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Two Studies of a Small Stereo-Hearing Testing System 

INTRODUCTION  

This dissertation is a combination of two studies: a normative study (a combination of the 

author’s undergraduate honors thesis and a School of Engineering Capstone project), and 

a study of otology patients (completed as an audiology doctorate research requirement). 

The first study, Development of a Deployable Stereo-Hearing System, investigated the 

difference between one-eared (unilateral hearing loss) and two-eared (bilateral or 

“normal” hearing) individuals in tasks of both sound localization and understanding 

speech in noise using a laboratory-made device. A multidisciplinary team of engineers 

and auditory scientists developed this small, packaged, deployable system to test sound 

localization and speech perception in noise. The primary purpose of the first study was to 

demonstrate the ability of the prototype hearing testing system to correctly identify the 

difference between unilateral and bilateral subjects based on their performance in these 

two binaural tasks, thus validating the system for use in the second study. The second 

study, Deployment of a Stereo-Hearing System to Postoperative Atresia Patients, 

proceeds from the first study with the purpose of investigating two questions. Can the 

device be shipped domestically to patients for testing and retrieved in a cost-effective and 

secure manner? How do postoperative repaired atresia patients perform in two binaural 

listening tasks (sound localization and speech-in-noise understanding) in comparison 

with their bilateral and unilateral control group counterparts?  
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The hearing testing system costs about $2000 and can be delivered to most places in the 

United States for about $50 to $100 (round-trip). Initial testing during system design has 

demonstrated that the system can be unpacked, set up, and used by lay persons without 

professional supervision. Figure 1 below shows the prototype with a laptop containing 

the program for the two tests of sound localization and speech-in-noise comprehension 

and eight identical speakers placed precisely on a custom table-mat around the laptop. 

The eight speakers are arranged at 0, 20, 40, 60, 120, 140, 160, and 180 degrees of 

azimuth. Each speaker is labeled, 1 (at 0 degrees) through 8 (at 180 degrees) respectively. 

 

Figure 1: The Laboratory-Made Stereo-Hearing System 

 

Figure 1: The laboratory-made stereo-hearing device used to test all subjects in the binaural processing 

tasks of sound localization and understanding speech in noise. The device set-up contains a laptop, custom 

table-mat with 3-D printed speaker stands, and 8 speakers precisely placed in a 180-degree azimuth. 

 

 

The system currently evaluates accuracy of horizontal sound localization and 

understanding of speech with noise presented at different locations. The sound 

localization test presents 48 trials of 250-ms broadband noises at random speaker 
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locations with an average intensity of 70 dB SPL randomly roved by +/- 10 dB SPL; the 

subject clicks a button on the laptop to indicate the perceived location of the sound. The 

speech in noise test adaptively varies broadband noise based on the accuracy of a button 

click to the Coordinate Response Measure (CRM) Corpus command “Ready [Call-sign] 

go to [Color] [Number] now” presented at 60 dB SPL at a different location than the 

noise. This test consists of 4 conditions where the speech and noise are maximally and 

minimally separated, that is speech and noise from the following 4 speaker pairs: 1 and 8, 

8 and 1, 4 and 5, and 5 and 4. We then analyze the difference in threshold between when 

the speech and noise are ‘flipped’ (that is 1 and 8 minus 8 and 1 and 5 and 4 minus 4 and 

5). We expect little difference in normal-hearing (bilateral) subjects because it shouldn’t 

matter on which side is the speech relative to contralateral noise, but we expect a large 

difference in unilateral subjects because their head shadow will give a more favorable 

SNR when the speech is toward their good ear. 
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LITERATURE REVIEW 

 

  

Congenital aural atresia defines the anatomical deformity of the outer and middle ear 

which is present at birth (congenital) and causes a closing or sealed nature (atresia) of the 

ear (aural) canal, (Kesser, 2016, in press). Aural atresia is the result of abnormal 

embryological development of the first and second branchial arches, (Wilmington, 1994). 

Congenital aural atresia is present in 1 in 10,000 to 20,000 live births (Kesser, 2014). 

Congenital aural atresia occurs most commonly unilaterally than bilaterally (Wilmington, 

1994) with a ratio of 3:1, occurs more commonly in the right ear than the left ear (Kesser, 

2014), and affects more males than females. 

  

In congenital aural atresia, the cartilaginous portion, bony portion, or the entirety of the 

external auditory meatus may have never been formed during embryological 

development. Furthermore, structures of the middle ear may have also failed to develop 

completely or at all, such as the tympanic membrane, malleus, incus, and/or stapes. Aural 

atresia is often comorbid with microtia (the malformation/underdevelopment of the 

pinna) or anotia (total absence of the pinna) on the respective affected side, (Kesser, 

2014). 

Figure 2: Congenital Aural Atresia: Before and After Surgical Repair 
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Congenital aural atresia can cause up to a maximum conductive hearing loss (a range of 

40-70 dB HL) while retaining normal cochlear function, and is surgically correctable, as 

seen in Figure A above, (Kesser, 2016, in press). The severity of the malformation of the 

outer and middle ear structure correlates with the severity of the hearing loss. 

Consequently, preoperative hearing scores are positively correlated with postoperative 

hearing scores and status of preoperative ear anatomy, (Nicholas, 2012). Jahrsdoerfer 

created a standardized grading scale system used to quantify the severity of the 

anatomical malformation, determine candidacy of the patient for surgical intervention, 

and determine the outcome prognosis for corrective surgery, (Jahrsdoerfer, 1992). 

Scoring is determined on the basis of visual observation of the external ear and on the 

basis of a Computerized Tomography (CT) scan of the temporal bone and primary 

structures of the affected side(s), (Jahrsdoerfer, 1992, Shonka, 2008). The grading scale is 

ranked from 1 to 10; the higher the score, the more likely that the patient qualifies as a 

candidate and that the corrective surgery will successfully restore hearing. A score of 5 

out of 10, or lower, disqualifies the patient from surgery due to the low prognosis of 

surgical success. Approximately 65-75% of isolated atresia (non-syndromic) patients are 

candidates for surgery, (Kesser, 2014).  

  

The purpose of the aural atresia repair surgery is to restore the mechanism of sound 

conduction through the outer and middle ear systems, (Shonka, 2008). This procedure is 

executed by an otolaryngologist: drilling a new canal at the location where it should have 

developed, mobilizing the three ossicles, replacing any dysfunctional or missing ossicles 

with Partial Ossicular Replacement Prostheses” (PORPs) or “Total Ossicular 

Replacement Prostheses” (TORPs) as needed, creating a new tympanic membrane from 
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an underarm fascia skin graft, lining the newly opened canal with the skin graft, filling 

the canal with absorbent gauze and medicine, and patching the area, (Shonka, 2008). 

After approximately one month of recovery, the patient returns to have the gauze and 

packaging removed from the repaired ear. At this appointment, an updated audiogram of 

pure-tone and speech testing (air- and bone-conduction) is completed on the patient, 

revealing the improvement of hearing threshold due to surgery, (Gray, 2013). It is routine 

for the patient to return annually to undergo an audiometric evaluation from this point 

forward to monitor the hearing of the repaired ear. A successful atresia repair is 

considered one that returns the speech reception threshold (SRT) of the postoperative 

atretic ear to 15 to 25 dB HL, (Jahrsdoerfer, 1992). Because the skin graft lining the 

repaired meatus does not migrate as does the normal skin, the EAM needs to be 

professionally cleaned (cerumen removed) about once a year. 

  

Individuals with binaural hearing have listening advantages over those with monaural 

hearing. Having two functioning ears enables the ability to locate a sound source in space 

without head movement and the ability to understand speech in noisy environments, 

(Wilmington, 1994, Gray, 2013, Kesser, 2013, Kesser, 2016, in press). These abilities 

arise from four main binaural advantages: redundancy, head shadow, binaural squelch, 

binaural summation, localization, (Kesser, 2016, in press). Individuals with unilateral 

hearing thus experience an array of various deficits, resulting from the lack of these 

binaural advantages, (Gray, 2013). For unilateral subjects, soft sounds would be 3-6 dB 

SPL softer, they would have difficulty localizing sounds, and speech in noise could 

possibly be as much as 14 dB SPL louder. As discussed in the Kesser, 2013 study, 

unilateral conductive hearing losses in children can have a significant impact on 
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academic performance and these children are more likely to use some sort of intervention 

resource (FM system, preferential seating, Individualized Education Plan) than their 

sensorineural unilateral loss counterparts, (Kesser, 2013). 

  

Three studies revealed that after successful atresia repair, the average improvement for 

pure tone average air conduction in the atretic ear was 35-36 dB HL (Wilmington, 1994, 

Gray, 2013, Kesser, 2016, in press). A patient can have up to a 50 dB gain in thresholds 

in the atretic ear, therefore hearing external sounds with a second, new ear for the first 

time after a successful surgery. Providing access of binaural inputs allows the previously 

mentioned psychoacoustical binaural phenomena to emerge. Wilmington reported that 

emergent binaural processing ability improved after surgery in all the following areas: 

interaural temporal difference limens, alternate and simultaneous loudness balances, 

localization, detection thresholds, and speech understanding in noise, (Wilmington, 

1994). Gray reports that, after successful surgery, “all patients are able to take advantage 

of a favorable SNR in their newly opened ear,” (Gray et al., 2009). A 3 dB gain is 

observed immediately after surgery due to binaural summation, (Kesser, in press).  It 

should be understood that binaural ability after surgery is variable, which may indicate 

significant interactions of early experiences, (Wilmington, 1994). Gray et al. report that 

an effect of age exists for binaural squelch after surgery, documenting that for each 

decade that corrective surgery is postponed, “approximately 2 dB of binaural gain is 

lost;” suggesting a correlation with length of auditory deprivation (as no binaural benefit 

is evident after 38 years of age), (Gray et al., 2009). 
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With the proven fact that two ears are better than one, the issue then becomes the lack of 

evidence and understanding of the learning curve that an individual encounters as they 

learn how to use their new ear after surgery. Sufficient data exists in the last 30 years 

documenting audiometric and speech scores of atresia patients before and after operation, 

however, sufficient evidence of binaural processing improvement does not exist. Current 

efforts are investigating if and how these patients are able to “integrate signals from their 

new and old ears,” (Kesser, in press). Gray concluded that “longer follow-up is an 

important next step; the youngest patients may take more time to learn new complex 

tasks involving the use of signals from two ears,” (Gray et al., 2009). How many years 

after corrective surgery does a patient finally approach binaural skills of a normal 

bilateral counterpart? Longitudinal data is further necessary to: understand the 

improvement of binaural hearing over time, understand the critical periods of binaural 

plasticity, to guide surgeons towards optimal age of operation, and to investigate the 

importance of real-world binaural hearing, (Gray, 2013, Kesser, in press). These recent 

studies and conclusions urge the purpose of the current study: to investigate the 

difference between bilateral subjects and subjects with unilateral hearing loss in the 

performance of binaural listening tasks (localizing sound and understanding speech in 

noise), to investigate where atresia patients fall in performance compared to those two 

populations, and to implement a solution for collecting data on binaural improvement 

over time. With these investigations, we can begin to study the nature of learning that 

occurs for emerging binaural listening post-operation. 
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MANUSCRIPT #1 TITLE 

  

Development of a Deployable Stereo-Hearing System 

  

  

ABSTRACT 

  

Objective: To investigate the effectiveness and efficiency of a portable stereo-hearing 

testing system with the intent of deployment for data collection in future studies. We 

quantify sound localization accuracy and speech-in-noise thresholds comparing unilateral 

(such as single-sided deafness) and bilateral subjects.  We desired to design a small, 

inexpensive system that would show a large effect size between binaural and monaural 

subjects in a variety of stereo hearing tasks. 

Methods: Subjects were tested on localization accuracy and speech understanding in 

noise using a laboratory-made stereo-hearing testing device. For the localization task, the 

subject identifies the location of a 250 ms noise presented randomly at one of 8 speakers 

in a 180
o
 array. For the speech-in-noise task, the subject identifies the CRM color/number 

command presented from a speaker in one hemi-field while an adaptive noise track is 

presented simultaneously from a speaker in the opposite hemi-field. RMS error quantified 

accuracy of localization. Analysis of the speech-detection thresholds involved differences 

between conditions when the speech and noise were each on different sides: a best-to-

worst condition compared speech toward the good ear and noise toward the bad ear and 

vice versa; in a good-to-poor condition both the speech and noise were closer to midline 

(approaching straight ahead of the subject) but still on opposite hemi-fields. The right ear 

was considered ‘good’ for bilaterally-normal control subjects. We expect a large 

difference between the ‘best’ and ‘worst’ conditions for unilateral subjects and no such 

difference for the bilateral controls.  
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Results: Differences exist between unilateral and bilateral subjects in both sound 

localization and understanding speech in noise with ‘extremely large’ effect sizes 

(Cohen’s d >3 or ‘huge’ for both tests (and 1.6 or twice what Cohen said was a ‘large 

effect’ for the ‘good-to-poor’ comparison). Bilateral subjects localized and listened in 

noise better than unilateral subjects (p<.001 by post-hoc LSD tests). A group of ‘plugged 

subjects’ (bilaterals with an ear plug and earmuff), localized worse than both the true 

unilateral and bilateral subjects, but they understood speech in noise with thresholds 

between the true unilateral and bilateral groups. 

Conclusions: Our device can distinguish between monaural and binaural subjects and is 

ready for deployment to investigate patients after otologic surgery, who we expect to 

perform ‘between’ these unilateral and bilateral subjects. Bilateral subjects localized 

sounds with near-perfect accuracy while unilateral subjects made many more errors. In 

unilateral subjects, thresholds detecting signals in noise were highly dependent on which 

hemi-fields produced the signal and noise (as expected, participants with unilateral 

hearing heard better when the signal was on the side of their one normal ear with 

contralateral noise facing the poorer ear) while bilateral subjects were relatively 

unaffected by the hemi-field of signal and noise. Plugged subjects (bilateral controls with 

an ear plug and an earmuff) localized worse than true unilateral subjects, suggesting an 

effect of learning how to localize with monaural cues. 
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INTRODUCTION  

 

Statement of the Problem 

  

While much documentation exists on the improvement in hearing thresholds and speech 

scores of these patients, normative data does not exist for how binaural hearing ability 

improves and is learned over time post-operation. Gray et al. 2003 ended their report of 

binaural processing following surgical correction of congenital maximal conductive 

hearing loss saying “longer follow-up is an important next step; the youngest patients 

may take more time to learn new complex tasks involving use of signals from two ears.” 

However, there are significant practical and financial problems in obtaining such data.  

Insurance companies do not reimburse patients to return to the clinic for follow-up 

appointments. A cost-effective and efficient method of collecting longitudinal data of the 

binaural processing abilities of repaired atresia patients in the years following their 

operation is one solution to this problem. 

 

 

Purpose of the First Study 

  

To investigate validity and reliability of a laboratory-made stereo-hearing testing device 

in measuring the subjective performance of two binaural listening tasks: localization and 

understanding speech-in-noise. To investigate the program’s ability to distinguish 

between bilateral and unilateral subjects. To estimate the binaural performance of 

preoperative atretic patients by investigating the performance of two experimental groups 

designed to represent the atresia population (a group of subjects with congenital/long-

term unilateral hearing loss and a group of bilateral subjects with hearing temporarily 
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modified by creating an artificial conductive unilateral hearing loss with noise 

attenuators). 

  

 

Research Hypotheses 

  

1. The subjects who possess hearing within normal limits (bilateral subjects) will 

pass the sound localization test with success and high accuracy. The subjects who 

possess a profound single-sided hearing loss (true unilateral subjects) will fail 

with low accuracy (scoring at 50% or less). 

2. True unilateral subjects will perform significantly higher in localization accuracy 

than the plugged subjects (bilateral subjects with one ear occluded immediately 

prior to testing) who have no significant experience in listening with a single-

sided hearing loss. 

3. Bilateral subjects will perform well in the speech-in-noise test with a low signal-

to-noise ratio (SNR) at CRM threshold. Unilateral subjects will score with a high 

SNR at CRM threshold. 

  

 

MATERIALS & METHODS  

Participants: 

  

A total of 50 subjects participated in this study; 40 of the subjects were bilateral subjects 

and the remaining 10 subjects had unilateral hearing loss, with one severely or 

profoundly impaired ear and normal hearing in the contralateral ear. Thirty-nine of the 50 

total subjects completed the sound localization task, 33 of which possessed normal 

hearing, 18 of which completed the test once or twice again while wearing an earplug in 
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one ear or the other ear (to simulate an artificial unilateral hearing loss). The remaining 6 

of the 39 subjects had a unilateral hearing loss. Twenty-five of the 50 total subjects 

completed the speech-in-noise test, twenty with normal hearing and 5 with unilateral 

hearing loss. Each of these 20 bilateral subjects were tested again with a plug in one ear 

to simulate an artificial unilateral hearing loss.  

  

The ages of all subjects ranged between 18 and 65 years old. Of the 40 bilateral control 

subjects, all except 2 had hearing within normal limits in both ears (air and bone-

conduction thresholds at or better than 20 dB HL across frequencies of 250-8000 Hz). Of 

the 2 remaining bilateral subjects, one had bilateral mild sensorineural hearing loss at 

2000 Hz and the other had a bilateral sensorineural hearing loss at 4000 Hz (normal and 

mild) and 8000 Hz (mild and moderate), respectively. Both were accepted into the 

criteria as they have symmetrical binaural access to auditory input. Subjects participated 

as volunteers (unpaid) for this study, and all provided informed consent following 

approved IRB protocol (JMU 13-0058). 

 

The criteria for participation in this study included: providing informed consent, to be in 

a status of overall health, to be able to independently complete a computer-administered 

study, and to have either hearing within normal limits or a severe to profound unilateral 

hearing loss with normal hearing in the opposite ear. Pure tone thresholds were measured 

by either a certified audiologist, supervised audiology doctoral student, or the lead-

student researcher in a soundproof booth or empty laboratory.  
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Materials & Calibrations: 

  

The portable audiometer “Beltone Audio Scout 109” was used by the student researcher. 

The subjects tested by doctoral students or certified audiologists were either tested by the 

audiometer “Madsen Astera” in the JMU Audiology clinic or by an unknown audiometer 

at an off-campus location, respectively. The prototype portable hearing-testing device 

was used to test sound localization on every subject. The sound localization test was 

conducted in a quiet, empty laboratory setting. 

 

  

Pre-testing Procedures 

  

If the subject did not have a current audiogram, pure tone air conduction thresholds were 

measured at 250-8000 Hz frequencies. The bilateral control subjects (those with normal 

hearing) took the localization test up to three times, once using both ears (binaural 

condition), and once or twice while being plugged with an “artificial” unilateral hearing 

loss in either ear (selected randomly). The simulated unilateral hearing loss was produced 

with a disposable foam earplug (Moldex Purafit) combined with a circumaural earmuff 

(Silencio RBW-71) covering over the earplug. Total attenuation of this artificial 

conductive HL is estimated to be approximately 56 dB SPL. Order of testing (binaural or 

plugged unilaterally) and the designated ear to be plugged were randomized.  The 

experimental group (those with a true unilateral hearing loss) was just tested once. 
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Figure 1: The Laboratory-Made Stereo-Hearing System 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The laboratory-made stereo-hearing device used to test all subjects in the binaural processing 

tasks of sound localization and understanding speech in noise. The device set-up contains a laptop, custom 

table-mat with 3-D printed speaker stands, and 8 speakers (labeled 1 to 8 from left to right) precisely placed 

in a 180-degree azimuth. 

 

 

Sound Localization: (testing procedures) 

  

Unilateral subjects performed the sound localization test once. Bilateral subjects took this 

test once, performing as the control group, and again as a secondary experimental group 

testing using the disposable ear plug and ear muff on a randomly selected ear. These 

conditions were assigned in a random order. When the bilateral subjects tested as the 

experiment group, the group was referred to as the plugged subjects or plugged group. 

  

The subject sits in a chair in front of the laptop device, with the head located 

approximately in the center between the first speaker (#1) and the last speaker (#8) 

endpoints, (see Figure 1). Prior to testing, subjects were instructed to refrain from moving 

the head during the stimulus. The program randomly activates one speaker with a 250 ms 

broadband noise at a level ranging between 65 and 75 dB SPL. After each sound 

1 
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stimulus, the subject makes a selection on the laptop screen (see Figure 2 below) 

indicating the perceived location. There is no time limit and there is no feedback 

regarding the subject’s accuracy. The test continues for 48 trials. Outcome measures were 

derived and analyzed in the form of: RMS error in degrees, the number of correct trials, 

the number of trials incorrect (categorized by number of speakers in error), and a 

percentage of correct speaker identification out of 48 total trials.  

 

 

 

Figure 2: Sound Localization Test Screen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Screenshot of the sound localization testing screen used by the subject to indicate the perceived 

speaker location of the broadband noise stimulus on an azimuth plot on the computer screen. 

 

 

 

 

 

 

 

 

I think the sound came out of speaker 

number 
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Speech-in-Noise: (testing procedures) 

  

The speech-in-noise test used the Coordinate Response Measure (CRM) corpus, (first set, 

male speaker, “Charlie” call sign), (Bolia, Nelson, Ericson, Simpson, 2000), in which 

recorded speech is played from a designated speaker in one hemi-field in the following 

format “Ready (call sign), go to (color)(number) now” while a broadband noise stimulus 

is simultaneously played from a designated speaker in the opposite hemi-field. The 

subject then makes a selection on the screen from a grid of numbered and colored 

buttons, based on the perceived command. For example, if the speech signal from one 

hemi-field was: “Ready Charlie go to blue seven now,” and it was heard correctly, then 

the subject would select the blue button that is labeled with the number 7, (see Figure 3 

below). This test then alters the intensity of the broadband noise stimulus using a 1 down, 

1 up adaptive track; (increases and decreases the noise by 6 dB SPL step sizes until the 

4
th

 change of direction, then changed by 4 dB step sizes) based on the subject’s correct 

and incorrect responses (respectively). The level of noise was limited to 80 dB (while the 

CRM speech stimulus remained stable at 60 dB SPL). The test continues for eight 

changes in direction, or 25 maximum trials, before a threshold is reached; with threshold 

defined as the mean dB(A) of the noise at the 5
th

 to 8
th

 change of direction in the adaptive 

track. 
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Figure 3: CRM Speech-in-Noise Test Screen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Screenshot of the speech in noise CRM testing screen used by the subject to indicate the 

perceived number and color presented in the CRM speech stimulus. 

 

 

The subject completes a brief training portion before beginning the test; the subject must 

complete 5 consecutive trials correctly before proceeding. This test is repeated in 4 

consecutive conditions: condition 1 with the speech from speaker 8 (to the right side of 

the subject) and the noise from speaker 1 (to the left side of the subject); condition 2 with 

the speech from speaker 5 and the noise from speaker 4; condition 3 is the reverse of 

condition 2, presenting the speech from speaker 4 and the noise from speaker 5; and 

condition 4 is the reverse of condition 1, with the speech from speaker 1 and the noise 

from speaker 8. Review Figure 1 for speaker orientation.  

 

 

BLUE 

 

GREEN 

 

RED 

 

WHITE 



19 
 

 
 

 

RESULTS 

 

Bilateral subjects are theorized to have a right-eared bias, congruent with early research 

(Berlin, Hughes, Lowe-Bell, Berlin, 1973). For the analyses and the presentations of the 

data below, the right ear is considered the “good ear” for all subjects. Thus, the side of 

ear impairment for subjects with right-sided hearing loss was adjusted by flipping speech 

in noise conditions (1 to 8, 4 to 5, etc.) before subtraction to form the best-to-worst and 

good-to-bad dependent variables, (those subjects with left-sided hearing loss were left as 

is). Therefore, all data are presented as if hearing losses were on the left for all unilateral 

or plugged subjects.  

 

Sound Localization 

 

One way ANOVA in RMS errors showed significant differences between the bilateral, 

true unilateral, and plugged groups (F2,56=71; p<0.001). Post-Hoc comparison showed a 

significant difference between true unilateral and bilateral subjects (p<0.001; effect size 

3.0); error bars are + 1 standard error, (see Figure 4). Post-Hoc comparison showed a 

significant difference between plugged and bilateral subjects (p<0.001, ES =10). Post-

Hoc comparison showed a significant difference between the plugged group and the true 

unilateral group, (p<.001; ES=1.6) one-tailed). 
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Figure 4: Localization Performance Across All Groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The difference in localization performance of three subject groups. Performance is measured by 

mean root-mean-square (RMS) error in degrees. The bilateral subjects perform with significantly less 

degrees of error on average than the unilateral subjects and even less than the plugged bilateral subjects. 

 

 

Figure 4 is a plot of the RMS errors in degrees that were made by the three subject 

groups. The bilateral subjects made the least errors on average, (a mean RMS of 7.6 

degrees deviating from the correct speaker) of the three groups. The true unilateral group 

made larger and more frequent errors, (a mean RMS of 29 degrees of deviation). The 

plugged subjects made the most errors; they were the most severe in deviation from the 

correct speaker than the bilateral subjects or true unilateral subjects, (a mean RMS of 57 

degrees of deviation). The bilateral subjects performed significantly better than the 

unilateral subjects in the sound localization task.  
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 CRM Speech-in-Noise 

  

The dependent variable of the speech-in-noise test is derived from the intensity level of 

the noise (dBA) that produced 50% correct detections (CRM threshold) of 60 dB SPL 

speech signal in the contralateral hemi-field. The amount of noise can be compared to the 

60 dB SPL speech level to derive a signal-to-noise ratio (SNR); a smaller SNR equates to 

a more challenging task, and thus, a higher-performing test-taker. This task was 

completed in 4 conditions which are named based on the expected performance of the 

unilateral subjects. Condition 1 is called the “best condition” (speech to normal ear; noise 

to impaired ear), condition 2 is “good condition” (speech from near front in normal-ear 

hemi-field; noise from near front in impaired-ear hemi-field), condition 3 is the “bad 

condition” (reverse of condition 2), and condition 4 is “worst condition” (reverse of 

condition 1).  

 

Figure 5 below plots the average performance of the unilateral and bilateral groups 

showing the SNR at CRM threshold across the 4 task conditions. The bilateral group 

shows a flat, balanced, and high performance (low SNR) across all conditions whereas 

the unilateral group’s performance is high in the “best” condition and slopes steeply 

upward through the “good” to “poor” to “worst” condition (variable SNR). 

 

 

 

 

 

 



22 
 

 
 

Figure 5: Speech-in-Noise Performance Across 4 CRM Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Performance of speech understanding in noise ability measured by average SNR at the threshold 

of 50% accuracy for each subject group. The performance of unilateral subjects worsens from the ‘best’ to 

‘worst’ conditions. The bilateral subjects exhibit a flat performance at a low SNR level. The ‘plugged’ 

group (not shown) demonstrated intermediate performance. 

 

From the speech-in-noise task measures, two dependent variables were calculated from 

the CRM thresholds: a best-to-worst difference, which is the noise level at CRM 

threshold in the ‘best’ condition minus that in the ‘worst’ condition; and a good-to-poor 

difference, which is the noise level at CRM threshold in the ‘good’ condition minus that 

in the ‘poor’ condition. 

