temperature. The cells were 
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resuspended in 0.2 mL of Solution I (100 mM lithium acetate [LiAc], 10 mM Tris-HCl [pH 7.5], 

1 mM ethylenediaminetetraacetic acid [EDTA]) and incubated at room temperature for ten 

minutes. To a microcentrifuge tube, 10 µL of denatured calf thymus DNA (10 mg/ml), 2 µL of 

BAM2-pAS1 DNA, 100 µL of yeast cells, and 700 µL of Solution II (100 mM LiAc, 10 mM 

Tris-HCl [pH 7.5], 1 mM EDTA, and 50% polyethylene glycol [PEG]-3350) were added and 

mixed well (Tian et al., 2012). The tube was incubated at 30 °C for 30 minutes, heat-shocked at 

42 °C for 15 minutes, and then pelleted at 3000 rpm for 2 minutes (Tian et al., 2012). The 

supernatant was discarded, and the pellet was resuspended in 200 µL of dH2O. The suspension 

was serially diluted (1:4 and 1:100) and plated on Complete Media (Difco Yeast Nitrogen Base 

without amino acids, 2% glucose, 4 mM serine, 0.1 mM adenine hemisulfate salt, 0.15 mM 

lysine HCl, 0.3 mM phenylalanine, 0.15 mM tyrosine, 0.1 mM arginine HCl, 0.15 mM 

methionine, 1.5 mM threonine, 0.1 mM tryptophan, 0.75 mM leucine, and 0.1 mM histidine) 

lacking tryptophan (CM-Trp) plates. The plates were incubated at 30 °C for 3 days. 

 

Validation of the Bait Vector for Use in the Yeast Two-Hybrid Screen 

Y190 yeast transformed with the BAM2-pAS1 vector (BAM2-pAS1 yeast) was tested for 

self-activation and basal expression of the reporter genes to validate the vector’s use in the yeast 

two-hybrid screen. To confirm that the BAM2-pAS1 vector does not self-activate expression of 

the lacZ gene, an X-gal assay was conducted. To test for basal, leaky expression of the HIS3 

reporter gene, BAM2-pAS1 yeast was streaked on CM-Trp,-His plates containing varying 

concentrations of 3-amino-1,2,4-triazole (3-AT), a competitive inhibitor of the HIS3 enzyme. 

Concentrations of 3-AT tested were 0, 10, 25, 50, 75, and 100 mM. For comparison, yeast 

containing pSEIII2-pAS1, a verified bait vector provided by ABRC, were also tested. After 
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incubation at 30 °C for seven days, growth on the plates was noted. The concentration of 3-AT at 

which no growth was observed (25 mM) was determined as the appropriate inhibitor 

concentration to use because it was below the recommended threshold level (100 mM).  

 

cDNA Library Screen 

 Upon validation of the bait vector as suitable to use in a yeast two-hybrid screen, the 

BAM2-pAS1 yeast was screened against a cDNA library of prey plasmids using a modified 

procedure from Tian et al. (2012). Four CM-Trp plates were used to grow up lawns of BAM2-

pAS1 yeast. The plates were incubated at 30 °C for five days. Sterile dH2O was added in 1 mL 

increments to make an emulsion with the cells, which were added in 800 µL increments to 500 

mL of YPD until the media had an optical density at 600 nm (OD600) near 0.1. The culture was 

shaken at 30 °C overnight, until it reached an OD600 near 0.4. The cells were pelleted at 3000 x g 

for 5 minutes and the supernatant was discarded. The pellet was resuspended in 100 mL dH2O 

and then pelleted again and the supernatant discarded. Next, the cells were resuspended in 50 mL 

Solution I (100 mM LiAc, 10 mM Tris-HCl [pH 7.5], 1 mM EDTA), pelleted, and then 

resuspended in 2.5 mL Solution I. To the 2.5 mL cell solution, we added 125 μL of denatured 

calf thymus DNA (10 mg/ml), 30 µg of the cDNA library, and 15 mL of Solution II (100 mM 

