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Abstract 

 

 Understanding a speech signal is reliant on the ability of the auditory system to 

accurately encode rapidly changing spectral and temporal cues over time.  Evidence from 

behavioral studies in humans suggests that relatively poor temporal fine structure (TFS) 

encoding ability is correlated with poorer performance on speech understanding tasks in quiet 

and in noise.  Electroencephalography, including measurement of the frequency-following 

response, has been used to assess the human central auditory nervous system’s ability to 

encode temporal patterns in steady-state and dynamic tonal stimuli and short syllables.  To 

date, the FFR has been used to investigate the accuracy of phase-locked auditory encoding of 

various stimuli, however, no study has demonstrated an FFR evoked by dynamic TFS 

contained in the modulating frequency content of a carrier tone.  Furthermore, the 

relationship between a physiological representation of TFS encoding and either behavioral 

perception or speech-in-noise understanding has not been studied.  The present study 

investigated the feasibility of eliciting FFRs in young, normal-hearing listeners using 

frequency-modulated (FM) tones, which contain TFS.  Brainstem responses were compared 

to the behavioral detection of frequency modulation as well as speech-in-noise 

understanding.  FFRs in response to FM tones were obtained from all listeners, indicating a 

reliable measurement of TFS encoding within the brainstem.  FFRs were more accurate at 

lower carrier frequencies and at shallower FM depths.  FM detection ability was consistent 

with previously reported findings in normal-hearing listeners.  In the present study, however, 

FFR accuracy was not predictive of behavioral performance.  Additionally, FFR accuracy 
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was not predictive of speech-in-noise understanding.  Further investigation of brainstem 

encoding of TFS may reveal a stronger brain-behavior relationship across an age continuum.  



 

Chapter I 

Review of Literature 

Introduction 

Auditory evoked potentials have long been used in scientific and clinical settings to 

study and to assess the encoding of various properties of sound within the mammalian inner 

ear and central auditory pathway.  The recorded periodic stimulation of the outer hair cells of 

the cochlea (Withnell, 2001) and the phase-locked neural firings of both single-units (Kiang, 

Watanabe, Thomas, & Clark,1965) and populations of auditory nerves (Young & Sachs, 

1979) indicate that the auditory system is capable of processing signals containing high-rate 

fluctuations over time.   

The frequency-following response (FFR) is a measurable auditory evoked potential in 

humans that can illustrate the neural firings within brainstem nuclei in response to the 

temporal quality of the auditory stimulus (Worden & Marsh, 1968).  In other words, the FFR 

can reflect a phase-locked neural representation of an acoustic stimulus.  Though the FFR has 

been elicited with a variety of static (e.g., tones) and dynamic acoustic stimuli (e.g., 

consonant-vowel stimuli), fewer papers have focused on the ability of the FFR to represent 

stimuli with dynamic frequency content, or fine structure that changes in frequency.  Here we 

assess the feasibility of evoking FFRs using FM tones, which contain dynamic frequency 

content.  In addition, we investigated the relationship between the accuracy of the FFR to 

such stimuli and the perception of frequency modulation.  Finally, the relationship between 

the physiological and behavioral responses to this fine temporal information and the ability to 

accurately understand SIN has yet to be explored.   
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If feasible, the FFR in response to a sound whose TFS varies in frequency (i.e., an 

FM tone) could extend the utility of this auditory evoked potential in the experimental 

setting, offering additional insight into the effects of numerous variables (e.g., age and 

hearing loss) on TFS encoding.  Furthermore, establishing the presence or absence of a 

relationship between physiologic encoding of TFS and SIN understanding could support the 

use of TFS processing in cochlear implants. 

Temporal envelope vs.  temporal fine structure 

The auditory system, from the cochlea to the auditory cortex, processes sound, in 

part, along the time domain.  Complex signals such as speech typically contain multiple 

temporal characteristics, which include temporal envelope, periodicity, and TFS.  Within the 

frequency channels of the cochlea, temporal cues are present in either the patterns of neural 

firings synchronized to a certain period of the stimulus (TFS encoding via neural phase-

locking), or in the lower-rate fluctuations of these firing patterns (envelope fluctuations).  

Envelope amplitude fluctuations in the range of 2-50 Hz primarily provide the cues to the 

manner of articulation, which aids in determining the presence of voicing.  The high-rate 

frequency content of TFS (600-10,000 Hz) may be observed within the envelope of a speech 

signal (Rosen, 1992).  For example, if an amplitude-modulated tone had a carrier frequency 

of 500 Hz and a modulation rate of 10 Hz, the fine structure would be the oscillations within 

the envelope – 500 Hz.  Within a speech signal, TFS often contributes to the recognizable 

formant patterns that distinguish vowels The formants provide segmental cues to the 

identification of the place of articulation of consonants and the dynamic characteristics of 

neighboring vowels; the interaction between the two helps to identify the spoken word.  
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Accurate processing of these cues allows for phonetic discrimination based on formant 

transitions.   

Temporal fine structure processing is related to speech-in-noise  

understanding 

It is well established that the normal auditory system utilizes, in part, temporal cues 

within a speech signal (i.e., envelope and TFS) to encode the signal in both quiet and in noise 

(see Moore, 2008 for review).  Several different approaches have been taken to investigate 

the role of TFS processing in the understanding of speech in quiet and in noise.  Previous 

studies have compared listener performance on psychoacoustical tasks in which thresholds 

are based on TFS processing to SIN test scores, while others have more directly assessed 

speech-in-noise (SIN) understanding in conditions in which the TFS of the signal has been 

isolated or altered.   

 Many psychoacoustical approaches to measuring TFS processing ability in normal-

hearing and hearing-impaired listeners have used stimuli designed to target specific auditory 

mechanisms important for TFS encoding (i.e., phase-locking).  Buss, Hall, & Grose (2004) 

investigated the relationship between TFS processing and speech understanding by 

comparing FM detection limens (FMDLs) and speech recognition in quiet using filtered (i.e., 

low-pass filtered at 1800 Hz) and unfiltered speech.  FM stimuli with carrier frequencies of 

500 and 1000 Hz were frequency modulated at a slow rate (2 Hz), with the expectation that 

these stimulus parameters were best represented by phase-locked neural activity.  When 

hearing thresholds were controlled for statistically, significant correlations were found 

between FM detection limens for a 1000 Hz carrier tone and for filtered and unfiltered 
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speech understanding.  The results of this study suggest that TFS processing, as reflected by 

frequency modulation detection limens, are related to speech understanding.   

