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Abstract 

The reflexive response and perception of pain (nociception) is an evolutionarily 

conserved process in animals. Pain can be a major health concern and current treatments often 

prove insufficient, especially in regards to chronic pain. Greater understanding of the molecular 

processes underlying pain sensation could lead to new and more effective treatments. The aim of 

this study is to investigate the molecular mechanisms of cold nociception in Drosophila 

melanogaster. A specific subset of peripheral sensory neurons (Class III dendritic arborization 

(da) neurons), are implicated in Drosophila larvae’s response to noxious cold.   

 Previous literature has associated a family of gap junction protein, termed Innexins, to be 

responsible for various roles in the structure of the central nervous system and the giant fiber 

system in Drosophila. It is unknown if the Innexin family also functions in the Peripheral 

Nervous System (PNS).  

This study focused on Innexin family members as potential mediators of noxious cold-

evoked sensory behavior within multidendritic neurons of the PNS. A cold behavioral assay was 

used to investigate the role of two innexin family member genes: ogre and shaking-B. The 

analyses revealed that Shaking-B may be required for nociceptors to react properly to a cold 

stimulus. Ogre was revealed to have an apparent inverse effect, in which Drosophila larvae 

responded more strongly to a cold stimulus when lacking the gene producct. These studies 

indicate that Innexins probably do play a role in the peripheral nervous system and in reacting to 

noxious cold stimuli.  
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Background and Significance 

Introduction 

Nociception refers to an organism’s perception and reaction to potentially damaging 

noxious stimuli. Nociception is clearly beneficial, but debilitating chronic pain occurs in humans 

when pain signals abnormally persist months after any form of trauma, injury, or infection 

(NINDS 2015). Due to the lack of understanding behind the perpetuation of chronic pain, 

understanding the mechanisms underlying neuropathic pain has become very important (Mogil 

2004). Better understanding of nociceptive processes should aid in developing treatments for 

chronic pain.  Evolutionary similarities between mammalian and Drosophila nociception makes 

the fruit fly an ideal organism to study the molecular components of nociceptor neurons.  

Model System: Drosophila Nociception 

Drosophila larvae have two primary types of peripheral sensory neurons: Type I and 

Type II. Type I neurons innervate bristle and chordotonal sensory organs on the external surface; 

presumably, they are associated with mechanosensory function, such as an external light touch 

(Im and Galko 2011). Type II peripheral sensory neurons are also known as dendritic 

arborization (da) sensory neurons, or multidendritic sensory neurons (Fig. 1; Im and Galko 

2011). These da neurons have naked dendritic projections that extend to nearly every cell in the 

epidermis of the larva. The naked dendritic extensions found in da neurons for Drosophila are 

structurally similar to mammalian nociceptors. These da neurons play a role in sensing various 

noxious stimuli including extreme heat or cold and strong touch (Tracey et al. 2003; Zhong et al. 

2010; Sulkowski et al. 2011; Armengol, 2015; Williamson, 2015).  
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The da neurons within Drosophila are classified into four subgroups (Fig. 1). Each 

subgroup is categorized based on the amount of branching, and the group class number increases 

with the complexity of the branching of the naked dendrites. The projections of these da neurons 

can function as nociceptors, as they are found underneath the epidermis and are both structurally 

and functionally similar to that of vertebrate nociceptors. Each class of da neurons is responsible 

for different nociceptive functions for different noxious situations. For example, class IV da 

neurons are found to be responsible for several nocifensive responses (Tracey et al. 2003; 

Hwang et al. 2007). It is still unknown whether each neuronal class has its own particular 

nociceptive function or whether each class makes a slight contribution to the perception of each 

modality (Im and Galko 2011). However, studies performed in Daniel Cox’s lab implicate Class 

Figure 1. The four classes of peripheral neurons, which are known as dendritic arborization 

(da) neurons, matched with their functional role in nociceptive responses. The classes are 

grouped by the increasing complexity of their dendritic arborizations. Response to noxious 

cold is mediated primarily by Class III da neurons (Armegol, 2015). In this study, RNAi was 

expressed in all of the da neurons. (Figure is personal communication from Dan Cox and is 

based on a figure in Sullivan, et al. 2013). 
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III da neurons as primarily responsible for cold nociception (personal communication; 

Armengol, 2015). 

