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Abstract 

To ensure program quality and meet accountability mandates, it is becoming increasingly 

important for educational institutions to show “value-added” for attending students. 

Value-added is often evidenced by some form of pre-post assessment, where a change in 

scores on a construct of interest is considered indicative of student growth. Although 

missing data is a common problem for these pre-post designs, missingness is rarely 

addressed and cases with missing data are often listwise deleted. The current study 

examined the mechanism underlying, and bias resulting from, missingness due to posttest 

nonattendance in a higher-education accountability testing context. Although data were 

missing for some students due to posttest nonattendance, these initially missing data were 

subsequently collected via makeup testing sessions, thus allowing for the empirical 

examination of the mechanism underlying the missingness and the biasing effects of the 

missingness. Parameter estimates and standard errors were compared between the 

“complete” (i.e., including makeup) data and a number of different missing data 

techniques. These comparisons were completed across varying percentages of 

missingness and across noncognitive (i.e., developmental) and cognitive (i.e., knowledge-

based) measures. For both noncognitive and cognitive measures, posttest data was found 

to be missing-not-at-random (MNAR), indicating that bias should occur when utilizing 

any missing data handling technique. As expected, the inclusion of auxiliary variables 

(i.e., variables related to missingness, the variable with missing values, or both) 

decreased the conditional relationship between the posttest noncognitive measure scores 

and posttest attendance (i.e., missingness); however, it increased the conditional 

relationship between posttest cognitive measure scores and posttest attendance. Thus, 
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utilizing advanced missing data handling with auxiliary variables resulted in reduced 

parameter bias and reduced standard error inflation for the noncognitive measure, but 

increased parameter bias for some parameters (posttest mean and pre-post mean change) 

for the cognitive measure. These effects became more exaggerated as missingness 

percentages increased. With respect to future research, additional examination of bias-

inducing effects when employing missing data techniques is needed. With respect to 

testing practice, assessment practitioners are advised to avoid missingness if possible 

through well-designed assessment methods, and to attempt to thoroughly understand the 

missingness mechanism when missingness is unavoidable.   



 

 

 

 

CHAPTER ONE 

Introduction 

“Student achievement, which is inextricably connected to institutional success, 

must be measured by institutions on a ‘value-added’ basis that takes into account 

students’ academic baseline when assessing their results.” (U.S. Department of 

Education, 2006, p. 4). 

 

It is becoming increasingly important for institutions of higher education to 

demonstrate the value for students in attending their institution. The cost of college has 

skyrocketed in recent decades. For example, the total inflation-adjusted cost of a four-

year, American public university degree has increased by over 250% since 1982 (College 

Board, 2012). Despite this increased cost, there is concern among policy makers that 

students are not receiving adequate education for the dollars they spend (U.S. Department 

of Education, 2006). Thus, accreditation agencies and other policy makers have 

demanded tangible evidence of the “value-added” to students attending a given 

institution. These institutions often attempt to demonstrate value-added by providing 

evidence of student growth over the course of the college career. Student growth can 

encompass positive changes in cognitive skills (e.g., improved scientific reasoning) or 

noncognitive traits (e.g., more constructive attitudes towards learning). To adequately 

demonstrate positive student growth, institutions must be able to accurately measure 

changes in these constructs over time. This accurate assessment of student growth can 

also aid in improving educational services. Programs that show evidence of positive 

student growth on a number of dimensions can be supported and expanded, whereas 
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programs that fail to nurture positive growth can be modified and improved. Thus, the 

accurate assessment of student growth is essential to meeting accountability demands 

while continually improving educational quality. 

Despite the importance of accurate measurement of student growth over time, 

there are a number of practical issues that may reduce the accuracy of student growth 

estimates. For example, imagine you are an assessment coordinator for a mid-sized four-

year university. University administrators want to ensure that student scientific reasoning 

skills are improving as a result of attending the university. To assess growth in scientific 

reasoning, you implement an assessment design where entering college students complete 

a scientific reasoning exam, and these same students are retested after completing the first 

three semesters of their coursework. If students’ average scientific reasoning test scores 

increased between the pretest and the posttest, this increase would provide some evidence 

of the effectiveness of university science programming. As the exam is primarily 

designed to measure program effectiveness, you decide the exam will be low-stakes for 

students. That is, performance on the exam will have no personal consequences for the 

individual student (e.g., test score not factored into grades or associated with graduation). 

After collecting data for a number of years, you notice that a subset of students who 

completed the pretest and three semesters of coursework did not complete the posttest 

upon request. Unfortunately, you have little information to infer the exact reason why 

students are not completing the posttest. Although these students may have been sick the 

day of the posttest, another possibility is these students simply did not want to participate 

in the posttest, and hence “skipped” the test. No matter the cause for the missing posttest 

scores, you wish to address this missing data issue in a manner that does not bias 
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estimates of growth in scientific reasoning skills for students completing the first three 

semesters of university coursework. 

The purpose of this study was to determine the best manner of handling missing 

data in an educational assessment context similar to the one described above. Prior to 

presenting the specific research questions for this study, I will review the issues 

surrounding missing data. As will be explained, the impact of missing data depends on 

the mechanism that resulted in the missingness. Unfortunately, this mechanism can only 

be empirically determined by knowing the values of the missing data. Although it is 

generally recommended to attempt to recover missing data by tracking and contacting 

missing participants (Glynn, Laird, & Rubin, 1993; Graham & Donaldson, 1993), 

researchers are often unable to do so due to budgetary or practical issues. Thus, the first 

goal of this study was to determine the exact mechanism underlying missingness due to 

posttest nonattendance by actually securing initially missing posttest scores. As Graham 

(2009) noted, “With a few well-placed studies of this sort, we would be in an excellent 

position to establish true bias from using [a variety of missing data] methods” (p. 571). 

Thus, after establishing the missing data mechanism, the second goal of this study was to 

determine the amount of bias introduced by various missing data handling techniques. 

More specifically, because the initially missing values were obtained via follow-up 

testing, the results using the complete dataset (i.e., including the initially missing scores) 

can be compared to the results obtained using various missing data handling techniques 

(i.e., excluding the initially missing scores). The manner in which these results can 

inform best practices for handling this type of missing data in future educational 

assessment will also be discussed. 
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Missingness in Educational Accountability Data 

 Missing data scenarios involving attrition over time are familiar to both higher 

education and K-12 assessment practitioners. For example, K-12 student participation 

rates for some National Assessment of Educational Progress (NAEP) assessments can be 

lower than 50 percent at later grade levels (i.e., 12
th

 grade; Chromy, 2005). Moreover, the 

source of missingness is rarely investigated or reported in educational testing contexts 

(Amrein-Beardsley, 2008; Rubin, Stuart, & Zanutto, 2004). Rather, cases with missing 

data are often simply excluded from analysis. 

Unfortunately, missing data can constitute a significant challenge to accurate 

inferences regarding student development and program effectiveness. Particularly, the 

common practice of excluding cases from analysis via pairwise or listwise deletion can 

introduce significant bias to parameter estimates and inflate standard errors. Pairwise 

deletion involves excluding cases from a specific analysis when data are missing for any 

variable involved in the given analysis. Listwise deletion involves excluding cases with 

any missing data from all analyses, regardless of whether the variables with missing data 

are involved in a particular analysis. As noted by Wilkinson and the Task Force on 

Statistical inference (1999), “[Listwise and pairwise deletion] are among the worst 

methods available for practical applications” (p. 598). In the example above, suppose 

only students with high scientific reasoning ability after three semesters complied with 

the request to complete the posttest. That is, students with low scientific reasoning ability 

avoided the posttest and account for the majority of the missingness at posttest. In this 

case, there is a reason for or cause of missingness: low scientific reasoning ability. Thus, 

missingness (attending vs. skipping the posttest) depends on the posttest scores (including 
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both the observed posttest scores and the posttest scores that would have been observed 

from the students who initially skipped the posttest). If the low-ability students’ data were 

not included in the analysis, the growth estimate associated with scientific reasoning 

skills would likely be upwardly biased, primarily representing change in scores for the 

high-ability students. Additionally, standard errors would be inflated if the number of 

students skipping the posttest was large. In an alternative scenario, imagine the students 

missing at posttest were ill at the time of posttesting, and thus were no different with 

respect to scientific reasoning ability from the students for whom posttest data were 

observed. In this case, the missingness is random with respect to scientific reasoning 

scores, and the estimates of pre-post change may not be biased if the ill students were 

excluded from the analysis. However, standard errors would still be inflated if the 

number of ill students was large, due to the reduced sample size. 

As highlighted in this hypothetical example, the reason, or mechanism, 

underlying the missingness can have a profound effect on the magnitude of the growth 

estimate. Thus, the mechanism underlying missingness impacts the appropriateness of 

different methods for analyzing the change in scores over time. If the missingness is truly 

random, traditional methods of handling missing data (e.g., listwise and pairwise 

deletion) will provide accurate estimates of change, although standard errors may be 

inflated. However, if the missingness is not random, estimates of change can be 

significantly biased if an inappropriate technique for handling the missingness (e.g., 

listwise and pairwise deletion) is employed. Thus, it is important to understand the 

different mechanisms that can result in missing data, as the missing data mechanism 

dictates the acceptable approach to handling the missingness. 
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Missing Data Mechanisms 

Fortunately, researchers have investigated the conditions under which various 

parameter estimates may be biased due to missing data (e.g., Enders, 2010; Schafer & 

Graham, 2002). More specifically, Rubin (1976) developed a classification scheme for 

missing data mechanisms that is useful when considering how to appropriately account 

for missingness. Missing data mechanisms can be considered missing completely at 

random (MCAR), missing at random (MAR), or missing not at random (MNAR). Each 

missing data mechanism will be briefly reviewed below, followed by a description of 

how one should address each type of missingness during data analysis. A more detailed 

review of different data analytic techniques appropriate under these mechanisms is 

provided in Chapter 2. After outlining the missing data mechanisms below, the issue of 

missing posttest scores when assessing “value-added” for higher education accountability 

mandates will be further discussed. That is, plausible missing data mechanisms 

underlying missing posttest scores and the implications of those mechanisms will be 

presented. 

What determines the missing data mechanism? Missing data mechanisms are 

not characteristics of the dataset. Rather, the mechanisms are assumptions associated with 

a specific analysis (Baraldi & Enders, 2012; Rubin, 1976). The mechanism underlying 

missingness is determined by the relationships between the missingness (R), the variable 

with missing data itself (Y), and other measured variables in the dataset (see Table 1). A 

missingness variable, R, can be computed by assigning a value of 0 to a case if Y is 

missing and a value of 1 if Y is observed. As is outlined below, the missing data 

mechanism is determined by whether R is related to the variable with missing data itself 
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(Y), other measured variables in the dataset (X), and whether R is related to Y conditional 

on the other measured variables in the dataset (X). 

 Missing completely at random (MCAR). The missing completely at random 

(MCAR) assumption is satisfied when missingness (R) on variable Y is unrelated to all 

measured variables in the dataset (X), as well as to Y itself (Enders, 2010). This 

mechanism is displayed in Figure 1a. For instance, suppose that scientific reasoning 

ability was measured for all incoming college students (i.e., pretest), but only a random 

sample of students were administered the exam three semesters later (i.e., posttest) due to 

cost concerns (e.g., pencils, paper, proctors). In this case, R would be completely random, 

by design, and would therefore be unrelated to both Y and all other variables in the 

dataset. This design is known as a planned missingness design, and is one of the most 

common missing data scenarios that result in the MCAR assumption being met. 

However, it is also possible to meet the MCAR assumption when missingness is 

unplanned. For example, if some students miss posttest due to illness, it is likely that 

missingness (R) would be unrelated to any measured variables in the dataset, and also 

unrelated to Y, resulting in the missingness meeting the MCAR assumption. 

 Missing at random (MAR). The missing at random (MAR) assumption is 

satisfied when missingness (R) on variable Y is unrelated to Y itself after controlling for 

the other measured variables included in the analysis (Heitjan & Basu, 1996). That is, R 

may be bivariately related to Y, but this relationship is spurious and does not remain 

significant after controlling for other variables included in the analysis. Thus, the MAR 

assumption is more relaxed than the MCAR assumption. This mechanism is displayed in 

Figure 1b. 
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Unlike MCAR, the MAR mechanism indicates there is a variable or set of 

variables that explains missingness. For example, suppose that students who scored 

below a certain threshold on the scientific reasoning pretest were expelled from the 

university. The remaining students then completed the scientific reasoning posttest. If the 

expulsions were the only reason for missing posttest scores, missingness at posttest (R) 

could be completely predicted from (i.e., explained by) pretest scores (X). Although 

missingness (R) is likely related to the hypothetical complete set of posttest scores (Y) 

(i.e., including posttest scores that were observed and those that would have been 

obtained, but were instead missing), this relationship is completely explained by student 

pretest scores. Thus, after controlling for pretest scientific reasoning scores (X), 

missingness (R) would be unrelated to posttest scores (Y), thus meeting the MAR 

assumption. Note that measured variables in the researcher’s dataset do not need to 

completely predict missingness for the mechanism to be considered MAR. Rather, 

measured variables only need to predict the missingness that is related to the variable 

with missing values (Y). For example, suppose that, in addition to expelling students with 

low pretest scores, a number of students also missed posttest due to reasons unrelated to 

their scientific reasoning scores (e.g., some students were sick). In this case, pretest 

scores (X) would not perfectly correlate with missingness variable R. However, pretest 

scores would account for the portion of R that is associated with posttest scores (Y), and 

thus the posttest data should be considered MAR, as R is unrelated to Y after controlling 

for pretest scores (Baraldi & Enders, 2012). 

Missing not at random (MNAR). The MNAR mechanism occurs when data are 

missing in a manner that is related to the variable with missing data itself after controlling 



9 

 

 

for other variables in the dataset. For example, suppose that pretest scores were not 

collected or not included in the data analysis in the previous expulsion scenario. 

Referring to Figure 1b, the pretest score (X) would not be included in the figure. In this 

case, missingness (R) and posttest score (Y) would be significantly related (i.e., the 

dashed curve arrow representing the correlation between R and Y in Figure 1b would no 

longer be approximately zero, but would be some non-negligible value).  

MNAR data can also result if the other measured variables included in the 

analysis (X) do not fully explain the relationship between missingness (R) and posttest 

score (Y), as is displayed in Figure 1c. For example, in addition to missingness being due 

to low pretest scores (X), suppose that some students fail to attend the scientific reasoning 

posttest due to low academic self-efficacy. These students would likely score lower on 

the scientific reasoning posttest, so missingness (R) is related to posttest scores (Y). 

Pretest score (X) does not completely explain the relationship between missingness (R) 

and posttest score (Y). That is, R remains related to Y, even after controlling for other 

measured variables in the dataset, thus reflecting a MNAR mechanism. In Figure 1c, the 

curved arrow connecting R and Y represents a non-negligible relationship between 

missingness (R) and posttest scores (Y), even after controlling for pretest (X). In this 

example, the curved arrow represents the relationship between missingness (R) and 

posttest scores (Y) due to their shared relationship with self-efficacy. If self-efficacy was 

measured and included in the analysis, one could satisfy the MAR assumption by 

accounting for the relationship between missingness and posttest scores; that is, 

missingness would no longer be related to posttest scores after partialling out the variance 

due to self-efficacy. Thus, this example highlights that missing data mechanisms are not a 
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characteristic of the dataset, but rather are assumptions associated with the specific 

analysis being conducted (Baraldi & Enders, 2012).   

 Determining the missing data mechanism. Further complicating researchers’ 

and assessment practitioners’ attempt to account for missing data is it is usually 

impossible to determine the exact mechanism underlying missingness (Table 1). Recall 

the missing data mechanism is determined by whether missingness (R) is related to other 

measured variables in the dataset, and whether R is related to the variable with missing 

values (Y), conditional on other measured variables (Xs) included in the analysis. The 

relationship between R and all other measured variables can be directly estimated and 

evaluated for statistical significance. If R relates significantly to any measured variable 

(X), the MCAR assumption is falsified, and the missingness mechanism must be 

considered either MAR (if R is unrelated to Y after controlling for X variables) or MNAR 

(if R remains related to Y after controlling for X variables). By contrast, if R does not 

significantly relate to any measured variable, then no measured variable can moderate the 

relationship between R and Y. Thus, the missingness mechanism data must be considered 

either be MCAR (if R is unrelated to Y) or MNAR (if R is related to Y).  

However, Y will be missing for all cases where R = 0. Consequently, the 

relationship between R and Y cannot be empirically estimated, as this would require the 

missing scores. Thus, even if R is found to be unrelated to other measured variables, there 

is no way to empirically determine if R is related to Y. Consequently, the MCAR 

mechanism is empirically indistinguishable from the MNAR mechanism. Similarly, if R 

is found to relate to other measured variables, there is no way to determine if R is related 

to Y after controlling for the other measured variables in the dataset. In this case, the 
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MAR mechanism is empirically indistinguishable from the MNAR mechanism. Thus, 

unless missingness is carefully planned, the MNAR mechanism is always a possibility 

that cannot be empirically falsified. 

 Although the exact missing data mechanism can rarely be empirically determined, 

researchers and practitioners may be able to infer the mechanism. For example, 

researchers and practitioners may assume MCAR if a planned missingness design was 

properly implemented and all missingness was a result of that design. For unplanned 

missingness, researchers might locate and interview a few respondents that had missing 

data and determine their reasons for missingness (Enders & Gottschall, 2011). If the 

reasons seem to be related to the missing variable values themselves, and unrelated to 

other measured variables in the dataset, a MNAR mechanism is likely to underlie the 

data. If the reasons for missingness seem to be unrelated to any variables of interest (e.g., 

illness), then a MCAR mechanism may be plausible.  

General Recommendations for Handling Missing Data 

 There are two general approaches to addressing missing data issues. The first 

approach is to avoid the problem of missingness entirely by observing data that would 

have otherwise been missing. This approach can be done preventatively by adopting a 

research design that limits attrition. Examples of attrition prevention strategies include 

decreasing participant burden, increasing participant incentives, increasing contact with 

participants, or changing the timing of measurement occasions in longitudinal designs 

(McKnight, McKnight, Sidani, & Figueredo, 2007). Additionally, multiple researchers 

recommend maintaining accurate and complete participant contact information to track 

and contact participants who have not provided data (Lavori, 1992; McKnight et al., 
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2007). Alternative arrangements can be made to accommodate participant schedules and 

recover data that would have otherwise been missing (Glynn et al., 1993; Graham & 

Donaldson, 1993). In an educational testing environment, this strategy may include 

having multiple testing sessions to allow students to attend different testing times. In the 

current study, the initially missing posttest scores were recovered via a makeup testing 

session. Thus, complete data were obtained and the exact missing data mechanism can be 

empirically determined. 

Unfortunately, the prevention or recovery of missing data may not always be 

possible. Thus, the second approach to addressing missing data is to incorporate the 

missingness into data analysis. Most missing data researchers recommend an inclusive 

data analysis strategy to deal appropriately with missing data, regardless of the 

mechanism of missingness (Collins, Schafer, & Kam, 2001; Enders, 2010; Rubin, 1996; 

Schafer, 1997; Schafer & Graham, 2002). This strategy involves measuring a number of 

variables that are hypothesized to relate to either missingness (R) or the variable for 

which missingness is present (Y). These variables (Xs) are then included as auxiliary 

variables in the analysis of the data using multiple imputation (MI) or full information 

maximum likelihood (FIML) estimation. Referring to Figure 1b, an auxiliary variable (X) 

was incorporated into the analysis of Y to address missingness. Although the specifics of 

MI and FIML are different, both techniques utilize the relationships between R, Y, and 

the auxiliary variables (Xs) to better estimate parameters involving Y. The auxiliary 

variables may not be of substantive interest to the researcher, but are rather used to aid in 

estimation of parameters associated with the variable with missingness (i.e., used to aid in 

the estimation of parameters that are of substantive interest).  
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Utilizing an inclusive data analysis strategy can allow data that should be 

considered MNAR to meet the MAR assumption (Collins et al., 2001; Savalei & Bentler, 

2009). Referring to Figure 1b, incorporating auxiliary variables (X) that are related to 

missingness (R) and the variable with missing values (Y) increases the likelihood that 

missingness and the variable with missing values will not be significantly related after 

controlling for the auxiliary variables (X). Thus, a MNAR mechanism can be transformed 

into an MAR mechanism with the inclusion of auxiliary variables. In this manner, 

adopting an inclusive data analysis strategy reduces the likelihood that a MNAR 

mechanism underlies the data and increases the likelihood that the missingness will meet 

the MAR assumption. 

The utilization of an inclusive data analysis strategy, combined with MI or FIML 

estimation, appears to be the best analysis alternative under the majority of missing data 

scenarios. Under MAR conditions, the inclusive data analysis strategy produces more 

accurate parameter estimates than excluding auxiliary variables (Collins et al., 2001). 

Further, the strategy reduces standard errors under both MAR and MCAR conditions. 

Unfortunately, the inclusive data analysis strategy still results in biased parameter 

estimates under a MNAR mechanism. However, MNAR-based methods often require 

strong assumptions regarding the missingness. If these assumptions are not met, the 

results of the MNAR-based analyses can lead to worse estimates than the MAR-based 

inclusive data analysis approach (Demirtas & Schafer, 2003). Thus, researchers have 

argued that MNAR-based strategies should not be routinely used (Enders, 2010; Schafer 

& Graham, 2002). Given 1) there is currently no practical method to account for MNAR 

data statistically in most missing data situations, 2) an inclusive data analysis strategy 
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limits parameter bias and standard errors under MAR and MCAR conditions, and 3) in 

the typical research or testing setting one never knows the exact missing data mechanism, 

this inclusive data analysis approach to handling missing data is usually recommended if 

missing values cannot be recovered. 

Missing Data Handling Practices in Educational Assessment 

 Given an inclusive data analysis strategy appears to be the best way to handle 

missingness in the majority of missing data scenarios, one would hope this strategy is 

commonly used when examining student development for institutional accountability 

purposes. Unfortunately, institutions often use listwise or pairwise deletion when faced 

with missing data. For example, many value-added statistical models in K-12 

accountability testing are applied to only complete cases, thus listwise deleting any cases 

with missing data (Amrein-Beardsley, 2008; Rubin et al., 2004). “Given the large 

proportion of missing data in many achievement databases and known differences 

between students with complete and incomplete test data, it is possible that estimates may 

be highly sensitive to this (or other) assumptions about missing data” (McCaffrey, 

Lockwood, Koretz, Louis, & Hamilton, 2004, p. 97). Given that students with missing 

data on many K-12 assessments tend to be low-performing (Amrein-Beardsley, 2008), a 

MCAR mechanism, which listwise deletion assumes, is extremely unlikely.  

Higher Education Accountability Data Examined in the Current Study 

An MCAR mechanism was similarly unlikely to underlie the missingness in the 

higher education accountability data being examined in the current study. At this mid-

sized mid-Atlantic public university, students are measured at two time points to assess 

the effectiveness of general education and student affairs programming. All students are 
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tested initially as incoming first-year students and again after they have accumulated 

between 45 and 70 credit hours. All university classes are cancelled for these 

“Assessment Days.” Students are randomly assigned to rooms based on their university-

assigned student identification numbers and receive different testing configurations based 

on room assignment. These testing configurations include both cognitive (i.e., 

knowledge-based) and noncognitive (i.e., attitude-based) assessments. In this manner, the 

assessments utilize a planned missingness design; not all students complete every 

instrument, but the random assignment of students to different testing configurations 

ensures that the missingness due to not receiving an instrument is completely random. 

Although the students at the second testing session (i.e., posttest) completed either three 

or five semesters of coursework at the university, only students completing three 

semesters of coursework are of interest in computing student growth estimates. That is, 

university administrators are chiefly interested in the change in cognitive and 

noncognitive constructs experienced by students completing between 45 and 70 credit 

hours within the first three semesters of university attendance. Thus, test configurations 

are matched between the first-year student assessment sessions held during a given Fall 

semester (i.e., pretest) and the assessment sessions held during Spring three semesters 

later (i.e., posttest). The university attempts to assign students to the same testing room 

for their second testing session, so that pre-post change can be examined on the 

constructs of interest. 

Although students are required to attend their assigned Assessment Day testing 

sessions, there are no personal consequences tied to individual performance on the tests. 

That is, the testing is low stakes for students. Every year, there are a number of students 
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who fail to attend their assigned assessment session. Given that the first (i.e., pretest) 

Assessment Day is integrated into the university orientation program, nonattendance is 

typically minimal at pretest and much more common at the second (i.e., posttest) 

Assessment Day. To compel nonattending students to participate, the university places 

registration holds on the students’ accounts. This academic hold prevents students from 

registering for classes until they attend a makeup assessment session. These sessions are 

held on a Friday evening or Saturday morning. Via these makeup sessions, the university 

is able to eventually test every student, aligning with the recommendations to avoid 

missing data issues by recovering data from students who initially did not provide data 

(McKnight et al., 2007). However, the university currently does not include the makeup 

data when computing value-added estimates. Specifically, the value-added estimates are 

computed using only those students who provided scores at both pretest and posttest 

Assessment Day testing sessions. Thus, although the university is subsequently gathering 

the “missing data” via the makeup testing sessions, the data is not included in analyses, 

potentially resulting in biased estimates and inflated standard errors.  

Fortunately, this data collection scheme (i.e., posttest data collected from students 

who were initially missing at posttest) allows for the investigation of missing data issues 

in accountability testing. In addition to uncovering the missing data mechanism, the 

parameter estimates and standard errors obtained from the complete dataset (i.e., 

including posttest data obtained from makeup sessions) can be compared to parameter 

estimates and standard errors obtained when treating makeup data as missing and 

utilizing different missing data analysis techniques. The different datasets available are 

displayed in Figure 2. Currently, the scores of students with makeup posttest data are 
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listwise deleted from analyses (Dataset 1). Under a MCAR mechanism, excluding the 

makeup students from analysis should result in unbiased average student growth 

estimates. In this case, the growth estimates obtained excluding makeup students should 

be comparable to the growth estimates obtained from the complete dataset that includes 

makeup students (Dataset 2). However, even under a MCAR mechanism, standard errors 

may be inflated when excluding the makeup students due to the decreased sample size 

(note how analyses of Dataset 1 are based on four students, whereas analyses of Dataset 2 

are based on six students). Additionally, under a MAR mechanism, excluding the makeup 

students from analyses would produce biased growth estimates. Instead of listwise 

deleting students who attended posttest makeup testing, an alternative method of handling 

this “missing” posttest data would be to utilize MI or FIML techniques (Dataset 3; 

analyses would be based on all six students even though Students 5 and 6 don’t have 

posttest scores). Under a MAR mechanism, adopting an inclusive analysis strategy 

combined with MI or FIML techniques should result in growth estimates that are closer 

to those obtained from the complete data (Dataset 2) than simply deleting students with 

missing posttest values (Dataset 1). Finally, under a MNAR mechanism, both listwise 

deletion (Dataset 1) and the inclusive analysis strategy (Dataset 3) would result in biased 

estimates of student growth, but the inclusive analysis strategy should result in decreased 

bias and standard errors relative to listwise deletion. 

 Possible missing data mechanisms underlying Assessment Day 

nonattendance. It is important to understand, to the extent possible, the reasons why 

students do not attend the second Assessment Day (i.e., posttest), and thus must attend a 

makeup session. That is, understanding the correlates of non-attendance (R) can help 
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identify whether the missing posttest data (Y) should be considered MCAR, MAR, or 

MNAR. Understanding the missing data mechanism would be valuable in situations 

when the posttest data cannot be collected via makeup testing, or if collected but not 

included in data analyses (as is current practice). In short, establishing the missing data 

mechanism underlying the initially missing data (i.e., makeup data) can help inform the 

best way to handle the data.  

Previous research indicates that a MCAR mechanism is implausible. Makeup 

examinees have been found to be qualitatively different from examinees who attend 

Assessment Day. Students who skip assessment day are more likely to be male and less 

motivated to perform well on assessments (Swerdzewski, Harmes, & Finney, 2009). 

Importantly, students who skip Assessment Day score significantly lower on cognitive 

tests (Swerdzewski et al., 2009). That is, there is evidence that missingness (R) is related 

to posttest scores on cognitive tests (Y), ruling out the MCAR mechanism. The extent to 

which the mechanism is considered MAR or MNAR would depend on the auxiliary 

variables (X) measured in a given year (e.g., gender), whether these variables are 

included in the data analysis, and the extent to which these variables moderate the 

relationship between missingness (R) and posttest scores (Y). 

Given the makeup posttest data are unlikely to meet the MCAR assumption, the 

current method of analyzing accountability data at this university is problematic. That is, 

the listwise-deletion used by university assessment specialists to handle student makeup 

data is only appropriate under MCAR conditions. Thus, this method may be introducing 

bias into student growth estimates. However, both the specific missing data mechanism 
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(i.e., MAR or MNAR) and the degree of bias introduced by excluding makeup student 

data from analyses are unclear.  

Purpose of the Current Study 

 The current study aimed to uncover 1) the missing data mechanism (i.e., MCAR, 

MAR, or MNAR) associated with low-stakes testing attrition and 2) the impact of 

employing different missing data techniques on value-added estimates and their 

associated significance tests. The assessment data used for the current study were unique 

in that data were recovered from students who were initially missing at posttest. Given 

that the “missing” values are known, the missing data mechanism (i.e., MCAR, MAR, or 

MNAR) can be empirically identified. That is, “missingness” (i.e., R, whether the posttest 

score was collected during Assessment Day or during a makeup session) can be 

correlated with the values of the “missing” posttest data (Y), both before and after 

controlling for the other measured variables in the dataset (i.e., auxiliary variables). If this 

R-Y relationship is found to be significant without auxiliary variables (indicating an 

MNAR mechanism), but non-significant when including auxiliary variables (indicating a 

MAR mechanism), this would indicate that the MAR assumption would only be met 

when auxiliary variables are included in analyses. Interestingly, if the data are found to 

be MNAR, the extent to which the data can be considered MNAR can also be examined. 

That is, missingness (R) may be statistically significantly related to the missing data 

values (Y) after controlling for auxiliary variables, but only weakly. In this case, the 

MNAR mechanism would be expected to bias results less drastically when utilizing 

auxiliary variables in a MAR-based analysis (e.g., MI or FIML) than if missingness (R) 
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was strongly related to the missing data values (Y) after controlling for auxiliary 

variables. 

After identifying the missing data mechanism, the value-added estimates obtained 

using the complete data (Dataset 2) were compared to value-added estimates obtained if 

students with missing data are excluded (Dataset 1) and value-added estimates if posttest 

data from make-up examinees are treated as missing (Dataset 3) using different missing 

data handling techniques. The differences between these results can inform best practices 

for assessment practitioners encountering this form of missingness in the future. For 

instance, if the parameter estimates and standard errors obtained by excluding students 

with makeup posttest data (Dataset 1), or by utilizing any of the modern missing data 

handling techniques (analyzing Dataset 3 using MI or FIML) are comparable to those 

obtained by analyzing the complete data (Dataset 2), this may indicate that the current 

practice of excluding students with makeup posttest data is acceptable and does not result 

in significant bias or loss of power. If utilizing the missing data handling techniques 

(analyzing Dataset 3 using MI or FIML) result in parameter estimates and standard errors 

that are comparable to those obtained by analyzing the complete data (Dataset 2), but 

excluding the makeup students (Dataset 1) results in bias or loss of power, this would 

indicate that future assessments should utilize MI or FIML. Finally, if excluding students 

with makeup posttest data (Dataset 1) and utilizing modern missing data handling 

techniques to account for posttest missingness (Dataset 3) both result in substantial bias 

or loss of power compared to analyzing the complete data (Dataset 2), this would indicate 

utilizing the makeup assessment data is essential to obtaining accurate assessment results. 

Thus, the results of this study can provide valuable guidance for assessment practice.    
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This research design has a number of advantages over previous simulation and 

applied missing data analysis studies. Unlike simulated data, the data used in this study 

were collected in a real missing data scenario. Unlike typical applied missing data 

analysis studies, the values of the “missing” data are known (due to recovering the 

initially missing data via a makeup session). Thus, the true relationship between 

missingness (R) and the variable with initially missing values (Y) could be estimated, and 

the missing data mechanism in an operational testing program could be empirically 

determined. After establishing the missing data mechanism, the results obtained utilizing 

various missing data handling techniques could be compared to the results obtained using 

the complete dataset. Through this comparison, the extent of bias introduced by 

missingness could be empirically assessed in a real data situation, which is valuable to 

the study of attrition in low-stakes educational testing settings. In this manner, addressing 

the research questions outlined below facilitates a better understanding of the causes and 

effects of missingness on pre-post change estimates obtained from educational 

accountability data, and informs best practices on the handling of such missingness. The 

specific implications associated with each research question are presented below.  