LiAc, 10 mM Tris-HCl [pH 7.5], 1 mM EDTA, and 50% PEG-3350). The solution was mixed 

well and then aliquoted into 26 tubes of 700 µL each. The tubes were incubated in a 30 °C water 

bath for 30 minutes, then heat-shocked in a 42 °C water bath for 15 minutes, then pelleted at 

6000 x g for 1 minute and the supernatants were carefully discarded. Each pellet was 

resuspended in 400 µL of dH2O, from which 200 µL was then plated onto each of two CM-Trp,-

Leu,-His + 25 mM 3-AT plates. One aliquot from the initial transformation was resuspended, 
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and serial dilutions were prepared. To determine the transformation efficiency, 200 µL of each 

dilution was plated on CM-Trp,-Leu plates. The efficiency was calculated by multiplying the 

number of colonies by the dilution factor, and dividing by the volume plated, then converting 

from µL to mL. Dilution plates were incubated at 30 °C for 5 days, the resulting numbers of 

colonies were counted, and the transformation efficiency was calculated. The Screen plates were 

incubated at 30 °C. At various points from 10 to 20 days after the initial transformation, growing 

colonies were streaked onto fresh CM-Trp,-Leu plates to create master stocks for further testing. 

The master stock plates were allowed to grow for four days at 30 °C and then transferred to 4 °C.  

 

X-gal Assay 

 To determine expression of the lacZ reporter gene, an X-gal assay was performed on 

yeast colonies according to Tian et al. (2012). Colonies to be tested were grown up on media 

lacking the appropriate amino acids for four days at 30 °C. A nitrocellulose membrane was 

placed on top of the plate and pressed down to ensure contact between the membrane and the 

colonies on the media. After two minutes, the membrane was carefully removed from the media 

surface and transferred to a foil boat with the colony side facing up. The foil boat with the 

membrane was floated on liquid nitrogen for 20 seconds, then sunk in the liquid nitrogen for two 

minutes. The boat and membrane were removed, and the membrane was allowed to thaw. In an 

empty Petri dish, 1.5 mL Z buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM 

MgSO4, pH 7.0) and 20 µL of X-gal (20 mg/mL in DMF) were mixed, and a Whatman filter 

paper was placed on top of the solution. The thawed nitrocellulose membrane was placed on top 

of the Whatman filter with the colony side facing up. The Petri dish was wrapped in Parafilm and 

incubated at 37 °C for 24 hours; blue colonies were noted. 
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Isolation of the Prey Plasmid 

Prey vectors were isolated from yeast colonies that were able to grow on CM-Trp,-Leu,-

His+3-AT and tested positive in the X-gal assay. Colonies were grown up in 2 mL CM-Leu to 

encourage maintenance of the prey plasmid but not the bait plasmid. The liquid culture was spun 

down in a microcentrifuge tube for 1 minute, and the supernatant was discarded. The pellet was 

resuspended in 67 mM KH2PO4. To break down the yeast cell wall, 10 µL of Zymolyase solution 

(50:49:1, glycerol:Zymolyase [G-Biosciences]:1M Tris) was added, and the tube was incubated 

at 37 °C for 1 hour. The resulting cells were miniprepped according to the alkaline-lysis method, 

modified to resuspend the plasmid DNA in 25 µL of dH2O. 

The miniprepped DNA from the yeast was used to transform competent DH5α E. coli 

cells using a modified heat shock method in that 10 µL of miniprep DNA was used with 50 µL 

competent cells for the transformation (Inoue et al., 1990). The transformed cells were plated on 

LB+Carb and incubated overnight at 37 °C. Resulting E. coli transformants were miniprepped 

using the alkaline- lysis method, and then the DNA was diluted with dH2O to a concentration of 

150 ng/µL and sent for sequencing by Eurofins Genomics using the standard Gal4AD primer,  

5’-TACCACTACAATGGATG -3’. The sequence of the cDNA insert in the prey plasmid was 

submitted to BLAST-n to identify the gene encoded in the prey plasmid. Sequences were 

analyzed using the UniProt database (http://www.uniprot.org/) to determine the subcellular 

location, functions, and family of the proteins encoded by the sequences. 

