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Abstract 

This thesis examines energy use and management of twenty heat pipes used in 

dehumidification systems at a large (10,000+ acre) facility in Florida.  Eleven of the 

twenty heat pipes use electric strip heaters that, when activated, consume 693.8 kW of 

electrical power from the grid.  Solar photovoltaics, specifically a silicon monocrystalline 

cell with 22.5% efficiency, were considered as a means to provide an alternative energy 

source and opportunity for cost savings for 11 of the heat pipes (Sunpower, 2011).  The 

remaining nine heat pipes use hot water heaters for which alternative energy sources were 

not considered. 

 Data gathered and analyzed include weather, solar irradiance, PV size and cost, 

utility incentives, emissions, fuel consumption, energy cost, and heat pipe operating 

parameters.  These data were used to calculate the (1) annual electricity cost for the 

heaters, (2) installed cost for enough PV to offset electric heater energy use, (3) surface 

area needed to install the estimated PV system, (4) one-time and ongoing financial 

incentives, (5) avoided energy savings, (6) avoided fuel usage and emissions, and (7) the 

undiscounted payback period of the various equipment investments. 

 Savings were calculated to be almost $600,000 annually (approximately $145,000 

attributable to the heaters) if PV were to power the heaters 125 days of the year and 

ancillary systems at other times.  The cost of an appropriately sized PV system (4.57 

acres with between 8,553 and 15,205 PV panels depending on panel size) was estimated 

at $3,228,806 assuming $150,000 of electric utility incentives.  It was also estimated that 

the photovoltaic (PV) system could earn $85,087 in annual tax credits through the Florida 

Renewable Energy Production Tax Credit program, and that the undiscounted payback 
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period would be about five years.  Further, the use of 728,350 US gallons of oil, and the 

emission of 13,656.6 lbs of SO2, 9,104.37 lbs of NOx, and 10,843,300 lbs of CO2, could 

also be avoided. 

 It is recommended that the installation of PV energy generation capabilities be 

further investigated. It is also recommended that further research be performed to obtain 

accurate costs and benefits of integrating solar thermal into the hot water heaters at the 

facility because of the complexity of integrating solar thermal into the existing hot water 

heaters, the lack of readily available price information regarding solar thermal heating, 

and the fact that the hot water heaters consume about $170,000 per year.  
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Chapter 1: Introduction 

 

Introduction 

Dehumidification is the most energy intensive in any Heating, Ventilation, and 

Air Conditioning (HVAC) sector because it needs to cool incoming air to either condense 

out the excess moisture or to cool it after it has gone through a desiccant 

dehumidification process (ASHRAE, 2012).  This will become even more of an issue as 

developing countries continue to raise their standard of living (thus increasing new 

HVAC system installations) (Conti, et al., 2013).  Therefore, research has been done into 

making HVAC and specifically dehumidification more efficient, and one of the most 

elegant solutions and the one examined in detail here is the heat pipe (Brooke, Critical 

Dehumidification Systems in Tropical Locations, 2011), (Brooke, Optimizing Wrap 

Around Heat Pipes, 2007).  Heat pipes are used extensively for dehumidification in 

several buildings within a very large (10,000+ acre) facility in Florida.  Although the heat 

pipes have saved a great deal of money and energy over the time they have been installed 

(the Florida Beach-Side Resort study below will show this), there is room for 

improvement, and some options for improvement are examined in this dissertation.  

Purpose  

This research addresses HVAC systems with an emphasis on the energy 

efficiency of dehumidification practices and technologies utilized within a large facility 

in Florida. The purpose of this work is to examine these technologies and practices 

(specifically where heat pipes are used) and determine whether they provide the most 
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energy-efficient means to dehumidify conditioned space(s); if they are, describe why the 

alternatives are inferior; and if they are not then describe and recommend alternatives that 

may provide a more efficient means of dehumidification. The purpose of this effort is to 

consider dehumidification technologies on their own individual merits, and also to 

determine whether, by supplementing them with sustainable energy technologies and/or 

practices (which will be discussed later), the dehumidification process can be made more 

efficient. 

Justification 

As the global population increases and the climate continues to change, an increasing 

number of people are moving into urban areas (World Health Organization, 2013).  One 

hundred years ago less than 20% of people lived in cities, in 1990 that number had 

jumped to 40%, in 2010 it had again jumped to 50%, and it is expected to reach 60% by 

2030 and 70% by 2050 (World Health Organization, 2013).  As urban populations grow, 

so does the standard of living of developing countries and with this, electricity 

consumption rises. According to the Energy Information Administration’s International 

Energy Outlook 2013, world energy consumption grew from less than400 quadrillion Btu 

(quads) in 1990 to 524 quads in 2010, and is projected to increase to 820 quads by 2040 

with an average worldwide increase of 1.5% annually (Conti, et al., 2013).  The nations 

involved in the study were split into two groups – OECD countries (generally considered 

the “developed” countries1) and non-OECD countries (generally considered “developing” 

countries2), as is shown in Figure 1. Energy consumption growth in non-OECD countries 

has outpaced that of OECD countries and is projected to do so at a growing rate through 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, 
2	  i.e.	  China,	  India,	  and	  the	  African,	  Asian,	  and	  Middle	  Eastern	  nations	  not	  in	  the	  OECD	  



3	  

	  
	  

2040 (Conti, et al., 2013).  As these 

countries continue to develop, 

resulting in greater urbanization, more 

buildings will be constructed, 

resulting in greater utilization of 

HVAC systems.  Since 20-40% of 

energy consumption in 

developed nations occurs in buildings, 

and 50% of that energy is attributable to HVAC systems (Perez-Lombard, Ortiz, & 

Maestre, 2011), it is reasonable to assume that, in developed countries, 10-20% of all 

energy consumption is used to provide energy for HVAC systems. It may also be 

assumed that as more developing/non-OECD countries continue to develop, their energy 

consumption patterns may be similar to those of currently developed/OECD countries 

(Perez-Lombard, Ortiz, & Maestre, 2011). Although HVAC systems comprise many 

components and sub-systems, one of the more energy-intensive processes is 

dehumidification. 

Dehumidification can be accomplished in various ways. In a simple HVAC 

application, dehumidification may represent a marginal portion of the total HVAC system 

energy consumption (an example would be the Florida Beach-Side Resort study below); 

in a more complex case such as a clean room or similar space that needs steady, ultra-

low-humidity conditions, dehumidification may consume a significant portion of overall 

HVAC energy. In fact, typical dehumidification to sensible load ratios is 3:1 to 5:1 

Figure 1: World Total Energy Consumption, 1990-
2004 (quadrillion Btu) 
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(ASHRAE, 2012), (Allen & Boll, [Florida] Heat Pipes for 100% Outside Air Units, 

2008).   