In response to noxious cold temperatures, the reflex of the Drosophila larvae is to cringe, 

(Fig 2). The normal temperature range for Drosophila ranges between 19oC-29oC. The 

characteristic of ‘cringe’ behavior begins when temperatures reach 10oC (Armengol, 2015). 

Maximum ‘cringing’ of larvae occurs consistently at 6oC.  Changes in this cringe behavior can 

be assessed to determine the requirement of a gene’s function in larvae in which the function of 

the gene has been knocked-down. By quantifying the length of the larva over time, the extent of 

cringing for a mutant can be compared to that of a control. The less a larvae cringes during a 

behavioral assay, the more likely the gene product being studied is involved in cold nociception.  

        

 

  

Figure 2. Drosophila third instar larva’s response to noxious cold observable by the 

contraction of their body. A) Wild type larval behavior when exposed to a temperature of 

25.6oC. B) When exposed to noxious cold, wild type larvae exhibiting a contraction in 

body length: the ‘cringing’ behavior. From Sullivan, et al. (2013). 
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Drosophila Cold Nociception: Molecular Contributors 

For an organism to sense and respond to noxious stimuli, the epithelium must have 

nociceptors that detect the stimulus then propagate the signal. This signal is then transferred 

through the nervous system to responsive motor neurons and also the brain. By using reverse 

genetic screening (see Methodology and Experimental Approach below) molecules that function 

in cold nociception can be identified. Ben Williamson (Williamson 2015; S. R. Halsell 

unpublished) focused on the role of degenerate epithelial sodium channels (DEG/NaC) family 

members within class III da neurons. Three members of the pickpocket family were identified as 

partially responsible for transduction (ppk23) and propagation (ppk12 and ppk25) of noxious 

cold stimulation in class III da neurons (Williamson 2015). This study focuses on the synaptic 

transmission and continuation of the electrical signal caused as a result of noxious cold. One 

candidate class of molecules that may play a role in the transmission of electric signals are 

Innexins. 

Drosophila Innexin Gap Proteins  

Innexins are protein trans-membrane structures that create gap junctions in invertebrates. The 

structure of these gap junction proteins are conserved in humans, found in proteins called 

Connexins (Phelan and Starich 2001).  There are eight innexin genes known in Drosophila (Fig 

3; Bauer et al. 2005), and functions have been identified by mutant analysis for innexin 1 (ogre), 

innexin 2 (kropf), innexin 4 (zero population growth) and innexin 8 (shaking-B) (Bauer et al 

2005).  Kropf functions during embryonic gut formation (Bauer et al. 2002)  and with zero 

population growth is required in differentiating germ cells (Tazuke et al. 2002).  Of particular 
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interest for this study are the Ogre and Shaking-B functions within the nervous system (Lipshitz 

and Kankel, 1985; Krishnan et al. 1993; Phelan et al. 1996; Trimarchi and Murphey, 1997). 

Figure 3. Representations of the hypothesized structure of the eight known Innexins found in 

Drosophila.  This study focused on Ogre (Innexin 1) and Shaking-B (Innexin 8). Figure from 

Bauer et al. 2005 

Some Connexins in humans form electrical synapses in neurons. Such connections 

between neurons allows direct passage of an electrical signal across the synapse. This bypasses 

the need for chemical transmission at synapses between neurons and results in a faster 

transmission of a signal (Pereda 2014). This would be an ideal system for a nociceptive response 

because the nociceptor signal can be rapidly transmitted to subsequent neuron in the pathway. By 

analogy to vertebrate Connexins, Drosophila Innexins could function similarly in the PNS. In 

fact, previous research analyzing Innexin function in the Drosophila Central Nervous System 
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revealed its requirement in the Giant Fiber System (GFS). This pathway mediates escape 

behavior in a fly, and inhibition of Shaking-B (Innexin 8) caused a lack of escape behavior in 

flies in response to light stimuli (Krishnan et al. 1993; Phelan et al. 1996).  It is required also in 

additional flight responses outside of the GFS (Trimarchi and Murphey 1997). 