 

Elimination of False Positives 

 To identify false positive interactions, a series of retransformations were conducted with 

potential interacting prey plasmids. The prey plasmid was transformed into yeast alone, empty-
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pAS1 yeast, BAM2-pAS1 yeast, and pSEIII2-pAS1 yeast using the yeast transformation protocol 

previously described. Transformations with empty-pAS1 yeast, BAM2-pAS1 yeast, and pSEIII2-

pAS1 yeast were plated on CM-Leu,-Trp,-His+3-AT, and transformations with yeast alone were 

plated on CM-Leu,-His+3-AT. Resulting colonies were tested with an X-gal assay to determine 

expression of the lacZ reporter gene. If blue colonies resulted from the X-gal assay in any prey 

plasmid transformation except the transformation into BAM2-pAS1 yeast, then the interaction 

was determined to be a false positive, and that prey plasmid was eliminated. Blue colonies 

resulting from yeast transformed only with the prey plasmid indicated that the prey plasmid was 

unsuitable for use in the screen because its encoded protein self-activates expression of the lacZ 

gene. If transformation of empty-pAS1 yeast with the prey plasmid resulted in blue colonies, 

then the protein encoded by the prey plasmid interacted with the products encoded by the pAS1 

vector—perhaps the HA-tag—not BAM2 from the bait vector. The transformation with pSEIII2-

pAS1 yeast served to demonstrate whether the protein encoded in the prey vector was interacting 

specifically with BAM2 or was a sticky protein interacting with any bait protein. 
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Results 

 Currently, there is little known about BAM2 and its function. Its catalytic activity was 

found to be negligible (Fulton et al., 2008), but our recent data suggest that it may be 

catalytically active in the presence of salts. Plants with a bam2 knockout show an excess-starch 

phenotype, suggesting that BAM2 is necessary for the proper breakdown of starch. Also 

suggesting BAM2’s importance is that it is conserved among most land plants. Its conservation 

indicates a selective pressure on the organism to keep the gene. Because BAM2 is conserved and 

knockout studies show starch buildup, we investigated whether BAM2 might interact with 

another protein, playing a regulatory role in starch metabolism. To identify potential interaction 

partners, a yeast two-hybrid experiment was conducted with BAM2. 

 

Construction of the Bait Vector 

 BAM2 was amplified by PCR from an existing expression vector and cloned into pMOS. 

Resultant BAM2-pMOS colonies were tested with PCR to confirm insertion of BAM2. BAM2-

pMOS was digested using NdeI and BamHI and the BAM2 fragment was purified by gel 

extraction. Purified BAM2 was ligated with linearized pAS1 vector. To validate insertion of the 

BAM2 coding sequence into the pAS1 bait vector, the vector was digested with NdeI and BamHI 

and the products were run on an agarose gel. There was a band around 1.5 kb in size, which was 

the expected size for the BAM2 insert (Figure 3). The vector was then sent for sequencing 

(Eurofins Genomics) using primers designed to read the entire BAM2 gene. The sequencing 

results were aligned with the known gene sequence, and the alignment indicated that BAM2 had 

been inserted into the pAS1 vector in frame with the Gal4 DNA-binding domain (BD).  
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Figure 3.  Agarose gel of BAM2-pAS1 digested with NdeI and BamHI. The arrow indicates the 

presence of the band at 1.5 kb. 
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Transformation of Bait Vector into Y190-Strain Yeast 

 In order to use the BAM2-pAS1 vector in the yeast two-hybrid screen, the vector had to 

be transformed into Y190-strain yeast. Miniprepped BAM2-pAS1 from E. coli was transformed 

into Y190 yeast and plated on media lacking tryptophan to select for transformant yeast 

containing the BAM2-pAS1 plasmid. On the 1:4 dilution plate, 50-100 transformants resulted, 

and 5 colonies grew on the 1:100 dilution plate. This growth indicated the successful 

transformation of BAM2-pAS1 into Y190 yeast with a transformation efficiency of 2.5x103 

CFU/mL. 