The varied nature of dehumidification processes, as well as systems energy 

consumption which is influenced by many variables including HVAC system capacity, 

conditioned space requirements, ambient outside environmental conditions, and 

percentage of outside air being used, provides a focus for this study. The hot, humid 

climate of sub-tropical Florida exerts a high demand on HVAC/dehumidification systems 

due to extremely high year-round average relative humidity (RH) (ranging from 51 to 

88% during the last 13 years, with a dry season (fall and winter) mean of ~69% and wet 

season (spring and summer) mean of ~79% (Diebel & Norda, 2013). Given this 

extremely high RH as well as the sheer size of the facility being examined, the energy 

consumption used for dehumidification in the study area is substantial (Study Site Energy 

Official, 2013).  

The reason a single large facility was chosen is that data collection is simplified 

by gathering from one large facility comprising many smaller buildings, rather than from 

many unassociated smaller buildings, since there is only one source for the information 

and it is stored and formatted in a relatively uniform manner.  The site chosen for study 

offers a good small- to medium-scale study opportunity for dehumidification energy 

efficiency in slightly varied situations (i.e. different conditioned space types, sizes, and 

requirements) in a climate that is similar to that of the developing countries that exhibit 

the fastest-growing rate of energy consumption (i.e. coastal China and India, parts of 

South America and Africa).  This makes the data gathered, and even some conclusions, 

useful in solving dehumidification efficiency issues in these countries (SAGE, 1999). 
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Heat Pipes are considered in this study because of their inherent ability to increase 

efficiency in dehumidification systems (this will be explained in upcoming sections), and 

they represent a relatively simple, robust, and cost-effective technology that has the 

potential to become more efficient when enhancements are made according to specifics 

of the location (Brooke, Critical Dehumidification Systems in Tropical Locations, 2011), 

(Brooke, Optimizing Wrap Around Heat Pipes, 2007).  This study is also justified 

because very little research has been done on further enhancing heat pipe efficiency or 

combining it with renewable energy technologies after they have been installed.  

Current energy consumption trends need to be curtailed; incorporation of energy-

reduction strategies in HVAC systems can provide such an impact.  Since 

dehumidification accounts for a significant portion of total HVAC energy consumption, 

and many of the countries that have the highest growth rate in energy consumption have 

hot and humid climates, dehumidification as applied in hot/humid climates is a logical 

focus.  Heat pipes represent an appropriate technology as they offer a highly efficient and 

effective dehumidification-enhancement technology, are low-maintenance devices, and 

are scalable in application. 

Goals and Objectives 

	   This	  dissertation	  aims	  to	  achieve	  several	  things.	  	  The	  first	  objective	  is	  to	  

examine	  how	  the	  facility	  is	  already	  reducing	  energy	  consumption,	  including	  the	  

installation	  of	  heat	  pipes	  in	  new	  and	  existing	  buildings.	  	  The	  second	  objective	  is	  to	  

examine	  alternative	  methods	  to	  heat	  pipes	  that	  may	  be	  better	  suited	  to	  meet	  the	  

dehumidification	  needs	  of	  the	  facility.	  	  Another	  objective	  is	  to	  analyze	  a	  potential	  

efficiency	  enhancement	  using	  solar	  photovoltaic	  (PV)	  cells	  to	  generate	  the	  energy	  
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consumed	  when	  reheating	  of	  air	  is	  necessary.	  	  The	  goal	  of	  all	  of	  the	  above	  is	  to	  come	  

up	  with	  recommendations	  regarding	  the	  current	  dehumidification	  system	  and	  any	  

enhancements	  that	  can	  be	  made.	  	  The	  recommendations	  will	  concern	  whether	  

changes	  are	  needed,	  what	  should	  be	  changed,	  and	  when	  changes	  should	  be	  made,	  

with	  appropriate	  justifications.	  

Methods Summary 

	   In	  order	  to	  make	  relevant	  assessments	  and	  recommendations,	  many	  aspects	  

needed	  to	  be	  analyzed:	  climate	  patterns,	  heat	  pipe	  operating	  parameters,	  

conditioned	  space	  requirements,	  solar	  energy	  generation	  potential,	  the	  desires	  of	  

the	  facility’s	  management,	  solar	  PV	  efficiency	  and	  cost,	  solar	  thermal	  capabilities	  

and	  cost,	  and	  solar	  energy	  incentives.	  	  The	  first	  step	  was	  to	  gather	  data	  on	  the	  

following:	  

• The	  heat	  pipe	  operational	  parameters	  from	  the	  Site	  Energy	  Official	  (SEO)	  of	  

the	  facility	  

• Weather	  data	  for	  the	  facility	  site	  	  

• PV	  efficiency	  

• PV	  price	  

• Solar	  energy	  incentives	  (both	  one-‐time	  and	  continuous)	  

• Emissions	  generated	  from	  oil-‐burning	  power	  plants	  

The	  next	  step	  was	  to	  preprocess	  the	  data	  (clean,	  organize,	  and	  make	  some	  

calculations).	  	  The	  first	  cleaning	  step	  was	  the	  removal	  of	  irrelevant	  data.	  To	  aid	  in	  

organizing,	  all	  data	  was	  merged	  into	  a	  single	  Excel®	  workbook	  containing	  PV	  
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efficiency	  data,	  weather	  data,	  and	  the	  heat	  pipe	  parameters.	  Next,	  the	  daily	  and	  

annual	  electricity	  and	  fuel	  consumptions	  were	  calculated.	  

	   The	  next	  step	  was	  to	  process	  the	  data	  in	  order	  to	  obtain	  data	  that	  would	  be	  

usable	  to	  draw	  conclusions	  from	  and	  make	  recommendations.	  	  The	  first	  data	  sets	  

processed	  were	  the	  weather	  data	  and	  heat	  pipe	  operational	  parameters.	  	  These	  data	  

sets	  were	  used	  to	  find:	  	  

• The	  number	  of	  days	  the	  heat	  pipe	  was	  not	  cycling	  

• The	  number	  of	  days	  heat	  pipes	  and	  heaters	  were	  operating	  at	  the	  same	  

time	  

• The	  number	  of	  days	  needing	  heating	  

• The	  number	  of	  days	  that	  didn’t	  need	  dehumidification	  

• The	  absolute	  humidity	  

• The	  relative	  humidity	  at	  room	  temperature	  given	  outside	  relative	  humidity	  

The	  next	  sets	  of	  data	  to	  be	  processed	  were	  PV	  cell	  efficiency,	  electric	  heater	  energy	  

consumption,	  solar	  irradiation,	  and	  PV	  cell	  size.	  	  These	  data	  sets	  were	  used	  to	  

calculate	  the	  number	  of	  PV	  cells	  and	  panels	  needed	  to	  completely	  power	  the	  electric	  

heaters	  in	  the	  heat	  pipes	  and	  the	  area	  that	  would	  be	  needed	  for	  these	  cells.	  