Research Question 1: Examining posttest response validity. To what extent 

can the posttest scores provided by students in the makeup testing sessions be considered 

valid? Before investigating the mechanism underlying posttest nonattendance, it was 

important to determine the extent to which the students attending the makeup testing 

session at posttest provided valid responses. That is, students providing data at makeup 

testing report putting forth less test-taking effort than students attending the assigned 

Assessment Day session (Swerdzewski et al., 2009), and could thus be providing invalid 
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responses at posttest by responding randomly. In this case, student growth estimates 

obtained by including the makeup students in the analysis could be considered biased, as 

the estimates would not be reflective of the true growth in student knowledge, skills, or 

abilities. If makeup students are responding randomly at posttest, the prediction of 

posttest scores from pretest scores should be different for makeup students when 

compared to students attending Assessment Day at posttest. That is, when regressing 

posttest scores on pretest scores, the intercept, slope, or unexplained posttest variance 

would differ between Assessment Day and makeup students if the students attending a 

makeup session did not provide valid posttest responses. More specifically, random 

responding by makeup students may reduce the pretest-posttest slope or increase the 

unexplained variance in posttest scores. Additionally, less posttest effort by makeup 

students may also reduce the average posttest score, resulting in a reduced intercept for 

makeup students when compared to Assessment Day students. These possibilities were 

investigated to ensure that parameters obtained utilizing the complete (i.e., including 

posttest makeup) dataset were accurate reflections of overall student growth, and were 

not biased by the inclusion of makeup student data. 

Research question 2: Examining the missing data mechanism. What missing 

data mechanism underlies the initially missing posttest data (i.e., posttest makeup data)? 

“Missingness” in this study refers to whether a student attended their assigned assessment 

session at posttest, or if they were instead compelled to attend a makeup assessment 

session. This dichotomous “missingness” variable could be: 1) unrelated to other 

measured (i.e., auxiliary) variables, as well as unrelated to posttest scores (i.e., a MCAR 

mechanism); 2) related to other measured variables, but unrelated to posttest scores after 
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controlling for the other measured variables (i.e., a MAR mechanism); or 3) related to 

posttest scores after controlling for all other measured variables (i.e., a MNAR 

mechanism). Given that “missing” posttest scores were obtained from students 

completing a makeup assessment at posttest, the missing data mechanism could be 

empirically determined, which would be impossible in most applied missing data 

scenarios. 

As mentioned previously, research has found that Assessment Day non-

attendance is related to a number of student attributes (Swerdzewski et al., 2009; 

Zilberberg, 2013). Thus, it appears that assuming a MCAR mechanism is unjustified. 

However, this study further investigated whether the makeup data, if treated as missing, 

should be considered MAR or MNAR. That is, MAR and MNAR mechanisms are 

distinguished by whether “missingness” (i.e., whether a student attended Assessment Day 

or a makeup session at posttest) is related to posttest outcome scores (e.g., scientific 

reasoning), after controlling for other measured variables included in the analysis. 

Determining the precise mechanism underlying missingness has implications for 

higher education accountability testing practice. That is, the current method of listwise 

deleting the scores of makeup students would only be appropriate if a MCAR mechanism 

is found to underlie the missingness. However, if a MAR mechanism were identified, the 

university should abandon listwise deletion and utilize MI or FIML with auxiliary 

variables to more accurately estimate average student growth. Additionally, the ability to 

investigate the actual missing data mechanism allows for the identification of salient 

auxiliary variables that should be used in the estimation of student growth estimates in 

the future. If a MNAR mechanism were found to underlie the data, then the makeup data 
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should be included when computing average student growth estimates. That is, the other 

variables measured as a part of university assessment cannot account for the effects of 

excluding makeup students’ data from value-added estimates. Thus, these students’ 

posttest scores must not only be gathered but also included in data analysis to accurately 

measure student growth. In addition to informing practice at this particular university, 

other testing programs utilizing a low-stakes, pre-post assessment design would likely 

have missingness of the same nature (e.g., NAEP data, Chromy, 2005). Thus, the results 

of this study may provide guidance regarding how missing data should be handled at 

other institutions with similar missing data issues. 

 Research question 3: Comparing missing data handling techniques. How do 

the estimates of growth differ across the methods of handling the missing data, and how 

do these results compare to those obtained from combining the Assessment Day and 

makeup posttest data to create the complete dataset? That is, posttest data were obtained 

from students during makeup testing sessions that would have been missing if those 

makeup sessions were not conducted. Thus, the results obtained from the complete 

dataset (including makeup student posttest data; Dataset 2 in Figure 2) can be compared 

to results that would be obtained if the makeup student posttest data are treated as 

missing (Datasets 1 and 3 in Figure 2) using different missing data handling techniques. 

 To answer this question, multiple missing data techniques were utilized, and the 

results were compared to those obtained from the complete dataset. Mean pre-post 

growth estimates, in addition to mean posttest scores, the variance of the posttest scores, 

and the covariance of the pretest and posttest scores, were obtained from eight methods: 
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1) Utilizing the complete dataset, which includes makeup posttest data (i.e., 

including those who were initially missing by recovering their scores via 

“makeup” testing; Dataset 2 in Figure 2) 

2) Utilizing listwise deletion, excluding examinees that attended makeup testing 

sessions at post-test (Dataset 1 in Figure 2) 

3) Treating makeup posttest data as missing and utilizing multiple imputation (MI) 

without auxiliary variables (Dataset 3 in Figure 2)  

4) Treating makeup posttest data as missing and utilizing MI with university 

database and pretest auxiliary variables (Dataset 3 in Figure 2) 

5) Treating makeup posttest data as missing and utilizing MI with all auxiliary 

variables (Dataset 3 in Figure 2) 

6) Treating makeup posttest data as missing and utilizing full information maximum 

likelihood (FIML) without auxiliary variables (Dataset 3 in Figure 2) 

7) Treating makeup posttest data as missing and utilizing FIML with university 

database and pretest auxiliary variables (Dataset 3 in Figure 2) 

8) Treating makeup posttest data as missing and utilizing FIML with all auxiliary 

variables (Dataset 3 in Figure 2) 

Note that Method 1 is the most desirable assessment design, as complete data is gathered 

and used in the estimation of pre-post growth. Method 2 is currently being used by the 

university, but is generally not recommended by missing data experts (Enders, 2010; 

Wilkinson & Task Force, 1999). Methods 3 - 8 exclude posttest makeup data, but pretest 

data are included and aid in the estimation of growth estimates. Importantly, MI and 

FIML analyses were conducted multiple times with different sets of auxiliary variables. 
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As mentioned previously, recommended auxiliary variables are variables that are 

associated with missingness, values of the missing variable itself, or both (Enders, 2010). 

Thus, any variable associated with Assessment Day posttest attendance or posttest scores 

could be considered a potential auxiliary variable. 

The extent to which the inclusion of auxiliary variables reduces bias and standard 

errors depends on the nature of the relationships between the auxiliary variables, 

missingness, and posttest scores. Table 2 summarizes the effect of excluding auxiliary 

variables under particular conditions, as determined by Collins and colleagues (2001). In 

brief, including an auxiliary variable (X) that is unrelated to posttest scores (Y) should not 

affect parameters or standard errors associated with posttest mean, posttest variance, 

pretest-posttest covariance, and pre-post mean difference. Including a variable (X) that is 

related to posttest scores (Y) but unrelated to missingness (R) should result in unaffected 

parameter estimates, but reduced standard errors. Including an auxiliary variable that is 

related to posttest scores and linearly related to missingness should result in reduced bias 

in parameter estimates and reduced standard errors. Finally, including an auxiliary 

variable that is related to posttest scores and nonlinearly related to missingness should 

result in reduced bias in posttest variance and pretest-posttest covariance estimates, as 

well as reduced standard errors, but unaffected posttest mean and pre-post mean 

difference estimates. These effects should be more pronounced for auxiliary variables 

that are more strongly related to posttest scores. MI and FIML analyses without auxiliary 

variables still included pretest scores in the estimation of pre-post growth, and thus 

should produce more accurate growth estimates than listwise deletion under a MAR 
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mechanism.  The effect of including different types of auxiliary variables on parameter 

estimates and standard errors is discussed in more detail in Chapter 2. 

Why compare the results produced when employing different sets of auxiliary 

variables? This comparison should indicate the utility of including different sets of 

auxiliary variables to obtain more accurate growth estimates. That is, assessment 

practitioners may not have access to a wealth of student information to utilize as auxiliary 

variables. In some cases, the only data available to assessment practitioners may be the 

students’ pretest and posttest scores. Additionally, an assessment practitioner choosing to 

omit makeup testing in favor of utilizing missing data handling techniques would not 

have access to posttest auxiliary variables. That is, the posttest auxiliary variables are 

collected during the posttest, and thus would not be available for makeup examinees if 

makeup testing were not conducted. Thus, it was important to compare the performance 

of the MAR-based missing data procedures (MI and FIML) without auxiliary variables, 

with only university database and pretest auxiliary variables, and with all auxiliary 

variables, as this comparison may highlight the necessity of gathering particular auxiliary 

variables. Previous research indicates that results are generally improved by the inclusion 

of auxiliary variables (Collins et al., 2001). Thus, compared to MI and FIML procedures 

excluding auxiliary variables, including auxiliary variables should produce growth 

estimates closer to those obtained using the complete dataset. Additionally, directly 

comparing these methods with and without auxiliary variables should give an indication 

of the degree to which results are improved by including certain sets of auxiliary 

variables. If including auxiliary variables provides pre-post growth estimates that are 

much closer to those obtained using the complete dataset, assessment practitioners should 
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spend additional time and resources collecting that auxiliary variable data as a part of 

their assessment design. However, a negligible difference in pre-post growth estimates 

with and without auxiliary variables would indicate that auxiliary variable data collection 

may not be worth the additional cost. 

 Some may question the utility of examining both MI and FIML results, given both 

are designed for MAR data and provide similar results. As will be explained in Chapter 2, 

the methods by which MI and FIML estimate parameters are mathematically different. 

For instance, auxiliary variables are included in the MI procedure via an imputation 

model that is separate from the analysis model, whereas auxiliary variables must be 

integrated into the analysis model in the FIML procedure. Including a large number of 

auxiliary variables in FIML analyses may cause estimation difficulties (Savalei & 

Bentler, 2009). Thus, it is important to compare MI and FIML results to uncover 

potential difficulties that may be associated with one technique, but not the other. 

Additionally, MI provides multiple datasets with imputed posttest scores. If the parameter 

estimates (posttest mean, posttest variance, pretest-posttest covariance, and pre-post mean 

difference) obtained utilizing MI differ widely from those obtained utilizing the complete 

dataset, the individual imputation values can be examined to determine the extent to 

which they differ from the actual values in the complete dataset. This examination may 

help identify outliers, or individual students with actual posttest scores that are 

substantially different from their imputed posttest scores. For example, some makeup 

session students may have aberrantly low posttest scores due to lower test-taking 

motivation (Swerdzewski et al., 2009). Students with actual scores that are substantially 

different from their imputed scores can also be closely examined to identify additional 
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auxiliary variables. For instance, suppose that a disproportionate number of international 

students had actual posttest scores that were substantially different from their imputed 

posttest scores. In this case, international student status should be included as an auxiliary 

variable. Or, in the example above, if low test-taking motivation is associated with 

disparate actual and imputed posttest scores, then test-taking motivation should be added 

as an auxiliary variable. In short, closely examining the imputed MI posttest scores could 

provide a wealth of information beyond examining FIML results. 

 The implications of differences in the results obtained via these data analysis 

methods inform assessment practice. If results are similar across the different methods, 

any of the methods can be used to obtain accurate growth estimates. However, if some 

methods of handling missingness outperform others by yielding growth estimates closer 

to those obtained from the complete dataset, then those methods should be used at this 

university and other institutions with similar missing data issues. Finally, if no method 

for handling missingness yielded growth estimates comparable to those obtained using 

the complete data, it may be necessary to obtain makeup data from students and to use 

this makeup data in pre-post growth analyses. As emphasized by Graham (2009), 

comparing the results of various missing data analysis techniques to those obtained 

utilizing the complete dataset in a real missing data scenario can inform the study of 

attrition in general, by examining the effects of real (not simulated) attrition on growth 

estimates.  

 Research question 4: Percentage of missingness. How are the previous results 

affected at varying proportions of missingness? At the university where this study was 

conducted, Assessment Day nonattendance is not extremely common. Currently, less 
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than 10% of students fail to attend their regularly scheduled Assessment Day testing 

session at posttest, and are forced to attend a makeup testing session. However, the 

percentage of missingness must be considered together with the missing data mechanism. 

That is, relatively small percentages of MNAR missingness could bias parameter 

estimates, whereas large percentages of MCAR missingness may have little effect on 

parameter estimates (but would still result in inflated standard errors) (Enders, 2010). 

However, the relatively small percentage of missingness present in this study may cause 

the effects of missingness on parameter estimates to be subtle.  

Other institutions may have a greater proportion of missing data. For instance, 

given the same missing data mechanism, an institution with 50% student non-attendance 

at posttest would likely have growth estimates that are more biased than a university with 

10% missingness. High missing data rates can be common in some testing programs, 

such as data collected for NAEP assessments (Chromy, 2005). In these cases, the 

handling of this missingness can have a profound effect on the results obtained from 

analysis of assessment data. Thus, the answers to the previous research questions were 

investigated at varying proportions of missingness. 

Research question 5: Noncognitive vs. cognitive. Do the results of the previous 

research questions differ depending on whether growth is being estimated for 

noncognitive (e.g., developmental) or cognitive (e.g., scientific reasoning) constructs? 

Previous research indicates that students attending makeup testing are less likely to put 

forth effort on cognitively-taxing tests than on noncognitive developmental surveys, 

resulting in diminished performance on cognitive tests (Swerdzewski et al., 2009). Thus, 

the association between Assessment Day attendance (R) and posttest scores (Y) could be 
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stronger for cognitive tests (with lower posttest scores for makeup students) than for 

noncognitive measures. A stronger relationship between missingness (R) and the missing 

values themselves (Y) would indicate that a MNAR mechanism is more likely for 

cognitive tests than for noncognitive measures. Thus, it was important to investigate 

differences in results between noncognitive and cognitive measures. 

A difference in results obtained when examining noncognitive vs. cognitive pre-

post growth would indicate that different methods of handling missingness may need to 

be utilized depending on the construct being studied. For example, suppose that 

noncognitive makeup data met the MAR assumption, whereas cognitive makeup data did 

not and was thus considered MNAR. In this case, assessment practitioners could utilize 

MI or FIML with appropriate auxiliary variables when examining noncognitive 

constructs, but would need to obtain the complete data for cognitive constructs. Thus, 

examining these differences is important to inform best assessment practice.  



 

 

 

 

CHAPTER TWO 

Literature Review 

Missing Data Techniques 

 The appropriateness of various techniques to account for missing data depends on 

the mechanism underlying the data. Rubin (1976) was the first researcher to develop a 

classification scheme to better understand missing data mechanisms. In addition to the 

variable with missing data, denoted Y, Rubin (1976) also defined a missingness variable, 

R. R is a binary variable that takes a value of 1 for cases where variable Y is observed, 

and takes a value of 0 for cases where variable Y is missing. Rubin (1976) defined data as 

missing-at-random (MAR) if missingness variable R is unrelated to Y, conditional on 

other observed data. However, if R is related to Y after controlling for other observed 

data, the data are considered to be missing-not-at-random (MNAR). The relationship 

between R and Y cannot be empirically estimated with applied data, given that Y is 

missing for all cases where R = 0. Rubin (1976) also defined data as observed-at-random 

(OAR) if missingness variable R is unrelated to the other observed data (i.e., variables 

other than Y). Data that are both OAR and MAR are considered missing-completely-at-

random (MCAR; Heitjan & Basu, 1996).  

Methods for Dealing with Missing Data 

 The methods outlined below and general recommendations regarding these 

methods are summarized in Table 3.  

Deletion methods. Listwise and pairwise deletion are extremely common 

methods for handling missing data (Peugh & Enders, 2004). Despite their ubiquity, these 

methods are considered some of the worst for dealing with missing data (Little & Rubin, 
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2002; Wilkinson & Task Force on Statistical Inference, 1999). These methods assume 

that data meet the MCAR assumption. Deletion-based methods can significantly bias 

parameter estimates when the MCAR assumption is not upheld (Brown, 1994; Enders, 

2001; Enders & Bandalos, 2001). Even under MCAR conditions, data deletion is 

wasteful and results in inflated standard errors. Given that methods that yield more 

parameter estimates and reduced standard errors are now available, deletion-based 

methods are not generally recommended (Enders, 2010). 

Listwise Deletion. Listwise deletion involves deleting cases with any missing data 

on any variable. There are a number of benefits to listwise deletion. First, listwise 

deletion results in very low non-convergence rates (Enders, 2001; Enders & Bandalos, 

2001). That is, it may be difficult for many software packages to estimate complex 

models involving many different variables with varying degrees of missingness. 

Analyzing only complete cases can ease the computational burden involved in model 

estimation. Second, listwise deletion greatly increases the practical ease of analysis, as no 

further treatment of missing data needs to be applied after removing cases with 

missingness. Third, listwise deletion has been found to yield unbiased estimates of 

association between two variables if the data meet the MCAR assumption. 

Despite the benefits, there are two major problems associated with listwise 

deletion. First, removing cases results in decreased power and increased standard error 

estimates. The researcher is essentially “throwing away” information by needlessly 

deleting cases. This decreased power becomes more of an issue as the percent of missing 

data increases. Second, parameter estimates are biased when the assumption of MCAR is 

not met. For example, consider the situation where students complete a scientific 
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reasoning exam as entering freshmen, then again after three semesters of coursework. 

Suppose students with low pretest scores perform poorly at the university, and drop-out 

as a result. If the scores of these individuals were listwise deleted, mean posttest 

estimates of scientific reasoning ability would likely be too high, given that all students 

with low pretest scores were excluded at posttest. Given these substantial drawbacks, 

listwise deletion should not be used in the majority of missing data situations. 

 Pairwise deletion. Pairwise deletion involves excluding cases from analysis that 

are missing on the variables being analyzed. For instance, consider examining the 

relationship between three variables: X, Y, and Z. When estimating the correlation 

between variables X and Y, the researcher would exclude cases that had missing values 

for X or Y, regardless of whether data were missing on variable Z. Similarly, when 

examining the relationship between X and Z, the researcher would exclude cases that had 

missing values for X or Z, regardless of whether data were missing on variable Y. As a 

result, more of the data are used for each analysis than when listwise deletion is utilized, 

resulting in increased power. 

 The downsides of pairwise deletion make it difficult to use in practice. Pairwise 

deletion results in high model non-convergence rates, due to nonpositive definite matrices 

(Enders, 2001; Enders & Bandalos, 2001). Nonpositive definite matrices occur when 

correlation and covariance matrices are obtained using pairwise deletion that are 

impossible in cases of complete data. Nonpositive definite matrices often result from 

pairwise deletion due to different elements of the correlation and covariance matrices 

being computed using a different sample when using pairwise deletion. When 

nonpositive definite matrices occur, many common statistical models cannot be 
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estimated. Additionally, because the sample size varies by parameter estimate, it becomes 

difficult to calculate standard errors. Like listwise deletion, parameter estimates when 

pairwise deletion is utilized are biased when data do not meet the MCAR assumption. 

Thus, pairwise deletion is not a recommended technique for dealing with missing data. 

 Single imputation methods. Single imputation methods involve replacing 

missing data with calculated values based on the observed data. The majority of these 

techniques result in severely biased parameter estimates under all missing data 

conditions. However, it is useful to understand single imputation techniques, as the more 

useful multiple imputation (MI) technique involves many of the same concepts. 

 Mean imputation. Mean imputation involves replacing missing data with the 

mean of the observed data for that variable. Given that the missing data are replaced by 

the mean, mean estimates are identical to those produced by listwise deletion. However, 

the standard errors of mean estimates are severely attenuated under mean imputation 

(Olinski, Chen, & Harlow, 2003). Further, mean imputation severely attenuates estimates 

of variability and association between variables. Thus, mean imputation is not 

recommended under any missing data situations. 

 Regression imputation. Regression imputation involves replacing missing data 

with the predicted values from a regression equation (Buck, 1960). The regression 

equation used can involve one or multiple independent variables. One approach is to use 

every variable for which a case has observed data in the regression equation to impute 

missing values for that case. This approach results in imputed data values that fall 

perfectly on the regression line used to impute these values. Predictably, this approach 

yields negatively biased estimates of variability, and positively biased estimates of 
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association (Beale & Little, 1975). Although corrections are available that result in 

unbiased estimates of association under MCAR conditions, these corrections are rarely 

used in current research due to better missing data techniques being available (see 

multiple imputation and full information maximum likelihood below). Like mean 

imputation, regression imputation is generally regarded as a historical artifact and is not 

recommended. 

 Stochastic regression imputation. Stochastic regression imputation modifies 

traditional regression imputation by adding a residual term to account for uncertainty in 

the regression equation. This residual term is normally distributed with a mean of 0 and a 

variance equal to the error variance in the regression equation. For example, imagine we 

are stochastically imputing posttest scientific reasoning scores (Y) using pretest scientific 

reasoning scores (X). The regression equation is calculated as:  

ˆ 4.951 .703Y X   

with a residual variance of 8.399. The intercept value of 4.951 is interpreted as the 

predicted posttest scientific reasoning score for a student scoring 0 at pretest. The slope 

value of .703 is interpreted as the increase in predicted posttest score for every unit 

increase in pretest score. Finally, the residual variance of 8.399 is the amount of variance 

in Y that is unexplained by X. In this example, the missing values of Y would be imputed 

by 4.951 + .703(X) + e, where e is a random number from a normal distribution of mean 

0 and variance of 8.399. In this manner, stochastic regression reintroduces the error that 

is lost in traditional regression imputation. Like traditional regression imputation, 

computed values can also be calculated using multiple variables from the dataset in the 

regression equation, rather than a single variable. 
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Stochastic regression imputation results in unbiased parameter estimates under 

MCAR and MAR data mechanisms (Enders, 2010; Gold & Bentler, 2000). However, 

standard errors are attenuated due to the single imputation of the Y score. Single 

imputation techniques treat the imputed data as observed. Thus, when estimating 

parameter estimates from this “observed data”, the certainty of the parameter estimates is 

overestimated, leading to underestimated standard errors. Multiple imputation (described 

under Modern Methods) corrects for this bias by incorporating the uncertainty involved 

in single imputation techniques. Given that multiple imputation is available in many 

software programs and stochastic regression imputation results in attenuated standard 

errors, stochastic regression imputation is generally not recommended over other missing 

data techniques. However, as noted by Enders (2010), stochastic regression imputation is 

involved in multiple imputation techniques. 

 Other single imputation methods. There are a number of other single imputation 

techniques that are not considered here, as they are often used in settings outside the 

scope of this research. These include hot-deck imputation (Ford, 1983), similar response 

pattern imputation (Jöreskog & Sörbom, 1993), and prorated scale scores (Keel, Mitchell, 

Davis, & Crow, 2002). Many of these methods result in biased parameter estimates, and 

all of these methods result in attenuated standard errors. Given that multiple imputation 

(MI) and full information maximum likelihood estimation (FIML) are readily available 

and do not result in biased standard errors under MCAR and MAR conditions, all single 

imputation techniques should be avoided in the majority of missing data situations.  

Modern methods. Many of the previously reviewed methods require strict 

assumptions (e.g., meeting the MCAR assumption) and can result in reduced power or 
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biased parameter estimates. Thus, missing data methodologists almost universally 

recommend utilizing more modern missing data techniques when missingness is non-

negligible (Allison, 2002; Enders, 2010; Little & Rubin, 2002; Schafer, 1997). 

Specifically, multiple imputation (MI) and full information maximum likelihood (FIML) 

estimation are commonly recommended. Both of these techniques result in unbiased 

parameter estimates and standard errors under both MCAR and MAR conditions. Further 

research has explored possible analytic strategies for MNAR data. However, many of 

these techniques require strict assumptions to be met or the researcher to specify a 

number of parameters a priori. Given these limitations, MNAR models are not 

recommended in the majority of missing data scenarios (Allison, 2002; Demirtas & 

Schafer, 2003; Enders, 2010; Schafer & Graham, 2002) 

 Multiple imputation (MI). Multiple imputation (MI) is one recommended method 

to deal with missing data in the majority of missing data situations. MI involves 

conducting multiple stochastic regression imputations, then incorporating the variability 

in parameter estimates across the imputations into the standard error estimates. MI is 

accomplished in three phases (Enders, 2010). In the imputation phase, multiple datasets 

are imputed, usually by using the data augmentation algorithm (Schafer, 1997; Tanner & 

Wong, 1987). In the analysis phase, parameter estimates are calculated for each imputed 

dataset separately. In the pooling phase, these parameter estimates are combined to 

produce unbiased parameter and standard error estimates. Each of these phases are 

outlined below. 

Imputation phase. The imputation phase makes heavy use of the Bayesian 

framework to create multiple imputed datasets (Rubin, 1987; Enders, 2010). Utilizing the 
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data augmentation algorithm consists of two steps that repeat in an iterative fashion: the 

imputation step, or I-step, and the posterior step, or P-step.  

The I-step involves using stochastic regression to impute the missing values. For 

the initial I-step, the stochastic regression coefficients are obtained using the mean vector 

and covariance matrix elements estimated using the available data (i.e., pairwise deletion 

for each of the parameter estimates). All variables included in the imputation process are 

used to create the stochastic regression equation for the variable with missing values. In 

the previous pre-post scientific reasoning example, pretest scores would be used in the 

stochastic regression equation to predict posttest scores. Auxiliary variables can also be 

included to improve the imputation of the variable with missing data.  

The P-step involves using the dataset generated during the I-step to estimate new 

mean vector and covariance matrix elements. In a Bayesian framework, these elements 

are conceptualized as random variables with their own posterior distributions. In the P-

step, new mean vector and covariance matrix elements are randomly selected from their 

respective posterior distributions, which are estimated using the imputed values from the 

previous I-step. The I-step is then repeated, using the newly-estimated mean vector and 

covariance matrix elements to re-estimate the stochastic regression imputation parameters 

and impute new values for the missing data. Thus, every I-step that is executed creates a 

new imputed dataset. The I-steps and P-steps can be repeated indefinitely, to create an 

infinite number of imputed datasets. This chain of successive I- and P-steps is considered 

a type of Markov Chain Monte Carlo (MCMC) procedure (Jackman, 2000). 

 There are two important decisions that must be made by the researcher during the 

imputation phase. First, the number of iterations (i.e., number of successive I- and P-
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steps) needed to reach convergence must be determined. With this procedure, 

convergence is achieved when the posterior distributions of the mean vector and 

covariance matrix elements are stable. Enders (2010) recommends assessing convergence 

through visual analysis of time series plots and autocorrelation function plots. Time 

series plots display the estimated mean vector and covariance matrix elements for each 

successive iteration. The researcher should assess these plots for patterns, and note the 

number of iterations at which the plots show repeating patterns. The number of iterations 

at which these plots show repeated patterns indicates convergence. Autocorrelation 

function plots quantify the dependency between successive iterations, and can indicate 

the number of iterations needed between imputed datasets to ensure that parameter values 

are independent. Gelman and Rubin (1992) also recommend examining proportional 

scale reduction (PSR) values. PSR values quantify the average ratio of parameter values 

between two MCMC chains. If the posterior distributions for the estimated parameters 

are similar and stable at a given number of iterations for both chains, then PSR values 

will approach 1. The default convergence criteria in Mplus Version 7.11 (Muthén & 

Muthén, 1998-2013) is a PSR < 1.05, but stricter criteria may be applied. 

 The researcher should combine information from time series plots, autocorrelation 

plots, and PSR values to determine the number of iterations needed between each 

imputed dataset. These plots and values should also be assessed using multiple starting 

values, to ensure that one MCMC chain was not simply aberrant. Specifying too few 

iterations can result in correlated imputations and negatively biased standard errors, but 

specifying too many iterations is not problematic (Enders, 2010). Thus, the maximum 
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number of iterations suggested by time series plots, autocorrelation plots, and/or PSR 

values should generally be used between imputed datasets. 

 After determining the number of iterations between each imputed dataset, the 

researcher must determine the number of imputed datasets that will be retained for the 

analysis and pooling phases. Although early research suggested only three to five 

imputed datasets (Rubin, 1987, 1996; Schafer, 1997; Schafer & Olsen, 1998), recent 

research indicates that more imputations are needed to accurately estimate standard errors 

and maximize power (Graham, Olchowski, & Gilreath, 2007). Even at high proportions 

of missingness, 20 imputations have been found to give accurate standard errors. Thus, a 

minimum of 20 imputations is generally recommended for the majority of analyses 

(Enders, 2010). 

Analysis phase. After imputing multiple datasets, the analysis phase involves 

conducting the desired analysis for each imputed dataset. In the pre-post scientific 

reasoning example, the mean difference between pretest and posttest scores would be 

computed for each imputed dataset, along with the standard error associated with this 

parameter. The analysis phase can be done manually for each imputed dataset, although 

Mplus (Muthén & Muthén, 1998-2013) and other software packages include utilities that 

automatically conduct the same analysis for all imputed datasets. Parameter and standard 

error estimates derived during the analysis phase will then be combined in the pooling 

phase. 

Pooling phase. The pooling phase involves combining the parameter estimates 

and standard errors obtained for each imputation in the analysis phase. The combined 

parameter estimates are simply the arithmetic means of the parameter estimates obtained 
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for each individual imputation. For the pre-post scientific reasoning example, the pooling 

phase would involve computing the mean of the mean difference estimates across all 

imputations.  

Pooling the standard errors across imputations involves combining the within-

imputation parameter variance with the between-imputation parameter variance, by (from 

Enders, 2010, p. 223): 
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where VT is the total sampling variance associated with a parameter, VW is the average 

within-imputation parameter variance, VB is the between-imputation parameter variance, 

and m is the number of imputations. VW is calculated as (from Enders, 2010, p. 222): 
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simply taking the average of the squared standard errors across all imputations. VB is 

calculated as (from Enders, 2010, p. 222): 
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computing the variance of individual parameter estimates ˆ
t  across imputations. One 

may notice that these individual parameter estimates also have standard errors associated 

with them that is not quantified in Equation 3. Thus, the VB / m term is included in 

Equation 1 to account for this uncertainty. Taking the square-root of VT gives the pooled 

standard error. 

 As mentioned previously, stochastic regression imputation (which MI is largely 

based on) produces unbiased parameter estimates under a MAR mechanism, but 
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negatively biased standard errors (Gold & Bentler, 2000). By combining between- and 

within-imputation error in the computation of pooled standard errors, MI corrects for this 

bias and produces unbiased standard error estimates when the MAR assumption is met. 

MI also produces unbiased parameter and standard error estimates under MCAR 

conditions, but results in biased parameter estimates under MNAR conditions.  As will be 

discussed later, the accuracy of MI can be improved by the inclusion of auxiliary 

variables that aid in the imputation phase of the multiple imputation process. 

 Full information maximum likelihood (FIML) estimation. A viable alternative 

to multiple imputation for a researcher wanting to account for missing data appropriately 

is estimating model parameters using full information maximum likelihood (FIML) 

estimation (Enders, 2010; Schafer & Graham, 2002). Generally, maximum likelihood 

(ML) estimation uses an iterative procedure to determine the parameters most likely to 

give rise to the observed data. Many software programs, such as Mplus (Muthén & 

Muthén, 1998-2012), offer the option to utilize limited-information ML estimation or 

FIML for many analyses. Limited information ML analyzes a covariance matrix and 

mean vector, whereas FIML analyzes the observed data. When missingness is present, 

this covariance matrix and mean vector are computed using available data (i.e., pairwise 

deletion), and are thus only accurate under MCAR conditions. By utilizing FIML, cases 

with missing data are retained and their data are used in the estimation of parameters and 

standard errors. 

 FIML estimates the population parameter values that maximize the average log-

likelihood of the observed data. For a single, complete case, the log-likelihood would be 

computed as (from Enders, 2010, p. 88): 
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where log iL  is the log-likelihood associated with case i, k is the number of variables,Σ  

is the estimated population covariance matrix, μ  is the estimated population mean vector, 

and iY  is the score vector for case i. The individual log-likelihood values quantify the 

relative probability of an individual’s data in a multivariate normal population 

distribution, given a particular mean vector and covariance matrix. The individual log-

likelihood value for a case with missing data is slightly modified (from Enders, 2010, p. 

88): 
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with i subscripts associated with the number of variables, the covariance matrix, and the 

mean vector. The i subscripts indicate that these elements are allowed to vary by 

individual case, dependent on the variables that are missing. That is, missing variables are 

not included in the computation of an individual’s log-likelihood value. 

