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Abstract

A fingerprint fuzzy vault uses a fingerprint A to lock a strong secret k and only a close

fingerprint from the same finger can be used to unlock k. An attacker who has stolen the

vault will not be able to get useful information about A or k.

In this research, we shall study the security of a major fingerprint fuzzy vault developed

by Nandakumar et al. through investigating the security implication of helper data, which

are stored in the fuzzy vault for fingerprint alignment. We will show that helper data leak

information about fingerprints and thus compromise the security claim on the fingerprint

fuzzy vault scheme. Next, we will propose a new fingerprint fuzzy vault scheme, which

is based on traditional representation of fingerprints in minutia points and does not need

helper data for alignment.

Keywords: fuzzy vault, helper data, fingerprint authentication, biometric authentica-

tion

vii



Chapter 1

Introduction

Overview

Entity Authentication

The notion of authentication is central to secure computing. In recent years there has

been a marked increase in all forms of computer crime and digital malfeasance. A common

approach to attempt to combat this problem is through the use of passwords to restrict

access to systems and/or data. This is the most common form of entity authentication.

That is verifying an individual is whom they claim to be based on something that they

know. This form of authentication has many significant drawbacks. For instance, users tend

to employ passwords that are as simple and as easy to remember as possible. Additionally,

passwords are often reused for multiple systems. These facts are all the more troubling in

light of security researcher, Moxie Marlinspike, releasing Chapcrack. Chapcrack reduces the

overall effectiveness of MS-CHAPv2 into a single DES operation and proceeds to break this

encryption within twenty-four hours [13]. It is understandable why those in the security

industry are leery of passwords.

Authentication based on something the user knows is but one form of entity authen-

tication. There are also issues that arise when using authentication based on something

a user has. This introduces the problem of a user not always having his/her token with

him/her for authenticating or the possibility of the token being stolen. This paradigm shifts

the authentication problem from a user’s mind to that of a physical token. Because of the

fundamental flaws with each of these approaches we have seen a push in more recent time

to biometric authentication – authentication based on something a user is. This biometric

authentication is commonly regarded as stronger than more traditional mechanisms, such as

password based authentication. This mechanism is more reliable as it is composed of things

that are not easily forgotten or misplaced. It has the added advantage of being difficult to

forge another user’s traits. There are several possible biometric traits which can be used for

authentication. These include types such as signature dynamics, typing patterns, retinal
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scans, voice recognition, facial recognition, palm geometry and fingerprint recognition. It

is this last type of biometric trait that we will concern ourselves with here.

General Fuzzy Vault

While many times it is useful to require a cryptographic algorithm to depend on an exact

match, there are times that an exact match will not work. When requiring a password, it

is easy to obtain an exact match. If you allowed variation in the acceptance of a password

you would greatly reduce its security. However, there are situations when an exact match is

neither possible nor required for adequate security. For example, when using biometrics you

rely on something from a human, this might be a scan of a fingerprint, a typing pattern or

voice recognition. When relying on humans there will always be some sort of variation and

therefore exact matching is impractical. A general fuzzy vault is a cryptographic system

to address this issue of needing a close-enough match [6, 7, 3, 4]. A general fuzzy vault

takes a non-ordered set of “target” integers and stores them along with a non-ordered set

of random integers in a vault. When trying to unlock the secret, it is considered a match

as long as the supplied target set is close enough to the stored target set.

Fingerprint Fuzzy Vault

The general fuzzy vault provides a foundation for a cryptographic system that deals

with fingerprints but it needs to be adapted in order to be effective.

In one such fingerprint fuzzy vault [14], called NJP07 hereafter, the following adapta-

tions are used in the fingerprint fuzzy vault. When processing a fingerprint, minutia points

are used. These points are made up of three components, a horizontal location (x), a ver-

tical location (y) and an angle (θ). To use a fuzzy vault these three numerical values are

concatenated. However, it is still important to understand that for fingerprints to match, it

is not necessary for the three components to match exactly. Given two minutia (x1, y1, θ1)

and (x2, y2, θ2) the spatial distance between (x1, y1) and (x2, y2) must be small enough (not

larger than a distance threshold) and the directional distance between (θ1) and (θ2) must

also be small enough (not larger than a directional threshold). As long as those values are

close enough it is considered a match and the exact matching of integers is not required.

Additionally, the genuine minutia points used for the vault are selected such that they are

adequately spaced out.
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Helper Data

In the fingerprint fuzzy vault scheme developed in NJP07 [14], another adaptation used

in the fingerprint fuzzy vault is the use of helper data. In order to compare the minutia

points of two fingerprints it is necessary to align them. Helper data is used to do this. The

fingerprint is processed to find a set of high curvature points that is used to align the two

images. This helper data is publicly available so it is important that knowledge of this data

does not decrease the security of the vault. The argument will be made here that this helper

data does in fact decrease the security of the vault. Therefore, it will be proposed that a

fuzzy vault, which does not use helper data, is a better choice.

Problem Statement

This thesis research aims to answer the following two questions:

1. In NJP07, if an attacker has stolen a copy of the fuzzy vault, how much useful infor-

mation can be retrieved from the helper data about the genuine minutia points? In

other words, do the helper data leak useful information about the fingerprint?

2. If helper data do leak much information, how to develop a secure solution to fix this

flaw?

Contributions

The results of this thesis research are two-fold.

1. We show that helper data contains useful information, such as the orientation, that

can be used by an attacker to filter chaff points from the fuzzy vault. This is contrary

to what has been claimed in NJP07 [14] and as a result, NJP07 does not achieve the

security level that it claims.

2. We develop a new fuzzy vault scheme that does not require helper data for alignment.

Our scheme is based on the traditional representation of genuine minutia points that

have been well tested by the community.
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Organization

The remainder of this thesis is organized as follows. Chapter 2 gives background infor-

mation and related work. In Chapter 3, we analyze the security of helper data. Chapter

4, we present a new fingerprint fuzzy vault scheme that does not use helper data. Finally,

concluding remarks are given in Chapter 5.



Chapter 2

Background Information and Related Work

In this section, we give a more detailed description of the information on fingerprint

authentication, the general fuzzy vault JS02, the fingerprint fuzzy vault NJP07, and an

alternate fingerprint matcher that we propose for implementation in a new fingerprint fuzzy

vault scheme.

Fingerprint Authentication

Minutia points are unique to a finger just as a fingerprint is. This is because these points

are composed of unique areas of a fingerprint. In order to understand why these unique areas

exist we need to consider what makes up a fingerprint. A human fingerprint has friction

ridges with the space between ridges known as valleys. Together, these ridges and valleys

form patterns, which also include special areas [12]. It is these special areas that are the

fingerprint’s minutia points. A minutia point may be the ending of a ridge (ridge ending)

or where a ridge splits into two. This splitting of the ridge is known as a ridge bifurcation.

For fingerprint authentication a fingerprint can be modeled as the collection of its minutia

points. We represent these points with their (x, y) coordinate pair, the directional angle θ

and the quality of the point.

In order for a user to be authenticated, the user first needs to enroll a fingerprint with

an authentication server. Upon registration, this server obtains the user’s fingerprint. This

fingerprint image is then used to extract its minutia points and in creating a reference

template which is stored. This is necessary to authenticate the user at a later time. When

this user swipes his/her fingerprint the minutia points can be extracted and compared to

those stored in the authentication server’s reference templates [12, 8].

Minutia point extraction from a fingerprint image begins with a sequence of preprocess-

ing steps [12]. These steps are normalization, orientation image estimation, frequency image

estimation, region mask generation, and filtering to remove noise. After preprocessing, the

image is then binarized and thinned. Binarization is the process by which each pixel has a

value of 0 or 1. Thinning is the process where it is ensured that ridges are only one pixel
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wide. It is at this point that minutia points may be detected. These points still require

a certain amount of post-processing. This post-processing is necessary to remove incorrect

minutia points as well as those too close to the edge of the image or too close to others.

Fingerprint matching algorithms based on minutia points are different than normal

password authentication. This is because the matching of fingerprints is an inexact science.

In matching fingerprints a threshold must be met for a match to be considered as occurring.

The security of this changes with the value of the threshold. That is to say the higher the

threshold for minutia points, the more secure it will be. However, as the threshold value

increases so does the number of false negatives, making it more difficult to match the

fingerprints.

General Fuzzy Vault JS02

Juels and Sudan [6, 7] gave the first general fuzzy vault scheme, JS02, for the set

difference metric, under which two sets A and B are considered a match if their set difference

is smaller than a given value d. The order of the sets does not matter in determining if

they match.

A JS02 vault consists of a set of points and the number of points, r, is determined by the

security level to be achieved. Let n be the number of elements in set A = {a1, a2, . . . , an},

from which the vault will be constructed, and d be the maximum number of errors tolerated.

(Both n and d are system-wide parameters; d is also the maximum set difference between

A and any close set B = {b1, b2, . . . , bn}.)

Define t = (n− 2× d). This scheme requires a finite field with q elements, where r ≤ q.

This finite field is denoted as Fq and it can be either a prime field (where q is a prime

number and Fq = {0, 1, 2, . . . , q − 1}) or a Galois field (where q = 2m for some integer m)

[13,4].

This general fuzzy vault assumes that all set elements (i.e., ai of A and bi of B) are

integers and it works as follows:

• Vault encoding: Let k be the secret to be protected by the vault; the fuzzy vault is

constructed from A = {a1, a2, . . . , an} where ai are integers, as follows.

1. Generate valid points:
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(a) Split k into t pieces of equal size, k0, k1, . . . , kt−1, where ki, 1 ≤ i ≤ t− 1, is

an element of Fq.

(b) Construct a polynomial degree (t − 1), p(x) = kt−1x
t−1 + kt−2x

t−2 + . . . +

k1t+ k0 mod q.

(c) Calculate βi = p(ai), 1 ≤ i ≤ n. These points (ai, βi) are valid points and

they form locking set S.

2. Generate chaff points: randomly select (r − n) points (γj , ζj), 1 ≤ j ≤ (r − n),

where γj and ζj are randomly selected from Fq with two conditions. First,

γj 6= ai. Second, ζj 6= p(γj); that is, (γj , ζj) are not on polynomial. All points

(γj , ζj) form chaff set C.

3. The union of sets S and C,P = S ∪ C, forms the points stored in the vault.

• Vault decoding: Let B = {b1, b2, . . . , bn} be a fresh set and it can be used to unlock

vault P if B is close to A.

1. Use each bi, 1 ≤ i ≤ n, as the x-coordinate to search, in an exact manner, P for

a point. Let V be the set of points found.

2. Apply the Reed-Solomon decoding algorithm to points in V to reconstruct a

polynomial.

In a Reed-Solomon code with n-symbol codewords, up to d errors can be corrected

and thus, when B is close to A (with set difference not larger than d), p(x) and k can be

reconstructed to decrypt the vault data.

Selection of r. Juels and Sudan [6, 7] also observed in their Lemma 4 [7] that, when

chaff set C is randomly chosen, given any µ, 0 < µ < 1, with probability (1−µ), there are at

least τ = µ
(r
n

)
q1−r(q− 1)r−n polynomials similar to p(x) (that is, each such polynomial has

a degree of less than t and there are exactly n vault points on the polynomial). As a result,

an attacker who has seized P will not be able to find out which of the polynomials is p(x).

This security is information-theoretic, as it does not depend on the attacker’s computational

power.

Dodis et al. [3, 4] further improved JS02 and also proposed a general fuzzy scheme based

on the edit-distance metric.
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Fingerprint Fuzzy Vault NJP07

As described earlier, the general fuzzy vault scheme JS02 is not directly applicable to

fingerprint applications for two reasons. First, a fingerprint is not a set of integers, but a

set of minutia points represented by coordinates and angles. Second, unlike exact integer

comparison, the comparison of minutia points is close, not exact.

Let a fingerprint reference template be Ā = {ā1, ā2, . . . , ān}, where minutia point āi =

{x̄, ȳ}, are the coordinates of the minutia point and θ̄ is its angle/orientation. (The quality

attribute of a minutia point is not used, as it is less reliable.)

Nandakumar et al. [14] developed the following adaptations to construct a fingerprint

fuzzy vault NJP07.