 

Validation of the Bait Vector for Use in the Yeast Two-Hybrid Screen 

 The BAM2-pAS1 yeast were tested for self-activation and basal expression of the 

reporter genes HIS3 and lacZ in order to validate the vector for use in the yeast two-hybrid 

screen. It is important that the fusion of BAM2 to Gal4BD does not activate expression of 

reporter genes and basal expression of reporter genes needs to be determined for each system, 

especially for the HIS3 gene, which has leaky expression. BAM2-pAS1 yeast were grown on 

media lacking tryptophan and histidine with varying concentrations of 3-AT, an inhibitor of the 

HIS3 enzyme, to determine the appropriate concentration of the inhibitor to use in the screen to 

inhibit the basal expression of the HIS3 gene. If a bait vector stimulates growth on plates 

containing 100 mM 3-AT, that bait is considered inappropriate for use in the yeast two-hybrid 

screen (Tian et al., 2012). The BAM2-pAS1 yeast showed good growth on the plate with no 3-

AT and some growth on the plate with 10 mM 3-AT, but there was no growth of the BAM2-

pAS1 yeast on plates with 25, 50, 75, or 100 mM 3-AT, so the BAM2-pAS1 vector is suitable to 

use.  
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 After confirmation that the leaky expression of HIS3 could be negated with less than 100 

mM 3-AT, the BAM2-pAS1 yeast were subjected to an X-gal assay to verify that the bait vector 

alone does not self-activate expression of the lacZ reporter gene. The BAM2-pAS1 colonies 

were not able to breakdown the X-gal substrate and remained white, indicating that the vector 

did not self-activate expression of lacZ.  

 

cDNA Library Screen 

 BAM2-pAS1 yeast were transformed with 30 μg of the Arabidopsis leaf and root cDNA 

library of prey vectors and plated on media with 25 mM 3-AT and lacking tryptophan, leucine, 

and histidine. Colonies that grew on this media were known as “His-positive” because they 

synthesized histidine in order to grow on the minimal media. This transformation protocol was 

conducted twice. The first transformation resulted in a transformation efficiency of ~1x103 

CFU/mL (Table 1). Three rounds of colonies were streaked onto master plates, yielding 42 total 

His-positive colonies (Table 1). The master stocks of the yeast died before the colonies could be 

completely analyzed, so a second screen was conducted. The second transformation resulted in 

an efficiency of 3-4x104 CFU/mL and two rounds of master plates with 82 total His-positive 

colonies (Table 1).  

  

X-gal Assay 

 Colonies that grew on media lacking histidine, indicating expression of the HIS3 reporter 

gene, were also subjected to an X-gal assay. A blue coloration of the colonies was used as an 

indicator of expression of the lacZ reporter gene (Figure 4). From the first screen, 23 of the 42 

His-positive colonies also expressed the lacZ reporter gene (Table 1). Of the 82 total colonies  
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Table 1. Number of potentially positive colonies from screens as indicated by reporter gene 

expression. 

 Screen 1 Screen 2 

Number of 

colonies that 
grew on media 
lacking histidine 

42 82 

Number of His-
positive colonies 
that became blue 

in X-gal assay 

23 55 

Transformation 
efficiency 

~1x103 CFU/mL 3-4x104 CFU/mL 

 

 

 

Figure 4. Pictures of the master plates from the second screen aligned with their respective X-gal 

assays for master plates 1a and 1b (A) and 2a and 2b (B). Blue colonies indicated expression of 

the lacZ reporter gene. 
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from the second screen that expressed the HIS3 reporter gene, 55 colonies also expressed the 

lacZ reporter gene (Table 1).  