 Like MI, FIML results in unbiased parameter estimates and standard errors under 

MCAR and MAR conditions, but results in bias under MNAR conditions (Enders, 2010; 

Little & Rubin, 2002). MI and FIML analyses tend to produce similar results if the 

imputation model and the maximum likelihood analysis model are congenial (Meng, 

1994). However, the results obtained with these two techniques can differ under some 

circumstances. Recall that the researcher specifies the variables to be used in the multiple 

imputation process to help predict the variable with missingness in the stochastic 

regression equations used in the I-steps.  If the set of variables included in the FIML 

analysis model differ from the set of variables included in the MI model, results will 
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differ across the two techniques. Additionally, the MI procedure allows all variables to 

relate directly to the variable with missingness. If the FIML analysis model is constrained 

in a way that does not allow for direct relationships between the set of variables and the 

variable with missingness, then the MI and FIML models will be uncongenial.  FIML 

accuracy will be reduced if the variables with constraints are important predictors of the 

variable with missingness. In the pre-post scientific reasoning example with posttest 

missingness, suppose that a researcher specified a model where self-efficacy completely 

mediated the relationship between pretest and posttest scientific reasoning scores. That is, 

the researcher specifies a model where pretest scores do not have a direct influence on 

posttest scores, but rather influence posttest scores through self-efficacy. If, in reality, 

pretest scores have a direct effect on posttest scores, the parameter estimates associated 

with posttest scores would be biased. In this situation, the FIML analysis model would be 

misspecified, in that parameters are constrained to implausible values. Thus, for FIML 

results to be comparable to MI results, the FIML analysis model should be correctly 

specified and include all variables included in the imputation model (Collins, Schafer, & 

Kam, 2001; Enders, 2010; Schafer, 2003). 

 Utilizing auxiliary variables with MI and FIML. The accuracy of both MI and 

FIML results can be improved by the inclusion of auxiliary variables. Auxiliary variables 

are not of central interest to the substantive research questions, but are included due to 

their relationship with missingness (R) or with the variable with missing values (Y). 

Specifically, the inclusion of auxiliary variables can determine whether the MAR 

assumption is satisfied (Enders, 2010; Rubin, 1976). Recall the MAR mechanism 

requires that missingness (R) and the variable with missing data (Y) are unrelated, after 
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controlling for other variables in the analysis. In the pre-post scientific reasoning 

example, assume that students missing at posttest failed to attend the testing session due 

to low self-efficacy. These students with low self-efficacy would have scored lower on 

the scientific reasoning test than the students actually completing the scientific reasoning 

posttest. In this case, missingness (R) is related to posttest score (Y), but this relationship 

is due to self-efficacy (X). Although self-efficacy is not of direct interest to the 

assessment practitioner, it should be measured and included as an auxiliary variable. If 

self-efficacy is included in the MI or FIML model, then missingness is no longer related 

to posttest score after controlling for self-efficacy. Thus, after the inclusion of self-

efficacy in the MI or FIML model, the missingness would satisfy the MAR assumption, 

and estimates of pre-post growth should be accurate. However, if self-efficacy is not 

included in the MI or FIML model, missingness remains related to posttest score after 

controlling for the included variables in the analysis, and the missingness data 

mechanism should be considered MNAR. In this case, the estimates of pre-post growth 

would be biased. Thus, it is important to include all relevant auxiliary variables in MI or 

FIML analyses. 

 Which auxiliary variables should be included? Other than estimation and 

computational difficulties, there is little downside to implementing an inclusive analysis 

strategy by including all relevant auxiliary variables. Collins and colleagues (2001) 

differentiated between three categories of auxiliary variables. The category of auxiliary 

variable depends on the variable’s relationships with missingness (R) and with the 

variable with missingness (Y). Category A variables correlate with both R and Y, category 

B variables correlate with Y only, and category C variables correlate with R only. Collins 
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and colleagues (2001) investigated the impact of the inclusion of these auxiliary variables 

in parameter and standard error bias. The inclusion of category A variables in MI or 

FIML analyses was found to substantially reduce parameter bias and standard errors. In 

particular, the exclusion of a category A variable that was linearly related to R 

substantially biased mean estimates for variable Y, even at small (25%) proportions of 

missingness. Further, the variance and covariance estimates associated with variable Y 

were also biased in this case. The exclusion of a category A variable that was nonlinearly 

related to R biased variance and covariance estimates associated with variable Y, but not 

mean estimates. Under both MAR and MCAR conditions, the inclusion of category B 

variables reduced standard errors. The inclusion of some category C variables had no 

effect on parameter bias or standard errors, but the inclusion of a large number (25-50) of 

category C variables resulted in substantial variance and covariance estimate bias. 

 A close examination of the results obtained by Collins and colleagues (2001) can 

provide guidance on the best auxiliary variables to include when conducting MI or FIML 

analyses with missing data. Both category A variables and category B variables were 

found to be beneficial in reducing standard errors. Thus, any variables (X) that relate to 

the variable with missingness (Y) should be included as auxiliary variables, regardless of 

whether these variables relate to missingness (R). Category C variables, which relate only 

to R and not to Y, were not beneficial. However, the inclusion of category C auxiliary 

variables was also not harmful, unless a very large number of them were included. Also, 

in applied research, values of Y will be missing for all cases where R = 0. An auxiliary 

variable may not be related to Y when this relationship is estimated using only cases 

without missingness, but may be related to Y if the missing data were actually observed. 
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Thus, the applied researcher may believe the auxiliary variable is a category C variable 

and should be excluded, when it is actually a category B variable and should be included.  

Due to the difficulty in accurately estimating the relationship between auxiliary 

variables (X) and the variable with missingness (Y) prior to conducting MI or FIML 

analyses, missing data experts have generally recommended an inclusive analysis 

strategy regarding auxiliary variables (Collins et al., 2001; Enders, 2010; Schafer, 1997). 

Using this strategy, any variable (X) with a significant relationship with missingness (R) 

or the variable with missing values (Y) should be included as an auxiliary variable. 

Although this strategy may result in the inclusion of some category C variables, the 

potential bias and power reduction associated with including too many category C 

variables is outweighed by the bias and power reduction associated with excluding 

category A or B variables. It should be noted, however, that some previous research 

indicates that including auxiliary variables with weak relationships to variables with 

missingness (with correlations ranging from .1 to .3) may actually reduce power when 

conducting FIML analyses (Savalei & Bentler, 2009). Thus, although an inclusive 

analysis strategy is generally recommended, it is unclear whether the inclusion of many 

different auxiliary variables is always beneficial. 

Recent research has challenged these inclusive analysis recommendations in some 

special cases. Specifically, Thoemmes and Rose (in press) noted that conditioning on 

some auxiliary variables may lead to an increased conditional relationship between 

missingness (R) and missing values (Y). In this case, mean estimates will be more biased 

if this auxiliary variable is included in the analysis. For this reason, Thoemmes and Rose 
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(in press) labeled these variables “bias-inducing” auxiliary variable. Thus, the inclusive 

analysis strategy can backfire in special cases. 

Specifying auxiliary variables when conducting MI. When conducting MI using 

the data augmentation algorithm, auxiliary variables are included in the stochastic 

regression equations used in the I-steps of the imputation phase. If the included auxiliary 

variables are significantly related to the variable with missingness, the inclusion of these 

variables in the imputation process should improve the prediction of the missing values, 

thus reducing bias and improving power. The auxiliary variables are only utilized in the 

imputation phase, and the imputed values are analyzed and pooled as before. Software 

programs such as Mplus (Muthén & Muthén, 1998-2012) allow for the easy inclusion of 

auxiliary variables in the imputation process. 

 Specifying auxiliary variables when conducting FIML-based analyses. Including 

auxiliary variables in FIML analyses involves specifying relationships with the auxiliary 

variables in the analysis model. Graham (2003) recommends including these variables via 

a saturated correlates model. This model is displayed graphically in Figure 3. The 

specification of a saturated correlates model involves allowing the auxiliary variables to 

correlate with explanatory variables (e.g., Pretest score in Figure 3), other auxiliary 

variables, and the residual terms of outcome variables. In this study, the parameters being 

examined are posttest mean, posttest variance, pretest-posttest covariance, and pre-post 

mean differences. To specify this model with auxiliary variables, pretest and posttest 

scores are allowed to correlate, and both of these variables are then allowed to correlate 

with auxiliary variables. 
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 Auxiliary variable missingness. Just as variables of interest to the researcher can 

have missing values, auxiliary variables also often have missing values. Fortunately, 

Enders (2008) found that including important auxiliary variables with as high as 50% 

missingness was still beneficial in the estimation of model parameters and standard 

errors. Although the utility of including auxiliary variables with missingness declined as 

auxiliary missingness increased, particularly when the auxiliary variable was missing 

concurrently with the analysis variable with missing values, including an auxiliary 

variable with missing values was rarely harmful to the estimation of model parameters or 

standard errors. Thus, it is recommended to incorporate auxiliary variables with missing 

values into MI and FIML analyses, although these variables are somewhat less useful 

than auxiliary variables with complete data (Enders, 2008). 

 Fortunately, auxiliary variables with missingness can easily be incorporated into 

both MI and FIML analyses. When completing the imputation step of the MI procedure, 

auxiliary missing values are imputed along with the missing values of the variables of 

interest to the researcher. When conducting FIML analyses, auxiliary variables with 

missingness are included in a saturated correlates model as normal. 

 Methods for missing not at random (MNAR) data. In addition to the methods 

outlined above, there have been a number of methods proposed for missing-not-at-

random (MNAR) data. The selection model approach (Heckman, 1976, 1979) was 

designed for regression models with missingness on an outcome variable. This approach 

involves estimating a separate regression model to predict missingness variable R on the 

outcome variable Y. The regression models associated with both R and Y are combined 
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into a path model, and the residual variance terms associated with R and Y are allowed to 

correlate. It is assumed that these two residual terms are bivariately normally distributed.  

The pattern mixture model was designed for multi-wave longitudinal data with 

many different missing data patterns (Little, 1993). With the pattern mixture model, 

parameters are estimated separately for each missing data pattern. These models are 

underidentified, so some parameters must be fixed by the researcher to estimate the 

model. Commonly, the parameters associated with one of the missing data patterns are 

constrained to the parameters associated with the complete data.   

Unfortunately, both of these models require untenable assumptions. The selection 

model requires strict bivariate normality of the residual terms associated with 

missingness R and outcome Y (Enders, 2010). The pattern mixture model requires the 

researcher to specify certain parameters correctly for the model to be identified. 

Unfortunately, neither of these assumptions is testable, and violations of these 

assumptions can result in significant bias (Enders, 2010; Demirtas & Schafer, 2003). 

Thus, MNAR models are generally not recommended, and inclusive MI and FIML 

analyses are considered the current state of the art (Schafer & Graham, 2002). 

 Missing data prevention and recovery. The previous methods have focused on 

various ways of analyzing data when missingness has occurred. However, preventing or 

recovering missing data may be the best option available to applied researchers, 

particularly if the mechanism underlying missingness is MNAR. A variety of strategies 

exist to recover data from those that drop out of a longitudinal study, such as telephoning 

nonrespondents (Hansen & Hurwitz, 1946) or offering an additional cash incentive to 

elicit responses from dropouts (Crawford, Johnson, & Laird, 1993). If recovering the 
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initially missing data is not possible, obtaining random samples of the missing cases can 

help determine the missing data mechanism (Glynn et al., 1993; Graham & Donaldson, 

1993). For example, the average scores on the variable with missingness (Y) can be 

compared across initially present and initially missing cases to determine whether 

missingness (R) is related to missing values (Y), which would violate the MCAR 

assumption. Further, if enough missing data are recovered, regression models can be 

estimated that determine if missingness (R) and missing values (Y) remain significantly 

related after controlling for other dataset variables (X), thereby violating the MAR 

assumption. Unfortunately, the majority of studies examining the effects of MNAR 

biases have involved simulated data, and may not be representative of the MNAR 

mechanisms encountered by applied researchers. As noted by Graham (2009): 

Many authors have recommended collecting data on a random sample of those 

initially missing. However, most of this has involved simulation work and not 

actual data collection. Carefully conducted empirical studies along the lines 

suggested by Glynn et al. (1993) and Graham & Donaldson (1993) to determine 

the actual extent of MNAR biases would be valuable, not just to the individual 

empirical study, but also to the study of attrition in general. (p. 573) 

Given this call for research, the current study offers a significant contribution to the 

missing data literature. Data that would have been missing were collected via a makeup 

assessment session. The precise missing data mechanism (MCAR, MAR, or MNAR) can 

be determined, and the extent to which this missingness biases results using various 

missing data handling techniques can be directly assessed. Thus, as Graham (2009) notes, 
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the results of this research provide significant value to assessment practice and to “the 

study of attrition in general.”



 

 

 

 

CHAPTER THREE 

Methods 

Participants and Procedure 

 Data for the current study were collected at a mid-sized, southeastern public 

university. As mentioned previously, for the university to assess educational 

effectiveness, students are required to attend two mandatory university-wide testing 

sessions, labeled “Assessment Days”. Assessment Day tests are administered to students 

twice during their undergraduate careers – once in the fall before students begin classes 

as entering first-year students, and once in the spring after students accumulate between 

45 and 70 credit hours. Fall Assessment Days are integrated into new student orientation 

activities. Thus, very few students fail to attend Fall Assessment Day. When students 

accumulate between 45 and 70 credit hours before the beginning of a Spring semester, 

they are notified via email that they are required to attend the Spring Assessment Day. 

Despite these Assessment Day sessions being university requirements, a number of 

students fail to attend the posttest testing session, and these students are compelled to 

attend a makeup testing session to be able to register for next semester classes. The 

purpose of this study was to investigate the mechanism underlying missingness due to 

failure to attend the second mandatory testing session, and the bias introduced by treating 

these students’ posttest data as missing. For the current study, pretest assessment data 

were collected during the Assessment Day conducted in Fall 2007, and posttest 

assessment data were collected during the Spring 2009 Assessment Day and associated 

makeup testing sessions. 
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 The population of interest to university administrators is students completing 

between 45 and 70 credit hours within their first three semesters attending the university. 

That is, growth estimates are computed utilizing students who completed between 45 and 

70 credit hours within three semesters after completing the pretest, and are thus invited to 

complete the posttest during the Spring semester of their sophomore year. In any given 

year, approximately 2/3 of the students completing a given pretest are invited to complete 

the posttest three semesters later due to their completion of 45 -70 credit hours during the 

prior three semesters. The vast majority of the remaining 1/3 of the pretest population are 

invited to complete the posttest five semesters after entering the university due to earning 

less than 15 credits per semester. Importantly, the assessment design utilized at the 

university only matches pretest and posttest assessment data for students completing 

posttest three semesters after completing pretest (i.e., the university only computes 

“value-added” estimates for this specific population of interest). Thus, students 

completing assessments after five semesters of university attendance are not considered 

the population of interest by the university. Given the university utilizes Assessment Day 

data to measure the impact of the first three semesters of university attendance, only 

students who 1) completed the pretest as entering freshmen in Fall 2007 and 2) earned 

45-70 university credits during their first three semesters at the university, which resulted 

in a requirement to complete the posttest during the Spring 2009 semester, were 

examined in this study. 

Noncognitive test sample. All 3,766 incoming first-year students completed a 

three-item noncognitive measure of mastery orientation towards learning (Mastery 

Approach, Achievement Goal Questionnaire; Finney, Pieper, & Barron, 2004) during the 
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Fall 2007 Assessment Day. Mastery orientation scores were not available for the 78 

students attending a pretest makeup session. Given the low number of pretest makeup 

students, this study only focused on the effects of posttest nonattendance on growth 

estimates. Of the 3,766 students completing pretest, 2,321 students completed between 45 

and 70 credit hours within the first three semesters of university attendance and 

completed the posttest in Spring 2009. Note that students that fail to complete any of the 

three mastery orientation items are not given a total score on mastery orientation. Of the 

original sample of 2,321 students, 67 students (63 Assessment Day attendees and 4 

makeup attendees) did not provide complete item responses at pretest or posttest. Recall 

that the purpose of this study is to examine the impact of missingness due to posttest 

nonattendance. Although these 67 students have missing data, this missingness was not 

examined in this study. Thus, these 67 students were excluded from further analysis. 

Of the remaining 2,254 students invited to attend the Spring 2009 Assessment 

Day to complete the posttest, a subset of 2,120 students (94.1%) attended Assessment 

Day, whereas 134 (5.9%) skipped Assessment Day (i.e., initially missing) and 

subsequently attended a makeup assessment session. The 2,120 students representing the 

“Assessment Day” sample were 65.2% female, 84.1% White, 4.7% Asian, 2.6% Black, 

2.8% Hispanic, 0.5% Pacific Islander, and 5.2% unspecified ethnic origin. This sample 

had an average age of 19.92 years (SD = 0.37) at posttest. The 134 students representing 

the “Makeup” sample were 48.5% female, 80.6% White, 2.2% Asian, 3.0% Black, 3.0% 

Hispanic, 0.8% Pacific Islander, and 10.5% unspecified ethnic origin. This sample had an 

average age of 19.97 years (SD = 0.48) at posttest.  
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A cursory comparison of the demographic information for the Assessment Day 

and makeup samples indicated that a MCAR may not underlie the makeup noncognitive 

test data. The proportion of males that attended the makeup testing sessions was greater 

than the proportion of males that attended Assessment Day. If this difference was 

statistically significant, the “missingness” being investigated (i.e., whether a student 

attends Assessment Day or a makeup session at posttest) would be significantly related to 

an observed variable in the dataset (gender), thus ruling out a MCAR mechanism. This 

difference in proportions and other associations between dataset variables and posttest 

attendance were examined when screening for potential auxiliary variables (described 

later in Chapter 3).  

 Cognitive test sample. A random sample of 1,486 incoming first-year students 

completed a 66-item cognitive test of scientific reasoning (Natural World, Version 9, 

Sundre, 2008) during the Fall 2007 Assessment Day. Note that this number includes 78 

students who attended a makeup testing session at pretest. Of the 1,486 students 

completing the scientific reasoning pretest, 835 students completed between 45 and 70 

credit hours within the first three semesters of university attendance and thus completed 

this same test in Spring 2009 (posttest). Of the 835 students, 789 students (94.5%) 

attended their assigned Assessment Day testing session, whereas 46 students (5.5%) were 

compelled to attend a makeup assessment session. The 789 students attending 

“Assessment Day” were 65.5% female, 85.4% White, 4.3% Asian, 2.9% Black, 2.4% 

Hispanic, 0.1% Pacific Islander, and 4.7% unspecified ethnic origin. This sample had an 

average age of 19.93 years (SD = 0.37) at posttest. The 46 students skipping Assessing 

Day (i.e., initially missing) and later attending a makeup testing session were 43.5% 
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female, 82.6% White, 2.2% Black, and 15.2% unspecified ethnic origin. This sample had 

an average age of 19.92 years (SD = 0.31) at posttest. When scoring the scientific 

reasoning test, unanswered items are marked as incorrect. A total score was obtained for 

all 835 students at both pretest and posttest. 

  Similar to the demographic information obtained for the noncognitive test 

sample, the proportion of makeup students that were male was greater than the proportion 

of Assessment Day attendees that were male. Again, if this difference is statistically 

significant, “missingness” (i.e., whether a student attends Assessment Day or a makeup 

session at posttest) would be significantly related to an observed variable in the dataset 

(gender), thus ruling out a MCAR mechanism. 

 Noncognitive accountability measure – Mastery Approach (MAP) Goal 

Orientation. The Mastery Approach Goal Orientation Subscale (MAP) of the 

Achievement Goal Questionnaire (AGQ; Finney et al., 2004) is a three-item measure of 

the extent to which a student is motivated to master course material with the goal of 

developing competence. Examinees respond to MAP statements on a Likert scale from 1 

(“Not at all true of me”) to 7 (“Very true of me”). Total scores were computed by 

summing the scores to the three items, and thus can range from 3 to 21. Previous research 

has found MAP scores to be relatively reliable, with Cronbach’s coefficient alpha 

estimates typically ranging between .70 and .80. In the current study, MAP alpha 

estimates were .75, .81, and .82 for the pretest, posttest Assessment Day, and posttest 

makeup administrations, respectively. 

Cognitive accountability measure – Natural World Version 9. The Natural 

World, Version 9 test (NW-9; Sundre, 2008) is a 66-item cognitive test designed to 
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measure quantitative and scientific reasoning skills. Items are scored correct or incorrect, 

and summed to create one total scientific reasoning score. Items were designed by a team 

of mathematics and science faculty members working in conjunction with assessment and 

measurement experts. In previous samples, NW-9 scores have been fairly reliable, with 

Cronbach’s coefficient alpha estimates typically ranging between .70 and .90. In the 

current study, NW-9 alpha estimates were .79, .81, and .87 for the pretest, posttest 

Assessment Day, and posttest makeup administrations, respectively. 

 Auxiliary variables. Auxiliary variables were used in two ways in this study. 

First, auxiliary variables were used to help identify the missing data mechanism. That is, 

missingness (R, whether a student completed the posttest during Assessment Day or a 

makeup testing session) and posttest scores (Y) may be related when auxiliary variables 

(X) are excluded (i.e., data would be considered MNAR), but may not be related after 

controlling for certain auxiliary variables (i.e., data would be considered MAR when 

including auxiliary variables). Thus, examining the relationships between missingness 

(R), posttest scores (Y), and other dataset variables (Xs) was important to fully understand 

the missing data mechanism.  

Second, after identifying the missing data mechanism, auxiliary variables were 

integrated into the MI imputation model and the FIML analysis model to determine the 

effects when including these variables. The inclusion of important auxiliary variables was 

expected to influence parameter estimates and standard errors in a manner consistent with 

prior research (Collins et al., 2001). Table 2 summarizes these expectations. Thus, the 

choice of auxiliary variables was thoughtful to 1) identify the missing data mechanism 

and maximize the probability of meeting the MAR assumption, and 2) to evaluate the 
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impact of including quality auxiliary variables on both parameter estimates and standard 

errors. 

 As mentioned previously, it is generally recommended that auxiliary variables be 

included in the analysis if they are significantly related to either missingness or to the 

variable with missing values (Enders, 2010). For the purposes of this study, it was also 

important to consider the auxiliary variables that would be available in a typical 

operational testing program. For example, scores on the same variable measured at 

multiple time points are often very highly correlated (Raymond, Neustel, & Anderson, 

2009). Thus, pretest score is recommended to be included as an auxiliary variable when 

imputing/analyzing posttest scores (Graham, 2009). Pretest scores are often readily 

available in the context of higher education accountability data. That is, the university 

typically collects pretest data as a part of the assessment design.  

Additionally, a number of variables are commonly available to university 

assessment coordinators through university student information systems. These variables 

often include general demographic information (e.g., gender, age), admission test scores 

(e.g., SAT scores), as well as college performance and completion measures (e.g., GPA, 

credit hours completed). Given their ready availability at many institutions, these 

variables would be ideal candidates for auxiliary variables. 

The current assessment design involves measuring a number of other constructs 

besides mastery orientation and scientific reasoning at both pretest and posttest. 

However, note that the typical assessment practitioner would not have access to posttest 

auxiliary variable scores if makeup data were not collected. That is, if a practitioner were 

to utilize MI or FIML instead of collecting makeup assessment data, that practitioner 
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would not be able to utilize posttest auxiliary variables, because scores on these variables 

would not be collected. However, this practitioner would have access to pretest auxiliary 

variable scores, which may serve as sufficient proxies of posttest auxiliary variable scores 

for the purposes of imputing and/or analyzing posttest scientific reasoning or mastery 

orientation scores with missingness. Thus, this study examined the utility of pretest 

auxiliary variable scores as proxies of posttest auxiliary variable scores, as detailed under 

Research Question 2 in Chapter 3. 

Ideally, only the most accessible auxiliary variables would be needed to meet the 

MAR assumption. For example, pretest scientific reasoning scores are likely to be highly 

related to posttest scientific reasoning scores, and they are already measured as a part of 

the typical assessment design. Even if missingness (R) was related to posttest scores (Y), 

this relationship may no longer be significant after controlling for pretest scores (X), thus 

meeting the MAR assumption. In this case, the auxiliary variables that are more difficult 

to obtain would be unnecessary to meet the MAR assumption. As detailed later in this 

chapter under Research Question 2, this study examined the extent to which the 

missingness mechanism would be considered MAR or MNAR after including different 

sets of auxiliary variables. Thus, practitioners could use this information to determine 

which variables would need to be obtained and included as auxiliary variables to obtain 

accurate parameter estimates and reduce standard errors. 

Auxiliary variables hypothesized to be related to missingness. Students attending 

the makeup testing sessions at posttest have been found to differ from students attending 

the Assessment Day testing sessions in a number of ways. Given that “missingness” is 

operationalized as attending a makeup testing session in this study, the variables with 
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differences between Assessment Day and makeup samples can potentially be utilized as 

auxiliary variables. Swerdzewski and colleagues (2009) found makeup students are more 

likely to be men, with makeup sessions comprised of 46% male students, as opposed to 

36% male students during the typical Assessment Day sessions. Compared to students 

attending Assessment Day, makeup students were also found to be older (d = .36), have 

lower GPAs (d = -.39), and have a higher number of earned credits at posttest (d = .28) 

than students attending Assessment Day. Additionally, compared to students attending 

the Assessment Day testing sessions, makeup students have also been found to have 

lower MAP scores (d = -.32), lower scores on a measure of performance-approach goal 

orientation (PAP, the motive to perform better than other students; d = .27), higher scores 

on work avoidance related to coursework (WAV; d = -.35), lower conscientiousness 

scores (d = -.28; Zilberberg, 2013), and also report lower test-taking effort (d = -.42) and 

perceived test importance (d = -.25). 

Combining the information from previous research creates a profile of the typical 

student attending a makeup testing session. This typical makeup student is more likely to 

be male, older, have a lower GPA, and have higher earned credits. The examinee also 

tends to be less motivated to perform well academically, less conscientious, more work 

avoidant, and less willing to put forth effort on tests or find them important. However, it 

was unclear if these relationships would replicate with the sample being used in the 

current study. It was also unclear whether all of the variables defining this student profile 

would also relate to posttest mastery orientation or scientific reasoning scores. Any 

variables hypothesized to relate to both Assessment Day attendance and posttest mastery 

orientation or scientific reasoning scores would be ideal candidates for auxiliary 
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variables, as including these variables would both reduce parameter bias and standard 

errors (Collins et al., 2001). However, if the variables defining the makeup student profile 

were not related to posttest scores, then including these variables as auxiliary variables in 

MI or FIML analyses is not likely to aid in parameter estimation. Thus, it was important 

to also examine variables that have been found to relate to mastery orientation or 

scientific reasoning scores.  

Given the relationships to “missingness” (i.e., Assessment Day vs. makeup 

attendance) discovered in previous research, gender, posttest age, posttest GPA, and total 

credits completed at posttest were obtained from the university student database and 

utilized as auxiliary variables for both mastery approach and scientific reasoning growth 

analyses (see Table 4). Additionally, both pretest and posttest scores on PAP, WAV, 

conscientiousness, and test-taking effort and importance were utilized as auxiliary 

variables for both mastery approach and scientific reasoning growth analyses. MAP 

pretest and posttest scores were used as auxiliary variables for scientific reasoning growth 

analyses. Note that pretest MAP scores are automatically included in the MI imputation 

model and FIML analysis model when conducting the mastery orientation growth 

analyses. 

Auxiliary variables hypothesized to be related to MAP scores. Previous research 

has found gender and SAT scores to predict MAP scores (Davis, Pastor, & Barron, 2004). 

Across multiple studies, MAP scores have been found to positively relate to 

performance-approach (PAP) scores (r = .28-.42), mastery-avoidance (MAV, the motive 

to avoid learning less than possible) scores (r = .22-.27), performance-avoidance (PAV, 

the motive to avoid performing worse than other students) scores (r = .06-.13) and work 
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avoidance (WAV) scores (r = -.58; Finney et al., 2004; Pieper, 2003). Additionally, 

mastery-approach orientation has been found to relate to Big Five personality variables, 

positively correlating with Openness (r = .44), Conscientiousness (r = .32), Extraversion 

(r = .29), and Agreeableness (r = .19), and negatively correlating with Neuroticism (r = -

.18; Payne, Youngcourt, & Beaubien, 2007). Mastery-approach orientation has also been 

found to relate positively to metacognitive strategies (r = .48; Howell & Watson, 2007), 

as well as test-taking effort and perceived test importance (effort r = .27-.34, importance 

r = .09-.23; Barry, 2010).  

Given this previous research, gender, SAT Math and Verbal scores, pretest 

metacognitive regulation scores, and pretest and posttest PAP, MAV, PAV, WAV, Big 

Five, and test-taking effort and importance scores were assessed as possible auxiliary 

variables. Unfortunately, metacognitive regulation was not measured at posttest due to 

testing time constraints. Fortunately, many of these variables were hypothesized to relate 

to both posttest mastery orientation scores and Assessment Day attendance (see Table 4). 

If these variables were found to relate to both “missingness” (Assessment Day vs. 

makeup) and posttest mastery orientation scores, the inclusion of these auxiliary variables 

in MI and/or FIML analyses should reduce both standard errors and parameter bias 

associated with posttest mastery orientation scores. 

Auxiliary variables hypothesized to be related to NW-9 performance. Previous 

research has found the number of science credits completed by a student at posttest to be 

predictive of NW-9 scores, with students completing four or more science credits scoring 

five raw score points higher on average than students completing no science credits 

(Sundre, 2008). SAT Math scores have been found to be predictive of NW-9 test scores 
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(r = .46; Barry, 2010), and both SAT Math and SAT Verbal scores have been found to be 

predictive of scores on a previous version of the Natural World test (r = .38 and .46, 

respectively; Wise, Wise, & Bhola, 2006). Metacognitive regulation, or a student’s ability 

to regulate their own learning processes, has been found to be predictive of seventh grade 

English and science exams (r = .28; Pintrich & De Groot, 1990). Combined test-taking 

effort and importance were also found to relate to a previous Natural World test (r = .33, 

Sundre & Wise, 2003).  

Given these relations with cognitive test performance, SAT Math and Verbal 

scores, posttest earned science credits, pretest metacognitive regulation scores, and 

pretest and posttest test-taking effort and importance scores were examined as possible 

auxiliary variables. For the scientific reasoning scores, only test-taking effort and 

importance scores were hypothesized to relate to both “missingness” (Assessment Day 

vs. makeup) and posttest scientific reasoning scores (see Table 4). However, some 

variables hypothesized to be related to Assessment Day attendance have not been 

examined for relationships with scientific reasoning scores (e.g., age). Thus, these 

variables may be related to scientific reasoning scores, and thus may reduce standard 

errors and parameter bias when included as auxiliary variables.  

Auxiliary variable measures. The aforementioned auxiliary variables are 

presented in Table 4, along with their missingness proportions for both the noncognitive 

and cognitive test samples. Missingness proportions vary across measures due to some 

measures only being administered in certain testing configurations. Gender, age at 

posttest, SAT Math and Verbal scores, posttest GPA, total earned credits, and earned 

science credits were obtained via the university information system. Scores on the 
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remaining auxiliary variables were collected by administering the instruments outlined 

below. 

 Achievement Goal Questionnaire (AGQ). The 16-item Achievement Goal 

Questionnaire (AGQ, Finney et al., 2004; Pieper, 2003) measures goal orientations 

relevant to learning and performance in college. Examinees respond to statements on a 

Likert scale from 1 (“Not at all true of me”) to 7 (“Very true of me”). The original 

measure consisted of four subscales, measuring mastery-approach (MAP, motive to 

master course material), performance-approach (PAP, motive to perform well relative to 

others), mastery-avoidance (MAV, motive to avoid learning less than possible) and 

performance-avoidance (PAV, motive to avoid performing worse than others) goal 

orientations. Pieper (2003) added four additional work avoidance (WAV) items, to 

measure the motive to avoid doing coursework. MAP, PAP, MAV, and PAV scores can 

range from 3 to 21, and WAV scores can range from 4 to 28. 

Big Five Inventory (BFI-44). The Big Five inventory (BFI-44, John & Srivastava, 

1999) is a 44-item measure designed to assess five dimensions of personality. These five 

dimensions include Openness (intellectual, imaginative, independent-minded), 

Conscientiousness (orderly, responsible, dependable), Extraversion (talkative, assertive, 

energetic), Agreeableness (good-natured, cooperative, trustful), and Neuroticism 

(uncalm, easily upset) (John & Srivastava, 1999). Participants were asked to respond to a 

series of statements using a scale from 1 (“Disagree Strongly”) to 5 (“Agree Strongly”). 

Extraversion and Neuroticism were each measured by 8 items (with scores ranging from 

8 to 40), Agreeableness and Conscientiousness were each measured by 9 items (with 
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scores ranging from 9 to 45), and Openness was measured by 10 items (with scores 

ranging from 10 to 50). 

Metacognitive Awareness Inventory - Regulation (MAI-R). The Regulation 

subscale of the Metacognitive Awareness Inventory (MAI-R; Schraw & Dennison, 1994) 

is a 35-item measure designed to assess the ability to implement study strategies to 

regulate one’s learning. Participants were asked to respond to a series of statements using 

a scale from 1 (“Always False”) to 5 (“Always True”). Thus, scores ranged from 35 to 

175. This measure was only administered during the Fall 2007 pretest, and not the Spring 

2009 posttest. 