Drosophila Cold Nociception: Specific Gene Targets for Study 

This study examined two Innexins to determine whether or not any member of the 

Drosophila innexin family functions during cold nociception. Dr. Halsell’s lab will continue to 

screen the rest of the Innexins in the future. The Innexin known as Ogre (Optic Ganglion 

Reduced, Innexin 1) has been determined in previous research to be a gene essential for 

postembryonic neurogenesis (Lipshitz and Kankel 1985; Holcroft et al. 2013). This stage of 

neurogenesis begins in the early larva stage, where embryonic neuroblasts reactivate and divide 

into new adult specific neurons.  In a normal fly, this period of neurogenesis remodels the neural 

architecture to form the adult central nervous system. Flies lacking the Ogre gene were 

significantly smaller than their wild-type counterpart, the central neural architecture was highly 

disorganized, and the optic lobes were significantly smaller (Lipshitz and Kankel 1985). 

Previous research has identified that the loss of ogre function in surviving larva also leads to 

defective locomotor and sensory-motor activity. This behavioral failure of the mutant Drosophila 

is presumed to be a result of the failure of the adult nervous system to develop and is similar to 

defects seen in neural degeneration (Holcroft et al. 2013). The defective sensory-motor activity 

of mutants for ogre may thus prove to have an effect on the ability of the mutant to respond to 

noxious sensory stimuli, such as cold. The role of Ogre in postembryonic development of the 

nervous system suggests it is a good candidate for examining the mutant’s effect on a fly’s 

ability to react to noxious stimuli.  
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The second mutation that was studied is known as shaking-B (innexin 8), previously 

known as passover. This gene is constitutively expressed in the adult central nervous system and 

in pupa during Giant Fiber synapse formation (Krishnan et al 1993). The Giant Fiber System 

(GFS) in Drosophila transmits visual and mechanosensory information from the brain to the 

thorax. Drosophila lacking shaking-B also lack the escape behavior to visual stimuli (Krishnan et 

al. 1993; Phelan et al. 1996). Another study pinpointed the function of shaking-B in the GFS, 

determining that it was responsible for mediating the electrical, not chemical, synapses 

(Blagburn et al. 1999). It was also shown that shaking-B was responsible for mediating the 

electrical synapses in more than just the GFS. Mutant flies of shaking-B eliminated the electrical 

synapses between haltere afferents and a flight motorneuron, indicating that the expression of 

shaking-B may be required throughout the entire Drosophila nervous system for most electrical 

synapses (Trimarchi and Murphey 1997).  

In this study I examined whether Ogre and Shaking-B play a role in the mediation of 

electrical synapses in response to noxious cold. Due to previous research suggesting it was 

required in most electrical synapses, shaking-B was chosen as the best candidate from the 

Innexin family to have any impact on the larva’s nociceptive behavior. The cold behavioral assay 

would assist in determining if ogre and/or shaking-B play a role the da neurons of the Peripheral 

Nervous System.  Specifically, the effect of tissue specific down-regulation of ogre and shaking-

B gene expression on the larval cold behavioral response was studied. 
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Methodology and Experimental Approach 

Summary of Experimental Approach 

 This project aimed to determine any possible roles that Ogre (Innexin 1) and Shaking-B 

(Innexin 8) might play in cold nociception of Drosphila melanogaster. Gene expression of ogre 

or shaking-B was down-regulated in all da neuron classes. Cold-plate behavioral assays were 

performed on third instar larvae expressing RNAi for ogre and shaking-B. A functional role in 

cold nociception was determined by analysis of data obtained from the cold assays.  