 

Figure 6 shows the means and standard errors of the best-to-worst difference. OneWay 

ANOVA in this difference shows a highly significant effect of group (Bilateral, 
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Unilateral, or Plugged) F2,35=15.2, p<.001. Post-hoc LSD tests showed that all groups 

were significantly different (p=.007 or less).  The effect size of the difference between 

unilateral and bilateral subjects was 3 or ‘huge’ and the two comparisons with the 

plugged group had effect sizes > 1.1 or well above what Cohen considered ‘large.’  

 

Figure 6: CRM Performance Difference Between Best and Worst Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The difference in speech-in-noise comprehension performance, measured by subtracting the mean 

SNR at CRM threshold in the ‘worst’ condition from the ‘best’ condition. The bilateral subjects perform 

equally in both conditions, the plugged subjects exhibited a difference, and the unilateral subjects 

performed with the largest difference. 

 

 

OneWay ANOVA in the difference in noise threshold between the ‘good-to-poor’ 

listening conditions shows a significant effect of group (Bilateral, Unilateral, or Plugged) 

F2,36=3.9, p=.03.  Post-hoc LSD tests showed that all groups were significantly different 

(p=.04 or less, except the unilateral compared to the plugged (p=.43). The effect size of 

the difference between unilateral and bilateral subjects was 1.6 or twice what Cohen said 
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was ‘large’) and the comparisons between the bilateral and plugged group had effect size 

of 1. The means and standard errors of these data are shown in Figure 7 below.  

 

 

Figure 7: CRM Performance Difference Between Good and Poor Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The difference in speech-in-noise comprehension performance, measured by subtracting the mean 

SNR at CRM threshold in the ‘poor’ condition from the ‘good’ condition. The bilateral subjects perform 

equally in both conditions, the plugged and unilateral subjects exhibited a significant difference. 

  

 

 

DISCUSSION 

  

The stereo-hearing testing system shows a significant difference between bilateral and 

unilateral subjects in the binaural processing tasks of sound localization and 

understanding speech-in-noise; it is therefore validated for data collection of 

experimental groups for binaural processing investigation over time. 
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The analysis of the bilateral subjects who were plugged in one ear is interesting in that 

they perform so poorly on the sound localization task (as seen in Figure 4). This low 

performance suggests the true unilaterals had learned over their years of hearing loss to 

localize with monaural cues.  The plugged group actually had less of a hearing loss 

(about 56 dB SPL attenuation created by the earplug and ear muff) than the true unilateral 

group possessed (about 97 dB HL), yet performed worse. This may be attributed to the 

fact that the plugged subjects did not have any time to learn “how to use” their hearing 

loss, let alone adjust to it. On the other hand, the majority of the unilateral subjects were 

born with their hearing loss, if not, had acquired it numerous years prior to this 

experiment. 

 

The data become increasingly interesting when analyzing the speech-in-noise 

performance of the plugged subjects to the unilateral subjects. This trend is different in 

speech in noise testing; the plugged subjects had results that were in between those of the 

bilateral and unilateral subject groups (as opposed to performing significantly worse than 

the unilateral group as they did in the localization task). The effect of an ear plug is 

different (compared to true unilateral subjects) in the speech-in-noise measures. The 

plugged group did better than the unilateral group as measured by the “best to worst” and 

the “good to poor” differences, suggesting that a plugged ear was less affected by the 

location of the signals than a dead/deaf ear in our speech-in-noise tasks. Unlike the 

localization task, it suggests that the understanding of speech-in-noise task may not be as 

dependent on learning how to compensate for a hearing loss, as much as the actual degree 

of the hearing loss (as mentioned before, the plugged group actually had less of a hearing 

loss created by the earplug and ear muff than the true unilateral group possessed). 



26 
 

 
 

  

Of the four CRM speech and noise conditions, the true unilateral subjects performed the 

best in the first CRM condition (called the “best condition”) in which the speech is 

toward the good ear and the competing noise is toward the deaf or impaired ear. This low 

signal-to-noise threshold is expected for those with single-sided deafness, the head 

shadow effect is acting in favor for the subject as it allows the speech signal to be heard 

more easily, (Kesser, in press). Conversely, the true unilateral subjects performed the 

worst in the reverse condition, the fourth condition, (called the “worst condition”) with 

the speech toward the deaf/impaired ear and the competing noise toward the normal ear 

for the same reasoning because head shadow attenuates the speech but not the noise; 

leading to a lower threshold for noise (a higher SNR). In the second and third conditions, 

the speech signal and noise originate closer to midline, in front of the subject, one in the 

center-right hemi-field (speaker 4) and the other in the center-left hemi-field (speaker 5), 

and the reverse. However, because speakers 4 and 5 are closer to midline we expect these 

listening tasks to be more similar, yet still slightly favoring the condition when the speech 

was on the side of the good ear. As expected the unilateral subjects scored higher noise 

levels at CRM threshold (thus lower SNR) in the “good condition” when the speech 

signal arrived from the hemi-field of the better ear (speaker 5), and the noise arrived from 

the hemi-field of the deaf ear (speaker 4), as opposed to the reverse, or “poor condition.” 

This effect was even more significant between the “best” and “worst” conditions. The 

bilateral subjects performed consistently well with low SNR thresholds throughout all 

conditions. 
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CONCLUSION 

  

The small, inexpensive, deployable, and easy-to-set up stereo-hearing test system 

described here (Allen et al., 2013, Harwell et al., 2014) produces large differences 

between bilateral and unilateral subjects. Having binaural access to environmental sound 

provides an advantage in localization accuracy and in detection of speech in competing 

noise.  

 

There is a significant difference in the performance of bilateral subjects and true 

unilateral or plugged subjects in all tests. There is a marginal difference with true 

unilateral subjects localizing better on average than the plugged subjects. This suggests 

that there might be some long-term adaptation to unilateral hearing loss and bodes well 

for the eventual goal of this project, which is to evaluate long-term changes in atresia 

patients, post-surgery.  

 

In the CRM speech-in-noise task, the true unilateral subjects performed the best when the 

speech signal was on the side of the normal ear and the noise on the side of the deaf ear. 

Unilateral subjects have an advantage over the bilateral subjects in this condition due to 

head shadow effect. The reverse condition is the most challenging for the unilateral 

subjects. The middle conditions, which present the speech and noise signals closer to 

midline, though still in opposite hemi-fields, created a trend that transitions in 

performance from the easiest to the hardest condition. The bilateral subjects performed 

consistently well with high noise levels (thus low SNRs) at CRM thresholds throughout 

all conditions. 
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The prototype proves successful in separating the bilateral and unilateral (both the true 

unilateral and plugged) subjects. The system is designed to test subjects in distinct 

intervals over long periods of time for the purpose of recording improvement or change 

in hearing, localization ability, and speech-in-noise reception. The stereo-hearing testing 

device is now ready for deployment to investigate patients with surgically corrected 

congenital aural atresia, who we expect to perform ‘between’ these unilateral and 

bilateral subjects in both binaural processing tasks. 
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MANUSCRIPT #2 TITLE 

  

Deployment of a Stereo-Hearing System to Postoperative Atresia Patients 

  

  

ABSTRACT 

  

Objective: To investigate the performance of atresia patients, postoperatively, in two 

binaural processing tasks, and to compare that performance to subjects with normal 

hearing and subjects with a complete unilateral hearing loss. To investigate the reliability, 

validity, and efficiency of collecting data via transcontinental shipment of the prototype 

device. 

Methods: From their home, subjects were tested on localization accuracy and speech 

understanding in noise using a laboratory-made stereo-hearing testing device. For the 

localization task, the subject identified the location of a 250 ms noise burst presented 

randomly from an 8-speaker array. For the speech-in-noise task, the subject must identify 

a color/number command presented from a speaker in one hemi-field while an adaptive 

noise track is presented simultaneously from a speaker in the adjacent hemi-field. The 

test is repeated with different locations of speech and noise. 

Results: Postoperative atresia subjects performed better than unilateral subjects in all 

tasks, showing the expected improvements in binaural processing following canal-plasty. 

Atresia patients equaled the bilateral controls in sound localization and the most 

challenging speech in noise test.  Within this initial sample of atresia patients (N=9) only 

vague trends are evident among the dependent variables and with various covariates. 

Post-operative audiometric speech reception thresholds correlate with the speech in noise 

testing. Both localization and speech-in-noise understanding appear to improve over post-
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operative time as a general trend, but outlier(s) increase the variance to a point of 

statistical insignificance.  

Conclusions: Repaired atresia subjects perform better than unilateral subjects in 

localizing sound and understanding speech with a separated noise. The performance of 

the post-op atresia patients is closer to the bilateral subjects than to unilateral subjects, 

confirming a benefit of the surgical repair of congenital conductive hearing loss. Our 

device can be used reliably and efficiently to collect data via transcontinental shipment to 

residential locations. More follow-up longitudinal data would help investigate any 

improvement in of binaural listening tasks over time in these patients. One option to 

continue this research is for medical centers to deploy this device to patients’ homes 

annually for updated testing. 

 

 

INTRODUCTION 

  

Statement of the Problem: 

  

Patients travel from around the country to meet with Dr. Bradley Kesser, an 

otolaryngologist at the University of Virginia Medical Center, for atresia-repair 

operations. These patients undergo the operation, as early as age 5, and wake up hearing 

air conducted sounds for the first time from their newly opened ear. The patients return 

approximately one month post-operation to undergo a conventional hearing test to 

document improvement in hearing sensitivity in the repaired ear. Audiometric measures 

of hearing generally occur annually. Thus, while much documentation exists on the 

improvement in hearing thresholds and speech scores of these patients, data do not exist 

on how binaural hearing improves over time after the surgery, an ability that is only 
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possible with two open inputs of auditory information. Insurance commonly covers the 

costs associated with traveling back to the medical center for the one month post-op 

follow-up appointment, and it will not cover any costs to return annually for analysis of 

binaural hearing ability. We developed and now deploy a small, easily un-packable 

stereo-hearing test system.  See (preceding manuscript: “Development of a Deployable 

Stereo-Hearing System”) for details of this device. 

 

 Purpose of the Second Study: 

  

To investigate efficiency and cost-effectiveness of shipping an evidence-based stereo-

hearing testing device to the homes of patients for testing and shipping it back for result 

analysis. To investigate the performance of post-operative patients in tests of sound 

localization and understanding speech-in-noise considering various parameters such as: 

age at time of surgery, number of surgeries, age at time of testing, number of years since 

surgerie(s), and pre/post op PTA and SRT scores. 

 

  

Research Hypotheses: 

 

1. Transcontinental shipping the device to the residences of patients will be cost-

effective (less than $100 to ship round trip), time effective (2 weeks of 

turnaround), and successful in patient-protected data collection. 

2. Reliable results from auditory testing can be obtained in the patients’ homes and 

are comparable to results obtained in the lab setting (at JMU and UVA). 

3. Repaired atresia patients will perform better in both binaural listening tasks 

(sound localization and understanding speech in noise) than the unilateral control 
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group (representing the pre-op atresia population) and will perform worse than the 

bilateral control group (both control groups are derived from data in the preceding 

manuscript). 

4. Postoperative atresia subjects will perform better on both tests as a factor of the 

time passed since the corrective surgery. 

5. The postoperative atresia subjects will perform better on both tests as a factor of 

how young they were at the time of the surgery. 

6. The postoperative atresia subjects will perform better on both tests as a factor of 

their PTA and SRT scores before surgery and the amount of improvement of 

these scores. 

 

  

MATERIALS & METHODS 

 

Participants: 

  

A total of 9 postoperative congenital unilateral atresia individuals participated in this 

study. The ages of the subjects ranged between 5 and 25 years old, (M = 12.9, SD = 5.8). 

These participants completed the study within a range of 4 months to 11 years after their 

(most recent) atresia repair a group average of 3.8 years post-operation. Preoperative 

audiograms of these participants reveal a unilateral conductive hearing loss of a degree 

ranging from mostly moderate to severe, with hearing within normal limits in their 

unaffected ear (air and bone-conduction thresholds at or better than 20 dB HL). At the 

time of the experiment (postoperative), all subjects, except one, had normal hearing to a 

mild hearing loss in the affected (repaired atretic) ear; the remaining subject possessed a 

moderate hearing loss in the atretic ear. The mean pure-tone average (PTA) for the atretic 
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ear prior to any operation was 59.2 dB HL (SD = 11.7 dB HL). The mean PTA for the 

repaired atretic ear after the most recent surgery was 25.9 dB HL (SD = 12.5 dB HL). 

Thus, there was an average improvement of 33 dB HL. Dr. Bradley Kesser recruited and 

acquired consent of each subject at the University of Virginia Medical Center before their 

participation in the study. Patients also provided informed consent to before beginning 

their tests at home.  Audiograms from pre-operation and post-operation were obtained 

prior to the start of the study. Atresia subjects were paid for their participation and time. 

Control subjects were recruited on a volunteer (unpaid) participation basis. 

 

Inclusion criteria for the study included: unilateral congenital aural atresia post-operation, 

within 15 years since most recent repair operation, ability to follow self-administered 

stereo-hearing testing via deployable device (age of 5 or above), and possessing an 

address to receive and ship the deployable device. Exclusion criteria for the study 

included: the patient or the parent/guardian did not want to participate in the study at any 

time, possessing bilateral congenital aural atresia, or not (cognitively) developed enough 

to participate independently in the testing. 

  

For the sound localization test, these 9 post-op atresia subjects were compared to a 

control group of 33 bilateral subjects, a group of 18 bilateral subjects who repeated the 

test with an artificial unilateral hearing loss (plugged group), and a control group of 6 

unilateral subjects from the first study. For the speech-in-noise test, these 9 subjects were 

compared to a control group of 20 bilateral subjects and the control group of 5 unilateral 

subjects (from the first study), (each of these 20 bilateral subjects were tested again with 

an earplug in one ear and an earmuff covering it to simulate an artificial unilateral 
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hearing loss). Audiograms were obtained or completed for each subject in this study prior 

to testing. Of the bilateral control subjects, all except 2 had hearing within normal limits 

in both ears (air and bone-conduction thresholds at or better than 20 dB HL across 

frequencies of 250-8000 Hz). Of the 2 remaining bilateral subjects, one had bilateral mild 

hearing loss at 2000 Hz and the other had a bilateral normal/mild to moderate 

sensorineural hearing loss at 6000 and 8000 Hz. Of the 6 unilateral subjects who 

possessed a sensorineural one-sided hearing loss, 5 had a profound hearing loss and 1 had 

a moderate hearing loss. 

  

This research study received IRB approval at both James Madison University (#13-0058) 

and University of Virginia (#12490). Each subject (or subject’s parent/guardian if subject 

was a minor) was contacted by the researcher by phone to discuss the study and the 

procedure expectations. Then the stereo-hearing testing device package was shipped to 

the home of each subject. Upon opening the package, each subject must read and follow 

the provided written instructions for unpacking, set-up, testing, disassembly, packing, and 

shipping. All testing was conducted in the respective home of each subject, in a room 

selected by the subject based on the criteria detailed in the instructions packet (see 

Instructions in the Appendix). Parents/guardians of minor subjects are permitted to assist 

the subject with assembly and disassembly, however, the parents/guardians must leave 

the subject to complete the actual testing independently. 

 

 

The Tests: Sound Localization and Speech in Noise CRM 

 

The subject sits in a chair in front of the laptop device, with the head located 

approximately in the center between the first speaker (#1) and the last speaker (#8) 
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endpoints, (see Figure 1). Prior to testing, subjects were instructed to refrain from moving 

the head during the stimulus. The program randomly activates one speaker with a 250 ms 

broadband noise burst at varying intensity levels between 60 and 80 dB SPL (average 

intensity level of 70 dB SPL, roved by +/- 10 dB SPL). After each sound stimulus, the 

subject makes a selection on the laptop screen (see Figure 1 below) indicating the 

perceived location. There is no time limit and there is no feedback regarding the subject’s 

accuracy. The test continues for 48 trials. Outcome measures were derived and analyzed 

in the form of: RMS error in degrees, the number of correct trials, the number of trials 

incorrect (categorized by number of speakers in error), and a percentage of correct 

speaker identification out of 48 total trials.  

 

 

Figure 1: Sound Localization Test Screen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Screenshot of the sound localization testing screen used by the subject to indicate the perceived 

speaker location of the broadband noise stimulus on an azimuth plot on the computer screen. 

 

 

I think the sound came out of speaker 
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The speech-in-noise test used the Corpus Response Measure (CRM), (first set, male 

speaker, “Charlie” call sign), (Bolia, Nelson, Ericson, Simpson, 2000), in which a speech 

recording is played from a designated speaker in one hemi-field in the following format 

“Ready (call sign), go to (color)(number) now” while a broadband noise stimulus is 

simultaneously played from a designated speaker in the opposite hemi-field. The subject 

then makes a selection on the screen from a grid of numbered and colored buttons, based 

on the signal. For example, if the signal presented with: “Ready Charlie go to blue seven 

now,” and was heard correctly, then the subject would select the blue button that is 

labeled with the number 7, (see Figure 2 below). With each speech signal presentation 

from a designated speaker, another designated speaker is programmed to present a 

broadband noise recording simultaneously (which is the duration of the speech signal). 

This test alters the intensity of the broadband noise stimulus using a 1 down, 1 up 

adaptive track; (increases and decreases the noise by 6 dB SPL step sizes until the 4
th

 

change of direction, then changed by 4 dB step sizes) based on the subject’s correct and 

incorrect responses (respectively). The level of noise was limited to 80 dB (while the 

CRM speech stimulus remained stable at 60 dB SPL).  The test continues for eight 

changes in direction, or 25 maximum trials, before threshold is reached; threshold defined 

as the mean dB(A) of the noise at the 5
th

 to 8
th

 change of direction in the adaptive track. 

  

This test is repeated in 4 consecutive conditions: condition 1 with the speech from 

speaker 8 (to the right side of the subject) and the noise from speaker 1 (to the left side of 

the subject); condition 2 with the speech from speaker 5 and the noise from speaker 4; 

condition 3 is the reverse of condition 2, presenting the speech from speaker 4 and the 
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noise from speaker 5; and condition 4 is the reverse of condition 1, with the speech from 

speaker 1 and the noise from speaker 8. Review Figure 1 for speaker orientation. 

 

Figure 2: CRM Speech-in-Noise Test Screen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Screenshot of the speech in noise CRM testing screen used by the subject to indicate the 

perceived number and color presented in the CRM speech stimulus. 

 

 

Taking the Tests 

  

When launching the laptop device for testing, the subject is prompted to a log-in screen to 

enter their personal, anonymous username and password. The screen then prompts the 

subject to silence all electronics before beginning a recording of the background noise in 

the testing area. Once the recording is completed, the screen will provide instructions for 

the first test: sound localization. The subject listens for the 250 ms broadband stimulus 

and then selects the button on the screen that correlates with the exact speaker location 
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the sound was perceived to have been presented from. When the test is concluded, the 

subject is prompted to begin the CRM test next. 

For the CRM test, the screen will provide instructions and then prompt the subject to 

begin the brief training portion; the subject must complete 5 consecutive trials correctly 

before proceeding. Finally, the subject is prompted to begin the test, listening for the 

speech stimulus that is presented from one speaker as the noise is presented 

simultaneously from another. The subject then selects the button on the screen that 

correlates with the exact color and number combination that the recorded sentence was 

perceived to have instructed. The test is repeated 4 times with different speakers emitting 

the signal and noise (1&8, 4&5, 5&4, 8&1). When all 4 conditions are completed, the 

screen will prompt the subject to shut down the device. Finally, the subject follows the 

written instructions to disassemble the device, pack all the materials into its original 

shipping container, and drop the package off to the designated shipping carrier. 

 

 

RESULTS 

 

Bilateral subjects are theorized to have a right-eared bias, congruent with early research 

(Berlin, Hughes, Lowe-Bell, Berlin, 1973). For the analyses and the presentations of the 

data below, the right ear is considered the “good ear” for all subjects. Thus, the side of 

ear impairment for subjects with right-sided hearing loss was adjusted by flipping speech 

in noise conditions (1 to 8, 4 to 5, etc.) before subtraction to form the best-to-worst and 

good to bad dependent variables, (those subjects with left-sided hearing loss were left as 

is). Therefore, all data are presented as if hearing losses were on the left for all unilateral 

or artificially-plugged subjects. 
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Sound Localization 

 

Oneway analysis of variance showed a significant difference between groups (bilateral, 

atresia, unilateral, and plugged-bilateral) in root-mean-square (RMS) localization errors 

in degrees, (F3,64=53, p<.001). As seen in Figure 3 below, postoperative atresia subjects 

performed with higher horizontal localization accuracy (in the form of a lower average 

root-mean-square error in degrees) than subjects with unilateral sensorineural hearing 

loss and normal hearing subjects with an artificial unilateral conductive hearing loss 

(plugged). Post hoc tests (LSD) showed that there was no difference between the atresia 

patients and the bilateral subjects (p=0.129), and the atresia patients localized 

significantly better than the true unilateral subjects (p=0.046) with a very large effect size 

(Cohen’s d = 1.6) and localized better than the plugged subjects (p<0.001).  

 

Figure 3: Localization Performance Across All Groups 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Performance of horizontal localization ability measured by average root mean square of error in 

degrees for each subject group. The postoperative atresia patients perform with higher accuracy than the 

unilateral and plugged subjects and similar to the bilateral subjects, on average. 
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CRM Speech-in-Noise 

 

As seen in Figure 4, the bilateral subjects revealed a high and generally flat performance 

across all 4 conditions. The subjects with unilateral sensorineural hearing loss performed 

the best in condition 1, called the “best condition,” (when the speech was directed at the 

normal ear and the noise was directed at the poorer/deaf ear). The unilateral subjects then 

performed second-best in condition 2, called the “good condition,” (speech originating 

from the front of the speaker and the same hemi-field of the normal ear, and noise 

originating from the front, same hemi-field of the poorer ear). The unilateral group 

performed the worst in condition 4, called the “worst condition,” (reverse of condition 1), 

and a similar performance in condition 3, called the “poor condition,” (reverse of 

condition 2). The plugged subject group exhibited a similar pattern as the unilateral 

group, with a smaller range of results. The post-op atresia subject group performed higher 

than the unilateral group in the two conditions that directed speech to the repaired ear and 

performed nearly identically to them in the first condition. The post-op atresia subject 

group performed slightly lower than the bilateral group in all conditions except the first 

condition.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

 
 

Figure 4: Speech-in-Noise Performance Across 4 CRM Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Performance of speech understanding in noise ability measured by average SNR level at the 

threshold of 50% accuracy for each subject group. The performance of postoperative atresia patients shares 

similarities with the unilateral and bilateral group performances; performing “like unilateral” in condition 1 

and “like bilateral” in conditions 2, 3, and 4.  

 

From the speech-in-noise task measures, two dependent variables were calculated from 

the CRM thresholds: a best-to-worst difference, which is the noise level at CRM 

threshold in the ‘best’ condition minus that in the ‘worst’ condition; and a good-to-poor 

difference, which is the noise level at CRM threshold in the ‘good’ condition minus that 

in the ‘poor’ condition. 

 

Oneway analysis of variance showed a significant difference between the bilateral group 

and the post-op atresia, unilateral, and plugged-bilateral in noise intensity level at CRM 

threshold between the best and worst conditions, (F3,44=11.5; p<.001). Post hoc tests 
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(LSD) showed that there was a marginal difference between the post-op atresia patients 

and the bilateral subjects (p=0.047), and a highly significant difference between the post-

op atresia patients and the unilateral subjects (p=0.001). There was not a significant 

difference between the post-op atresia patients and the plugged bilaterals (p=0.578). 

Figure 5 shows the differences in mean noise intensity levels (which is an exact 

conversion to differences in mean SNR) at CRM threshold of 50% accuracy between the 

most lateralized speech signal and noise signal in different hemi-fields. 

 

Figure 6 illustrates the same parameters as Figure 5, except now the dependent variable is 

the difference between the ‘good’ and ‘poor’ condition (the least lateralized signal 

locations). Here the speech and noise are still in different hemi-fields but the two 

speakers are closer to midline.  Note that the magnitude of this difference is now less (y-

axis up to 25dB in Fig 5 and only up to half that in Figure 6. Oneway analysis of variance 

showed a significant difference between the 4 groups (bilateral, post-op atresia, 

unilateral, and plugged-bilateral) in noise intensity level at CRM threshold between the 

more medial “good-to-poor” listening conditions, (F3,44=3.2; p=.033). Post hoc tests 

(LSD) showed that there was now no difference between the post-op atresia patients and 

the bilateral subjects (p=0.775), and still a significant difference between the post-op 

atresia patients and the unilateral subjects (p=0.05). There was not a significant difference 

between the post-op atresia patients and the plugged bilateral subjects (p=0.122).  
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Figure 5: CRM Performance Difference Between Best and Worst Conditions 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

Figure 5: The difference in mean SNR at CRM threshold between the best and worst conditions. The 

bilateral subjects perform equally in both conditions, whereas the remaining subjects exhibited a significant 

difference. 

 
Figure 6: CRM Performance Difference Between Good and Poor Conditions  

 

 

 

 

  

  

  

 

  

 

  

      

 

Figure 6: The difference in mean SNR at CRM threshold between the good and poor conditions. The 

bilateral subjects perform equally in both conditions, whereas the post-op atresia, plugged, and unilateral 

subjects exhibited a significant difference. The post-op atresia subjects exhibited less of a difference 

between their performances compared to the best-to-worst results in Figure 5. 
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Much like other studies, (Wilmington, 1994), there was no strong (significant) correlation 

between the various measures of binaural processing (in the present paper localization 

errors are compared to SNR in speech understanding ability).  Individual postoperative 

atresia subjects are plotted on performance in localization accuracy (in RMS error in 

degrees) compared to the difference in speech-in-noise ability (in dB of noise intensity 

level at CRM threshold, or otherwise in dB SNR) between the “good’ versus ‘poor’ 

speaker configurations (condition 2 SNR subtracted by condition 3 SNR). As seen in 

Figure 7 below, performance trend between these two binaural processing tasks is not a 

clear linear correlation. This trend suggests that there might be two subsets indicated by 

the light-yellow lines; the line with the steep slope indicating subjects that are relatively 

good localizers (relative to their speech-in-noise performance) and the flatter slope 

indicating a group of poor localizers (high RMS errors). 
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Figure 7: Localization and CRM Ability for Post-Op Atresia Subjects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7: Plots of each individual postoperative atresia subject in localization ability and difference (dB 

SNR) of performance between the ‘good’ and ‘poor’ conditions at CRM threshold. The dashed yellow lines 

are hand-drawn to represent the observed trends. 

 

 

The overall goal of the deployable system is to document improvements in performance 

over time passed since surgery. Thus, an interesting correlation might exist between the 

amount of time passed since atresia surgery and the performance of the speech-in-noise 

and localization tasks. As seen in Figure 8 below, individual postoperative atresia 

subjects are plotted on years passed since the most recent atresia surgery against the 

difference in speech-in-noise performance between the best and worst conditions (in dB 

SNR) at CRM threshold. With the exception of a single outlier in the upper right, 
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performance in this task appears to improve with time in a non-linear trend, as expected. 

It should be noted that the outlier’s PTA was 60 dB HL before surgery and improved to 

47 dB HL and the SRT was 60 dB HL improved to 45 dB HL. 