	   The	  next	  major	  data	  set	  to	  be	  processed	  was	  the	  Financial	  data—the	  PV	  

installed	  cost	  and	  incentives.	  	  The	  first	  thing	  to	  be	  calculated	  using	  this	  data	  was	  the	  

total	  installed	  cost	  of	  the	  PV	  installation	  using	  the	  average	  per	  watt	  cost	  of	  PV	  

installations	  over	  100	  kW	  given	  in	  (Feldman,	  Barbose,	  Margolis,	  Wiser,	  Darghouth,	  

&	  Goodrich,	  2012).	  	  Later	  the	  installed	  cost	  using	  different	  prices	  was	  calculated;	  

this	  will	  be	  discussed	  in	  detail	  in	  later	  chapters.	  	  Next,	  the	  one-‐time	  incentives	  were	  
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assumed	  to	  be	  their	  maximums	  since	  the	  installed	  capacity	  would	  far	  exceed	  the	  

limits	  of	  the	  incentives.	  	  The	  annual,	  continuing,	  incentive	  payout	  was	  then	  

calculated.	  	  This	  was	  more	  complicated	  than	  the	  one-‐time	  incentives	  and	  is	  

explained	  in	  detail	  in	  the	  methodologies	  section	  later.	  	  	  

The	  next,	  and	  likely	  some	  of	  the	  most	  significant,	  calculations	  were	  the	  cost	  

savings	  from	  prevented	  energy	  consumption	  of	  heaters	  and	  overall	  energy	  savings	  

by	  using	  PV.	  	  These	  are	  significant	  because	  the	  PV	  would	  not	  only	  be	  able	  to	  run	  the	  

electric	  heaters,	  but	  when	  the	  heaters	  were	  not	  being	  used,	  they	  could	  be	  used	  to	  

power	  other	  sectors.	  	  	  

The	  last	  calculations	  using	  these	  data	  sets	  concern	  the	  undiscounted	  payback	  

period	  (PBP).	  	  The	  PBP	  was	  also	  very	  important	  in	  deciding	  whether	  or	  not	  the	  

installation	  of	  PV	  would	  be	  cost-‐effective.	  The	  last	  data	  set	  to	  be	  processed	  was	  the	  

emissions	  and	  fuel	  consumption	  data.	  	  The	  data	  that	  was	  calculated	  for	  this	  data	  set	  

was	  the	  annual	  fuel	  consumption	  for	  the	  electric	  heaters,	  the	  annual	  sulfur	  dioxide,	  

nitrogen	  oxide,	  and	  carbon	  dioxide	  emissions.	  	  The	  fuel	  consumption	  of	  the	  heaters	  

that	  used	  a	  natural	  gas	  fired	  hot	  water	  loop	  was	  also	  calculated.	  	  After	  the	  natural	  

gas	  consumption	  and	  annual	  cost	  was	  calculated,	  it	  was	  determined	  the	  extremely	  

low	  annual	  cost	  makes	  any	  changes	  to	  these	  systems	  almost	  unjustifiable.	  

	   Finally,	  the	  data	  obtained	  from	  processing	  was	  then	  analyzed	  along	  with	  

information	  that	  was	  gathered	  for	  the	  coming	  chapter,	  conclusions	  were	  made,	  and	  

recommendations	  made	  according	  to	  the	  following	  priorities:	  

• Financial	  savings	  

• Simplicity	  and	  dependability	  of	  the	  system	  
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• Progress	  toward	  meeting	  current	  and	  future	  corporate	  citizenship	  goals	  

• Environmental	  impact,	  which	  would	  tie	  into	  the	  citizenship	  goals	  

	  

Literature Review  

As previously mentioned, worldwide energy consumption was 524 quads in 2010, 

and this amount is projected to increase to 820 quads by 2040, unless measures to reduce 

consumption are applied (Conti, et al., 2013). The developed world (defined as OECD 

member countries) have been the largest contributors to global energy consumption in the 

past, but now the developing world (non-OECD member countries) are consuming the 

most energy overall (as is shown in Figure 2) (Conti, et al., 2013), (The World Bank, 

2013). This is despite the fact that developing countries have not yet exceeded our rate of 

consumption per capita (seen in Figure 2) (The World Bank, 2013).  

With the exception of Qatar, many developing countries demonstrate a level of 

energy consumption per capita far less than in the developed world; as shown below, 

three of the largest consumers of electricity in the developing world consume less than 

half the energy per capita consumed in the U.S. and Canada, but if their consumption 

were to continue to grow in the same way the developed world did in the past, their 

energy consumption per capita (and therefore overall) energy consumption will increase.  

Because of the above fact and their extremely large populations their overall energy 

consumption will soon far exceed the developed world's overall energy consumption  
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unless measures to conserve energy are taken (The World Bank, 2013).  Figure 2 shows 

that a relatively small shift in per capita energy consumption is magnified immensely by 

the fact that two of the three developing countries shown have populations of over 1 

billion people (China: ~1.3 billion and India: ~1.2 billion) while the United States has 

~300 million, so their energy consumption is magnified 4 times more than USA’s (U.S. 

Census Bureau, 2013).   

 Since energy consumption is a problem much of the developed and developing 

world is contributing to, we must all work harder toward more efficient energy use.  One 

of the most significant energy consumption sectors is buildings; depending on the nation, 

20-40% of the national overall energy consumption is attributed to them (Conti, et al., 

2013).  Commercial buildings are known to have consumed 28.9 quads of energy in 2010, 

and this number is projected to rise to 49 quads by 2040, with the developing nations 

having the largest increase (Conti, et al., 2013).  This can plainly be seen in Table 1 

(Conti, et al., 2013).   As can be seen in Figure 3, 51% of the total energy consumed in 

Figure 2: Energy consumption in kg of oil equivalent per capita: 2003 - 2011 



11	  

	  
	  

2010 by commercial buildings was in the form of electricity; this is projected to rise to 

64% by 2040 (Conti, et al., 2013).  Again, a significant portion (about 2/3) of this 

increase is predicted to be due to the growth of developing countries (Conti, et al., 2013). 

Table 1: Commercial Building Energy Consumption by Region in quadrillion Btu - 2010 to 2040 

 
 

.  

Developed countries' 

electricity use is projected 

to grow from 10.4 quads in 

2010 to 15.7 in 2040, while 

developing countries' usage 

is projected to grow from 

4.3 quads in 2010 to 15.4 in 

2040 (Conti, et al., 2013).  

This large growth in energy 

consumption in developing 

countries (the fastest growth 

being in China, India, and non-OECD Asia @ 3.9% per year) is being driven by rising 

standards of living and greater demand for services (Conti, et al., 2013). Both of these 

drivers suggest greater deployment of HVAC systems, especially as more hotels are built 

Figure 3: Total World Commercial Building Energy Consumption 
by Type 
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as countries develop (Conti, et al., 2013).  As mentioned earlier, HVAC systems on 

average account for ~50% of the total energy consumption of buildings; thus ~2.15 quads 

of electricity were consumed for HVAC applications in 2010 in the developing world, 

with between ~1.6 and 1.8 quads applied to dehumidification, and that can be 

extrapolated to increase to ~7.9 quads in 2040, with between ~5.9 and 6.6 attributable to 

dehumidification (Perez-Lombard, Ortiz, & Maestre, 2011), (Conti, et al., 2013).  If we 

consider the above energy consumption facts and that the two countries with the fastest 

growing energy consumption rate (India and China) have hot humid climates (according 

to the Koppen-Geiger system), as they develop their HVAC load will greatly increase due 

to increased dehumidification loads (World of Maps, 2013), (ASHRAE, 2012).  