 Strelcyk and Dau (2009) assessed binaural unmasking and lateralization in response 

to phase differences in dichotically presented tones in order to investigate TFS processing in 

normal hearing and hearing impaired listeners.  FM and speech detection tasks similar to 

those in Buss et al., (2004) were also used, though various maskers were presented to 

interfere with speech while FM stimuli were sometimes presented in noise or in both ears.  

The authors found that better TFS processing ability was correlated with improved SIN 

understanding.  These results suggest that TFS processing plays an important role in SIN 

understanding for listeners with and without normal hearing thresholds.   

 More direct methods of establishing the importance of TFS processing in speech 

perception include alterations of a speech signal that isolate or otherwise manipulate the 

temporal qualities of the stimulus.  Using Hilbert transforms several authors have separated 

the envelope and fine structure components of speech stimuli, allowing for the two to be 

altered or presented separately.  In quiet and with adequate training, no difference was 

observed in speech understanding ability for normal-hearing listeners who were provided 

with only either the envelope or TFS components of the speech signal (Lorenzi, Gilbert, 

Carn, Garnier, & Moore, 2006).  This finding suggests that TFS information alone provides 

sufficient information for speech understanding in quiet.  In noise, TFS cues contribute to 

understanding speech, specifically when the background interferer is modulated in amplitude 

(Hopkins & Moore, 2008).  It is thought that TFS cues present in the “dips” (i.e., periods of 

low amplitude) in noise aid in improving the short-term signal-to-noise ratios (SNR) of the 
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signal.  This model was supported by Drennan, Won, Dasika, and Rubinstein (2007), who 

used the Hilbert transform technique to randomize the TFS within speech stimuli.  As the 

fine structure moved along a continuum from being unaltered to being completely 

randomized, understanding of speech in the presence of background noise was diminished as 

the degree of randomized fine structure increased.  Together, these studies demonstrate that 

the TFS components of speech play an important role in the understanding of speech in both 

quiet and in noise.   

Behavioral frequency modulation detection 

In order to ensure the validity of using particular stimuli (i.e., FM tones) in studies of 

TFS processing, the parameters of these stimuli must be designed to target the temporal 

mechanisms of the auditory system.  Multiple studies have addressed whether temporal (e.g., 

phase locking) or rate-place coding more greatly influence FMDLs.  These studies have 

examined the effects of various stimulus parameters (e.g., carrier frequency and frequency 

modulation rate) to see if performance agrees with temporal or rate-place models.  In a series 

of studies investigating FM detection, Moore and Sek (1995, 1996) and Sek and Moore 

(1995) reported worsened FMDLs compared to amplitude modulation (AM) detection when 

FM rate was increased for carrier frequencies below 4 kHz.  At higher carrier frequencies 

(i.e., 6 kHz), FM and AM detection were similarly affected by FM rate.  These findings 

suggest that FM detection can be achieved through either place and/or temporal coding in the 

auditory system, and that the influence of one mechanism instead of the other was 

determined by modulation rate and carrier frequency.  Behavioral FMDLs were most like 
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those predicted by temporal coding when the carrier frequency was low (e.g., 500 and 1000 

Hz) and the frequency modulation rate was also low (i.e., 2 Hz).   

Moore and Sek (1996) further investigated the roles for temporal and place coding in 

FM detection by testing the effect of added amplitude modulation (AM) on FMDLs.  Added 

AM disrupted excitation-pattern cues and resulted in increased (poorer) FMDLs in conditions 

in which place coding was thought to be dominant.  At carrier frequencies below 4 kHz and 

at FM rates below 10 Hz, the effect of AM was diminished, suggesting that temporal cues 

were more dominant.  These findings were supported by Ernst and Moore (2010), who 

investigated similar interactions between FM rate, carrier frequency, and AM.  The authors 

reported a greater effect of AM at higher FM rates (e.g., 10 Hz) when the carrier frequency 

was either 1 or 4 kHz, suggesting that rate-place cues were more responsible for processing 

stimuli with these parameters.  Additionally, the disruptive effects of AM were diminished 

when stimuli were presented at 20 dB SL compared to 60 dB SL.  It is possible that 

sharpened tuning occurring at the relatively low presentation level improved place coding 

and weakened phase-locking, resulting in similar thresholds across a range of modulation 

rates.   

Although multiple studies have indicated that behavioral FM detection at low FM 

rates (< 5 Hz) and low carrier frequencies (≤1000 Hz) is likely facilitated by a temporal, 

phase-locking mechanism, no study has compared the behavioral detection of FM to its 

physiological representation in the same individual.  Further, no data have been published 

regarding the neural representation of a FM tone in humans. 
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Neural representation of temporal encoding within the auditory system 

Recordings of single-unit and population auditory nerve fibers have shown that the 

auditory nerve is capable of encoding TFS information via neural phase-locking (Kiang et 

al., 1965; Young & Sachs, 1979).  In humans, the FFR is an AEP that may be recorded from 

the scalp and reflects phase-locked neural activity from neural populations within the upper 

brainstem (Worden & Marsh, 1968, Smith, Marsh, & Brown 1975).  The inferior colliculus is 

believed to be the primary neural generator of the FFR recorded in humans, although other 

brainstem sub nuclei also generate FFRs (Smith et al., 1975).  Since its discovery, studies 

have investigated the accuracy of the FFR in recording the temporal encoding of static or 

time-variant tonal or speech-like stimuli.   