1. Each minutia point is converted to an integer by concatenating its three values (coor-

dinates and angle) together. In other words, āi = x̄i||ȳi||θ̄i, where || stands for string

concatenation.

2. Using fuzzy vault JS02 requires the two fingerprints being compared to be aligned.

Nandakumar et al. [14] introduces a helper data set into fuzzy vault for this purpose.

The helper data set of a fingerprint is composed of the high curvature points (coor-

dinates and angle) of the image. This data is stored publicly in the fuzzy vault. The

helper data set from each image is used to align the images properly. Nandakumar

et al. [14] claims that storing helper data in the fuzzy vault does not compromise the

security of the vault.

3. Third, Step 2 of the vault encoding in JS02 is revised as follows: to generate a chaff

point, a fake minutia point is randomly generated and is checked to make sure that

its distance to all existing points in the vault is larger than δ1 = 25; this fake minutia

point is then encoded into a chaff point and is added into the vault.

4. Fourth, fingerprint matching is often based on set intersection, not set difference. Two

fingerprint samples Ā and B are considered matched when the number of their close

points is larger than a similarity threshold t̄. This shifting from set difference to set

intersection is accomplished by testing each t̄-subset of V to see whether p(x) can be

reconstructed. If one such t̄-subset exists, then the set intersection condition is met

and B is considered matched to Ā.
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Accordingly, the vault decoding step was completely revamped as follows. First, the

abscissa values of all vault points are parsed into {x̄i, ȳ,θ̄i} and their distances to

minutia points of B are calculated. Those vault points with distance larger than

δ2 = 30 are deemed as chaff points and are ignored. For the set of remaining vault

points, next, all t̄-subset of this set are brute-forced to check whether p(x) and k

can be recovered. To test each t̄-subset, the Reed-Solomon decoding is not used and

instead, the Lagrange interpolation over finite field is used. This change allows a shift

from the set difference metric to the set intersection metric, which is more appropriate

for and widely used by fingerprint matching. In NJP07, through the use of δ2, minutia

points of Ā are compared with minutia points of B in a close, not exact manner. This

change is necessary because of distortion in fingerprint images, which is one nature of

fingerprint applications.

Security claim. Nandakumar et al. [14] performed an ad hoc security analysis on

NJP07. In [14], δ1 = 25, δ2 = 30, t̄ = 9, (i.e, two fingerprints are considered matched if they

share 9 or more close minutia points); the number of genuine minutia points n is chosen as

24 and the number of chaff points in a vault is 200. Under these parameters, Nandakumar

et al. [14] claims that an attacker who has stolen a fingerprint fuzzy vault will need to

perform 2.5× 109 decoding attempts to unlock the vault.

BOZORTH3 Fingerprint Matcher

BOZORTH3 is an algorithm used to compute a score in comparing minutia points from

any two fingerprints [21], assuming that these minutia points have already been extracted

by other algorithms. A significantly high score indicates the two prints are a match. NIST

modified this algorithm based on the work of Allan S. Bozorth while he was at the FBI. The

NIST enhancements to Bozorth’s algorithm are primarily technical fixes to correct memory

leaks and increase the speed of the program.

BOZORTH3 uses the (x, y) location and orientation (θ) of the minutia points in de-

termining if fingerprints match. It does this by generating a unique table for each print

being compared that stores the distance between minutia points as well as the orienta-

tion between them. In determining whether or not one fingerprint matches another, that

prints table must be compared to its counterpart’s corresponding table. A match score is
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computed based on the amount of apparently congruent minutia point clusters.

This algorithm is of particular interest to our research as it is rotation and translation

invariant. Our interest in this algorithm is clear. If helper data does in fact leak data,

reducing the security of a fingerprint vault, then this algorithm offers a potential solution.

Helper data are needed to align fingerprints before comparing their minutia points. An

algorithm that is rotation and translation invariant would not rely on helper data and

would allow for that vulnerability to be removed in the creation of a new fingerprint fuzzy

vault scheme.

Other Related Fingerprint Fuzzy Vault Schemes

Chang and Li [1] studied how to generate chaff points to minimize entropy leaking. Kot-

larchyk et al. [9] performed a simulation to determine acceptable parameters and thresholds

for a fingerprint fuzzy vault based on JS02. They showed that accurate fingerprint alignment

is crucial for such a fingerprint fuzzy vault.

Wang et al. [19] discussed how to speed up the decoding of a fingerprint fuzzy vault by

taking advantage of the connection of Shamir secret sharing [17] and error-correcting code

[11].

Through showing the insecurity of a fingerprint-protected USB drive, Rodes and Wang

[16] showed the importance of fingerprint fuzzy vaults.

Li et al. [10] argued that high curvature points-based helper data do leak, especially in

those fingerprint subareas close to the high curvature curves, but they did not give detailed

security analysis.

Li et al. [10] proposed an alignment-free fingerprint fuzzy vault scheme based on known

minutia description [18] and minutia local structure [5]. Unlike this scheme, the fingerprint

fuzzy vault scheme proposed in Chapter 4 is based on the well-tested and well-accepted

minutia points.



Chapter 3

Security Analysis on Helper Data

In this chapter, we describe our security analysis on helper data of the NJP07 fingerprint

fuzzy vault scheme.

Attack Model

In our security analysis, the adversary is assumed to have stolen a copy of the NJP07

fuzzy vault and thus has both the helper data and all vault points, which is the union of

valid points and chaff points. The adversary tries to use the helper data to differentiate

valid points from chaff points.

Data Set

The prototype implementation of NJP07 was performed on fingerprint database 2 of the

2002 fingerprint verification competition (FVC2002). This database consists of 100 fingers

(numbered from 1 to 100) and 8 fingerprints (called impressions, numbered from 1 to 8)

per finger. The image size of each fingerprint is 296 × 560 pixels. Nandakumar et al. [14]

note that for each finger of FVC2002 database, fingerprints 1, 2, 7, 8 were obtained with the

cooperation of the finger owners and are in good quality. (In contrast, artificial displacement

and rotation were used in obtaining fingerprints 3, 4, 5, 6.) This good-quality subset of the

FVC 2002 database 2 is referred to as FVC02-db2-good hereafter and was used by NJP07.

The same fingerprint subset was used in our following experiments.

How Are Helper Data Generated

The first step in generating helper data is to find the orientation field of the fingerprint

image. The orientation field provides the direction of the ridge flow at any given point. Once

the orientation field is found, we must generate the orientation field flow curve (OFFC). In

order to do this first you must generate a set of equidistant starting points (s0 to sn) across

the fingerprint. Typically this is done in the middle (either horizontally or vertically) of the
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fingerprint. Each starting point is used to begin tracing a ridge line in opposite directions,

ultimately generating multiple OFFCs that cover the fingerprint. For each OFFC we need

to find the point with the greatest curvature. These high curvature points are then filtered

and the remaining points become the helper data.

Our View

It is our view that a correlation can be drawn between the set of helper data and either

minutia points and/or chaff points. That is to say that the high curvature points represented

as helper data potentially leak much information thus reducing the overall security of the

fuzzy vault.

Implementation

In order to begin exploring the correlation between helper data, minutia and chaff points,

we first had to generate the helper data. We were able to use Matlab code that was already

written to generate the orientation field. Once that was done we implemented our own code

to generate the helper data. The following describes the method we used in that generation.

The first step was to generate the OFFCs. This was done by first finding the starting

points. These points are spread out evenly along either the horizontal or vertical midline

of the fingerprint. In order to begin the process, we found the starting points along the

horizontal midline. This was done in the following manner: s0i = rstartk + w, cstart + lw,

where k = 1, 2, . . . , rend−rstart
w , l = cend−cstart

2w , and rstart, rend, cstart, cend are the top, bottom,

left and right boundaries of the fingerprint and w is the sampling width which was 5.

Each of these starting points was then used to trace an OFFC. This was done by using

s0 as the starting point in the following equation: sj = sj−1+dj×lj×osj−1 for j = 1, 2, . . . n,

dj is −1 and 1 to trace the curves in opposite directions, lj is the length between points

which was set to 5, and osj−1 is the orientation vector at sj−1 . When implementing

this equation, boundaries were set so that the curve did not go beyond the limitations of

rstart, rend, cstart, cend. Additionally, there was a maximum n (limiting how large j could be)

set to control the number of points in the curve. This maximum n can fluctuate depending

on the image. Different fingerprints will have varying OFFC lengths and if n is too large

for an image it can create unnecessary noise. For our purposes, a value of 75 was used as it
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seemed to generate sufficient OFFCs. Further research on this topic may want to focus on

developing a more robust algorithm which can adapt to a given ridge length. This would

ensure that the entirety of a ridge was traced while eliminating noise that is generated from

tracing beyond the edge of a ridge line due to a maximum that is too large.

We notice that this does not always generate a complete set of flow curves, so the process

was repeated along the vertical midline of the fingerprint. The reason this did not always

generate a complete set of flow curves is simple. When bisecting the image on its horizontal

equator only those flow curves that flow through this region are traced. If a flow curve

is located entirely above or below the equator without traversing it no starting point is

engaged, thus the line does not get traced. The process was the same as the horizontal

with changes made to k and l noted here: k = rend−rstart
2w , l = 1, 2, . . . , cend−cstart

w . The same

problem is encountered when the image is bisected with a vertical midline. Those flow

curves existing entirely to the left or right of the midline without traversing it never have

a starting point engaged and thus are never traced. Our solution to this problem was to

use the OFFCs generated from both the horizontal and vertical starting points and then

combine their results to create the final OFFCs. This allowed us to consistently generate

OFFC’s that covered large portions of the fingerprint images.

In order to find the points of the OFFC you must use orientation vectors. This is seen in

the equation sj = sj−1 + dj × lj × osj−1 , where osj−1 is the orientation vector at point sj−1.

osj−1 = (cos θsj−1 , sin θsj−1), where θ is the value taken from the orientation field at point

sj−1. There are areas of the OFFC where the points are more closely clustered than others.

These areas occur near horizontal and vertical portions of the curve due to the nature of

the sine and cosine functions along with the angles used.

θ represents the directional angle relative to the horizontal. Since opposite directions

are equivalent, the only way to represent unique angles is to limit the angle domain to a

range of π radians. Given this, the options are either angles from 0 to π or angles from −π
2

to π
2 . When using the angles 0 to π, you get stuck along the horizontal portions of the flow

curves. The slope of the tangent line to a curve at a point close to a vertex of a curve will be

close to horizontal. On either side of that vertex those close to horizontal slopes will have

opposite values (one will be negative and the other positive). Given the angle restrictions

this means that on one side of the vertex the directional angle will be very close to π while

on the other side of the vertex the angle will be very close to zero. Using these angles with
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the equation given above you can see that once you get close to the vertex you will simply

oscillate around the vertex rather than continue along the curve.

Explicitly, this is what occurs. We use the equation sj = sj−1 + dj × lj × osj−1 to get

from one point in the curve to the next. Here dj is either 1 or −1 depending on the direction

from the starting point, for our purposes, let’s consider it to be 1. The length between the

points is lj and that is 5. This leaves the following equation, sj = sj−1 + 5 × osj−1 . Since

osj−1 = (cos θsj−1 , sin θsj−1) the angle can now be used to demonstrate what occurs around

the vertex. On one side the angle will be close to zero which will leave you with the following

results: sj = sj−1 + 5× (1, 0), indicating the new point would be 5 units to the right of the

point that came before it. If you are close to the vertex this lateral movement would bring

you to the other side of the vertex and therefore the new angle would be close to π and

would produce the following result: sj = sj−1 + 5 × (−1, 0). This indicates the new point

would be 5 units to the left of the previous point and therefore back to the original point

we started with. This process continues until you reach the limit on the number of points

allowed in the curve. Not only does this prevent you from moving beyond this section of

the curve, it also generates many more points than should be in that area. This oscillation

that occurs can be remedied by using angles from −π
2 to π

2 .

However, this causes the same sort of situation to occur along the vertical areas of the

curve. When using the angles −π
2 to π

2 , you get stuck along the vertical portions of the flow

curves. The slope of the tangent line to a curve at a point close to a horizontal vertex of

a curve will be close to vertical. On either side of that vertex those close to vertical slopes

will have opposite values (one will be negative and the other positive). Given the angle

restrictions this means that on one side of the vertex the directional angle will be very close

to −π
2 while on the other side of the vertex the angle will be very close to π

2 . Using these

angles with the equation given above you can see that once you get close to the vertex you

will simply oscillate around the vertex rather than continue along the curve.