  

Figure 8: Years Since Last Surgery and CRM Ability for Post-Op Atresia Subjects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: This scatterplot shows that a non-linear correlation exists between the number of years passed 

since atresia repair surgery and the difference in SNR between the ‘best’ and ‘worst’ conditions at CRM 

threshold. As time passes, the difference in performance between conditions becomes more bilateral in 

nature to a certain extent and a plateau is reached, with the exception of one outlier. The dashed yellow line 

is hand-drawn to represent the observed trend. 

 

 

 

Figure 9 below shows localization (RMS errors) performance of post-op atresia subjects 

as a function of how many years have passed since their last (or only) repair operation. It 

appears that, although there is some variability; localization improves with chronical age 

of new ear in an expected non-linear trend similar to Figure 8. 
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Figure 9: Years Since Last Surgery and Localization Ability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: This scatterplot shows that a non-linear correlation exists between the number of years passed 

since atresia repair surgery and horizontal localization performance. As time passes, the localization ability 

improves to a certain extent and a plateau is reached. The dashed yellow line is hand-drawn to represent the 

observed trend. 

 

 

As a reference, Table 1 is provided below with the demographic and audiometric data of 

each individual postoperative atresia subject that participated in this study. This table can 

be used to cross-reference to each dot on the scatterplot of Figure 8 above. The 

highlighted column in Table 1 is the atresia subject (15 years old) that is marked as the 

outlier in Figure 8. Compared to the rest of the post-op atresia subjects, especially its age-

matched counterpart above it (16 years old), this subject has the worst PTA and SRT 

audiometric thresholds post-operation (see red arrows), despite having passed the longest 

duration of time since surgery (11 years). 
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Various clinical covariates were explored to seek explanation of task performance. Table 

2 shows all possible correlations between the ‘clinical’ audiometric data versus the 

measures from the deployed stereo-hearing test. Interestingly nothing correlates with the 

localization performance, and several audiometric results correlate with the speech-in-

noise tests. Arguably none of these correlations are truly significant given the number of 

comparisons in this table.  However, the most significant correlation (post-op PTA versus 

best-to-worst condition difference) is plotted in Figure 10 in the Discussion section. 

Another significant correlation (post-op SRT versus worst condition ability) is plotted in 

Figure 11 in the Discussion section.  

 

 

Table 2: Correlations Between Clinical Audiometric Data and Binaural Task Data 
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DISCUSSION 

 

This relatively small sample shows that our small test system can be effectively deployed 

and retrieved with what appear to be interesting data. The post-op atresia patients, as a 

group, do quite well in these tasks. They do significantly better than the unilateral 

controls in all measures (localization accuracy and both ways of quantifying speech-

understanding-in-noise), and they are no different than bilateral controls in localization 

and in one of the speech measures (difference between the ‘good and poor’ CRM 

conditions). Looking within the group of post-op atresia patients, it appears that the two 

tasks (localization and understanding speech in noise) are not closely correlated.  Rather 

it appears that individuals do better in either one of these tasks, or the other. The 

emergence of binaural processing is thus not a unitary process.  It is suggested that 

different aspects of stereo hearing emerge at different rates in different patients after they 

have two ears with approximately normal air-conduction thresholds. 

 

With this small sample, we fail to find statistically significant relationships between our 

dependent variable and various clinical covariates (age, time since surgery, pre- or post-

op audiometric data, etc.). With the exception of expected outliers in such a population, 

some general trends might be evident, such as improvement over time since surgery. It 

appears that the amount of time passed since an aural atresia repair surgery contributes to 

higher success in binaural processing performance for most of these patients. 

Nevertheless, results are variable in that some postoperative atresia patients perform more 

similar to bilateral hearing subjects immediately after surgery, while others might 

experience a learning interaction over time for approaching normalized results. A more 

valid indicator of binaural processing success might be attributed to post-op clinical 
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audiometric data, such as puretone averages (PTAs) and speech reception thresholds 

(SRTs). This is exemplified in Figures 10 and 11 below; the better the SRT or PTA score 

post-operation, the better the speech-in-noise performance. 

 

 

Figure 10: PTA of Post-Op Atresia Subjects and CRM Ability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The scatterplot shows a linear correlation exists between the puretone average (PTA) of atresia 

subjects following reparative surgery and the difference in speech-in-noise performance between the best 

and worst conditions at CRM threshold. 
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Figure 11: Post-Op Atresia SRT Scores with Worst CRM Condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The scatterplot shows a linear and negative correlation exists between the speech reception 

threshold (SRT) of the post-op atresia subjects following reparative surgery and the mean level of the noise 

at the CRM threshold for the ‘worst’ condition. In other words, those who achieved a low SNR at threshold 

also exhibit a lower (better) post-op SRT. 

 

 

 

 

CRM speech-in-noise test results for the postoperative atresia patients revealed a trend 

that shared similarities with the bilateral control group and the true unilateral subjects. 

Figure 4 shows how the post-op atresia group and the unilateral group have excellent 

performance (better than the bilateral control subjects) in the first CRM condition where 

the speech signal is facing the normal ear and the competing noise is facing the poorer ear 

(best condition). In the next two conditions, the speech signal and noise originate from 

the front of the subject, one in the center-right hemi-field (speaker 4) and the other in the 
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center-left hemi-field (speaker 5), and the reverse (good and poor conditions). The post-

op atresia subjects had CRM thresholds at similar noise intensity levels within these two 

conditions, with a slightly higher performance occurring when the speech signal arrived 

from the same hemi-field of the normal ear and the noise arrived from the same hemi-

field of the repaired atretic ear. In the last condition, with the speech signal facing the 

repaired atretic ear and the noise facing the normal ear (worst condition), the post-op 

atresia subjects performed similarly as they did in conditions 2 and 3. They performed 

between the bilateral control group and the unilateral control group in the last condition. 

The bilateral subjects performed consistently well with low SNR scores throughout all 

conditions. 

 

CONCLUSION 

 

Atresia patients who underwent the surgical repair were able to perform better than 

unilateral subject counterparts and near their bilateral hearing counterparts. Results 

suggest that a learning curve exists for learning to use the newly repaired ear; years since 

surgery is one predictor of success in these two binaural tasks, yet clinical measures such 

as puretone average (PTA) and speech reception threshold (SRT) immediately following 

surgery might serve as more valid indicators. Binaural processing tasks, specifically 

horizontal localization of sound and understanding speech-in-noise, may not have the 

same rate of learning and development as previously thought. Post-operative atresia 

patients may perform well in one task but not the other. Further follow-up is needed to 

continue this study for the purpose of tracking the performance of the same patients year 

after year to create a longitudinal investigation of each subject’s improvement with 
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binaural processing over time as a factor of learning and time passed since surgery. The 

current deployable stereo-hearing testing prototype can be shipped for testing and 

returned for analysis in a cost-effective and reliable manner with mild risk. 
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APPENDIX 

 
   

Manuscript 1: Further Discussion 

 

A small sample of 5 bilateral subjects, unilateral subjects, and plugged subjects was 

randomly selected for localization error analysis. The amount of errors and severity of 

errors were measured for each sample group. When bilateral subjects made errors in the 

sound localization test, the errors were dissimilar to the unilateral and plugged subjects; 

they made fewer mistakes and the mistakes were less severe in degrees (errored by one 

speaker on average). Both the true unilateral and plugged subjects made more errors, 

which were typically greater than two speakers in error (over 30 degrees). Figures A, B, 

and C display the nature of these errors. Of all bilateral subjects in the control group, the 

majority missed the correct speaker by just one speaker to the left or right in all their 

mistakes. In the control group, the highest number of errors made by a subject was 22 

(with each of the 22 errors being off by just one speaker). The lowest number of errors 

was made by a subject was zero. 

  

The true unilateral and plugged subjects expressed much larger and varied distribution of 

error types than the bilateral subjects. Between the two unilateral groups, the plugged 

subjects made more errors, which were also more severe in nature, than the true unilateral 

subjects. This strongly suggests that the prototype is successful in not only separating the 

localization abilities of one- and two- eared subjects, but furthermore making a 

distinction between experienced (true) and novice (plugged) one-eared subjects. Due to 

lack of experience with a hearing loss, plugged subjects made more frequent and more 

severe errors than the true unilateral subjects, and thus, had the widest distribution of 
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error types among the three groups. For these unilateral groups, the direction of average 

error is opposite the side of deafness (or hearing loss); those with right-sided deafness 

tend to make more errors towards the left when selecting speakers and vice versa, as 

expected. The true unilateral subjects and plugged  subjects matched in pattern of average 

error direction. The differences shown between Figures B and C suggest that there is 

long-term adaptation involved with having hearing loss (congenital or acquired). In 

theory, an adult born with unilateral hearing loss would perform significantly higher than 

an adult who experiences a recent sudden sensorineural hearing loss, when testing for 

sound localization accuracy on this device. Atresia patients have much more practice and 

experience in listening with a single ear, (Kesser, in press). This shadows the nature of 

habilitation that postoperative aural atresia patients encounter over time after the 

corrective surgery.  
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Figure A: Distribution of Error Types Among 5 Randomly Selected Bilateral Subjects   

 

 

 

 

 

 

 

 

  

 

 

 

Figure B: Distribution of Error Types Among 5 True Unilateral Subjects 

   

 

 

 

 

  

 

 

 

 

 

 

Figure C: Distribution of Error Types Among 5 Randomly Selected Plugged Subjects 
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For sound localization, the error patterns of the true unilateral subjects matched that of 

the plugged subjects. They both tended to localize the sound toward their normal 

(“good”) ear (true unilateral subjects) or unplugged ear (plugged subjects). When 

comparing the average direction of those errors between the two unilateral groups 

combined, the two samples were practically indistinguishable. This demonstrates that 

both groups were almost identical in directional pattern of speaker selection during the 

testing due to the unilateral HL, despite whether it was an artificial or true hearing loss.  

 

  

Extension Study 1 

  

Purpose: to investigate whether a difference occurs (among only 2-eared participants) 

when placing the laptop on the mat in front of the speaker array versus behind the speaker 

array. The original placement of the laptop (in front of the speaker array) has been 

previously questioned as the laptop screen appears to partially block the view of speakers 

4 and 5, which would in theory affect conditions 2 and 3 of the CRM test. We did this 

pilot experiment to evaluate if the scores of bilateral subjects changed based on this 

parameter. Figure 1: Y axis = CRM threshold. X axis = CRM speaker condition. 

Results: there is no significant difference in results or performance between the 2 laptop 

locations. On average all subjects performed better with one location in one condition and 

better with the other location in the other condition 

Conclusion: there is no difference, interference, or skew with the laptop placement in 

front of the speakers than behind them. Confirming appropriate testing placement of all 

subjects thus far in the current study. 
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Figure D: CRM Threshold of Normal Controls and Laptop Placement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E: Localization Ability in Two Laptop Placements 
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Extension Study 2 

 

Extension 2 of this experiment investigated the effects of bilateral anatomical pinna 

position on performance of sound localization using the prototype device. Subjects with 

normal hearing completed the localization task once while wearing a plastic headband to 

pin the pinnae back against the mastoid bone, thus removing pinna cues (pinned 

condition), and once without (normal condition). Results (Cohen’s d=1.1, t10=3.7, 

p=.004) suggested that slight pinna cues provide a significant and beneficial contribution 

to horizontal sound localization of noise bursts in bilateral subjects. Therefore, removing 

these pinna cues causes reduced localization accuracy. This information, illustrated in 

Figure F below, can be considered significant to medical professionals such as the plastic 

surgeons who construct the new pinnae for atresia patients. 

 

Figure F: Localization Accuracy for Two Pinna Conditions 

  

 

 

 

 

 

 

 

 

 

 

 

 

* Note that y-axis scales of these figures do not match 
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Taken Precautions 

Parents and children were familiarized with the study and procedures once on the phone 

and again in the instructions received with the device. The instructions described how to 

select a room for testing in the residence and how to ensure a quiet testing environment. 

Instructions described the appropriate posture and positioning for taking the tests without 

skewing the results. A motion-detecting camera installment is the eventual goal for 

validating subject head position in the future.  

Localization accuracy decreases with increasing reverberant energy, (Kopco and Shinn-

Cunningham, 2002). For this reason, all subjects were administered the tests (or 

instructed to take the tests) from a minimum distance of 5 feet from all walls in the 

testing room or lab. 

 

Limitations of Current Research 

 

As this device was shipped to the residences of subjects around the country, the rooms of 

testing selected by each subject/family of the subject are highly variable. Despite sending 

instructions to the families regarding how to maximally reduce noise disruption (turn off 

the washing machine, dishwasher, air conditioning, put the family pets in another part of 

the house, etc.), the psychoacoustical properties of each room selected for testing is 

unknown. Furthermore, while instructions were clear for keeping the subject’s head in a 

proper and unmoved position, evidence of obeying these instructions were not 

documented. It is a future goal of this project to install a motion-detecting camera onto 
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the device for the purpose of ensuring proper head/body position and recording evidence 

of the subject’s position during testing.  

 

 

Review of Device Deployment Success 

 

Our devices were shipped to 9 different residences across the country, with 

approximately $1,000 of insurance documented for each; each one was returned to the 

researcher. The delivery time did not exceed 4 days for the furthest subject (New Mexico, 

shipped from Virginia). The turnaround time for sending and receiving each device back 

(after two days of testing) was about 2 weeks. While assembling and setting up the device 

requires about 20 minutes or less for a layperson who has never seen the prototype 

before, an hour was set aside for the subjects (the same amount of time applies to 

disassembly and packing the device back into the shipping box. The tests take about 20 

minutes to complete (5 minutes for sound localization and 15 minutes for speech-in-

noise); an hour was set aside for subjects to complete the tests. Each of 9 device 

shipments, except one, returned in a secure and undamaged status. Only one box was 

received from the subject as “damaged.” The extent of this damage was just chipping of 

the plastic casing around one corner of the laptop, leaving the laptop and program fully 

functioning. The shipping carrier was informed of this damage and the carrier agreed to 

replace the cost of the laptop’ which was executed successfully in less than one month. 

The James Madison University Communication Sciences and Disorders Department 

shipping carrier account was used for shipping the devices to subjects (and reimbursed by 

the research team). While this allowed for discounted rates, it was chosen in order to 
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replicate rates that are expected to correlate with those shipping accounts used in medical 

centers and private businesses where these devices may be used in the future. 

 

 

Implications for Future Research 

 

Further data collection is needed in the form of repeated measures on the post-op atresia 

subjects. The goal is to ship the device back to those patients annually to investigate any 

changes in performance in these two tasks of binaural processing. It is theorized that a 

learning curve exists for binaural listening tasks after aural atresia repair surgery. The 

hypothesis is that these post-op atresia patients will improve after surgery (one-tailed 

test), with the variable of time passed since surgery.  
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Device Prototype Inventory 

  

● Sherman Prototype → development with LG 

● Florida Prototype → retired, JMU ENG Lab 

● Bahamas Prototype → retired, JMU ENG Lab 

● Ryals Prototype → at UVA 

● Rockville Prototype → deployable, slightly damaged 

● Rockville 2.0 Prototype → deployable, JMU ENG Lab 

● Greenbrier Prototype → deployable, JMU ENG Lab 

● Watson Prototype (tablet) → with LG 

● Tadlock Prototype → with LG 



69 
 

 
 

Presented Posters of the Research 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



70 
 

 
 

Instructions for the Post-Op Atresia Subjects  
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Legend of Coded Subject Groups from SPSS Analysis 

Post-op Atresia = 0 

Bilateral = 1 

True Unilateral = -1 

Plugged = 0.5 
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Abstract 

Twenty-seven participants were tested using a prototype hearing device that assessed 

sound localization ability. These participants were divided into one control group and two 

experimental groups based on their status of hearing. These groups are: Normal listeners (hearing 

within normal limits, at 20 dB or lower at frequencies of 250-8000 Hz), Real Unilateral listeners 

(subjects with a profound, single-sided, sensorineural hearing loss (HL)), and ‘Fake’ Unilateral 

listeners (subjects from the Normal listeners group with an artificially given conductive HL by 

plugging one ear). RMS localization errors were measured from 19 control listeners with normal 

hearing in both ears and six experimental listeners with complete unilateral hearing loss. Oneway 

ANOVA showed a significant difference between the Normals and the Real Unilaterals. (F(2,37) = 

21; p < .001). Post Hoc comparison showed a significant difference between ‘Fake’ Unilaterals 

and Normals; (p < .001). Post Hoc comparison showed a marginal difference between Fake and 

Real Unilaterals, (p = .04), one-tailed. There is a significant difference in the performance of 

Normal subjects and Real or Fake Unilateral subjects. There is a marginal difference between the 

performance of Real Unilaterals and Fake Unilaterals. Fake Unilateral tended to localize better 

during the middle of the test and lower at the beginning and end of the test, perhaps from minor 

adaptation. Normal subjects make minimal errors in localizing sound, while Real and Fake 

Unilaterals have a much larger distribution of error types. The side of deafness/HL designates the 

direction of average error. The Real and Fake Unilateral subjects matched in pattern of average 

error direction. The ultimate goal was being able to demonstrate that the deployable stereo 

hearing system has been successful in proving a difference between Normal and Unilateral 

listeners’ sound-localizing ability.  This goal was achieved with high construct validity. 
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Introduction 

Purpose of Study: 

Congenital Aural Atresia 

 Congenital aural atresia is a condition characterized by the malformation and poor 

development of the external auditory meatus (ear canal) and the middle ear structures, such as 

one or more of the ossicles. This disorder, occurring at birth, can vary in degree; for example, the 

ear canal can be partially closed or completely absent. Some or all of the ossicles may be 

underdeveloped or absent. In a less severe case, each of the three bones may actually be present 

but the ossicular chain may not be mobile. Aural atresia is commonly associated with “microtia” 

otherwise known as a small outer ear (pinna), or sometimes the absence of one altogether 

(anotia). Depending on severity, aural atresia results in various degrees of conductive hearing 

loss (conductive hearing loss refers to a dysfunction in the outer or middle ear; sensorineural 

hearing loss refers to a dysfunction in the inner ear and/or the nerve connecting the inner ear to 

the brain). This condition occurs three to five times more often unilaterally than bilaterally. 

Incidence is one in 10,000 to 20,000 births. 

Corrective Surgery 

 To explain this complex process in a simple fashion, surgical correction involves the 

reconstruction of a new pinna (the visible part of the ear), drilling of a hole into the area where 

the canal should be, and reconstruction of a middle-ear sound conduction mechanism. Image 1 

on page 10 shows a patient’s ear before and after the drilling of the external auditory meatus. In 

order to reconstruct a new pinna, costal cartilage is harvested from the contralateral lower ribs. 

After the new pinna has been formed, the patient can elect otologic surgery.  Otologic surgery is 

not offered to patients without a functional cochlea (tested preoperatively via bone conduction) 
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or without a normal stapes (on high resolution CT).  The surgeon begins by drilling into the 

atretic temporal bone to create a new canal. Once the middle ear is opened, the ossicles must be 

identified, mobilized, or replaced. A malleus or incus that are found not to move or function 

properly will be mobilized with “intact native chain reconstruction” (INCR) or replaced with a 

“partial ossicular replacement prosthesis” (PORP) or “total ossicular replacement prosthesis” 

(TORP). After ensuring the functionality of the ossicles, the next step is to construct a tympanic 

membrane (eardrum) from a fascia graft; this graft is typically taken from the postauricular 

incision (the area posterior to where the reconstructed pinna is located). Once the tympanic 

membrane is put in place, the newly drilled ear canal is lined with a split-thickness skin graft. 

This graft is usually harvested from the inner, upper part of the arm. To finish the procedure, 

small, absorbent sponges (wicks) and an ototopical antibiotic eardrop preparation are placed 

inside the new canal in order to secure the skin graft and prevent infection.  

 

Image 1: Congenital Aural Atresia Before and After 

 
Kesser, B., Cole, E., Gray, L. (2013). Congenital aural atresia; before and after. [Image]. Retrieved from “Hearing 

Speech in Noise from a Single Source Before and After Surgical Improvement of Congenital Conductive Hearing 

Loss” Poster at the Association for Research in Otolaryngology 

 

http://www.ghorayeb.com/TORP.html
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Project Objectives: 

The Capstone Project 

 The standard follow-up plan after atresia surgery typically involves one visit one week 

after surgery in which the surgical packing is removed. A second visit is required one month 

later to clean the new ear canal and obtain the first postoperative audiogram. A simple pure tone 

audiogram qualifies how the patient’s hearing has improved. Because many atresia patients live a 

distance away from otolaryngologists and audiologists, (over seas for example), it is 

understandable that traveling every year for follow-up visits can be a hardship for many people. 

This situation results in few long-term follow-up visits even for audiograms, let alone specialized 

research hearing tests (not covered by insurance) such as the free-field localization tests in this 

report.  

Dr. Lincoln Gray and Dr. Robert Nagel of the James Madison University Communication 

Sciences and Disorders Department and the Department of Engineering, respectively, began a 

capstone project last year with a group of engineering students to address this problem. This 

capstone group has been working to design a prototype hearing-testing device that can be sent 

out, by means of a small Fed-Ex package, to distant families of aural atresia patients. The device 

will be programmed to test pure tone thresholds, sound localization, detection of speech in noise, 

and potentially other monaural and binaural psychoacoustic tests. This prototype will include 

several speakers, a programmed laptop, and instructions on how to set up the device and take the 

tests without on-site audiological supervision. The undergraduate engineering team has the goal 

of building and calibrating this system to be used by any untrained individual. An eventual goal 

of this interdisciplinary team is to receive a research grant to mass-produce and deploy this 

product into a service that can benefit the world of auditory research and treatment. 
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My Role 

 I was born with Waardenburg Syndrome, an inherited disorder that resulted in a unilateral 

hearing loss. I am profoundly deaf in my right ear and have hearing within normal limits in my 

left ear. My personal disability, or preferably, personal “difference” has led my passion of study 

in the major of “communication sciences and disorders” (CSD) and furthermore, to my 

participation in this thesis. Because of my hearing condition, I am coincidentally an excellent 

control subject for a person with the most severe case of aural atresia “pre-surgery.” As the 

engineering students have progressed with the design and programming of the product, they have 

administered various versions of the hearing tests on me. I have naturally responded as an aural 

atresia patient with maximum conductive hearing loss would, meaning I performed poorly, as 

expected, to the point of failure. Each of these tests is designed to be extremely difficult for any 

individual without binaural hearing and fairly easy and natural for individuals with binaural 

hearing. Fortunately, in addition to our already strong and diverse team, we have another fellow 

CSD student who has agreed to volunteer as a different kind of participant. My colleague was 

born with congenital aural atresia of her right ear with her left ear within normal hearing limits. 

After undergoing several successful surgeries throughout her childhood, she has had the majority 

of her hearing in the right ear restored as well as a newly constructed outer ear. With my 

colleague’s valuable personal experience, we can test her as the “post-surgery aural atresia 

patient” (as she certainly is one), and we can test myself as the “pre-surgery aural atresia patient” 

(as my profound sensorineural hearing loss certainly represents the nature of a severe conductive 

hearing loss). 
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Methods & Materials 

Participants: 

 A total of 27 subjects participated in this study. Of these subjects, 19 had bilateral hearing 

within normal limits (hearing at or below 20 dB at 250, 500, 1000, 2000, 4000, and 8000 Hz 

frequencies). They were used as the control group during testing and 17 of them were also used 

as an experimental group during a second set of testing (in which artificial conductive hearing 

losses were given to this group). Six of the 27 subjects possessed some extent of a unilateral 

hearing loss as the experimental group. Five of these six subjects presented with a profound, 

sensorineural, unilateral HL, and one presented with a moderate, sensorineural, unilateral HL. 

The last two of the 27 subjects presented with variable types of hearing loss and were recruited 

for testing as well. Table 1 is a summary of the categorizations of all 27 subjects.  

Table 1: Table of ParticipantsError! Not a valid link.* These 17 subjects are double counted from the 19 

original Bilateral Hearing Group 

Subjects were recruited through brochures, emails, personal requests, and referral, either 

clinical or academic. The criteria for participation included the following: to sign the volunteer 

research consent form, to have a healthy status, to be able to complete a computerized study, to 

be able to provide a current audiogram or be willing to have one conducted, and to have either 

hearing within normal limits or a unilateral hearing loss (preferably profound but not required). 

 Pure tone thresholds were measured by either a certified audiologist or doctoral student in 

a soundproof booth or by the student researcher in a soundproof booth or empty laboratory. The 

sound localization test was conducted in a quiet, empty laboratory (for lack of space and ability 

to move the prototype to an available soundproof booth). 
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Materials & Calibrations: 

The portable audiometer “Beltone Audio Scout 109” was used by the student researcher. 

The subjects tested by doctoral students or certified audiologists were either tested by the 

audiometer “Madsen Astera” in the JMU Audiology clinic or by an unknown audiometer at an 

off-campus location, respectively. The prototype portable hearing-testing device was used to test 

sound localization on every subject. 

 

Sound Localization: (pre-testing procedures) 

 Before testing, each subject signed an IRB-approved informed consent form. If the 

subject did not have a current audiogram, then pure tone air conduction thresholds (at 250, 500, 

1000, 2000, 4000, and 8000 Hz frequencies) were measured. The control subjects (those with 

normal hearing) were scheduled to take the test twice, once with both ears (binaural condition), 

and once with a ‘fake’ unilateral hearing loss, produced with a disposable foam earplug (Moldex 

Purafit) as well as a circumaural earmuff (Silencio RBW-71) covering over the earplug. Total 

attenuation of this artificial conductive HL is estimated to be approximately 56 dB. Order of 

testing (binaural or plugged unilaterally) and the ear that was plugged were randomized.  The 

experimental group (with real unilateral hearing loss) was just tested once. 

 

Sound Localization: (prototype and layout) 

 The prototype consists of a laptop, containing the program for the sound localization test, 

and eight identical speakers. The eight speakers were arranged along a radius of 24 inches from 

the subject at horizontal positions of 5, 20, 35, 50, 130, 145, 160, and 175 degrees of azimuth 
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(with the respective degree of position directly in front of each speaker).  Each speaker is labeled 

with a sticker of its respective number. Image 2 and 3 are side view and front view pictures of 

the prototype and its layout. 

 

 

Image 2: The Prototype Device Side View 

 

Corey, C. (Producer). (2012). Senior engineers showcase capstone project. [Web Photo]. Retrieved from 

http://www.breezejmu.org/news/image_b4d639fa-8cdf-11e1-95e4-0019bb30f31a.html 
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Image 3: The Prototype Device Front View 

 

Photo credit: Jonathan Smith (senior engineer). Taken in 2012. 

 

 

Sound Localization: (testing procedures) 

  The subject sits in a chair in front of the laptop, close enough to have the head located 

approximately in the center of the arc of speaker endpoints. Once prompted with instructions, the 

experimental subjects begin the test. The control subjects (based on their randomly assigned 

schedule) will either have their designated ear temporarily deafened (plugged and covered by the 

student researcher), or they will begin the first test with their normal binaural hearing. The test is 

initiated by a designated button. The program activates one speaker at a time to evoke one 

second of broadband noise at a level ranging between 60 and 75 dB. After each sound stimulus, 

the subject records on the laptop the speaker number that s/he guesses to be the one to have made 

the sound. The next stimulus is not presented until the subject has made such a selection. The test 

continues for 48 trials. Before testing, subjects were instructed to refrain from moving the head 

during the stimulus (to prevent any performance bias). After the stimulus has been played, 

however, the subject is free to move their head to look at the speakers to make an accurate 

response of predicted speaker by number. The subject must then retract back to the original 

forward-facing position. If the participant is from the control group, s/he is prepared for the next 
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test by either removing or adding the “fake hearing loss” and then tested again. Experimental 

subjects completed only a single test. Scores and errors were recorded in the prototype’s system. 