Early investigations of the FFR found that the response could be elicited by tone 

bursts and long-duration tones (Worden & Marsh, 1968; Glaser et al., 1976), with response 

limits of about 70-1500 Hz and thresholds of 40 dB sensation level (Glaser, Suter, Dasheiff, 

& Golderberg, 1976).  More recent evidence has shown that the FFR is capable of reflecting 

the underlying neural activity occurring during the encoding of steady-state tonal complexes 

and speech-like stimuli (Bidelman & Krishnan, 2011), time-variant tonal and speech stimuli 

(Krishnan & Parkinson, 2000), synthetic consonant-vowels (Plyler & Ananthanarayan, 2001; 

Johnson, Nicol, & Kraus, 2005), synthetic speech with Mandarin tone contours (Krishnan, 

Xu, Gandour, & Cariani, 2004; Krishnan & Gandour, 2009) , and iterated ripple noise with 

Mandarin pitch contours (Swaminathan, Krishnan, & Gandour, 2008; Krishnan, Gandour, 

Bidelman, & Swaminathan, 2009).   
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Krishnan and Parkinson (2000) demonstrated that the FFR is capable of accurately 

following tones that rise or fall steadily in frequency.  The response, however, was not 

equivalent for sweeps in both directions, and stimuli that had frequency content that was 

increasing, or rising, had more robust responses, presumably because of better neural 

synchrony.  Plyler and Ananthanarayan (2001) used several synthetic consonant-vowel 

speech stimuli with varying degrees of upward or downward frequency sweeps as a second 

formant.  In normal-hearing listeners, the FFR faithfully encoded the frequency content of 

the formant transitions, suggesting that the response was capable of exhibiting the neural 

representation of dynamic speech stimuli within the brainstem.  Using four similar Mandarin 

Chinese lexical tones containing individually distinct time-varying fundamental frequencies, 

Krishnan and Gandour (2009) found that the FFR was capable of following the fundamental-

frequency tone contours inherent in some Mandarin speech syllables.   

Neural encoding and the behavioral perception of sound 

 Several studies have investigated the relationships between the neural encoding and 

behavioral perception of numerous stimuli.  Many of these studies reported significant 

correlations between the FFR and perception.  It was therefore a purpose of the present study 

to investigate the possible relationship between the FFR elicited by FM tones and the 

behavioral detection of frequency modulation as well as SIN understanding.   

Aiken, LeClair, & Kiefte (2011) measured FFRs in response to dual tone multi-

frequency (DTMF) signals, which contained two tonal partials that created a perceivable 

pitch and compared these responses to subjects’ ability to match the pitch of DTMF signals 

to a pure tone.  FFR spectra were analyzed to determine if the frequency of the matched pure 
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tone was emphasized.  Across subjects, the identified pitch typically fell close to one of the 

two partials of the DTMF and the frequencies of the two partials were present in the FFR 

spectra.  While the neural representation and behavioral identification of the two partials 

were not correlated, there was clearly demonstrable association between the FFRs and pitch 

perception.   

 Krishnan and colleagues (Bidelman & Krishnan, 2011; Krishnan, Bidelman, Smalt, 

Ananthakrishnan, & Gandour, 2012) investigated the pre-attentive, sub-cortical encoding of 

sounds with pitch qualities that could be behaviorally discriminated.  Using three-tone 

complexes resembling musical triads, Bidelman and Krishnan (2011) demonstrated a positive 

correlation between the reported musical consonance of a triad and the amplitude of the FFR 

to the corresponding complex.  Krishnan et al.  (2012) used iterated rippled noises (IRNs) to 

compare pitch discrimination ability with sub-cortical and cortical neural encoding.  IRNs are 

comprised of multiple Gaussian noises added periodically, which contribute to a salient pitch.  

The study revealed that the behavioral discrimination of IRN pitch could be predicted by 

analysis of the neural encoding of IRNs within the brainstem and auditory cortex.  

Additionally, both pitch discrimination performance and FFR magnitude improved with 

increased IRN pitch saliency.   

 To investigate the role of subcortical neural encoding of sound on the perception of 

speech, Kraus and colleagues have used synthetic /da/ speech stimuli to compare the 

physiological and behavioral responses of children with learning problems to those of normal 

children (see Skoe & Kraus, 2010 and Johnson et al., 2005 for review).  These studies have 

used a /da/ syllable as a stimulus means of measuring two separate brainstem responses.  The 
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onset burst of the consonant of the stimulus elicits an onset neural response with 

morphological landmarks similar to click and tone-evoked auditory brainstem responses.  

The long-duration vowel component contains a formant structure that elicits an FFR with 

spectral emphasis at the fundamental frequency and its harmonics.  The /da/-evoked stimulus 

was determined to be reliably obtained from normal hearing children and appeared to 

faithfully reflect the acoustic properties of the stimulus (Russo, Nicol, Musacchia, & Kraus, 

2004).  Cunningham, Nicol, Zecker, Bradlow, & Kraus (2001) reported that the FFR to the 

/da/ in silence was similar for normal and learning impaired listeners.  When the /da/ was 

presented in noise, the stimulus-to-response correlations of the FFR were significantly 

reduced in learning impaired children but remained stable in normal children.  This 

degradation of the FFR due to noise was well correlated with SIN performances of the two 

groups of listeners.  Using a similar test paradigm, King, Warrier, Hayes, & Kraus (2002) 

later reported increased latencies of the FFR response to /da/ in children with learning 

impairment.  In normal hearing adults, the FFR in response to /da/ was compared to SIN 

understanding using the QuickSIN test.  Listeners who performed more poorly on the 

QuickSIN demonstrated greater degradation of the fundamental frequency component of the 

FFR when the /da/ was presented in noise (Song, Skoe, Banai, & Kraus, 2011).   

Purpose 

The majority of FFR studies that have used dynamic frequency content have focused 

on the encoding of fundamental-frequencies; few have examined the neural representation of 

dynamic TFS that has changing frequency content (i.e., frequency modulation).  The present 

study investigated the feasibility of measuring the FFR in response to frequency-modulated 



 
 

 
 
 

 

 

11 

tones, thereby measuring the phase-locked neural encoding of TFS within the brainstem.  A 

brain-behavior relationship was investigated by comparing the physiologic response to FM 

tones with behavioral detection and SIN understanding.  A low-rate FM detection task was 

chosen to assess TFS processing ability, which would be analyzed beside results from a 

clinical SIN test.  These measures were then analyzed to determine if correlations existed 

between the neural response and either behavioral thresholds of TFS processing or SIN 

understanding.  Hypotheses for the current study included: 

1) Measurable frequency-following responses will be elicited by FM tones and will 

reflect the neural representation of the TFS of the stimuli.   

2) The degree of neural representation of frequency modulation reflected by the 

frequency-following response will be significantly correlated with behavioral 

frequency modulation detection limens.  Individuals whose frequency-following 

responses are more robust and have higher (better) stimulus-to-response correlation 

will demonstrate better (smaller) detection limens.   