Explicitly, this is what occurs. We use the equation sj = sj−1 + dj × lj × osj−1 to get

from one point in the curve to the next. Here dj is either 1 or −1 depending on the direction

from the starting point, for our purposes, let’s consider it to be 1. The length between the

points is lj and that is 5. This leaves the following equation, sj = sj−1 + 5 × osj−1 . Since

osj−1 = (cos θsj−1 , sin θsj−1) the angle can now be used to demonstrate what occurs around

the vertex. On one side the angle will be close to −π
2 which will leave you with the following
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results: sj = sj−1 + 5× (0,−1), indicating the new point would be 5 units below the point

that came before it. If you are close to the vertex this vertical movement would bring you

to the other side of the vertex and therefore the new angle would be close to π
2 and would

produce the following result: sj = sj−1 + 5× (0, 1). This indicates the new point would be

5 units above the previous point and therefore back to the original point we started with.

This process continues until you reach the limit on the number of points allowed in the

curve. Not only does this prevent you from moving beyond this section of the curve, it also

generates many more points than should be in that area.

As you can see, depending on the angles used there will be noise along the horizontal

or vertical areas of the curve. To overcome the problem of stopping curve generation in

these sections and to minimize the noise, the range of angles to use is carefully chosen for

each point when generating the OFFC. This was done by using angles from −π
2 to π

2 as

the default. At each point the directional angle was evaluated. If it was greater than 1.4

radians or less than −1.4 radians then the corresponding angle from the range of 0 to π was

used. While it does minimize the noise, it does not totally eliminate it.

Once the OFFCs were generated, we need to find the point of highest curvature for each

flow curve. The curvature value (ω) for each point lj on the curve is calculated using the

following: ωlj = 1− cosαj , where αj = the orientation value of lj−5 minus the orientation

value of lj+5. According to Dass and Jain [2] all points that had a curvature value of less

than 0.3 were eliminated. Theoretically, the point on the curve with the highest curvature

value is added to the helper data set.

However, it was necessary to do some filtering before adding points to the helper data

set. When examining the curvature values, it was evident that the noise that occurred

in the OFFC generation was resulting in artificially high curvature values. It is known

that the high curvature values should occur when the curve is changing direction, this

occurs at local maximums and local minimums. So in order to eliminate these false high

curvature values, the point with the highest curvature value in each individual flow curve

was checked to see if it was a local maximum or local minimum of the curve. If it was

not, that point was eliminated and the next highest curvature value was examined. When a

local maximum or minimum was found that also had the highest curvature value, that point

(x, y, ω) was stored as a high curvature point in the helper data set. This helper data set is

then manually filtered using the high curvature points drawn on the fingerprint image. For
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example in figure 3.7 we see a fingerprint image with high curvature points before manual

filtration. The areas highlighted in green are those areas which require manual removal

before analysis could begin.

Figure 3.1: An example fingerprint to be marked

Figure 3.2: OFFC through horizontal

Exploring Chaff Point Elimination

There are two major components of the fuzzy vault, the minutia points and the chaff

points. It is possible that the high curvature points leak data about both of these. Since
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Figure 3.3: OFFC through vertical

Figure 3.4: Example helper data through horizontal

high curvature points occur in areas where the flow curves are changing direction, the points

around them tend to have a directional angle that is somewhat predictable. Given a set of

high curvature points, it is likely that any minutia points that are relatively close to the

high curvature points and on the left of them will have directional angle between 0 and π
2

when adjusted for the tilt of the high curvature points. While points on the right that are

relatively close will have a directional angle that is between 0 and −π
2 , which is equivalent

to the range between π
2 and π when adjusted for the tilt of the high curvature points.

In order to explore this concept you need to obtain high curvature points, minutia points
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Figure 3.5: Example helper data through vertical

Figure 3.6: Example helper data combined

and chaff points. We use .xyt files provided by NIST to obtain the minutia points for our

set of fingerprints. The high curvature points are obtained using the code we wrote in

Appendix A. Unfortunately, we did not have a convenient way to obtain chaff points and

time prevented us from developing the proper code to do this.

This hypothesis initially involved examining the minutia points that surrounded the high

curvature points. In order to do this we first use the high curvature point with the greatest

y value and that with the lowest y value to define a high curvature line segment. We used

the slope and length of this line segment to create a square centered over the high curvature
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Figure 3.7: HCP to be manually filtered

points. The top and bottom sides of the square had slopes that were perpendicular to the

high curvature line segment and pass through the high curvature point with the greatest y

value and lowest y value points respectively. The length of each of these sides is equivalent

to the length of the high curvature line segment with the midpoint of each of the segments

being at the intersection of the high curvature points. The left and right sides have slopes

parallel to the high curvature line segment, are of equal length and connected with the end

points of the top and bottom lines.

We then determine which minutia points are present within those boundaries and ex-

amine the directional angle of those points. We complete the analysis in this manner on

three fingerprints. The three fingerprints had a combined total of 10 minutia points in the

described zones. Two of those points fell on the high curvature points and so were not con-

sidered as part of the analysis. This left a total of 8 minutia points, of these 7 had expected

angle measures. Obviously further analysis of more fingerprints is needed to determine if

there is an actual correlation between directional angle and proximity to the high curvature

points. However, the numerical data we examine as well as informal visual observations

from other fingerprints look like a correlation might be promising. Additionally, we note

through visual observation that it appears as though if we extend the bottom line of the

square across the entire image that a large majority of minutia points above that line would

follow the expected directional angles.

While time constraints prevent us from doing an in-depth study of this hypothesis, we
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Figure 3.8: Fingerprint with HCP, minutia points and square drawn for illustration.

are able to perform an initial exploration using a pictorial example.

We use the photo-editing software, Gimp, to superimpose the high curvature and minutia

points from the middle image over the last picture.

The image above has the superimposed image. While we are unable to get an exact

match (it seems the middle image was not the same scale as the image on the right), it was

close enough for an initial investigation.

We create a straight line through the high curvature points and then draw a perpendic-

ular line at the bottom. We eliminate all the chaff points on the left of the high curvature

line that had a negative slope and all the chaff points on the right of the high curvature line

that had a positive slope. The slope is predicated on the high curvature line as the y-axis

and the perpendicular line as the x-axis.

In the below picture, 36 chaff points are removed based on directional angle relative to

the high curvature points. There are a total of 223 points on the original (including the
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Figure 3.9: An example of a fingerprint with minutia points (left), minutia points and helper
data (middle) and minutia points with chaff points (right).

actual minutia points). By using the described procedure, we are able to remove 36 points

(16%) that are determined to be chaff points. We believe it might be possible to remove

even more points with further analysis. It is possible that the angle range could be further

limited depending on how close the point is to the high curvature points.

This was not a precise process for this example. It was an initial exploration to see if it

might be worthy of an in depth exploration. For that purpose, this estimation was sufficient.

While this process seems promising time constraints are too restrictive to continue with

further analysis.

Correlation of Helper Data and Minutia Points

In addition to the potential to eliminate chaff points it is also a possibility that high

curvature points leak data about some minutia points. The hypothesis being there is some

area around the high curvature points that has a greater concentration of minutia points

than would be expected in an uniform distribution. If this were true an attacker may be

able to focus efforts on the area of greater concentration, thus decreasing the time needed

for a brute force attack.

An initial survey of fingerprint images which included minutia and high curvature points

suggest there may be a greater concentration of minutia points within a relatively close
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Figure 3.10: High curvature points superimposed over minutia.

proximity to the high curvature points. In order to do a mathematical analysis of this theory

a rectangular HCP zone is created around the high curvature points. First, a least squares

regression is calculated on the high curvature points. The length of the high curvature

points is determined by finding the distance between the maximum and minimum high

curvature points.

The rectangle that binds the HCP zone is created in the following manner:

1. The top line is perpendicular to the best fit line of the high curvature points. The

length of the line is a percentage (10% or 25%) of the high curvature length. The

midpoint of the line is at the high curvature points with the lowest y-value. See figure

3.13.

2. The left and right lines are parallel to the best fit line and begin at the endpoints of

the top line. The length of these sides is a percentage (125%) of the length of the high

curvature points.

3. The bottom line is perpendicular to the best fit line and connects lower endpoints of

the left and right sides.

We determine what percent of the total image area is contained in the HCP zone. The

number of minutia points present in the HCP zone is then found. One would logically expect

that if the area contained inside the HCP zone was 10% of the total area that this same
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Figure 3.11: Original picture with all chaff and minutia.

area would also contain approximately 10% of all available minutia. A statistical analysis

is conducted on the data to determine if there is uniform distribution.

A chi-square goodness of fit test is performed on the resulting data using the following:

χ2 =
∑ (o−e)2

e

where o is the observed number of minutia points in the HCP zone and e is the expected

number of minutia points in the HCP zone. The value for e is calculated by multiplying

the total number of minutia points by the percent area of the HCP zone.

Most fingerprints have a greater number of minutia points than expected and some

have fewer minutia points than expected. In order to better understand how the data was

distributed the chi-square goodness of fit test was done on all 200 fingerprints. Then again

on the subset of fingerprints with a greater number of minutia than expected and finally on

the subset of all fingerprints with fewer than expected minutia points.

The results for the 10% by 125% rectangle are given in Figure 3.14:

The results for the 25% by 125% rectangle are given in Figure 3.15:

The chi-square goodness of fit test indicates that in both rectangular regions, the minutia

points do not exhibit a uniform distribution. It also shows that when the observed minutia

is greater than the expected minutia the distribution is still not uniform. Furthermore, it

shows that when the observed minutia is less than the expected minutia there is a uniform

distribution. These combined results suggest the concentration of minutia is greater inside

the HCP zone than it would be with a uniform distribution. Therefore, the high curvature
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Figure 3.12: Edited picture with some chaff deleted.

Figure 3.13: HCP Zones.

points that are publicly stored do leak information about the minutia points. This means

that it would be easier to find minutia points in this area. Given the small area of the HCP

zone, generally less than 10% of the total image area, it would take significantly less time

to attack while also increasing the probability of finding minutia.

According to [20], with fewer than nine minutia points a fingerprint fuzzy vault is vul-

nerable to a partial fingerprint attack. Further work should be done determining an optimal

size of the HCP zone to find an area that contains an average of nine (currently the 25%

by 125% HCP zone rectangle has an average of 6 minutia points) minutia points. This

combined with the partial fingerprint attack make the public high curvature points a vul-
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Figure 3.14: 10% by 125% rectangle results.

Figure 3.15: 25% by 125% rectangle results.

nerability.



Chapter 4

A New Fingerprint Fuzzy Vault Scheme

In this chapter, we propose an alignment-free fingerprint fuzzy vault scheme. Our scheme

is based on an observation used in NIST Biometric Image Software (NBIS) [8]. NBIS is a

big package that contains several components, including image enhancing software, image

conversion software, minutiae detection MINDTCT, and a fingerprint matching algorithm

BOZORTH3 [21]. The BOZORTH3 algorithm was considered in the category of export

control and was not included in the public release of NBIS. This decision has been reversed

in the latest NBIS release and document [21] was then made available.

In BOZORTH3, it has been observed that a set of minutia points marked on a fingerprint

image can be treated as vertices of a graph whose edges are the lines connecting two vertices.

(The lines are called intervening lines in [21].) For two fingerprints from the same finger,

the distance between two same minutia points should remain the same (or at least, very

close). So are the relative angles of their orientations relative to the interveneing lines.

For example, Figure 4.1 and Figure 4.2 are part of two fingerprints from the same finger

and they have two minutia points, called points i and j in Figure 4.1 and points u and v

in Figure 4.2 respectively. Due to various environmental factors, these two minutia points

have different coordinates and orientations in these two fingerprints. However, their relative

distances, labeled dij in Figure 4.1 and duv in Figure 4.2, are very close, if not the same.

Their orientation angles relative to the interveneing line in 4.1, θi and θj , are very close to

their counterparts in 4.2, θu and θv respectively.