 

The Significance of Air Conditioning and Dehumidification 

Air conditioning (AC) was at one time considered strictly as a means for cooling and 

dehumidification of a space, but it has now developed to become synonymous with 

comprehensive environmental control and suggests “the control of temperature, moisture 

content, cleanliness, air quality, and air circulation as required by occupants, a process, 

or a product in the space.” – William Carrier (McQuiston, Parker, & Spitler, 2005).  

Carrier is credited with the first successful attempt to control humidity in 1902 and thus 

achieve the first true environmental control (McQuiston, Parker, & Spitler, 2005).   

HVAC technology has advanced significantly with the advent of computers and 

modern controls and building automation systems. It has been further driven by human 

priorities (McQuiston, Parker, & Spitler, 2005).  As people/customers have become more 

knowledgeable and concerned about the environment, especially ozone layer depletion 
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and climate change, the industry has begun placing voluntary restrictions alongside 

imposed standards that limit what materials can be used, and has set efficiency standards, 

among other actions (McQuiston, Parker, & Spitler, 2005).   

There has also been a trend toward requiring greater volumes of ventilation air in 

an indoor space, as evidenced by ASHRAE standards 62.1 and 62.2, which were updated 

in 2010 and 2013, respectively. These standards set requirements for ventilation air and 

air cleanliness among others (ASHRAE, 2013).  Because of the mandate for increased 

ventilation air, dedicated outside/outdoor air systems (DOAS) have become increasingly 

popular, but with these increases in outside air comes an increase in humidity and an 

increased risk of mold growth and general stuffiness of the inside conditioned air 

(McQuiston, Parker, & Spitler, 2005), (ASHRAE, 2013).  This increase in humidity and 

mold growth risk leads to discomfort and health risks for building occupants, as well as 

damage to a building itself, and therefore increased rates of dehumidification are required 

as compared to the scenario in which a greater volume of return air is conditioned 

(ASHRAE, 2013), (McQuiston, Parker, & Spitler, 2005).  This increased demand for 

dehumidification has prompted the development of more efficient means to accomplish 

moisture removal, which is the central focus of this thesis.   

 The facility being studied has already made considerable progress in its efforts to 

conserve energy.  Best practices in energy management have already been implemented 

and fine-tuned, and thus little additional room for improvement is anticipated.  The 

HVAC systems were made more efficient in multiple ways, but one of the most 

successful methods involved improvements to the dehumidification processes already 

being used (Study Site Energy Official, 2013). 
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Chapter 2: Dehumidification systems – types, advantages, disadvantages, and 
research 
	  
 Dehumidification is performed for many reasons, but in the case of the facility 

being examined it is performed mainly for two reasons—comfort and health (Study Site 

Energy Official, 2013).  According to the ASHRAE 2011 Handbook— HVAC 

Applications, “Humidity control is critical to ensure satisfactory air quality and to 

minimize costly mold and mildew problems in hotels.”  This quote applies directly to 

health issues, as some types of mold that grow due to poor humidity control are harmful 

to human health and costly to clean up. Even in cases in which mold is not directly 

harmful, many types (as well as mildew) emit a foul odor that can create a public 

nuisance (ASHRAE, 2011).  Humidity control is extremely important in terms of 

comfort; as humidity increases, a space begins to feel more “stuffy” and the heat index 

(perceived/felt temperature) increases as well, thus resulting in the decrease of indoor air 

quality and overall comfort of occupants (The Weather Channel, 2012).  

Florida Energy Consumption, Climate/Weather, and Dehumidification 

 As discussed previously, Florida has an average relative humidity of ~69% in the 

dry season and ~79% in the wet season, conditions that are similar to other subtropical 

and tropical locations (namely India and areas of China) in the need for dehumidification 

(Diebel & Norda, 2013), (World of Maps, 2013).  This elevated humidity throughout the 

year, along with relatively high temperatures, contributes to Florida’s (and in general the 

South Atlantic region's) higher electricity consumption as compared to the rest of the 

nation. In fact, the South Atlantic census division has the largest commercial cooling 

energy load (45 billion kWh; bkWh; in 2003) (which includes dehumidification in this 
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case).  This load is higher than for the other three census regions (Northeast: 13 bkWh, 

Midwest: 17 bkWh, and West: 24 bkWh) (EIA, 2003).   

Although more recent data are not available from the EIA (Energy Information 

Administration) regarding commercial energy use, they recently released residential 

information that shows that current trends that apply to Florida are the same as they were 

in 2003.  According to the 2009 EIA Residential Energy Consumption Survey (RECS), 

Floridians consumed ~15,000 kWh of electricity per household, while the national 

average was less than12,000 kWh. Among Floridians, 27% of the load was dedicated to 

cooling (which, of course, includes dehumidification) while the national average was 

only 6%. This results in the average Florida household consuming ~4,000 kWh per year 

for cooling, whereas the average American household consumes 720 kWh or less for 

cooling, per year (EIA, 2013).  In short, Florida households consume greater than 5.5 

times more energy for cooling than does the average household in the USA (EIA, 2013).  

Given that Florida does not record nearly as many heating degree days as does the 

majority of the nation, it consumes much less total energy (FL consumes ~55 million Btu 

of energy per household, per year, while the national average is ~90 MMBtu) (EIA, 

2013).  Since Florida consumes less total energy per household as compared to the 

national average, but consumes significantly more electricity, and cooling (including 

dehumidification load) makes up the largest share of energy consumption from a single 

source (the largest is appliances, electronics, and lighting which are multiple systems 

with 50%), focusing on enhancing dehumidification efficiency makes a great deal of 

sense (EIA, 2013).   
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As mentioned previously, the effect of humidity on heat index is very important. 

For example, if we consider a hot and arid location such as Las Vegas, with an average 

summer daytime high over 100°F but with a relative humidity of less than 20%, the heat 

index is 100°F, but not muggy. In Florida with an average summer humidity of 79% and 

average daytime highs around 90°F, the heat index is likely to be between 110 and 120°F. 

The air will feel uncomfortable and may even result in respiratory distress among some 

of the population (Diebel & Norda, 2013), (The Weather Channel, 2012), (ASHRAE, 

2013).  Air is considered most comfortable at between 30 and 50% relative humidity, 

where it is neither muggy nor dry, and temperatures in the low- to mid-70s are a 

comfortable temperature. These conditions present a heat index significantly higher than 

the dry bulb temperature of the air (The Weather Channel, 2012), (ASHRAE, 2013).  It is 

well recognized that it is a more energy-intensive process in general to dehumidify air 

than it is just to cool it (which will be explained below), so increasing efficiency of the 

dehumidification process can significantly reduce energy consumption. The method used 

to dehumidify can have a significant effect on electrical loads, and the various means 

available will be described.   