3) Performance on the QuickSIN test will be significantly correlated with both 

behavioral frequency modulation detection limens and the neural representation of 

FM tones.  Individuals who demonstrate better SIN understanding will have better 

(smaller) FMDLs and produce more robust FFRs with greater correlation to the 

eliciting stimuli  



 

Chapter II 

Methods 

Subjects 

21 subjects (ages 21-40[mean = 30.33, SD = 6.82]) were recruited to participate in 

both behavioral and physiology-based conditions.  All subjects had clinically normal 

behavioral pure tone thresholds (thresholds < 25 dB HL at octave frequencies 250 – 8000 

Hz) with normal tympanometric findings and no history of chronic otologic pathology.  

Subjects were recruited if they met the age criteria of being 21 to 40 years old.  Additional 

inclusion criteria included each subject being a native, monolingual English speaker with no 

extended duration of musical training.  Current use of prescription medications for uses such 

as sleep, seizures, memory, attention, or mood was an exclusion criterion.  Testing for all 

procedures was performed in a double-walled, sound-treated booth.  All procedures had prior 

approval by the institutional review board at James Madison University.  Subjects 

participated in one session of approximately four hours. 

Stimuli 

Similar stimuli were used for both the behavioral FMDL and physiological FFR 

conditions.  Tone bursts were presented at 80 dB SPL to the right ear via an Etymotic 

Research ER-3A insert earphone and had a carrier frequency of either 500 Hz or 1000 Hz.  

For the FMDL procedure, tones had duration of 1000 ms, including 15 ms rise and fall times 

with a Hanning envelope, and a frequency modulation rate of 2 Hz.  These 1000 ms stimuli 

contained two complete cycles of frequency modulation.  For the electrophysiologic 

procedure, stimuli of 500 ms duration including 15 ms rise and fall times were used; these 

500 ms tone bursts contained one complete cycle of frequency modulation.   
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Calibration of stimulus level was performed using a Larson Davis Model 824 sound 

level meter with a one-half inch microphone and a 2 cc coupler.  For FMDL and FFR 

conditions, all stimuli were presented at 80 dB SPL. 

Behavioral procedure 

Stimuli used during FMDL task were routed through a Tucker Davis Technologies 

attenuator (TDT PA4), mixer (TDT SM3) and headphone buffer (TDT HB6) to an ER3A 

earphone.  Stimuli presented during FMDL testing were created in a custom Matlab program.   

An FM detection task based on the methods used by Moore and Sek (1996) was used 

to assess FMDLs across all listeners.  Carrier frequencies of 500 and 1000 Hz were presented 

in two separate conditions in random order.  FMDLs were measured using an adaptive two-

interval, two-alternative forced-choice procedure with a two-down and one-up rule.  Each 

trial consisted of one unmodulated and one frequency-modulated pure tone, presented in 

random, sequential order.  Subjects were seated in front of a computer monitor, which 

featured a display of two boxes that corresponded to the presentation of the first and second 

intervals of the task.  For each trial, subjects were instructed to listen carefully to each 

stimulus and determine which one appeared to change over time (i.e., the pitch was perceived 

as modulating).  Subjects then mouse-clicked on the box that corresponded to the changing 

stimulus.  Feedback was provided in the form of the selected box illuminating green (correct 

selection) or red (incorrect selection).  An adaptive procedure regulated FM depth, which 

changed by a factor of 1.5 for the first four reversals, followed by changes by a factor of 1.26 

for the remaining reversals.  Each trial continued for twelve reversals.  Prior to the start of 

behavioral testing, an abbreviated training trial was completed to assess each subject’s 
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understanding of the behavioral task.  Subjects completed at least three separate trials under 

each stimulus condition (i.e., 500 Hz or 1000 Hz carrier frequency).  The order of the carrier 

frequency conditions was chosen randomly, and additional trials were completed if subject 

performance was variable.  Participants were encouraged to take breaks if their FMDLs or 

tracking functions became variable or they appeared fatigued.   

Electrophysiology procedure 

To examine a neural representation of the stimuli used in the behavioral task, FFRs 

were elicited by stimuli with similar parameters to those used for the FMDLs Four FFR 

conditions were recorded: 1) 500 Hz with 0.4% FM depth, 2) 500 Hz with 2% FM depth 3) 

1000 Hz with 0.4% FM depth and 4) 1000 Hz with 2% FM depth.  Figure 1 illustrates how 

FFR conditions corresponded to the behavioral FM detection task.  The 0.4% FM depth 

would have been difficult to detect behaviorally while the 2.0% FM depth would have been 

relatively easier to detect.  Stimuli used in the physiology conditions had duration of 500 ms 

and contained one period of frequency modulation. 
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Figure 1 Schematic spectrograms illustrating the peak-to-peak frequency deviation 

from the carrier frequency.  Left Panel: For stimuli of 500 Hz carrier frequency and 

depths of 0.4 and 2.0%, peak-to-peak deviations were 2 and 10 Hz respectively.  

Right Panel: For stimuli of 1000 Hz carrier frequency and depths of 0.4 and 2.0%, 

peak-to-peak deviations were 4 and 20 Hz, respectively.   

 

FFRs to FM tones were recorded using a three-channel recording.  Electrodes were 

placed at five points along the scalp according to the 10-20 system (Jasper, 1958): the left 

and right ear lobes (A1 and A2, respectively); the vertex of the head (Cz); the forehead (Fpz); 

and the nape of the neck.  The Fpz electrode acted as the ground, with Cz being used as the 

inverting electrode.  The signal from the Cz electrode was jumped to three separate inverting 

channels (A1, A2, and the nape of the neck).  Stimuli were presented using a Neuroscan Stim 

Audio System P/N 1105 and AEPs were recorded through Neuroscan SynAmps RT hardware 

and SCAN software.  To reduce the potential for transducer artifact in physiological 

recordings, the ER-3A transducer was shielded, and a double-length sound tube was used for 

calibration and data collection.   
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Evoked potentials were processed within an epoch time window of -100 to 520 ms 

relative to stimulus onset, at a sampling rate of 20 kHz, and through an online band-pass 

filter at 30-3000 Hz.  An artifact rejection criterion of ± 30 μV was used to prevent the 

recording of large myogenic activity.  If specific electroencephalogram (EEG) activity (i.e., 

cardiac artifact) regularly peaked at or above this artifact-rejection criterion, the criterion was 

raised to ± 35 μV.  Impedance levels at all electrode sites did not exceed 5 kΩ, and relative 

impedance levels between electrodes were limited to no more than 2 kΩ.  Response 

recording was concluded after 1000 accepted sweeps were collected.  Figure 2 shows FFRs 

recorded from a 23-year-old subject for each stimulus condition.  Prior to initial data 

collection for the present study, control conditions were recorded within the laboratory to 

verify that the FFR recordings were not contaminated by stimulus artifact.  These conditions 

included recordings where the earphone was not placed in the ear, as well as recordings from 

a watermelon.  Stimulus artifact was not observed during these control recordings.   