Under this view, the matching of a reference template and a fresh query fingerprint can

be accomplished through comparing the corresponding two graphs. Unlike other fingerprint

matching algorithms that require fingerprint alignment, BOZORTH3 is alignment-free, as

the graphs are rotation and translation-variant. This characteristic naturally lends itself to

fingerprint fuzzy vault.
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Figure 4.1: Minutia pair in the reference
template Figure 4.2: Minutia pair in the fresh query

template

Invariants

As shown in Figure 4.1, each minutia pair is identified by their Euclidean distance dij

and two relative angles, θi and θj . This triplet {dij , θi, θj} should remain largely unchanged

on fingerprints from the same finger. Given a fingerprint A, we will use its minutia triplets

to construct/decode a fingerprint fuzzy vault.

The scheme

Let dmax be a distance difference threshold between two minutia points and θs be an

angle difference threshold. Let t be a threshold value that if two fingerprints have t or more

common minutia points, then they are considered a match.

Vault construction

Let k be the secret to be protected by the vault.

Given a fingerprint reference A = {a1, a2, . . . , an}, where ai is a minutia point, the steps

to construct our alignment-free fingerprint fuzzy vault scheme as follows:

1. Sort the minutia points in the descending order in terms of their quality. Let the

sorted set be Ā = {ā1, ā2, . . . , ān}.

2. Calculates the triplet invariant on Ā, as described earlier in Section 4. For each triplet,

concatenate them into an integer. Let the resulting integer set be {ã1, ã2, . . . , ãm}.

3. Generate valid points:
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(a) Split k into t pieces of equal size, k0, k1, . . . , kt−1, where ki, 0 ≤ i ≤ (t− 1), is an

element in Fq.

(b) Construct a polynomial of degree (t−1), p(x) = kt−1x
t−1+kt−2x

t−2+ . . .+k1t+

k0 mod q

(c) Calculate βi = p(ãi), 1 ≤ i ≤ n. These points (ai, βi) are valid points and they

form locking set S.

4. Generate chaff points: randomly select (r − n) points (γj , ζj), 1 ≤ j ≤ (r − n), where

γj and ζj are randomly selected from Fq with two conditions. First, γj 6= ãi. Second,

ζj 6= p(γj); that is, (γj , ζj) are not on polynomial p(x).

All points (γj , ζj) form chaff set C.

5. The union of sets S and C, P = S ∪ C, forms the points stored in the vault.

Vault decoding

Let B = {b1, b2, . . . , bn} be a fresh set and it can be used to unlock vault P if B is close

to A.

1. Sort the minutia points in B in the descending order in terms of their quality. Let

the sorted set be B̄ = {b̄1, b̄2, . . . , b̄l}.

2. Calculates the triplet invariant on B̄, as described earlier in Section 4. For each triplet,

concatenate them into an integer. Let the resulting integer set be {b̃1, b̃2, . . . , b̃m}.

3. Use each b̃i, 1 ≤ i ≤ n, as the x-coordinate to search, in a close manner with consid-

eration of dmax and θs, P for a point. Let V be the set of points found.

4. Apply the Reed-Solomon decoding algorithm to points in V to reconstruct a polyno-

mial p′(x) [11, 15].
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Conclusion

Fingerprint fuzzy vault schemes have great potentials to address the security and privacy

concerns of fingerprint applications and may see real-world deployment very soon. In this

thesis, we first analyze the security of an existing fingerprint fuzzy vault scheme called

NJP07 [14].

In [14] Nandakumar et al. [14] conclude that helper data which is stored as public

information does not affect the security of the fuzzy vault. In our work we take steps to

show that the helper data required to align fingerprint images in the fingerprint fuzzy vault

does leak information thereby compromising the security of the system. A rectangular

region surrounding the helper data is shown to have a higher percentage of minutia points

than would be expected in a uniform distribution. This area is substantially smaller than

the total fingerprint area. This small area combined with the greater concentration of

minutia points within it gives an attacker an advantage when attempting to compromise

the system. Furthermore, obtaining some minutia points allows an attacker to employ a

partial fingerprint attack. This sort of attack is a natural complement to the data that is

leaked by the publicly available high curvature points as shown in this paper.

Next, we suggest a new fuzzy vault scheme that is based on an observation in the Bozorth

fingerprint matching algorithm [21]. This scheme allows for the implementation of a fuzzy

vault without any helper data. This eliminates the significant security risk identified in this

paper. Additionally, the scheme eliminates the common problem of fingerprint alignment

as it is rotation and translation invariant.

Areas of Further Research

As discussed in Chapter 3, it would be beneficial to further analyze and research different

sizes of rectangles to be used in binding the HCP zone. More testing of this could reveal an

optimal size for maintaining a small area while exposing the greatest number of minutia.

Additionally, it may be useful to explore different shapes for binding the region around the

HCP zone. For instance, it appears that an elliptical shape may reduce the area while still
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containing the same number of minutia points. It would also be interesting to learn if there

is any relationship between the shapes and sizes used to bind an HCP zone and the different

types of fingerprints.

We have shown the helper data may leak additional information. We outlined a method

to begin an investigation of using helper data along with the expected directional angles

of minutia points to eliminate chaff points within close proximity to the helper data. If

this procedure were successfully implemented then it is possible a significant number of

chaff points could be eliminated from the system. The reduction of this chaff should reduce

the overall security of the vault. By decreasing the chaff while simultaneously having an

increased probability of finding minutia within a small area the fuzzy vault quickly becomes

more vulnerable.

Finally, security analysis is required of the proposed fuzzy vault scheme.
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Appendix A

Code to Generate curvature points

The Matlab code to generate curvature points consists of three scripts, highcurvature-

points horiz.m, highcurvaturepoints vert.m, and highcurvaturepoints total.m

highcurvaturepoints horiz.m

% HIGHCURVATUREPOINTS

%

% Function to d

%

% Usage:

%

% Argument:

%

% Returns:

% Patrick Perry

%

% James Madison University

%

%

%

% October 2012

fvc02_files = dir(fullfile(’./results/’, ’*-fvc02_orient.txt’));

for a = 1:size(fvc02_files)

currentFile = fvc02_files(a).name;

[pathstr, nameWOext, ext] = fileparts(currentFile);

disp (nameWOext);

short_name = strrep(nameWOext, ’-fvc02_orient’, ’’);

short_nameWext = [short_name ’.tif’];

M = dlmread([’./results/’ short_name ’-fvc02_orient.txt’]);

%[0..pi]==> sin table

%PJP-10-29 Patch to convert range from [0..pi] to [-pi/2..pi/2]

[rows,cols] = size(M);

M_transform = M;

for i_patch = 1:cols

for j_patch = 1:rows



32

if (M_transform(j_patch,i_patch) > pi/2)

M_transform(j_patch,i_patch) = M(j_patch,i_patch) - pi;

end

end

end

% dlmwrite([’./results/’ short_name ’-fvc02_cos_orient.txt’],

% M_transform,’\t’);

%[-pi/2..pi/2]==> cos table

%PJP-10-29 End Patch

rect_info = dlmread([’./results/’ short_name ’myfv2002datab.txt’],

’\t’, 0, 1);

display(rect_info);

r_start = rect_info(1);

r_end = rect_info(3);

c_start = rect_info(2);

c_end = rect_info(4);

n_0 = 75; %DassJain04 Section 3.1 refers to this prespecified constant.

%I am choosing 25 for something to test.

% I am not sure what value to use here.

w = 5;

l = ((c_end - c_start) / (2 * w));

final_k = ((r_end - r_start) / w);

max_k = ceil(final_k);

% We use this for initializing our array and as an

% upper bound on the for loop

s_0_x = zeros(1, max_k);

s_0_y = c_start + l * w;

for i = 1:max_k

k = i;

if i == max_k

k = final_k;

end

s_0_x(i) = r_start + k * w;

end

% At this point we have an array of s_0 x values and the corresponding

% unchanging y value for those points.

Curves_M_transform = zeros(2 * n_0 + 1, max_k * 2);

% For rows we * 2 to account for + & -. Then add 1 for s_0.

% Columns are * 2 to store x & y.

% Calculate s_j

for i = 1:max_k % We will deal with the top half of the rectangle first

s_x_jminus1 = round(s_0_x(i));

s_y_jminus1 = round(s_0_y);

d_j = 1;
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l_j = 5;

Curves_M_transform(n_0 + 1, 2 * i - 1) = s_x_jminus1;

% We have to begin each curve by putting the starting point in place.

Curves_M_transform(n_0 + 1, 2 * i) = s_y_jminus1;

for j = 1:n_0

theta_s_jminus1 = M_transform(round(s_y_jminus1),

round(s_x_jminus1));

%Patch to correct oscillation at vertical areas

if ( (theta_s_jminus1 > 1.4) | (theta_s_jminus1 < -1.4) )

theta_s_jminus1 = M(round(s_y_jminus1),round(s_x_jminus1));

d_j = 1;

end

s_x_j = s_x_jminus1 + d_j * l_j * cos(theta_s_jminus1);

s_y_j = s_y_jminus1 + d_j * l_j * sin(theta_s_jminus1);

% First, test if we are in the red rectangle.

% If not break out of the loop.

if (s_x_j < r_start) | (s_x_j > r_end)

break

end

if (s_y_j < c_start) | (s_y_j > c_end)

break

end

Curves_M_transform(n_0 + 1 + j, 2 * i - 1) = s_x_j;

Curves_M_transform(n_0 + 1 + j, 2 * i) = s_y_j;

% Reset the variables before the next iteration.

if ( Curves_M_transform(n_0 + 1 + j - 1, 2 * i - 1) >

Curves_M_transform(n_0 + 1 + j, 2 * i - 1) )

d_j = -1;

end

s_x_jminus1 = s_x_j;

s_y_jminus1 = s_y_j;

end

end

for i = 1:max_k

% We will deal with the bottom half of the rectangle second

s_x_jminus1 = round(s_0_x(i));

s_y_jminus1 = round(s_0_y);

d_j = -1;

l_j = 5;

Curves_M_transform(n_0 + 1, 2 * i - 1) = s_x_jminus1;

% We have to begin each curve by putting the starting

% point in place.

Curves_M_transform(n_0 + 1, 2 * i) = s_y_jminus1;

for j = 1:n_0

theta_s_jminus1 = M_transform(round(s_y_jminus1),
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round(s_x_jminus1));

%Patch to correct oscillation at vertical areas

if ( (theta_s_jminus1 > 1.4) | (theta_s_jminus1 < -1.4) )

theta_s_jminus1 = M(round(s_y_jminus1),round(s_x_jminus1));

d_j = -1;

end

s_x_j = s_x_jminus1 + d_j * l_j * cos(theta_s_jminus1);

s_y_j = s_y_jminus1 + d_j * l_j * sin(theta_s_jminus1);

% First, test if we are in the red rectangle.