 Outcome measures were derived from various measures of the localization errors. These 

included RMS error in degrees, number of trials that subjects scored correctly, number of trials 

that they were incorrect by one, two, or more speakers, the direction of each error (to the left or 

right of the correct speaker), and whether a subject overall passed or failed, (passing refers to 

scoring over 50% in correct speaker identification in 48 trials).   

 

Data & Analysis 

Parameters: 

 Subjects were classified as having either unilateral (monaural) or bilateral (binaural) 

hearing and, if unilateral, they were also classified based on which ear is functional (left or 

right). The 27 subjects were organized into seven categories for analysis. These categories are: 

Normal Listeners, Fake Unilateral Listeners, Aural Atresia, Real Unilateral Listeners, Bilateral 

HL, Asymmetrical HL, and Aided Bilateral HL.  

 

Categories Defined: 

* Only a few of the following collected categories were used in data analysis 

 Normal Listeners (n=19): subjects who possess hearing within normal limits.  

 Fake Unilateral Listeners (n=17): aka Plugged Normals. Normal subjects who take the test 

with one ear plugged by a disposable foam earplug and a set of headphones on that ear only, 

to simulate a fake unilateral HL. 
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 Atresia (n=1): subjects with an atretic ear, post-operation. 

 Real Unilaterals (n=6): subjects with a profound, one-sided HL. One with a moderate one-

sided HL. 

 Bilateral HL (n=1): subjects who possess a degree of mild to profound HL, which is equal in 

both ears. 

 Asymmetrical HL (n=2): subjects who possess a degree of mild to profound HL, which is 

different in each ear. 

 Aided Bilateral HL (n=2): any subjects with Bilateral or Asymmetrical HL who takes the test 

again while wearing their hearing aids. 

Research Hypotheses: 

Hypothesis 1: Performance of Normals vs. Real Unilaterals 

 The listeners who possess hearing within normal limits (Normal group) will pass the 

sound localization test with success and ease. The listeners who possess a profound single-sided 

hearing loss (Real Unilateral group) will encounter difficulty and fail the sound localization test 

(scoring at 50% or less in correct speaker identification). 

 

Hypothesis 2: Performance of Real Unilaterals vs. Fake Unilaterals 

The Real Unilateral subjects have an extensive amount of experience with this type of 

hearing loss, considering most of them are born with the hearing loss (congenital) or have 

acquired and lived with it for numerous years of their lives (with our sample of Real Unilaterals 
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ranging from a minimum of 10 years (acquired) to a maximum of 63 years (congenital) of 

possessing the HL). Due to this amount of experience, Real Unilaterals will perform better than 

the Fake Unilaterals (Normal subjects with one ear occluded immediately prior to testing). The 

Real Unilateral subjects have better adaptation to their hearing loss and how to interpret auditory 

stimuli from various directions using only unilateral (pinna or head-related transfer) cues. The 

test is difficult in nature for the Real Unilateral subjects, yet it does not differ from the 

difficulties that they face every day in localizing sound. The Fake Unilateral subjects on the other 

hand have an even more difficult time in localizing these sounds because they are dealing with a 

sudden and unnatural change in the balance of their binaural inputs and have never had to 

complete a task in this condition before.  

 

Hypotheses 3: Adaptation and Learning by Fake Unilaterals 

 During the test, the Fake Unilateral subjects become more familiar with the new deficit 

and adapt to it, thus localizing slightly better in the second half of the test than in the first half. 

This quick adaptation might mimic the pattern of long-term learning and adaptation that a person 

with unilateral hearing loss (congenital or acquired) encounters in living with a long-term deficit. 

 

Means of Analysis: 

 Data were analyzed by means of Root Mean Squared (RMS) and Error Squared calculations 

to determine the extent of the errors 

 Mean Error was used to determine the average direction of errors made away from the 

activated speaker. 
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Results and Discussion 

Important Results: 

The overall goal of our project was to develop a hearing test that would separate bilateral and 

unilateral listeners in performance. Results are as follows: 

 RMS localization errors were measured from 19 control listeners with normal hearing in both 

ears and six with complete unilateral hearing loss.  

 Oneway ANOVA showed a significant difference between the Normals, Real, and Fake 

Unilaterals. (F(2,37) = 21; p < .001). 

 Post-Hoc comparison showed a significant difference between Real Unilateral and Normal 

listeners (p < .001; effect size 1.85).  This shows the prototype device is a successful 

evaluation separating the abilities of one- and two-eared listeners, as desired.  

 Post-Hoc comparison showed a significant difference between plugged (Fake Unilateral) and 

unplugged Normals. (p < .001). 

 Post-Hoc comparison showed a marginal difference between Fake Unilaterals (plugged 

Normals) and Real Unilaterals. (p = .04 one-tailed). 

Figure 1 is a plot of the differences in error of degrees that were made by the three subject 

groups. The Normal listeners made the least amount of errors on average; the errors they made 

were the least severe (a mean RMS of 12 degrees deviating from the correct speaker) of the three 

groups. The Real Unilateral group made errors more frequently; these errors were more severe 

than the Normals (a mean RMS of 38 degrees of deviation). The Fake Unilateral listeners made 
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the most errors; they were the most severe in deviation from the correct speaker than the 

Normals or Real Unilaterals (a mean RMS of 55 degrees of deviation). 

Figure 1: Comparing RMS Error of Normals, Unilaterals, and Fakes 

  

Discussion of Results: 

Addressing Initial Hypotheses: 

Hypothesis 1: Performance of Normals vs. Real Unilaterals 

The listeners who possess hearing within normal limits (Normal group) will pass the 

sound localization test with success and ease. The listeners who possess a profound 

single-sided hearing loss (Real Unilateral group) will encounter difficulty and fail the 

sound localization test (scoring at 50% or less in correct speaker identification). 

Groups 

Real Unilaterals Fake Unilaterals Normals 
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Normal subjects performed significantly better than the Real Unilaterals (summarized in Figure 

2) due to the ability to localize sound with binaural cues; an ability that can only occur with both 

ears functioning at a level that allows the reception and sensation of auditory stimulus. The Real 

Unilateral subjects do not possess this capability with one functional ear and thus fail repeatedly 

at this test. 

 19 of the 19 Normal listeners passed the test with a score of at least 54% or higher. 

 17 of the 19 Normal listeners passed the test with a score of at least 71% or higher. 

 100% of the Real Unilateral listeners failed the test with the highest score being 38% and 

the lowest score being 15%, with the exception of an outlier who scored 75%. 

 This subject (the outlier) possesses a moderate to severe (instead of profound) unilateral 

sensorineural HL (a subgroup of the Real Unilaterals). The unusually high score was due 

to some auditory information input to both ears (binaural hearing) regardless of the HL.  

 With the exception of the outlier’s passing score of 75%, all other Real Unilaterals failed 

the test by scoring under 50%. 
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Figure 2: Comparing RMS Error of Real and Fake Unilaterals 

  

*Effect size is large: 1.85. Cohen defines effect size of .5 as medium and .8 as large 

Hypothesis 2: Performance of Real Unilaterals vs. Fake Unilaterals 

Due to the amount of experience that the Real Unilateral subjects have with this type of 

hearing loss (most of them are born with the hearing loss or have lived with it for 

numerous years of their lives), they will perform better than the Fake Unilaterals (Normal 

subjects with one ear occluded immediately prior to testing). The Real Unilateral subjects 

have better adaptation to their hearing loss and more experience in how to interpret 

auditory stimuli from various directions using only unilateral (pinna or head-related 

transfer) cues. The test is difficult in nature for the Real Unilateral subjects, yet it does 

not differ from the difficulties that they face every day in localizing sound. The Fake 

Unilateral subjects on the other hand have an even more difficult time in localizing these 

sounds because they are dealing with a sudden and unnatural change in the balance of 

their binaural inputs and have never had to complete a task in this condition before.  

Groups 

Real Unilaterals Normals 
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 The average correct answer percentage for the Real Unilateral subjects was 33%. 

 The average correct answer percentage for the Fake Unilateral subjects was 19%. 

The Real Unilateral group performed generally higher than the Fake Unilateral group. Real 

Unilaterals have more experience with the hearing loss and understand the nature of it, unlike the 

Fake Unilateral listeners who are not familiar with the sensations of asymmetry caused by the 

sudden HL. While both groups failed, there was clear evidence of a marginal difference between 

the two groups. Figures 3 and 4 on page 25 display the marginal difference in failure rate 

between the Real and Fake Unilateral listeners. The Fake Unilateral listeners consistently made 

more errors out of 48 trials than the Real Unilateral group. 

 

Figure 3: Failure Rate of Real Unilateral Subjects 
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Figure 4: Failure Rate of Fake Unilateral Subjects 

 

Hypothesis 3: Adaptation and Learning by Fake Unilaterals 

During the test, the Fake Unilateral subjects become more familiar with the new deficit 

and adapt to it, thus localizing sound slightly better in the second half of the test than in 

the first half. This quick adaptation might mimic the pattern of long-term learning and 

adaptation that a person with unilateral hearing (congenital or acquired) encounters in 

living with a long-term deficit. 

There was a very subtle, yet consistent, pattern of improvement during the middle section of the 

test. Figure 5 on page 27 shows diagramed scores of error which created a slight positive 

quadratic (smile-like shape; showing a peak of error at the start of the test and a peak again at the 

end of the test, with a dip (reduction of number/severity of errors made) in the middle of the 

test). This might suggest that the Fake Unilateral listeners were not able to figure out where the 

stimuli were coming from in the beginning. While their ability could never technically improve 

with just one ear, they might have adapted to the nature and sensitivities of the hearing loss and 

were thus able to better predict the general origin of the sounds over time. It can be predicted that 
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by the end of the test, frustration, mental exhaustion, fatigue, or some other form of stress could 

have been a factor in the re-peak of errors made, despite possible adaptation. While a slight 

pattern was found, the data over 48 trials is not significant enough to make a true claim of 

adaptation. 

 

Figure 5: Extent of Errors Made by Fake Unilateral Subjects Over 48 Trials 

 

Post Hoc Questions and Hypotheses:  

Question 1: 

When the Normal listeners made errors, were the errors similar to the Real Unilateral and Fake 

Unilateral listeners? (No) 
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New Hypothesis: Minimal Errors for Normal Listeners 

The Normal group of listeners not only made fewer mistakes during the test, but when 

mistakes were made, the guesses were almost always off by only one speaker, while both groups 

of Unilateral listeners made more errors, which were usually greater than two speakers away in 

error. Out of 19 normal listeners in the control group, 17 missed the correct speaker by just one 

speaker to the left or right in all their mistakes; the remaining two made one error each that was 

off by more than one speaker (off by six speakers and off by two speakers respectively). In the 

control group, the highest number of errors made by a subject was 22 (with each of the 22 errors 

being off by just one speaker). The lowest number of errors was made by a subject was zero. 

Figures 6 through 8 display the nature of these errors. 

 

Figure 6: Distribution of Error Types Among 5 Randomly Selected Normal Subjects  
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Figure 7: Distribution of Error Types Among the 5 Real Unilateral Subjects 

 

 

Figure 8: Distribution of Error Types Among 5 Randomly Selected Fake Unilateral Subjects  
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The Real and Fake Unilateral subjects expressed a much larger range and much more variable 

distribution of error types than the Normal subjects did. This strongly suggests that the prototype 

is successful in not only separating the localization abilities of one- and two- eared listeners, but 

furthermore making a distinction between experienced (Real) and novice (Fake) one-eared 

listeners. The differences shown between Figures 7 and 8 reveal that there is long-term 

adaptation involved with having hearing loss (congenital or acquired). This shadows the nature 

of habilitation that post-operative aural atresia patients encounter over time after the corrective 

surgery. 

 

Questions 2 and 3: 

Do all Real Unilaterals make the same pattern of errors regardless of the side of deafness? (No) 

Do the error patterns of the Real Unilaterals match that of the Fake Unilaterals? (Yes) 

 

New Hypothesis: Errors Made in Consistent Directions 

When testing, the Real Unilaterals and the Fake Unilaterals did not make equal errors in 

both directions. They tended to localize the sound toward their ‘good’ or unplugged ear, as 

expected, and as shown in Table 2. This directional pattern for the Real Unilaterals was found in 

the Fake Unilateral group as well, as shown in Table 3. When comparing the average error and 

direction of those errors between the unilateral groups combined, in Table 4, the two samples 

were practically indistinguishable with positive means of 0.44 and 0.42. This demonstrates that 

both groups were almost identical in directional pattern of speaker selection during the testing 

due to the unilateral HL, despite whether it was a fake or real HL. 
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Table 2: Real Unilateral Subjects: The Deaf Ear and the Mean Direction of Errors 

One-Sample Statistics 

The Deaf Ear 

(Right or Left) 

Number of Trials Mean Std. Deviation Std. Error Mean 

R 48 -14.58 28.506 4.114 

R 48 -10.42 55.657 8.033 

L 48 23.33 38.776 5.597 

L 48 2.50 9.785 1.412 

L 48 35.42 62.737 9.055 

* Negative mean errors are left-sided errors (of the correct speaker); positive mean errors are right-sided errors.  

* Making an error towards the “good” ear means having a positive mean with a left deaf ear or a negative mean with           

   a right deaf ear. 

 

Table 3: Fake Unilateral Subjects: The Temporarily Deafened Ear and  

the Mean Direction of Errors 

* Negative mean errors are left-sided errors (of the correct speaker); positive mean errors are right-sided errors.  

* Making an error towards the “unplugged” ear means having a negative mean with a right plugged ear or a positive  

   mean with a left plugged ear. 

Table 4: Comparing Real Unilateral and Fake Unilateral Subjects  

One-Sample Statistics 

The Plugged Ear 

(Right or Left) 

Number of 

Trials 

Mean Std. Deviation Std. Error Mean 

R 48 .42 98.455 14.211 

L 48 51.67 45.351 6.546 

L 48 47.50 67.996 9.814 

R 48 -27.08 35.608 5.140 

R 48 10.83 45.375 6.549 

L 48 27.92 38.202 5.514 

R 48 19.17 26.404 3.811 

L 48 10.00 54.422 7.855 

L 48 10.42 31.145 4.495 

L 48 -7.92 23.243 3.355 

R 48 -7.92 60.879 8.787 

L 48 67.08 56.942 8.219 

R 48 -61.25 69.455 10.025 

L 48 47.50 46.972 6.780 

R 48 -20.00 34.764 5.018 

R 48 -38.33 56.993 8.226 
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in Pattern of Directional Mean Error 

Group Statistics 

 
Real Number of 

Subjects 

Mean Std. Deviation Std. Error Mean 

dInPredDirection 
0 16 .44 .559 .140 

1 5 .42 .189 .085 

*dlnPredDirection = mean error in degrees is positive if the error was toward the good ear  

and negative if in the opposite direction.  Real=0 are the Fake Unilaterals. Real=1 are the Real Unilaterals.  

 

Discussion Continued: 

Our construct validity is likely high. The prototype proves successful in separating the 

binaural and monaural (both the natural and artificial monaural) listeners. The localization 

abilities used when testing under the prototype system are expected to reflect localization 

abilities used in other normal sound situations. We could, however, improve by expanding our 

experiment to sound field-testing; this would mimic natural sound localizing situations even 

better. We also plan to explore the option of using additional sound localization tests to further 

demonstrate the construct validity of our prototype.  

Due to the nature of the prototype, our predictive validity is high as well. The system is 

designed to test subjects in distinct intervals over long periods of time for the purpose of 

recording improvement or change in hearing and localization ability. Testing a subject repeatedly 

in various intervals would theoretically attract the same results between any periods of time 

(assuming their hearing did not change). Subjects will be able to be tested a second time in future 

experiments in order to reinforce this validity. 
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Conclusion 

Findings: 

 There is a significant difference in the performance of Normal subjects and Real or Fake 

Unilateral subjects, with the Normal subjects consistently passing (more than 50% 

correct) and the Real and Fake Unilaterals consistently failing (50% or less correct). 

 There is a marginal difference with Real Unilateral subjects scoring slightly higher on 

average than the Fake Unilateral subjects. This indicates that there might be some long-

term adaptation to unilateral hearing loss and bodes well for the eventual goal of this 

project, which is to evaluate long-term changes in atresia patients post-surgery. 

 Fake Unilateral subjects may have experienced minor adaptation and tended to perform 

higher during the middle of the test and lower at the beginning and end of the test. 

Significance cannot be claimed at this time. 

 Normal subjects that do make errors typically make the smallest error in our 

configuration (mis-localizing the correct speaker by just one speaker to the left or right), 

while Real and Fake Unilaterals have a much larger distribution of error types (errors of 

missing one to the max of seven speakers away from the correct speaker). 

o Due to lack of experience with a hearing loss, Fake Unilaterals made more 

frequent and more severe errors than the Real Unilaterals, and thus, had the 

widest distribution of error types among the three groups. 

 The direction of average error is congruent with the side of deafness (or hearing loss). 
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o Those with right sided deafness tend to make more errors to the left when 

selecting speakers and vice versa, as expected. 

 The Real and Fake Unilateral subjects matched in pattern of average error direction. 

Implications for Clinical Practice: 

 The prototype effectively reveals a significant difference between bilateral and unilateral 

(both natural and artificial) listeners. Because the effect size between these two groups is so 

large, there is a wide range in between where post-operative atresia patients are expected to fall 

in localization ability. Over time, their hearing should gradually improve within this range (to a 

certain extent).  

One distinct advantage of this prototype is that the test can be repeated to test aural 

atresia patients at discrete intervals over long periods of time (every year or so). We can use this 

to quantify differences in sound localization abilities of aural atresia patients and how they 

improve over time after corrective surgery. Furthermore, we hope to use this prototype to 

investigate adaptation rate and learning curve for post-operative atresia patients over time. 

 

Implications for Future Research: 

What Might Have Gone Wrong? 

The lab in which testing was conducted was not soundproof. While testing was always 

conducted in a quiet room with only the tester and participant present, the ventilation system in 

the back of the room was loud enough to be noticeable. The background noise level in the room 

was measured (by B&K Sound Level Meter) to be 45 dB (A), (this is primarily low frequency 

sound). It also measured at 66 dB (C) and 74 dB (linear). This could have had an effect on the 

subject by means of distraction or interference in localizing the stimuli of the test. Unfortunately, 
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due to the nature of the device’s parts and set-up, it was not possible for us to move the testing 

area from the lab where it was originally constructed. Furthermore, we did not have access to the 

functionality of the ventilation system for means of adjusting it during testing, and we did not 

have consistent access to a large enough soundproof booth to for relocation. However, we cannot 

realistically expect that the houses we deploy the device to will be soundproof. Therefore, it 

bodes well for us that even with the background noise during the testing, we still found a large 

effect size in the difference between our control and experimental groups. Furthermore, we can 

expect that the device will achieve its purpose despite the presence of everyday noise in the 

average “quiet” family home. 

The instructions may not have always been clear to the subjects. There were a couple 

instances when the subjects (specifically normal listeners who were plugged) finished the test 

and were surprised to learn that stimuli was played from every speaker at least once. These few 

subjects (the first 2-3 Fake Unilaterals tested) assumed that since they were plugged for this trial, 

the behavior of the program and speakers would change by playing only to a certain side of their 

head rather than randomly playing all of the speakers. It quickly became a standard part of the 

initial instructions to mention that all eight speakers will randomly play a sound at one point or 

another regardless of their hearing condition at the time of the test. This way, vagueness of what 

to expect from the speakers was reduced and the subjects could focus more on what they are 

hearing and where they are hearing it from, instead of guessing how the system is behaving. 

Comparing conductive hearing losses to sensorineural hearing losses may have been a 

confounding variable in this study. While the method we used to temporarily deafen the Normal 

subjects was effective (proven by the data), we did not produce a profound conductive HL, and 

thus, did not perfectly mimic the natural severity of the sensorineural HL of the Real Unilaterals. 
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We estimate the range of HL caused by the noise reduction rate (NRR) of the disposable foam 

earplug (NRR of 33 dB) and the audio head set (NRR of 25 dB) used together on a subject’s ear 

was an NRR of about 36 dB. As shown in Figure 9, a Normal subject is defined as having 

thresholds of at least 20 dB (if not lower) at most standard frequencies, meaning that the average 

HL simulated on these Normals during their Fake Unilateral testing with the earplug and head set 

was about 56 dB (defined as a moderate HL). Profound HL begins at the inability to hear 

auditory information at 91 dB and higher. Because of this realization, it is confirmed that the 

Fake Unilaterals actually had better hearing at 56 dB than the Real Unilaterals did at 91 dB, and 

yet they still performed worse. Therefore, it can be assumed that if these Fake Unilateral subjects 

were artificially given a truly profound HL, the hypotheses regarding group differences between 

the Real and Fake Unilaterals would be even more significant in that experienced one-eared 

listeners perform higher in localizing sound than novice one-eared listeners. 
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   Figure 9: The Audiogram Divided According to Degree of Hearing Loss 

 

Enhanced Hearing Center. (n d). Audiogram [Chart]. Retrieved March 27, 2013 from 

http://www.enhancedhearingcenter.com/links/und_hl1.gif 

 

Possible Future Improvement? 

To conduct this experimentation in the future, several improvements can be made to 

further increase the quality and reliability of the research. First, it would be ideal to have a 

designated soundproof booth or space to conduct testing so as to not have background noise or 

any other form of distracting sound interfere with the testing. 

Secondly, a typed and printed set of instructions would be beneficial in reducing the 

chance that the scientist accidentally leaves out anything important and that the subject does not 

miss any information due to the nature of their hearing or attention. With a printed set of 

instructions, consistency of experimentation will increase, and therefore, validity and reliability 

will increase as well. This device is meant for home deployment and independent test taking, so 

a set of printed instructions will need to be made and developed regardless.  

Group of Normal 

subjects using 

disposable earplug and 

audio head set 

~ 56 dB 

Group of Real 
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Thirdly, while our data was significant enough with the sample size we had, it may be 

wise to have a larger sample size for each of the control and experimental groups in the future. 

Furthermore, the diversity of the samples should be increased for future experimentation to 

include a wider range of ages and an equal amount of representation of each age.  

Lastly, we can improve by conducting pure tone thresholds on the Fake Unilateral 

subjects while they are wearing an earplug and headphones on one ear. This will serve the 

purpose of knowing exactly what the level of their hearing loss is, instead of estimating the 

attenuation by using product labels and logarithmic calculations as we have done. 

 

 

Where Do We Plan to Go With This? 

 As we move forward, the next step in this project is to be able to finalize the prototype, 

package it in a convenient package, and send it off to a post-operative atresia patient. We can 

expect that the patient will be able to open the package, set-up the device, read the instructions, 

take the necessary tests, and repackage it to send back to us. At this point, we can gradually 

move forward towards our ultimate goal of completing additional research and applying for a 

research grant in order to fund our production of this prototype as a standard medical testing 

device for atretic audiological evaluations. 
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Abstract 

The localization and identification of sounds in background noise are such important 
auditory processing skills that any amount of incompetency may lead to various confusions 
and learning delays.  Through a partnership with James Madison University (JMU) and the 
University of Virginia (UVA), a unique opportunity exists to test patients before and after a 
corrected maximal conductive hearing loss in one ear.  Patients with congenital aural 
atresia come to UVA for surgery that will give them normal hearing. Insurance pays for a 
pure tone threshold hearing test one month after surgery, but due to cost restrictions, 
longitudinal follow-up testing is often not performed.  However, longitudinal data from 
follow-up studies is essential for understanding the effectiveness of the surgery. 
  
This project is about the design, construction, and testing of a shippable hearing test 
system for patient testing.  The system will test two binaural hearing abilities—the ability 
to isolate a spatially separated signal from noise and the ability to localize the source of a 
sound. 
 
 Validation testing of the prototype testing system was performed with listeners with 
both normal hearing and with unilateral hearing loss.  In initial testing, the RMS localization 
errors were measured from 19 control listeners with normal hearing and 4 with complete 
unilateral hearing loss.  There was a significant difference between those listeners with one 
good ear versus those with two good ears (p=.01,  d > 1 or ‘large’ effect size).  These results 
provide promise as to the effectiveness of the designed testing package. 
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1 INTRODUCTION 

 This project lends itself well to an engineering solution. It has the potential for some 
meaningful broader impacts, as discussed below. 

1.1 Problem Statement 
 Our stakeholders are Dr. Bradley Kesser and Dr. Lincoln Gray.  Dr. Gray is a 
professor in the School of Communication Science and Disorders (CSD) at James Madison 
University (JMU).  Dr. Kesser is an otolaryngologist at the University of Virginia (UVA).  
Both want to use a portable hearing testing system to evaluate whether or not corrective 
surgery for unilateral congenital aural atresia is effective. Most patients who receive this 
surgery are located a great distance from the Charlottesville area, where the surgeries take 
place.  The patients’ insurance only pays for a follow-up audio test, one month after 
surgery.  Money and travel time interfere with the patient’s ability to receive checkups. 
This makes it difficult to understand whether the procedure administered improves the 
quality of hearing of patients over an extended period of time.  In the simplest terms, 
effectiveness can be defined by how well the atretic ear performs in pure town threshold 
tests in the long term. 
 Our machine will help determine the effectiveness through long-term data collection 
in the comfort of the patients’ homes. Currently, we are able to distribute these portable 
hearing systems for patients to use, to gather data to find out if the atresia surgery helps 
patients.  A speech in noise and a sound localization test for the portable hearing evaluation 
system have been programmed to successfully test patients.  The speech in noise is a test 
that determines whether a patient can understand speech while white noise is playing in 
the background.  The Sound localization test determines if the patient can locate noise 
played from one of the eight speakers that are incorporated into the system. 

1.2 Broader Impacts 
The project will serve as a resource to acquire data to expand upon current 

knowledge in the fields pertaining to audiology and neurology. A broad goal of the data 
obtained by the system will be to help answer how the brain learns how to use the input 
from two ears. People with hearing in both ears learn to use them in such a way that cannot 
be done with one ear.1 Stereo hearing enables the listener to have two specific abilities that 
people with unilateral hearing do not have. The first is the ability to better isolate a signal 
from noise. This is similar to the fact that one can only view 3D movies using two eyes. The 
second is the ability to locate a sound source with a higher degree of accuracy that an 
individual who can only hear out of one ear. Investigating these effects and abilities are 
valuable for the academic community, because it will increase our understanding of the 
brain’s relationship to the ear. 
  

While understanding critical period for binaural hearing is an interesting academic 
venture in and of itself, knowledge in this area can also answer more practical questions. 
For example, armed with this new information about critical periods, pediatricians could 



108 
 

 
 

provide better diagnosis to children with ear infections which may cause the child to suffer 
temporary hearing loss. Some doctors wait and see if the child gets better while others 
recommend immediate treatment. Is it necessary to treat infections urgently? If a critical 
period exists, then aggressive treatment might be prescribed to allow the children to hear 
again during the critical stage of hearing development. However, if no such period exists 
then a less invasive treatment could be prescribed without side effects. 