 During recording, subjects were instructed to lie quietly in a reclining chair and relax.  

Breaks were provided upon request or if subjects became restless.   
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Figure 2.  The time-domain FFR waveforms from an individual, age 23, for the four FFR 

conditions are shown. 

 

Electrophysiology analysis 

FFRs were analyzed in respect to their stimulus-to-response correlations, which were 

calculated to determine how well the FFR waveform resembled that of the stimulus 

waveform for the same condition (i.e., 500 Hz carrier frequency with 0.4% frequency 

modulation depth).  A 0 to 15 ms lag time was applied to stimulus waveforms and cross-

correlation coefficients were calculated at different points along this time window.  The 

highest correlation coefficient and its corresponding lag time were recorded.  Higher 

correlation coefficients would indicate that the neural response represented a more accurate 

encoding of the dynamic frequency content contained in a stimulus.   
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Speech-in-noise procedure 

SIN understanding was tested using the Etymotic Research QuickSIN Speech in 

Noise Test, specifically lists 1, 2, 10, 11 were used; McArdle and Wilson (2006) reported 

that these four lists have the most homogenous scores in normal-hearing and hearing 

impaired listeners.  A QuickSIN practice list was presented prior to the presentation of these 

four lists in order to assess the subject’s understanding of the task.  The QuickSIN compact 

disc was played by a Sony CD player (model CDP-CE375) with an output to a TDT PA4 set 

to 33 dB of attenuation.  This achieved an output level of 70 dB SPL (A-weighted) through 

an ER-3A insert earphone in the right ear. 

In accordance with QuickSIN procedure, subjects listened to each list and repeated 

sentences spoken by a target female speaker.  Each of the six sentences within a list 

contained five target words and the number of target words correctly repeated determined the 

score for each sentence.  The signal-to-noise ratio (SNR) of each list decreased from +25 dB 

to 0 dB, decreasing by 5 dB steps with each successive sentence.  Sentence scores were 

aggregated into a list score, which was subtracted from 25.5 to determine a total SNR Loss 

(Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004).  QuickSIN scores reflect the 

speech-to-babble ratio at which 50% of the target words are understood.  Scores from the 

first four lists were averaged together to determine a mean SNR loss, in dB, for each subject.   

Statistical approach 

Analyses of variance (ANOVA) were used to analyze dependent variables of 

behavioral FMDLs and FFR stimulus-to-response correlations.  A one-way ANOVA was 

conducted for FMDLs with a factor of carrier frequency (within-subject on 2 levels, 500 and 
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1000 Hz).  The FFR stimulus-to-response correlations were analyzed with factors of 

frequency (within-subjects on two levels, 500 and 1000 Hz), and FM depth (within-subjects 

on two levels, 0.4% and 2.0%).  Partial  
2
 was used for a measure of effect size; small, 

medium, and large effect sizes were defined as partial  
2
 values of 0.0099, 0.0588, and 

0.1379, respectively (Cohen, 1988).  Pearson-product moment correlations were used to 

examine relationships between behavioral and physiological measures.   

 



 

Chapter III 

Results 

FMDLs 

A one-way repeated-measures ANOVA was conducted on FMDLs with a factor of 

frequency (within-subjects on two levels, 500 and 1000 Hz).  The main effect for frequency 

was not significant, F(1,21) = 3.82, p = .064, partial  
2
  = .154, indicating that FMDLs were 

not significantly different between the two frequencies.  Figure 3 summarizes the FMDL data 

and compares listener performance across the two FMDL conditions.  Figure 4 represents 

individual listener performance between the two FM detection conditions.   

 

Figure 3.  Boxplot illustrating mean listener performance on FMDL tasks in which 

carrier frequencies were 500 and 1000 Hz.  The FM depths selected for the 

physiological task are represented by a solid (2.0%) and dashed line (0.4%).  FMDLs 

for carrier frequencies of 500 and 1000 Hz were not significantly different (p > .05).   
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Figure 4.  Individual subject trends of FMDL tasks.  Each subject’s performance on 

the 500 Hz and 1000 Hz FMDL tasks is represented by a different line.   

 

FFR stimulus-to-response cross correlations 

A two-factor repeated measures ANOVA was conducted on FFR stimulus-to-

response correlations.  Factors were frequency (within-subjects on two levels, 500 and 1000 

Hz) and FM depth (within-subjects on two levels, 0.4% and 2.0%).  There was a significant 

main effect of frequency, F(1,19) = 42.16, p < .001, partial  
2
 = .689 as well as a significant 

main effect of FM depth, F(1,19) = 49.21, p < .001, partial  
2
= .721.  There was a 

significant interaction between frequency and FM depth, F(1,19) = 15.09, p < .001, partial  

2
 = .443.  Figure 5 shows stimulus-to-response correlations across each FFR condition.  FFR 

stimulus-to-response correlations were lower (poorer) for 1000 Hz than for 500 Hz, and were 

more robust for the conditions with the least amount of frequency modulation. 
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Figure 5.  Boxplot illustrating FFR stimulus-to-response correlations in the four 

different FFR conditions.  There was a significant effect of frequency (p < .001) and 

FM depth (p < .05); FFR stimulus-to-response cross-correlation coefficients became 

poorer as carrier frequency and FM depth increased. 

 

QuickSIN 

 QuickSIN data for the four sentence lists were averaged together for each listener and 

a mean SNR loss was calculated across all listeners (mean = 0.24 dB, SD = 1.15 dB).  Figure 

6 illustrates overall mean listener QuickSIN performance.  These data were used in statistical 

analyses of the relationship between SIN understanding and the detection and neural 

encoding of FM tones. 