% If not break out of the loop.

if (s_x_j < r_start) | (s_x_j > r_end)

break

end

if (s_y_j < c_start) | (s_y_j > c_end)

break

end

Curves_M_transform(n_0 + 1 - j, 2 * i - 1) = s_x_j;

Curves_M_transform(n_0 + 1 - j, 2 * i) = s_y_j;

% Reset the variables before the next iteration.

if ( Curves_M_transform(n_0 + 1 - j + 1, 2 * i - 1) <

Curves_M_transform(n_0 + 1 - j, 2 * i - 1) )

d_j = 1;

end

s_x_jminus1 = s_x_j;

s_y_jminus1 = s_y_j;

end

end

%++++++++++

[mm1, nn1] = size (M);

disp (mm1);

disp (nn1);

for j = 1:max_k %

mynewfolder = [’./results/’ short_name];

isexistent = exist(mynewfolder);

if (isexistent ~= 7) mkdir(mynewfolder);

end

thisfilename = [’./results/’ short_name

’/oneline-offc-horiz-’ num2str(j) ’.txt’];

disp (thisfilename);

fid = fopen(thisfilename, ’w’);

formatSpec = ’%f\t %f\t %f\n’;

for i=1:2*n_0+1

if (Curves_M_transform(i, 2*j-1) > 0) &

(Curves_M_transform(i, 2*j) > 0)

if (Curves_M_transform(i, 2*j-1) > nn1) |

(Curves_M_transform(i, 2*j) > mm1)

disp (’ERROR’);
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disp (Curves_M_transform(i, 2*j-1));

disp (Curves_M_transform(i, 2*j));

else

fprintf(fid, formatSpec, Curves_M_transform(i, 2*j-1),

Curves_M_transform(i, 2*j),

M_transform(round(Curves_M_transform(i, 2*j)),

round(Curves_M_transform(i, 2*j-1))));

end %% end of inner if

end %% end of outer if

end %% end of for i

fclose (fid);

end %% end of for j

%++++++++++

% Curves_with_noise = [’./results/’ short_name ’_curve_w_noise.txt’];

% dlmwrite(Curves_with_noise, Curves_M_transform);

thisIm = imread ([’./Sample_Fingerprints/’ short_name ’.tif’]);

f=figure(’visible’, ’off’), imshow (thisIm);

hold on;

axis on;

[m n] = size (Curves_M_transform);

Curvature_Values = zeros(m, n/2);

for i=1:n/2

x = round(nonzeros(Curves_M_transform(:,2*i-1)));

y = round(nonzeros(Curves_M_transform(:,2*i)));

plot (x, y, ’-.g’);%, ’-.og’);

hold on;

%This is where we create a matrix with curvature values.

for j=6:size (x) - 5

% We subtract 5 from the size of x so we do not

% exceed the number of points when we use j+5

theta_left = M_transform(y(j-5), x(j-5));

theta_right = M_transform(y(j+5), x(j+5));

alpha = theta_left - theta_right;

Curvature_Values(j,i) = 1 - cos(alpha);

end

%We have the OFFC curvature values.

end

mynewfolder2 = [’./results/’ short_name];

% disp (mynewfolder2);

isexistent2 = exist(mynewfolder2);

% disp (isexistent2);

if (isexistent2 ~= 7) mkdir(mynewfolder2);

end

Curve_Vals = [’./results/’ short_name ’/Curvature_Vals_Horiz.txt’];

% disp (Curve_Vals);
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dlmwrite(Curve_Vals, Curvature_Values);

%%%%

%We need to remove some false high curvature values

Filtered_Curvature_Values = Curvature_Values;

for i=1:n/2

while (1)

[Filtered_peaks_max, Filtered_index] =

max(Filtered_Curvature_Values(:,i));

filtered_y = nonzeros(Curves_M_transform(:,2*i));

Filtered_index = round(Filtered_index);

if (Filtered_peaks_max == 0)

break

end

if ( (filtered_y(Filtered_index) >

filtered_y(Filtered_index - 1)) &

(filtered_y(Filtered_index) > filtered_y(Filtered_index + 1)) )

break

elseif ( (filtered_y(Filtered_index) <

filtered_y(Filtered_index - 1)) &

(filtered_y(Filtered_index) < filtered_y(Filtered_index + 1)) )

break

else

Filtered_Curvature_Values(Filtered_index, i) = 0;

end

end

end

Curve_Vals = [’./results/’ short_name

’/FILTERED_Curvature_Vals_Horiz.txt’];

dlmwrite(Curve_Vals, Filtered_Curvature_Values);

%False values have been removed now.

%Initialize our High Curvature Points matrix

High_Curvature_Points = zeros(1, 3); %Initialize array to store 1 HCP

for i=1:n/2

[HCP_peaks, HCP_index] = max(Filtered_Curvature_Values(:,i));

HCP_index = round(HCP_index);

x = nonzeros(Curves_M_transform(:,2*i-1));

y = nonzeros(Curves_M_transform(:,2*i));

for j=1:length(HCP_index)

HCP_x = x(HCP_index(j));

HCP_y = y(HCP_index(j));

HCP_omega = HCP_peaks(j);

%Based on DJ04 p 750 we are not going to include

%HCP less than .3

if (HCP_omega >= .3)

next_row = [HCP_x HCP_y HCP_omega];

High_Curvature_Points = [High_Curvature_Points ; next_row];

end
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end

end

[r c] = size(High_Curvature_Points);

% for i=2:r

% plot (High_Curvature_Points(i,1),

% High_Curvature_Points(i,2), ’*r’);

% hold on;

% end

HCP_Vals = [’./results/’ short_name ’/HCP_horiz.txt’];

dlmwrite(HCP_Vals, High_Curvature_Points);

%%%%

newFilename1 = [’./results/’ short_name ’/OFFC_horiz.tif’];

print (f, ’-dtiff’, newFilename1);

end

disp (’Done’);

highcurvaturepoints vert.m

% HIGHCURVATUREPOINTS

%

% Function to d

%

% Usage:

%

% Argument:

%

% Returns:

% Patrick Perry

%

% James Madison University

%

%

%

% October 2012

fvc02_files = dir(fullfile(’./results/’, ’*-fvc02_orient.txt’));

for a = 1:size(fvc02_files)

currentFile = fvc02_files(a).name;

[pathstr, nameWOext, ext] = fileparts(currentFile);

disp (nameWOext);

short_name = strrep(nameWOext, ’-fvc02_orient’, ’’);

short_nameWext = [short_name ’.tif’];

M = dlmread([’./results/’ short_name ’-fvc02_orient.txt’]);

%[0..pi]==> sin table
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%PJP-10-29 Patch to convert range from [0..pi] to [-pi/2..pi/2]

[rows,cols] = size(M);

M_transform = M;

for i_patch = 1:cols

for j_patch = 1:rows

if (M_transform(j_patch,i_patch) > pi/2)

M_transform(j_patch,i_patch) = M(j_patch,i_patch) - pi;

end

end

end

% dlmwrite([’./results/’ short_name ’-fvc02_cos_orient.txt’],

% M_transform, ’\t’);

%[-pi/2..pi/2]==> cos table

%PJP-10-29 End Patch

rect_info = dlmread([’./results/’ short_name

’myfv2002datab.txt’], ’\t’, 0, 1);

display(rect_info);

r_start = rect_info(1);

r_end = rect_info(3);

c_start = rect_info(2);

c_end = rect_info(4);

n_0 = 50; % DassJain04 Section 3.1 refers to

% this prespecified constant.

% I am choosing 25 for something to test.

% I am not sure what value to use here.

w = 5;

k = ((r_end - r_start) / (2 * w));

final_l = ((c_end - c_start) / w);

max_l = ceil(final_l)

% We use this for initializing our array and as an upper bound

% on the for loop

s_0_x = r_start + k * w;

s_0_y = zeros(1, max_l);

for i = 1:max_l

l = i;

if i == max_l

l = final_l;

end

s_0_y(i) = c_start + l * w;

end

% At this point we have an array of s_0 x values and the

% corresponding unchanging y value for those points.

Curves_M_transform = zeros(2 * n_0 + 1, max_l * 2);
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% For rows we * 2 to account for + & -.

% Then add 1 for s_0. Columns are * 2 to store x & y.

% Calculate s_j

for i = 1:max_l %We will deal with the top half of the rectangle first

s_x_jminus1 = round(s_0_x);

s_y_jminus1 = round(s_0_y(i));

d_j = 1;

l_j = 5;

Curves_M_transform(n_0 + 1, 2 * i - 1) = s_x_jminus1;

% We have to begin each curve by putting the

% starting point in place.

Curves_M_transform(n_0 + 1, 2 * i) = s_y_jminus1;

for j = 1:n_0

theta_s_jminus1 = M_transform(round(s_y_jminus1),

round(s_x_jminus1));

%Patch to correct oscillation at vertical areas

if ( (theta_s_jminus1 > 1.4) | (theta_s_jminus1 < -1.4) )

theta_s_jminus1 = M(round(s_y_jminus1),

round(s_x_jminus1));

d_j = 1;

end

s_x_j = s_x_jminus1 + d_j * l_j * cos(theta_s_jminus1);

s_y_j = s_y_jminus1 + d_j * l_j * sin(theta_s_jminus1);

% First, test if we are in the red rectangle.

% If not break out of the loop.

if (s_x_j < r_start) | (s_x_j > r_end)

break

end

if (s_y_j < c_start) | (s_y_j > c_end)

break

end

Curves_M_transform(n_0 + 1 + j, 2 * i - 1) = s_x_j;

Curves_M_transform(n_0 + 1 + j, 2 * i) = s_y_j;

% Reset the variables before the next iteration.

if ( Curves_M_transform(n_0 + 1 + j - 1, 2 * i - 1) >

Curves_M_transform(n_0 + 1 + j, 2 * i - 1) )

d_j = -1;

end

s_x_jminus1 = s_x_j;

s_y_jminus1 = s_y_j;

end

end

for i = 1:max_l

% We will deal with the bottom half of the rectangle second

s_x_jminus1 = round(s_0_x);

s_y_jminus1 = round(s_0_y(i));
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d_j = -1;

l_j = 5;

Curves_M_transform(n_0 + 1, 2 * i - 1) = s_x_jminus1;

% We have to begin each curve by putting the starting

% point in place.

Curves_M_transform(n_0 + 1, 2 * i) = s_y_jminus1;

for j = 1:n_0

theta_s_jminus1 = M_transform(round(s_y_jminus1),

round(s_x_jminus1));

%Patch to correct oscillation at vertical areas

if ( (theta_s_jminus1 > 1.4) | (theta_s_jminus1 < -1.4) )

theta_s_jminus1 = M(round(s_y_jminus1),

round(s_x_jminus1));

d_j = -1;

end

s_x_j = s_x_jminus1 + d_j * l_j * cos(theta_s_jminus1);

s_y_j = s_y_jminus1 + d_j * l_j * sin(theta_s_jminus1);

% First, test if we are in the red rectangle.

% If not break out of the loop.

if (s_x_j < r_start) | (s_x_j > r_end)

break

end

if (s_y_j < c_start) | (s_y_j > c_end)

break

end

Curves_M_transform(n_0 + 1 - j, 2 * i - 1) = s_x_j;

Curves_M_transform(n_0 + 1 - j, 2 * i) = s_y_j;

% Reset the variables before the next iteration.

if ( Curves_M_transform(n_0 + 1 - j + 1, 2 * i - 1) <

Curves_M_transform(n_0 + 1 - j, 2 * i - 1) )

d_j = 1;

end

s_x_jminus1 = s_x_j;

s_y_jminus1 = s_y_j;

end

end

%++++++++++

[mm1, nn1] = size (M);

disp (mm1);

disp (nn1);

for j = 1:max_l %

thisfilename = [’./results/’ short_name ’/oneline-offc-vert-’

num2str(j) ’.txt’];

disp (thisfilename);

fid = fopen(thisfilename, ’w’);

formatSpec = ’%f\t %f\t %f\n’;
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for i=1:2*n_0+1

if (Curves_M_transform(i, 2*j-1) > 0) &

(Curves_M_transform(i, 2*j) > 0)

if (Curves_M_transform(i, 2*j-1) > nn1) |

(Curves_M_transform(i, 2*j) > mm1)

disp (’ERROR’);

disp (Curves_M_transform(i, 2*j-1));

disp (Curves_M_transform(i, 2*j));

else

fprintf(fid, formatSpec, Curves_M_transform(i, 2*j-1),

Curves_M_transform(i, 2*j),

M_transform(round(Curves_M_transform(i, 2*j)),

round(Curves_M_transform(i, 2*j-1))));

end %% end of inner if

end %% end of outer if

end %% end of for i

fclose (fid);

end %% end of for j

%++++++++++

% Curves_with_noise = [’./results/’ short_name ’_curve_w_noise.txt’];

% dlmwrite(Curves_with_noise, Curves_M_transform);

thisIm = imread ([’./Sample_Fingerprints/’ short_name ’.tif’]);

f=figure(’visible’, ’off’), imshow (thisIm);

hold on;

axis on;

[m n] = size (Curves_M_transform);

Curvature_Values = zeros(m, n/2);

for i=1:n/2

x = round(nonzeros(Curves_M_transform(:,2*i-1)));

y = round(nonzeros(Curves_M_transform(:,2*i)));

plot (x, y, ’-.g’);%, ’-.og’);

hold on;

%This is where we create a matrix with curvature values.

for j=6:size (x) - 5

%We subtract 5 from the size of x so we do not

%exceed the number of points when we use j+5

theta_left = M_transform(y(j-5), x(j-5));

theta_right = M_transform(y(j+5), x(j+5));

alpha = theta_left - theta_right;

Curvature_Values(j,i) = 1 - cos(alpha);

end

%We have the OFFC curvature values.

end

Curve_Vals = [’./results/’ short_name ’/Curvature_Vals_Vert.txt’];

dlmwrite(Curve_Vals, Curvature_Values);
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%%%%

%We need to remove some false high curvature values

Filtered_Curvature_Values = Curvature_Values;

for i=1:n/2

while (1)

[Filtered_peaks_max, Filtered_index] =

max(Filtered_Curvature_Values(:,i));

filtered_y = nonzeros(Curves_M_transform(:,2*i));

Filtered_index = round(Filtered_index);

if (Filtered_peaks_max == 0)

break

end

if ( (filtered_y(Filtered_index) >

filtered_y(Filtered_index - 1)) &

(filtered_y(Filtered_index) >

filtered_y(Filtered_index + 1)) )

break

elseif ( (filtered_y(Filtered_index) <

filtered_y(Filtered_index - 1)) &

(filtered_y(Filtered_index) <

filtered_y(Filtered_index + 1)) )

break

else

Filtered_Curvature_Values(Filtered_index, i) = 0;

end

end

end

Curve_Vals = [’./results/’ short_name

’/FILTERED_Curvature_Vals_Vert.txt’];

dlmwrite(Curve_Vals, Filtered_Curvature_Values);

%False values have been removed now.