2 LITERATURE REVIEW 

 
The portable hearing evaluation system will serve as a tool for the continued 

research of Dr. Bradley Kesser and Dr. Lincoln Gray. To gain a better understanding of the 
work Dr. Kesser and Dr. Gray do, the following literary discussion provides insight into the 
field of  audiology; the study of hearing and hearing disorders.1 
 

The discipline of audiology essentially evolved during World War II. During and 

following this war, many military personnel returned from combat with significant 

hearing impairment resulting from exposure to the many and varied types of 

warfare noises. Interestingly, it was a prominent speech pathologist, Robert West 

who called for his profession to expand their discipline to include the area of 

audition.2 

 

Other fields of study have disciplinary overlaps in the science of audiology and speech 

pathology, such as neurology. The capstone group’s faculty advisor, Dr. Gray, is trained in 

the field of neurology and has approached the study of hearing from this perspective. The 

other primary client’s work, Dr. Kesser, has a stronger base in the field of otology. Otology 

is concerned with the diagnosis and treatment of individuals who have an ear disease or a 

disorder of the peripheral mechanism of hearing.1 

 

Both Dr. Gray and Dr. Kesser, professionals in the fields of hearing-related sciences, 

have expressed particular interest in the capability to remotely evaluate patients’ ability to 

localize sound signals, as well as hear speech in noise. Binaural hearing or the processing of 

sound by two ears is a key factor in the task of sound localization. The significance of the 

ability to localize sound is expressed in the following passage: 

          

 Under natural conditions animals do orient to certain sounds that may represent 

prey, predator, or mate. Their ability to localize and identify the source may well be 

one of their most important adaptations. The accuracy with which they do so may 

be a complex function of acoustic signal structure, environmental conditions, the 

availability of input from other sensory modalities, and so on.3 

 

The passage from Berlin provides some context into how an individual makes use of 
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sound signals in his or her environment. The discussion on sound localization by Berlin 

addresses some of the qualitative behavioral significance that develops from binaural 

hearing. The following passage presented by Bess explains the benefits of binaural hearing 

from a quantitative approach, through prescribing a methodology for calculating the rate of 

change in time delayed signal processing. The time delay is seen to be a function of a 

prescribed sound decibel and azimuth orientation of the patient. 

 

The localization of sound in space, for instance, is largely a binaural phenomenon. A 

sound originating on the right side of a listener, for example will arrive at the right 

ear because it is closer to the sound source. A short time later, the sound will reach 

the more distant left ear. This produces an interaural (between-ear) difference in 

the time of arrival of the sound at the two ears. The ear being simulated first will 

signal the direction from which the sound arose. As might be expected, the 

magnitude of this interaural time difference will increase as the location of the 

sound source changes from straight ahead (called 0⁰ azimuth) to straight out to the 

side (90⁰ or 270⁰ azimuth). When the sound originates directly in front of the 

listener, the length of the path to both ears is the same, and there is no interaural 

difference in time of arrival of the sound. At the extreme right or left, however the 

path to the far ear is greatest (and corresponds to the width of the head). This then 

will produce the maximum interaural time difference….For frequencies below 

approximately 1500Hz, the interaural time difference could also be encoded 

meaningfully into an interaural phase difference.2 

 

The model pertaining to the concept of binaural hearing and sound localization will 

be fundamental in the functionality of the evaluative hearing system. A large reason for the 

interest in the sound localization hearing phenomenon is its direct relationship to people 

capable of hearing from two ears. The need to establish metrics associated with the 

functionality of binaural hearing is essential for developing a means of testing to help the 

work of Dr. Kesser. 

Dr. Kesser specializes in a surgery that is used as a corrective measure for a 

condition known as congenital unilateral aural atresia. The atresia, or closure of the ear 

beginning at birth, impacts a person’s hearing abilities associated with Binaural hearing.  

Dr. Gray has been working with Dr. Kesser to develop a means for data collection to 

evaluate improvement of hearing in patients who have undergone the corrective surgery. 

 

This passage taken from a recently published work by Dr. Gray indicates a variety of 

tests and results being generated by his research. The published work also indicates recent 

test data was collected prior to surgery and one month following surgery. The intention for 

the hearing system will be to extend the data collection period to months or even years 

following the atresia surgery. 
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Unilateral hearing loss causes difficulty hearing in noise (the ‘‘cocktail party effect’’) 

due to absence of redundancy, head-shadow, and binaural squelch. Methods: 

Patients with unilateral congenital aural atresia were tested for their ability to 

understand speech in noise before and again one month after surgery to repair their 

atresia. In a sound-attenuating booth participants faced a speaker that produced 

speech signals with noise 90 degrees to the side of the normal (non-atretic) ear and 

again to the side of the atretic ear. The Hearing in Noise Test (HINT for adults or 

HINT-C for children) was used to estimate the patients’ speech reception thresholds. 

The speech-in noise test (SPIN) or the Pediatric Speech Intelligibility (PSI) Test was 

used in the previous study.1 

 

During a needs conversation with Dr. Kesser, it was noted that free-field sound localization 
testing has not been previously conducted in research methodology. 

We have never done free-field sound localization testing.… It would be very 
worthwhile to setup five or six speakers in an azimuth around the patient and have 
the patient do the test. Having not already done that this will be a good test of free-
field sound localization.4 

 
 In addition to the free-field sound localization test, the system now includes a 
speech-in-noise test using the Coordinate Response Measure (CRM) corpus. The CRM was 
created for use at Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, 
circa 1999.  The Coordinate Response Measure (CRM) command statements simulate a 
multi-talker environment by generating several audio signals where the user is to decipher 
from the intended signal from the distraction signal. The following passage explains the 
structure of a CRM signal.  

 
 The phrases in the CRM consist of a call sign and a color–number combination, all 

embedded within a carrier phrase. Hence a typical sentence would be ‘‘Ready baron, 
go the blue five now,’’ where baron is the call sign, and blue five is the color–number 
combination. In the performance of the task, each listener is assigned a call sign, and 
responds by indicating the color–number combination spoken by the talker who 
uttered his or her call sign. If the listener does not hear his or her call sign spoken, 
he or she does not respond or, equivalently, reports the absence of his or her target 
call sign. Possible dependent measures thus include the percentage of correct call 
sign detections and the percentage of correctly identified color–number 
combinations, as well as their associated reaction times.5 

 Given the significance binaural hearing provides in the quality of hearing perceived 
by Dr. Kesser’s patients, the sound localization and CRM based tests clearly will aid in 
comparing hearing capabilities of people able to hear from one ear and people able to hear 
from two. The repeatable differences in quality of hearing under these two control 
environments (one vs. two ears) will be the basis for many of the tests the hearing system 
prototype will perform.  
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3 PROJECT STATUS AND PROJECT MANAGEMENT 

 In order to manage the seven students on the team effectively, strong organization 
was needed.  

3.1 Team Management 
 The team is cross-disciplinary. It consists of four senior engineering students, two 
junior engineering students, a Communications Science Disorders student (Sofia Ganev), a 
Communications Science Disorders department professor (Dr. Lincoln Gray), and an 
engineering department professor (Dr. Robert Nagel). Our team has one external sponsor, 
Dr. Bradely Kesser who is a surgeon at University of Virginia specializing in corrective 
atresia surgery. He refers patients to Dr. Gray for hearing evaluations and will thus provide 
the patients that will use our machine. 
 Brandon Lancaster runs the team meetings and also the team manager for the 
senior engineers. He maintains consistent time slots every week (for this semester it is 
Tuesday Thursday from 2:00-3:00 pm and Fridays 3:30-5:00 pm) where other team 
members may come in and ask questions about their tasks. Mike Kessler is the treasurer 
for the capstone team.  Task completion is tracked by sending status updates to the 
engineering advisor. These status updates are then compiled by Dr. Nagel and archived 
online. 

Meetings take place every week at the same time. Every group member is expected 
to be present during meetings unless they tell Brandon otherwise. These meetings follow 
the Defense Acquisition University (DAU) program manager's toolkit for effective meetings 
(see outline below)6. The team's weekly meetings can be categorized as informational, 
planning/strategizing, or decision types as shown in bullet A of the outline. The meeting is 
from 1:30-2:30 pm on Wednesdays although it usually ends early if run efficiently. At the 
beginning of the meeting, each person has two minutes to give his/her status update as to 
what was completed the past week. Questions are held during this part of the meeting. If 
someone has completed a task, he/she is then assigned a new one as necessary after status 
updates are complete. If there are any purchasing or major team decisions to be made, they 
are made at this time. This has unlimited time. Announcements are then made by various 
team members. Finally, people are allowed to break into small groups and schedule the 
necessary meetings with each other for that week. Often times, these meetings occur 
immediately after the main meeting for scheduling convenience. The overarching goal of 
the schedule just discussed is to keep the information covered relevant to everyone, this 
way the team remains efficient. Items pertaining to only a fraction of the group can be 
discussed later. 
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3.2 Project Management 
 It is important to determine from the beginning of the work which parts of the 
project are going to take priority. The time, cost, performance trade-off assessment in Table 
1 was determined taking into account that most of this project is planned to be supported 
by grant money and also that there is a set two year time limit to work on the project. 

 
Table 1: Trade-off Assessment 
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Due to changing requirements and new information, it was difficult to maintain traditional 
project management artifacts (e.g. using a Gantt Chart, work break down structure, etc.). 
Instead, intrinsic motivation in combination with weekly status updates keeps the team 
moving forward. This approach to management also allows the team to adapt to changes 
very quickly. Instead of a Gantt Chart, a list of tasks which need to be completed is 
maintained on a white board in the project room, Each team member is responsible for a 
task and all know what they are responsible for. 
 The team also has milestones that each member is aware of and strives to reach. 
These milestones are revised at the beginning of each semester. Throughout the project, 
the team has completed many milestones and should feel proud of its accomplishments. 
Some achievements completed over the course of the two years include programming the 
first and second audio tests and finalizing a selection on speakers. We have preformed a 
speaker positioning pilot study to determine the optimal positioning of the speakers 
(discussed in section 4.3). The team was successful in its goal to create a second prototype 
this semester and now maintains two complete working sets of hardware. The first 
prototype, called the Florida prototype (named after where one of the students went over 
spring break and where our advisor would have liked to have gone), has the ability to run 
the matlab code without compiling.  It incorporates the most up-to date hardware and 
software. Any improvement the team wants to test out is done on this prototype. The 
second prototype called the Bahamas prototype only runs compiled matlab code and is 
designed for shipping out to patients. Some other milestones that have been completed this 
semester were shipping the Bahamas prototype out to an atresia patient, prototyping the 
speaker stands, finalizing the selection of a microphone, validating the design of the setup 
with data, and fixing speaker accessing problem (discussed later in section 4.3) 
 Some future milestones include validation testing of the speech in noise test, 
monitoring background noise during the program, programming in an auto calibrating 
routine that sets the levels of the speakers, and developing a logistics plan for long-term 
use. A format for data saving has been established and code must be updated to reflect this 
standard. The code must also be updated to comply with the programming style guide to 
ensure the program is well documented. These tasks are left up to the two junior 
engineering students who will work on the project another year. 
 
 The team treasurer, Mike Kessler has kept a sheet with the team purchases made 
since the beginning of the project. It can be seen in Table 2. 
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Table 2: Project Expenses 

 

4 APPROACH AND METHODS 

4.1 Requirements Analysis 

In order to compile our customer needs, constraints, requirements, and target 
specifications, the team first consulted with the stakeholders of the project, Dr. Lincoln 
Gray and Dr. Bradley Kesser.   The team also consulted with two students, a Amy Byers (an 
alumnus) and Sofia Ganev (current student) who are in CSD program.  Each engineer met 
with one of the stakeholders or students and asked them various questions that would help 
the team develop possible ideas for designing the system.  Some of these questions asked 
included, “What test should the system be able to run?” and “How will this system need to 
be shipped?”  These questions were compiled into a list that can be seen in appendix 1.  
Some of the needs were to keep the cost of the testing system lower than the cost of 
traveling, system must be able to run sound localization and speech in noise test.  Another 
customer need which was incorporated into the design of the system was that the system 
should be able to set up by patients as young as six years of age.  Some of the target 
specifications were to have twenty to thirty units made that would cost less than $1,000, a 
test of  at least 100 people on a 6 month cycle, and easily accessible data. These target 
specifications were created from customer needs. Refer to the appendix 1 for a complete 
list of customer needs and target specifications. 

4.2 Conceptual Design 
The overall design process consisted of hardware and software aspect which will be 
further explained in section 4.4 and 4.5 of the Prototyping and Software, respectively. 
These aspects required the team to stick closely to the engineering design process shown in 
Figure 1.   
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Figure 1. Engineering Design Process. 

 
After identifying the customer needs and specifications for the system, first the team began 
the process selecting a set of eight speakers that would suit the system. In terms of 
selecting the speakers, the team needed a set of speakers that were fairly linear at different 
decibel levels at several frequencies using a Fast Fourier Transform.  Four different 
speakers were tested, with those brands being Motorola, Eddie Bauer, Cyber Acoustics, and 
Harmon Kardon speakers. This analysis allowed the group to determine the Cyber 
Acoustics speakers as the best fit for the system.  Figure 2 displays the Fast Fourier 
Transform of the Cyber Acoustics model CA2988. 

 
Figure 2. FFT of the selected speaker model. 

 In addition to its linear FFT, this set of speakers also was portable, simple for disassembly, 
and protection during. The model allowed the front of two speakers to magnetically attach 
during shipment.  Next, the team had to select a microphone for the system.  This analysis 
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involved determining the dB constant at different frequency levels and making sure they 
didn’t clip at different frequencies.  The dB constant is the decibel level response and a 
measure of how persistent relative to an amount of power.  Six different microphones were 
tested and allowed the team to determine the Audio-Technica microphone as the best fit 
for the system due to its linear dB constant relation and its wavelength at different periods. 
It also is a dynamic microphone which means it did not require a bulky phantom power 
supply as the previous condenser microphone die. A figure of this analysis can be seen in 
appendix 2 of the report.  The choice of the USB hub was decided because it had the right 
spacing for the USB powered speakers and DACs that were chosen.  The USB hub was also 
very small.  It’s important to state that each of the three selections were also cost effective 
because the team was working on a tight budget. 
 
The audio test of the system was designed for the user to be able to abort the test anytime 
necessary.  Each test displays instructions before the user begins testing. The use of 
pictures will also be incorporated for future work so that the user can have a tutorial of 
how to take the test. A diagram of the process can be seen in Figure 3 below. 
 

 
Figure 3. Conceptual process for taking of audio test.  

 

4.3 Engineering Analysis 
 In working with the system, it was realized that the program would fail to play 
sound out of the correct speaker if the hardware was not plugged into the exact same USB 
ports on the hub. It would also not play sound out of the correct speakers if the USB hub 
was not plugged into the exact same port on the computer. To fix this issues the hardware 
team permanently used solvent cement to attach the speaker jacks to part of the speaker 
stands thus making sure the speakers location is recognized the same by the program. 

From the software side, it was also discovered that the program would also play the 
incorrect speaker even if the hardware remained the same. No pattern could be found for 
this occurrence. To identify each DAC, the program was using a parameter called the device 
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ID. Each DAC would have a unique number but as stated earlier these numbers were found 
to change randomly. Obviously, to solve this problem a new method of identifying each 
DAC connected to the system was needed. The output of the command that creates the DAC 
objects in the program was found to contain a unique string of text for each DAC. An 
algorithm was written that instantiates every DAC on the system and then sorts them 
based on this string of text, thus solving the problem 

Clinical tests were performed with assistance from a College of Communications 
Science’s and Disorders undergraduate student Sofia Ganev. The first of these clinical tests 
aimed to determine the ability of the system to meaningfully test patient’s ability to localize 
sound.  Results of the localization test are described in the following paragraph.   

 
 Initial tests were performed to determine the angle in degrees from a 180° azimuth 
about the user. A total of four configurations were tested.  The four configurations are 
depicted in Figure 4. 
 

 
Figure 4. The four speaker arrangements tested initially using sound localization as basis. 

 

Root means squared analysis for error in degrees was then used. This analysis is modeled 
by the equation: 

 
The results of the error in degrees of the user localizing a signal during the sound 
localization test, given a representative from each of three populations: binaural listener, 
monaural listener, and a recipient of the atresia surgery is shown in figure 5. 
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Figure 5. Error in degrees from speaker picked by user compared to true sound source. 
 

The largest variance in the three populations under study could be seen using 
configuration 2. Configuration 2 was then selected as the current specification for the 
system design. Additional clinical sound localization tests were then conducted using 
configuration 2.  

4.4 Prototyping 
 The team needed a way to ensure that the speakers were setup in the property 
position and with the right angle towards the user. When designing speaker stands the ease 
of assembly and disassembly as well as labeling was kept in mind. The original speaker 
stands were bulky and used a male piece with prongs that fit into a female piece located on 
the mat. They were hard to assemble and disassemble and used a large amount of material. 
Rapid prototyping was then used to create another six different speaker stand prototypes 
with the final speaker stand seen in Figure 6. 
 

 
Figure 6. The final design of the speaker stand and mating assembly 
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Another problem that hardware was used to solve was that the speaker USB connecters 
needed to remain in the USB HUB untouched and that there were large quantities of extra 
cords which caused assembly to take large amounts of time. To solve this issue a HUB box 
was made using the 3D printer which allowed room to house the HUB as wells as extra 
cords. The top was made very secure so that it would be difficult to remove, but if the team 
did need to remove it for any reason that would be possible.  
 

4.5 Software 
The most important requirements identified through stakeholder interviews for the 

software application include: ease of use, run on different hardware setups, display 
different screens of information, authenticate different patients, record data in a useful 
manner, and send data back to the researchers. An additional requirement for the software 
on the engineering side is that the code needs to be modular enough to allow multiple 
programmers to write code at once without interfering with each other.  

A Graphical User Interface (GUI) was designed to be user friendly. The software is 
written in MATLAB to ensure hardware independence and also to ensure continued use in 
the future by the CSD department; which uses MATLAB for other projects. The code is 
compiled into an .exe file using MATLAB's Deployment Tool. It can then be run on any 
computer with the proper MATLAB Compiler Runtime (MCR) installed. 

The behavior of the GUI was drawn out. See figure 7 for this diagram. This drawing 
also shows the type of graphics object each component is. In MATLAB, graphics objects can 
be one of fourteen different types depending on the behavior desired from the 
programmer. These are push button, slider, radio button, check box, edit text, static text, 
pop-up menu, list box, toggle button, table, axes, uipanel, button group and active X control. 
Uipanel objects are very useful for containing other graphics objects. As seen in the sketch, 
each new screen full of information is contained on its own uipanel object. Each audio test 
is preceded by a directions uipanel which explains how to complete the test properly. 

It was decided to segment the program up by uipanels. Every uipanel object in the 
GUI has a unique tag value. A unique .m file exists corresponding to that unique tag value. 
All the callbacks for every graphical object contained within a specific panel reside in the 
corresponding .m file. In addition to callbacks, each .m file has a function called 
runBeforeDisplay, runAfterDisplay and cleanup. These functions give the programmer a 
chance to run code before the panel is displayed; after it has been displayed; and also in the 
event the user pushes the cancel button. Figure 7 is a graphical expression of this 
description. The uipanel displayed at any given time is determined by a controller object. 
The most important method in control is the next function. Its job is to determine what 
panel to display next and is called when the programmer is done with whatever screen 
they were displaying and would like the next screen to come up. The next method makes its 
decision based on the current user and any error that may have taken place. It is also 
responsible for executing the current panel's runBeforeDisplay, runAfterDisplay and 
cleanup functions at the appropriate time. 
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Figure 7. Framework used in the GUI. Any number of uipanels can be added to allow 
addition of another audio test, more instructions, etc. 

 
In addition to the controller object, several other common tasks the program needs 

to complete were written into objects. This keeps code duplication to a minimum and also 
ensures standard behavior (when playing sounds, for instance). The program has a utility 
object which contains miscellaneous functions that perform such tasks as prompting the 
user for his/her password and reading the excel sheet containing information about the 
current user. There is also a sound utility object which is called when a sound needs to be 
played. It is responsible for ensuring that the sound plays at the proper level and from the 
correct speaker. The device ID problem discussed in section 4.3 is solved in this object. It 
ensures the right hardware is associated with the right speaker number in the program. 
Global variables are also used to pass information (such as the current user's name) 
between the many callbacks and functions in the program. The control object mentioned 
above also performs the common task of choosing which panel to display next. Refer to 
Figure 8 for a visual representation of the various objects in the program. 
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Figure 8. Other Standardized Methods in the Program 
 
 The software opens with a list of pseudonyms and the option to log in, allowing for 
multiple anonymous users. The data is saved separately for each user in the .xls file format. 
It has not yet been determined how the data will be sent back to the researchers. Current 
options under consideration are shipping the encrypted data back via a memory card, 
shipping back the entire system, and sending the encrypted data over the Internet. 
 

4.6 Testing and Refinement 
 

Following final selection of the speaker positioning a larger population statistical analysis 
was performed.  The statistical analysis is explained in the following paragraph. 

 
 
Data were collected from 19 normal-hearing listeners both with and without an earplug 

in one ear (to simulate a unilateral loss) and from four people with hearing in only one ear 
(called ‘real’ unilateral listeners, or 1 dead ear).  A one-way ANOVA showed significant 
differences between groups (F2, 37 = 21; p<0.001), with LSD post-hoc comparisons 
showing that the binaural listeners were better than either the real (p=0.035) or the 
plugged (p<0.001) unilateral listeners, and a marginally significant difference between the 
real and plugged unilateral listeners (p=0.04, one-tailed). Figure 9 depicts this data 
graphically. 
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Figure 9. Results of the study. The error on Y axis is the Root Mean Squared (RMS) of the 
difference (in degrees) of the selected speaker and the actual speaker that was played. 

Upon completing the sound localization proof on concept a naïve student unfamiliar with 
our project from the college of Communication Sciences and Disorders was brought into 
the lab and instructed to setup the system with only a hard copy of the instructions the 
team provided. No direction outside of the written instructions was provided to the user to 
simulate if they had received the system at his or her residence. The student was 
videotaped during the process to allow for later review by the team.  

The video depicted challenges in speaker setup and assembly. Some of the following images 
will show some simple assembly short comings. 
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Figure 10. The user  can be seen aleternating the speaker stand placements position. The 
image was taken when the stands still refelected the beta stand prototype, leading to the 

design of the omega stand prototype seem in Figure 6. 

 

 

Figure 11. The user is seen trying to attach two speakers which are magnetically joined. A 
simple edit to the instructions resolved this issue for future users. 

 Following the onsite naïve test and in the field naïve test was conducted. The system 
was shipped in its entirety to a JMU Alumni in the Northern Virginia area who had received 
the corrective surgery for atresia. A written document of suggestions was generated based 
on a follow up conversation with the alumni after receipt of the original shipment. The 
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recommendations of the last shipment and evaluation should serve as guidelines for the 
work of the junior team entering their senior design project. 

5 DETAILED DESIGN REVIEW 

 The final set up for our system remains to be the configuration we selected in the 
very beginning of our project. The hardware includes the speaker stands which can be seen 
in the previous section noted by Figure 10. The system has successfully been shipped out to 
a user and the data was received. The packaging of the system was then deemed successful 
with no necessary needed changes at this time. The two team members left after this 
semester will continue shipping the system to users and modify the design as needed.  

6 DISCUSSION 

After having people attempt to set up the hearing system from the box it was clear 
that some of the instructions need to be more clear. There were also still excess wires. The 
two hearing tests, sound localization and the CRM test, was recording the proper data and 
were observed to be operating properly. With these two tests finalized there is room to add 
more tests to the system if need be or further gather data. The logistics of shipping the 
system worked out as expected however due to the users schedule it may take a long time 
to receive the system back. This means that two or three more systems should be 
developed depending on the amount of users. 
 

7 CONCLUSIONS AND FUTURE WORK 

The team has successfully completed a full prototype of the system that has few 
modifications needed. It meets the needs of testing the users hearing with sound 
localization and finding their hearing in noise threshold. The system has been shipped out 
with no issues and construction on a second system has been started. The two team 
members staying with the project will have the option to continue to test the Sound 
Localization and CRM programs, add new tests to the system, and increase the total 
number of systems available for use. There are also plans to incorporate a microphone to 
assess background noises during the tests to assist in validating the data. 
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Appendix 1:  Customer Needs and Target Specifications 

 
Table 1: Customer Needs and Target Specifications  

Dr. Lincoln Gray 
1. Portable Hearing Evaluation System must have Instruction Manual 
2. Data must be consistent in relation to hearing capabilities 
3. Device must be less than traveling cost 
4. Must incorporate a microphone 
5. Performance levels should be better on test subjects with two ears as opposed to 

test subjects who have unilateral hearing loss 
6. Integration of images into testing procedures to ensure user is correctly position to 

take test 
 

Dr. Bradley Kesser 
1. Portable Hearing Evaluation System must test 100 patients 
2. Portable Hearing Evaluation System must run once a year on each patient 
3. Must be able to run wide range of audio tests  
4. System must return data in real time 
5. Must have the ability to connect to live test administrator 
6. Must be able to test sound localization  
7. Approval must be granted from the University of Virginia for IRB testing 

Ms. Sofia Ganev 
1. Data must be received electronically and in hardcopy form 
2. System must include tutorials, visual aiding helps, and manuals  
3. Portable Hearing Evaluation System must be less than $500 

Ms. Amy Byers 
1. Portable Hearing Evaluation System must be easy to navigate 
2. Equipment must be user-friendly 
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Appendix 2:  Analysis for Microphone 

 
 

 
Figure ??. Logitech Microphone of Frequency vs. Time 

 
 
 
 

 
Figure ??. Logitech Microphone of Frequency vs. Time 
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EXECUTIVE SUMMARY 

The following report outlines the Distributable Hearing capstone project that was begun on 
September 12, 2011. The capstone project ends on May 2, 2014. The goal of the project is to 
provide a way to collect long-term data on patients who have unilateral hearing loss. To 
date, insurance companies have inhibited the collection of this data because they only 
cover one hearing test one month after surgery. This system will collect more hearing tests 
and encourage the collection of long-term data. The system will be shipped to the patient, 
saving them time and money that would have been spent on travel.  
 
This report focuses on the current capstone team. In addition to preparing the system for 
deployment, the team developed the speech-in-noise hearing test. A paid audiologist 
typically performs this hearing test manually, so no standard exists for an automated 
speech-in-noise hearing test. Therefore, the team has had to design the test themselves. 
The test is, however, based on standardized tests in that it adaptively responds to the user’s 
input. This report will define the system requirements, explore possible concepts, and then 
select a concept for the hearing test. The design of the test was conceptualized, 
implemented, and debugged. Then, the test was used to test the hearing of volunteers. The 
results were analyzed and proved that the test can distinguish between unilateral and 
bilateral listeners. Next the speakers used in the test were analyzed using an artificial head 
and head related transfer functions. In tandem, the system was prepared for deployment. 
Specifically the speaker stands were redesigned from concept to detailed design. This 
report demonstrates the application of the design process using the 2011-2013 team’s 
system as a starting point.   
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1 INTRODUCTION 

This interdisciplinary project began in September 2011. A capstone team that graduated 
last year completed their portion of the project in May 2013. The current team joined them 
from September 2012 until May 2013 and will continue to work on the project until May 
2014. The project works closely with the Communications Sciences and Disorder 
department to create a hearing test system that the department can eventually use to 
collect long-term data on patients. This project is also intercollegiate in that the 
stakeholder is Dr. Kesser from the University of Virginia. Due to this collaboration, the team 
was eligible for a grant from 4-VA. The team applied in May 2013 and was awarded a grant 
of $4673. The team has used the grant to buy more supplies. The team will construct at 
least two testing systems for deployment to UVA and to patients’ home. The grant allows 
the team to accomplish its goal of deploying a hearing test system to a patient’s home.  