 
 

 
 
 

 

 

23 

 

Figure 6.  Boxplot illustrating mean QuickSIN performance (averaged across four 

sentence lists) across all listeners.   

 

Relationships between behavioral and physiological measures 

Pearson-product moment correlation coefficients were calculated to determine the 

relationships between measures of behavioral perception (FM detection and QuickSIN SNR 

loss) and a physiological coding (FFR stimulus-to-response correlation).  At 500 Hz, there 

were no significant correlations between FMDLs and FFR stimulus-to-response correlation 

coefficients, 0.4% FM depth (r
 
= -.117, p = .623) and 2.0% FM depth (r = -.259, p = .271).  

At 1000 Hz, there were also no significant correlations between FMDLs and FFR stimulus-

to-response correlation coefficients, 0.4% (r = -.411, p = .720) or 2.0% FM depth (r = -.251, 

p = .285) conditions.  Figure 7 illustrates how FFR stimulus-to-response cross-correlation 

coefficients are related to FMDLs across all subjects.   
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 Figure 7.  Scatterplots illustrating the relationship between FFR stimulus-to-response 

correlations and FMDLs across all listeners for both the 500 Hz (left panel) and 1000 

Hz (right panel) conditions.  Correlations between the perception of frequency 

modulation, FMDLs, and FFR stimulus-to-response correlations were not significant 

(p > .05).  In each panel, lines of best fit are shown for the 0.4% FM depth (solid line) 

and 2.0% FM depth (dashed line). 

 

To determine how FMDLs and FFR stimulus-to-response correlations were related to 

SIN understanding reflected by QuickSIN SNR loss, Pearson-product moment correlations 

were calculated.  There was no significant correlation between QuickSIN SNR loss and 

FMDLs for either the 500 Hz (r = .124, p = .594) or 1000 Hz (r = -.069, p = .766) conditions 

(Figure 8).  QuickSIN SNR loss was not significantly correlated with 500 Hz FFR stimulus-

to-response cross correlations in the 0.4% (r = -.115, p = .630) and 2.0% FM depth (r = -.245, 

p = .298) conditions, or with 1000 Hz stimulus-to-response cross correlations in the 0.4% (r 

= -.036, p = .880) and 2.0% (r = .082, p = .731) conditions (Figure 9). 
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Figure 8.  Scatterplots illustrating the relationship between 500 Hz and 1000 Hz 

FMDLs and mean QuickSIN SNR losses across all listeners.  There was no 

significant correlation between QuickSIN performance and FMDLs (p > .05).  Lines 

of best fit are shown for the 500 Hz (solid line) and 1000 Hz (dashed line) data. 
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 Figure 9.  Scatterplots illustrating the relationship between FFR stimulus-to-response 

correlations for the 500 Hz (left panel) and 1000 Hz (right panel) conditions and 

mean QuickSIN SNR losses across all listeners.  Mean QuickSIN performance and 

FFR stimulus-to-response correlations were not significantly related (p >.05).  In each 

panel, lines of best fit are shown for the 0.4% FM depth (solid line) and 2.0% FM 

depth (dashed line). 

 

 



 

Chapter IV 

Discussion 

Introduction 

The main purpose of the present study was to investigate the feasibility of using the 

FFR to measure the neural encoding within the auditory brainstem of TFS information 

contained in FM tones.  A secondary objective was to use this measure to determine to what 

degree neural encoding of TFS correlated with the behavioral detection of FM and SIN 

understanding.  Several psychoacoustic studies have demonstrated that TFS processing 

contributes to speech understanding in quiet and in noise as well as to the detection of FM 

when parameters are selected that reduce the influence of place coding.  A strong correlation 

between these behavioral measures and the neural encoding of TFS may indicate a 

relationship between physiological processing of TFS and SIN understanding.  Additionally, 

such a correlation may support the use of TFS in speech processing algorithms for 

amplification devices.   

 Given the objectives of the present study, it was hypothesized that:  

1) FFRs would be measurable in response to dynamic FM tones and would accurately 

reflect the frequency content of the stimulus.   

2) The FFR stimulus-to-response correlation would be significantly correlated with an 

FMDL of the same carrier frequency.  For example, listeners with better (smaller) 

FMDLs would be expected to have FFRs with higher (better) stimulus-to-response 

correlations, and those individuals with poorer (larger) FMDLs would be expected to 

have poorer (smaller) FFR stimulus-to-response correlations. 
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3) Behavioral and physiological measures of TFS processing, as defined by FFR metrics 

and FMDLs, were expected to be predictive of SIN performance.  For example, better 

FMDLs and higher FFR stimulus-to-response correlations would each be 

significantly correlated with a smaller (better) SNR loss.   

 

The results of the present study suggest that the encoding of FM tones containing 

dynamic TFS within the human auditory system may be measured using the FFR elicited by 

FM tones.  This brainstem response is reliably present and is capable of faithfully 

representing the dynamic frequency content of FM tones, as reflected by stimulus-to-

response correlations.  In addition to this finding, a repeated-measures ANOVA of FFR data 

revealed a significant interaction between carrier frequency and FM depth.  Significant main 

effects of carrier frequency and FM depth also suggest that phase-locking was most robust in 

the 500 Hz conditions and when the FM depth was lowest (i.e., 0.4% compared to 2.0%).   

For the physiological procedure, a significant interaction was observed between 

carrier frequency and FM depth; FFR accuracy was better overall for the 500 Hz condition 

and FM depth had a greater effect within the 500 Hz condition.  The effect of frequency is 

likely due to an inherent upper frequency limit of the FFR and the degradation of the 

response with increasing frequency (Krishnan, 2007).  Due to an overall weaker response 

obtained in the 1000 Hz condition, the effect of FM depth at this carrier frequency was less 

pronounced than for the more robust 500 Hz FFR.  The significant effect of FM depth is 

possibly a result of differences in the rate of frequency change between the two FM depths 

for each carrier.  For example, within a constant time frame (i.e., 500 ms), one cycle of 0.4% 
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frequency modulation results in a more gradual frequency change than one cycle of 2.0% 

modulation.  Improved FFR accuracy at lower FM depths may reflect easier encoding of 

more gradual frequency change  

Though a significant effect of frequency was not hypothesized, the finding is not 

surprising.  A more robust neural response would presumably be elicited by a higher carrier 

frequency due to synchronized firings of a greater neural population.  However, the poorer 

stimulus-to-response correlations in the 1000 Hz conditions observed in the present study are 

consistent with the upper frequency limits of phase-locking within the rostral brainstem 

(1500-2000 Hz) as well as the frequency response of the FFR, reviewed by Krishnan (2007).  