 

Isolation of the Prey Plasmid 

 Once colonies expressing both the HIS3 and lacZ reporter genes were identified, their 

prey plasmids were isolated for further testing and analysis. Initially, several different methods 

were attempted for isolating the prey plasmid from colonies showing putative positive 

interactions. Plasmid extraction methods involving glass beads, sonication, and 

phenol:chloroform did not yield transformable DNA. Ultimately, Zymolyase digestion followed 

by the alkaline- lysis miniprep method garnered successful isolation of the prey plasmid. The 

isolated plasmids were retransformed into E. coli, miniprepped, and the sequence of the cDNA 

insert was determined. The sequences were submitted to BLAST-n to identify the gene encoded 

in the prey plasmids. From the first screen, six plasmids were successfully miniprepped and 

sequenced, resulting in six individual sequences. From the second screen, 38 prey plasmids were 

miniprepped and sequenced, and BLAST searches of the sequences revealed 19 unique genes 

(Table 2). Each unique potential interacting protein identified was analyzed using the UniProt 

database and sorted according to subcellular location as shown in Table 2. 

 

Elimination of False Positives 

 After the prey plasmids were isolated and sequenced, a series of transformations was 

conducted with potential interacting prey plasmids. To evaluate whether the observed reporter 

gene expression in each of the potential positive colonies was due to a false positive, the isolated 

prey plasmid was transformed into BAM2-pAS1 yeast, pSEIII2-pAS1 yeast, and empty-pAS1  
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Table 2. Genes isolated from prey plasmids and their cellular localizations. ^ indicates that the function is predicted based on similarity; 
* indicates that there is experimental evidence for the function. 
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yeast and plated on complete media lacking tryptophan, leucine, and histidine with 25 mM 3-AT. 

The prey plasmid was also transformed into yeast without any bait vector and plated on complete 

media lacking leucine and histidine with 25 mM 3-AT. Growing colonies from the 

transformations indicated expression of the HIS3 reporter gene, and blue colonies after 

performing an X-gal assay indicated expression of the lacZ reporter gene. If colonies from yeast 

transformed with only the prey plasmid turned blue from the X-gal assay, then the protein 

encoded by the prey plasmid self-activated expression of the reporter genes and thus was a false 

positive interaction with BAM2. If transformation of empty-pAS1 yeast with the prey plasmid 

resulted in blue colonies, then the protein from the prey plasmid interacted with a product of the 

pAS1 vector, perhaps the HA-tag, instead of BAM2. The transformation with pSEIII2-pAS1 

yeast served to demonstrate whether the protein from the prey vector was interacting specifically 

with BAM2 or was a sticky protein interacting with any bait vector.  

From the first screen, 7aM1, 15aL1, and 40aM1 were successfully isolated and 

retransformed to test for false positives. The 7aM1 transformation resulted in one colony when 

transformed with pSEIII2-pAS1 yeast, but there was no growth when retransformed with 

BAM2-pAS1 yeast, empty-pAS1 yeast, or yeast alone. The transformations for 15aL1, on the 

other hand, resulted in 40 colonies with BAM2-pAS1, 195 colonies with pSEIII2-pAS1, and 30 

colonies with empty-pAS1. When tested with an X-gal assay for expression of the lacZ reporter 

gene, all colonies turned blue meaning that the protein encoded by 15aL1 was a sticky protein, 

interacting nonspecifically, and therefore was identified as a false positive result. 

Retransformations for 40aM1 were unsuccessful; none of the transformations resulted in 
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colonies. The other colonies from the master stocks from the first screen were unable to be tested 

because the yeast in the master stocks died in the fridge before their prey plasmids could be 

isolated.  

From the second cDNA library screen, no potential positive interaction partners have 

been tested in this manner due to time restraints but they are currently being tested and will be 

investigated by other members in the lab. 
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Discussion 