%Initialize our High Curvature Points matrix

High_Curvature_Points = zeros(1, 3); %Initialize array to store 1 HCP

for i=1:n/2

[HCP_peaks, HCP_index] = max(Filtered_Curvature_Values(:,i));

HCP_index = round(HCP_index);

x = nonzeros(Curves_M_transform(:,2*i-1));

y = nonzeros(Curves_M_transform(:,2*i));

for j=1:length(HCP_index)

HCP_x = x(HCP_index(j));

HCP_y = y(HCP_index(j));

HCP_omega = HCP_peaks(j);

%Based on DJ04 p 750 we are not going to include

%HCP less than .3

if (HCP_omega >= .3)

next_row = [HCP_x HCP_y HCP_omega];

High_Curvature_Points = [High_Curvature_Points ; next_row];
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end

end

end

[r c] = size(High_Curvature_Points);

% for i=2:r

% plot (High_Curvature_Points(i,1),

% High_Curvature_Points(i,2), ’*r’);

% hold on;

% end

HCP_Vals = [’./results/’ short_name ’/HCP_vert.txt’];

dlmwrite(HCP_Vals, High_Curvature_Points);

%%%%

newFilename1 = [’./results/’ short_name ’/OFFC_vert.tif’];

print (f, ’-dtiff’, newFilename1);

end

disp (’Done’);

highcurvaturepoints total.m

% HIGHCURVATUREPOINTS

%

% Function to d

%

% Usage:

%

% Argument:

%

% Returns:

% Patrick Perry

%

% James Madison University

%

%

%

% October 2012

fvc02_files = dir(fullfile(’./results/’, ’*-fvc02_orient.txt’));

for a = 1:size(fvc02_files)

currentFile = fvc02_files(a).name;

[pathstr, nameWOext, ext] = fileparts(currentFile);

disp (nameWOext);

short_name = strrep(nameWOext, ’-fvc02_orient’, ’’);

short_nameWext = [short_name ’.tif’];

Horiz = dlmread([’./results/’ short_name ’/HCP_horiz.txt’]);
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if ( Horiz(1,1) == 0 )

Horiz(1,:) = [];

end

Vert = dlmread([’./results/’ short_name ’/HCP_vert.txt’]);

if ( Vert(1,1) == 0 )

Vert(1,:) = [];

end

Total = [Horiz; Vert];

HCP_Vals = [’./results/’ short_name ’/HCP_total.txt’];

dlmwrite(HCP_Vals, Total);

thisIm = imread ([’./Sample_Fingerprints/’ short_name ’.tif’]);

f=figure(’visible’, ’off’), imshow (thisIm);

hold on;

axis on;

%We draw the high curvature points (horiz, vert & total).

%vert

[r c] = size(Vert);

for i=1:r

plot (Vert(i,1), Vert(i,2), ’*r’);

hold on;

end

newFilename1 = [’./results/’ short_name ’/HCP_VERT.tif’];

print (f, ’-dtiff’, newFilename1);

%horiz

thisIm = imread ([’./Sample_Fingerprints/’ short_name ’.tif’]);

f=figure(’visible’, ’off’), imshow (thisIm);

hold on;

axis on;

[r c] = size(Horiz);

for i=1:r

plot (Horiz(i,1), Horiz(i,2), ’*r’);

hold on;

end

newFilename1 = [’./results/’ short_name ’/HCP_HORIZ.tif’];

print (f, ’-dtiff’, newFilename1);

%total

thisIm = imread ([’./Sample_Fingerprints/’ short_name ’.tif’]);

f=figure(’visible’, ’off’), imshow (thisIm);

hold on;

axis on;

[r c] = size(Total);

for i=1:r

plot (Total(i,1), Total(i,2), ’*r’);

hold on;

end

newFilename1 = [’./results/’ short_name ’/HCP_TOTAL.tif’];

print (f, ’-dtiff’, newFilename1);

end
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disp (’Done’);
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Appendix B

Code for Correlation Analysis Between Minutia and Helper Data within a Rectangular

Zone

hcprectanalysis.m

HCP_total_files = dir(fullfile(’F:\THESIS\MANUAL_FILTERED_HCP\’,

’*-HCP_total.txt’));

Results = zeros(size(HCP_total_files),6);

Output = [’F:\THESIS\MANUAL_FILTERED_HCP\HCP_ZONE_ANALYSIS.txt’];

fid = fopen(Output, ’w’);

formatSpec = ’%s\t %f\t %f\t %f\t %f\t %f\t %f\n’;

for a = 1:size(HCP_total_files)

currentFile = HCP_total_files(a).name;

[pathstr, nameWOext, ext] = fileparts(currentFile);

disp (nameWOext);

short_name = strrep(nameWOext, ’-HCP_total’, ’’);

% short_nameWext = [short_name ’.tif’];

HCP = dlmread([’F:\THESIS\MANUAL_FILTERED_HCP\’ short_name

’-HCP_total.txt’]);

XYT = dlmread([’F:\THESIS\MANUAL_FILTERED_HCP\’ short_name

’nist.xyt’]);

rect_info = dlmread([’F:\THESIS\MANUAL_FILTERED_HCP\’

short_name ’myfv2002datab.txt’], ’\t’, 0, 1);

%HCP = dlmread(’F:\THESIS\MANUAL_FILTERED_HCP\94_7-HCP_total.txt’);

%XYT = dlmread(’F:\THESIS\MANUAL_FILTERED_HCP\94_7nist.xyt’);

%display(HCP);

[row, col] = size (HCP);

[row_xyt, col_xyt] = size (XYT);

regression = zeros(row, 5); %columns is 5 for x, y, xy, x^2, y^2

regression(:,1) = HCP(:,1);

regression(:,2) = HCP(:,2)*(-1);

%multiply by -1 to adjust for the fact we are really

%working in quadrant 4, y’s increase as you go down the axis

for i = 1:row

regression(i,3) = HCP(i,1) * HCP(i,2) * (-1);

regression(i,4) = HCP(i,1) * HCP(i,1);

regression(i,5) = HCP(i,2) * HCP(i,2);

end

%display(regression);
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sums = sum(regression);

y_intercept = ((sums(2)*sums(4)) - (sums(1)*sums(3))) /

((row*sums(4)) - (sums(1)*sums(1)));

slope = ((row*sums(3)) - (sums(1)*sums(2))) /

((row*sums(4)) - (sums(1)*sums(1)));

[hcp_bottom_y, hcp_bottom_y_index] = max(HCP(:,2));

[hcp_top_y, hcp_top_y_index] = min(HCP(:,2));

hcp_bottom_x = HCP(hcp_bottom_y_index,1);

hcp_top_x = HCP(hcp_top_y_index,1);

hcp_length = sqrt( (hcp_bottom_x-hcp_top_x)*

(hcp_bottom_x-hcp_top_x) +

( (hcp_bottom_y-hcp_top_y)*(hcp_bottom_y-hcp_top_y) ) );

rect_width = .25 * hcp_length;

rect_length = .25 * hcp_length;

inside_hcp_zone = 0;

for j = 1:row_xyt

y = XYT(j,2);

x = XYT(j,1);

if ( y >= -1 * ((-1/slope) * (x-hcp_top_x) - hcp_top_y) )

%subtracting y value to account for working in the 4th quadrant

if ( y <= -1 * ((-1/slope) * (x-hcp_bottom_x) - hcp_bottom_y - rect_length) )

if ( slope >= 0 )

if ( y >= -1 * ((slope) * (x+rect_width) +

y_intercept) )

if ( y <= -1 * ((slope) * (x-rect_width) +

y_intercept) )

inside_hcp_zone = inside_hcp_zone + 1;

end

end

else

if ( y <= -1 * ((slope) * (x+rect_width) +

y_intercept) )

if ( y >= -1 * ((slope) * (x-rect_width)

+ y_intercept) )

inside_hcp_zone = inside_hcp_zone + 1;

end

end

end

end

end

end

percent_min_in_zone = inside_hcp_zone / row_xyt * 100;
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Results(a,1) = percent_min_in_zone;

Results(a,3) = 100 - percent_min_in_zone;

Results(a,6) = row_xyt;

vertex1_x = ( (-rect_width*slope*slope) - (slope*y_intercept) -

(slope*hcp_top_y) + hcp_top_x ) / ( 1+slope*slope );

vertex2_x = ( (-rect_width*slope*slope) - (slope*y_intercept)

- (slope*hcp_bottom_y) - (slope*rect_length) + hcp_bottom_x ) /

( 1+slope*slope );

vertex3_x = ( (rect_width*slope*slope) - (slope*y_intercept)

- (slope*hcp_top_y) + hcp_top_x ) / ( 1+slope*slope );

vertex4_x = ( (rect_width*slope*slope) - (slope*y_intercept)

- (slope*hcp_bottom_y) - (slope*rect_length) +

hcp_bottom_x ) / ( 1+slope*slope );

x1 = rect_info(1);

x2 = rect_info(3);

y1 = rect_info(2);

y2 = rect_info(4);

length = rect_info(5);

width = rect_info(6);

rect_area = length * width;

%zone area

vertex1_y = -1 * ((-1/slope) * (vertex1_x-hcp_top_x) -

hcp_top_y);

vertex2_y = -1 * ((-1/slope) * (vertex2_x-hcp_bottom_x)

- hcp_bottom_y - rect_length);

vertex3_y = -1 * ((-1/slope) * (vertex3_x-hcp_top_x)

- hcp_top_y);

vertex4_y = -1 * ((-1/slope) * (vertex4_x-hcp_bottom_x)

- hcp_bottom_y - rect_length);

%Need to adjust coords for polyarea if top perpendicular

% hits the top of the red rectangle. This appears to

% be the only potential problem case.

if ( vertex1_y < y1 )

zone_x1 = (-y1+hcp_top_y)*(-slope)+hcp_top_x;

zone_y1 = -1 * ( slope*(x1+rect_width) + y_intercept );

zone_x = [ zone_x1 x1 vertex2_x vertex4_x vertex3_x ];

zone_y = [ y1 zone_y1 vertex2_y vertex4_y vertex3_y ];

elseif ( vertex3_y < y1 )

zone_x2 = (-y1+hcp_top_y)*(-slope)+hcp_top_x;

zone_y2 = -1 * ( slope*(x2-rect_width) + y_intercept );

zone_x = [ zone_x2 vertex1_x vertex2_x vertex4_x x2 ];

zone_y = [ y1 vertex1_y vertex2_y vertex4_y zone_y2 ];

else

zone_x = [ vertex1_x vertex2_x vertex4_x vertex3_x ];

zone_y = [ vertex1_y vertex2_y vertex4_y vertex3_y ];
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end

area = polyarea(zone_x,zone_y);

percent_area_in_zone = area / rect_area * 100;

Results(a,2) = percent_area_in_zone;