Student Opinion Scale (SOS). The Student Opinion Scale (SOS; Thelk, Sundre, 

Horst, & Finney, 2009) is a 10-item measure designed to measure examinee test-taking 

motivation. The SOS consists of two 5-item subscales: Effort (how much effort the 

examinee reports putting forth on a test) and Importance (how much importance the 

examinee places on a test). Participants were asked to respond to a series of statements 

using a scale from 1 (“Strongly Disagree”) to 5 (“Strongly Agree”). Thus, both Effort and 

Importance scores ranged from 5 to 25. 

Data Analysis 

 Analyses for all of the research questions below were conducted using Mplus 

Version 7.11 (Muthén & Muthén, 1998-2013). 

Research question 1: Examining posttest response validity. A multiple-group 

analysis was conducted to determine the extent to which makeup examinees are 

providing valid responses at posttest. As mentioned previously, students attending 

posttest makeup sessions may be responding randomly due to reduced test-taking effort. 



68 

 

 

As a result, the complete dataset analyses would be biased by including the makeup data, 

as the growth estimates obtained using these data would not be representative of true 

student growth. To examine this possibility, multiple-group models were specified 

predicting posttest scores from pretest scores for both the Assessment Day and makeup 

samples (see Figure 4). Posttest scores were regressed on pretest scores as: 

                                                            Y i bX e    (6) 

where Y is posttest score, X is pretest score, i is an intercept parameter, b is the slope 

predicting posttest score (Y) from pretest score (X), and e is a normally distributed 

residual term representing the variance in posttest score (Y) unexplained by pretest score 

(X). In the unconstrained model, the intercept (i), slope (b), and residual variance (e) are 

estimated separately for the Assessment Day and makeup samples. The fit of four 

constrained models were assessed to determine the extent to which students in the 

makeup sample provided valid responses. First, intercepts (i) were constrained to be 

equal across the Assessment Day and makeup samples. Second, slopes (b) were 

constrained to be equal across groups. Third, residual variances (e) were constrained to 

be equal across groups. Fourth, all regression parameters (intercepts, slopes, and residual 

variances) were constrained to be equal across groups. The model-data fit was examined 

for all four of these models. Fit was assessed by examining the χ
2
 statistic, the 

comparative fit index (CFI), and the root mean squared error of approximation 

(RMSEA). A statistically significant χ
2
 value indicates that the constrained model fits 

significantly worse than the freely-estimated model. The χ
2
 statistic quantifies the 

absolute model-data fit, whereas the CFI and RMSEA quantify relative approximate fit 

(Hu & Bentler, 1998). Hu and Bentler (1999) considered CFI values larger than .95 and 
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RMSEA values less than .06 to indicate adequate model data fit, although Marsh, Hau, 

and Wen (2004) indicated that these values can be influenced by model size and variable 

correlation magnitude, making universal guidelines difficult to follow in practice.  

In a sense, the models regression models described above are testing the 

assumptions made when specifying a pattern-mixture model (Little, 1993). In these 

models, it is assumed that a different growth pattern or relationship between variables 

may underlie each missing data pattern. However, these relationships are empirically 

underidentified, given different time points are missing for different patterns. Thus, the 

pattern-mixture models specify some parameters (e.g., pre-post slope) to be equivalent 

across missing data patterns. Given that missing data were collected during makeup 

sessions, these constraints can be tested for statistical and practical misfit.  

Ideally, the fourth model (with all regression parameters constrained to be 

equivalent across groups) should sufficiently fit the data, indicating that the relationship 

between pretest and posttest scores remains constant across the Assessment Day and 

makeup samples. However, if the fourth model does not fit the data, this misfit could be 

due to less effortful responding at posttest by the makeup sample. Compared to the 

Assessment Day sample, this lack of effort by the makeup sample could manifest in a 

different intercept (e.g., makeup examinees scored lower on average on the cognitive test 

at posttest than would be predicted for the Assessment Day sample with the same pretest 

scores), lower slope (indicating that pretest scores do not predict posttest scores as 

strongly for makeup examinees), or increased residual variance (indicating an increase in 

unexplained variability in posttest scores introduced by random responding by the 

makeup examinees). If the fourth model does not fit the data, the first three models 
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should provide information on the parameters that differ across Assessment Day and 

makeup examinees. 

 Research question 2: Examining the missing data mechanism. What missing 

data mechanism underlies posttest non-attendance? As mentioned previously, the missing 

data mechanism is determined by the relationships between a dichotomous missingness 

variable R, the variable with missingness Y, and other dataset variables (i.e., auxiliary 

variables). The missing data mechanism is considered MCAR if missingness R is 

unrelated to both Y and other dataset variables (X), MAR if R is unrelated to Y conditional 

on other dataset variables (X), and MNAR if R remains related to Y conditional on other 

dataset variables (X). In most missing data scenarios, the exact mechanism cannot be 

determined, as values of Y are missing for all cases where R = 0. However, in this study, 

the initially missing posttest scores were recovered via a makeup testing session. 

Referring to Table 1, the values of the “missing” data (Y) were known, thus the missing 

data mechanism could be empirically determined. 

To assess the linear relationship between missingness (R) and both the variables 

of interest (Y) and the other variables in the dataset (i.e., the auxiliary variables noted 

above), a series of correlation and regression models were estimated. First, to test the 

MCAR assumption, the simple bivariate relationships between missingness (R), posttest 

scores (Y), and other measured variables (X) were estimated. These “other measured 

variables” were the auxiliary variables discussed above. Given that the auxiliary variables 

also had missing values (see Table 4), bivariate relationships between missingness (R), 

posttest scores (Y), and other measured variables (X) were estimated following MI of all 
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missing auxiliary data. If missingness (R) was unrelated to both posttest scores (Y) and 

other measured variables (X), the missingness mechanism could be considered MCAR.  

Second, the partial correlation between posttest attendance (R) and posttest scores 

(Y) was estimated after controlling for each of the auxiliary variables (X), including 

pretest scores. This would provide some indication of the variables that independently 

moderate the relationship between posttest attendance (R) and posttest scores (Y). If the 

partial correlation between posttest attendance (R) and posttest scores (Y) after 

controlling for a given auxiliary variable (X) is substantially lower than the bivariate R-Y 

correlation, this would indicate that the auxiliary variable (X) is an important moderator 

for the R-Y relationship, and thus should be included as an auxiliary variable to reduce 

parameter bias and standard errors. 

Third, multiple regression analyses were conducted to further examine the 

missing data mechanism. Auxiliary variables (Xs) were entered in blocks in multiple 

regression analyses predicting posttest scores (Y), in the order of their ease to obtain for 

the typical assessment practitioner. Pretest score on the construct of interest (scientific 

reasoning or mastery orientation) was entered first as the most easily accessible auxiliary 

variable, given pretest scores are commonly collected as part of the pre-post assessment 

design. Then, university student information system variables were entered, followed by 

pretest scores on other constructs (i.e., not the construct of interest), followed by posttest 

scores on other constructs. The variance explained (R
2
) and additional variance explained 

by each subsequent model (R
2
 change) were estimated to determine the additional 

predictive utility of each block of predictors. If the additional variance explained by a 

subsequent block of predictors was insignificant, this would indicate that the block is not 
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needed to predict additional posttest score variance, and thus would not be useful to 

include as auxiliary variables to reduce standard errors. This would help assessment 

practitioners identify the auxiliary variables that are absolutely necessary to collect to aid 

in MI and FIML analyses.  

Fourth, the partial correlation between posttest attendance (R) and posttest scores 

(Y) was estimated for each of the regression models described above. The partial 

correlation quantifies the relationship between posttest attendance (R) and posttest scores 

(Y) conditional on the other variables in the regression model. If the partial correlation 

was negligible for a given model, the MAR assumption would be met after conditioning 

on the variables included within that model. However, if this partial correlation was non-

negligible for a given model, then the mechanism would be considered MNAR when 

conditioning on the variables included within that model. Thus, examining the partial 

correlation values provides an indication of the circumstances under which the MAR 

assumption is satisfied, as well as which combination of auxiliary variables should be 

included in MI or FIML analyses to meet the MAR assumption. 

Note that, if assessment practitioners were to forego makeup testing and instead 

utilize MI or FIML with auxiliary variables, they would not have access to auxiliary 

variables collected at posttest for examinees with missing posttest scores on the construct 

of interest (mastery orientation or scientific reasoning). However, if the MAR assumption 

can be met using pretest auxiliary variables, then posttest scores on these same auxiliary 

variables would be unnecessary. Note the previously referenced research established 

relationships between the potential auxiliary variables and Assessment Day attendance, 

mastery orientation scores, and/or scientific reasoning scores when these scores were 
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collected at the same testing session. That is, prior research suggests that posttest scores 

on these auxiliary variables are predictive of posttest Assessment Day attendance, 

mastery orientation, or scientific reasoning, but it is unclear whether pretest scores on 

these auxiliary variables can serve as sufficient proxies of posttest scores on these same 

measures. Although it is reasonable to expect pretest scores on stable constructs (e.g., 

conscientiousness; John & Srivastava, 1999) to serve as proxies of posttest scores on the 

same construct, this expectation may not hold for constructs that change substantially 

over time (e.g., test-taking effort, Barry, 2010). Thus, it was important to compare the 

impact of including pretest auxiliary variables as proxies of posttest auxiliary variables 

versus including the posttest auxiliary variables themselves. Assessing the utility of 

pretest auxiliary variables as proxies of posttest auxiliary variables involved 1) examining 

the bivariate correlations between pretest and posttest auxiliary variable scores to 

determine the stability of auxiliary variable scores over time, 2) examining the difference 

between how pretest versus posttest auxiliary variable scores related to posttest 

attendance (R) and posttest scores (Y), and 3) comparing multiple regression models 

including or excluding posttest auxiliary variable scores to determine if posttest auxiliary 

variables provided posttest score predictive utility above and beyond pretest auxiliary 

variables. If posttest auxiliary variables are only moderately correlated (i.e., not collinear) 

with pretest auxiliary variables, are more strongly related to posttest attendance (R) or 

posttest scores (Y), and/or provide additional predictive utility above and beyond pretest 

auxiliary variables, posttest auxiliary variables may be needed to obtain more accurate 

parameter estimates or standard errors from MI or FIML analyses. 
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Note that previous research indicates that excluding an auxiliary variable that is 

linearly related to the variable with missingness (Y) but nonlinearly related to 

missingness (R) can result in biased variance and covariance estimates associated with Y 

(Collins et al., 2001). Specifically, convex relationships, where missingness percentages 

are higher at the extremes of the auxiliary variable distributions, were found to result in 

significant variance and covariance estimate bias. Thus, overlapping density distributions 

of the Assessment Day and makeup samples were examined to screen for nonlinear 

relationships between posttest attendance (R) and the auxiliary variable scores (X). If 

posttest attendance (R) were not nonlinearly related to any auxiliary variables (X), the 

auxiliary variable distribution of the Assessment Day and makeup samples would have 

approximately equivalent shape. However, if more students from the makeup sample 

score in the extremes of the auxiliary variable distribution than students from the 

Assessment Day sample, this pattern would indicate that there is a convex relationship 

between posttest attendance and that auxiliary variable. If a convex relationship exists 

between a dataset variable and Assessment Day attendance, that dataset variable should 

be included as an auxiliary variable in MI and FIML analyses to reduce bias in variance 

and covariance estimates. 

When conducting these analyses to identify the missing data mechanism, it was 

important to take into account both statistical significance and practical significance (i.e., 

effect size). For example, assume that missingness (R) was statistically significantly 

bivariately related to a dataset variable (X), but the point-biserial correlation between the 

two variables is only r = .05. In this case, the MCAR assumption is violated in the strict 

sense, but there are unlikely to be any practical consequences of this violation. That is, 
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utilizing listwise deletion would likely not result in large biases in posttest score (Y) 

parameters, given the practically small relationship between missingness (R) and posttest 

scores (Y). There is no strict cutoff for the magnitude of the relationship between R and Y 

that is problematic, given the parameter and standard error bias also depend on the 

percentage of missingness and the specific analysis being conducted (McKnight et al., 

2007). However, simulation studies often create missing data by deleting values 

completely dependent on the values of the auxiliary variables (to simulate a MAR 

mechanism) or the values of the variable with missingness (to simulate a MNAR 

mechanism), creating a strong relationship between missingness (R) and the variable with 

missingness (Y) (e.g., Collins et al., 2001; Enders & Bandalos, 2001). Although statistical 

significance is mainly being considered when identifying the missing data mechanism 

and building auxiliary models in the current study, the magnitude of relationships 

between auxiliary variables (X), posttest scores (Y), and missingness (R) were considered 

when examining and interpreting the results of later analyses (see Research Question 3).  

Research question 3: Comparing missing data handling techniques. To what 

extent are results affected by using different missing data handling techniques? Simply 

identifying the missing data mechanism (e.g., MCAR, MAR, MNAR) and the pattern of 

missingness does not indicate the extent to which results are biased by the missingness. 

For example, the posttest makeup assessment data could be considered MNAR, but the 

proportion of missingness may be low enough that MCAR- or MAR-based missing data 

handling techniques do not introduce practically significant bias to parameter estimates. 

Thus, the results of different approaches to analyzing missing data were compared to 

each other, and, most importantly, to the results obtained using the complete dataset. 
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Specifically, posttest mean, posttest variance, pretest-posttest covariance, and pre-post 

mean difference were estimated utilizing different missing data handling techniques and 

using the complete dataset. The discrepancy between the estimates and their associated 

standard errors obtained via different missing data techniques and the complete dataset 

were then examined. 

Standardized parameter discrepancy was examined by: 

          
ˆ ˆ
method complete

complete

sDiscrepancy
SE

 
             (6) 

where the parameter estimate obtained from analyzing the complete data ( ˆ
complete ) is 

subtracted from the parameter estimate obtained from utilizing a missing data handling 

method ( ˆ
method ) and divided by the standard error of the parameter estimate obtained 

from the analyzing the complete data (
completeSE ). Standardized parameter discrepancy 

quantifies the standard error difference between the parameter estimate obtained by 

utilizing a missing data handling method and the parameter estimate obtained by 

analyzing the complete data. This estimate is comparable to standardized bias computed 

by Collins and colleagues (2001):  

ˆ
meansBias

SE

 


        (7) 

where the average parameter estimate across replications ( ˆ
mean ) is subtracted from the 

true parameter ( ), and divided by the standard deviation of the parameter across 

replications (SE). Collins and colleagues (2001) suggest standardized bias can be 

interpreted similarly to Cohen’s d, and values of > |.4| can be considered practically 

significant. However, the parameter estimates obtained from analyzing the complete data 
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( ˆ
complete ) and utilizing a missing data handling method ( ˆ

method ) are both point estimates 

utilizing a single sample. Thus, these estimates can be influenced substantially by 

sampling error. By contrast, ˆ
mean  is an average of parameter estimates across many 

replications, and is not as affected by sampling error as a single point estimates. 

Similarly,   is usually set by the researcher and is assumed to be error-free. Thus, the 

standardized discrepancy estimates computed in this study can be substantially larger 

than standardized bias estimates simply due to the impact of sampling error on the 

parameter estimates. Standardized discrepancy, then, can be interpreted more similarly to 

a z-score rather than a Cohen’s d estimate. For this study, standardized discrepancy 

values greater than |2| were considered larger than would be expected given sampling 

error, and were flagged as exhibiting substantial bias. 

 Following Arbuckle (1996) and Enders and Bandalos (2001), standard errors were 

compared by computing relative efficiency (RE) estimates: 

                                                            
2

2

method

complete

SE
RE

SE
             (8) 

where the squared standard error of the parameter estimate obtained via the missing data 

handling method ( 2

methodSE ) is divided by the squared standard error of the parameter 

estimate obtained by analyzing the complete dataset (
2

CompleteSE ). Thus, values closer to 1 

indicate comparable standard error estimates between the missing data handling method 

and the complete data, whereas values greater than 1 indicate standard error inflation due 

to utilizing the missing data handling method. Given that the squared standard error is 

inversely related to sample size, the RE estimate also quantifies the sample increase 

needed for the missing data handling method to achieve the same precision as analyzing 
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the complete data (Arbuckle, 1996). For example, a RE value of 1.10 would indicate that 

the sample size of the missing data handling method dataset would need to increase by 

10% to achieve the same precision as analyzing the complete dataset.  

The following are the missing data results that were compared: 

Method 1 – Complete dataset: The data obtained from the makeup sample were 

combined with the data obtained from the Assessment Day sample. Thus, there was no 

missingness in this data analysis. Posttest mean, posttest variance, covariance with 

pretest, and pre-post mean difference estimates were then obtained using this complete 

dataset.  

Method 2 – Listwise deletion: The makeup sample was not included in the 

estimation of parameters (i.e., posttest mean, posttest variance, pretest-posttest 

covariance, and pre-post mean difference). This method aligns with current practice 

associated with this large-scale testing program. Sample Mplus syntax associated with the 

analyses for Methods 1 and 2 is presented in Appendix A. 

Method 3 – Multiple imputation without auxiliary variables: Makeup posttest data 

was treated as missing. The makeup posttest data values were then multiply-imputed, 

without utilizing any auxiliary variables. It is recommended that, at a minimum, any 

variables included in the analysis model should be included in the imputation model 

(Enders, 2010). Thus, only pretest scores were used to impute posttest scores. Given the 

relative efficiency of measures of association remained high in simulation studies using 

20 imputations, even at high amounts of missingness (Graham, Olchowski, & Gilreath, 

2007), 20 datasets were imputed. Preliminary analyses suggested that 2500-2700 

iterations were sufficient for convergence across all conditions. To be conservative, 5000 
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iterations were used between imputed datasets in all conditions. Sample Mplus syntax 

specifying imputation of posttest data can be found in Appendix B, and sample analysis 

syntax utilizing the multiple imputed datasets can be found in Appendix D. 

Method 4– Multiple imputation with university database and pretest auxiliary 

variables: Makeup posttest data were treated as missing. The makeup posttest data values 

were then multiply-imputed using university database and pretest auxiliary variables to 

aid in imputation. As mentioned previously, a typical assessment practitioner would not 

have access to posttest auxiliary variables if posttest makeup data were not collected. 

Thus, it was important to compare the results when including and excluding posttest 

auxiliary variables. As with Method 3, 20 datasets were imputed, and every 5000th 

iteration was extracted. Sample Mplus syntax specifying the imputation of this data can 

be found in Appendix C, and sample analysis syntax utilizing the multiple imputed 

datasets can be found in Appendix E. 

Method 5 – Multiple imputation with all auxiliary variables: Makeup posttest data 

were treated as missing. The makeup posttest data values were then multiply-imputed 

using all auxiliary variables (i.e., pretest, university database, pretest auxiliary variables 

and posttest auxiliary variables) to aid in imputation. As with Methods 3 and 4, 20 

datasets were imputed, and every 5000th iteration was extracted. Syntax for this 

imputation is found in Appendix D, and sample analysis syntax utilizing the multiple 

imputed datasets can be found in Appendix D. 

Method 6 – Full information maximum likelihood without auxiliary variables: 

Makeup data were treated as missing. Full information maximum likelihood was 

employed using only the student pretest scores to aid in the estimation of parameters and 
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standard errors. The Mplus syntax employing FIML to estimate the parameters of interest 

(i.e., posttest mean, posttest variance, pretest-posttest covariance, and pre-post mean 

difference) can be found in Appendix F. 

Method 7 – Full information maximum likelihood with university database and 

pretest auxiliary variables: Makeup posttest data were treated as missing. Full 

information maximum likelihood was employed using university database and pretest 

auxiliary variables. As mentioned previously, a typical assessment practitioner would not 

have access to posttest auxiliary variables if posttest makeup data were not collected. 

Thus, it was important to compare the results when including and excluding posttest 

auxiliary variables. Figure 3 provides a visual for this model and Appendix G provides 

the Mplus syntax. 

Method 8 – Full information maximum likelihood with all auxiliary variables: 

Makeup posttest data were treated as missing. Full information maximum likelihood was 

employed, using all auxiliary variables. Figure 3 provides a visual for this model and 

Appendix H provides the Mplus syntax. 

 Auxiliary variables included in Methods 4, 5, 7, and 8 are displayed in Table 4. 

Posttest auxiliary variables are only included in Methods 5 and 8. When incorporating 

auxiliary variables (from either pretest or posttest) with missingness into the MI 

imputation model, auxiliary missing values were imputed along with posttest scores. 

Auxiliary variables were incorporated into FIML analyses utilizing a saturated correlates 

model (see Figure 3), which can handle auxiliary variables with missing values (Enders, 

2008). 
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Comparing results. The results of these eight methods of analyzing the data were 

compared. The effectiveness of these different data analytic techniques should be 

dependent on the mechanism underlying the “missing” makeup data. If the data were 

determined to be MCAR, all eight methods should produce similar estimates of posttest 

mean, posttest variance, pretest-posttest covariance, and pre-post mean difference. 

However, the standard errors associated with these estimates should be slightly inflated.  

If the data were determined to be MAR, we would expect the missing data 

methods designed to effectively handle MAR data (Methods 3-8) to be more similar to 

the complete dataset results (Method 1) than methods not designed for MAR data 

(Method 2). Further, methods including auxiliary variables (Methods 4, 5, 7, and 8) 

should provide greater accuracy (i.e., parameters and standard errors closer to those 

obtained from the complete data) than methods excluding auxiliary variables (Methods 3 

and 6). As mentioned previously, the extent to which the inclusion of auxiliary variables 

reduces bias is dependent on the relationships between the included auxiliary variables, 

missingness, and posttest scores (Collins et al., 2001), which is examined in Research 

Question 2. 

If the missingness mechanism were found to be MNAR, we should expect all 

methods of handling the missingness to differ from the complete dataset results. 

However, methods including auxiliary variables (Methods 4, 6, 7, and 8) that partially 

moderate the relationship between missingness and missing data values should affect 

parameter estimates and standard errors in the ways summarized in Table 2. Further, MI 

and FIML analyses excluding auxiliary variables (Methods 3 and 6) utilize the pretest 

scores of students with missing posttest scores in the estimation of the various parameter 
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estimates. Thus, even in a MNAR data situation, methods including auxiliary variables 

(Methods 4, 5, 7, and 8) should provide greater accuracy (i.e., parameters and standard 

errors closer to those obtained from the complete dataset) than methods excluding 

auxiliary variables (Methods 3 and 6), and all MAR-based methods (Methods 3-8) should 

provide greater accuracy than listwise deletion (Method 2). 

 Research question 4: Percent of missingness. Do the results associated with the 

previous research questions depend on the percent of missingness? If the eight 

approaches to handling missing data yield similar parameter estimates and standard 

errors, this result could be due to the low percentage of missingness associated with both 

datasets (5.9% for noncognitive test data and 5.5% for cognitive test data).  To 

investigate this possibility, the analyses described above were repeated after the 

proportion of missingness was artificially inflated. This process was accomplished by 

randomly deleting student data from the Assessment Day sample to create datasets where 

missingness accounts for 25% or 50% of the complete data. This deletion was done while 

holding the makeup student data constant, so that makeup data accounted for 25% or 

50% of the overall dataset. Thus, the missing data mechanism was held constant as the 

proportion of “missing” (i.e., makeup) data was increased.  

For the noncognitive test sample, instead of the percentage of students who 

skipped the posttest equaling the observed 5.9% of the complete data, the percentage of 

students who attended a makeup session was 25% or 50% by reducing the proportion of 

students who initially attended the posttest. Thus, the “MAP 25% missingness” dataset 

consisted of 402 randomly selected Assessment Day attendees and the original 134 

makeup attendees, for a total of 536 examinees (134/536 = 25% missing). The “MAP 
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50% missingness” dataset consisted of 134 randomly selected Assessment Day attendees 

and the original 134 makeup attendees, for a total of 268 examinees (134/268 = 50% 

missing). The NW-9 25% and 50% missingness datasets were constructed in a similar 

manner. Although this approach increases the missing data percentage while maintaining 

the missing data mechanism, reducing the number of Assessment Day attendees in the 

dataset also results in a reduction of overall sample size. Thus, the results should be 

interpreted cautiously. Previous simulation studies have commonly used 25% and 50% 

missingness (e.g., Collins et al., 2001). Importantly, missingness as high as 50% has 

occurred in educational testing programs such as NAEP (Chromy, 2005). Thus, these 

missingness percentages are realistic to many testing contexts. 

The results of these analyses should help inform assessment practitioners that may 

have higher proportions of missing data. That is, practically small biases or standard error 

inflation at low missingness proportions may become problematically large at high 

missingness proportions. Thus, assessment practitioners encountering a high proportion 

of missingness due to nonattendance may need to adopt different approaches from 

assessment practitioners encountering lower missingness proportions. 

 Research question 5: Noncognitive versus cognitive. Do the answers to the 

previous research questions depend on whether the construct being examined is 

noncognitive or cognitive in nature? Parameters and standard errors associated with 

cognitive exam scores may be more affected by treating these scores as missing than 

parameters and standard errors associated with noncognitive measures. To assess this 

possibility, all of the analyses were conducted twice: once when modeling noncognitive 

test data (MAP scores) and again when modeling cognitive data (NW-9 scores).  
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If the results differed depending on whether cognitive or noncognitive data were 

being analyzed, best practices for handling posttest nonattendance missingness would 

depend on the construct being examined. For example, pre-post mean difference 

parameter estimates may be unbiased when multiply imputing posttest MAP scores, but 

biased when multiply imputing posttest NW-9 scores. In this case, assessment 

practitioners would be able to utilize MI for missing noncognitive posttest data, but 

would need to conduct makeup testing sessions for missing cognitive posttest data.  



 

 

 

 

CHAPTER FOUR 

Results 

Noncognitive Measure (MAP) Results 

 Research question 1: Examining posttest response validity. A multiple group 

analysis indicated that posttest MAP scores from the makeup sample may have increased 

random responding. Low effort and random responding should reduce the MAP pre-post 

slope or increase the posttest residual variance, resulting in diminished posttest score 

validity for the makeup sample compared to the Assessment Day sample. Table 5 

presents the pretest and posttest means and variances, as well as the freely estimated 

intercepts, pre-post slopes, and posttest residual variances for each group. The posttest 

mean was smaller and posttest variance was larger for the makeup sample than the 

Assessment Day sample. As would be expected if low motivation manifested in increased 

random responding, the pre-post slope was smaller and the posttest residual variance was 

larger for the makeup sample.  

Table 6 presents the fit information for constraining the posttest intercepts, pre-

post slopes, posttest residual variances, or all three to be equivalent across groups. The fit 

of Models 1 and 2 are sufficient, indicating that the posttest intercepts and pre-post slopes 

are equivalent across groups. However, Models 3 and 4 are associated with poor relative 

fit indices and statistically significant χ
2
 tests, indicating the posttest residual variance is 

different across groups. The increased residual variance indicates the makeup examinees 

may have engaged in more rapid and thoughtless responding due to low motivation to 

perform.   
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Given the increased residual variance in posttest MAP scores for the makeup 

examinees, makeup student responses may be a less valid representation of student 

mastery approach orientation than Assessment Day student responses. Thus, parameter 

estimates obtained when excluding makeup student responses may be a more valid than 

those obtained when including makeup student responses. Specifically, including makeup 

posttest data could bias estimates of posttest variance, given posttest variance was 

inflated in the makeup sample. As a result, discrepancies between the variance when 

analyzing the complete (i.e., including makeup) dataset and the variance when treating 

makeup data as missing may not reflect true “bias” by the missing data handling 

techniques, but instead reflect the “bias” resulting from including invalid makeup posttest 

responses. Note also that this increased posttest variance may be a function of a subset of 

makeup examinees responding randomly, rather than the entire sample. The potential for 

invalid posttest MAP responses by the makeup sample will be considered in conjunction 

with the findings of the following research questions. 

Research question 2: Examining the missing data mechanism. Bivariate 

relationships were examined between posttest attendance (R), posttest MAP scores (Y), 

and other measured dataset variables (X) to determine whether the MCAR assumption 

was met. Table 7 presents the descriptive statistics for these variables, and Table 8 

presents the bivariate linear relationships. Note that pretest MAP score was significantly 

related to posttest MAP score (r = .382), but was not the strongest bivariate predictor of 

posttest MAP scores (Y). Posttest MAV and WAV scores were more strongly related to 

posttest MAP scores (r = .480 and -.500, respectively) than pretest MAP score, indicating 

that these posttest variables may need to be included as auxiliary variables to minimize 



87 

 

 

standard error inflation. Posttest attendance (R) was found to have a small but significant 

positive linear relationship with both pretest (r = .049) and posttest MAP scores (r = 

.138). Additionally, posttest attendance (R) was found to be significantly related to a 

number of other dataset variables, including gender, SAT verbal scores, GPA, pretest 

MAV, PAV, openness, conscientiousness, and agreeableness scores, and posttest PAP, 

PAV, WAV, conscientiousness, and agreeableness scores. Thus, compared to students 

attending Assessment day, the typical “makeup examinee” is more likely to be male with 

higher SAT verbal scores, lower GPA, lower mastery and performance orientation 

towards learning, higher work avoidance, and lower conscientiousness and agreeableness.  

The significant bivariate relationships between posttest attendance (R) and both 

posttest MAP scores (Y) and other dataset variables (Xs) indicated the MCAR assumption 

was violated. Further, all of the dataset variables that were related to posttest attendance 

(R) were also related to posttest MAP scores (Y). Thus, including these dataset variables 

as auxiliary variables should reduce the discrepancy between parameters obtained 

utilizing the complete dataset and those obtained utilizing MI or FIML, to the extent that 

these variables can moderate the relationship between missingness (R) and posttest MAP 

scores (Y), thereby transforming the MNAR mechanism to MAR. Note that this may not 

be reducing “bias”, as the results of Research Question 1 indicate that the makeup scores 

may be biased themselves to an extent. That is, students’ “true” levels of MAP are 

unknown, and thus true bias is difficult to assess. 

The magnitudes of the correlations between posttest attendance (R) and the 

auxiliary variables (Xs) were low in magnitude, ranging from r = -.083 to r = .110. 

Collins and colleagues (2001) have recommended auxiliary variables be included if they 
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are bivariately related to missingness or missing values above r = |.4|.  As a result, 

including these auxiliary variables may not greatly moderate the R-Y relationship, and 

thus not reduce parameter bias to a great extent. 

Nonlinear relationships with attendance (R) were also examined by comparing 

score distributions on all examined variables across Assessment Day attendees and 

makeup students. If a convex relationship was found between R and a dataset variable 

(i.e., missingness rates were higher at the high and low ends of the variable distribution), 

the dataset variable should be included as an auxiliary variable to reduce variance and 

covariance estimate bias. These density distributions are presented in Appendix I. No 

substantial nonlinear relationships were found between attendance (R) and any other 

examined variable. 

Given the MCAR assumption was violated and missingness (R) was related to 

posttest MAP scores (Y), the partial linear correlation between posttest attendance (R) and 

posttest MAP scores (Y) was computed after controlling for different individual dataset 

variables (Table 9) and sets of dataset variables (Table 10) to assess the extent to which 

the MAR assumption was met. Examining Table 9, note the individual dataset variables 

that most moderated the relationship between posttest attendance (R) and posttest MAP 

scores (Y), resulting in a lower partial R-Y correlation, were all posttest variables (posttest 

WAV, Conscientiousness, and Agreeableness). Additionally, examining Table 10, the 

partial correlation between posttest attendance (R) and posttest MAP scores (Y) decreased 

as more dataset variables were added, and was lowest when posttest auxiliary variables 

were included. The reduced R-Y partial correlation when posttest auxiliary variables were 

included indicates that posttest auxiliary variables may need to be included to minimize 
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parameter bias. Additionally, the variance explained by the model including posttest 

auxiliary variables (R
2
 = .526) was substantially higher than the variance explained by the 

model excluding posttest auxiliary variables (R
2
 = .198), indicating that posttest auxiliary 

variables may need to be included to minimize standard error inflation. However, the 

partial correlation between posttest attendance (R) and posttest MAP scores (Y) remained 

significant after controlling for all dataset variables (partial r = .108), indicating that the 

MAR assumption was violated and the missingness mechanism can be considered 

MNAR. Additionally, this partial correlation (r = .108) was similar to the bivariate 

relationship between posttest attendance (R) and posttest MAP scores (Y) (r = .138), 

indicating that the auxiliary variables do not greatly moderate the relationship between R 

and Y. This small reduction in the partial correlation is not greatly surprising, given the 

weak relationships between the majority of auxiliary variables, posttest attendance (R), 

and posttest MAP scores (Y). Thus, the inclusion of these auxiliary variables is not likely 

to result in a substantial decrease in parameter “bias” (i.e., discrepancy between the 

complete dataset parameters and those obtained via MI or FIML procedures). 

In addition to identifying the MNAR missing data mechanism, it was important to 

fully understand the models being used to account for the missing posttest values (i.e., 

makeup data) in the MI and FIML analyses. To this end, regression coefficients and 

squared semipartial correlations are presented for each of the auxiliary regression models. 