1.1 Problem Statement 
The localization and identification of sounds in background noise are such important 
auditory processing skills that any amount of incompetency may lead to various confusions 
and learning delays.  Through a partnership with James Madison University (JMU) and the 
University of Virginia (UVA), a unique opportunity exists to test patients before and after a 
corrected maximal conductive hearing loss in one ear. Patients with congenital aural 
atresia come to UVA for surgery that will give them normal hearing. Insurance pays for a 
pure tone threshold hearing test one month after surgery, but due to cost restrictions, 
longitudinal follow-up testing is often not performed.  However, longitudinal data from 
follow-up studies is essential for understanding the effectiveness of the surgery. This 
project is about the design, construction, and testing of a shippable hearing test system for 
patient testing.  The system will test two binaural hearing abilities—the ability to isolate a 
spatially separated signal from noise and the ability to localize the source of a sound.  

1.2 System Breakdown Based on Capstone Team Contribution 
This capstone project is unique in that it collaborated with a capstone team its first year. 
The 2011-2013 team (henceforth referred to as ’13 team) designed and created the basic 
framework of the project and also designed the sound localization hearing test. This team, 
the 2012-2014 team (henceforth referred to as ’14 or current team), has focused on the 
second hearing test: speech in noise. This test is much more involved because it is adaptive 
based on user input. Additionally, this team has worked to improve and ready the entire 
system for deployment.  
 
The system can be broken down into the hardware and the software components (Figure 
1). The hardware consists of a mat on which speakers, speaker stands, a laptop, a 
microphone, and a camera are placed when the patient receives the package. The code to 
use the speakers was collaborated on between the two teams. The ’13 team wrote the 
methods for playing both stereo and mono sound out of the speaker. The speaker stands 
were initially created by the ’13 team. They printed prototypes on the Stratasys 3D printer, 
but the ‘14 team came up with refinements that would eventually make the system easier 
to set up by employing design for assembly techniques. The refined speaker stands will be 
covered in more detail later in the report. The software components of the project mainly 
focus on facilitating the two hearing tests: the sound localization test and the speech in 
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noise test. The ’13 designed and validated the sound localization hearing test. The test 
plays broadband noise from a random speaker at a random intensity and the user has to 
answer which speaker it played out of. They collected data using their test and validated 
that the test could discriminate between unilateral and bilateral listeners. This team, the 
‘14 team, is designing the speech in noise hearing test based off the Coordinate Response 
Measure (CRM). The ’13 team designed the graphical user interface layout and the control 
code for the software. The ‘14 team used this software to create their hearing test. The ’13 
team provided a system that acts as a constraint for our project. More information is in the 
appendix binder.  
 

Figure 1: System Breakdown Based on Contributions of the Two Capstone Teams 

1.3 Broader Impacts 
Socially, the new found research and studies will advance the understanding of the brain’s 
response to a new, surgically corrected ear. The audiology community will benefit from the 
collection of long-term data on congenital aural atresia patients because they provide a 
unique opportunity to study binaural processing. The audiology community has the 
potential to gain more knowledge on how the brain adapts to new hearing abilities. The 
additional information will help to answer if a critical period exists for developing binaural 
hearing abilities. After the critical period the brain may not be able to recognize the 
auditory inputs so it is important for pediatricians to diagnose the patients before this 
critical period. The research may provide justification to perform the surgery immediately 
after diagnosing a patient. In addition, some further implications of the new research may 
eventually be able to explain why males are more likely affected than females with aural 
atresia.  
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Environmentally, the project reduces the energy needed to obtain hearing test data given 
transporting a laptop to a patient consumes significantly less energy than transporting the 
patient to a testing facility. Furthermore, the system will be shipped to the patients and 
back, so there is a reusability aspect to the project.  
 
Technically, the platform on a laptop enables the user to be familiar with the system due to 
standardized mappings. The program is divided into modules to facilitate addition of new 
audio tests and displays. 
 
Economically, the project will save money for the patients mainly by drastically cutting 
commuting costs. The price of shipping this testing package was compared to the 
alternative of having patients travel to a sound proof room and have an audiologist 
administer these binaural hearing tests. In order to do so, a scenario was created to 
estimate the cost to ship the system to 40 patients twice a year for five years. This scenario 
assumes that the system is being shipped to and from San Diego, California because it will 
probably not be sent out of country so this represents the furthest distance the system will 
possibly travel. A comparison of cost to receive packing within 5 days between companies 
was performed and the cheapest company was chosen: UPS, assuming the package weighs 
less than 20 lbs. The total shipping cost was calculated using equation 1.  
 

𝑇𝑜𝑡𝑎𝑙 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = 𝑡 ∗ 𝑛 ∗ 𝑦 ∗ 𝑟                                     (1) 
 
where t is number of shipments in a year, n is number of patients the system will be 
shipped to, y is number of years, and r is shipping rate of cheapest company. As stated 
before, the package will be shipped twice a year over five years. Here it is assumed that 40 
patients will participate. The total theoretical cost of the shipping method is $35,000.  
 
This cost was then compared to a scenario where the patient must travel for the same 
testing.  The trip was assumed to be for a family of four traveling from San Diego to 
Harrisonburg over two days. Some of the other assumptions include:  
 

 Cost of Gas: $3.50 
 Cost of a meal: $5.00  
 Doctor Fees: $25.00 
 Audiologist Fees: $25.00 
 Parking at hospital: $20.00 
 Hotel cost for 1 room for 1 night: $100.00 
 Miles from San Diego to Harrisonburg: 2556  
 Car driving receives 25 miles/gallon 
 Every individual on trip eats 2 meals per day   

 
Next, the total cost of driving (includes there and back) is determined using equation 2.  
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𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 = (
𝐶𝑜𝑠𝑡 𝑜𝑓𝑔𝑎𝑠 

𝑚𝑖𝑙

𝑔𝑎𝑙𝑙𝑜𝑛
𝑜𝑓 𝑐𝑎𝑟

∗ 𝑚𝑖𝑙𝑒𝑠 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙) ∗ 2                               (2) 

The total cost of meals was calculated by multiplying the number of people traveling, the 
cost of one meal, the number of meals per day, and the total days traveling. The total cost 
for one trip was calculated by summing the cost of driving, total cost of meals, cost of hotel 
for one room and one night, parking fees, doctor fees, and audiologist fees. The total cost 
for one of the trips under the assumptions stated is $965.68. The patient would be required 
to take 2 trips yearly for five years. For 40 patients the total cost was $386,000. The 
portable hearing system resulted in $35,000. This means that this portable hearing test 
system would result in over $350,000 saved over 5 years.  
 
Another comparison of the shipping and travel cost was computed to compare the short-
term cost of the system. Figure 2 compares the shipping cost and travel cost of one patient 
using the system.  
 

 
Figure 2: Comparison of Cost to Travel vs. Ship Our System 

 
The shipping cost consists of the cost to build the system ($550) and the shipping cost to 
send the package. The travel cost consist of all the travel expensive previously stated 
before. After one use of the hearing system package the patients would save over $400. 
 
Additionally, the time and stress saved from less travel for these patients is as substantial 
but much more difficult to quantify. It could be assumed that the patients’ and their families 
would lose two weekends a year for five years and this time could affect the children’s 
performance in school. The excel spreadsheet, including assumptions and calculations, and 
full analysis are attached in the appendix binder.   
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1.4 Report Overview 
The following report will outline the design process followed since September 2012. The 
literature review will explain the subject group and the existing hearing tests and concepts. 
Then the system requirements will be investigated and articulated. The concepts found in 
the literature review will be evaluated and a final concept for the speech in noise hearing 
test will be selected. The report will then outline the preliminary design, describe testing 
and refinement and resulting detailed design and analysis. Finally, the project management 
will be described in terms of team, project management, and future work. All appendix 
material is located in the team’s binder. The binder is organized in the same order as the 
paper (each tab is a section) and includes the paper within each section. This way, a person 
can choose to read the report by paging through the binder, appendix material providing a 
deeper look at the process.  

2 LITERATURE REVIEW 

Congenital aural atresia is a condition present at birth where an area of the ear is deformed 
due to failure in the overall development and structure of the auditory canal (De La Cruz 
2003). Some of the abnormalities include malformation of the middle ear, but most of the 
deformities occur in the outer ear (Jahsdoerfer 1978). Still, the inner ear can develop 
normally. Congenital aural atresia may occur bilaterally, but in most cases patients typically 
have unilateral atresia. Aural atresia occurs in 0.01% – 0.02% of births (Teufert 2004). In 
addition, aural atresia is more prevalent in a patient’s right ear rather than left ear, and is 
found in more male than female patients (Jahsdoerfer 1978). The surgery to repair 
congenital aural atresia involves drilling a new external auditory canal and the 
construction of a new tympanic membrane (Wilmington 1994). The goal of surgery is 
normal or near normal hearing. Within one month most patients then appreciate air-
conducted sounds in their ear for the first time (Jahsdoerfer 1978). 
 
Subjects with this condition are of special interest to the audiology community because 
they transition from unilateral to bilateral hearing. How does the brain adapt to the new 
ear and is there a critical period for auditory development?  Patients with corrected 
unilateral conductive hearing losses provide an opportunity to examine the roles of 
abnormal early experience on multiple aspects of binaural processing (Wilmington 1994).  
There may be distinct levels of binaural processing which are affected differently by a long-
term asymmetry between the two ears (Wilmington 1994). Longer follow up is likely 
critical for understanding patients’ binaural processing ability (Gray 2009). A new ear may 
be challenging for the youngest and oldest subjects (Gray 2009). However, longitudinal 
data is needed. Patients need to be evaluated at times longer than four to five weeks post-
surgery. Perhaps binaural performance simply means that teens and young adults adapt 
more quickly to their repaired ear, and the young children and older adults take longer to 
adapt (Cole 2009).  Future testing should be conducted under more controlled conditions 
than those used in Wilmington et al (Cole 2009). Cole suggests that, “an array of small, high 
quality speakers could be mounted in an arc within a typical audiometric sound booth. 
Then the testing conditions would be somewhat symmetric and replicable” (Cole 2009). 
The use of an audiometric sound booth was ruled out because of monetary limitations. 
Insurance pays for a pure tone threshold hearing test one month after surgery, but due to 
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cost restrictions, longitudinal follow up testing is often not performed (Allen 2013). 
However, longitudinal data from follow up studies are essential for understanding the 
patients’ binaural hearing ability and improvement (Allen 2013).  

2.1 The Hearing Tests 
Children studied had significantly more difficulty understanding and localizing speech, 
especially in the presence of background noise (Kesser 2013).  There are two advantages of 
binaural hearing: 1) the ability to localize sounds in space and 2) the ability to detect 
sounds in background noise (Wilmington 1994). Therefore, this project has focused on 
creating hearing tests that test these. The 2011-2013 team tackled the sound localization 
hearing test whilst designing the framework software and hardware. This team, the 2012-
2014 team, using the other team’s system as a constraint is tackling the test of the ability to 
detect sounds in background noise. There is no systematic evaluation of how congenital 
hearing losses affect binaural processing (Wilmington 1994).  
 
The 2011-2013 team designed the sound localization hearing test. The current system 
conducts a sound localization test that determines whether the patient can locate noise in a 
normal reverberant space (Allen 2013). Twenty-seven participants were tested using the 
system and the sound localization hearing test. The participants were grouped into Normal 
listeners (hearing within normal limits), Real Unilateral listeners (subjects with profound, 
single-sided sensorineural hearing loss), and ‘Fake’ Unilateral listeners (subjects from 
Normal listeners group with a plugged ear to simulate hearing loss) (Ganev 2013). 
Comparison showed a significant difference between the performance of Normal subjects 
and Real or Fake Unilateral subjects (p<0.001) (Ganev 2013). These results provide 
promise as to the effectiveness of the designed testing package (Allen 2013).  
 
Before the patient undergoes surgery, Dr. Kesser performs a test on the patient’s hearing 
abilities using an audiogram. Typically the pre-test results in a mean pure tone average for 
the atretic ear of 64 dB and the mean asymmetry of 56 dB between the two ears (Besing 
1995). Post-surgery provides a mean pure-tone average for the atretic ear of 34 dB, which 
proves that the surgery provided significant results (Besing 1995). However, testing using 
an audiogram only proves that the patient can hear out of the new ear. Patients have the 
ability to do simple binaural detection tasks soon after surgery, but have difficulty in more 
complex processing such as localization and speech comprehension (Wilmington 1994). 
Audiograms do not predict binaural abilities and abnormal binaural performance can be 
seen in patients with normal audiometric thresholds (Wilmington 1994).  

2.2 The Head Shadow Effect 
This team has been developing the hearing test that will test the ability to distinguish 
speech from noise. Unilateral hearing loss results in difficulty hearing in background noise, 
referred to as the “cocktail party effect” (Gray 2009). Bilateral hearing can improve 
understanding due to simple redundancy and due to the physical head shadow effect (Gray 
2009). Before surgery the only ear able to hear receives the signal with a poor signal to 
noise ratio. After surgery the noise to the newly opened ear is attenuated by head shadow 
(Gray 2009). Improvement in this condition would suggest that patients are able to 
understand signals in their new ear, now with a favorable signal to noise ratio. A separate 
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phenomenon, binaural squelch, can also significantly improve speech understanding in 
noise (Gray 2009). Binaural squelch is “a centrally mediated segregation of a signal from 
noise when that signal and noise are at different locations producing temporal and 
intensity differences at the two ears” (Gray 2009). Essentially, it is the lack of the head 
shadow effect. Before surgery, hearing is easier when distracting noise is on the side of the 
atretic ear. After surgery, this condition is more challenging because there is suddenly a 
new noise that must be ignored, allowing binaural processing for the first time (Gray 
2009). This condition is a test of binaural squelch. Therefore, our speech in noise hearing 
test must test for these conditions. Additionally, it is common practice to include a practice 
test. Wilmington et al. gave a practice test before their actual test where the subjects set the 
babble to an initial barely audible level, ensuring the sentences were easily understood at 
the start of practice. Then, in the real test, the level of the babble was adaptively varied 
(Wilmington 1994).  

2.3 Existing Speech in Noise Tests 
There are many speech in noise tests that already exist. These tests provide use with 
concepts from which to choose for use as or as a part of our hearing tests. The Hearing in 
Noise Test (HINT) is a commercialized test where participants are tested in double walled 
sound attenuating chambers (Gray 2009). Two speakers are mounted at ear level, ninety 
degrees apart in adjacent corners of a testing booth. Subjects always face the speaker that 
presents the speech signal (Gray 2009). The subjects were tested in two conditions: one 
with noise towards the atretic ear and another towards the non-atretic ear. The intensity of 
the noise was adaptively varied to find a threshold for understanding speech in noise (Gray 
2009). The subject must repeat the whole sentence exactly. Therefore, the HINT requires a 
licensed audiologist to administer and is not automatable.  
 
Another speech in noise test is the SPIN and the Pediatric Speech Intelligibility test, which 
is the version used for children. The Revised SPIN has two speakers: one plays the sentence 
and faces the subject and the other plays babble (twelve people reading at one) at ninety 
degrees to the subject’s gaze (Wilmington 1994). Subjects are tested once with atretic ear 
closest to the babble (‘easy’ condition) and once with the normal ear closest to the babble 
(‘hard’ condition). The test operator documents whether subject correctly repeats the final 
word. No feedback is given (Wilmington 1994).  
 
The standard QuickSIN and the BKB-SIN are two similar tests in that a CD is played through 
headphones or in a sound field where the babble is located +45° from each ear and the 
main speaker is located both 0° and 180° from the listener (QuickSINTM Etymotic, n.d.). The 
listener must repeat the sentence that the main speaker says despite the babble 
(background talkers). The background talkers gradually become louder. The subject uses a 
microphone to communicate his response to the tester (QuickSINTM Etymotic, n.d.). Scoring 
is done by tester and is too difficult; additionally, some normal subjects could not obtain 
50% correct score because the sentences are too difficult.  
 
Finally, the Coordinate Response Measure (CRM) is a speech corpus for multitalker 
communications research. The speech corpus was collected in order to precisely control 
the talkers as speech stimuli. In order to do so, digital recordings of talkers was determined 
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to be preferable to live talkers (Bolia 1999). The CRM is a nonstandardized communication 
performance task adapted from similar tasks by Moore (1981) as a measure of speech 
intelligibility (Bolia 1999). It is simply a free compact disc of phrases useful for an 
audiological test. The phrases of the CRM consist of a call sign and a color-number 
combination all embedded within a carrier phrase. A typical sentence: “Ready baron go the 
blue five now” where baron is the call sign and blue five is the color number combination 
(Bolia 1999). Each listener is assigned a call sign and must indicate the color number 
combination spoken by the same speaker who said the listener’s call sign. Possible 
measures of the CRM include percentage of correct call sign detections, percentage of 
correctly identified color number combinations, and the reaction times (Bolia 1999). The 
corpus is versatile and easy to use and implement.  

3 SYSTEM REQUIREMENTS AND ANALYSIS 

The goals of this team have been to develop and design a speech in noise hearing test, 
finalize the software for use, and prepare a system for ship to UVA Otolaryngology for data 
collection. Then, the goal is to prepare a system for shipment to a patient’s home. The two 
systems have different requirements: the system that will be shipped to UVA will be called 
the Alpha Prototype. The system that will be shipped to patients’ homes will be called the 
Beta Prototype. The two will have similar requirements, but the Beta will need to be more 
automated in terms of checking for correct set up and monitoring the user during testing. 
There will be an administrator (a person familiar with the system but not an expert) who 
will be available to help with set up of the Alpha Prototype. Both prototypes require the 
two hearing tests: speech in noise and sound localization. The sound localization test is 
completed. This team is focused on the speech in noise test. From literature review, the 
head shadow effect is an area of interest. Therefore, the hearing test should evaluate 
speech in noise abilities when head shadow is greatest and when it is least. These 
prototypes were developed under the following constraints: the existing distributable 
hearing test system, MATLAB, computer processing abilities, and testing time should not 
exceed 2 hours in order to avoid subject fatigue.  

3.1 Alpha Prototype 
The Alpha Prototype is an entire system that was sent to UVA for clinical testing. The 
system includes a laptop, mouse, eight speakers, speaker placement indicators, 
microphone, power supply, and instruction manual. The instruction manual is located in 
the appendix binder. This system will be set up by someone familiar with the system, so 
this administrator can check that configuration is correct manually. It guides the user 
through the software and allows for the user to quit if necessary. It tests the user’s ability to 
localize and distinguish sounds from noise. The speech in noise tests the user’s ability to 
use the head shadow effect for binaural processing. Table 1 shows the system 
requirements, target specifications, ranking, and completion status of the alpha prototype.  
 
 
 
 

Table 1: System Requirements for Alpha Prototype (Rank: 1 is most important, 5 least) 
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Requirement Technical Specification Rank Completed ✓

Speech in Noise Test A test of how well a subject can use the 
head shadow effect to distinguish speech 
in noise  

1 Our CRM test:  A test that plays 
noise and CRM at same time, waits 
for a response from user, then uses 
users response to guide the next 
iteration 

✓

Sound localization test A test of how well subject can localize a 
sound 

1 ’13 Team completed this. '14 Team 
adjusted the volume levels to a 
more appropriate one. 

✓

Save data in a useable 
form 

Data is easily accessible and analyzable 1 A single Excel file that saves all the 
data from each test, calibration 
run, and information about 
aborted tests in different sheets 

✓

Practice Loop for speech in 
noise 

A series of runs where data is not saved 
and there is no adaptive procedure, the 
user is simply getting used to the test. 

1 The training loop is just like the 
rest of the test except the user has 
to get 5 in a row correct and the 
noise level does not change in 
response to user input 

✓

Working set of hardware The system works when it arrives at 
destination 

1 Used existing, working set of 
hardware  

✓

Set up is intuitive  and 
repeatable (assuming 
instructions are given) 

Way to guide speaker placement to fit 
testing standard 

1 Mat with speaker stands attached 
whose mate lays out the wires 
correctly 

✓

 
 
Requirement 

 
 
Technical Specification 

 
 
Rank 

 
 
Completed 

 
 

✓ 

Sent to UVA 
Otolaryngology 

Arrives at UVA  1 Successfully sent to UVA on 
January 28, 2014 

✓

Verify Set up using 
administrator (familiar 
with system but not 
expert) 

Interface for admin to check that 
configuration is correct and working 
properly 

2 Speaker configuration option on 
administrator panel 

✓

Communicate with user 
about progress 

Way to guide user through test so they 
always know what is going on 

2 Dialog boxes that explain what will 
happen, when parts of the tests are 
completed 

✓

Test head shadow effect 
during speech in noise test 

Run test out of speakers that create the 
greatest and the least head shadow effect 

2 KEMAR testing to find optimal 
speaker combinations 

✓

Instruction manual  A list of instructions for how to set up 
system and how to use software 

2 A set of instructional steps to guide 
user through set up and software 
use 

✓

User can quit testing 
anytime 

Way to quit testing 2 Abort button ✓

Control volume - max The signal is quiet enough that the user 
does not get so many right that the noise 
becomes too loud and invokes pain 

2 Set the level of the signal very low ✓

Control volume - min Some way to make sure the user can hear 
the signal before adaptive procedure 

3 During training loop, set so that if 
user gets more than 2 in a row 
incorrect, the signal level is 
increased. The software 
automatically sets their minimum 
signal volume 

✓

Calibration Records background noise 4 Calibration pane records 
background noise and root mean 
squared 

✓

Encourage user with 
positive feedback 

Positive words come up at the end of 
sections and tests 

5 Add positive words to dialog boxes 
that instruct and guide user 

✓
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The Alpha prototype was completed and shipped to Dr. Kesser at UVA on February 4th 
2014. Then the Alpha was analyzed to determine failure modes. The high criticality failures 
identified in the failure modes and effects analysis (FMEA) are shown in table 2. The full 
analysis is shown in the appendix binder.  

 
Table 2: Excerpt from Failure Modes and Effects Analysis 

Failure Mode  Effect Criticality Action 

No sound Speaker plug broken Test cannot proceed high Minimize possibility of speaker 
breaking 

Lost system System never sent back Loss of a system 
and cost to replace 

high Discourage user from keeping 
laptop and system 

Allows user to 
cheat 

Someone else takes test in place 
of patient and/or patient gets 
very close to speaker in order to 
hear it  

Invalid data high Monitor the user while taking 
the tests 

Speakers play at 
different dB 
levels 

Hardware volume levels changed Biased test high Automate to verify set up of 
speakers (volume) 

 
These failure modes informed the design of the improved prototype by creating additional 
system requirements.  

3.2 Beta Prototype 
The FMEA informed the improvements on the Alpha prototype. The Beta prototype will 
meet the requirements listed in Table 3 in addition to the requirements for the Alpha 
prototype. It will improve the speaker stands so that they minimize the possibility of the 
speaker plug (the more expensive part) breaking. The speaker stand should be able to 
withstand some acceptable amount of fatigue. If the speaker stand breaks, the person may 
not be able to test. However, if the speaker breaks, then the user will definitely not be able 
to complete testing. It will also have to automatically verify correct set up by recording the 
volume of the speakers. To verify correct locations of speakers, the system could play and 
record sound from each then ask the user to verify that it is the correct speaker in the 
correct location. Since the system will be sent to patients’ homes, there should be some 
secure way to send their data. It may help discourage them from keeping the laptop if they 
have to send it back in order for their data to be processed. Since we do not record their 
real names on the machine, this means their data is secure and this would be a secure 
solution.  
 

Table 3: System Requirements for Beta Prototype (in addition to those for Alpha) 
Requirement Technical Specification Rank Completed ✓ 

Minimize possibility 
of speaker breaking 

Stand allows speaker to pop out if too 
much force is applied 

2 Analyzed speaker and designed a 
stand that will break or release 
speaker before speaker breaks 

 ✓ 

Discourage user from 
keeping laptop 

Set up laptop so that it only has 
necessary applications and cannot 
access internet 

2 Collaborated with Ms. Rothgeb for 
assistance in setting up new laptops 

 ✓ 
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Monitor that the user 
is taking the test 
correctly and that 
user actually took test 

Video and audio monitoring 2 Will integrate video and audio 
monitoring either into the matlab 
program or into the instruction 
manual 

 ✓ 

Automate set up 
verification - speaker 
volume 

Records levels of each speaker for 
verification later 

3 Level check that plays each speaker 
and records output into data file 

✓ 

Automate set up 
verification - speaker 
location 

Verifies that speakers are numbered 
correctly and in the correct position 

3 Administrator checks the hub box is 
set up correctly before shipping 
using speaker configuration panel. 

✓ 

Ensure speaker 
stands will last  

Speaker stands will fatigue after 10 
cycles 

3 Will fatigue test speaker stand 
design 

 X 

Send data Provide a secure way to send data 
back for analysis 

4 Forcing them to send back laptop in 
order for data to be processed will 
discourage them from keeping it 

 X 

 
The speaker location set up verification was not completed because the numbers will be 
clearly marked and tested before shipping the system. The speaker configuration panel can 
be accessed by an administrator to check that set up will be correct after set up. It was 
decided to not provide a secure way to send data back and forth except by sending the 
entire system. This is because we want to incentivize the user to return the $550 system, 
especially the laptop. The user will spend about two hours setting up, taking the tests, and 
disassembling the system. He must want results; so making him return the system to us in 
order to get those results will ensure we retrieve the system.  

4 CONCEPTUAL DESIGN AND ANALYSIS 

In this phase, concepts were benchmarked and developed. The team has focused on 
designing the speech in noise hearing test and readying the system for deployment to two 
locations: 1) UVA Otolaryngology clinic and 2) patients’ homes. When readying the system 
for patients’ home, it is necessary to consider the implications of the speakers breaking. If 
the patient is able to break components during set up, then he will be unable to complete 
testing.  

4.1 Concept Generation 
Concepts were developed for the Speech in Noise Hearing Test and for the design of the 
speaker stands. The Alpha Prototype required the hearing test, because the prototype that 
was sent to UVA needed to be able to administer both hearing tests and this one was still in 
development. Since acceptable speaker stands were available thanks to the previous team, 
they were used for the Alpha Prototype. The team is working on improving the speaker 
stands in order to meet the Beta Prototype requirement that the possibility of the speaker 
plug breaking is minimized.  