FFR responses for a given stimulus level are typically most robust at 500 Hz, with response 

amplitude and accuracy decreasing as stimulus frequency increases.   Many previous studies 

of the FFR in response to dynamic stimuli have primarily investigated a frequency range 

below that of the stimuli used in the present study.  Those studies also evaluated FFRs related 

to fundamental frequency processing, as opposed to fine structure processing.  However, a 

study performed by Clinard, Tremblay, and Krishnan (2010) recorded FFRs in response to 

six different pure tones (500 Hz, 1000 Hz, and four neighboring frequencies) in a sample of 

subjects whose ages ranged from 22-77 years old.  FFR metrics of phase coherence and 

amplitude indicated a more robust response to tones in the range of 500 Hz compared to 

those in the range of 1000 Hz.  This finding is consistent with the significant effect of 

frequency reported in the present study.   

The effect of FM depth suggests that the phase-locking mechanism functions more 

accurately when frequency deviation within a certain time window is minimized.  It can be 



 
 

 
 
 

 

 

30 

argued that this finding is consistent with a “sluggish” mechanism for decoding of TFS 

proposed by Moore and Sek (1995).  The authors suggested that temporal decoding within 

the auditory brainstem has a limited sampling rate of neural firings produced by the auditory 

nerve.  Due to this, high-rates of frequency change may not be sufficiently processed within 

the brainstem.  Though the modulation rate was constant across each FFR stimulus and a full 

period of frequency modulation occurred for each stimulus, FM depth varied within each 

frequency condition.  As an example, for the 1000 Hz condition, frequency modulated 

between either 998-1002 Hz (0.4% FM depth) or 990-1010 Hz (2.0% FM depth).  A greater 

rate of frequency change was necessary to complete one full cycle of modulation for the 

2.0% condition.   

The behavioral portion of the present study assessed listener performance on a 

subjective task of FM detection in order to determine behavioral FMDLs and compare these 

data to physiological responses.  Performance on a norm-referenced test of SIN 

understanding was also assessed.  Data obtained from these behavioral tasks were analyzed 

using one-way repeated measures ANOVAs.  For the behavioral FM detection task, the main 

effect of frequency was not significant; FMDLs, expressed as peak-to-peak frequency 

deviation of the determined threshold divided by the carrier frequency, were not significantly 

different across the 500 Hz and 1000 Hz conditions.  The similarity in listener FMDLs across 

the two frequencies is consistent with previous findings of FM detection (Sek & Moore, 

1995), which reported a comparatively smaller effect of frequency for FMDLs compared to 

frequency difference limens.  Buss et al., (2004) reported lower FMDLs when carrier 

frequency was 500 Hz compared to performance on a 1000 Hz condition.  These 



 
 

 
 
 

 

 

31 

investigators presented FM tones with a duration of 400 ms, whereas the present study used 

1000 ms tones for the behavioral task.  It is possible that this difference in stimulus 

presentation contributed to the inconsistent findings across studies.   

An aim of the present study was to determine if the physiologic response to FM was 

correlated with the behavioral FM detection limen and the ability to understand speech in the 

presence of noise.  It was hypothesized that more robust and more accurate neural 

representations of FM would be correlated with smaller (better) FMDLs and better SIN 

understanding.  An analysis used to determine Pearson product moment correlation 

coefficients revealed that no significant correlations existed between the stimulus-to-response 

correlation of the FFR response and behavioral FM detection in either frequency condition.  

Additionally, overall QuickSIN performance was not significantly correlated with the FFR to 

FM stimuli or with behavioral FM detection.   

Clinical relevance: behavioral assessment 

 The FFR is an AEP that is not commonly utilized in the clinical setting.  The FFR is 

typically not evoked until stimulus levels exceed 40-50 dBnHL (for a review, see Krishnan, 

2007) and is therefore considered a poor estimator of hearing sensitivity.  Analysis of the 

spectral characteristics of the FFR waveform in response to a /da/ syllable has shown strong 

correlations between response morphology and learning impairment (Cunningham et al., 

2001; King et al., 2002; Johnson et al., 2005), however it is not known to what extent this 

measure is applied in audiology practice.  In addition to the studies that have demonstrated 

FFR elicitation using pure tones, frequency sweeps, synthetic speech, and speech syllables, 

the present study adds FM tones and the underlying TFS to the current repertoire of FFR 
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stimuli.  The FFR to FM tones was not predictive of FM detection or SIN understanding, 

however further study is needed to determine if correlations exist between the FFR and other 

domains of auditory processing.  It is possible that the FFR, with its expanding catalog of 

eliciting stimuli, may serve as a reliable predictor of auditory processing.  Additionally, for 

patients who cannot provide reliable, subjective judgment of auditory stimuli, a battery of 

AEPs including brainstem responses (i.e., auditory brainstem response and FFR) and cortical 

potentials (i.e., middle and late latency responses) may provide some insight into the function 

of the structures responsible for auditory processing. 

Analysis of performances on the QuickSIN test across listeners did not indicate a high 

variance in total SNR loss.  This finding is possibly due to the considerably homogenous 

subject pool that was recruited, which had a relatively narrow age range and included only 

listeners with normal hearing, no formal musical training, and unremarkable otologic and 

medical histories.  Therefore, a statement regarding the test’s ability to separate listeners by 

performance and further identify a cause of the separation cannot be made. 