Tissue Specific Expression of innexin RNAi Transgenes 

Experimentally induced RNA Interference (RNAi) can decrease or eliminate expression 

of endogenous mRNAs. Transgenic RNAi lines for ogre and shaking-B are available from the 

Bloomington Drosophila Stock and Vienna Drosophila Resource Centers (Table 1). Tissue 

specific expression of these RNAi transgenes was driven in da neurons with the Gal-4/UAS 

system. The GAL4/UAS system is a tool developed to target gene expression in Drosophila (Fig. 

4; Duffy 2002). This technique repurposes a Saccharomyces cervisiae gene expression system. 

The yeast GAL4 encodes an 881 amino acid protein that acts as an activator protein for galactose 

metabolism gene expression. GAL4 activates transcription of a target gene by binding the target 

genes upstream activating sequence (UAS; Fig. 4). In 1988, induced GAL4 expression was seen 

to be capable of stimulating the transcription of a gene associated with the UAS promotor in 

Drosophila and the GAL4/UAS system itself has no deleterious phenotypic effects (Duffy 2002). 

In this study, the genes downstream of the UAS are either ogre or shaking-B RNAi constructs.  
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Figure 4. The Drosophila UAS/Gal4 Expression system.  Transcription of the yeast 

GAL4 activator protein is controlled by Drosophila tissue specific regulatory elements.  

In turn, the GAL4 binds its UAS target. As a result, any UAS-transgenes present in the 

genome are expressed only in those specific cells.  Figure modified from Prübing, Voigt, 

and Schulz 2013. 

 

 

RNA interference evolved as a cellular system to protect cells against retrovirus infection 

(Obbard et al. 2009). Retroviruses inclue a double-stranded RNA as a phase in their infection 

cycle.  In order to prevent retroviral mRNA from being used to produce viral protein, cells have 

learned to recognize the double stranded (dsRNA) mRNA as a foreign body (Fig. 5). A protein 

called Dicer binds to dsRNAs and breaks them up into 20-base pair fragments called small 

interfering RNAs (siRNA) or micro RNAs (miRNA; Wilson and Doudna 2013).  A protein 

complex known as the RNA-induced silencing complex (RISC) then binds to individual si- or 

miRNAs and uses the fragmented RNA to complementary base pair endogenous mRNA. Once 

RISC complex binds the mRNA, the mRNA is targeted for degradation.  
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Experimentally, the endogenous RNAi mechanism can be used to study the knockdown 

effects of specific, individual genes.  In Drosophila RNAi transgenes specific for any gene can 

be generated (Perrimon et al. 2010). Using standard cloning techniques, the gene of interest is 

modified so ‘sticky ends’ RNA will be produced when it is expressed under the control a yeast 

UAS. These sticky ends will give rise to hairpin structures, thus creating double strand RNA 

recognized by Dicer. The RNAi transgenes are stably inserted into the Drosophila by standard 

procedures. When expressed under the control of a GAL-4 driver, these transgenes can down-

regulate wild type endogenous gene expression via the RNA interference pathway.  In this study, 

expression of the innexin RNAi transgenes was driven by a pan-da neuron GAL-4 driver 

construct, 21-7. This driver bears a Drosophila enhancer for expression in all four class of da 

Figure 5.  Mechanism of mRNA degradation by RNA interference.  In the cell double stranded 

RNAs are cleaved into small fragments by the Dicer protein.  The resulting small interfering (si) 

or micr (mi) RNAs complex with the proteins including Argonaute to form a RNA-induced 

silencing complex (RISC).  This complex complementary base pairs its target mRNA and leads 

to its degradation.  Figure taken from Perrimon et al. 2010. 
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neurons. This driver was chosen to ensure that only in da neurons would the RNAi construct be 

expressed, making the knock-out tissue specific. Flies of the appropriate 21-7 GAL-4; UAS-

innexin RNAi genotype will be generated by crossing and then examined in the cold behavioral 

assay (see Methods). 