Desiccant Dehumidification 

Different situations and demands require different methods of dehumidification.  

There are two main methods of dehumidification technology: desiccant and mechanical; 

each method presents different variations, but such variations are subtle.  Desiccant 

dehumidification operates by using chemicals or materials that either adsorb (water 

adheres to the surface of the material, not chemically changing it) or absorb (water is 
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taken in on a molecular level by the chemical, chemically changing it) water (ASHRAE, 

2012).   

There are means by which desiccants can be classified, the first of which is by 

state; desiccants are either solid or liquid; absorbing desiccants are generally liquid while 

adsorbing desiccants are generally solid (ASHRAE, 2012).  Another way to classify 

desiccants is by reusability; if a desiccant can be reused, it is called regenerative and 

generally uses silica or alumina gel (ASHRAE, 2012).  If the desiccant cannot be reused, 

it is called non-regenerative, and usually uses hygroscopic salts (ASHRAE, 2012).  The 

desiccant choice depends on equipment, gases, and requirements of the end user 

(ASHRAE, 2012).  The basic means by which liquid desiccant processes work is by first 

bringing the “wet” air in contact with the desiccant, which then absorbs the moisture 

from the air, after this the air is cooled and blown into the conditioned space. Once the 

desiccant is near saturation it is regenerated (ASHRAE, 2012).  Although this process 

sounds relatively simple, it does involve certain limitations that make it less appealing for 

the facility in Florida. 

 The first is that it generates a fair amount of heat, which must be removed in 

order for the desiccant to function properly (ASHRAE, 2012). The heat produced 

presents an issue, because in Florida the ambient outside air temperature is already high 

and the study is focusing on the heat pipes in the facility that provide make-up/ventilation 

air.  Make-up/ventilation air is air blown from outside (so it is close to 100% outside air) 

to aid in ventilating the space and in this case keep it positively pressurized (ASHRAE, 

2012).  Because of the need to condition high humidity and high temperature air, liquid 

desiccant systems are likely not ideal (McQuiston, Parker, & Spitler, 2005).   
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Another challenge is that liquid desiccant systems require reactivation, which 

requires a separate air stream and a means of heating the desiccant to increase its vapor 

pressure relative to the air stream so that the airstream carries the moisture out with the 

exhaust air in order for the desiccant to be reused (ASHRAE, 2012).  Again, if we 

consider the scenario in which the desiccant would likely be used (to remove moisture 

from high heat, high humidity input air) it would likely reach its saturation point fairly 

quickly. The typical regeneration side-stream of desiccant (8%) may not be adequate; 

thus a larger percentage of desiccant may need to be regenerated at once, so more 

desiccant would be needed to make up the difference (ASHRAE, 2012).  

 Solid desiccants are operated differently than liquids, but involve most of the 

same issues. Solid desiccants are generally distributed into three categories: continuously 

reactivated, periodically reactivated, and non-reactivated/disposable (ASHRAE, 2012).  

The silica packets found in shoe, electronic, and furniture packaging best exemplify the 

non-reactivated/disposable packages; they are there to ensure that small amounts of 

moisture that penetrate the package do not damage the product (ASHRAE, 2012).  

Periodically reactivated cartridges are used where a constant but small load is expected, 

so that when the desiccant is saturated it is removed, heated and reactivated, then 

replaced, and the humidity load must be small enough that the duration without 

conditioning causes only a negligible effect on the product/space (ASHRAE, 2012).  The 

continuous reactivation dehumidifier is the predominant desiccant type used in high-

moisture-load applications, and in this group of processes, rotary solid-desiccant 

dehumidifiers are the most popular (ASHRAE, 2012).  The process works by having two 

separate air streams, the process air stream (that being dehumidified) and the reactivation 
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air stream (ASHRAE, 2012).  The solid desiccant is fixed to a wheel that rotates 

continuously while process air flows through most of it (thus dehumidifying the air), and 

as the desiccant comes in contact with the process air it becomes saturated. As it becomes 

saturated, it is moved closer to the reactivation air stream (ASHRAE, 2012).  As the 

desiccant enters the reactivation air stream (which is sealed off from the process stream), 

it is heated so that the desiccant reactivates and the reactivation air stream removes the 

moisture from the desiccant and exhausts it (ASHRAE, 2012).   

One issue that persists with solid desiccants is associated with the heat generated.  

An example scenario is presented and is shown in Figure 4. If the air enters the desiccant 

dehumidification system at 70°F with a humidity of 56 gr/lb (~50% RH), it will leave the 

dehumidifier at 97°F with a humidity of 23 gr/lb (less than10% RH) (blue Room Temp & 

Humidity line in Figure 4). If the humidity is increased to 80 gr/lb (~70% RH), the outlet 

temperature increases to 106°F @ 34 gr/lb (~13% RH) (red Room Temp @ 70% 

Humidity line in Figure 4) (ASHRAE, 2012).  If the temperature and RH are brought to 

levels typical of Florida summer outside conditions (~90°F @ 80% RH/173 gr/lb) the 

estimator (created by ASHRAE technical committee 8.12) to calculate the above values 
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can’t go that high, so the equivalent heat index at 100°F (114°F) was used (100°F @ 45% 

RH/129 gr/lb) (ASHRAE, 2012).  The result for increasing the parameters to FL 

conditions was a temperature increase to 130°F @ 92 gr/lb/~35% RH (green FL 

Conditions line on Figure 4).  This will need to be cooled to ~73-75°F before entering the 

conditioned space, thus adding another significant load (ASHRAE, 2012).  The above 

data is also summarized in Table 2 below, which shows the condition the air is in (Temp 

and humidity) before and after dehumidification in each situation.  

Table 2: Summary of Desiccant Effects on Temperature and Humidity 

 

 Another issue that becomes apparent with both systems is that they are complex 

when compared to many mechanical methods of dehumidification (again, heat pipes are 

the perfect antithesis of complexity, they are uncomplicated and have no moving parts) 

(Allen, June 14, 2013).  A desiccant system requires regular maintenance in order to 

function optimally; according to the ASHRAE 2012 Systems and Equipment Handbook, 

the average desiccant system requires desiccant replacement or replenishment every five 

to ten years, and also requires constant maintenance of the filter in the system.  Otherwise, 

the desiccant life could be reduced to ~2 years due to contamination (ASHRAE, 2012).  

Although desiccant cooling has limitations, there are also advantages. 