The two models examined include university database and pretest auxiliary variables 

excluding posttest auxiliary variables (Table 11) and including all potential auxiliary 

variables (Table 12). Examining these tables also provides an indication of the utility of 

each auxiliary variable (X) for predicting posttest MAP scores (Y) after controlling for all 
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other auxiliary variables. Comparing these results to the bivariate results (Table 8) and 

the partial correlations after controlling for each individual auxiliary variable (Table 9) 

presents a complicating and somewhat confusing picture of which auxiliary variables are 

“most important”. For instance, pretest MAV score is significantly bivariately related to 

posttest MAP scores (r = .049), has a near-zero relationship with posttest MAP scores 

when other pretest auxiliary variables are included in the model (b = .000), which then 

becomes a significant negative slope when posttest auxiliary variables are included (b = -

.038). This set of values showcases that, when the auxiliary variables (Xs) are placed in a 

model together, a combination of moderator effects (leading to a reduction in some 

predictor slopes) and suppressor effects (leading to an increase in some predictor slopes) 

complicates the interpretation of the relationships between the auxiliary variables (Xs) 

and posttest MAP scores (Y). Importantly, the simple bivariate relationships may not 

provide the best indication of which auxiliary variables should be included in the MI and 

FIML analyses. 

Research question 3: Comparing missing data handling techniques. 

Comparisons of parameters and standard errors obtained utilizing the complete dataset 

versus the missing data handling methods are presented in Table 13. No parameters 

obtained via any of the missing data handling techniques were substantially discrepant 

from the complete dataset parameters. Standardized discrepancy estimates ranged from -

1.791 to 1.662 for listwise deletion. The utilization of MI or FIML (-1.742 to 1.431) and 

these techniques with auxiliary variables (-1.700 to 1.323) slightly reduced parameter 

discrepancy. Thus, the recommended inclusive analysis strategy (i.e., MI or FIML with 

all auxiliary variables) resulted in the lowest parameter discrepancy. 
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Standard error inflation was also minimal across all methods and parameters, with 

relative efficiency estimates ranging from 0.938 to 1.031 across all methods. MI and 

FIML did not offer substantial improvement in standard error inflation over listwise 

deletion and the inclusion of auxiliary variables with these techniques very slightly 

reduced standard error inflation for the majority of parameters. The minimal standard 

error inflation and bias may be due to the low percentage of missingness (5.9%). Thus, 

the parameters were estimated utilizing the various techniques with higher percentages of 

missingness. 

Research question 4: Percentage of missingness. The 25% and 50% 

missingness datasets were obtained to determine the extent to which parameter bias and 

standard error inflation occurred at higher percentages of missingness. Parameters and 

standard errors obtained utilizing the 25% and 50% missingness datasets are presented in 

Tables 14 and 15. Standardized discrepancy estimates in the 25% missingness condition 

were large across all missing data handling techniques for all parameters except pretest-

posttest covariance estimates. Across all missing data handling techniques, posttest mean 

and pre-post mean difference estimates were larger than the complete dataset, and 

posttest variance estimates were smaller than the complete dataset. As mentioned 

previously, increased random responding by makeup examinees manifested in a greater 

posttest residual variance for the makeup sample than the Assessment Day sample when 

predicting posttest scores from pretest scores. Thus, when posttest makeup data were 

treated as missing, posttest variance estimates were underestimated by the missing data 

handling techniques. Importantly, the positive relationship between posttest attendance 

and posttest MAP scores (i.e., MNAR) resulted in the overestimation of posttest mean 
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and pre-post mean difference parameters when makeup data were treated as missing. 

Notice that the utilization of MI or FIML techniques slightly improved posttest mean and 

variance estimates over listwise deletion. Moreover, the utilization of all auxiliary 

variables with MI or FIML reduced discrepancy estimates for all parameters except 

posttest variance estimates, which aligns with the reduced MNAR violations displayed in 

Table 10 (i.e., reduced R-Y partial correlation) when all auxiliary variables are included. 

Overall, the results suggest that the MCAR and MAR violations created substantial 

parameter discrepancies for the majority of parameters examined, which were 

ameliorated by utilizing advanced techniques (MI and FIML) with additional auxiliary 

variables. Additionally, standard error inflation was low across all parameters and 

handling techniques, and was lowest when all auxiliary variables were utilized in 

conjunction with MI or FIML.  

The missing data handling techniques were more problematic in the 50% 

missingness condition. All parameters with the exception of pretest-posttest covariance 

estimates showed significant discrepancy from the complete dataset parameters utilizing 

all missing data handling techniques except MI with all auxiliary variables. Again, across 

all methods, posttest mean and pre-post mean difference estimates were larger than the 

complete dataset, and posttest variance estimates were smaller. The addition of auxiliary 

variables helped reduce these discrepancies for both MI and FIML techniques, as would 

be expected given the reduction in MNAR effects when auxiliary variables were included 

(Table 10). Additionally, standard error inflation was problematic for the majority of 

parameters and handling techniques. Overall, it appears that the extent of MCAR and 

MAR violations created significant issues for all missing data handling techniques in the 
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50% missingness condition, but these issues were somewhat ameliorated with the 

utilization of advanced techniques (MI and FIML) and additional auxiliary variables. 

MAP results summary. Overall, the results from the MAP analyses conform to 

expectations given previous missing data research. Examining the partial correlations 

reveals that the addition of auxiliary variables (Xs) reduced the partial correlation 

between posttest attendance (R) and posttest MAP scores (Y), but only slightly. The 

partial correlation remained significant after controlling for all auxiliary variables, 

indicating a MNAR mechanism. Posttest auxiliary variables accounted for a large 

proportion of variance in posttest MAP scores independent of other auxiliary variables 

(R
2
 change = .328), with posttest MAV and WAV scores being strong bivariate predictors 

of posttest MAP scores. Accordingly, advanced missing data handling methods (MI and 

FIML) provided more accurate results than listwise deletion, and pursuing an inclusive 

analysis strategy (i.e., including more auxiliary variables) resulted in further accuracy. 

However, given the weak relationships between many auxiliary variables and 

missingness (R) and posttest scores (Y), including auxiliary variables did not greatly 

improve parameter estimates or standard errors overall. Given the MNAR mechanism, all 

techniques remained problematic at high proportions of missingness, with high parameter 

discrepancies and standard error inflation.  

Cognitive Test (NW-9) Results 

Research question 1: Examining posttest response validity. Similar to the 

MAP results, a multiple group analysis indicated that posttest NW-9 scores from makeup 

attendees may be compromised by decreased test-taking effort. This could manifest in a 

diminished NW-9 posttest intercept, a diminished pre-post slope, an increased posttest 
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residual variance for the makeup sample if low effort is resulting in diminished posttest 

score validity for the makeup sample compared to the Assessment Day sample. Table 16 

presents the pretest and posttest means and variances, as well as the freely estimated 

intercepts, slopes, and residual variances for each group. The makeup sample has a lower 

intercept and a higher posttest variance, pretest-posttest slope, and posttest residual 

variance compared to the Assessment Day sample. Table 17 presents the fit information 

for constraining the posttest intercepts, pre-post slopes, posttest residual variances, or all 

three to be equivalent across groups. The model constraining all three parameters to be 

equivalent across groups was associated with a statistically and practically significant 

decline in fit, with the largest residuals associated with the posttest mean, indicating that 

the intercepts are not equivalent across groups. Thus, Assessment Day and makeup 

students differ in posttest NW-9 scores after controlling for their pretest NW-9 scores, 

with makeup students scoring lower at posttest. This difference may be due to makeup 

students responding randomly to items due to lower motivation, resulting in more 

incorrect answers.  

Recall there was a greater residual variance associated with predicting posttest 

MAP scores from pretest MAP scores for makeup students compared to Assessment Day 

students. By contrast, makeup students had a lower predicted NW-9 posttest mean than 

Assessment Day students after controlling for pretest NW-9 score. When responding to 

MAP items, students rated their level of agreement with statements. Thus, random 

responding to posttest MAP items by makeup students would result in more variance in 

the ratings of agreement, resulting in an increased residual variance. NW-9 items are 

scored as correct or incorrect. In this instance, random responding to posttest NW-9 items 
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by makeup students would result in more incorrect items, leading to a lower NW-9 total 

score than would be predicted from their pretest score. Thus, both the NW-9 and MAP 

results suggest that makeup students responded more randomly or thoughtlessly at 

posttest than Assessment Day students. 

 Examining the density distributions of posttest NW-9 scores across groups (first 

graph in Appendix J) reveals that only a subset of makeup examinees may be responding 

randomly. That is, makeup posttest scores generally follow a negative skew, with only a 

few individuals scoring in the lower tail of the distribution. Thus, random responding 

may not be endemic to the entire makeup sample, and only a subset of makeup examinees 

are not putting forth effort on the NW-9 test.  

Given the reduced posttest mean after controlling for pretest score for the makeup 

examinees, makeup student responses may be a less valid representation of student 

scientific reasoning knowledge than Assessment Day student responses. Thus, parameter 

estimates obtained when excluding makeup student responses may be a more valid 

representation of average student scientific reasoning knowledge and growth than those 

obtained when including makeup student responses. Specifically, posttest mean and pre-

post mean change estimates may be biased by random responding in the makeup sample, 

given the lower intercept for that group compared to the Assessment Day attendee 

sample. As a result, discrepancies found between the parameters found when analyzing 

the complete (i.e., including makeup) dataset and the parameters found when treating 

makeup data as missing may not reflect true “bias” by the missing data handling 

techniques, but instead reflect the “bias” resulting from including invalid makeup posttest 
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responses. The potential for invalid posttest NW-9 responses by the makeup sample will 

be considered in conjunction with the findings of the following research questions. 

Research question 2: Examining the missing data mechanism. Bivariate 

relationships were examined between posttest attendance (R), posttest scientific reasoning 

scores (Y), and other measured dataset variables (X) to determine whether the MCAR 

assumption was met. Table 18 presents the descriptive statistics for these variables, and 

Table 19 presents the bivariate linear relationships. As expected, pretest NW-9 scores had 

the strongest bivariate relationship with posttest NW-9 scores (r = .663). Given the 

magnitude of this relationship, it is possible that the auxiliary variables (Xs) may not 

account for additional independent variance in posttest NW-9 scores (Y) after controlling 

for pretest NW-9 scores, and thus may not be important to gather.  

Although posttest attendance (R) had a nonsignificant negligible linear 

relationship with pretest (r = -.043) and posttest scientific reasoning scores (r = .059), 

posttest attendance (R) was significantly linearly related to gender, SAT verbal scores, 

pretest and posttest MAP scores, pretest Conscientiousness and MAI-R scores, and 

posttest WAV scores. The significant bivariate relationships between posttest attendance 

(R) and other dataset variables (Xs) indicated that the MCAR assumption was violated. 

Further, gender and SAT verbal scores were also significantly linearly related to posttest 

scientific reasoning scores (Y). Thus, including gender and SAT verbal as auxiliary 

variables should reduce parameter bias (given each variable was related to both 

missingness and scientific reasoning scores). However, although the magnitude of the 

relationship with posttest scientific reasoning scores was non-negligible (gender r = .169; 

SAT Verbal r = .536), the magnitudes of the correlations were low between posttest 
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attendance (R) and gender (r = -.105) and SAT Verbal scores (r = -.081). Thus, although 

the MCAR assumption is violated in a statistical sense, relatively little parameter bias 

may result from excluding these auxiliary variables from MI and FIML analyses.  

Nonlinear relationships were also examined by comparing score distributions on 

all examined variables across Assessment Day attendees and makeup students. If a 

convex relationship was found between R and a dataset variable (i.e., missingness rates 

were higher at the high and low ends of the variable distribution), the dataset variable 

should be included as an auxiliary variable to reduce variance and covariance estimate 

bias. These density distributions are presented in Appendix J. No substantial nonlinear 

relationships were found between attendance (R) and any other examined variable. 

 Given that the MCAR assumption was violated, the partial linear correlation 

between posttest attendance (R) and posttest scientific reasoning scores (Y) was computed 

after controlling for different individual dataset variables (Table 20) and sets of dataset 

variables (Table 21) to assess the extent to which the MAR assumption was met. 

Interestingly, the partial correlations between posttest attendance (R) and posttest 

scientific reasoning scores (Y) were greater than the bivariate relationship between R and 

Y (r = .059) after controlling for some individual dataset variables (pretest NW-9 scores, 

gender, SAT scores; see Table 20) and sets of dataset variables (increasing to .117 after 

controlling for pretest NW-9 scores, and to .149 after controlling for both pretest NW-9 

scores and university database variables; see Table 21). When the MAR assumption is 

typically discussed (e.g., Enders, 2010) or simulated (e.g., Collins et al., 2001), there is 

usually a significant bivariate relationship between missingness (R) and the variable with 

missing values (Y) that is spurious due to a shared relationship with another variable (X). 
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When this other variable (X) is controlled for, the partial relationship between 

missingness R and Y diminishes or disappears. However, in the current study, the partial 

relationship between R and Y increases as a result of controlling for other dataset 

variables. These findings indicate that statistical suppression is occurring when only the 

bivariate correlation is examined.  

Suppression is an oft-discussed statistical phenomenon in social science research 

(e.g., MacKinnon, Krull, & Lockwood, 2000) that can be difficult to understand. A 

suppressor variable is defined as  

a variable which increased the predictive validity of another variable (or set of 

variables) by its inclusion in a regression equation… Thus, a suppressor variable 

is not defined by its own regression weight but rather by its effects on other 

variables in a regression system. (Conger, 1974, pp. 36-37)  

For example, when pretest scientific reasoning score was added to the model, the partial 

correlation between posttest attendance (R) and posttest scientific reasoning scores (Y) 

was larger (.117) than the bivariate correlation between attendance and posttest scientific 

reasoning scores (.059). Thus, pretest scientific reasoning score was a suppressor 

variable for posttest attendance (R) in the prediction of posttest scientific reasoning 

scores (Y). This larger partial correlation is due to the pretest scientific reasoning scores 

having a negative relationship with posttest attendance (i.e., those with higher pretest 

scores are less likely to attend Assessment Day), but a positive relationship with posttest 

scientific reasoning scores (Y) (i.e., those with higher posttest scores are more likely to 

attend Assessment Day), as is evident when examining the partial correlation formula: 

.
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Inserting the correlations between posttest attendance (R), posttest scientific reasoning 

(Y) and pretest scientific reasoning (X) from Table 8 gives: 

.
2 2

.059 ( .043)*(.663)

1 ( .043) 1 (.663)
RY Xr
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.
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. .118RY Xr                            (6) 

 Conceptually, the bivariate relationship between posttest attendance (R) and posttest 

scientific reasoning scores (Y) ignores pretest scientific reasoning scores (X). That is, if 

the Assessment Day and makeup samples mean posttest scientific reasoning scores (Y) 

were compared there would not be a significant difference between the mean scores of 

the two groups. However, when pretest scientific reasoning score (X) is entered into the 

regression equation, the partial correlation quantifies the relationship between posttest 

attendance (R) and posttest scientific reasoning scores (Y) with pretest scientific 

reasoning score (X) held constant (Edwards, 1976). Thus, at each level of pretest 

scientific reasoning score (X), there is a significant positive relationship between posttest 

attendance (R) and scientific reasoning score (Y) - given equivalent pretest scores, 

students attending Assessment Day at posttest are significantly higher on posttest 

scientific reasoning than students attending makeup. 

Gender serves as an example of a categorical suppressor variable. Gender is 

negatively related to posttest attendance (r = -.105), but positively related to posttest 

scientific reasoning scores (r = .169). That is, men are less likely than women to attend 

their assigned assessment session at posttest, but score higher on average on the NW-9 

test than women. Thus, when the bivariate relationship between posttest attendance (R) 
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and posttest scientific reasoning scores (Y) is examined, gender (X) is ignored and there 

appears to be no relationship. However, at each level of gender (i.e., examining only 

males and examining only females), posttest attendance (R) and posttest scientific 

reasoning scores (Y) have a significant positive relationship. That is, women attending 

Assessment Day score higher than women attending makeup testing, and men attending 

Assessment Day score higher than men attending makeup testing. As a result, when 

gender (X) is included in the regression model, the partial correlation between posttest 

attendance (R) and posttest scientific reasoning scores (Y) increases.  

In sum, the partial correlations between posttest attendance (R) and posttest 

scientific reasoning scores (Y) indicated the MAR assumption was violated. Interestingly, 

the extent to which the mechanism could be considered MNAR (i.e., missingness related 

to Y) actually increased as more auxiliary variables were included in the regression 

model due to a number of suppressor variables present in the model (e.g., gender). This 

pattern mirrors those described in previous missing data simulation research (Thoemmes 

& Rose, in press) where conditioning on some auxiliary variables led to an increased R-Y 

covariance. In this previous research, inclusion of these auxiliary variables in MI or 

FIML analyses led to biased mean estimates. Thus, Thoemmes and Rose (in press) 

labeled these bias-inducing variables. Thoemmes and Rose (in press) also identified a 

number of alternative configurations where an auxiliary variable may introduce 

dependencies between R, Y, and unobserved variables related to R or Y themselves. Thus, 

suppression effects are only one kind of configuration that can result in biasing effects. 

Given the finding of a suppression mechanism, mean estimates may be biased when 

including these bias-inducing auxiliary variables (e.g., gender).   
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In addition to identifying the MNAR missing data mechanism, it was important to 

fully understand the models being used to account for the missing posttest values (i.e., 

makeup data) in the MI and FIML analyses. To this end, regression coefficients and 

squared semipartial correlations are presented for each of the auxiliary regression models. 

The two models examined include university database and pretest auxiliary variables 

excluding posttest auxiliary variables (Table 22) and including all potential auxiliary 

variables (Table 23). Examining these tables also provides an indication of the utility of 

each auxiliary variable (X) for predicting posttest NW-9 scores (Y) after controlling for 

all other auxiliary variables. Similarly to the MAP results, comparing the results of the 

regression models presented in Tables 22 and 23 to the bivariate relationships (Table 19) 

and the partial correlations after controlling for each individual auxiliary variable (Table 

20) presents an unclear picture of which auxiliary variables are “most important”. For 

instance, pretest WAV score is not significantly bivariately related to posttest NW-9 

scores (r = -.029), and is not a significant predictor of posttest NW-9 scores when only 

pretest auxiliary variables are included (b = .095), but it becomes a significant positive 

predictor when posttest auxiliary variables are included (b = .105). As with the MAP 

results, when the auxiliary variables (Xs) are placed in a model together, a combination of 

moderator effects (leading to a reduction in some predictor slopes) and suppressor effects 

(leading to an increase in some predictor slopes) complicates the bivariate relationships 

between the auxiliary variables (Xs) and posttest NW-9 scores (Y), and the simple 

bivariate relationships may not provide the best indication of which auxiliary variables 

should be included in the MI and FIML analyses. Additionally, it is unclear how the 

suppression effects that lead to an increased R-Y partial correlation after controlling for 
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the different auxiliary sets will affect parameter bias and standard errors when these 

auxiliary variables are included in MI and FIML analyses. 

Research question 3: Comparing missing data handling techniques. 

Comparisons of parameters and standard errors obtained utilizing the complete dataset 

versus the missing data handling methods are presented in Table 24. As would be 

expected given both the low rate of missingness (5.5%) and the weak relationships 

between posttest attendance (R) and both posttest scores (Y) and other variables (X), no 

parameters obtained via any of the missing data handling techniques were substantially 

discrepant from the complete dataset parameters. Standardized discrepancy estimates 

ranged from -0.685 to .888. Note, however, that the addition of university database and 

pretest auxiliary variables slightly increased standardized discrepancy estimates for both 

the posttest mean and pre-post mean difference estimates when utilizing MI or FIML. 

This slight increase in discrepancy is likely due to the R-Y dependencies introduced by 

certain variables noted above (e.g., gender), given previous research has found similar 

effects (Thoemmes & Rose, in press). 

Standard error inflation was also minimal, with relative efficiency estimates 

ranging from 0.964 to 1.028. Utilizing advanced missing data handling methods (MI or 

FIML) slightly reduced standard error inflation compared to listwise deletion. However, 

the inclusion of auxiliary variables did not consistently reduce standard errors. This lack 

of standard error improvement may be due to pretest NW-9 score (which is included in 

the no-auxiliary MI and FIML models) being highly correlated with posttest NW-9 scores 

(r = .663). Thus, the inclusion of auxiliary variables resulted in a comparatively small 

improvement in the prediction of posttest NW-9 scores (model R
2
 improving from .440 to 
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.562). This finding is in contrast to the MAP results, where auxiliary variable inclusion 

resulted in a large increase in the proportion of variance explained in posttest MAP 

scores. As a result, the inclusion of auxiliary variables had little effect on standard error 

inflation associated with the NW-9 parameters. Additionally, the minimal standard error 

inflation and bias may be due to the low percentage of missingness (5.5%). Thus, it was 

important to proceed with estimating parameters and standard errors at higher rates of 

missingness. 

Research question 4: Percentage of missingness. The 25% and 50% 

missingness datasets were created to determine the extent to which parameter bias and 

standard error inflation occurred at higher percentages of missingness. Parameters and 

standard errors obtained utilizing the 25% and 50% missingness datasets are presented in 

Tables 25 and 26. As expected, standardized discrepancy estimates in the 25% 

missingness condition were larger than in the 5.5% missingness condition, but were not 

large in an absolute sense. Again, discrepancy estimates were slightly higher for posttest 

mean and pre-post mean difference estimates when university database and pretest 

auxiliary variables were included in MI and FIML analyses. Standard error inflation was 

minimal for most parameters and handling techniques. However, standard error inflation 

was problematic for pre-post mean difference estimates across conditions. Inflation was 

lower than other handling methods for MI utilizing university database and pretest 

auxiliary variables, but this result may have been idiosyncratic of the 20 imputations 

used. In the other conditions, pre-post mean difference relative efficiency estimates 

ranged from 1.211 to 1.266. Thus, the sample size would have to be increased by 
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between 21.1% and 26.6% to obtain the same standard errors utilizing the missing data 

techniques that were obtained utilizing the complete dataset. 

As expected, standardized discrepancy and relative efficiency estimates were 

larger in the 50% missingness condition compared to the 5.5% and 25% conditions. 

Additionally, the FIML analysis including all auxiliary variables did not converge. As 

mentioned previously, FIML analyses with large numbers of auxiliary variables can 

create estimation problems (Savalei & Bentler, 2009). Thus, the nonconvergence in the 

all-auxiliary FIML analysis may be due to the large number of auxiliary variables relative 

to the number of individuals in this sample (20 auxiliary variables and 92 cases). Posttest 

mean estimates were greatly positively discrepant (i.e., estimates were larger than those 

obtained analyzing the complete dataset) utilizing all methods except listwise deletion. 

Additionally, posttest mean standard error inflation was large when utilizing listwise 

deletion. Posttest variance estimates were greatly negatively discrepant (i.e., estimates 

were smaller than those obtained analyzing the complete dataset) utilizing all methods 

except MI with auxiliary variables, and standard error inflation was large when utilizing 

MI with all auxiliary variables. Pre-post mean change was greatly positively discrepant 

(i.e., estimates were larger than those obtained analyzing the complete dataset) when 

utilizing all missing data handling techniques, and standard errors were substantially 

inflated. As mentioned previously, increased random responding by makeup examinees 

manifested in lower posttest NW-9 scores than would be expected given their pretest 

NW-9 scores. Thus, when makeup posttest data are treated as missing, posttest mean and 

pre-post mean difference parameters are overestimated. Overall, it appears that excluding 
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makeup students results in smaller variance and covariance estimates and larger posttest 

mean and pre-post mean difference estimates. 

Utilizing advanced techniques with additional auxiliary variables appears to 

provide more accurate variance and covariance estimates, but less accurate posttest mean 

and pre-post mean difference estimates. The decreased mean and mean difference 

accuracy is most severe when only university database and pretest auxiliary variables are 

included in conjunction with MI or FIML. Note that the condition only utilizing 

university database and pretest auxiliary variables also resulted in one of the largest 

partial correlations between posttest attendance and posttest scientific reasoning scores 

(partial = .143; see Table 21). Thus, including bias-inducing suppressor auxiliary 

variables (e.g., gender) that lead to an increased partial correlation between posttest 

attendance (R) and posttest NW-9 scores (Y) appear to have resulted in increased posttest 

mean and pre-post mean difference discrepancies. 

NW-9 results summary. The results of the NW-9 analyses reinforce important 

issues regarding the treatment of missing data when encountering induced dependencies 

between missingness (R) and missing values (Y) when including some auxiliary variables. 

As noted by Thoemmes and Rose (in press), including auxiliary variables that introduce 

dependencies between missingness (R) and missing values (Y) can bias mean estimates.  

Posttest attendance (R) was found to be bivariately unrelated to posttest scientific scores 

(Y), but was found to have a larger partial correlation after controlling for auxiliary 

variables (Xs). These partial correlations were still small in absolute magnitude (with the 

largest being .149), thus MAR violations were practically small. Given the small MAR 

violations and low percentage of missing data (5.5%), utilizing any missing data 
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treatment method (listwise, MI, or FIML) did not result in substantial parameter 

discrepancies or standard error inflation when compared to the complete dataset.  

Additionally, multiple group analyses revealed that makeup student responses at 

posttest may not be valid, due to makeup students achieving lower scores at posttest than 

would be predicted given their pretest scores. Thus, the current method of dealing with 

makeup students (i.e., listwise deletion) may not be problematic, and may actually be 

beneficial. However, standard error inflation became problematic for pre-post mean 

difference estimates when missingness was increased to 25%, and parameter discrepancy 

and standard error inflation both became problematic when missingness was increased to 

50%. Thus, even small MCAR or MAR violations can be problematic when combined 

with large missingness percentages.  

Further, posttest mean and pre-post mean difference estimates were more 

discrepant when auxiliary variables were included in the analysis, suggesting that 

including auxiliary variables that introduce R-Y dependencies may increase bias when 

they are included in MI or FIML analyses. As a consequence of the findings regarding 

bias-inducing variables, following the inclusive analysis strategy that is currently 

recommended (Collins et al., 2001) may not be the best approach if the auxiliary 

variables included in the MI or FIML analyses are introducing dependencies in the R-Y 

relationship. Whereas the inclusive analysis strategy resulted in reduced parameter bias 

and standard error inflation in the MAP analyses (as expected), the inclusion of 

suppressor auxiliary variables in the NW-9 analyses led to an increased partial 

correlation between missingness (R) and posttest NW-9 scores (Y), and increased bias in 

parameter estimates. Unfortunately, in most applied missing data situations (i.e., where 
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the researcher does not have access to the missing data), the researcher will not know 

whether included auxiliary variables will introduce R-Y dependencies. As a result, the 

findings in this study relevant to suppressor variables cast some doubt on the inclusive 

analysis strategy. 



 

 

 

 

CHAPTER FIVE 

Discussion 

The results of this study provide useful guidelines for assessment practitioners 

who face missing data issues due to nonattendance. Following the recommendations of 

Graham (2009), initially missing scores were recovered to determine the exact missing 

data mechanism and the bias introduced by various missing data handling techniques. 

The following results emerged, which are quickly summarized here and discussed below. 

First, there was evidence that makeup responses possessed questionable validity for both 

noncognitive and cognitive measures. This may have been true for only a subset of 

examinees. Second, the missing data mechanism underlying posttest nonattendance was 

found to be MNAR for both noncognitive and cognitive tests. For the noncognitive test, 

this MNAR mechanism resulted in predictable analysis results when comparing missing 

data handling techniques, as the inclusive analysis strategy (i.e., MI or FIML with 

auxiliary variables) yielded lower parameter “bias” (i.e., discrepancy from the complete 

dataset results) and reduced standard error inflation. Again, note that we do not know if 

this is true “bias”, as we do not know true student MAP levels. Interestingly, for the 

cognitive test, a number of dataset variables (e.g., gender) introduced R-Y dependencies, 

in that partialling their effects out of both posttest nonattendance (R) and posttest 

scientific reasoning scores (Y) resulted in a stronger R – Y relationship. Posttest mean and 

pre-post mean difference estimates in the cognitive sample were more positively “biased” 

(i.e., more discrepant from the complete dataset estimates), although posttest variance 

and pre-post covariance estimates were improved. This reinforced recent research into 

bias-inducing auxiliary variables, where including some auxiliary variables in MI and 
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FIML analyses slightly increased bias in mean estimates (Thoemmes & Rose, in press). 

Additionally, utilizing MI or FIML techniques or including additional auxiliary variables 

did not consistently reduce standard error inflation for the cognitive test. This lack of 

improvement is not surprising given the weak relationships between the various auxiliary 

variables and posttest NW-9 scores. Third, although parameter “bias” (i.e., discrepancy 

from the complete dataset results) and standard error inflation were not problematic for 

either the noncognitive or cognitive test when makeup data were treated as missing, this 

finding appeared to be the result of low missingness percentages. When missingness 

percentages were artificially increased to 25% and 50%, significant parameter bias and 

standard error issues became apparent across missing data handling techniques.  

Reduced Posttest Score Validity 

Given the results of the multiple group analyses, there is some evidence that 

makeup posttest responses may have been affected by lower motivation and random 

responding. In the noncognitive sample, increased posttest score variance that was 

unrelated to pretest scores suggests that makeup examinees may have engaged in random 

or thoughtless responding at higher rates than the Assessment Day sample. In the 

cognitive sample, lower posttest scores for the makeup sample than would be predicted 

by their pretest scores suggests that random or thoughtless responding resulted in more 

incorrect answers. Examining the variable density distributions for posttest cognitive 

scores revealed that this reduced motivation may only be problematic for a subset of 

makeup examinees. Thus, assessment practitioners at the university under study should 

consider continuing to exclude makeup testing results from overall educational 

accountability estimates until the validity of makeup posttest responses can be further 
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studied, and if deemed problematic, improved. If future studies determine that makeup 

posttest responses are affected by careless or random responding, including makeup 

student data could be considered invalid, and including these data could bias estimates of 

pre-post growth. 

Note that test-taking motivation was measured at posttest via the SOS measure. 

Thus, if the problematic multiple group results were the product of decreased motivation 

at posttest by the makeup sample, we would expect posttest attendance and posttest effort 

scores to be positively correlated. However, this was not true for either the MAP or NW-

9 sample, as posttest effort scores were not significantly related to posttest attendance. 

Previous research has found that test-taking effort can vary substantially over the course 

of a testing period (Barry, 2010; Barry, Horst, Finney, Brown, & Kopp, 2010; Horst, 

2010). However, test-taking effort was measured once at the end of the testing session. 

Thus, one overarching test-taking effort score may not be sensitive to the lack of 

motivation on any single measure. Measuring test-taking effort after each instrument may 

provide a more accurate representation of test-taking effort, and these test-specific effort 

scores may be useful as future auxiliary variables. Additionally, recent research (Finney, 

Sundre, Swain, & Williams, 2014) suggests that the change in effort scores from pretest 

to posttest is more predictive of scores than their absolute value. Thus, filtering on 

motivation change may result in more accurate value added scores. 

If future work uncovers that makeup students are not providing valid responses, 

steps could be taken to improve test-taking motivation. Previous research has found 

proctoring to have an effect on student test-taking effort levels and test scores (Lau, 

Swerdzewski, Jones, Anderson, & Markle, 2009). Thus, modifying makeup testing 
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proctoring to enhance motivation may result in more valid responses. For instance, 

holding makeup testing sessions on Fridays and Saturdays may be leading to decreased 

makeup student motivation. An alternative testing time may be considered to obtain more 

valid responses. 

MNAR Mechanism, Suppressor Effects, and Missing Data Handling 

Although the missing data mechanism was found to be MNAR for both the 

noncognitive and cognitive tests, the nature of the MNAR mechanism was vastly 

different. For the noncognitive test, posttest attendance (R) was bivariately related to 

posttest MAP scores (Y) indicating an MNAR mechanism. However, this relationship 

was slightly moderated by the variables in the dataset, resulting in a decreased partial 

correlation between R and Y when dataset variables were included in the model. In 

particular, posttest MAV and WAV scores were strong bivariate predictors of posttest 

MAP scores, and thus were important to include as auxiliary variables in MI and FIML 

analyses. The addition of auxiliary variables decreased parameter bias and standard error 

inflation. Thus, the noncognitive test results appear to affirm the inclusive analysis 

strategy as the relationships between missingness, posttest scores and auxiliary variables 

aligned with the typical simulation work that assesses the utility of the inclusive strategy. 

By contrast, the results of the cognitive test analyses appear to challenge the 

inclusive analysis strategy. Although posttest attendance (R) was not related to posttest 

NW-9 scores (Y) bivariately, the partial correlation between these two variables increased 

as additional dataset variables were partialled out of both variables. This increased partial 

correlation was due to some suppressor variables, such as gender, increasing the 

relationship between R and Y when there were included in the model. The presence of 
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induced R-Y dependencies made it difficult to determine the most important auxiliary 

variables to include in MI and FIML analyses. Given these suppressor auxiliary variables 

increase the relationship between missingness (R) and posttest scores (Y), it follows that 

including these auxiliary variables may result in increased parameter bias. Accordingly 

inclusion of these additional auxiliary variables decreased variance and covariance 

estimate bias, but increased mean and mean difference bias.  