 β-amylase 2 is one of nine BAM proteins in Arabidopsis thaliana. Phenotypic analysis 

indicates that BAM2 serves a role in starch degradation, but details about its function are still 

unknown. BAM2 was previously shown to have very low β-amylase activity in vitro, and bam2 

knockouts showed no phenotype in young leaves (Fulton et al., 2008). However, our work found 

that BAM2 appears to play a role in starch degradation in older plants (Monroe et al., 2014) and, 

more recently, we found that BAM2’s activity increases significantly in the presence of salt, 

especially KCl. Because BAM2 is persistent in the genome of most land plants and we were able 

to observe a role for BAM2 in older plants, even though at the time there was little reported 

catalytic activity, we used yeast two-hybridization to determine if BAM2 binds another protein, 

potentially as part of a regulatory function. After constructing an appropriate BAM2 bait vector, 

we first validated that the BAM2-pAS1 vector was suitable for use in the cDNA library screen 

by testing for self-activation by the bait vector and basal or leaky expression of the reporter 

genes. Yeast transformed with BAM2-pAS1 were plated on media lacking tryptophan and 

histidine to select for yeast that were successfully transformed with the BAM2-pAS1 vector and 

to check for expression of the HIS3 reporter gene. Because HIS3 has leaky expression, the media 

also contained increasing concentrations of 3-AT, a competitive inhibitor of the HIS3 enzyme. 

Because no colonies grew on media with 25 mM 3-AT or higher, it was determined that the 

BAM2 bait vector was not significantly activating expression of HIS3 and that 25 mM of the 

inhibitor was appropriate to counteract the leaky expression of HIS3. BAM2-pAS1 yeast were 

also tested with an X-gal assay to confirm that the presence of BAM2 in pAS1 did not activate 

expression of the lacZ reporter gene. No colonies turned blue, indicating that BAM2 did not 

cause the yeast to express the lacZ reporter gene. Together, these two tests validated that BAM2 
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was suitable for use in the cDNA library screen using a concentration of 25 mM 3-AT in the 

media. 

 After validating the BAM2-pAS1 vector, the yeast two-hybrid screen was conducted with 

the Arabidopsis leaf and root cDNA library of prey plasmids. Colonies growing on CM-Trp,-

Leu,-His + 25 mM 3-AT indicated that there was interaction between the bait and prey proteins 

because HIS3 was expressed, allowing histidine synthesis to occur. The HIS3-positive colonies 

were also tested with an X-gal assay to determine lacZ expression, which would also be seen if 

there was interaction between the bait and prey proteins. The first screen had a transformation 

efficiency of 1x103 CFU/mL and resulted in 42 HIS3-positive colonies, of which 23 were also 

lacZ-positive (Table 1). Midway through the process of identifying potential interaction partners 

through miniprepping and sequencing prey vectors, the master stocks of yeast died; thus, the 

screen was repeated. In the second screen, there was a transformation efficiency of 3- to 4x104 

CFU/mL and resulted in 82 HIS3-positive colonies with 55 colonies also being lacZ-positive 

(Table 1). The higher transformation efficiency in the second screen meant that there was a 

higher chance that BAM2 had an opportunity to interact with each prey plasmid represented in 

the cDNA library. 

 Before the master stocks for screen 1 died, prey plasmids from six colonies were 

miniprepped and sequenced. Of these six, false positive testing was attempted for three prey 

vectors by transforming the vector into yeast alone, BAM2-pAS1 yeast, pSEIII2-pAS1 yeast, 

and empty-pAS1 yeast to test for false positive interactions. For the prey plasmid 7aM1, only the 

transformation of pSEIII2-pAS1 yeast with 7aM1 was successful, but this resulted in only one 

colony. Combined with the failed transformations into BAM2-pAS1 yeast, empty-pAS1 yeast, 

and yeast alone, it is possible that the DNA concentration in the 7aM1 miniprep was insufficient 
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or of too poor quality for the transformation or that the yeast strains were not sufficiently 

competent. All of the 40aM1 transformations, which were done at the same time as the 7aM1 

transformations, failed, providing further evidence that the yeast strains were not sufficiently 

competent, though it is possible that the 40aM1 miniprep was also insufficient or of too poor 

quality.  