4.1.1 Speech in Noise Hearing Test  
Concepts were generated based on literature review. The possible concepts were 
determined through researching existing speech in noise tests. An overview of these tests 
is shown in Table 4. The Hearing in Noise Test (HINT) is a commercialized speech in noise 
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test where a signal is played at the same time noise is played. The signal is a sentence and 
the participant must repeat the whole sentence exactly. The signal is varied based on the 
participant’s response. The HINT-C is similar but it is a version specifically for children. The 
sentences are at a child’s understanding level. The Speech in Noise (SPIN) is a speech in 
noise test where babble is varied which the target is held constant. The target for the SPIN 
is a sentence where the participant has to repeat the last word of the sentence. The 
equivalent test for children is the Pediatric Speech Intelligibility (PSI) where the only 
difference is that the child responds by pointing to an icon on a card. The Coordinate 
Response Measure (CRM) is a non-standardized corpus of sentences available for use. The 
corpus suggests that the sentence be played along with twelve other competing sentences. 
The listener has one call sign and must listen for his call sign and the color-number 
combination that speaker says. The QuickSIN and BKBSIN are very similar to each other 
except that the BKBSIN can be used by children and the sentences are different. Both 
increase the background talkers based on the subject’s answer. The subject must repeat 
each sentence.  
 

Table 4: Existing Speech in Noise Tests 

Age (year) Test What is varied What is constant 
The participant's task was 

to 

> 13 
HINT 

Signal Noise at 65 dB (A) 
Repeat whole sentence 

exactly 
< 11 HINT-C 

> 9 
SPIN  

Babble Target at 30 dB SL 

Repeat last word of 
sentence 

< 8 PSI Point to icon on card 

Undefined CRM 
Call sign and 

Color/number 
combination 

Subject's assigned 
call sign 

Identify the color/number 
combination spoken by the 
same speaker who said his 

assigned call sign 

Undefined QuickSIN 
Background 

talkers 
Signal Repeat each sentence 

All BKBSIN 
Background 

talkers 
Signal Repeat the sentence 

 
This team’s task was to use the concepts to develop a test that would work within our 
constraints.  

4.1.2 Speaker Stands 
Concepts were generated to help redesign the given speaker stands. The current stands 
risk speaker breakage because the speaker base it attached securely with glue to the stand. 
This secure attachment means that the speaker rod runs the risk of breaking in transit or 
during set up. Therefore, adjustments will be made to the speaker attachment area. The 
extruded pieces and corresponding matching pieces are not extensive enough. Currently, 
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the speakers wobble when the male and female pieces are matched. The previous speaker 
design can be seen in Figure 3 where the speaker is glued to the base (circled area) using 
super glue.  
 

 
Figure 3: Female piece (Left), Male piece (Right) 

Other preexisting designs were benchmarked to find a solution to help redesign the 
speakers’ attachment point. Figure 4 is an attachment of a commercial flashlight that is 
used to clip the flashlight onto a person’s belt. This design uses a clip attachment to easily 
allow this piece to be added and taken apart. To remove the clip attachment a person 
would apply a downward force onto a peg to allow the clip attachment to slide off. The clip 
attachment can easily be added onto the flashlight by sliding the appropriate piece back 
onto the flashlight.  
 

 
Figure 4: Flashlight clip 

 
The clip attachment on the flashlight can easily be added and removed unlike the glued 
speaker stands on the previous design. The flashlight holder has grooves that are pointed 
outward that help to hold the clip attachment in place. This gives a snug fit for the clip 
attachment in the flashlight holder.  
 
After benchmarking, a morphological matrix was used to generate multiple solutions. The 
main parameter for the matrix was to have a design that would allow for a quick release 
(preferably) or break when a substantial force is applied to the speaker stand rod.  Some of 
the concepts that were brainstormed include: rubber bands, Velcro, press fit, and snap fit. 
The morphological matrix can be found in the appendix binder.  
 

Grooves  

Flashlight holder 
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Concept 1: Rubber bands  
In the first concept the speaker stands would be attached and removed using rubber bands 
as seen in Figure 5. Multiple small rubber bands would be wrapped around the speaker 
holder and speaker stand. The rubber bands would allow the speaker holder to be easily 
removed and attached.  
 

 
Figure 5: Rubber band conceptual design 

 
Concept 2: Velcro  
The second concept included using Velcro to attach the speaker stands to the speaker 
holder. The bottom side of the Velcro would be super glued onto the bottom of the speaker 
stand and on the bottom of the speaker holder (Figure 6).   
 
 

 
Figure 6: Velcro conceptual design 

 
Concept 3: Press fit 
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The third concept includes press fitting the speaker stand holder to the speaker stand. In 
press fitting the two parts would have tight enough tolerances to create a press fit between 
the stand and the speaker (Figure 7). 
 
 

 
Figure 7: Press Fit conceptual design  

 
Concept 4: Snap fit  
The fourth concept includes adding clip attachments onto the speaker stand to hold the 
speaker holders in place. These pegs would barely hold the speaker in place. They could 
have a curved triangular top that would allow the user to comfortably remove or re-attach 
the speaker, if necessary (Figure 8).  
 

   
Figure 8: Clip attachments conceptual design 

 

4.2 Concept Evaluation 
This section discusses how the concepts were evaluated. The evaluations made in this 
section guide the process of selecting a concept. For the speech in noise hearing test, the 
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concepts turned out to be useful for different aspects of the project. For the speaker stands 
design, the concepts were evaluated using a decision matrix.  
 

4.2.1 Speech in Noise Hearing Test 
All of these concepts will provide a speech in noise threshold that can be used to quantify a 
person’s binaural hearing. The problem with the HINT/HINT-C, SPIN, PSI, QuickSIN, and 
BKBSIN is that they require a test proctor. The next sentence depends on the subject’s 
response. The CRM is the only concept that is automatable. It is a readily available corpus 
of .wav files that can be used with the given constraints: the existing system including 
MATLAB. However, the CRM does not describe a test, only a corpus. It can be used for 
multiple different experiments. Therefore, we must use adapt the corpus and use the other 
concepts to develop a full speech in noise test.  

4.2.2 Speaker Stands 
Next a decision matrix was created to compare the different criteria of the new speaker 
stand designs (Table 5). The speaker stands were redesigned to meet the system 
requirement that the speaker will not get broken during assembly. The stands must hold 
the speaker. In addition, the stands must be safe for children and low cost because these 
are requirements of the system.  
 

Table 5: Decision Matrix for Speaker Stand Concept Selection 

Criteria  Weight  Concept 1  Concept 2 Concept 3 Concept 4 

Safe for children 5 2 3 4 5 

Hold speaker stand securely  3 1 4 5 4 

Allow speaker holder to pop off 4 4 2 1 4 

Cost  4 5 3 2 5 

Ease of Implementation  3 3 2 2 3 

  Total 58 53 53 82 

 
The overall goal of the speaker stands is to help simplify the assembly process and to 
insure that the speakers are set up correctly. New requirements were added onto the 
previous requirements for the speaker stands.    
 
Concept 1: Rubber bands 
Although the rubber bands could be a solution to the problem, it also imposes new 
challenges. The rubber bands could easily become unattached during the shipping process 
and be lost within the entire process. In addition, the rubber bands would not prevent the 
speaker holder from wobbling. The rubber bands would be a very inexpensive solution and 
would be easy to implement but it would not be a viable solution. Furthermore, rubber 
bands can easily become unattached and can be digested by young children.  
 
Concept 2: Velcro  
Although Velcro can be used to fasten the speaker stands and speaker holder it would be 
too easy for children to remove and attach. In addition, the material used to make Velcro is 
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particularly noisy when pulled apart.  The excess noise could potential affect the validity of 
the hearing tests. Furthermore, some Velcro products are not strong enough to 
permanently connect two surfaces. As a result the Velcro would constantly have to be 
repositioned which causes more excess noise. The Velcro would not allow the speaker to 
pop off when a downward force is applied. Therefore the nickel chromium rod could 
potentially break.  
 
Concept 3: Press fit  
When the speaker holder would be press fit into the plastic abs material both the plastic 
abs material and speaker holder would be slightly deformed. In addition, if the speaker 
holder would come out of the press fit, the participants would have a difficult time to put 
the part together. With the speaker holder press fit, the nickel chromium rod could 
potentially break when a participant attaches the speaker to the speaker holder.  
 
Concept 4: Clip attachments 
The dimensions of the clip attachment could be adjusted to allow the speaker holder to pop 
out if large downward force is applied to the nickel chromium rod. It can also be design to 
have a snug fit for the speaker holder and prevent the speaker holder from wobbling or 
moving.  The clip attachments do not impose a safety concern to young children and can be 
easily designed in SolidWorks and attached onto the previous speaker stand design.  

4.3 Concept Selection 
Concept evaluation allowed the team to select the best concept. The best concept is one 
that meets the requirements defined. Sometimes the best concept exceeded the defined 
requirements and sometimes multiple concepts were combined to create one final concept.  

4.3.1 Speech in Noise Hearing Test 
Unlike the CRM suggests, twelve different sentences cannot be played at once due to the 
limitations of our system (8 speakers). MATLAB can only play sound out of two speakers at 
one time. Therefore, the corpus will be used but the subject will not have to recognize a call 
sign out of a variety of other sentences. The subject will just have to recognize a color and 
number combination while noise is competing in the background. A color and number 
combination is easier to identify than a call sign. The test will adapt in difficulty based on 
the subject’s response, so the stimulus does not need to be difficult. The stimulus will be 
paired with noise, similar to the current localization hearing test. The level of the noise will 
be varied based on the user’s response. To simulate the subjects in a loud environment it 
was decided to change the level of noise. The alternative would simulate that the signal 
would speak louder, which is less realistic because it would mean that the signal was 
accommodating for the hearing difficulty of the subject. Additionally, keeping the signal 
constant was typical of most of the hearing tests we benchmarked; QuickSIN, BKBSIN, SPIN, 
and PSI all kept the signal constant, so it was also chosen because of similarity to most 
existing tests. The concept developed uses the CRM as the signal, adapting competing noise 
based on the user’s response. This will work with MATLAB because it involves .wav files 
and noise playing algorithms that already exist in the system. It will automatically 
determine the subject’s ability to distinguish speech despite the noise because it will be 
adaptive to the user’s response, honing in on their threshold.  
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4.3.2 Speaker Stands 
The clip attachments ranked the highest in the decision matrix. Therefore, the concept that 
was selected was the clip attachments because it will hold the speaker securely but still 
allow it to quickly release if a certain maximum force is applied. Also it is safe for children 
and easy to implement into the existing design.  

5 PRELIMINARY DESIGN AND ANALYSIS 

The preliminary design for our part of the project included designing the speech in noise 
hearing test and refining the existing speaker stands. The design was based on analysis of 
the software platform, Matlab. The speaker stand design was based on the existing design, 
but they have been refined to take into account possibility of breaking the speaker. In this 
way, the two elements have been designed to address the system requirements for the two 
prototypes.  

5.1 Speech in Noise Hearing Test 
To begin developing the hearing test, research was done on the capabilities of Matlab. Pilot 
code was written to understand how Matlab interfaces with the speakers. The iterations of 
code revealed that Matlab requires that the speakers be a pair in order to play different 
sounds of two speakers. In the system’s initial stages of our work, the speaker pairs were 
all next to each other. So, speaker 1 and 2 would have played sound and noise together. 
This would have created an impossible situation. Mainly, it would negate the system 
requirement that the hearing test would use the absence and presence of the head shadow 
effect to study the patient’s binaural hearing. This constraint meant that the system had to 
be reorganized so that the speaker pairs were separated spatially: 1&8, 2&7, 3&6, and 4&5 
became the new speaker pairs. 
 
It is common to have a practice test preceding the actual hearing test to familiarize subjects 
with the test and to set the initial levels. Additionally, there was concern that the CRM could 
be confusing at first. There is a lot for the user to analyze, so the initial data may become 
skewed if there is not a practice time. Therefore, a sub-system of this hearing test is the 
training loop. The training loop requires that the user answer correctly a certain arbitrary 
number of times in a row. The number chosen was five because it meant that the user 
definitely understood the process, was not guessing luckily, and that the user could hear 
the signal. Since the noise has been capped so that it does not become too loud but the 
same range was still needed in order to acquire a threshold, the signal had to be softened 
significantly. Therefore, the training loop also incorporates an adjustment of the signal. If 
the user gets two in a row incorrect (to ensure it is due to the softness of the signal), then 
the signal increases by 1.5 dB. As they continue to answer incorrectly, the signal continues 
to increase until they get an answer correct. Once they get five in a row correct, the actual 
test begins.  
 
The hearing test was conceptualized using the flow chart in Figure 9. In order to determine 
a threshold of hearing, the program needed to play sound and noise at the same time, then 
wait for the user to respond, then use their response to decide how loud to play the noise 
the next time. The code was written to accomplish this process using for and while loops. 
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Then the program needed to analyze the data in real time and save that to some excel file. A 
change of direction (COD) occurs when a user gets an answer correct then the next trial 
gets it incorrect or vice versa. These CODs are counted and the test ends when there have 
been eight CODs. It was decided based on benchmarking to calculate the threshold by 
taking the mean of the intensity level at the fourth through the eighth change of direction 
(Gray 2009). This way, the test would analyze so that it hones in on the threshold.   
 
 

 

Figure 9: Design of Speech in Noise Hearing Test (excludes Training Loop) 
 

Because the decibel scale is logarithmic, the noise level was increased and decreased using 
a logarithmic scale. The noise level was created as a vector of random numbers. This vector 
is then divided by some variable, dBDown. This variable is what changes the level of noise. 
Additionally, there is a variable, step, which is 6 until the fifth change of direction, and then 
it is 4. This is also based on benchmarking where the step was decreased in order to hone 
in more precisely on the threshold (Gray 2009). Therefore, if the user gets the answer 
correct the noise is divided by dBDown where: 
 

𝑑𝐵𝐷𝑜𝑤𝑛 =
𝑑𝐵𝐷𝑜𝑤𝑛_𝑂𝑙𝑑

10(
𝑠𝑡𝑒𝑝

20
)

                                                (3) 

 
Where dBDown_Old is the dBDown used in the previous run. In contrast, when the user 
gets the answer incorrect the noise is divided by dBDown where: 
 

𝑑𝐵𝐷𝑜𝑤𝑛 = 𝑑𝐵𝐷𝑜𝑤𝑛𝑂𝑙𝑑 ∗  10(
𝑠𝑡𝑒𝑝

20
)                                     (4) 

 
Therefore, the noise is divided by a larger number if the user gets the answer incorrect 
while it is divided by a smaller number if the user gets the answer correct. The equations 
result in about a 2 dB change when the step size is 6 and about a 1.5 dB change when the 
step size is 4. This preliminary code was run and the data was used to determine the dB, 
direction, threshold, and step size. Everything was running correctly except the step size 
was off at the beginning of the test. There was a minor error in the code that was easily 
fixed. Figure 10 shows example data that helps demonstrate the adaptive nature of the test. 
Note that the graph simply shows how the level changes over each trial, there are no 
measurements described on the y axis. This is simply a proof of concept: the level increases 
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logarithmically until the answer is incorrect then it oscillates around the user’s threshold. 
The R and W represent when the user was right or wrong the trial before and the COD 
demonstrates how the changes of direction (COD) are counted.  
 

Figure 
10: Proof of Concept of CRM Change of Noise Level Based on Correctness (Right or Wrong) 

 
Next the actual level of the noise needed to be determined. Matlab does not record decibel 
levels, but if we know the initial decibel level of the noise and how much it is being divided 
by, then we can figure out the actual decibel level. This is based on the assumption that the 
code described above and the decibel level are linearly related. This linear relationship was 
verified to be true before continuing with the spectrum analyzer experiment. The noise 
decibel level was determined by comparing the output in Matlab to that from a spectral 
analyzer. A linear regression (r2 = 0.996) was performed on the data where the actual 
decibel level (from the spectrum analyzer) was compared to the variable that is control the 
noise level, dBDown (Y): 
 

𝑑𝐵(𝑆𝑃𝐿) = 19.8 ∗ 𝑙𝑜𝑔10(𝑌) +  83.2                                        (5) 
 
where SPL is the sound pressure level and Y represents the variable dBDown. Therefore, 
with the data the CRM exports, we can calculate the actual decibel level of the noise.  

5.2 Speaker Stands 
In order to meet the requirement that the setup is correct and repeatable, the speakers 
need to be setup in the correct position on the mat and angle from user. The solution 
needed to allow simple assembly and disassembly of the system. To solve this problem, 
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eight speaker stands were developed that included a male piece, which was bonded to a 
mat, and a female piece, which was bonded to a specific speaker. The initial concept 
included only a simple, asymmetric shape that the user could easily identify. This concept 
was refined to incorporate a stand for the speaker. The asymmetric shape worked, but it 
was difficult to design eight very unique asymmetric shapes, so a peg design was 
implemented. The second concept was printed as prototypes for all the speakers. These 
intermediate concepts for the speaker stand mates and a demonstration of how they work 
are shown in the appendix binder. Volunteers unrelated and unfamiliar with the project 
were brought in to test the prototypes. From this testing feedback, the designs were refined 
to improve functionality, usability, and to minimize cost and material. The issue with the 
first prototypes was that the pegs became very complicated since the pattern of pegs had to 
be unique for each speaker. The user had to extensively handle the male piece and match it 
to the female piece. This involved picking up the piece, turning it over, and then mirroring 
the image in the brain to find the correct female mate, thus extending handling time. 
Another flaw was that the stands could be installed multidirectional. The current speaker 
stands incorporate a number on both male and female pieces that allow the user to easily 
identify the proper mate. The number also serves a dual purpose of identifying the speaker 
during testing. The male is the one that is bonded to the mat so that vision is not restricted 
during assembly. One of the final speaker stands is shown in Figure 11. 
 

 
Figure 11: The Given Prototype from Other Team for the Speaker Stand Mates 

 
Figure 12 shows how the stand connects to the speaker wire and how the wire connects to 
the USB hub inside the box.  
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Figure 12: Demonstration of Assembly using Speaker Stand, Mat, and USB Hub Box 

 
This design incorporates the following Design for Assembly principles:  

• Parts are easy to align and insert 
• Both access and vision are not restricted 
• Mistake-proof the design and assembly 
• Minimize handling in assembly 
• Maximize compliance in assembly 
• Minimize assembly directions 
• Parts are designed so that are easy to grasp with one hand 

 
The main benefit to the design is that vision is not restricted because the male piece is 
bonded to the mat. The parts are easy to align and insert and they have minimized 
assembly directions. These principles minimize handling in assembly and maximize 
compliance in assembly. Accuracy in assembly is required for accuracy in the data, so the 
application of these principles helps ensure accurate data.  
 
To meet the system requirement for the Beta Prototype to minimize possibility of breaking 
the speaker, an analysis was performed on the speaker to guide design of the speaker 
stands. The speaker stands provide the opportunity for accomplishing the requirement 
because they work well with the system and they are involved in the assembly of the 
system, which is the most probably time for breakage to occur. The team investigated 
whether the client could break the nickel-chromium rod sticking out of speaker holder 
during the setup process. The speaker holder that will be analyzed is shown in Figure 13.   
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Figure 13: Speaker holder  

In the design of the speaker stands provided from the ’13 team, the speaker holder is glued 

onto the male plastic abs piece, which can be seen in Figure 14. In the current design the 

client would place the speaker onto the speaker holder and apply a downward force onto 

the speaker stand. The client could possibly apply a strong enough force to break the 

nickel-chromium rod. A mechanical analysis was completed to determine maximum 

downward force that can be applied before it breaks the nickel-chromium rod.  Once the 

maximum force was determined the speaker stands would be redesigned to have the 

plastic abs material break before the nickel-chromium rod broke. This is because the 

plastic abs material is easier to acquire than a specific pair of speakers.  

 

Figure 14: Completed Speaker Stand 

To begin the analysis, a system boundary was developed around the nickel chromium rod 

as seen in Figure 15.  

 

Figure 15: System Boundary 

Nickel-Chromium rod  
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The system was then redrawn, and reoriented to represent a cantilever beam as seen in 

Figure 16 below: where F1 is the force applied by the user, and F2 is the normal force acting 

in response. The dotted line shows the deflection that will occur and the neutral axis is the 

line across the centroid of the rod. 

 

 

 

 

 

 

 

 

Figure 16: Representation Nickel-Chromium Rod 

The forces in the y direction were summed below in equation 6 and it was determined that  

𝐹1  =  𝐹2.  

𝛴𝐹𝑦 : − 𝐹1 + 𝐹2 = 0                                                                      (6) 

𝐹1 = 𝐹2 

The sum of the moments in the y direction is shown in equation 7.  

𝛴𝑀𝐴 =  −𝑀𝐴 + 𝐹𝑙𝑜𝑎𝑑  (. 55′′) = 0                                                     (7) 

𝑀𝐴 = 𝐹𝐿𝑜𝑎𝑑  (. 55′′)  

The moment of inertia for a hollow cylindrical tube was calculated using equation 8. Where 

𝐷0 is the outer diameter: 0.00345 m, and 𝐷𝑖  is the inner diameter: 0.0013 m.  

𝐼 =  
𝜋(𝐷0

4−𝐷𝑖
4)

64
                                                                  (8) 

The maximum moment for the beam is calculated using equation 9 where σ is yield stress 

of the nickel-chromium which is 3.10 Pa, c is the maximum distance from the neutral axis: 

0.00172 m, I is the moment of inertia calculated in the equation before: 6.862*10-12  𝑚4. 

𝑀𝐴 =
𝜎𝐼

𝑐
                                                                     (9) 
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The applied moment (MA) calculated is 1.23 N*m. Equation 10 was then used to determine 

the force load required to break the beam.  

𝐹𝐿𝑜𝑎𝑑 =
𝑀𝐴

0.01397𝑚
                                                                 (10) 

The 𝐹𝐿𝑜𝑎𝑑  calculated is 88.16 N, which is the force required to break the beam. Next, the 

speaker stands were redesigned to allow the speaker holder to snap off before the nickel-

chromium rod breaks. A basic design was created from the benchmarking research on the 

flashlight clip attachment. Figure 17 is a design that allows the speaker holder to be clipped 

onto the speaker stand instead of attached with a strong adhesive.   

 

Figure 17: Clip Attachment 

The speakers were then analyzed to determine the height and thickness of the clip 

attachment. To begin the analysis, one side of the snap design was analyzed in Figure 18. 

 
Figure 18: Clip Attachment Diagram  

 
The top part (above the horizontal line) of the snap concept is for comfort, so it is negligible 
in this analysis (Figure 19). Ideally the snap design will allow the speaker holder to pop out 
from the female piece if the force applied is greater than 88.16 N.  
 
 

 
 
 
 

Figure 19: Simplified Model 
The model was even further simplified to represent a beam: 
 

F 

x 

y 

y 

x 

F 
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Figure 20: re-simplified model of clip attachments 

 
Equation 11 was used to determine the stress applied to the clip attachment.  
 

𝜎 =
𝑀𝐶

𝐼
=

𝐹(𝑥+
𝑦

2
)(

𝑦

2
)

𝑏𝑦3

12

                                        (11)  

 
Where σ is the yield strength of the plastic abs, C is the maximum distance from the neutral 

axis [
𝑦

2
], M is the applied moment [𝐹 (𝑥 +

𝑦

2
)]  and I is the moment of inertia [

𝑏𝑦3

12
].  The 

equation was then rearranged to solve for the F in equation 12.  
 

𝐹 =  
𝜎∗𝑏∗𝑦2

6𝑥+3𝑦
                                               (12) 

 
 
In order to determine the free variables of x, b, and y, the force to remove the speaker stand 
needs to be less than the force required to break the nickel chromium rod [𝐹 < 𝐹𝑏].  

6 TESTING AND REFINEMENT 

The team needs to validate that the speech in noise hearing test can distinguish between 
uni- and bilateral listeners. Also, the team must validate that the system can be set up 
before the team can send out a system. The immediate goal is to create a prototype that 
requires a proctor that can be sent to UVA. The prototype will then be refined so that it 
does not require a proctor so that it can be sent out to patients’ homes.  

6.1 Validation Testing 
The participants were given instructions to set up the system that initially had all parts 
placed in a packaging box. The first set of instructions to set up the hardware of the system 
can be seen in the appendix binder. These instructions were also given to participants and 
the participants had trouble following the instructions. It was concluded through 
observation that college participants typically do not read instructions, and therefore the 
initial set of instructions were refined and the new set can be seen in the appendix binder. 
The new set of instructions incorporates more pictures and fewer words to simplify the 
setup process. Since the new instructions have been given to the participants there has 
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been a 100% success in the hardware setup. A total of 11 participants have been tested 
which includes 4 unilaterals and 7 bilaterals.  

6.1.1 Validation of Hardware 
Data was collected from 12 naïve participants in order to validate our speech in noise 
hearing test. To validate the speech in noise test, it would need to show a statistical 
difference between bilateral and unilateral listeners. Before the system was tested the 
participants were given a form to consent to participate in research, in accordance with the 
IRB (IRB # 13-0058). The form was read over by the participants and any participants 
unwilling to agree to the terms of the form were asked to leave the testing site. The form 
can be seen in the appendix binder. The subject was then given a box full of components 
and instructions and asked to set up the system. Once finished, the administrator used the 
speaker configuration panel to verify the noise was properly coming out of each speaker. 
Figure 21 shows the speaker configuration panel that we created for this purpose.  
 

 
Figure 21: Speaker configuration panel 

 
The administrator first clicked start calibration then a signal came out of speaker 1. The 
administrator then chose a number based on the speaker from which the signal played. If 
the speakers chosen by the administrator matched the software’s identification of the 
speakers then “verify setup” was shown in the status bar to indicate that the user properly 
set up the speakers.  
 
The participants were randomly assigned a screen name from the Identify panel seen in 
Figure 22. The participants were randomly assigned a screen name using a random 
generator, repeated for the four different trials. The numbers output from the random 
generator were associated with the names on the panel, for example, 1 represents 
AceSpades and 2 represent AceClubs.  
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Figure 22: Identification Panel 

 
After the screen name was selected, the auto calibration panel recorded the background 
noise in the room in Figure 23. If there was a disturbance during this process the 
recalibration button could be pressed to record the background noise again. The 
background noise was then collected and written to an Excel document.  
 

 
Figure 23: Auto calibration Panel 

 
The participants then read the instructions before proceeding to begin the test. Figure 24 
displays the newly formed instructions for the participants to read.  
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Figure 24: Testing Instructions and Procedures 

 
The participants then began the test. First, the participants had to pass the training loop by 
answering correctly five times in a row. The training loop, as mentioned before, prepares 
the user for the test. It also adjusts the signal level in the event that the subject cannot hear 
it all. In the combined first test all the bilateral participants took the test without any ear 
plugs or head phones. Next, the excel function =RANDBETWEEN(1,2) was used to 
determine which ear would be plugged with an earplug and headphones. 1 represented 
that the right ear would be plugged first, and 2 represented that the left ear would be 
plugged first. Moldex pura-fit ear plugs were used, and the noise reduction rating is 33 dB 
according to the box specifications. Next, Silencio RBW-71 headphones were placed on top 
of the ear with the earplug with a noise reduction rating is 50 dB. Equation 13 calculates 
the estimated exposure (dBA) using dual protection according to the Noise and Hearing 
conservation under the department of labor.  
 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑑𝐵) = 𝑇𝑊𝐴(𝑑𝐵) − (𝑁𝑅𝑅ℎ + 5)                        (13) 
 

𝑇𝑊𝐴 =  𝑇𝑖𝑚𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 40 𝑑𝐵 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚  
𝑁𝑅𝑅𝐻 = 50 𝑑𝐵 
 
According to OSHA, a standard conversation is about 50 dB to 60 dB (OSHA 2013). The 
system’s noise level is then estimated to be below a standard conversation. More research 
and testing needs to be done to verify the maximum dB output for the system.  
  