Results(a,4) = 100 - percent_area_in_zone; %area within HCP zone

Results(a,5) = hcp_length;

fprintf(fid, formatSpec, short_name, Results(a,:));

end

fclose (fid);

%dlmwrite(Output, Results);



Appendix C

Data Tables
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Table C.1: 10% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

26 8 16.268 57 6 9.3 -3.3 1.155
83 7 6.951 61 2 4.2 -2.2 1.184
17 8 2.941 52 0 1.5 -1.5 1.529
70 1 2.143 61 0 1.3 -1.3 1.308
32 2 3.970 56 1 2.2 -1.2 0.673
95 1 1.576 75 0 1.2 -1.2 1.182
53 2 5.454 58 2 3.2 -1.2 0.428
40 2 2.469 43 0 1.1 -1.1 1.062
8 1 2.408 84 1 2.0 -1.0 0.517
31 8 1.589 64 0 1.0 -1.0 1.017
19 7 1.572 62 0 1.0 -1.0 0.975
31 1 1.689 56 0 0.9 -0.9 0.946
22 2 3.682 52 1 1.9 -0.9 0.437
72 2 3.543 54 1 1.9 -0.9 0.436
93 8 1.419 64 0 0.9 -0.9 0.908
19 8 1.190 61 0 0.7 -0.7 0.726
32 8 1.873 37 0 0.7 -0.7 0.693
23 2 0.886 75 0 0.7 -0.7 0.664
80 8 1.507 43 0 0.6 -0.6 0.648
40 7 1.448 43 0 0.6 -0.6 0.623
3 1 3.011 53 1 1.6 -0.6 0.222
51 8 1.217 47 0 0.6 -0.6 0.572
48 1 1.221 44 0 0.5 -0.5 0.537
25 8 2.720 56 1 1.5 -0.5 0.180
97 2 1.023 51 0 0.5 -0.5 0.522
12 2 1.337 37 0 0.5 -0.5 0.495
74 7 0.637 75 0 0.5 -0.5 0.478
74 1 0.725 58 0 0.4 -0.4 0.420
13 1 0.995 41 0 0.4 -0.4 0.408
13 7 1.156 35 0 0.4 -0.4 0.405
48 2 2.366 58 1 1.4 -0.4 0.101
72 7 2.104 65 1 1.4 -0.4 0.099
30 1 1.799 76 1 1.4 -0.4 0.099
71 2 2.466 54 1 1.3 -0.3 0.083
72 1 2.013 64 1 1.3 -0.3 0.065
40 1 2.392 53 1 1.3 -0.3 0.057
77 1 2.308 54 1 1.2 -0.2 0.049
20 7 4.945 65 3 3.2 -0.2 0.014
63 2 1.814 66 1 1.2 -0.2 0.032
70 2 2.008 59 1 1.2 -0.2 0.029
1 2 0.404 42 0 0.2 -0.2 0.170
21 1 2.031 57 1 1.2 -0.2 0.021
9 8 2.721 42 1 1.1 -0.1 0.018
11 1 2.038 56 1 1.1 -0.1 0.018
12 7 0.228 59 0 0.1 -0.1 0.135
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Table C.2: 10% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

9 2 2.623 43 1 1.1 -0.1 0.014
23 1 0.151 73 0 0.1 -0.1 0.110
17 2 3.473 60 2 2.1 -0.1 0.003
33 2 1.602 65 1 1.0 0.0 0.002
89 1 0.046 65 0 0.0 0.0 0.030
12 8 0.056 47 0 0.0 0.0 0.026
53 1 6.384 63 4 4.0 0.0 0.000
59 8 1.899 52 1 1.0 0.0 0.000
95 8 2.741 72 2 2.0 0.0 0.000
30 2 1.376 70 1 1.0 0.0 0.001
7 1 2.427 39 1 0.9 0.1 0.003
3 2 1.868 50 1 0.9 0.1 0.005
57 2 1.824 51 1 0.9 0.1 0.005
79 2 1.707 54 1 0.9 0.1 0.007
59 1 2.007 45 1 0.9 0.1 0.010
31 7 1.433 62 1 0.9 0.1 0.014
6 1 7.213 26 2 1.9 0.1 0.008
7 2 2.186 40 1 0.9 0.1 0.018
10 1 1.873 46 1 0.9 0.1 0.022
31 2 1.533 47 1 0.7 0.3 0.108
72 8 2.862 60 2 1.7 0.3 0.047
60 2 1.291 54 1 0.7 0.3 0.132
58 8 1.792 38 1 0.7 0.3 0.150
20 2 8.718 53 5 4.6 0.4 0.031
35 7 1.495 39 1 0.6 0.4 0.298
3 7 2.805 55 2 1.5 0.5 0.135
6 2 1.370 38 1 0.5 0.5 0.442
32 1 3.025 50 2 1.5 0.5 0.157
83 1 6.446 70 5 4.5 0.5 0.053
7 7 1.337 35 1 0.5 0.5 0.605
20 1 7.167 62 5 4.4 0.6 0.070
13 2 0.911 48 1 0.4 0.6 0.725
37 8 2.936 48 2 1.4 0.6 0.247
35 2 0.614 65 1 0.4 0.6 0.903
53 7 8.443 52 5 4.4 0.6 0.085
9 1 2.902 46 2 1.3 0.7 0.332
76 2 1.892 70 2 1.3 0.7 0.344
4 7 0.952 30 1 0.3 0.7 1.787
37 2 2.191 56 2 1.2 0.8 0.487
69 1 1.792 68 2 1.2 0.8 0.501
90 2 1.838 66 2 1.2 0.8 0.510
22 7 0.447 42 1 0.2 0.8 3.515
33 1 1.971 60 2 1.2 0.8 0.565
55 1 1.689 70 2 1.2 0.8 0.566
19 2 2.131 55 2 1.2 0.8 0.585
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Table C.3: 10% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

80 1 2.533 45 2 1.1 0.9 0.649
46 1 3.107 68 3 2.1 0.9 0.373
99 7 1.549 69 2 1.1 0.9 0.812
21 2 1.846 51 2 0.9 1.1 1.191
22 1 4.667 41 3 1.9 1.1 0.617
61 7 1.644 55 2 0.9 1.1 1.328
82 2 3.618 78 4 2.8 1.2 0.492
53 8 5.814 48 4 2.8 1.2 0.524
8 2 2.267 76 3 1.7 1.3 0.947
80 2 1.695 42 2 0.7 1.3 2.331
50 7 1.360 52 2 0.7 1.3 2.363
90 8 2.969 57 3 1.7 1.3 1.011
51 1 2.147 77 3 1.7 1.3 1.097
76 1 2.756 59 3 1.6 1.4 1.161
2 7 1.707 35 2 0.6 1.4 3.291
90 1 2.325 68 3 1.6 1.4 1.273
26 1 6.526 70 6 4.6 1.4 0.449
41 2 2.358 66 3 1.6 1.4 1.340
95 2 3.125 49 3 1.5 1.5 1.409
75 1 3.408 74 4 2.5 1.5 0.867
86 2 2.211 68 3 1.5 1.5 1.490
74 2 0.701 61 2 0.4 1.6 5.785
61 2 1.980 71 3 1.4 1.6 1.807
10 8 3.342 41 3 1.4 1.6 1.939
29 1 3.225 42 3 1.4 1.6 2.000
97 1 3.485 67 4 2.3 1.7 1.188
66 2 2.311 57 3 1.3 1.7 2.150
17 1 4.121 56 4 2.3 1.7 1.241
44 1 2.385 54 3 1.3 1.7 2.276
75 2 3.441 66 4 2.3 1.7 1.317
42 2 5.528 59 5 3.3 1.7 0.926
3 8 2.927 43 3 1.3 1.7 2.410
44 2 2.318 51 3 1.2 1.8 2.794
42 1 4.955 64 5 3.2 1.8 1.054
36 1 3.568 58 4 2.1 1.9 1.800
50 2 2.364 45 3 1.1 1.9 3.523
63 1 2.279 45 3 1.0 2.0 3.802
28 7 2.888 70 4 2.0 2.0 1.936
29 7 4.521 44 4 2.0 2.0 2.032
2 2 2.438 40 3 1.0 2.0 4.205
64 2 1.649 58 3 1.0 2.0 4.367
49 1 1.359 70 3 1.0 2.0 4.412
16 7 2.516 34 3 0.9 2.1 5.376
4 2 6.887 41 5 2.8 2.2 1.677
5 8 9.295 41 6 3.8 2.2 1.258
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Table C.4: 10% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

38 7 4.018 45 4 1.8 2.2 2.657
10 2 5.395 51 5 2.8 2.2 1.838
19 1 1.147 65 3 0.7 2.3 6.820
28 1 2.779 59 4 1.6 2.4 3.397
5 7 1.709 36 3 0.6 2.4 9.240
25 2 4.384 58 5 2.5 2.5 2.375
82 8 5.446 65 6 3.5 2.5 1.709
24 2 1.882 76 4 1.4 2.6 4.618
84 2 3.148 76 5 2.4 2.6 2.843
16 2 2.581 53 4 1.4 2.6 5.065
10 7 3.372 40 4 1.3 2.7 5.212
46 2 2.099 64 4 1.3 2.7 5.253
29 8 5.441 43 5 2.3 2.7 3.025
78 1 1.640 81 4 1.3 2.7 5.375
34 8 2.692 49 4 1.3 2.7 5.451
22 8 3.340 39 4 1.3 2.7 5.585
86 7 1.652 78 4 1.3 2.7 5.704
76 7 2.918 78 5 2.3 2.7 3.260
93 7 2.704 82 5 2.2 2.8 3.493
79 7 1.874 59 4 1.1 2.9 7.580
84 1 4.428 70 6 3.1 2.9 2.714
34 7 2.141 50 4 1.1 2.9 8.019
43 1 2.456 84 5 2.1 2.9 4.180
28 2 1.954 54 4 1.1 2.9 8.216
35 1 1.855 56 4 1.0 3.0 8.442
41 7 1.593 65 4 1.0 3.0 8.485
24 1 2.454 81 5 2.0 3.0 4.563
14 2 3.105 62 5 1.9 3.1 4.912
25 1 3.477 55 5 1.9 3.1 4.984
5 1 2.146 41 4 0.9 3.1 11.061
5 2 1.921 38 4 0.7 3.3 14.645
83 2 6.189 58 7 3.6 3.4 3.240
100 1 2.205 69 5 1.5 3.5 7.953
86 1 2.013 72 5 1.4 3.6 8.700
15 2 1.964 60 5 1.2 3.8 12.392
94 7 5.074 62 7 3.1 3.9 4.722
45 2 3.862 55 6 2.1 3.9 7.072
64 1 2.147 52 5 1.1 3.9 13.513
41 1 1.807 61 5 1.1 3.9 13.788
4 8 4.778 43 6 2.1 3.9 7.577
54 1 3.300 59 6 1.9 4.1 8.439
44 7 3.612 51 6 1.8 4.2 9.384
58 2 3.781 45 6 1.7 4.3 10.859
82 7 4.040 64 7 2.6 4.4 7.537
11 2 2.536 62 6 1.6 4.4 12.465
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Table C.5: 10% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

75 7 3.218 77 7 2.5 4.5 8.254
58 7 2.767 51 6 1.4 4.6 14.923
81 2 3.767 61 7 2.3 4.7 9.622
82 1 3.195 70 7 2.2 4.8 10.143
34 1 3.526 59 7 2.1 4.9 11.634
81 1 4.953 61 8 3.0 5.0 8.205
56 2 3.501 56 7 2.0 5.0 12.955
38 1 3.364 49 7 1.6 5.4 17.378
34 2 4.269 60 8 2.6 5.4 11.545
81 7 3.358 65 8 2.2 5.8 15.503
52 1 4.292 72 9 3.1 5.9 11.304
52 7 4.121 70 9 2.9 6.1 12.966
91 7 7.300 51 10 3.7 6.3 10.584
4 1 7.901 47 10 3.7 6.3 10.642
36 2 2.542 52 8 1.3 6.7 33.743
81 8 4.057 55 9 2.2 6.8 20.532
52 8 4.951 73 11 3.6 7.4 15.093
52 2 4.342 73 11 3.2 7.8 19.343
14 1 6.537 58 12 3.8 8.2 17.770
99 1 3.251 91 12 3.0 9.0 27.626
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Table C.6: 25% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