The retransformation of 15aL1 into BAM2-pAS1 yeast and resultant growth on media 

lacking histidine indicated that the interaction was repeatable; however, transformation of 15aL1 

into pSEIII2-pAS1 yeast and empty-pAS1 yeast also resulted in growth on media lacking 

histidine, suggesting that HIS3 was being expressed in these transformations as well. Growth on 

these control plates indicated interaction between the protein encoded in 15aL1 and the products 

of both the unrelated bait vector and the empty bait vector. The X-gal assays on the colonies 

indicated that lacZ was also expressed in all the colonies. Expression of the HIS3 and lacZ 

reporter genes in the transformation of 15aL1 with BAM2-pAS1 yeast indicated that the 

interaction between BAM2 and the protein encoded by the 15aL1 vector was true; however, 

expression of the reporter genes when 15aL1 was transformed with the unrelated bait and with 

the empty bait indicated that the protein encoded in 15aL1 may interact with the pAS1 vector or 

that 15aL1 is a sticky protein that interacts nonspecifically. The results from the transformations 

with 15aL1 led to its identification as a false positive and its elimination as a potential interactor 

with BAM2. 

Most of the sequenced prey plasmids from the two screens have not yet been tested to 

identify false positives due to time restraints. However, we were able to identify the sequenced 

genes using BLAST-n and found information about the encoded proteins through UniProt to 

assess the potential validity of their interactions by other means. BLAST searches of the six prey 
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sequences from the first screen revealed six unique genes, while searches of 38 successful prey 

sequences from the second screen revealed 19 individual genes (Table 2). While most of the 

genes were inserted into the prey vector in frame with the GAL4 activation domain, two prey 

vectors had cDNA genes inserted backwards into the vector. In these cases, the proteins 

expressed would not have been the protein from the true gene; therefore, they were eliminated as 

false positive results since whatever protein was expressed likely does not exist in Arabidopsis. 

Two genes were identified from both screens: LHCB1.1 and At2g24020 (Table 2). Also of note, 

several sequences from the second screen were identified independently multiple times. Eight 

prey sequences from the second screen were identified as At2g24020, eight as LEA14, five as 

At5g07340, and two sequences were identified as At5g26710 (Table 2).  

In analyzing the genes, putative cellular localization was the primary criterion used for 

assessing the potential validity of the prey protein’s interaction with BAM2. Because BAM2 is 

plastid-localized in Arabidopsis, the analysis focused on genes that were likely to be chloroplast 

localized as well. There were six genes identified that encode proteins that are predicted to be 

targeted to the chloroplast. Many of the identified chloroplast-targeted proteins are involved in 

photosynthesis. Chlorophyll a-b binding proteins 1, 2, and 3 (LHCB1 genes) were identified 

from the screens (Table 2). These three proteins are very similar and have highly conserved C-

terminal regions that were represented in the recovered prey plasmids (Silva et al., 2015). 

Chlorophyll a-b binding proteins 1, 2, and 3 are all involved in harvesting light for the 

photosystem complexes in photosynthesis. Also targeted to the chloroplast and involved in 

photosynthesis is the photosystem I reaction center subunit V protein, also known as PSI-G. PSI-

G is part of photosystem I, an integral component of the electron transport chain in 

photosynthesis (Jensen et al., 2002). The ribulose bisphosphate carboxylase (RuBisCO) small 
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chain 1A protein was also identified in the screen (Table 2). RuBisCO small chain 1A combines 

with other subunits to comprise RuBisCO (Izumi et al., 2012), an enzyme involved in carbon 

fixation in photosynthesis. Contrary to the other chloroplast-targeted proteins, the At2g24020 

gene encodes a chloroplast protein not thought to be involved in photosynthesis. At2g24020 was 

isolated from prey vectors from both the first and second screen and encodes an uncharacterized 

protein. 

The Arabidopsis Information Resource, TAIR (http://www.arabidopsis.org/), was used to 

analyze expression of these proteins using expressed sequence tags (ESTs). ESTs are short 

sequences (200-800 nucleotides) derived from cDNA libraries that can give an indication of the 

relative expression of genes (Nagaraj et al., 2006). Because photosynthesis is such an important 

process for the plant, proteins involved with photosynthesis pathways tend to have high 

expression rates. EST analysis revealed that the chlorophyll a-b binding proteins 1, 2, and 3 are 

represented in the database by 17332, 1911, and 1814 ESTs, respectively, indicating that they are 

relatively highly expressed genes, with chlorophyll a-b binding protein 1 expressed the highest. 