 Desiccant systems can either dehumidify or humidify, depending upon the 

process air conditions and the desired humidity in the conditioned space (ASHRAE, 
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FL	  
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DH	  	   70	   56	   70	   80	   100	   129	  
After	  
DH	   97	   23	   106	   34	   130	   92	  
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2012).  A desiccant functions by vapor pressure differential; if the desiccant has a lower 

vapor pressure than the air, then the desiccant takes in moisture, and if it is higher, then it 

rejects moisture, thereby maintaining a desired humidity with a conditioned space 

(ASHRAE, 2012).  The control of the desiccant system is managed through several 

processes, the first of which is to control the flow rate of process air across the desiccant 

—the faster the rate, the less humidity that is removed (ASHRAE, 2012). The 

regeneration air temperature is the next parameter. The higher the temperature, the more 

moisture is removed from the desiccant; thus, the more moisture it can remove from 

process air when it re-enters that air stream (ASHRAE, 2012). Finally, as was mentioned 

previously, there are numerous types of solid and liquid desiccants, each of which has 

specific uses, but silica gel (solid) and lithium-chloride + water (liquid) are two of the 

most commonly used.  Silica gel has proven to be a good default desiccant as it performs 

predictably well in many different condition combinations (ASHRAE, 2012), 

(Goldsworthy & White, 2012).  Another major benefit is that desiccants are usable in a 

wide range of situations.  An extreme example of the minimum temperature that a 

desiccant system can be used at is –40° (same temperature in Fahrenheit and Celsius), 

while mechanical dehumidification is limited to a minimum of 39.2 °F (4°C) (La, Dai, Li, 

Wang, & Ge, 2009), (ASHRAE, 2012).  Some specialized applications of desiccant 

dehumidification are (ASHRAE, 2012): 

• drying natural gas; 

• drying gases that are to be liquefied; 

• drying instrument and plant air; 

• drying process and industrial gases; 
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• dehydration of liquids; 

• frost-free cooling and dehumidification; 

• lowering dew point to facilitate low-temperature manufacturing; 

• preservation of equipment; 

• maintaining dry atmosphere; 

• drying in situations where space is limited (fixed bed or disposable desiccant 

drying processes generally used here). 

These applications are indicative of the common assumption that desiccant 

dehumidification is best suited for specialized processes, but as will be shown below it 

has applications in larger-scale dehumidification processes as well (La, Dai, Li, Wang, & 

Ge, 2009).  Another major benefit of desiccant dehumidification is that it is purported to 

be more environmentally-friendly than conventional mechanical methods.  This is 

because conventional mechanical dehumidification uses refrigerants that may be 

chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs), but desiccant 

dehumidification doesn’t require the amount of refrigerants that conventional methods do 

unless significant cooling is required (ASHRAE, 2012), (Goldsworthy & White, 2012), 

(La, Dai, Li, Wang, & Ge, 2009).  Desiccant dehumidification also has the benefit of 

being able to disinfect the process air to a degree, thus further aiding in the prevention of 

mold and bacterial growth in a conditioned space (La, Dai, Li, Wang, & Ge, 2009).  

Desiccant dehumidification also tends to be very energy efficient, because the only input 

energy required for the dehumidification process is to heat the regeneration air. Because 

this only requires the air to be heated to between 100 and 250°F, this heating can often be 

accomplished with low-grade heat via solar-thermal, ‘waste heat’ recovery, district 
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heating, and bioenergy. Minimal electricity is needed unless electric strip heating is used 

(La, Dai, Li, Wang, & Ge, 2009).   One of the specific advantages of the solar-thermal 

approach is that the regeneration capacity adjusts automatically to dehumidification load 

since periods of higher solar radiation generally coincide with the need of greater 

dehumidification (La, Dai, Li, Wang, & Ge, 2009).  

Another benefit of desiccant systems is that they are easily hybridized with 

cooling systems to enable cost-effective solutions for achieving extremely low dew 

points, important in situations that require a conditioned space (and thus a dew point) 

below 40°F (~4°C) (ASHRAE, 2012), (La, Dai, Li, Wang, & Ge, 2009).  The opposite is 

also true for hybridizing desiccant systems; they can be combined with conventional AC 

systems or one of several other systems discussed below to adapt desiccant 

dehumidification to use in hot and humid climates (La, Dai, Li, Wang, & Ge, 2009).  

Desiccant dehumidification requires hybridization/adaptation to hot and humid climates 

because the conventional process counteracts the increased temperature of the output 

process/supply air by over-drying it. Conventional evaporative cooling can cool it further 

along in the process, but if the air enters at an already high temperature, the over-drying 

is insufficient to allow for appropriate cooling (La, Dai, Li, Wang, & Ge, 2009).   It is 

also notable that hybridizing desiccant systems with conventional AC means of cooling is 

best suited for hot and dry climates; if it is used in hot and humid climates an efficiency 

improvement may be seen, but it may also consume more energy than by using simply a 

conventional system configuration (La, Dai, Li, Wang, & Ge, 2009). Another form of 

hybridization is the desiccant and absorption chiller hybrid, which combines the two 

thermally driven systems to dehumidify and cool the air in hot and humid climates (La, 
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Dai, Li, Wang, & Ge, 2009).  The benefit here is that both thermally-driven systems can 

be powered by the same energy source, with the absorption chiller receiving the initial 

heat since it requires higher temperatures, and the exhaust air being used to regenerate the 

desiccant (La, Dai, Li, Wang, & Ge, 2009).  

Another point to consider which may present a benefit is that the technology and 

design methods for desiccant dehumidification are improving rapidly; an example of this 

is the recent research into advanced desiccant materials. The composite materials (a 

combination of silica and haloid desiccants being the most commonly researched) are 

approaching the same effectiveness as for conventional desiccants (i.e. silica gels and 

haloids) without the disadvantages (i.e. loss of adsorption capability at high temperature 

in silica-based desiccants and formation of crystals that cause loss of desiccant in haloids) 

(La, Dai, Li, Wang, & Ge, 2009). A detailed study was conducted that used a compound 

desiccant in order to design a high-performance desiccant wheel system. The compound 

desiccant researched was a two-layer material of a porous silica gel medium impregnated 

with a lithium chloride (hygroscopic) substrate in the pores (Jia, Dai, Wu, & Wang, 2006).  

The results of the study are promising; the new desiccant first achieved a COP 

(Coefficient of Performance) of 1.3, the typical COP is between 0.5 and 1.0 (Jia, Dai, Wu, 

& Wang, 2006). A comparison of the performance of the compound desiccant with 

conventional silica gel is shown in Figure 5.  What can be observed is that: 

• the compound desiccant is about twice as effective at removing moisture than silica 

gel; 

• the compound desiccant is more hygroscopic than silica gel at low RH; 
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• the rate of increase of the compound desiccants adsorption capacity increases as the 

RH increases, while the silica gels rate of increase is almost linear (Jia, Dai, Wu, & 

Wang, 2006).  

 
The compound desiccant is also more effectively regenerated at lower temperatures than 

is silica gel; therefore less heat/energy can be used to achieve the desired level of 

regeneration than would be necessary with comparable levels with silica gel (Jia, Dai, 

Wu, & Wang, 2006).  The regeneration efficiency difference between the compound 

desiccant and silica gel also grows as the regeneration temperature increases (Jia, Dai, 

Wu, & Wang, 2006).  The final improvement seen with the compound desiccant in 

dehumidification capability was between 20 and 40% better than with silica gel (Jia, Dai, 

Wu, & Wang, 2006). 