 The findings associated with the cognitive test results confirm previous work 

examining bias-inducing auxiliary variables (Thoemmes & Rose, in press). Instances 

where the partial relationship between missingness (R) and the variable with missing 

values (Y) increases as additional auxiliary variables are included in the model, has only 

recently been explored. The results of this research and previous work by Thoemmes & 

Rose (in press) indicate that including suppressor auxiliary variables in an analysis 

increases the bias of some parameters (e.g., mean and mean difference estimates), while 

decreasing the bias of other parameters (e.g., variance and covariance estimates). The 

effects of these suppressor auxiliary variables on standard error estimates were unclear in 

the current study. Additionally, no research has examined the effects of suppressor 

auxiliary variables that increase the predictive utility of other auxiliary variables for the 

variable with missing values (Y). 

Percentage of Missingness 

 Predictably, results became more problematic as missingness percentages 

increased. In the noncognitive sample, all parameters except pretest-posttest covariance 

became increasingly biased as the missingness percentage increased, and all standard 

errors became inflated. Bias and standard error inflation were partially ameliorated by 
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utilizing advanced techniques (MI and FIML) combined with auxiliary variables. 

However, as would be expected given the MNAR mechanism, the utilization of these 

techniques did not completely eliminate parameter bias. Although parameter estimates 

and standard error inflation became similarly problematic at higher missingness 

percentages for the cognitive sample, the utilization of MI or FIML with auxiliary 

variables only served to increase the bias of some parameters (posttest mean and pre-post 

mean difference).  

From examining the 25% and 50% missingness results, it becomes apparent that 

any issues with missing data handling techniques become more exaggerated at higher 

percentages of missingness. Although not directly addressed in this study, it is also likely 

that the missing data mechanism will be different at higher percentages of missingness. 

That is, the causes of 25% or 50% missingness are likely different and more severe (i.e., 

more likely to be MNAR) than the causes of 5% or 6% missingness. For instance, high 

rates of twelfth grade NAEP survey dropout were found to be the product of a myriad of 

nonrandom sources, including private school nonparticipation and lack of student 

attendance or motivation in low-income and urban school districts (Chromy, 2005). Thus, 

it is imperative that studies such as the current one that examine the rate, mechanism, and 

potential bias of missingness be conducted to thoroughly understand any missingness 

that may occur in educational accountability contexts. 

Limitations and Future Research Directions 

 This study had a number of strengths, including collecting previously missing 

data to empirically determine the exact missing data mechanism and the bias introduced 

by utilizing various missing data handling techniques. However, there are a number of 
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limitations to note. The missing data percentages were low (between 5% and 6%) in this 

study. Although datasets with higher missingness percentages were artificially 

constructed, it is unclear whether a real dataset with 25% or 50% missingness (e.g., some 

NAEP data; Chromy, 2005) would exhibit similar bias and standard error inflation 

patterns. Additionally, the datasets with higher missingness percentages were formed by 

randomly deleting Assessment Day attendee cases, resulting in a lower overall sample 

size. As a result, it is unclear whether some of the results in the 25% and 50% 

missingness conditions are a consequence of increased missingness percentages or a 

lower overall sample size. This study also examined missingness in one higher education 

assessment context in one university. Thus, assessment practitioners should not assume 

the mechanisms underlying the posttest nonattendance missingness in this study will 

extend to other missing data situations.  

Although the results provide some indication that including auxiliary variables 

that induce R-Y dependencies may create problems for the inclusive analysis strategy, 

future research must be done in this area. Research has only recently focused on this issue 

(Thoemmes & Rose, in press). Thus, these results should be replicated in other situations 

where induced R-Y dependencies are suspected to underlie a missingness mechanism. 

Specifically, it would be useful to determine the effects of the dependencies on standard 

errors. Additionally, if future findings further challenge the inclusive analysis strategy, 

concrete recommendations regarding auxiliary variable inclusion should be determined 

based on results.  

Future researchers are encouraged to also heed Graham’s (2009) advice and 

conduct studies to determine the exact mechanism underlying the missingness in other 
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missing data situations. These studies will inform the best method to handle such 

missingness, and help ensure that results from education assessments are as accurate and 

informative as possible. 

Implications for Policy Makers 

 In this study, missingness rates were low and did not introduce a large amount of 

bias in student growth estimates. However, even slight differences in value-added 

estimates can have large implications for educational policies. For instance, institutions, 

programs, and even individual teachers or faculty can be held accountable based on their 

value-added estimates. A slight difference due to missingness could result in a program’s 

funding being cut or a faculty member being dismissed. Thus, policy makers should 

interpret value-added estimates in the presence of missingness carefully. The percentage 

of missingness, the likely underlying missing data mechanism, and the missing data 

treatment method used when analyzing the data should all be carefully considered when 

evaluating value-added estimates. These issues are outlined well by Chromy (2005), who 

recommends introducing incentives to limit missingness so that these missingness issues 

only occur to a small extent. 

Implications and Recommendations for Assessment Practitioners 

 Assessment practitioners must acknowledge that missing data constitute a 

considerable problem for educational assessment and missing data issues do not have any 

“quick fixes.” The assessment practitioner is advised, then, to endeavor to limit 

missingness if possible. As noted above, one possible reason for the lack of bias or 

standard error inflation is the low percentage of missingness (5-6%). At the university 

where this study was conducted, the percentage of students attending their assigned 
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Assessment Day testing session has increased dramatically over the years. Much of this is 

due to concerted efforts to communicate testing times and obligations to students via 

multiple pathways (e.g., email, campus advertisements). In addition, students have a 

concrete incentive to complete their assessments, as the university will place a hold on 

their academic record if they do not complete them. As noted by Chromy (2005), having 

firm and clear contingencies related to test completion can dramatically increase response 

rates. Thus, the assessment practitioner may be best advised to fix missingness (by 

limiting or eliminating it) on the front-end, rather than trying to compensate for large 

amounts of missingness after assessments have been administered and data have been 

collected. 

If missing data is unavoidable, through reporting of missing data and its extent is 

a minimum standard that assessment practitioners should adopt. Failure to report or 

acknowledge missingness is an ethical issue, as results could be misinterpreted (Enders & 

Gottschall, 2011). Responsible missingness documentation involves reporting both the 

extent and the possible causes of missingness. Reporting the extent and cause of the 

missingness allows assessment results to be interpreted within the context of the missing 

data situation. As noted by Enders and Gottschall (2011), reporting the cause of the 

missingness may limit missingness or improve missing data handling in future research. 

For instance, if some personality or developmental traits are suspected to increase the 

likelihood of posttest nonattendance (e.g., entitlement, reactance), those variables could 

be collected at pretest to serve as auxiliary variables. In this manner, adhering to more 

rigorous reporting requirements related to missing data could lead to improvements in 

assessment design. 



117 

 

 

Often, the potential causes of missingness may not be immediately clear. In these 

cases, assessment practitioners should attempt to understand the missingness that exists 

by collecting plentiful data. In this study, the mechanism underlying missingness was 

uncovered by examining the relationships between missingness (R), the variable with 

missing values (Y), and additional dataset variables (Xs). By collecting this information, a 

“profile” was established of the typical makeup examinee. This profile can then be used 

to design interventions to prevent nonattendance in the future. For instance, students 

missing at posttest were found to be lower on academic motivation and 

conscientiousness, while higher in work avoidance. Thus, the makeup student profile is 

one of a generally unmotivated student. Given this profile, communications with students 

to encourage Assessment Day attendance may target motivation directly, possibly by 

appealing to students’ sense of academic citizenship, or their responsibility to the 

university (Wise, 2009).  

In the current study, understanding the variables that related to missingness (R) 

and the missing values themselves (Y) also allowed for useful hypotheses regarding how 

different missing data handling techniques may be biased. As a part of collecting plentiful 

data, assessment practitioners should recover some or all of the missing data for one or 

several cohorts, to empirically determine the missing data mechanism in their specific 

testing context. Again, this will help identify the best way to handle the missingness in 

that particular setting, potentially help minimize the missingness in the future, and help to 

inform missing data research.  

Overall, the results also indicate that the applied assessment practitioner should 

not make assumptions regarding the absolute best way to handle missingness. Although 
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the inclusive analysis strategy is generally advisable, the results of this study indicate that 

one analysis strategy may not fit all missing data situations. However, pending further 

research, it is still advisable to utilize MI or FIML with auxiliary variables over listwise 

deletion in the majority of missing data situations.  

Assessment practitioners may be able to overcome substantial missing data issues 

by following the five strategies listed above: 1) attempt to limit missingness, 2) 

thoroughly document missingness rates and causes when it occurs, 3) attempt to 

understand missingness by collecting plentiful data, 4) further attempt to understand 

missingness by recovering some or all initially missing data, 5) generally utilize MI or 

FIML with auxiliary variables, but be cautious not to assume that missingness can be 

adequately handled in all data situations with this inclusive analysis strategy. Overall, 

more research is needed on the missing data handling techniques examined in this study, 

as well as on more novel techniques (e.g., MNAR-based techniques), to provide 

increasing accuracy in missing data situations. However, the recommendations above 

provide useful guidance for assessment practitioners given the current state of missing 

data research. 
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Table 1 

Missing Data Mechanisms 

________________________________________________________________________ 

 Missingness (R) related to measured variables 

(X)? 

 
 

 YES NO 

Missingness (R) related 

to variable with missing 

values (Y), after 

controlling for measured 

variables (X) included in 

the analysis? 

YES MNAR MNAR 

NO MAR MCAR 

______________________________________________________________________ 

Note. MCAR = Missing completely at random; MAR = Missing at random; MNAR = 

Missing not at random. The missing data mechanism underlying the data depends on 

whether missingness (R) is related to the variable with missingness itself (Y), related to 

other measured variables (X), and related to the variable with missingness itself (Y) 

conditional on the measured variables (X) included in the analysis. Typically, 

missingness variable R is computed by assigning a value of 0 for all cases where Y is 

missing, and a value of 1 for all cases where Y is observed. The researcher can 

empirically determine whether R is related to any measured variable if the measured 

variables are not missing for all cases where Y is missing. If a significant relationship 

exists between any measured variable and R, data are either MNAR or MAR, depending 

on whether R is related to Y after controlling for the measured variables. If a significant 

relationship does not exist between any measured variable and R, data are either MNAR 

or MCAR, again depending on whether R is related to Y after controlling for the 

measured variables. Unfortunately, the values of Y are always missing for all cases where 

R = 0, so the relationship between R and Y cannot be empirically estimated. Thus, MNAR 

data cannot be empirically differentiated from MCAR or MAR data in most missing data 

situations. 
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Table 2 

Hypothesized Effects of Including Auxiliary Variables with Different Relationships with Missingness and Posttest Scores 

 

 μy σ
2

y covx,y μy-x 

 

Auxiliary variable relationships Est. SE Est. SE Est. SE Est. SE 

 
 

Unrelated to posttest scores (Y) 

 

No 

Change 

No 

Change 

No 

Change 

No 

Change 

No 

Change 

No 

Change 

No 

Change 

No 

Change 

 

Related to posttest scores (Y),  

unrelated to missingness (R) 

 

No 

Change 
Reduced 

No 

Change 
Reduced 

No 

Change 
Reduced 

No 

Change 
Reduced 

 

Related to posttest scores (Y),  

linearly related to missingness (R) 

 

Less Bias Reduced Less Bias Reduced Less Bias Reduced Less Bias Reduced 

 

Related to posttest scores (Y),  

nonlinearly related to missingness 

(R) 

 

No 

change 
Reduced Less Bias Reduced Less Bias Reduced 

No 

Change 
Reduced 

Note. Affected parameters are highlighted in grey, based on research conducted by Collins and colleagues (2001). Including auxiliary 

variables unrelated to posttest scores will not result in improvement of parameter bias or standard errors. Including auxiliary variables 

unrelated to missingness but related to posttest scores will result in reduced standard errors, but no reduction in parameter bias. 

Including auxiliary variables linearly related to missingness and related to posttest scores will result in less parameter bias and reduced 

standard errors. Including auxiliary variables nonlinearly related to missingness and related to posttest scores will result in reduced 

standard errors, reduced variance and covariance parameter bias, and no change in mean and mean difference parameter bias.  
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Table 3 

Methods for Dealing with Missingness 

 

Missing Data Method Description Appropriate for 

Which Missing 

Data Mechanisms 

Recommend? Comments 

Deletion Methods 

 

    

Listwise Deletion 

(LD) 

Cases with missing data on any 

variables are deleted. 

MCAR Under MCAR 

conditions 

LD will result in reduced 

power under MCAR 

conditions, but parameter 

estimates will be accurate. 

 

Pairwise Deletion 

(PD) 

If a case has missing data for a variable 

involved in a given parameter estimate, 

that case is excluded from estimating 

that parameter. 

MCAR No PD can lead to significant 

model estimation problems 

due to nonpositive definite 

matrices. 

 

Single Imputation 

Methods 

 

    

Mean Imputation The mean for a variable is used to 

substitute for any missing values for 

that variable. 

None No Mean imputation will always 

introduce bias and should 

never be used. 

  



 

 

   

 

 

1
3
1
 

Table 3 (continued) 

Methods for Dealing with Missingness 

Missing Data Method Description Appropriate for 

Which Missing 

Data Mechanisms 

Recommend? Comments 

Regression 

Imputation 

Predicted values using a regression 

equation involving other dataset 

variables are used to substitute for 

missing values. 

MCAR No Will only produce unbiased 

variance and covariance 

estimates under MCAR 

conditions when corrective 

adjustments are applied. 

Also, standard errors will be 

biased downward, and better 

techniques (MI, FIML) are 

now available. 

 

Stochastic 

Regression   

Imputation 

Similar to regression imputation, but a 

random error term is added when 

imputing missing values. 

MCAR 

MAR 

No Standard errors will be 

biased downward, and better 

techniques (MI, FIML) are 

now available. 

 

Modern Methods     

 

Multiple 

Imputation  

(MI) 

Stochastic regression imputation is used 

to impute multiple datasets, and the 

variability in parameter estimates across 

those datasets is used in the calculation 

of standard errors for parameter 

estimates. 

MCAR 

MAR 

Under all 

conditions 

20 imputations and a large 

number of iterations are 

generally recommended. 

Utilizing auxiliary variables 

can increase accuracy. 
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Table 3 (continued) 

Methods for Dealing with Missingness 

Missing Data Method Description Appropriate for 

Which Missing 

Data 

Mechanisms 

Recommend? Comments 

Full information    

Maximum 

Likelihood  

(ML) 

Available data used to estimate 

population parameter values that are 

most likely to have produced sample data 

(Baraldi & Enders, 2012). 

 

MCAR 

MAR 

Under all 

conditions 

Utilizing auxiliary variables 

can increase accuracy. 

MNAR-based 

methods  

(assorted) 

Generally, the model of interest (e.g., 

growth model) is supplemented with an 

additional model of the probability of 

missingness. 

MNAR Under 

specific 

MNAR 

scenarios 

Methods require strict a 

priori assumptions, and 

significant bias is introduced 

when these assumptions are 

not met. Thus, these methods 

are only recommended in 

very specific MNAR 

scenarios, where a strong 

theory of missingness is 

specified. 
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Table 4 

Examined Auxiliary Variables 

    % Missingness 

 Hypothesized to be Predictive of: MAP Sample NW-9 Sample 

Auxiliary Variable Missingness  

MAP 

Score NW-9 Score ADay Makeup ADay Makeup 

U. Database Variables        

Gender X X  0.8% 7.5% 0.7% 0.0% 

Posttest Age X   0.8% 0.0% 0.7% 0.0% 

SAT Math  X X 2.1% 3.7% 2.3% 2.2% 

SAT Verbal  X X 2.1% 3.7% 2.3% 2.2% 

Posttest GPA X   0.8% 0.0% 0.8% 0.0% 

Posttest earned total credits X   0.8% 0.0% 0.8% 0.0% 

Posttest earned science credits   X - - 0.8% 0.0% 

Pretest Variables        

MAP
a 

X X  0.0% 0.0% 5.7% 4.3% 

PAP X X  0.0% 0.0% 4.4% 4.3% 

MAV  X  0.3% 1.5% - - 

PAV   X  0.4% 0.0% - - 

WAV X X  0.3% 0.7% 4.7% 4.3% 

Openness  X  27.3% 23.9% 66.2% 63.0% 

Conscientiousness X X  27.2% 23.1% 66.4% 60.9% 

Extraversion  X  27.3% 23.1% 66.2% 60.9% 

Agreeableness  X  27.4% 23.1% 66.3% 60.9% 

Neuroticism  X  27.4% 24.6% 66.7% 63.0% 

MAI-R
b
  X X 1.5% 5.2% 4.4% 4.3% 

Effort X X X 23.5% 23.1% 25.0% 30.4% 

Importance X X X 11.7% 15.7% 15.8% 21.7% 
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Table 4 (continued) 

Examined Auxiliary Variables 

    % Missingness 

 Hypothesized to be Predictive of: MAP Sample NW-9 Sample 

Auxiliary Variable Missingness  

MAP 

Score 

NW-9 

Score ADay Makeup ADay Makeup 

Posttest Variables        

MAP X N/A  0.0% 0.0% 0.1% 0.0% 

PAP X X  0.1% 0.0% 0.3% 0.0% 

MAV  X  0.6% 1.5% 0.9% 4.3% 

PAV   X  0.2% 0.0% 0.4% 0.0% 

WAV X X  0.3% 0.0% 0.8% 0.0% 

Openness  X  53.7% 3.0% 49.2% 6.5% 

Conscientiousness X X  53.4% 0.7% 49.3% 0.0% 

Extraversion  X  53.3% 0.7% 49.0% 0.0% 

Agreeableness  X  53.5% 2.2% 49.2% 0.0% 

Neuroticism  X  53.3% 1.5% 49.2% 0.0% 

Effort X X X 1.2% 3.7% 1.1% 2.2% 

Importance X X X 0.6% 2.2% 0.8% 2.2% 

Note. Due to students being randomly assigned to different testing configurations, missingness percentages vary across auxiliary 

variables. U. Database Variables = Variables obtained from the university student database; Pretest Variables = Variables measured at 

pretest for entering freshmen students; Posttest Variables = Variables measured at posttest after three semesters of university 

attendance; MAP = Mastery Approach Orientation; NW-9 = Natural World Version 9; PAP = Performance Approach Orientation; 

MAV = Mastery Avoidance Orientation; PAV = Performance Avoidance Orientation; WAV = Work Avoidance; MAI-R = 

Metacognitive Regulation; Effort = Test-taking Effort; Importance = Test-taking Importance. 
a
 Although Pretest MAP is listed as an auxiliary variable and is hypothesized to be related to posttest MAP scores, pretest MAP was 

not considered a strictly auxiliary variable in the MAP analyses. That is, the Pretest MAP score was included as part of the MAP 

analysis model in computing difference scores for MAP growth estimates. 
b
 Unlike the other auxiliary variables, Metacognitive Regulation was only measured at pretest.
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Table 5 

Descriptive Statistics and Model Parameters (Standard Errors) Regressing Posttest MAP 

Scores on Pretest MAP Scores by Posttest Attendance 

Attendance Pretest Mean Pretest 

Variance 

Posttest 

Mean 

Posttest 

Variance 

Assessment Day at Posttest 17.892 6.944 16.932 9.135 

 

Makeup at Posttest 

 

17.343 

 

7.972 

 

15.119 

 

14.687 

 

 

Attendance Posttest  

Intercept 

Pretest-Posttest 

Slope 

Posttest Residual 

Variance 

Assessment Day at Posttest 8.957 

(0.415) 

0.446 

(0.023) 

7.756 

(0.238) 

 

Makeup at Posttest 

 

8.487 

(1.977) 

 

0.382 

(0.113) 

 

13.521 

(1.652) 

Note. Intercepts, slopes, and residual variances were freely estimated across groups. If 

students attending makeup testing responded comparably to students attending 

Assessment Day at posttest, we would expect these parameters to be of similar value, 

within sampling error. The makeup sample was associated with a smaller posttest mean 

and pretest-posttest slope, and a larger posttest variance and residual variance as 

compared to the Assessment Day sample. If models constraining common intercept, 

slope, and/or residual variance parameters across samples were associated with 

significant model misfit (see Table 6), makeup students may not be providing valid 

responses at posttest. 
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Table 6 

Multiple Group Analysis Comparing the Pretest-Posttest MAP Relationship Across 

Assessment Day and Makeup Samples 

Model χ
2

 df CFI RMSEA 

Model 1: Posttest Intercept Constraint 0.054 1 >.999 <.001 

 

Model 2: Pretest-Posttest Slope Constraint 

 

0.303 

 

1 

 

>.999 

 

<.001 

 

Model 3: Posttest Residual Variance Constraint 

 

22.992* 

 

1 

 

.938 

 

.140 

 

Model 4: Intercept, Slope, and Residual Variance 

Constraint 

 

61.432* 

 

3 

 

.836 

 

.131 

Note. CFI= Comparative Fit Index; RMSEA = Root Mean Square Error of 

Approximation. Models were estimated predicting posttest MAP scores from pretest 

MAP scores. When estimating Model 1, the posttest intercept was constrained to be equal 

across Assessment Day and makeup samples, but the pretest-posttest slopes and posttest 

residual variances were freely estimated across samples. When estimating Model 2, the 

pretest-posttest slope was constrained to be equal across samples, but the posttest 

intercept and posttest residual variances were freely estimated. When estimating Model 3, 

posttest residual variances are constrained to be equal across samples, but the posttest 

intercepts and pretest-posttest slopes were freely estimated. When estimating Model 4, 

the posttest intercept, pretest-posttest slope, and posttest residual variance are all 

constrained to be equal across samples. Results indicate that Models 3 and 4 are 

associated with statistically and practically significant misfit. The normalized posttest 

score variance residual associated with Model 4 was 2.701 for the makeup sample and -

1.775 for the Assessment Day sample, indicating that the posttest score variance was 

underestimated by the model for the makeup sample. Additionally, the normalized 

posttest score mean residual associated with Model 4 was -4.450 for the makeup sample, 

indicating that the posttest score mean was overestimated by the model for the makeup 

sample. These results indicate that the posttest residual variance is not common across 

samples, with the makeup sample having a larger residual variance than the Assessment 

Day sample. This increased posttest residual variance may be due to reduced motivation 

by the makeup sample, resulting in increased random responding at posttest. 

* p < .05. 
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Table 7 

Descriptive Statistics for the Complete MAP Sample (N =2254) 

Measure Mean SD Min Max 

1. Posttest Attendance (R) .941
a
 0.237 0.00 1.00 

2. Posttest MAP Score (Y) 16.824 3.107 3.00 21.00 

3. Pretest MAP Score 17.859 2.650 6.00 21.00 

U. Database Variables     

4. Gender .358
b
 0.479 0.00 1.00 

5. Age 19.918 0.376 18.58 23.68 

6. SAT Math 581.596 65.039 320.00 800.00 

7. SAT Verbal 571.923 69.998 280.00 800.00 

8. GPA 3.152 0.411 1.73 4.00 

9. Posttest Credit Hours 51.805 5.975 45.00 70.00 

Pretest Auxiliary Variables     

10. Pretest PAP 16.056 3.784 3.00 21.00 

11. Pretest MAV 12.772 3.655 3.00 21.00 

12. Pretest PAV 14.204 3.971 3.00 21.00 

13. Pretest WAV 10.530 4.556 4.00 28.00 

14. Pretest Openness 35.489 6.362 17.00 55.00 

15. Pretest Conscientiousness 32.440 5.102 13.00 47.00 

16. Pretest Extraversion 28.108 6.235 9.00 42.00 

17. Pretest Agreeableness 36.025 4.968 18.00 50.00 

18. Pretest Neuroticism 21.887 5.842 8.00 40.00 

19. Pretest MAI-R 125.827 15.826 70.00 184.00 

20. Pretest Effort 18.943 3.606 5.00 25.00 

21. Pretest Importance 15.307 3.984 5.00 25.00 

Posttest Auxiliary Variables     

22. Posttest PAP 15.794 4.064 3.00 21.00 

23. Posttest MAV 26.374 6.152 6.00 42.00 

24. Posttest PAV 13.745 4.031 3.00 21.00 

25. Posttest WAV 12.029 4.933 4.00 28.00 

26. Posttest Openness 37.120 6.307 15.00 50.00 

27. Posttest Conscientiousness 33.433 5.461 12.00 45.00 

28. Posttest Extraversion 28.568 6.290 10.00 40.00 

29. Posttest Agreeableness 35.449 5.531 13.00 45.00 

30. Posttest Neuroticism 22.342 6.057 8.00 40.00 

31. Posttest Effort 18.991 3.698 5.00 25.00 

32. Posttest Importance 13.622 4.430 5.00 25.00 

Note. U. Database Variables = Variables obtained from the university student database; 

Pretest Auxiliary Variables = Variables measured at pretest for entering freshmen 

students; Posttest Auxiliary Variables = Variables measured at posttest after three 

semesters of university attendance; MAP = Mastery Approach Orientation; PAP = 

Performance Approach Orientation; MAV = Mastery Avoidance Orientation; PAV = 

Performance Avoidance Orientation; WAV = Work Avoidance; MAI-R = Metacognitive 

Regulation; Effort = Test-taking Effort; Importance = Test-taking Importance. 
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a
 This value (.941) represents the proportion of students attending their originally 

assigned Assessment Day testing session at posttest 
b
 This value (.358) represents the proportion of males in the sample. 
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Table 8 

Bivariate Relationships between Posttest Attendance (R), Posttest MAP Score (Y), and 

Potential Auxiliary Variables 

Measure 1 2 3 4 5 

1. Posttest Attendance (R) ---     

2. Posttest MAP Score (Y) .138* ---    

3. Pretest MAP Score .049* .382* ---   

U. Database Variables      

4. Gender -.083* -.126* -.155* ---  

5. Age -.032 -.007 -.004 .157* --- 

6. SAT Math -.019 -.095* -.172* .307* -.015 

7. SAT Verbal -.058* -.092* -.140* .115* -.044* 

8. GPA .068* .086* -.009 -.066* -.011 

9. Posttest Credit Hours .005 .018 -.002 .075* .000 

Pretest Auxiliary Variables      

10. Pretest PAP .016 .127* .289* .054* .027 

11. Pretest MAV .049* .073* .217* -.187* -.039 

12. Pretest PAV .047* .053* .160* -.146* -.028 

13. Pretest WAV -.014 -.277* -.460* .164* .006 

14. Pretest Openness -.056* .113* .175* .070* .044 

15. Pretest Conscientiousness .076* .228* .303* -.186* .013 

16. Pretest Extraversion -.022 .080* .069* -.115* -.004 

17. Pretest Agreeableness .069* .177* .205* -.182* -.063* 

18. Pretest Neuroticism .004 .002 .026 -.242* -.033 

19. Pretest MAI-R .026 .311* .448* -.127* .021 

20. Pretest Effort .039 .149* .167* -.067* -.040 

21. Pretest Importance .028 .162* .164* -.060* .010 

Posttest Auxiliary Variables      

22. Posttest PAP .043* .321* .109* .003 .006 

23. Posttest MAV .040 .480* .242* -.162* -.044* 

24. Posttest PAV .058* .134* .089* -.147* -.034 

25. Posttest WAV -.073* -.500* -.258* .162* -.024 

26. Posttest Openness -.010 .208* .151* .032 .030 

27. Posttest Conscientiousness .099* .321* .228* -.246* -.042 

28. Posttest Extraversion -.014 .110* .062* -.135* .014 

29. Posttest Agreeableness .110* .260* .176* -.269* -.107* 

30. Posttest Neuroticism .002 -.016 .047 -.246* -.068* 

31. Posttest Effort .018 .236* .099* -.091* -.002 

32. Posttest Importance .036 .216* .067* -.039 .005 
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Table 8 (continued) 

Bivariate Relationships between Posttest Attendance (R), Posttest MAP Score (Y), and 

Potential Auxiliary Variables 

Measure 6 7 8 9 10 

U. Database Variables      

6. SAT Math ---     

7. SAT Verbal .380* ---    

8. GPA .204* .260* ---   

9. Posttest Credit Hours .172* .257* .185* ---  

Pretest Auxiliary Variables      

10. Pretest PAP .020 -.039 .024 .033 --- 

11. Pretest MAV -.130* -.156* -.026 -.089* .125* 

12. Pretest PAV -.173* -.216* -.102* -.092* .391* 

13. Pretest WAV .148* .129* -.047* .016 -.135* 

14. Pretest Openness .008 .258* .043 .166* .058* 

15. Pretest Conscientiousness -.136* -.132* .179* .008 .185* 

16. Pretest Extraversion -.091* -.093* -.047 -.059* .060* 

17. Pretest Agreeableness -.117* -.178* .004 -.054* -.017 

18. Pretest Neuroticism -.154* -.087* .073* -.039 -.018 

19. Pretest MAI-R -.141* -.055* .068* .007 .252* 

20. Pretest Effort .050* .096* .121* .090* .084* 

21. Pretest Importance -.095* -.080* .024 -.012 .213* 

Posttest Auxiliary Variables      

22. Posttest PAP .028 -.035 .148* .003 .473* 

23. Posttest MAV -.113* -.080* -.073* -.019 .097* 

24. Posttest PAV -.160* -.198* -.152* -.074* .204* 

25. Posttest WAV .135* .141* -.030 .027 -.051* 

26. Posttest Openness .026* .216* .034 .127* .054* 

27. Posttest Conscientiousness -.101* -.109* .192* .008 .140* 

28. Posttest Extraversion -.119* -.094* -.083* -.067* .056* 

29. Posttest Agreeableness -.148* -.170* .023 -.066* -.042 

30. Posttest Neuroticism -.113* -.078* .083* -.033 .004 

31. Posttest Effort .068* .063* .097* .041 .009 

32. Posttest Importance -.057* -.062* .013 -.030 .085* 
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Table 8 (continued) 

Bivariate Relationships between Posttest Attendance (R), Posttest MAP Score (Y), and 

Potential Auxiliary Variables 

Measure 11 12 13 14 15 

Pretest Auxiliary Variables      

11. Pretest MAV ---     

12. Pretest PAV .301* ---    

13. Pretest WAV -.005 .013 ---   

14. Pretest Openness -.056* -.039 -.108* ---  

15. Pretest Conscientiousness -.008 .035 -.359* .077* --- 

16. Pretest Extraversion -.016 .057* -.088* .202* .116* 

17. Pretest Agreeableness .019 .065* -.234* .065* .344* 

18. Pretest Neuroticism .215* .109* -.009 -.093* -.103* 

19. Pretest MAI-R .088* .128* -.390* .312* .419* 

20. Pretest Effort -.044 -.002 -.144* .115* .230* 

21. Pretest Importance .044 .068* -.169* .068* .173* 

Posttest Auxiliary Variables      

22. Posttest PAP .056* .213* -.072* -.022 .149* 

23. Posttest MAV .267* .195* -.111* .049* .045 

24. Posttest PAV .183* .437* .005 -.044* .008 

25. Posttest WAV .000 .005 .477* -.053* -.280* 

26. Posttest Openness -.057* -.024 -.094* .706* .038 

27. Posttest Conscientiousness -.018 .028 -.266* .004 .668* 

28. Posttest Extraversion -.024 .055* -.087* .165* .119* 

29. Posttest Agreeableness .013 .048* -.193* .031 .268* 

30. Posttest Neuroticism .166* .125* -.057* -.099* -.042 

31. Posttest Effort -.027 -.046* -.101* .088* .136* 

32. Posttest Importance .020 .031 -.093* .026 .097* 
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Table 8 (continued) 

Bivariate Relationships between Posttest Attendance (R), Posttest MAP Score (Y), and 

Potential Auxiliary Variables 

Measure 16 17 18 19 20 

Pretest Auxiliary Variables      

16. Pretest Extraversion ---     

17. Pretest Agreeableness .180* ---    

18. Pretest Neuroticism -.273* -.260* ---   

19. Pretest MAI-R .157* .232* -.054* ---  

20. Pretest Effort .027 .142* -.040 .202* --- 

21. Pretest Importance .021 .062* .067* .259* .328* 

Posttest Auxiliary Variables      

22. Posttest PAP .040 .020 -.032 .164* .072* 

23. Posttest MAV .044 .052* .116* .194* .044 

24. Posttest PAV .004 .056* .070* .087* .008 

25. Posttest WAV -.092* -.193* -.030 -.246* -.116* 

26. Posttest Openness .181* .068* -.088* .222* .055 

27. Posttest Conscientiousness .117* .251* -.077* .297* .182* 

28. Posttest Extraversion .770* .137* -.193* .134* .024 

29. Posttest Agreeableness .109* .675* -.133* .191* .104* 

30. Posttest Neuroticism -.128* -.137* .660* -.007 -.018 

31. Posttest Effort .035 .136* -.015 .090* .347* 

32. Posttest Importance .019 .066* .029 .126* .099* 

 

Table 8 (continued) 

Bivariate Relationships between Posttest Attendance (R), Posttest MAP Score (Y), and 

Potential Auxiliary Variables 

Measure 21 22 23 24 25 

Pretest Auxiliary Variables      

21. Pretest Importance ---     

Posttest Auxiliary Variables      

22. Posttest PAP .153* ---    

23. Posttest MAV .102* .215* ---   

24. Posttest PAV .078* .459* .410* ---  

25. Posttest WAV -.105* -.129* -.182* .009 --- 

26. Posttest Openness .035 .044 .114* -.031 -.116* 

27. Posttest Conscientiousness .095* .233* .075* .026 -.377* 

28. Posttest Extraversion .021 .060* .054 .019 -.113* 

29. Posttest Agreeableness .091* .016 .124* .086* -.249* 

30. Posttest Neuroticism .031 .002 .100* .095* -.019 

31. Posttest Effort .116* .113* .090* .022 -.208* 

32. Posttest Importance .372* .142* .131* .049* -.208* 
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Table 8 (continued) 

Bivariate Relationships between Posttest Attendance (R), Posttest MAP Score (Y), and 

Potential Auxiliary Variables 

Measure 26 27 28 29 30 

Posttest Auxiliary Variables      

26. Posttest Openness ---     

27. Posttest Conscientiousness .084* ---    

28. Posttest Extraversion .240* .178* ---   

29. Posttest Agreeableness .140* .379* .169* ---  

30. Posttest Neuroticism -.135* -.091* -.208* -.199* --- 

31. Posttest Effort .181* .205* .067* .218* -.060* 

32. Posttest Importance .085* .089* .016 .106* .008 

 

Table 8 (continued) 

Bivariate Relationships between Posttest Attendance (R), Posttest MAP Score (Y), and 

Potential Auxiliary Variables 

Measure 31 32 

Posttest Auxiliary Variables   

31. Posttest Effort ---  

32. Posttest Importance .286* --- 

Note. U. Database Variables = Variables obtained from the university student database; 

Pretest Auxiliary Variables = Variables measured at pretest for entering freshmen 

students; Posttest Auxiliary Variables = Variables measured at posttest after three 

semesters of university attendance; MAP = Mastery Approach Orientation; PAP = 

Performance Approach Orientation; MAV = Mastery Avoidance Orientation; PAV = 

Performance Avoidance Orientation; WAV = Work Avoidance; MAI-R = Metacognitive 

Regulation; Effort = Test-taking Effort; Importance = Test-taking Importance. Gender 

was coded 0 for female and 1 for male, and posttest attendance (R) was coded 0 for 

makeup and 1 for Assessment Day. Posttest attendance (R) was found to be significantly 

bivariately related posttest MAP scores (Y) as well as a number of other dataset variables 

(see column 1). Thus, the MCAR assumption was found to be violated. 