PSI-G has 2486 EST hits, and RuBisCO small chain 1A has 29560 ESTs, which makes sense 

given that RuBisCO is one of the most highly expressed proteins in plants. The large number of 

ESTs for these proteins suggests that they are highly expressed and thus may comprise a 

disproportionate number of cDNAs in the prey library. Additionally, these proteins involved in 

photosynthesis are generally well-characterized and no involvement with starch degradation has 

yet been reported. For these reasons, the interaction observed between these proteins and BAM2 

may have been due to their high numbers in the cDNA library of prey plasmids, although false 

positive testing is needed before any can be eliminated.  

http://www.arabidopsis.org/
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As opposed to the proteins involved in photosynthesis, At2g24020 is represented by only 

48 ESTs, indicating that it has a much lower relative expression and thus was likely represented 

in the cDNA library of prey plasmids fewer times. The fact that At2g24020 was isolated nine 

separate times across the two screens, combined with the lower number of ESTs, makes 

At2g24020 an interesting potential interaction partner for BAM2. Zybailov et al. (2008) 

identified the At2g24020 protein in the chloroplast proteome and reported that the protein had 

182 amino acids including the chloroplast transit peptide, but the protein is uncharacterized so its 

structure and function are unknown.  

A potential structure for the At2g24020 protein was obtained by submitting the amino acid 

sequence to Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) to generate a 

homology model (Figure 5). Phyre2 predicted the structure of the At2g24020 protein to be 

similar to that of the uncharacterized protein hp0035 from Helicobacter pylori, which is a small 

protein composed of two alpha helices. The model generated by Phyre2 covered 50%, or 91 

residues, of the At2g24020 protein, with 100% confidence. Though false positive testing has not 

yet been done for the At2g24020 vector, it is possible that the At2g24020 protein represents a 

novel protein involved in starch metabolism. Therefore, the At2g24020 protein is of interest. 

 From the cDNA library screens, sequenced prey vectors also revealed several genes for 

proteins that were not localized to the chloroplast (Table 2). While most have not been tested for 

being false positives, it is possible that these proteins are still pertinent. The prey proteins not 

predicted to be plastid-localized may interact with BAM2 before BAM2 is translocated to the 

chloroplast in the cell. Additionally, because targeting-peptide prediction is only a prediction, it 

is possible that some of the identified proteins do not have a detected transit peptide but are still 

targeted to the chloroplast and thus may still have a true interaction with BAM2. However, it 
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Figure 5. Phyre2-generated model of the At2g24020 protein. 

 

would not be surprising if many of these proteins are shown to be false positives as about 50% of 

prey plasmids are typically eliminated as false positives via retransformation (Tian et al., 2012).  

 BAM2 is a conserved gene encoding a protein whose function is unknown. In this yeast 

two-hybrid experiment, we screened a cDNA library of prey plasmids for proteins that BAM2 

might interact with, potentially as part of BAM2’s hypothesized role in regulating some aspect of 

starch metabolism. We identified several proteins encoded by potentially- interacting prey 

vectors, including several targeted to the chloroplast. Of the prey proteins that were plastid-
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localized, most were involved in photosynthesis; however, one was an uncharacterized protein 

and thus may represent a new protein involved in starch metabolism. Additionally, there are still 

a few remaining prey plasmids that need to be sequenced. In addition to the merits of 

contributing to elucidating the function of BAM2, this project involved significant protocol 

development. Through this project, the protocol for yeast two-hybridization has been optimized 

and can now be used to study the other BAM proteins that are potentially regulatory, BAM4 and 

BAM9. Further work in this project will consist of conducting further false positive testing. Once 

false positives have been eliminated, remaining interaction(s) will be further verified by 

overexpressing the prey protein(s) and conducting additional biochemical analysis to validate 

their role in regulating starch metabolism. 
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