Figure 5: Compound Desiccant Performance vs. Silica Gel Performance 
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Yet another example of advancements in design and technology pertains to the design 

of the desiccant wheel. One promising proposed design is the non-adiabatic desiccant 

wheel, which integrates cooling air channels into the design of the wheel; the design is 

seen in Figure 6 (Narayanan, Saman, & White, 2013).  The design operates by having the 

same two sections as a conventional desiccant wheel (supply air and regeneration air) but 

structured as shown in Figure 6 and described below:  

• Cooling air enters the central hole with the closed back and distributes radially 

through channels. 

• Supply/Process air flows axially through desiccant coated channels adjacent to the 

cooling air channels and is cooled/kept cool as it flows through the channels rather 

than having to be cooled after it exits the wheel. 

Figure 6: Non-adiabatic Desiccant Wheel Design 
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• As the desiccant needs to be regenerated, the regeneration air is blown through the 

same channels as the process air but in the opposite direction.   

The principle of this design is that the cooler the temperature at which the process 

operates, the greater the moisture that is collected by the desiccant: as was mentioned 

before, as the temperature of air increases the relative humidity decreases, and thus the 

higher its absolute humidity can be. The desiccant, silica gel in this case, therefore 

adsorbs less moisture. Desiccants also tend to have a higher vapor pressure at higher 

temperatures, so they release moisture into the air (ASHRAE, 2012), (ASHRAE, 2013), 

(Narayanan, Saman, & White, 2013).  During the simulation and experiment, it was 

found that the non-adiabatic wheel indeed provided a more efficient method of 

dehumidification than with conventional adiabatic wheels (Narayanan, Saman, & White, 

2013).  Results are shown below in Table 3 corresponding to different supply air RH 

conditions (Narayanan,	  Saman,	  &	  White,	  2013): 

Table 3: Non-adiabatic Desiccant Wheel Performance Improvement over Traditional Desiccant 
Wheel 

Relative	  Humidity	  Performance	  Improvement	  %	  
50%	   45%	  
60%	   46%	  
70%	   53%	  

 These results pertain to the use of cooling air at 59 °F (15 °C); if this temperature were 

to be lowered, it is safe to assume that the performance would increase and the outlet 

temperature of the supply air would also be cooler (Narayanan, Saman, & White, 2013).  

With further development, this desiccant wheel design may become a viable option for 

dehumidification and cooling in hot and humid climates such as the area where the 

facility being researched is located (Narayanan, Saman, & White, 2013).  If the two 

improvements described above were to be used in conjunction with each other, there may 
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be a compounding effect on efficiency and performance that is cost-effective. Desiccant 

dehumidification has distinct benefits and drawbacks, depending on the specifics of a 

given scenario, such a system may present a favorable or unfavorable result. When 

desiccant dehumidification proves to be a poor choice, there are other options that are 

likely to be more appropriate. 

 

Mechanical Dehumidification 

 The next type of dehumidification is called mechanical dehumidification and 

works on a different principle than desiccant dehumidification.  Mechanical 

dehumidification works one of two ways, either by chilling or by compressing (ASHRAE, 

2012).  Chilling works because the moisture holding-ability of air drops as the 

temperature drops, thus causing the absolute humidity of the air to drop (ASHRAE, 

2012).  Compression occurs when air is compressed, and moisture is literally squeezed 

out of the air, this is possible because air can be compressed while water is virtually 

incompressible, so the two substances separate when under pressure (ASHRAE, 2012).  

Mechanical dehumidification presents many different variations, all of which function in 

essentially the same way (ASHRAE, 2012): 

• Air is cooled below the dew point; 

• Moisture condenses onto the cooling coils and is removed (usually via a simple 

drip pan); 

• Dehumidified air is then reheated to the appropriate room temperature and blown 

into the conditioned space. 
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The methods by which these steps are accomplished are often what govern the 

effectiveness and efficiency of a mechanical dehumidification system. One of the major 

drawbacks of mechanical dehumidification is that it highly power-intensive (Allen, June 

14, 2013), (ASHRAE, 2012).  One reason for this is that conventional mechanical 

dehumidification involves two significant temperature changes—the air must first be 

cooled to a point lower than the dew point (which is generally in the high 60s to mid 70s 

°F at the site during the summer). With average temperatures in the high 80s to 90s °F, 

the air needs to be cooled by at least 10-20 °F, and is typically cooled to at least 59 °F in 

order to ensure adequate moisture removal (ASHRAE, 2012), (Diebel & Norda, 2013), 

(Allen, June 14, 2013).  Once dehumidified, the air must be re-heated to room 

temperature, which is generally set to 72 –74 °F, thus requiring additional energy input 

(Allen, June 14, 2013), (ASHRAE, 2012).   

Because of relatively recent developments in indoor air quality regulations, greater 

volumes of ventilation air are now required, suggesting that outdoor air is required to be 

blown into most new buildings (Mazzei, Minichiello, & Palma, 2005).  The means by 

which outside air is added to and treated before entering a conditioned space reflects one 

of the ways in which dehumidification systems differ.  The first method by which 

outside air can be added is by blowing return air into the ventilation air stream before it 

reaches the cooling/dehumidification coil, thus initiating the cooling and 

dehumidification process and lowering the load on the coil (Mazzei, Minichiello, & 

Palma, 2005).  The second method directs outside air through the 

cooling/dehumidification coil and reheat coil, and then adds return air in order to pre-

mix the air and bringing it closer to neutral (Mazzei, Minichiello, & Palma, 2005).  The 
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third method is to employ a ventilation system completely dedicated to outside air 

(ASHRAE, 2012).  A 100% outside air system (this is what the systems being examined 

are in general) does accord special considerations, dampers and economizer settings will 

be considered first (Allen & Boll, [Florida] Heat Pipes for 100% Outside Air Units, 

2008), (Allen, June 14, 2013), (McQuiston, Parker, & Spitler, 2005).  

 The dampers and economizer settings allow some or all outside air to bypass the 

dehumidification coil and enter the conditioned space with minimal “treatment” 

depending on the outside conditions and desired indoor conditions (Allen, June 14, 

2013).  This approach is applied in one of the buildings that was recently renovated at 

the facility being examined to include economizers; these economizers allow outside air 

to flow into the space when the outside temperature and RH are low enough that cooling 

and dehumidification of the air is unjustified, thus saving energy (Allen, June 14, 2013).  

An important consideration for 100% outside air systems is how the air is re-heated or 

pre-conditioned.  The ASHRAE 2012 Handbook recommends that exhaust air be used to 

pre-condition the ventilation/outside air; the exhaust air will act to make the outside air 

more neutral. In other words, if it is hot and humid outside the exhaust air will act to cool 

and dehumidify; the opposite is true as well. If the ventilation air is cool and dry, the 

exhaust will warm and humidify. (ASHRAE, 2012).  The use of exhaust air to condition 

ventilation air also introduces the possibility to downsize the mechanical systems and 

thus save additional energy and costs (ASHRAE, 2012). 