* Sig. at p < .05. 
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Table 9 

Partial Correlations between Posttest Attendance (R) and Posttest MAP Scores (Y) after 

Controlling for Individual Auxiliary Variables 

Measure X-R Cor. X-Y Cor. R-Y Partial 

Partial - 

Bivariate 

1. Pretest MAP Score .049* .382* .129* -.009 

U. Database Variables     

2. Gender -.083* -.126* .129* -.009 

3. Age -.032 -.007 .138* .000 

4. SAT Math -.019 -.095* .137* -.001 

5. SAT Verbal -.058* -.092* .133* -.005 

6. GPA .068* .086* .133* -.005 

7. Posttest Credit Hours .005 .018 .138* .000 

Pretest Auxiliary Variables     

8. Pretest PAP .016 .127* .137* -.001 

9. Pretest MAV .049* .073* .135* -.003 

10. Pretest PAV .047* .053* .136* -.002 

11. Pretest WAV -.014 -.277* .140* .002 

12. Pretest Openness -.056* .113* .145* .007 

13. Pretest Conscientiousness .076* .228* .124* -.014 

14. Pretest Extraversion -.022 .080* .140* .002 

15. Pretest Agreeableness .069* .177* .128* -.010 

16. Pretest Neuroticism .004 .002 .138* .000 

17. Pretest MAI-R .026 .311* .137* -.001 

18. Pretest Effort .039 .149* .134* -.004 

19. Pretest Importance .028 .162* .135* -.003 

Posttest Auxiliary Variables     

20. Posttest PAP .043* .321* .131* -.007 

21. Posttest MAV .040 .480* .136* -.002 

22. Posttest PAV .058* .134* .132* -.006 

23. Posttest WAV -.073* -.500* .118* -.020 

24. Posttest Openness -.010 .208* .143* .005 

25. Posttest Conscientiousness .099* .321* .113* -.025 

26. Posttest Extraversion -.014 .110* .140* .002 

27. Posttest Agreeableness .110* .260* .114* -.024 

28. Posttest Neuroticism .002 -.016 .138* .000 

29. Posttest Effort .018 .236* .138* .000 

30. Posttest Importance .036 .216* .133* -.005 

Note. The table above presents the bivariate correlation between each auxiliary variable 

and posttest attendance (X-R Cor.), the bivariate correlation between each auxiliary 

variable and posttest MAP score (X-Y Cor.), the partial correlation between posttest 

attendance and posttest MAP score after controlling for the given auxiliary variable (R-Y 

Partial), and the difference between the R-Y partial correlation and the R-Y bivariate 

correlation (Partial – Bivariate). Recall the bivariate relationship between R and Y 

equaled .138. Negative “Partial – Bivariate” values indicate that the given auxiliary 

variable (X) independently moderates the relationship between posttest attendance (R) 
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and posttest MAP scores (Y), and thus are important to include as auxiliary variables to 

reduce bias. The largest negative “Partial – Bivariate” values were associated with 

posttest auxiliary variables (WAV, Conscientiousness, and Agreeableness), suggesting 

that posttest auxiliary variables are important to include in order to minimize parameter 

bias.   

* Sig. at p < .05. 
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Table 10 

Model Comparison Predicting Posttest MAP Scores (Y) from Auxiliary Variables 

Predictors Added to Model R
2
 R

2
 Ch. R-Y Partial 

Model 1: + Pretest MAP Score .146* --- .129* 

 

Model 2: + U. Database Variables .162* .016* .116* 

 

Model 3: + Pretest Aux. Variables  .198* .036* .119* 

 

Model 4: + Posttest Aux. Variables .526* .328* .108* 

Note. R-Y Partial = Partial correlation between posttest attendance (R) and posttest MAP 

scores after controlling for variables included in the model. Recall the bivariate 

relationship between R and Y equaled .138. Each model includes all the predictors of the 

previous models, with additional predictors added. For example, Model 2 includes pretest 

MAP score and all university database variables as predictors of posttest MAP scores. R
2
 

and R
2
 change significance was evaluated using Wald tests. The models indicate the 

variables that are significantly independently related to posttest MAP scores (Y), and 

were thus important to include as auxiliary variables to reduce standard errors. For 

example, the R
2
 change associated with posttest auxiliary variables (Model 4) was .328 

and statistically significant, indicating that the additional measured posttest variables 

were important to include as auxiliary variables to decrease standard errors. If the partial 

correlation was nonsignificant for a given model, the relationship between posttest 

attendance (R) and posttest MAP scores (Y) was completely moderated by the predictors 

in the model, indicating that the MAR assumption was met if these predictors were 

included as auxiliary variables. However, across Models 1 - 4, the partial correlation was 

significant, indicating a MNAR mechanism as missingness predicted a significant 

amount of variance in posttest scores after controlling for auxiliary variables. 

* Sig. at p < .05. 
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Table 11 

Regression Coefficients Predicting Posttest MAP Scores (Y) from Pretest MAP Scores, 

University Database Auxiliary Variables, and Pretest Auxiliary Variables 

Predictor Variable B β sr
2 

1. Pretest MAP Score 0.303* .259 .042 

U. Database Variables    

2. Gender -0.214 -.033 .001 

3. Age -0.012 -.001 <.001 

4. SAT Math 0.000 -.003 <.001 

5. SAT Verbal -0.003* -.057 .002 

6. GPA 0.582* .077 .005 

7. Posttest Credit Hours 0.010 .019 <.001 

Pretest Auxiliary Variables    

8. Pretest PAP 0.002 .002 <.001 

9. Pretest MAV 0.000 -.001 <.001 

10. Pretest PAV -0.015 -.019 <.001 

11. Pretest WAV -0.042* -.062 .003 

12. Pretest Openness 0.010 .021 <.001 

13. Pretest Conscientiousness 0.009 .015 <.001 

14. Pretest Extraversion 0.010 .020 <.001 

15. Pretest Agreeableness 0.032* .052 .002 

16. Pretest Neuroticism 0.003 .005 <.001 

17. Pretest MAI-R 0.022* .111 .008 

18. Pretest Effort 0.030 .035 .001 

19. Pretest Importance 0.042* .054 .002 

Note. Gender was coded 0 for female and 1 for male. b = unstandardized slope; β = 

standardized slope; sr
2
 = squared semipartial correlation. Model R

2
 = .198. Posttest 

auxiliary variables were excluded in this model, as they would not be available to 

assessment practitioners choosing to forgo makeup testing. Results including posttest 

auxiliary variables are included in Table 12. Results indicate that pretest MAP scores, 

some university database variables, and some pretest auxiliary variables were significant 

predictors of posttest MAP scores. Thus, these predictors were important to include as 

auxiliary variables in MI and FIML analyses to reduce standard errors. 

* Sig. at p < .05 
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Table 12 

Regression Coefficients Predicting Posttest MAP Scores (Y) from Pretest MAP Scores, 

University Database Auxiliary Variables, Pretest Auxiliary Variables, and Posttest 

Auxiliary Variables 

Predictor Variable B β sr
2 

1. Pretest MAP Score 0.242* .207 .026 

U. Database Variables    

2. Gender 0.135 .021 <.001 

3. Age -0.014 -.002 <.001 

4. SAT Math -0.001 -.011 <.001 

5. SAT Verbal -0.002* -.043 .001 

6. GPA 0.380* .050 .002 

7. Posttest Credit Hours 0.009 .018 <.001 

Pretest Auxiliary Variables    

8. Pretest PAP -0.065* -.079 .004 

9. Pretest MAV -0.038* -.044 .002 

10. Pretest PAV -0.009 -.011 <.001 

11. Pretest WAV 0.048* .071 .003 

12. Pretest Openness -0.008 -.017 <.001 

13. Pretest Conscientiousness -0.024 -.040 .001 

14. Pretest Extraversion -0.009 -.018 <.001 

15. Pretest Agreeableness -0.007 -.011 <.001 

16. Pretest Neuroticism -0.007 -.013 <.001 

17. Pretest MAI-R 0.010* .052 .002 

18. Pretest Effort 0.012 .014 <.001 

19. Pretest Importance 0.015 .019 <.001 

Posttest Auxiliary Variables    

20. Posttest PAP 0.183* .240 .031 

21. Posttest MAV 0.186* .368 .096 

22. Posttest PAV -0.095* -.123 .008 

23. Posttest WAV -0.199* -.317 .064 

24. Posttest Openness 0.035* .072 .002 

25. Posttest Conscientiousness 0.032 .056 .001 

26. Posttest Extraversion 0.005 .009 <.001 

27. Posttest Agreeableness 0.041* .072 .002 

28. Posttest Neuroticism -0.007 -.013 <.001 

29. Posttest Effort 0.037* .045 .002 

30. Posttest Importance 0.022 .031 .001 

Note. Gender was coded (0 = female) (1 = male). b = unstandardized slope; β = 

standardized slope; sr
2
 = squared semipartial correlation. Model R

2
 = .526. Interestingly, 

the significant pretest auxiliary predictors of posttest MAP scores change when posttest 

auxiliary variables are included in the model. Thus, posttest auxiliary variables moderate 

the relationship between some pretest auxiliary variables (agreeableness and test-taking 

importance) and posttest MAP scores, and act as suppressor variables for some other 

pretest auxiliary variables (PAP and MAV). 

* Sig. at p < .05
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Table 13 

Comparison of MAP Results Across Different Missing Data Handling Techniques 

 Complete Listwise MI  

(no aux) 

MI (U. vars and 

pretest aux only) 

MI  

(all aux) 

 Est. SE Est. SE Est. SE Est. SE Est. SE 

μy 16.824 0.065 16.932 0.066 16.914 0.066 16.906 0.066 16.884 0.064 

   sDiscrepancy or RE
a
 --- --- 1.662 1.031 1.385 1.031 1.262 1.031 0.923 0.969 

σ
2

y 9.649 0.287 9.135 0.281 9.149 0.280 9.162 0.278 9.191 0.282 

   sDiscrepancy or RE
a
 --- --- -1.791 0.959 -1.742 0.952 -1.697 0.938 -1.596 0.965 

covx,y 3.148 0.186 3.095 0.186 3.116 0.187 3.144 0.185 3.141 0.185 

   sDiscrepancy or RE
a
 --- --- -0.285 1.000 -0.172 1.011 -0.022 0.989 -0.038 0.989 

μy-x -1.035 0.068 -0.960 0.068 -0.945 0.069 -0.953 0.068 -0.975 0.067 

   sDiscrepancy or RE
a
 --- --- 1.103 1.000 1.324 1.030 1.206 1.000 0.882 0.971 

 

 FIML  

(no aux) 

FIML  

(U. vars and pretest aux only) 

FIML  

(all aux) 

 Est. SE Est. SE Est. SE 

μy 16.917 0.065 16.910 0.065 16.884 0.065 

   sDiscrepancy or RE
a
 1.431 1.000 1.323 1.000 0.923 1.000 

σ
2

y 9.151 0.281 9.161 0.282 9.183 0.281 

   sDiscrepancy or RE
a
 -1.735 0.959 -1.700 0.965 -1.624 0.959 

covx,y 3.130 0.186 3.143 0.186 3.143 0.184 

   sDiscrepancy or RE
a
 -0.097 1.000 -0.027 1.000 -0.027 0.979 

μy-x -0.942 0.068 -0.948 0.068 -0.975 0.067 

   sDiscrepancy or RE
a
 1.368 1.000 1.279 1.000 0.882 0.971 

Note. μy = mean posttest MAP score; σ
2

y = posttest MAP score variance; covx,y = covariance between pretest and posttest MAP scores;  

μy-x = mean pre-post MAP score growth 
a
 Standardized discrepancy (sDiscrepancy) is reported for parameter estimates, and relative efficiency (RE) is reported for standard 

errors. Standardized discrepancy quantifies the standard error difference between the parameter estimate obtained utilizing the missing 

data handling method and the complete data parameter estimate. Thus, standardized discrepancy values can be interpreted similarly to 
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z-scores, with values greater than ~|2| considered large and highlighted. Standardized discrepancy was negligible for all parameters 

across all methods. Relative efficiency quantifies the ratio between the squared standard errors obtained utilizing the missing data 

handling method and the squared standard errors obtained utilizing the complete dataset. Relative efficiency values can also be 

interpreted as the factor the sample size should be increased for a given missing data handling method to achieve the same standard 

errors as the complete dataset. For instance, the RE value for the listwise μy is 1.031, indicating that the listwise sample size should be 

increased by 3.1% to achieve the same μy standard error that was obtained using the complete dataset. Relative efficiency values 

greater than 1.2 were considered large and highlighted. No relative efficiency estimates indicated substantial standard error inflation. 
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Table 14 

Comparison of MAP Results Across Different Missing Data Handling Techniques (25% Missingness) 

 Complete Listwise MI  

(no aux) 

MI (U. vars and 

pretest aux only) 

MI  

(all aux) 

 Est. SE Est. SE Est. SE Est. SE Est. SE 

μy 16.534 0.145 17.005 0.152 16.890 0.143 16.927 0.145 16.784 0.143 

   sDiscrepancy or RE
a
 --- --- 3.248 1.099 2.455 0.973 2.710 1.000 1.724 0.973 

σ
2

y 11.342 0.693 9.338 0.659 9.609 0.660 9.482 0.685 9.472 0.653 

   sDiscrepancy or RE
a
 --- --- -2.892 0.904 -2.501 0.907 -2.684 0.977 -2.698 0.888 

covx,y 3.675 0.412 3.597 0.424 3.893 0.435 3.776 0.439 3.742 0.410 

   sDiscrepancy or RE
a
 --- --- -0.189 1.059 0.529 1.115 0.245 1.135 0.163 0.990 

μy-x -1.265 0.142 -0.945 0.145 -0.908 0.137 -0.871 0.140 -1.015 0.139 

   sDiscrepancy or RE
a
 --- --- 2.254 1.043 2.514 0.931 2.775 0.972 1.761 0.958 

 

 FIML  

(no aux) 

FIML  

(U. vars and pretest aux only) 

FIML  

(all aux) 

 Est. SE Est. SE Est. SE 

μy 16.919 0.149 16.908 0.150 16.785 0.144 

   sDiscrepancy or RE
a
 2.655 1.056 2.579 1.070 1.731 0.986 

σ
2

y 9.489 0.674 9.502 0.673 9.533 0.653 

   sDiscrepancy or RE
a
 -2.674 0.946 -2.655 0.943 -2.610 0.888 

covx,y 3.864 0.435 3.858 0.432 3.799 0.414 

   sDiscrepancy or RE
a
 0.459 1.115 0.444 1.099 0.301 1.010 

μy-x -0.879 0.144 -0.891 0.144 -1.014 0.139 

   sDiscrepancy or RE
a
 2.718 1.028 2.634 1.028 1.768 0.958 

Note. μy = mean posttest MAP score; σ
2

y = posttest MAP score variance; covx,y = covariance between pretest and posttest MAP scores;  

μy-x = mean pre-post MAP score growth 
a
 Standardized discrepancy (sDiscrepancy) is reported for parameter estimates, and relative efficiency (RE) is reported for standard 

errors. Standardized discrepancy quantifies the standard error difference between the parameter estimate obtained utilizing the missing 

data handling method and the complete data parameter estimate. Thus, standardized discrepancy values can be interpreted similarly to 



 

 

   

 

 

1
5
2
 

z-scores, with values greater than ~|2| considered large and highlighted. Standardized discrepancy estimates indicated that posttest 

variance estimates for all missing data handling techniques were substantially lower than those obtained using the complete dataset. 

Both posttest mean and pre-post mean change estimates for all missing data handling techniques were substantially higher than those 

obtained using the complete dataset, with the exception of MI and FIML estimation utilizing all auxiliary variables. Relative 

efficiency quantifies the ratio between the squared standard errors obtained utilizing the missing data handling method and the squared 

standard errors obtained utilizing the complete dataset. Relative efficiency values can also be interpreted as the factor the sample size 

should be increased for a given missing data handling method to achieve the same standard errors as the complete dataset. For 

instance, the RE value for the listwise μy is 1.099, indicating that the listwise sample size should be increased by 9.9% to achieve the 

same μy standard error that was obtained using the complete dataset. Relative efficiency values greater than 1.2 were considered large 

and highlighted. No relative efficiency estimates indicated substantial standard error inflation. 
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Table 15 

Comparison of MAP Results Across Different Missing Data Handling Techniques (50% Missingness) 

 Complete Listwise MI  

(no aux) 

MI (U. vars and 

pretest aux only) 

MI  

(all aux) 

 Est. SE Est. SE Est. SE Est. SE Est. SE 

μy 16.052 0.220 16.985 0.267 16.877 0.238 16.846 0.244 16.472 0.244 

   sDiscrepancy or RE
a
 --- --- 4.241 1.473 3.750 1.170 3.609 1.230 1.909 1.230 

σ
2

y 12.997 1.123 9.567 1.169 9.429 1.236 9.754 1.295 11.261 1.331 

   sDiscrepancy or RE
a
 --- --- -3.054 1.084 -3.177 1.211 -2.888 1.330 -1.546 1.405 

covx,y 4.063 0.682 4.749 0.884 4.586 0.782 4.532 0.790 4.614 0.729 

   sDiscrepancy or RE
a
 --- --- 1.006 1.680 0.767 1.315 0.688 1.342 0.808 1.143 

μy-x -1.466 0.222 -0.709 0.254 -0.642 0.231 -0.673 0.238 -1.046 0.237 

   sDiscrepancy or RE
a
 --- --- 3.410 1.309 3.712 1.083 3.572 1.149 1.892 1.140 

 

 FIML  

(no aux) 

FIML  

(U. vars and pretest aux only) 

FIML  

(all aux) 

 Est. SE Est. SE Est. SE 

μy 16.888 0.248 16.863 0.250 16.522 0.244 

   sDiscrepancy or RE
a
 3.800 1.271 3.686 1.291 2.136 1.230 

σ
2

y 9.483 1.130 9.646 1.147 10.469 1.272 

   sDiscrepancy or RE
a
 -3.129 1.013 -2.984 1.043 -2.251 1.283 

covx,y 4.596 0.758 4.574 0.742 4.628 0.728 

   sDiscrepancy or RE
a
 0.782 1.235 0.749 1.184 0.828 1.139 

μy-x -0.631 0.241 -0.655 0.244 -0.997 0.236 

   sDiscrepancy or RE
a
 3.761 1.178 3.653 1.208 2.113 1.130 

Note. μy = mean posttest MAP score; σ
2

y = posttest MAP score variance; covx,y = covariance between pretest and posttest MAP scores;  

μy-x = mean pre-post MAP score growth 
a
 Standardized discrepancy (sDiscrepancy) is reported for parameter estimates, and relative efficiency (RE) is reported for standard 

errors. Standardized discrepancy quantifies the standard error difference between the parameter estimate obtained utilizing the missing 

data handling method and the complete data parameter estimate. Thus, standardized discrepancy values can be interpreted similarly to 
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z-scores, with values greater than ~|2| considered large and highlighted. With the exception of the parameter estimates obtained 

utilizing MI with all auxiliary variables, all missing data techniques resulted in posttest mean and pre-post mean change estimates that 

were substantially higher than those obtained utilizing the complete data, and posttest variance estimates that were substantially lower. 

Relative efficiency quantifies the ratio between the squared standard errors obtained utilizing the missing data handling method and 

the squared standard errors obtained utilizing the complete dataset. Relative efficiency values can also be interpreted as the factor the 

sample size should be increased for a given missing data handling method to achieve the same standard errors as the complete dataset. 

For instance, the RE value for the listwise μy is 1.473, indicating that the listwise sample size should be increased by 47.3% to achieve 

the same μy standard error that was obtained using the complete dataset. Relative efficiency values greater than 1.2 were considered 

large and highlighted. Generally, standard error inflation was problematic across techniques, although results were inconsistent. 



155 

 

   

 

 

Table 16 

Descriptive Statistics and Model Parameters (Standard Errors) Regressing Posttest NW-

9 Scores on Pretest NW-9 Scores by Posttest Attendance 

Attendance Pretest Mean Pretest 

Variance 

Posttest 

Mean 

Posttest 

Variance 

Assessment Day at Posttest 44.075 55.907 48.833 54.918 

 

Makeup at Posttest 

 

45.500 

 

60.685 

 

46.870 

 

85.809 

 

 

Attendance Posttest  

Intercept 

Pretest-Posttest 

Slope 

Posttest Residual 

Variance 

Assessment Day at Posttest 19.807 

(1.179) 

0.659 

(0.026) 

30.670 

(1.544) 

 

Makeup at Posttest 

 

8.437 

(5.696) 

 

0.845 

(0.123) 

 

42.507 

(8.863) 

Note. Intercepts, slopes, and residual variances were freely estimated across groups. If 

students attending makeup testing responded comparably to students attending 

Assessment Day at posttest, we would expect these parameters to be of similar value, 

within sampling error. The makeup sample was associated with a smaller posttest 

intercept, a larger pretest-posttest slope, and a larger posttest residual variance as 

compared to the Assessment Day sample. If models constraining common intercept, 

slope, and/or residual variance parameters across samples were associated with 

significant model misfit (see Table 17), makeup students may not be providing valid 

responses at posttest. 
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Table 17 

Multiple Group Analysis Comparing the Pretest-Posttest NW-9 Relationship across 

Assessment Day and Makeup Samples 

Model χ
2

 df CFI RMSEA 

Model 1: Posttest Intercept Constraint 3.682 1 .995 .080 

 

Model 2: Pretest-Posttest Slope Constraint 

 

2.130 

 

1 

 

.998 

 

.052 

 

Model 3: Posttest Residual Variance Constraint 

 

2.554 

 

1 

 

.997 

 

.061 

 

Model 4: Intercept, Slope, and Residual Variance 

Constraint 

 

17.121* 

 

3 

 

.971 

 

.106 

Note. CFI= Comparative Fit Index; RMSEA = Root Mean Square Error of 

Approximation. Models were estimated predicting posttest NW-9 scores from pretest 

NW-9 scores. When estimating Model 1, the posttest intercept was constrained to be 

equal across Assessment Day and makeup samples, but the pretest-posttest slopes and 

posttest residual variances were freely estimated across samples. When estimating Model 

2, the pretest-posttest slope was constrained to be equal across samples, but the posttest 

intercept and posttest residual variances were freely estimated. When estimating Model 3, 

posttest residual variances were constrained to be equal across samples, but the posttest 

intercepts and pretest-posttest slopes were freely estimated. When estimating Model 4, 

the posttest intercept, pretest-posttest slope, and posttest residual variance were all 

constrained to be equal across samples. These global fit indices indicated that Model 4 

was associated with statistically and practically significant misfit. However, no 

normalized residual variances or covariances associated with Model 4 were greater than 

|2| for either sample. Yet, the normalized posttest mean residual was large for the makeup 

(-2.015) sample, indicating that posttest NW-9 scores were lower for the makeup sample 

than would be predicted given their pretest scores, manifesting in a lower intercept. This 

lower intercept may be due to reduced motivation by the makeup sample, resulting in 

increased random responding at posttest leading to lower posttest scores. 

* p < .05. 
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Table 18 

Descriptive Statistics for the Complete NW-9 Sample (N = 835) 

Measure Mean SD Min Max 

1. Posttest Attendance (R) .945
a
 - - - 

2. Posttest NW-9 Score (Y) 48.725 7.542 18.00 66.00 

3. Pretest NW-9 Score 44.153 7.506 17.00 65.00 

U. Database Variables     

4. Gender .357
b
 - - - 

5. Age 19.932 0.369 18.70 22.49 

6. SAT Math 578.151 65.687 380.00 750.00 

7. SAT Verbal 572.190 73.155 280.00 800.00 

8. GPA 3.164 0.404 1.83 4.00 

9. Posttest Credit Hours 52.313 6.133 45.00 70.00 

10. Posttest Science Credit Hours 7.327 3.943 0.00 23.00 

Pretest Auxiliary Variables     

11. Pretest MAP 17.788 2.783 6.00 21.00 

12. Pretest PAP 15.952 3.829 3.00 21.00 

13. Pretest WAV 10.478 4.530 4.00 26.00 

14. Pretest Conscientiousness 32.052 5.103 18.00 44.00 

15. Pretest MAI-R 126.170 15.710 78.00 174.00 

16. Pretest Effort 18.719 3.565 5.00 25.00 

17. Pretest Importance 15.302 3.987 5.00 25.00 

Posttest Auxiliary Variables     

18. Posttest MAP 16.724 3.222 3.00 21.00 

19. Posttest PAP 15.568 4.222 3.00 21.00 

20. Posttest WAV 12.087 4.949 4.00 28.00 

21. Posttest Conscientiousness 33.198 5.333 12.00 45.00 

22. Posttest Effort 19.147 3.604 5.00 25.00 

23. Posttest Importance 13.782 4.426 5.00 25.00 

Note. U. Database Variables = Variables obtained from the university student database; 

Pretest Auxiliary Variables = Variables measured at pretest for entering freshmen 

students; Posttest Auxiliary Variables = Variables measured at posttest after three 

semesters of university attendance; NW-9 = Natural World Version 9; MAP = Mastery 

Approach Orientation; PAP = Performance Approach Orientation; WAV = Work 

Avoidance; MAI-R = Metacognitive Regulation; Effort = Test-taking Effort; Importance 

= Test-taking Importance. 
a
 This value (.945) represents the proportion of students attending their originally 

assigned Assessment Day testing session at posttest 
b
 This value (.357) represents the proportion of males in the sample. 
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Table 19 

Bivariate Relationships between Posttest Attendance (R), Posttest NW-9 Score (Y), and Potential Auxiliary Variables 

Measure 1 2 3 4 5 6 7 8 

1. Posttest Attendance (R)  ---        

2. Posttest NW-9 Score (Y) .059 ---       

3. Pretest NW-9 Score -.043 .663* ---      

U. Database Variables         

4. Gender  -.105* .169* .178* ---     

5. Age .007 -.016 -.014 .135* ---    

6. SAT Math -.064 .428* .409* .291* .016 ---   

7. SAT Verbal -.081* .536* .516* .123* -.003 .367* ---  

8. GPA .025 .344* .295* -.044 .005 .260* .335* --- 

9. Posttest Credit Hours -.007 .217* .299* .049 -.027 .162* .256* .203* 

10. Posttest Science Credit Hours .033 .138* .099* .015 -.007 .087* -.028 -.037 

Pretest Auxiliary Variables         

11. Pretest MAP .079* -.030 -.044 -.168* -.016 -.161* -.101* .039 

12. Pretest PAP -.029 .020 .021 .050 .043 .056 -.003 .100* 

13. Pretest WAV -.029 .068 .028 .125* .034 .118* .101* -.053 

14. Pretest Conscientiousness .091* .007 .003 -.174* .001 -.175* -.133* .240* 

15. Pretest MAI-R .075* -.050 -.024 -.135* .054 -.121* -.085* .082* 

16. Pretest Effort .005 .213* .319* -.130* -.062 .066 .108* .165* 

17. Pretest Importance .008 -.047 .030 -.093* -.004 -.116* -.068 .065 

Posttest Auxiliary Variables         

18. Posttest MAP .136* .016 -.085* -.107* -.021 -.076* -.085* .096* 

19. Posttest PAP .005 -.004 -.007 .024 -.014 .030 -.027 .136* 

20. Posttest WAV -.129* .047 .094* .158* -.007 .115* .153* -.004 

21. Posttest Conscientiousness .061 .086 .012 -.152* .002 -.073 -.093* .200* 

22. Posttest Effort .032 .187* .112* -.131* .009 .034 .016 .083* 

23. Posttest Importance .037 .000 -.083* .010 .036 -.035 -.069* .030 
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Table 19 (continued) 

Bivariate Relationships between Posttest Attendance (R), Posttest NW-9 Score (Y), and Potential Auxiliary Variables 

Measure 9 10 11 12 13 14 15 16 

U. Database Variables         

9. Posttest Credit Hours ---        

10. Posttest Science Credit Hours .180* ---       

Pretest Auxiliary Variables         

11. Pretest MAP .031 .040 ---      

12. Pretest PAP .044 .027 .297* ---     

13. Pretest WAV -.050 -.029 -.500* -.152* ---    

14. Pretest Conscientiousness .056 .007 .354* .258* -.388* ---   

15. Pretest MAI-R .009 .055 .470* .269* -.355* .442* ---  

16. Pretest Effort .154* .090* .235* .133* -.196* .377* .252* --- 

17. Pretest Importance .012 .058 .180* .262* -.178* .272* .271* .288* 

Posttest Auxiliary Variables         

18. Posttest MAP .003 .077* .356* .121* -.281* .249* .346* .169* 

19. Posttest PAP -.007 .114* .117* .456* -.085* .174* .179* .095* 

20. Posttest WAV .030 -.055 -.283* -.043 .472* -.279* -.240* -.112* 

21. Posttest Conscientiousness .103* .040 .182* .150* -.235* .676* .217* .239* 

22. Posttest Effort .049 .025 .167* .061 -.144* .228* .138* .378* 

23. Posttest Importance -.046 .052 .139* .120* -.117* .125* .186* .015 
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Table 19 (continued) 

Bivariate Relationships between Posttest Attendance (R), Posttest NW-9 Score (Y), and Potential Auxiliary Variables 

Measure 17 18 19 20 21 22 

Pretest Auxiliary Variables       

17. Pretest Importance ---      

Posttest Auxiliary Variables       

18. Posttest MAP .198* ---     

19. Posttest PAP .209* .348* ---    

20. Posttest WAV -.163* -.500* -.124* ---   

21. Posttest Conscientiousness .172* .320* .226* -.369* ---  

22. Posttest Effort .147* .262* .113* -.218* .262* --- 

23. Posttest Importance .295* .259* .137* -.232* .088* .213* 

Note. U. Database Variables = Variables obtained from the university student database; Pretest Auxiliary Variables = Variables 

measured at pretest for entering freshmen students; Posttest Auxiliary Variables = Variables measured at posttest after three semesters 

of university attendance; NW-9 = Natural World Version 9; MAP = Mastery Approach Orientation; PAP = Performance Approach 

Orientation; WAV = Work Avoidance; MAI-R = Metacognitive Regulation; Effort = Test-taking Effort; Importance = Test-taking 

Importance. Gender was coded 0 for female and 1 for male, and posttest attendance (R) was coded 0 for makeup and 1 for Assessment 

Day. Posttest attendance (R) was found to be significantly bivariately related to a number of dataset variables (see column 1). Thus, 

the MCAR assumption was found to be violated. 