It is important to note that this system only knocks down the expression of an innexin 

gene, and it does not necessarily completely eliminate expression of the gene. Therefore, some 

mRNA may still be able to produce a few working innexin channels. When analyzing the results, 

the fact that the gene may still retain some functionality must be taken into account when 

determining the significance of certain data. However, this study is a first step in determining 

whether or not innexins play a role in cold nociception, so any slight difference in larval cringe is 

significant to the study.  
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Methods 

Fruit Fly Husbandry and Crosses 

The 21-7 GAL- 4 stock was provided by Dan Cox from Georgia State University. RNAi 

stock was obtained from the Bloomington Drosophila Stock and Vienna Drosophila Resource 

Centers (Table 1).  Oregon-R was the wild type stock used to generate control larvae.  Stocks 

were maintained on standard molasses/cornmeal/yeast media at room temperature. Each stock 

was transferred weekly to maintain healthy flies. Most stocks were maintained at the smaller 

scale vial level.  However, 21-7 GAL4 homozygous flies and Oregon-R flies were be maintained 

at a large scale bottle level to facilitate virgin collection.  

 

 

Table 1.  Innexin RNAi Stocks 

innexin Gene Stock Identifier Genotype 

innexin 1 [ogre ] JF02595 (TRiP) y,v; +; UAS-ogre-IR 

innexin 8 [shaking-B 

(shakB)] JF02603 (TRiP) y,v; +; UAS-shakB-IR 

 GD24578 w; +; UAS-shakB-IR 

 

21-7 GAL4 virgin females were collected and crossed to UAS RNAi males.  All progeny 

of these crosses were heterozygous for the GAL-4 driver and the UAS-RNAi construct of 

interest.  These crosses generated the experimental larvae.  Control larvae were generated by 

crossing the UAS-RNAi line to Oregon-R, resulting in progeny flies lacking a driver for RNAi 

expression. Within twelve days from the initiation of the cross, third instar larva were seen on the 

sides of the vials. These larvae were collected for the cold behavioral assay. 
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Cold Behavioral Assay 

A thermocycler was repurposed for the behavioral assays (Figure 6). A wooden support 

beam was placed over the thermocycler to hold a Nikon 5200 digital camera mounted directly 

above. To reduce the amount of glare picked up by the video, a fiber optic light was placed 

behind the thermocyler at an angle to ensure that only the larva were visible when the lights were 

turned off. The wells of the thermocylcer are filled with water and the machine was set to 5oC. 

 

 

For each experimental trial, four larva from the same cross are transferred from the sides 

of the cross bottles to aluminum plates. The aluminum plates were spray-painted black to reduce 

any glare and make the larva more visible to the camera. A water bottle was used to mist the 

plate to keep it moist for the larva. Each larva was set up within a quadrant on the aluminum 

Figure 6. Experimental set up for the cold behavioral assays. Larvae were 

placed on a black metal plate and the plate was then placed on top of the 

chilled thermocycler block. Larval behavioral responses were video-

recorded with the Nikon Camera. 
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plate. Later, the computer would be able to determine each larva as an individual animal so long 

as they remained within one of each of the four quadrants on the plate.  

Once the larva were placed in their designated quadrant, the aluminum plate was placed 

on the cold section of the thermocycler. As soon as the plate made contact with the wells of the 

thermocycler, the camera started running on video mode. The cold temperature is transferred 

from the thermocycler to the metal plate, causing a sudden change in temperature in the 

environment of the larvae. This induced a cringe behavior in the larvae as the video was 

recording. The recorded videos were recorded for 45 seconds at 10 frames per second. The 

length of the videos were chosen to ensure that when the videos were quantified, there would be 

enough frame to accurately describe the cringing of the larva.  At least 100 larvae were assayed 

for each genotype. 