32 2 9.924 56 3 5.6 -2.6 1.177
72 7 5.259 65 1 3.4 -2.4 1.711
30 1 4.497 76 1 3.4 -2.4 1.710
26 8 40.670 57 21 23.2 -2.2 0.205
72 2 8.858 54 3 4.8 -1.8 0.665
17 1 10.303 56 4 5.8 -1.8 0.543
32 8 4.682 37 0 1.7 -1.7 1.732
6 1 18.032 26 3 4.7 -1.7 0.608
71 2 6.165 54 2 3.3 -1.3 0.531
12 2 3.342 37 0 1.2 -1.2 1.236
13 7 2.890 35 0 1.0 -1.0 1.012
95 1 3.939 75 2 3.0 -1.0 0.308
9 8 6.802 42 2 2.9 -0.9 0.257
17 8 7.353 52 3 3.8 -0.8 0.177
22 2 9.204 52 4 4.8 -0.8 0.129
32 1 7.563 50 3 3.8 -0.8 0.162
80 8 3.767 43 1 1.6 -0.6 0.237
33 2 4.005 65 2 2.6 -0.6 0.140
83 7 17.378 61 10 10.6 -0.6 0.034
31 8 3.973 64 2 2.5 -0.5 0.116
59 8 4.746 52 2 2.5 -0.5 0.089
19 7 3.929 62 2 2.4 -0.4 0.078
51 8 3.041 47 1 1.4 -0.4 0.129
48 1 3.053 44 1 1.3 -0.3 0.088
12 7 0.571 59 0 0.3 -0.3 0.337
97 2 2.558 51 1 1.3 -0.3 0.071
75 1 8.519 74 6 6.3 -0.3 0.015
6 2 3.424 38 1 1.3 -0.3 0.070
83 1 16.115 70 11 11.3 -0.3 0.007
23 1 0.378 73 0 0.3 -0.3 0.276
93 8 3.548 64 2 2.3 -0.3 0.032
70 1 5.359 61 3 3.3 -0.3 0.022
72 1 5.034 64 3 3.2 -0.2 0.015
17 2 8.683 60 5 5.2 -0.2 0.008
7 2 5.466 40 2 2.2 -0.2 0.016
36 1 8.921 58 5 5.2 -0.2 0.006
7 7 3.342 35 1 1.2 -0.2 0.025
10 1 4.682 46 2 2.2 -0.2 0.011
77 1 5.770 54 3 3.1 -0.1 0.004
89 1 0.115 65 0 0.1 -0.1 0.074
12 8 0.140 47 0 0.1 -0.1 0.066
90 2 4.596 66 3 3.0 0.0 0.000
35 2 1.536 65 1 1.0 0.0 0.000
63 2 4.535 66 3 3.0 0.0 0.000
3 1 7.527 53 4 4.0 0.0 0.000
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Table C.7: 25% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

70 2 5.020 59 3 3.0 0.0 0.000
55 1 4.222 70 3 3.0 0.0 0.001
4 7 2.380 30 1 0.7 0.3 0.115
75 2 8.601 66 6 5.7 0.3 0.018
23 2 2.215 75 2 1.7 0.3 0.069
40 2 6.172 43 3 2.7 0.3 0.045
40 7 3.621 43 2 1.6 0.4 0.126
38 7 10.045 45 5 4.5 0.5 0.051
22 7 1.117 42 1 0.5 0.5 0.600
35 7 3.738 39 2 1.5 0.5 0.202
10 8 8.354 41 4 3.4 0.6 0.097
1 2 1.010 42 1 0.4 0.6 0.781
30 2 3.440 70 3 2.4 0.6 0.146
7 1 6.067 39 3 2.4 0.6 0.170
21 2 4.614 51 3 2.4 0.6 0.178
9 1 7.254 46 4 3.3 0.7 0.132
34 8 6.729 49 4 3.3 0.7 0.150
61 7 4.110 55 3 2.3 0.7 0.242
59 1 5.017 45 3 2.3 0.7 0.244
40 1 5.980 53 4 3.2 0.8 0.218
13 2 2.276 48 2 1.1 0.9 0.754
74 2 1.752 61 2 1.1 0.9 0.812
37 2 5.477 56 4 3.1 0.9 0.284
8 1 6.020 84 6 5.1 0.9 0.176
82 2 9.045 78 8 7.1 0.9 0.127
90 1 5.813 68 5 4.0 1.0 0.277
19 1 2.867 65 3 1.9 1.1 0.693
82 8 13.615 65 10 8.9 1.1 0.149
80 1 6.333 45 4 2.8 1.2 0.464
60 2 3.227 54 3 1.7 1.3 0.907
99 7 3.871 69 4 2.7 1.3 0.661
44 7 9.030 51 6 4.6 1.4 0.422
63 1 5.697 45 4 2.6 1.4 0.805
37 8 7.341 48 5 3.5 1.5 0.619
48 2 5.915 58 5 3.4 1.6 0.718
64 2 4.122 58 4 2.4 1.6 1.083
10 7 8.429 40 5 3.4 1.6 0.786
4 2 15.536 41 8 6.4 1.6 0.417
3 2 4.670 50 4 2.3 1.7 1.187
66 2 5.778 57 5 3.3 1.7 0.885
72 8 7.154 60 6 4.3 1.7 0.679
46 1 7.768 68 7 5.3 1.7 0.559
22 8 8.350 39 5 3.3 1.7 0.933
86 7 4.131 78 5 3.2 1.8 0.981
44 1 5.963 54 5 3.2 1.8 0.984
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Table C.8: 25% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

28 1 6.948 59 6 4.1 1.9 0.881
28 7 7.220 70 7 5.1 1.9 0.749
13 1 2.488 41 3 1.0 2.0 3.842
44 2 5.796 51 5 3.0 2.0 1.413
33 1 4.927 60 5 3.0 2.0 1.413
95 8 6.853 72 7 4.9 2.1 0.865
19 2 5.328 55 5 2.9 2.1 1.462
42 1 12.388 64 10 7.9 2.1 0.541
21 1 5.077 57 5 2.9 2.1 1.533
41 2 5.894 66 6 3.9 2.1 1.144
54 1 8.249 59 7 4.9 2.1 0.935
3 7 7.014 55 6 3.9 2.1 1.190
11 1 5.096 56 5 2.9 2.1 1.614
25 8 6.800 56 6 3.8 2.2 1.262
80 2 4.237 42 4 1.8 2.2 2.770
50 7 3.400 52 4 1.8 2.2 2.817
86 2 5.527 68 6 3.8 2.2 1.337
81 2 9.418 61 8 5.7 2.3 0.885
34 7 5.352 50 5 2.7 2.3 2.019
50 2 5.911 45 5 2.7 2.3 2.059
81 1 12.382 61 10 7.6 2.4 0.793
20 2 21.795 53 14 11.6 2.4 0.519
5 7 4.274 36 4 1.5 2.5 3.938
2 7 4.268 35 4 1.5 2.5 4.204
2 2 6.094 40 5 2.4 2.6 2.693
16 2 6.452 53 6 3.4 2.6 1.947
31 1 4.223 56 5 2.4 2.6 2.937
78 1 4.099 81 6 3.3 2.7 2.163
76 2 4.731 70 6 3.3 2.7 2.182
79 2 4.269 54 5 2.3 2.7 3.151
31 7 3.584 62 5 2.2 2.8 3.473
74 7 1.593 75 4 1.2 2.8 6.586
75 7 8.044 77 9 6.2 2.8 1.271
3 8 7.317 43 6 3.1 2.9 2.589
74 1 1.812 58 4 1.1 2.9 8.276
83 2 15.472 58 12 9.0 3.0 1.020
24 1 6.136 81 8 5.0 3.0 1.847
42 2 13.345 59 11 7.9 3.1 1.241
95 2 7.812 49 7 3.8 3.2 2.629
9 2 6.557 43 6 2.8 3.2 3.587
19 8 2.976 61 5 1.8 3.2 5.587
31 2 3.833 47 5 1.8 3.2 5.679
64 1 5.367 52 6 2.8 3.2 3.691
25 1 8.693 55 8 4.8 3.2 2.167
84 1 11.070 70 11 7.7 3.3 1.364
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Table C.9: 25% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

58 8 4.480 38 5 1.7 3.3 6.389
86 1 5.032 72 7 3.6 3.4 3.148
35 1 4.637 56 6 2.6 3.4 4.460
82 1 7.989 70 9 5.6 3.4 2.077
41 7 3.983 65 6 2.6 3.4 4.493
24 2 4.704 76 7 3.6 3.4 3.280
93 7 6.759 82 9 5.5 3.5 2.156
82 7 10.100 64 10 6.5 3.5 1.935
81 7 8.395 65 9 5.5 3.5 2.300
26 1 16.314 70 15 11.4 3.6 1.122
34 2 10.674 60 10 6.4 3.6 2.019
29 1 8.062 42 7 3.4 3.6 3.858
46 2 5.248 64 7 3.4 3.6 3.948
25 2 10.959 58 10 6.4 3.6 2.089
57 2 4.560 51 6 2.3 3.7 5.807
4 1 19.753 47 13 9.3 3.7 1.487
58 2 9.453 45 8 4.3 3.7 3.299
90 8 7.422 57 8 4.2 3.8 3.359
34 1 8.815 59 9 5.2 3.8 2.775
5 1 5.366 41 6 2.2 3.8 6.563
16 7 6.290 34 6 2.1 3.9 6.972
4 8 11.944 43 9 5.1 3.9 2.907
51 1 5.368 77 8 4.1 3.9 3.618
20 1 17.917 62 15 11.1 3.9 1.363
76 1 6.889 59 8 4.1 3.9 3.810
53 1 15.959 63 14 10.1 3.9 1.549
69 1 4.479 68 7 3.0 4.0 5.133
84 2 7.869 76 10 6.0 4.0 2.701
53 7 21.108 52 15 11.0 4.0 1.475
15 2 4.910 60 7 2.9 4.1 5.578
56 2 8.752 56 9 4.9 4.1 3.428
94 7 12.684 62 12 7.9 4.1 2.175
29 8 13.603 43 10 5.8 4.2 2.945
43 1 3.365 84 7 2.8 4.2 6.161
5 2 4.803 38 6 1.8 4.2 9.549
22 1 11.667 41 9 4.8 4.2 3.717
41 1 4.516 61 7 2.8 4.2 6.541
28 2 4.886 54 7 2.6 4.4 7.210
81 8 10.143 55 10 5.6 4.4 3.505
58 7 6.917 51 8 3.5 4.5 5.670
49 1 3.397 70 7 2.4 4.6 8.982
38 1 8.409 49 9 4.1 4.9 5.778
20 7 12.363 65 13 8.0 5.0 3.066
29 7 11.303 44 10 5.0 5.0 5.081
11 2 6.341 62 9 3.9 5.1 6.535
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Table C.10: 25% by 125% HCP Zone Rectangle Data

Image
% area in
HCP zone

Total
minutia

o e o− e (o−e)2
e

53 2 13.636 58 13 7.9 5.1 3.278
10 2 13.488 51 12 6.9 5.1 3.813
100 1 5.512 69 9 3.8 5.2 7.099
76 7 7.295 78 11 5.7 5.3 4.954
5 8 23.237 41 15 9.5 5.5 3.144
61 2 4.951 71 9 3.5 5.5 8.559
45 2 9.655 55 11 5.3 5.7 6.096
91 7 18.249 51 15 9.3 5.7 3.482
53 8 14.535 48 13 7.0 6.0 5.200
97 1 8.712 67 12 5.8 6.2 6.508
79 7 4.684 59 9 2.8 6.2 14.074
8 2 5.667 76 11 4.3 6.7 10.400
36 2 6.355 52 10 3.3 6.7 13.567
14 2 7.762 62 13 4.8 8.2 13.930
52 1 10.729 72 17 7.7 9.3 11.137
14 1 16.343 58 19 9.5 9.5 9.563
52 7 10.302 70 17 7.2 9.8 13.288
99 1 8.129 91 18 7.4 10.6 15.198
52 2 10.855 73 19 7.9 11.1 15.480
52 8 12.377 73 21 9.0 12.0 15.843
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