Clinical relevance: Cochlear implant processing strategies 

The role of temporal envelope and TFS information in speech understanding in quiet 

and noise is still not clearly understood.  Particular studies have combined the envelope of 

one speech signal with the TFS of another into what is described as an acoustic “chimera” 

(Smith, Delgutte, & Oxenham, 2002; Zeng, Nie, Liu, Stickney, Del Rio, Kong & Chen, 

2004).  Listener perception of these sounds suggests that TFS information more greatly 

influences pitch perception while envelope information provides greater cues to speech 

understanding.  Consistent with these findings, common methods of signal processing in 
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cochlear implants used within the past ten years have placed emphasis on the encoding of the 

temporal envelope information of the speech signal (Rubinstein, 2004).  Recent evidence, 

however, has found that combination processing strategies that include both the envelope 

processing of high frequencies and TFS processing of low frequencies provide comparable 

SIN understanding (Schatzer, Krenmayr, Au, Kals, & Zierhofer, 2010; Riss, Hamzavi, 

Selberherr, Kaider, Blineder, Starlinger, … & Amoldner, 2011b) if not significant 

improvement compared to envelope-only strategies (Riss, Hamzavi, Katzinger, Baumgartner, 

Kaider, Gstoettner, & Amoldner, 2011a; Vermeire, Kleine Punte, & Vande Heyning, 2010).  

Additionally, FM encoding of speech has been shown to provide significant improvement in 

SIN understanding by implant wearers compared to traditional amplitude modulation-based 

encoding strategies (Nie, Stickney, & Zeng, 2005).   

It was hypothesized that the findings of the present study would be consistent with the 

evidence of improved SIN understanding by implant wearers utilizing TFS processing 

strategies; the accuracy of the neural representation of TFS and FM detection would be 

correlated with QuickSIN performance.  However, no such relationship existed.  It is possible 

that the absence of a significant correlation was reflective of the parameters of the 

experiment rather than the role of TFS encoding and QuickSIN performance.   

Methodological issues 

The present study demonstrated that the physiological response to frequency 

modulation was not significantly correlated with behavioral detection of a similar stimulus.  

To examine the relationship between the FFR and FMDL data, the differences between the 

stimuli used in the FFR and FM detection tasks must be considered.  Stimulus duration 
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differed between the two tasks with 500 ms presentations used in the physiological condition 

compared to 1000 ms tones in the behavioral condition.  The 500 ms duration of the FFR 

stimuli allowed for the necessary amount of sweeps to be recorded more quickly, which 

shortened the overall test time.  The 1000 ms FM stimulus presented during the behavioral 

task was thought to be of an adequate length to allow the listener to subjectively determine if 

frequency was modulated over time.  Reducing the stimulus duration for the behavioral task 

to 500 ms, which is comparable to the 400 ms duration used by Buss et al., (2004), may 

affect FMDLs and possibly reveal a stronger brain behavior relationship.   

Analysis of data collected from the three experiments within the present study 

suggests that neither the physiological response nor the behavioral detection of frequency 

modulation were significantly correlated with SIN understanding.  This may be due to the 

fact that QuickSIN scores did not vary across subjects.  It is possible that diversifying subject 

demographics (i.e., age, musical training, or monolingualism) may result in greater variance 

in the data, which could reveal a clearer brain-behavior relationship. 

Previous studies have demonstrated an effect of age on SIN understanding (Frisina & 

Frisina, 1997) as well as behavioral frequency discrimination and the neural representation of 

frequency in FFR analyses (Clinard et al., 2010), however, each of these studies had subject 

pools with age ranges of at least five decades.  The participant pool of the present study 

ranged from 21 – 40 years of age, less than two decades.  The primary focus of the present 

study was toward the feasibility of using the FFR to investigate the neural representation of 

TFS and to determine if a behavioral and physiological relationship existed.  Investigating an 

age effect was therefore not considered during the subject selection.     
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Future directions 

 The present study demonstrates that the FFR can be used to reflect the neurological 

representation of TFS when presented in the form of an FM tone.  The hypothesized 

correlation between the physiological response and the behavioral detection of FM tones was 

not supported.  Given these findings, future FFR studies may be designed with the goal of 

investigating the neural encoding of more complex stimuli.  Additionally, a more diverse 

subject pool may be utilized to further investigate brain-behavior relationships and the effects 

of some extrinsic factors such as age and hearing sensitivity.   

 The FFR is capable of reliably reflecting the neural encoding of the TFS contained 

within a dynamic stimulus, as demonstrated in the present study.  Future studies may utilize 

more complex stimuli in order to test the limits of the FFR.  The FFR has already been 

elicited by steady-state and dynamic approximations of speech sounds (Krishnan, 1999, 

2002; Krishnan et al., 2004), as well as the single-syllable speech stimulus, /da/ (Skoe & 

Kraus, 2010).  Future studies utilizing novel speech and speech-like sounds may expand the 

variety of usable FFR stimuli, and possibly allow for more detailed brain-behavior 

relationships to be assessed.   

 Clinard et al., (2010) demonstrated that the FFR reflected a decline in neural phase-

locking of 1000 Hz tones with increasing age, though this finding was not correlated with the 

perceptual threshold of frequency discrimination.  The present study recorded FFRs from 

listeners with ages ranging 21 – 40 years old, though an age effect was not investigated.  

Future expansion upon the present study would include a greater age range across all 
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listeners.  It is expected that findings would be in agreement with Clinard et al., (2010), 

demonstrating that FFRs at frequencies around 1000 Hz are weaker in older populations.   

In order to rule out the possible mitigating factors of aging and hearing loss, the 

present study investigated the FFR of a relatively young group of individuals who all had 

normal audiometric thresholds.  Future studies may include one or more subject groups that 

include listeners with some degree of hearing loss or auditory processing difficulty.  While 

countless studies have investigated perceptual and physiological differences between normal 

hearing and hearing impaired individuals, it is notoriously difficult to determine the precise 

mechanism responsible for the hearing deficits.  For this reason, careful study design would 

be needed to control for deficits in auditory mechanisms other than neural phase-locking.   

Conclusions  

 

 Based on analyses of data measured from subjects who were evaluated in accordance 

with the methods described above, the following conclusions can be made: 

  

1. - Stimulus-to-response correlations suggest that the FFR is capable of faithfully 

reflecting the dynamic nature of FM stimuli, particularly at 500 Hz.   

2. - Larger depths of frequency modulation, which had larger peak-to-peak frequency 

deviations, had negative effects on the accuracy of the FFR.   

3. - No significant correlations existed between the FFR elicited by FM tones and the 

behavioral detection of FM.  Additionally, FFR measures were not predictive of SIN 

understanding.   

4. - It is feasible to elicit FFRs using FM tones, allowing this approach to be applied to 

populations that have impaired perception of frequency modulation (e.g., older 

adults). 
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