Digitization of Video and Quantification of Cringe Behavior 

Videos were initially downloaded in MOV format, and were converted into AVI with a 

size limit of 640 x 380 pixels. The AVI file is then compatible with the program Image J. A 

macro written by Ben Williamson of Dr. Halsell’s lab automated the image processing. First, the 

video was converted to greyscale. This significantly reduced any background glare not related to 

an actual larva.  Next, the Image J threshold function was applied twice in order to create a single 

silhouette of each larva against the background of the plate. This was a second method to reduce 

the influence of glare in the videos. By using the threshold function multiple times, the glare was 

sufficiently reduced so that the only the larval bodies was processed further. To quantify larval 

length the skeletonize function was applied to transform the larvae into linear forms.  Length was 

measured at the number of pixels in each line. This allowed the percent cringe for each larva to 

be calculated.  
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This numerical data was exported into an excel document then used to create a graph of 

percent cringe as a function of time. Percent cringe was calculated as follows. The longest length 

of the larva within the first second of the video was set as the baseline length of the larva. This 

baseline length was compared to each frame from the video later on of that same larva. Percent 

cringe was calculated by the difference between the baseline length and the length of the new 

frame divided by the baseline length of the larva. The percent cringe at each second was then 

averaged for about 100 larva sharing the same genotype. The averages were then plotted in line 

graph form to show the trend of cringe in larva of the same genotype.  

  

Figure 7. A visual representation using Image J to calculate percent cringe 

in single larvae. Panel A describes the process of taking the image from the 

raw video of a single larva and converting it into a linear form. Panel B 

shows the percent cringe calculated for a single larva after calculation from 

pixel data. Panel C displays the percent cringe of the larvae over 15 seconds.  

Figure from Williamson, 2015.  
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Results 

Cold Behavioral Assay 

 A cold behavioral assay was utilized to determine the functional role of Ogre and 

Shaking-B in the perception of noxious cold. Each Innexin was individually tested using RNAi 

to downregulate each gene in question. A negative control was run for each Innexin by crossing 

Oregon R stock to the flies with UAS paired to an RNAi template. 

d The average cringe response for all experimental and control larva was graphed over time 

(Figs. 7, 8). Therefore, any small change in the percent cringe may be important. The negative 

control cross (OR x UAS) was used to compare any abnormalities in the experimental cross 

(UAS x Driver) 

Results of Cold Assay: Ogre (Innexin 1) 

 The control larvae for ogre (innexin 1) depicted an exponential curve (r2 = 0.62) that 

eventually peaks around 27.4% average cringe at 5.2 seconds in the behavioral assay (Fig. 7).  

Thereafter, the amount of cringing gradually declined to 22.2% at 15 seconds. This curve 

represented the behavior in Drosophila with normally functioning Ogre. In contrast, the 

experimental larvae containing both the UAS RNAi complex and the Driver protein cringed 

25.1% at 5.2 seconds and peaked around 28.19% cringe at 7.8 seconds into the behavioral assay. 

Both the experimental and negative control larvae exhibited a similar trend in cringing until 6 

seconds after the larva are exposed to noxious cold. From there, the experimental larvae had a 

larger response (p=<0.001) than the negative control, which lasted for the remaining 9 seconds.  
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Figure 8. Cold behavioral assay results for ogre expressed as the average percent cringe over 

time. 80-100 larvae were used for each trial, while a cold temperature of 5°C was used as the 

stimulus. The red line represents the experimental larvae. The green line represents the control 

larvae. The data takes place for 15 seconds after direct contact with the cold stimulus. A t-test 

was done between the final frames of the experimental and wildtype curves (P<0.001) and 

represented as a bar graph. 

 

Results of Cold Assay: Shaking-B (Innexin 8) 

 Control larvae (green) for shaking-B (innexin 8) gave rise to an exponential curve 

(r2=0.80), and cringed 28.2% at five seconds and eventually exhibited a maximum cringe of 

33.5% at 8.9 seconds into the behavioral assay (Fig. 8). The wild type curve was used to depict 

the nociceptive levels of Drosophila with normally functioning shaking-B. In contrast, the larvae 

showed an average cringe of 23.9% at 5 seconds and a maximum cringe of 26.2% cringe at 8.9 
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Figure 9. Cold behavioral assay results for shaking-B expressed as the average percent cringe 

over time. 80-100 larvae were used for each trial, while a cold temperature of 5°C was used as 

the stimulus. The red line represents the experimental larvae. The green line represents the 

Control larvae. The data was collected for 15 seconds after direct contact with the cold stimulus. 