* Sig. at p < .05. 
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Table 20 

Partial Correlations between Posttest Attendance (R) and Posttest NW-9 Scores (Y) after 

Controlling for Individual Auxiliary Variables 

Measure 

X-R Cor. X-Y Cor. 

R-Y 

Partial 

Partial - 

Bivariate 

1. Pretest NW-9 Score -.043 .663* .117* .058 

U. Database Variables     

2. Gender -.105* .169* .078* .019 

3. Age .007 -.016 .059 .000 

4. SAT Math -.064 .428* .096* .037 

5. SAT Verbal -.081* .536* .122* .063 

6. GPA .025 .344* .054 -.005 

7. Posttest Credit Hours -.007 .217* .062 .003 

8. Posttest Science Credit Hours .033 .138* .055 -.004 

Pretest Auxiliary Variables     

9. Pretest MAP .079* -.030 .062 .003 

10. Pretest PAP -.029 .020 .060 .001 

11. Pretest WAV -.029 .068 .061 .002 

12. Pretest Conscientiousness .091* .007 .059 .000 

13. Pretest MAI-R .075* -.050 .063 .004 

14. Pretest Effort .005 .213* .059 .000 

15. Pretest Importance .008 -.047 .059 .000 

Posttest Auxiliary Variables     

16. Posttest MAP .136* .016 .057 -.002 

17. Posttest PAP .005 -.004 .059 .000 

18. Posttest WAV -.129* .047 .066 .007 

19. Posttest Conscientiousness .061 .086 .054 -.005 

20. Posttest Effort .032 .187* .054 -.005 

21. Posttest Importance .037 .000 .059 .000 

Note. The table above presents the bivariate correlation between each auxiliary variable 

and posttest attendance (X-R Cor.), the bivariate correlation between each auxiliary 

variable and posttest NW-9 score (X-Y Cor.), the partial correlation between posttest 

attendance and posttest NW-9 score after controlling for the given auxiliary variable (R-

Y Partial), and the difference between the R-Y partial correlation and the R-Y bivariate 

correlation (Partial – Bivariate). Recall the bivariate relationship between R and Y 

equaled .059. Negative “Partial – Bivariate” values indicate that the given auxiliary 

variable (X) independently moderates the relationship between posttest attendance (R) 

and posttest NW-9 scores (Y), and thus are important to include as auxiliary variables to 

reduce bias. In contrast to the MAP results, there are several auxiliary variables (X) with 

large positive “Partial – Bivariate” values, indicating that the partial correlation between 

posttest attendance (R) and posttest NW-9 scores (Y) increases when the auxiliary 

variable (X) is accounted for (pretest NW-9 score, Gender, SAT Math, SAT Verbal). 

These variables are examples of suppressor variables, as accounting for these variables 

increases the R-Y relationship. 

* Sig. at p < .05  
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Table 21 

Model Comparison Predicting Posttest NW-9 Scores (Y) from Auxiliary Variables 

Predictors Added to Model R
2
 R

2
 Ch. R-Y Partial 

Model 1: + Pretest NW-9 Score .440* --- .117* 

 

Model 2: + U. Database Variables .527* .087* .149* 

 

Model 3: + Pretest Aux. Variables  .536* .009 .143* 

 

Model 4: + Posttest Aux. Variables .562* .026* .139* 

Note. R-Y Partial = Partial correlation between posttest attendance (R) and posttest NW-9 

scores (Y) after controlling for variables included in the model.  Recall the bivariate 

relationship between R and Y equaled .059. Each model included all the predictors of the 

previous models, with additional predictors added. For example, Model 2 included pretest 

NW-9 score and all university database variables as predictors of posttest NW-9 score. R
2
 

and R
2
 change significance were evaluated using Wald tests. The results provide some 

indication of the sets variables that are significantly independent related to posttest NW-9 

scores (Y), and were thus important to include as auxiliary variables to reduce standard 

errors. For example, the R
2
 change associated with university database variables was .087 

and statistically significant, indicating that university database variables were important 

to include as auxiliary variables to decrease standard errors. If the partial correlation was 

nonsignificant for a given model, the relationship between posttest attendance (R) and 

posttest NW-9 scores (Y) was completely moderated by the predictors in the model, 

indicating the MAR assumption was met if these predictors were included as auxiliary 

variables. Notice that for Models 1-4, the partial correlation was significant, indicating a 

MNAR mechanism as missingness predicted a significant amount of variance in posttest 

scores after controlling for auxiliary variables. Moreover, the partial correlation increases 

above the R-Y bivariate correlation (r = .059) when auxiliary variables are included due 

to statistical suppression. 

* Sig. at p < .05. 
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Table 22 

Regression Coefficients Predicting Posttest NW-9 Scores (Y) from Pretest NW-9 Scores, 

University Database Auxiliary Variables, and Pretest Auxiliary Variables 

Predictor Variable   b β sr
2 

1. Pretest NW-9 Score 0.457* .455 .120 

U. Database Variables    

2. Gender  0.633 .040 .001 

3. Age -0.292 -.014 <.001 

4. SAT Math 0.014* .122 .010 

5. SAT Verbal 0.024* .233 .034 

6. GPA 1.963* .105 .008 

7. Posttest Credit Hours -0.055 -.045 .002 

8. Posttest Science Credit Hours 0.197* .103 .010 

Pretest Auxiliary Variables    

9. Pretest MAP 0.177* .065 .003 

10. Pretest PAP -0.031 -.016 <.001 

11. Pretest WAV 0.095 .057 .002 

12. Pretest Conscientiousness 0.104 .071 .003 

13. Pretest MAI-R -0.019 -.040 .001 

14. Pretest Effort 0.031 .015 <.001 

15. Pretest Importance -0.094 -.050 .002 

Note. Gender was coded 0 for female and 1 for male. b = unstandardized slope; β = 

standardized slope; sr
2
 = squared semipartial correlation. Model R

2
 = .536. Posttest 

auxiliary variables were excluded in this model, as they would not be available to 

assessment practitioners choosing to forgo makeup testing. Results including posttest 

auxiliary variables are included in Table 23. Results indicate that pretest NW-9 score, 

some university database variables, and some pretest auxiliary variables were important 

predictors of posttest NW-9 scores. Thus, these predictors were important to include as 

auxiliary variables in MI and FIML analyses to reduce standard errors. 

* p < .05 
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Table 23 

Regression Coefficients Predicting Posttest NW-9 Scores (Y) from Pretest NW-9 Scores, 

University Database Auxiliary Variables, Pretest Auxiliary Variables, and Posttest 

Auxiliary Variables 

Predictor Variable b β sr
2
 

1. Pretest NW-9 Score 0.464* .461 .121 

U. Database Variables    

2. Gender  0.888* .056 .003 

3. Age -0.473 -.023 .001 

4. SAT Math 0.012* .104 .007 

5. SAT Verbal 0.024* .237 .035 

6. GPA 1.976* .106 .008 

7. Posttest Credit Hours -0.064* -.052 .002 

8. Posttest Science Credit Hours 0.199* .104 .010 

Pretest Auxiliary Variables    

9. Pretest MAP 0.117 .043 .001 

10. Pretest PAP 0.039 .020 <.001 

11. Pretest WAV 0.105* .063 .002 

12. Pretest Conscientiousness -0.021 -.014 <.001 

13. Pretest MAI-R -0.018 -.037 .001 

14. Pretest Effort -0.035 -.017 <.001 

15. Pretest Importance -0.122* -.064 .003 

Posttest Auxiliary Variables    

16. Posttest MAP 0.135 .058 .002 

17. Posttest PAP -0.127* -.071 .003 

18. Posttest WAV 0.004 .003 <.001 

19. Posttest Conscientiousness 0.147 .103 .005 

20. Posttest Effort 0.231* .111 .009 

21. Posttest Importance 0.062 .036 .001 

Note. Gender was coded 0 for female and 1 for male. b = unstandardized slope; β = 

standardized slope; sr
2
 = squared semipartial correlation. Model R

2
 = .562. Note pretest 

importance was not a statistically significant predictor when posttest auxiliary variables 

were excluded from the model, but became significant after posttest auxiliary variables 

were included in the model. Thus, the posttest auxiliary variables acted as suppressor 

variables for pretest importance scores in the model. Results indicate that pretest NW-9 

score, some university database variables, and some pretest and posttest auxiliary 

variables were important predictors of posttest NW-9 scores. Thus, these predictors were 

important to include as auxiliary variables in MI and FIML analyses to reduce standard 

errors.   

* p < .05 
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Table 24 

Comparison of NW-9 Results Across Different Missing Data Handling Techniques 

 Complete Listwise MI  

(no aux) 

MI (U. vars and 

pretest aux only) 

MI  

(all aux) 

 Est. SE Est. SE Est. SE Est. SE Est. SE 

μy 48.725 0.261 48.833 0.264 48.884 0.260 48.903 0.261 48.894 0.260 

   sDiscrepancy or RE
a
 --- --- 0.414 1.023 0.609 0.992 0.682 1.000 0.648 0.992 

σ
2

y 56.820 2.781 54.915 2.765 55.119 2.753 55.124 2.767 55.022 2.730 

   sDiscrepancy or RE
a
 --- --- -0.685 0.989 -0.612 0.980 -0.610 0.990 -0.647 0.964 

covx,y 37.469 2.347 36.817 2.368 37.037 2.329 37.054 2.347 36.930 2.321 

   sDiscrepancy or RE
a
 --- --- -0.278 1.018 -0.184 0.985 -0.177 1.000 -0.230 0.978 

μy-x 4.571 0.214 4.758 0.217 4.731 0.215 4.750 0.217 4.740 0.216 

   sDiscrepancy or RE
a
 --- --- 0.874 1.028 0.748 1.009 0.836 1.028 0.790 1.019 

 

 FIML  

(no aux) 

FIML  

(U. vars and pretest aux only) 

FIML  

(all aux) 

 Est. SE Est. SE Est. SE 

μy 48.884 0.261 48.914 0.260 48.904 0.260 

   sDiscrepancy or RE
a
 0.609 1.000 0.724 0.992 0.686 0.992 

σ
2

y 55.078 2.763 54.984 2.748 54.924 2.742 

   sDiscrepancy or RE
a
 -0.626 0.987 -0.660 0.976 -0.682 0.972 

covx,y 37.062 2.343 36.995 2.336 36.942 2.333 

   sDiscrepancy or RE
a
 -0.173 0.997 -0.202 0.991 -0.225 0.988 

μy-x 4.731 0.216 4.761 0.216 4.751 0.215 

   sDiscrepancy or RE
a
 0.748 1.019 0.888 1.019 0.841 1.009 

Note. μy = mean posttest NW-9 score; σ
2

y = posttest NW-9 score variance; covx,y = covariance between pretest and posttest NW-9 

scores;  μy-x = mean pre-post NW-9 score growth 
a
 Standardized discrepancy (sDiscrepancy) is reported for parameter estimates, and relative efficiency (RE) is reported for standard 

errors. Standardized discrepancy quantifies the standard error difference between the parameter estimate obtained utilizing the missing 

data handling method and the complete data parameter estimate. Thus, standardized discrepancy values can be interpreted similarly to 
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z-scores, with values greater than ~|2| considered large. Standardized discrepancy was negligible for all parameters across all methods. 

Relative efficiency quantifies the ratio between the squared standard errors obtained utilizing the missing data handling method and 

the squared standard errors obtained utilizing the complete dataset. Relative efficiency values can also be interpreted as the factor the 

sample size should be increased for a given missing data handling method to achieve the same standard errors as the complete dataset. 

For instance, the RE value for the listwise μy is 1.023, indicating that the listwise sample size should be increased by 2.3% to achieve 

the same μy standard error that was obtained using the complete dataset. Relative efficiency values greater than 1.2 were considered 

large. No relative efficiency estimates indicated substantial standard error inflation. 
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Table 25 

Comparison of NW-9 Results Across Different Missing Data Handling Techniques (25% Missingness) 

 Complete Listwise MI  

(no aux) 

MI (U. vars and 

pretest aux only) 

MI  

(all aux) 

 Est. SE Est. SE Est. SE Est. SE Est. SE 

μy 48.228 0.596 48.681 0.647 48.856 0.623 49.002 0.584 49.003 0.603 

   sDiscrepancy or RE
a
 --- --- 0.760 1.178 1.054 1.093 1.299 0.960 1.300 1.024 

σ
2

y 65.328 6.811 57.681 6.944 59.567 7.278 58.214 7.032 58.249 6.505 

   sDiscrepancy or RE
a
 --- --- -1.123 1.039 -0.846 1.142 -1.044 1.066 -1.039 0.912 

covx,y 38.168 5.224 34.234 5.509 36.270 5.419 34.429 5.139 34.252 5.206 

   sDiscrepancy or RE
a
 --- --- -0.753 1.112 -0.363 1.076 -0.716 0.968 -0.750 0.993 

μy-x 3.440 0.487 4.130 0.548 4.068 0.539 4.214 0.513 4.215 0.536 

   sDiscrepancy or RE
a
 --- --- 1.417 1.266 1.290 1.225 1.589 1.110 1.591 1.211 

 

 FIML  

(no aux) 

FIML  

(U. vars and pretest aux only) 

FIML  

(all aux) 

 Est. SE Est. SE Est. SE 

μy 48.837 0.619 48.991 0.613 48.975 0.613 

   sDiscrepancy or RE
a
 1.022 1.079 1.280 1.058 1.253 1.058 

σ
2

y 58.653 6.994 58.220 6.854 57.790 6.790 

   sDiscrepancy or RE
a
 -0.980 1.054 -1.044 1.013 -1.107 0.994 

covx,y 35.718 5.331 34.881 5.238 34.398 5.199 

   sDiscrepancy or RE
a
 -0.469 1.041 -0.629 1.005 -0.722 0.990 

μy-x 4.048 0.540 4.203 0.541 4.187 0.546 

   sDiscrepancy or RE
a
 1.248 1.230 1.567 1.234 1.534 1.257 

Note. μy = mean posttest NW-9 score; σ
2

y = posttest NW-9 score variance; covx,y = covariance between pretest and posttest NW-9 

scores;  μy-x = mean pre-post NW-9 score growth 
a
 Standardized discrepancy (sDiscrepancy) is reported for parameter estimates, and relative efficiency (RE) is reported for standard 

errors. Standardized discrepancy quantifies the standard error difference between the parameter estimate obtained utilizing the missing 

data handling method and the complete data parameter estimate. Thus, standardized discrepancy values can be interpreted similarly to 
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z-scores, with values greater than ~|2| considered large and highlighted. Standardized discrepancy was small for all parameters across 

all methods. Relative efficiency quantifies the ratio between the squared standard errors obtained utilizing the missing data handling 

method and the squared standard errors obtained utilizing the complete dataset. Relative efficiency values can also be interpreted as 

the factor the sample size should be increased for a given missing data handling method to achieve the same standard errors as the 

complete dataset. For instance, the RE value for the listwise μy is 1.178, indicating that the listwise sample size should be increased by 

17.8% to achieve the same μy standard error that was obtained using the complete dataset. Relative efficiency values greater than 1.2 

were considered large and highlighted. No relative efficiency estimates indicated substantial standard error inflation. Only the standard 

error associated with the pre-post mean difference showed substantial inflation, and this inflation was fairly consistent across missing 

data methods. Interestingly, MI utilizing university and pretest auxiliary variables did not show substantial pre-post mean difference 

standard error inflation, but this result may be idiosyncratic of the 20 imputations in this condition. 
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Table 26 

Comparison of NW-9 Results Across Different Missing Data Handling Techniques (50% Missingness) 

 Complete Listwise MI  

(no aux) 

MI (U. vars and 

pretest aux only) 

MI  

(all aux) 

 Est. SE Est. SE Est. SE Est. SE Est. SE 

μy 48.130 0.837 49.391 0.931 49.905 0.831 50.185 0.852 49.986 0.860 

   sDiscrepancy or RE
a
 --- --- 1.507 1.237 2.121 0.986 2.455 1.036 2.217 1.056 

σ
2

y 64.437 9.500 39.890 8.318 40.085 8.549 46.239 9.568 52.113 11.251 

   sDiscrepancy or RE
a
 --- --- -2.584 0.767 -2.563 0.810 -1.916 1.014 -1.297 1.403 

covx,y 38.912 7.605 28.897 8.157 30.201 6.861 32.402 7.193 33.083 7.668 

   sDiscrepancy or RE
a
 --- --- -1.317 1.150 -1.145 0.814 -0.856 0.895 -0.766 1.017 

μy-x 3.554 0.705 5.739 0.908 5.328 0.822 5.609 0.815 5.410 0.814 

   sDiscrepancy or RE
a
 --- --- 3.099 1.659 2.516 1.359 2.915 1.336 2.633 1.333 

 

 FIML  

(no aux) 

FIML  

(U. vars and pretest aux only) 

FIML  

(all aux) 

 Est. SE Est. SE Est. SE 

μy 49.870 0.850 50.177 0.829 *** *** 

   sDiscrepancy or RE
a
 2.079 1.031 2.446 0.981 *** *** 

σ
2

y 40.776 8.298 43.555 8.622 *** *** 

   sDiscrepancy or RE
a
 -2.491 0.763 -2.198 0.824 *** *** 

covx,y 30.606 7.367 32.328 7.147 *** *** 

   sDiscrepancy or RE
a
 -1.092 0.938 -0.866 0.883 *** *** 

μy-x 5.294 0.836 5.601 0.791 *** *** 

   sDiscrepancy or RE
a
 2.468 1.406 2.904 1.259 *** *** 

Note. μy = mean posttest NW-9 score; σ
2

y = posttest NW-9 score variance; covx,y = covariance between pretest and posttest NW-9 

scores;  μy-x = mean pre-post NW-9 score growth. FIML estimation utilizing all auxiliary variables was not able to converge on a 

solution after 10,000 replications. 
a
 Standardized discrepancy (sDiscrepancy) is reported for parameter estimates, and relative efficiency (RE) is reported for standard 

errors. Standardized discrepancy quantifies the standard error difference between the parameter estimate obtained utilizing the missing 
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data handling method and the complete data parameter estimate. Thus, standardized discrepancy values can be interpreted similarly to 

z-scores, with values greater than ~|2| considered large and highlighted. Across all conditions, pre-post mean change estimates were 

substantially larger when utilizing a missing data treatment technique than when analyzing the complete data. Posttest variance 

estimates were substantially smaller when utilizing a missing data treatment technique than those obtained when analyzing the 

complete data, but this bias was reduced when more auxiliary variables were used. Interestingly, all missing data techniques resulted 

in a posttest mean estimate larger than that obtained by analyzing the complete data, with the exception of listwise deletion. Relative 

efficiency quantifies the ratio between the squared standard errors obtained utilizing the missing data handling method and the squared 

standard errors obtained utilizing the complete dataset. Relative efficiency values can also be interpreted as the factor the sample size 

should be increased for a given missing data handling method to achieve the same standard errors as the complete dataset. For 

instance, the RE value for the listwise μy is 1.237, indicating that the listwise sample size should be increased by 23.7% to achieve the 

same μy standard error that was obtained using the complete dataset. Relative efficiency values greater than 1.2 were considered large 

and highlighted. Standard error inflation was most problematic for pre-post mean change estimate standard errors across missing data 

techniques
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Figure 1a. MCAR model. Missingness (R) is unrelated to both other variables in the 

dataset (X) and to the variable with missingness (Y).  

 

 

 

 

 

Figure 1b. MAR model. Missingness (R) is unrelated to the variable with missingness (Y) 

after controlling for the other variables in the dataset (X).  

 

 

 

 

 

Figure 1c. MNAR model. Missingness (R) is related to the variable with missingness (Y) 

even after controlling for the other variables in the dataset (X).  

  

R 

Y 

X 

R 

Y 

X 

R 

Y 

X 

r ≈ 0 



172 

 

   

 

 

DATASET 1 

 PRE POST MAKEUP 

Student 1 X X  

Student 2 X X  

Student 3 X X  

Student 4 X X  

Student 5 X  X 

Student 6 X  X 

 

DATASET 2 

 PRE POST MAKEUP 

Student 1 X X  

Student 2 X X  

Student 3 X X  

Student 4 X X  

Student 5 X  X 

Student 6 X  X 

 

DATASET 3 

 PRE POST MAKEUP 

Student 1 X X  

Student 2 X X  

Student 3 X X  

Student 4 X X  

Student 5 X  X 

Student 6 X  X 

 

 

Figure 2. Different pre-post datasets. X’s denote present data. Dataset 1 involves listwise 

deleting Students 5 and 6, whose posttest data was obtained during a makeup testing 

session. Dataset 2 involves using the complete dataset, including both standard posttest 

and makeup posttest data. Dataset 3 involves treating makeup posttest data as missing, 

and utilizing MI or FIML missing data techniques to handle the missing posttest scores 

for Students 5 and 6.   
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Figure 3. Incorporating auxiliary variables into FIML analysis of pretest and posttest 

scores. AV = Auxiliary variable. Auxiliary variables are allowed to correlate with each 

other, as well as pretest and posttest scores. Although only two auxiliary variables are 

shown in the diagram, additional auxiliary variables (see Table 4) will be utilized. 

  

Pretest 

Score 

Posttest 

Score 

AV1 

AV2 



174 

 

   

 

 

 

ASSESSMENT DAY SAMPLE 

 

 

 

 

 

MAKEUP SAMPLE 

 

 

 

 

 

Figure 4. Multiple-group analysis to examine potential random responding by posttest 

makeup students. The fit of models constraining intercepts (i1 and i2), slopes (b1 and b2), 

residual variances (e1 and e2), or all three to be equivalent across samples were assessed. 

If the model with equivalent intercepts, slopes, and residual variances across groups was 

associated with no significant misfit, this lack of misfit would indicate the relationship 

between the two constructs does not vary across groups. If the makeup sample has a 

diminished intercept, diminished pre-post slope, and/or increased residual variance 

compared to the Assessment Day sample, these differences may indicate that makeup 

students are responding randomly at posttest.  
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Appendix A 

Sample Syntax for Listwise Deletion and Complete Data Conditions 

DATA: file = mapLIST.csv; 

 

!Listing out variables, but only using pretest and posttest 

 

VARIABLE: 

names = id attend sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp; 

 

usevariables = SP09map FA07map; 

 

!Using the maximum-likelihood estimator 

 

ANALYSIS: 

estimator = ml; 

 

MODEL: 

!Pretest mean 

[FA07MAP] (premean); 

!Posttest mean 

[SP09MAP] (postmean); 

!Pretest and Posttest variances 

FA07MAP SP09MAP; 

!Pretest-Posttest covariance 

FA07MAP with SP09MAP; 

 

!Estimating pre-post mean difference 

MODEL CONSTRAINT: 

new(meandiff); 

meandiff = postmean-premean; 

 

!Output will give sample statistics, patterns of 

!missingness and standardized solution 

OUTPUT: 

sampstat patterns stdyx; 

 

Note. Exclamation marks (!) denote comments. Listwise and complete datasets will differ 

only in the dataset being read into MPlus.  
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Appendix B 

Sample Syntax for MI Imputation Phase Excluding Auxiliary Variables 

DATA: file = mapMISS.csv; 

 

!Listing out variables, and but only using posttest and 

!pretest MAP scores 

 

VARIABLE: 

names = id attend sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp; 

 

usevariables = sp09map FA07map; 

 

!Missing variable code 

missing = all (-9); 

 

!Providing Bayes seed and convergence criteria  

!for imputation 

 

ANALYSIS: 

Type = basic; 

Bseed = 467484; 

Bconvergence = .01; 

 

!Imputing posttest scores, 20 datasets, extracting 

!every 5000
th
 imputation 

 

DATA IMPUTATION: 

Impute = sp09map; 

Ndatasets = 20; 

Save = MAPMInoaux*.dat; 

Thin = 5000; 

 

!Tech8 monitors imputation convergence process 

 

OUTPUT: 

Tech8; 

 

Note. Exclamation marks (!) denote comments.  
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Appendix C 

Sample Syntax for MI Imputation Phase Including University Database and Pretest 

Auxiliary Variables 

 
DATA: file = mapMISS.csv; 

 

!Listing out all variables – all auxiliary variables being 

!used in the imputation process – note that posttest 

!auxiliary variables are excluded. 

VARIABLE: 

names = id attend sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp; 

usevariables = sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import; 

 

!Missing variable code 

missing = all (-9); 

 

!Providing Bayes seed and convergence criteria  

!for imputation 

ANALYSIS: 

Type = basic; 

Bseed = 186746; 

Bconvergence = .01; 

 

!Imputing posttest scores, as well as auxiliary variables 

!with missing values, 20 datasets, extracting every 5000
th
 

!imputation 

DATA IMPUTATION: 

Impute = sp09map gender sp09age sat1math sat1verb GPA 

credhrs fa07pap fa07mav fa07pav fa07wav FA07ope FA07con 

FA07ext FA07agr FA07neu FA07mair fa07effort fa07import; 

Ndatasets = 20; 

Save = MAPMIpreaux*.dat; 

Thin = 5000; 

 

!Tech8 monitors imputation convergence process 

OUTPUT: Tech8; 

Note. Exclamation marks (!) denote comments. Although all variables are used in the 

imputation model in this example, the selection of auxiliary variables will be dependent 

on screening for relationships with missingness and posttest scores. 
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Appendix D 

Sample Syntax for MI Imputation Phase Including All Auxiliary Variables 

DATA: file = mapMISS.csv; 

 

!Listing out all variables – all auxiliary variables being 

!used in the imputation process. 

 

VARIABLE: 

names = id attend sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp;  

usevariables = sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp; 

 

!Missing variable code 

missing = all (-9); 

 

!Providing Bayes seed and convergence criteria  

!for imputation 

ANALYSIS: 

Type = basic; 

Bseed = 973732; 

Bconvergence = .01; 

 

!Imputing posttest scores, as well as auxiliary variables 

!with missing values, 20 datasets, extracting every 5000
th
 

!imputation 

DATA IMPUTATION: 

Impute = sp09map gender sp09age sat1math sat1verb GPA 

credhrs fa07pap fa07mav fa07pav fa07wav FA07ope FA07con 

FA07ext FA07agr FA07neu FA07mair fa07effort fa07import 

sp09pap sp09mav sp09pav sp09wav sp09ope sp09con sp09ext 

sp09agr sp09neu sp09eff sp09imp; 

Ndatasets = 20; 

Save = MAPMIallaux*.dat; 

Thin = 5000; 

 

!Tech8 monitors imputation convergence process 

OUTPUT: 

Tech8; 
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Note. Exclamation marks (!) denote comments. Although all variables are used in the 

imputation model in this example, the selection of auxiliary variables will be dependent 

on screening for relationships with missingness and posttest scores. 
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Appendix E 

Sample Syntax for MI Analysis Phase 

DATA: file = MAPMInoauxlist.dat; 

 

!Indicates that the data file is a list of multiple imputed 

!datasets 

Type = imputation; 

 

!Only need to use pretest and posttest scores in the 

!analysis model 

VARIABLE: 

names = FA07MAP SP09MAP; 

usevariables = FA07MAP SP09MAP; 

 

!Using the maximum-likelihood estimator 

ANALYSIS: 

estimator = ml; 

 

MODEL: 

!Pretest mean 

[FA07MAP] (premean); 

!Posttest mean 

[SP09MAP] (postmean); 

!Pretest and Posttest variances 

FA07MAP SP09MAP; 

!Pretest-Posttest covariance 

FA07MAP with SP09MAP; 

 

!Estimating pre-post mean difference 

MODEL CONSTRAINT: 

new(meandiff); 

meandiff = postmean-premean; 

 

!Output give sample statistics, patterns of missingness 

!and standardized solution 

OUTPUT: 

sampstat patterns stdyx; 

 

Note. Exclamation marks (!) denote comments. This syntax analyzes imputed data 

associated with Appendix B, excluding auxiliary variables. The syntax analyzing imputed 

data associated with Appendix C would replace the data file with “MAPMIpreauxlist.dat” 

and the variable list with those imputed in Appendix C, and the syntax analyzing imputed 

data associated with Appendix D would replace the data file with “MAPMIallauxlist.dat” 

and the variable list with those imputed in Appendix D.  
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Appendix F 

Sample Syntax for FIML Analysis Excluding Auxiliary Variables 

DATA: file = MAPMISS.csv; 

 

!Listing out variables, but only using pretest and posttest 

 

VARIABLE: 

names = id attend sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp;  

usevariables = FA07MAP SP09MAP; 

 

!Missing variable code 

missing = all (-9); 

 

!Using the maximum-likelihood estimator 

ANALYSIS: 

estimator = ml; 

 

MODEL: 

!Pretest mean 

[FA07MAP] (premean); 

!Posttest mean 

[SP09MAP] (postmean); 

!Pretest and Posttest variances 

FA07MAP SP09MAP; 

!Pretest-Posttest covariance 

FA07MAP with SP09MAP; 

 

!Estimating pre-post mean difference 

MODEL CONSTRAINT: 

new(meandiff); 

meandiff = postmean-premean; 

 

!Output give sample statistics, patterns of missingness 

!and standardized solution 

OUTPUT: 

sampstat patterns stdyx; 

 

Note. Exclamation marks (!) denote comments.  
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Appendix G 

Sample Syntax for FIML Analysis Including University Database and Pretest Auxiliary 

Variables 

DATA: file = MAPMISS.csv; 

 

VARIABLE: 

names = id attend sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp;  

usevariables = sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import;  

 

!All variables being used as auxiliary variables 

auxiliary = (m) gender sp09age sat1math sat1verb GPA 

credhrs fa07pap fa07mav fa07pav fa07wav FA07ope FA07con 

FA07ext FA07agr FA07neu FA07mair fa07effort fa07import;  

 

!Missing variable code 

missing = all (-9); 

 

!Using the maximum-likelihood estimator 

ANALYSIS: estimator = ml; 

 

MODEL: 

!Pretest mean 

[FA07MAP] (premean); 

!Posttest mean 

[SP09MAP] (postmean); 

!Pretest and Posttest variances 

FA07MAP SP09MAP; 

!Pretest-Posttest covariance 

FA07MAP with SP09MAP; 

 

!Estimating pre-post mean difference 

MODEL CONSTRAINT: 

new(meandiff); 

meandiff = postmean-premean; 

 

!Sample statistics, missingness patterns, and standardized 

!solution 
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OUTPUT: 

sampstat patterns stdyx; 

 

Note. Exclamation marks (!) denote comments. 
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Appendix H 

Sample Syntax for FIML Analysis Including All Auxiliary Variables 

DATA: file = MAPMISS.csv; 

 

VARIABLE: 

names = id attend sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp;  

usevariables = sp09map FA07map gender sp09age sat1math  

sat1verb GPA credhrs fa07pap fa07mav fa07pav fa07wav 

FA07ope FA07con FA07ext FA07agr FA07neu FA07mair fa07effort 

fa07import sp09pap sp09mav sp09pav sp09wav sp09ope sp09con 

sp09ext sp09agr sp09neu sp09eff sp09imp;  

 

 

!All variables being used as auxiliary variables 

auxiliary = (m) gender sp09age sat1math sat1verb GPA 

credhrs fa07pap fa07mav fa07pav fa07wav FA07ope FA07con 

FA07ext FA07agr FA07neu FA07mair fa07effort fa07import 

sp09pap sp09mav sp09pav sp09wav sp09ope sp09con sp09ext 

sp09agr sp09neu sp09eff sp09imp;  

 

 

!Missing variable code 

missing = all (-9); 

 

!Using the maximum-likelihood estimator 

ANALYSIS: estimator = ml; 

 

MODEL: 

!Pretest mean 

[FA07MAP] (premean); 

!Posttest mean 

[SP09MAP] (postmean); 

!Pretest and Posttest variances 

FA07MAP SP09MAP; 

!Pretest-Posttest covariance 

FA07MAP with SP09MAP; 

 

!Estimating pre-post mean difference 

MODEL CONSTRAINT: 

new(meandiff); 

meandiff = postmean-premean; 
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!Sample statistics, missingness patterns, and standardized 

!solution 

OUTPUT: 

sampstat patterns stdyx; 

 

Note. Exclamation marks (!) denote comments.  
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Appendix I 

Histograms Comparing Assessment Day and Makeup Variable Distributions – 

Noncognitive Sample 

Posttest Mastery Approach 
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Pretest Mastery Approach 
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Pretest Performance Approach 

 

Pretest Mastery Avoidance 
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Pretest Neuroticism 
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Pretest Test-taking Effort 

 

Pretest Test-taking Importance 

 



196 

 

   

 

 

Posttest Performance Approach 
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Posttest Performance Avoidance 
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Posttest Extraversion 
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Posttest Neuroticism 
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Appendix J 

Histograms Comparing Assessment Day and Makeup Variable Distributions –  

Cognitive Sample 

Posttest Scientific Reasoning 
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Pretest Scientific Reasoning 
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