Then the participant took a 1-2 minute break before beginning the next test. Once that test 
was finished the same procedure was repeated with the other ear to gather a total of 3 tests 
and 12 trials. All the data was written to 12 excel files and stored onto a folder on the 
desktop. The data was not placed into a Dropbox folder to protect the participant’s 
confidentiality. The unilateral participants only took 1 test which included 4 trials, but 
otherwise repeated the same testing procedure as the bilateral participants. The bilateral 
participants took 3 tests including 12 trials because control (no ear plugs) needed to be 
established and the participant needed to be simulated as a unilateral listener by plugging 
one of the ears. All the rata data can be seen in the appendix binder.  

6.1.2 Validation of Speech in Noise Hearing Test 
In order to validate that the speech in noise hearing test could distinguish between 
unilateral and bilateral listeners, eleven subjects were tested on the system. Four of them 
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were true unilateral listeners. The remaining seven were bilateral listeners. The bilateral 
listeners were tested three times: normally and with either ear plugged. Each subject took 
four tests where the signal and noise location varied each time. The first test played 
distracting noise from the right speaker 180 degrees from the subject (speaker 8). The 
second test played noise from the left speaker 60 degrees from the subject (speaker 4). The 
third test played noise from the right speaker 120 degrees from the subject (speaker 5). 
The fourth and final test played noise from the speaker 0 degrees from the subject (speaker 
1). The average results for the real/fake unilaterals and bilaterals are shown in Figure 25. 
The plot shows that there is not a statistical difference between the two, even at 50% 
confidence.  
 

 
Figure 25: Comparison Between Unilaterals' and Bilaterals' Performance 

 
However, the purpose of this system is to increase sample size, so it follows that a 
statistical analysis would have a sample size problem. To account for this problem, we 
compare unilaterals to bilaterals when the unilaterals are at a disadvantage and when they 
are at an advantage. A unilateral is at an advantage when his bad ear is facing the 
distracting noise. He is at a disadvantage when his good ear is facing the distracting noise. 
This represents what is referred to as binaural squelch in the literature. Unilaterals with a 
good right ear are at a disadvantage during tests 1 and 3, while unilaterals with a good left 
ear are at a disadvantage during tests 2 and 4. When an analysis of variance one way 
(ANOVA) is performed using Excel software, p < 0.2 when the unilaterals are at a 
disadvantage. On the other hand, when the unilaterals are at an advantage, there is no 
statistical difference between those unilaterals the bilaterals. Therefore, we can conclude 
that our test distinguishes between unilateral and bilateral listeners at 80% confidence 
when the unilateral listeners have their good ear closest to the distracting noise. More 
testing should be done to increase the sample size and conclude validity of the test with 
more confidence. More advance statistical analysis was performed and can be found in the 
appendix.  
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6.1.3 Pilot Testing 
The Alpha prototype was sent to Dr. Kesser who tested it on himself and his wife, daughter, 
and son. His detailed comments are provided in the appendix binder. Overall, his comments 
informed the design. The instructions were refined to be more exact and inclusive. For 
example, plugging in the mouse was left out of the instructions sent, so that was added to 
the refined instructions. The instructions were revised to include differentiation between 
left and right clicks. Also instructions for shut down were added. The new hub box was 
designed so that the speaker wires would come out on their respective sides (speakers 1-4 
wires come out to the left of the hub box and speakers 5-8 wires come out to the right of 
the hub box now).  He expected noises to play during the calibration routine, but it was 
only recording background noise at that time. Now a sound plays out of each speaker and 
the output is recorded. From the pilot testing, it became clear that the most important part 
of sending this system to patients is communication. Even someone who is very familiar 
with the system and hearing tests had difficulty knowing what to expect and how to 
execute everything. This informs us that it is vital to communicate with the user effectively. 
This can be accomplished by refining the instructions and adding a frequently asked 
questions section. It must be acknowledged that there is a trade off in this respect: both too 
much and too little information will overwhelm the user. The final instructions can be 
found in the appendix binder.  

6.2 Speaker Stand Testing 
The FMEA suggested that there is a possibility that the speaker plug will break. The 
speaker stands can be designed so that this possibility is minimized. In order to do so, the 
stands were designed so that it requires less force to remove the speaker stand than the it 
requires to break the speaker. First, the force required to break the speaker will be 
calculated. Then, the speaker stand will be designed so that the force required to remove 
the speaker will be less than the force required to break it. This way, the speaker will eject 
from the stand before it is broken.   

6.2.1 Speaker Plug Testing 
A mechanical test was designed to confirm the theoretical calculation of the speaker rod. 
The rod is assumed to be made from nickel chromium material. The yield strength of the 
material is assumed to be 3.10E8 PA but the actual yield strength is unknown. An 
experiment was created to determine the yield strength of the unknown material. 
 
Before beginning the experiment a LCHD-25 strain gage load cell was calibrate by applying 
a excited voltage of 10 V. Next, incremental 2.5 weights were added to the load cell and the 
voltage output was measured using a Fluke 155 meter. After the data was collected a 
voltage output [V] vs force [N] was created in order to determine the calibration equation, 
which can be seen in Figure 26 below.  
 



161 
 

 
 

 
Figure 26:  The Calibration Equation for the Load Cell 

 
Next, an experiment was designed to determine the yield strength of the material. In the 
designed experiment, the speaker rod was placed within a hole in a steel frame. The steel 
frame was attached to an SLA frame. A load cell was attached to the speaker rod using an S 
hook, and weights were loaded on the bottom of the load cell using J hooks. The 
experimental setup can be seen in Figure 27.  
 

     
 

Figure 27: Experimental Setup  
 

Weights were added to the J hook in 2.5 pound increments until the speaker rod broke 
from the plastic piece. LabView was used to record the voltage output of the load cell and 
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the calibration equation was used to convert the voltage output to a force. Figure 23 is a 
graph of the force applied to the load cell.   
 

 
 

Figure 23: Applied Force [N] vs. Time [s] 
 
A maximum force of 290N was required to break the speaker rod. Next, the maximum force 
was used to determine the yield strength of the material.  

 

 
 

Figure 24: Representation of speaker rod. 
 

The sum of the moments in the y direction is shown in Equation 14.  
 

𝛴𝑀𝐴 =  −𝑀𝐴 + 𝐹𝑙𝑜𝑎𝑑  (. 18′′) = 0                                                     (14) 
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𝑀𝐴 = 𝐹𝐿𝑜𝑎𝑑  (. 18′′)  

 
The yield strength of the rod is determined using equation X. C is the maximum distance 
from the neutral axis of .00172 m, I is the moment of Inertia which is 6.862*10-12 m4.  

𝜎 =  
(𝐹𝐿𝑜𝑎𝑑)(𝑐)(.18)

𝐼
                                                         (15) 

 
The yield strength of the material is approximately 3.32E8 PA. 
 
Next the force required to break the rod is calculated.  

 
Figure 30: Representation of speaker rod 

 
Using the now known yield strength, the maximum moment of the rod was calculated using 
equation 16 where σ is yield stress of the nickel-chromium which is 3.32 Pa, c is the 
maximum distance from the neutral axis of .00172 m, I is the moment of inertia calculated 
in the equation before: 6.862*10-12  𝑚4. 
 

𝑀𝐴 =
𝜎𝐼

𝑐
                                                                     (16) 

 
The applied moment (MA) calculated is 1.319 N*m. Equation 17 was then used to 
determine the force load required to break the beam.  
 

𝐹𝐿𝑜𝑎𝑑 =
𝑀𝐴

0.01397𝑚
                                                                 (17) 

 
The 𝐹𝐿𝑜𝑎𝑑  calculated is 94.41 N, which is the force required to break the speaker rod. 
 

6.2.2 Speaker Stands Testing 
In order to design the clip attachments, the yield strength of the plastic ABS material 
needed to be determined. Literature exists on this value, but it should be confirmed 
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because the 3D printing method results in highly anisotropic material. In addition, the 
strongest orientation to print the plastic abs material needs to be determined. A tensile test 
was performed on 15 dog-bone shaped specimens following the ASTM D638-10 standard.  
According to the standard IV specimens should be used when comparing the material with 
different rigidity. The dimensions of the dog–bone shaped specimen can be seen in Figure 
31 below.  
 

 
Figure 31: Drawing of the IV specimen (All dimensions in mm). 

 
The specimens were designed in SolidWorks and printed in three different orientations 
(x,y,z) using the Stratasys printer. The orientation of the specimens can be seen in Figure 
32 below.  A tensile test was performed on each specimen on the Instron. Following the 
ASTM standard, the initial length, width, thickness of each specimen was recorded. Next, a 
wax crayon was used to mark the distance at which the grips were to be attached to the 
specimen. The speed of testing was set to 5 mm/min.  
  
 
 
 
 
 
 
 
 

 
 

Figure 32: Orientation of Specimens 
 
The next steps deviated from the ASTM standard. According to the standard, a biaxial 
extensometer should have been used to center the specimen within the gage clips. Instead 
a caliber was used to measure the distance between the gage clips to ensure the specimen 
was centered within the Instron. Furthermore, the ASTM standard requires for a small 
preload force of less than 5N to be applied to the specimen. The specimen was tightened 

Y Orientation  Z Orientation  X Orientation  
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and a small extension was applied until the preload force was approximately 5 N force each 
specimen. The average tensile strength, yield strength, and modulus were calculated and 
can be seen in Table 6.  
 

Table 6: Data of Test Specimens 

  
Average Tensile 
Strength [MPa] 

Average Tensile Strength 
at Yield [MPa] 

Average Modulus 
[MPa] 

X specimen 9.48 9.48 1280 

Y specimen 7.18 5.39 1130 

Z specimen 10.44 10.6 1470 
 
The z orientation produced the specimen with the highest yield strength. The dimensions 
of the specimen and overall procedure and results can be found in the appendix.  

7 DETAILED DESIGN AND ANALYSIS 

This section describes the process of deciding which speakers to use for the speech in noise 
hearing test. To do so, an experiment was performed using and artificial head and torso. 
This section also describes the process of defining dimensions of the speaker stands.  

7.1 Speech in Noise Hearing Test  
The hearing in noise test that the team developed tests a subject’s ability to distinguish 
speech from background noise. The conditions are more realistic and extensive than the 
pre-existing pure tone threshold tests. When a subject can hear out of both ears, he or she 
can use the different input (in terms of timing and magnitude) from each ear to locate and 
focus on the stimulus, blocking out the noise. This team has designed a test for subjects 
who have or will have corrective surgery, giving them the ability to hear from both ears for 
the first time. The test is interested in the headshadow effect, which is due to the head 
separating the magnitude of the input to one ear from that to the other and affecting the 
timing of the input. Therefore, to determine how the subject learns to use the headshadow 
effect, the hearing test should stimulate the ears when headshadow is at its greatest and 
when it is at its smallest effect. In order to test for these conditions, the team used a 
standard audiology tool, a realistic head and torso equipped with a microphone in his right 
“ear” called KEMAR. Since KEMAR has a microphone in only one ear, it is expected that the 
he will hear the stimuli on the right side at a greater magnitude and shorter timing than 
those on the left side. This test will address the hypothesis that the most headshadow effect 
is prevalent in speaker pair: 1 & 8, while the least headshadow effect is prevalent in the 
speaker pair: 4 & 5.  

7.1.1 Methods 
Fall semester 2013, the team attempted data collection using KEMAR, but the team reached 
the limitations of the software and hardware available. The issue was the timing of the 
computer. The computer processed the transition between speakers with different time 
intervals. Thus, when it came time to compare the timing of the speakers, the data was 
unreliable and inconclusive. To fix this problem, the team used equipment in CSD2 Lab in 
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HHS 0209. To test that the setup was effective, the output was directly wired to the input. 
In this case, it was expected for the output to match the input completely. Figure 33 is a 
comparison of the input signal to the output signal. It proves that the output matches the 
input when they are directly connected, which was expected. This implies that the set up 
would not have any timing issues and that we could proceed with the experiment.  
 

 
Figure 33: Proof of Successful Experimental Set Up 

 
Next, the output was connected to a single speaker. The speaker was placed in a sound 
proof booth with KEMAR. The protractor was laid out on a table in the sound proof room 
and KEMAR was placed in a location mimicking where a subject would sit. The speaker was 
moved to each location of those in the existing system: 0, 20, 40, 60, 120, 140, 160, 180 
degrees corresponding to speakers 1-8, respectively (Figure 34). This representation just 
shows the locations of each speaker, the numbering begins on the left with speaker 1 and 
continues clockwise ending with speaker 8.  
 

 
Figure 34: Speaker Locations Denoted by Circle 
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The speaker was moved in order to keep the output consistent and to avoid timing issues of 
using multiple speakers. The stimulus was a 25 kHz sample of a 100 sample long click. A 
click is an excellent stimulus for this experiment because it is broadband and composed of 
many different frequencies. It does, however, have very little energy. This is why we played 
twenty-five clicks in a row. The output for each click was averaged, thus averaging out any 
background activity. Figure 35 shows the experimental set up when the speaker is in the 
same location as speaker 5.  
 

 
Figure 35: KEMAR Experimental Set Up 

7.1.2 Results 
With this set-up, the average output for each speaker was analyzed for comparison to the 
input in a bode plot. The transfer function was calculated by using equation 18.  
 

    𝑇(𝑗𝜔) = 𝑎 ± 𝑏𝑗 =
𝐹𝐹𝑇(𝑜𝑢𝑡𝑝𝑢𝑡)

𝐹𝐹𝑇(𝑖𝑛𝑝𝑢𝑡)
                                             (18)  

 
The magnitude (|𝑇(𝑗𝜔)|) and phase shift (𝜃) were calculated using the following equations: 
 

|𝑇(𝑗𝜔)| =  √𝑎2 + 𝑏2                                                       (19) 
 

𝜃 = tan−1 (
𝑏

𝑎
)                                                             (20)  

 
𝑔𝑎𝑖𝑛 = 20 ∗ 𝑙𝑜𝑔10(|𝑇(𝑗𝜔)|)                                              (21)  

 
Next, the speakers were paired off based on the pairing in the system: 1 & 8, 2 & 7, 3 & 6, 
and 4 & 5. The difference between the speakers in the pairs was calculated for the gain and 
the phase (for example the difference between the gain of speaker 8 and speaker 1). The 
results are shown in Figure 36. This shows the magnitude and phase difference between 
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the speaker pairs. It only shows the greatest and least magnitude speaker pairs. Data for all 
speaker pairs can be found in appendix binder.  
 

 
Figure 36: The Difference between Speaker Pairs 1&8 and 4&5 in terms of Magnitude and 

Phase Shift 
 

Therefore, the results imply that speakers 1 & 8 have the greatest difference in magnitude 
while speakers 4 & 5 have the least difference in magnitude. The speakers clearly show that 
they are out of phase with one another, suggesting timing differences as expected.  

7.1.3 Discussion 
From the results, we can conclude that since speakers 1 & 8 have the overall greatest 
difference in magnitude, they are the speakers that create the greatest headshadow effect. 
Since speakers 4 & 5 have the overall least difference in magnitude, they are the speakers 
that create the least headshadow effect. This makes sense and supports our hypothesis. 
Therefore, speakers 1 & 8 and 4 & 5 fit the requirements of our hearing test that they test 
the greatest and the least headshadow effect. The headshadow effect is an audiological 
technique that the brain uses to hear effectively. The brain processes these inputs 
automatically and it is truly amazing the amount of computation we are able to process 
when we have two working ears. From this experiment, the team concluded that the 
decision to use speakers 1 & 8 and 4 & 5 for the speech in noise test was a valid decision. 
The team will switch the signal and noise between the two speakers, thus resulting in four 
tests. To preserve data integrity, the order of speaker pair use will vary and seem random 
to the subject.  

7.2 Improvements to Software  
Feedback was provided from the design panel and Dr. Kesser and their inputs shaped the 
development of the alpha prototype. Dialog boxes that guide the user through the test were 
incorporated so that the user will know his or her progress. Additionally, positive 
reinforcement was included in the text of the dialog boxes. In order to keep the user 
interface consistent, this was done for not only the CRM, but also the calibration pane and 
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the other team’s localization hearing test. The data for the tests were being saved in 
different files. Noting the disorganization and opportunity for confusion, the team 
programmed the all the operations (CRM, sound localization, and calibration) to save to a 
single file. Each operation receives its own sheet and allows for multiple sheets in the same 
operation. The file does not overwrite itself because the file is saved as the user’s screen 
name and the current date. If the user has already signed in and created a file, the program 
adds *_001 and increments as necessary. If the user has created a file, but then decides to 
abort, the program records ‘invalid’ under the heading ‘valid?’. This way when the data 
analyzers receive the data, they will understand exactly what happened during testing.  
 
Additionally, the calibration pane was further developed to record background noises and 
to record a non-naturally occurring sound from each speaker. In this way, after testing the 
analyzer can determine whether the levels were set at similar levels for each speaker. This 
check is due to hardware issues where the analog to digital converters could have been 
altered so that their volume is changed.  

7.3 Speaker Stands  
The dimensions of the snap hook needed to be finalized before printing. Some of the 
dimensions of the snap hooks were identified by recording the measurements of the 
speaker holder. Minimum and maximum constraints were created for each of the x, y, and b 
dimensions from knowledge from previous iterations of the printed speaker stands. 
  

 
Figure 37: Dimensions of Speaker Hooks 

 
The force to release the speaker stand from speaker hook needed to be less than the 
minimum force required to break the rod, as calculated before. Lingo, optimization 
software, was used to minimize the force required to remove the speaker from the speaker 
stand. This determined the dimensions of b, x, and y. The lingo coding can be found in the 
appendix. The result can be seen in Table 7 below.  
 

Table 7: Dimensions of the Speaker Hooks 

F 
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B  X Y Force Applied  

0.2'' 0.10'' 0.12'' 4.41 N  

 
4.41 N is the force required to remove the speaker holder from the speaker stands.  
 
Next, a static simulation was completed on Solidworks to determine the Von Mises Stress. 
There are three principle stresses that can be calculated at any point acting in the x, y, z 
direction. The Von Mises Stress combines the three stresses into an equivalent stress, 
which can be compared to the yield strength of a material. Therefore, if the calculated Von 
Mises Stress is greater than the yield strength of the material, then the material is 
considered the failure mode of the design. The Von Mises stress calculated in SolidWorks 
was compared to the yield strength of the plastic ABS material determine through the 
Instron testing to understand if the snap hooks would break. A force of 4.41N was applied 
onto the snap hooks to simulate the speaker holder being removed from the female 
speaker stand. In figure 48 the purple arrows represent the 4.41N force applied, and the 
green arrows represent the fixtures around the snap hooks.  
 

 
 

Figure 38: Static Simulation in Solidworks 
 
The maximum Von Mises Stress calculated during the simulation is 1.72 MPa. The yield 
strength of the material in the Z orientation is 10.4 MPa. As a result, the snap hooks should 
not break if the speaker holder is removed from the snap hooks. The full static simulation 
can be found in the appendix.  
 
Using the dimensions determined from the Lingo software the speaker hooks were 
designed and added onto the female speaker stand piece. The speaker stands were oriented 
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in the Stratasys to allow the speaker hooks to be printed in the z orientation.  Figure 39 
below is one pair of the male and female speaker stands.  
 

 
Figure 39: Male and Female Speaker Stands 

8 PROJECT MANAGEMENT 

The project manager this year is Brittany Harwell. She is leading Tony Battu on the 
capstone project, which is assisted by Sofie Ganev, Dr. Lincoln Gray, and Dr. Robert Nagel. 
The following subsections describe how the team and project have been managed and will 
be managed this school year. The project plan, progress to date, future tasks, and 
deliverables expected will be outlined in this section.  

8.1 Team Management 
This capstone team has inherited the graduated capstone team’s project. This team has 
taken on an additional hearing test, will ready the system for shipping, and will create and 
ship two hearing test systems. Brittany Harwell, project manager, is in charge of delegating 
tasks and ensuring the project stays on schedule. She is also the lead programmer. Tony 
Battu, treasurer, is in charge of testing the system on subjects, testing both their hearing 
and ability to set up the system. He is also the lead hardware designer, analyzing and 
designing speaker stands for our system. Dr. Kesser, a surgeon at University of Virginia 
specializing in corrective atresia surgery is an external stakeholder in the project; the 
advisory team for the project includes:  Dr. Gray, a professor in CSD at JMU; and Dr. Nagel, 
an assistant professor at JMU in the engineering department. Dr. Gray handles 
communications with Dr. Kesser. The main technical skill required for this project is the 
ability to program in MATLAB. Brittany Harwell has acquired this skill from participation in 
a related internship. Tony Battu is learning the basics of programming such as algorithm 
development and structure.  Tony has also taken the required courses for IRB approval so 
that he can test human subjects. The written code is being stored in a single folder in 
Dropbox. Deliverables are also being stored in the Dropbox folder. When documents are 
being worked on in parts, they will be emailed back and forth between Tony, Brittany, Dr. 
Nagel, and anyone else collaborating on it. Once the parts are done, the compiled version 
will be stored in the team Dropbox folder. Email is the primary source of communication to 
plan meetings, organize deliverables, and communicate instructions and deadlines. Text 
messaging will be a secondary but more frequent mode of communication being used to 
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communicate reminders, upcoming deadlines, meeting times, and meeting locations. This 
past semester, the entire team has met on Monday at 10:00 AM in Health and Human 
Services Building, Room 2007. Any other meetings will be communicated at least 24 hours 
beforehand. A violation of this rule is allowed if all parties agree that the short notice is not 
inconvenient for them. All meetings use the following structure: determination of meeting 
end time; status updates from each person; discussion of items on agenda; and then 
distribution of tasks for the week. For more information on the team contract, see the 
appendix binder.  

8.2 Project Management 
The team is small and easier to manage, so the overall project plan is simple. For a more in 
depth project plan of the last semester (Spring 2014), see the appendix binder. The team 
has completed the software development (Speech in Noise Hearing Test (SINHT)) and 
validation. Validation falls into two categories: hearing test validation and hardware 
validation. Hearing test validation is the process of testing people and analyzing their data. 
If the person is bilateral, an earplug is placed in one ear and reinforced with a noise-
cancelling headphone. Then another trial is completed with the earplug in the other ear. 
We found a significant difference between unilateral and bilateral hearing. Hardware 
validation is the process of testing that people can set up the system. We found a 
repeatable, intuitive set up. Next, the test system components were purchased and test 
systems will be constructed once the laptops arrive. The existing system was deployed to 
UVA where patients can use it with a proctor. The hope is that patients will learn how to 
use it at UVA before and after surgery. Then, they can more easily use it when it is delivered 
to their house in the future. The data will be analyzed as received and finally the team 
submitted to Systems and Information Engineering Design Symposium (SIEDS’14) and will 
present at the conference in April. The entire project plan is shown in Table 8. 
 

Table 8: The Project Plan for the Junior Capstone Team 

Semester: Fall 2012 Fall 2012 Spring 2013 Fall 2013 Spring 2014 

Dates: 
October 1 - 
October 26 

October 29 - 
December 3 

January 14 - 
May 1 

August 29 - 
December 1  

January 19 - 
May 1 

Milestone: Planning 
Programming 
SINHT 

System Level 
Design 
(software), 
Testing and 
Refinement 
(hardware) 

Detail Level 
Design, 
Production 
Ramp up 

Testing and 
Refinement 
(entire system) 

Budget: $0  $0  
$500: SIEDS 
conference fees 

$450+grant 
money: more 
hardware 

$50+grant 
money: 
shipping costs 
and hardware 
purchases and 
SIEDs fees 

Tasks: 
Develop 
project plan 

Design 
software flow 
chart concepts 

Test design of 
set up and 
speaker stands 

Handle errors 
in code 

Ship system to 
UVA to test 
ease of set up, 
ease of use, and 
hearing 
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Write mission 
statement 

Program 
SINHT 

Refine speaker 
stands based 
on feedback 

Create beta 
prototype 

Use feedback 
to refine 
designs 

Research 
topic 

Collect 
customer 
needs, 
functions, and 
target 
specifications 

Ship entire 
system to Amy 
for design and 
hearing testing 

Test and refine 
design of beta 
prototype 

Construct new 
systems 

Research 
MATLAB 
functions 

Debug and test 
SINHT (code) 

Calibrate 
decibel levels 

Create more 
systems 

Ship system to 
a patient 

Acquire 
technical 
skills 

Test HINT on 
volunteers 

HINT data 
analysis 

Incorporate 
microphone 

Video 
monitoring 

 

Hardware 
concept 
development 

Apply for 4-VA 
grant   

 
 
The timeline for spring semester 2014 is shown in Table 9.  
 

Table 9: Remaining Project Tasks and Timeline (Nagel 2013) 

8.3 Future Work 
A system was sent to Dr. Kesser at UVA who provided feedback and initial data. From the 
feedback, the instruction manual was refined. A Frequently Asked Questions sheet was 
added to the instruction manual based on the Failure Modes and Effects Analysis. On-
screen instructions were improved to be dialog boxes so that the testing screen is visible 
while reading instructions. Since a system that requires a proctor was sent to UVA, the 
team since automated the system so that it does not require a proctor. This more 
autonomous system will be sent out to patients in May 2014. The final prototype was 
presented at the SIEDS’14 conference at UVA April 25, 2014 and it was presented at the 
MADE xChange on April 26, 2014. Future work includes adding more hearing tests. Since 
the software is modular, the addition of more hearing tests is facilitated. Research should 
be done to determine applicable binaural tests or the customer scope could be expanded to 
other tests.    

 
Task Description 

0
8

/1
3

 

0
9

/1
3

 

1
0

/1
3

 

1
1

/1
3

 

1
2

/1
3

 

0
1

/1
4

 

0
2

/1
4

 

0
3

/1
4

 

0
4

/1
4

 

0
5

/1
4

 

Complete Software Development           
Hearing Test Validation           

Hardware Validation           
Purchase Test System Components           
Construct Test Systems           
Deployment of Test Systems           
Analysis of Data           
Submit SIEDS’14 Conference Paper           
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9 CONCLUSIONS AND RECOMMENDATIONS 

It has been determined that the CRM can distinguish bilateral and unilateral listeners. The 
customers, Dr. Gray and Dr. Kesser, are encouraged by the progress made thus far and 
excited to start acquiring data with our system at UVA. Once the laptops arrive, we will be 
able to set them up and begin constructing new test systems. The new test systems will be 
the Beta Prototype. They will be sent to patients’ homes once the Beta Prototype is fully 
refined and ready. 
 
The Distributable Stereo Hearing Test project has been created to solve Dr. Kesser’s 
problem of having a miniscule amount of post-surgery data. This post-surgery data is 
necessary to understand how the patients use their new eardrums and to understand how 
they learn to use binaural processing or whether they learn it all. The capstone team’s main 
goal has been to provide a portable case that contains eight speakers, a microphone, a 
laptop, and other accessories. The portable case will be deployed to patient’s households. 
After compiling and analyzing the data, Dr. Kesser will become more informed about his 
operations and be able to advise his patients with more knowledge about what to expect 
after the atresia operation. In addition, Dr. Kesser may be able to improve his techniques of 
the surgery to provide his patients with better results. With the additional data, the atresia 
community will become more educated about the lasting effects of the surgery. Providing 
this information to doctors may help patients eventually have a higher quality of hearing in 
life. 
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