A t-test was done between the final frames of the experimental and wildtype curves (P<0.001) 

and represented as a bar graph.  

seconds. From the start of the assay to two seconds in, both experimental and wild type larvae 

exhibited a similar trend in percent cringe. The difference between the percent cringe for both 

datasets expands quickly from 2 seconds onward. Consistently thereafter, experimental larvae 

cringed less than the wild-type control larvae (p<0.001). 
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Discussion 

Interpretation of Experimental Results 

The Innexin family had been chosen as a focus of this study due to previous research 

demonstrating Ogre and Shaking-B played a role in the normal functioning of the central nervous 

system. Therefore, there was a chance that these Innexins could also have an important function 

in the peripheral nervous system. These two genes were down-regulated with RNAi transgenes 

to observe any effect on larval response to the nociception of cold. Any observationally 

significant inhibition in the cringing response from RNAi expression could be interpreted as the 

presence of a functional version of the gene being important for cold nociception. Statistical 

analysis will eventually be run for all results, in the form of a two-tailed t test.   

Cold Behavioral Assay 

While there was a change in the response of the experimental flies while compared to the 

wildtype, ogre flies displayed an unexpected response. Rather than having a diminished cringe 

due to the lack of Ogre, there was actually an enhanced cringe in the larva after 6 seconds. 

Therefore, we can see Ogre did effect the larva’s response to noxious cold, but instead of 

lowering the larva’s perception of the noxious stimuli, it increased the severity of their cringe 

response. This hyperalgesia displayed in only the experimental larva indicates that the down-

regulation of ogre may cause this behavior in the Drosophila larvae, making them more sensitive 

to the noxious stimuli.  One hypothesis for why this may be the case is that in Drosophila with 

normal levels of Ogre, the protein product acts as a negative feedback system and actually helps 

to regulate the response of the larva to noxious stimuli. Another hypothesis for this unexpected 

result would be that there was something in the genetic background of the UAS-ogre RNAi line 

caused a diminished response from the wild-type cross, making the experimental larvae seem to 
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have a higher cringe in comparison. A second experimental assay identical to this one with a 

different UAS-ogre RNAi line might be able to differentiate between these two possibilities. 

 The results for Shaking-B showed a more expected trend. When graphed with the 

experimental cross, the control displayed a higher average percent cringe than the experimental. 

This trend indicated that the down-regulation of shaking-B resulted in an inhibition of normal 

cringe response to noxious cold. Previous research had determined that a loss-of-function for 

shaking-B in Drosophila resulted in a lack of synapse formation and electrical signal 

transmission in the central nervous system (Trimarchi and Murphey 1997; Blagburn et al. 1999). 

It can be inferred, due to the results of this study, that this lack of electrical synapse function may 

also inhibit the larval response to noxious cold stimuli.  

Future Directions 

Due to the fact that Ogre provided unexpected results, it should be studied in further 

detail with possibly more RNAi constructs. This would help to determine if Ogre really does act 

as a negative feedback system for nociception, and rule out other reasons for this unexpected 

result.  To further expand on the research done with both Ogre and Shaking-B, the complete loss 

of function of each of these genes could be studied to complement this study. This study only 

focused on two Innexins; there are six other Innexins that can be studied. Further research could 

be done by determining if any of the rest of the Innexins play a role in cold nociception in 

Drosophila larva.  
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Significance 

This study had determined that the Shaking-B and Ogre maybe involved in noxious cold 

detection. Previous studies had only linked these two to the central nervous system and giant 

fiber system, respectively. However, this study indicates they may play a further role in other 

parts of the nervous system in Drosophila. By understanding the role of these Innexins further in 

nociception, the understanding of the molecular components behind nociception increases and 

may lead to new potential targets for the treatment of chronic pain.  
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