Another consideration for a 100% outside air system is the condition of the air as it 

enters the conditioned space (ASHRAE, 2012).  That is, should the entering air be cooler, 

warmer, or neutral (same temperature) as compared to the conditioned air in the space 
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(ASHRAE, 2012).  This is an important consideration because the means by which 

outside air enters a space governs how the air is treated in the dehumidification process 

(ASHRAE, 2012): 

• If cooler air is required, reheat may not be required. 

• If neutral air is required, reheat will be required in order to raise the dry bulb 

temperature of the air to that of the inside air since it leaves the dehumidification 

coil cooler than the conditioned space air. 

• If warmer air is required, more reheat will likely be required 

As with desiccant dehumidification, mechanical dehumidification presents specific 

benefits and issues. One of the greatest advantages of mechanical dehumidification is the 

customizability and variety of systems; there is an enormous range of dehumidifiers to 

fit almost every situation, for example (ASHRAE, 2012), (Taras, 2006): 

• portable dehumidifiers; 

• pool dehumidifiers (generally able to handle a constant load of saturated (100% 

RH) air, corrosion resistant, able to handle the chlorine load); 

• factory-built dehumidifiers (essentially prefabricated then “dropped in” at the 

site); 

• site-built dehumidifiers (generally larger, custom designed and built at the site 

rather than in a factory). 

The customizability of the mechanical systems adds other benefits, one of which is the 

ability to apply novel solutions to make the systems more energy efficient. One example 

of this is the enthalpy wheel, which is a rotary mass energy transfer/exchange device 

(Mazzei, Minichiello, & Palma, 2005). The way the enthalpy wheel works is similar to a 
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desiccant wheel; there is a quickly rotating (700 to 2400 rev/hr) usually desiccant-filled 

cylinder that is divided in half, where one half passes the outside air into the conditioned 

space and the other half passes the exhaust air through to the outside, depending on the 

condition of the outside air it will be either cooled and dehumidified (acting like supply 

air in the desiccant process) or heated and humidified (acting as regeneration air) (Mazzei, 

Minichiello, & Palma, 2005).  The speed at which the wheel rotates is what determines 

the rate heat/energy transfer. It is heated or cooled by the outside air and then it moves 

into the exhaust stream where it is either cooled or heated, varying the speed at which the 

wheel rotates allows different transfer rates (Mazzei, Minichiello, & Palma, 2005).   

Another customization option that enhances efficiency is the addition of variable air 

volume (VAV) motors/fans (Mazzei, Minichiello, & Palma, 2005).  VAV systems allow 

the air volume moving through the system to be varied; this provides a more efficient 

method of controlling the temperature and humidity of a space that has varying 

occupancy (Allen, June 14, 2013).  The VAV approach allows for minimal air to be 

blown into a space in order to maintain an “economical” level of humidity and 

temperature (i.e. low enough to prevent mold growth but generally higher than would be 

considered comfortable) while a space is unoccupied, and then increase comfortable 

levels when the space is occupied (Allen, June 14, 2013), (Mazzei, Minichiello, & Palma, 

2005).  This is accomplished by varying the volume of cooled and dehumidified air 

blown into a space rather than increasing cooling/heating of the space, because varying a 

motor speed is more energy efficient than cooling or heating a space (Allen, June 14, 

2013). This is also happens to be one of the major techniques used in the facility in order 

to save energy (Study Site Energy Official, 2013).  
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 If another method is used besides VAV to condition the space, more energy is often 

required (Allen, June 14, 2013).  In the case of always-on cooling/dehumidifying, greater 

energy is needed to accommodate heating in order to maintain the desired set point 

temperature because the always-on cooling would cause the space to drop below that set 

point (Allen, June 14, 2013).  The on/off method requires more energy because it 

demands more energy to run the motors in bursts of 100% than is does to have a VAV 

constantly running at around 20% capacity and shifting lower when demand isn’t high 

and increasing as demand does. This method also has the drawback of not maintaining 

the space in a constant condition, the space would be constantly cooling and heating and 

drying and humidifying, making it uncomfortable to occupy (Allen, June 14, 2013), 

(ASHRAE, 2013), (ASHRAE, 2012).  The VAV controls conditions by monitoring and 

responding to temperature, humidity, and CO2 (for occupancy) sensors (Mazzei, 

Minichiello, & Palma, 2005).   

Yet another energy-saving method that can be used because of the flexibility of the 

mechanical systems is changing the arrangement of coils and/or adding new coils to the 

system (Mazzei, Minichiello, & Palma, 2005).  The heat pipe provides an excellent 

example and is structured as follows: a thermally-conductive coil filled with refrigerant 

upstream of the main cooling/dehumidifying coil is connected via piping to another coil 

downstream of the cooling/dehumidifying coil (ASHRAE, 2012).  The heat pipe operates 

in the following manner (Wu, Johnson, & Akbarzadeh, 1997), (ASHRAE, 2012):  

• Air is pre-cooled in the first evaporator coil (as the air is cooled, the heat from the 

air is transferred to the refrigerant which vaporizes and flows to the 

downstream/condenser coil); 



34	  

	  
	  

• the air is then further cooled and dehumidified by the dehumidification coil (at 

this point the air is now below the required temperature for the conditioned 

space); 

• Because it is too cold, the downstream coil then re-heats the air since it contains 

“hot” refrigerant (as the refrigerant cools it condenses and flows back to the 

upstream coil where it can be heated again). 

This	  method	  saves	  a	  great	  deal	  of	  energy	  (as	  will	  be	  discussed	  in	  more	  detail	  later)	  

in	  two	  ways	  (ASHRAE, 2012), (Wu, Johnson, & Akbarzadeh, 1997), (Mazzei, 

Minichiello, & Palma, 2005):	  

1. The amount of cooling needed to dehumidify the air by providing “free” cooling 

with the upstream/evaporator coil is reduced. 

2. Reducing or removing the reheat load by way of the downstream/condenser coil 

provides approximately the same amount of heat the refrigerant absorbed in the 

upstream coil.  The amount of reheat provided depends on the thermal 

conductivity of the coils, the efficiency of the refrigerant, and the temperature of 

the incoming air before and after dehumidification. 

Another major benefit of mechanical dehumidification is that it can be accomplished at 

relatively low cost and maintenance as compared to desiccant systems (Allen, June 14, 

2013), (Wu, Johnson, & Akbarzadeh, 1997).  This benefit will obviously vary greatly 

depending on how a system is designed and built, but in the case of heat pipes there is 

virtually no maintenance cost except for the occasional filter cleaning and leak repair 

since there are no moving parts except for fans (Allen, June 14, 2013), (Wu, Johnson, & 

Akbarzadeh, 1997).  There are minor improvements to mechanical systems that can be 
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realized by way of adjustment of settings and arrangements, but most tie into the benefits 

above and for the sake of time and space will not be mentioned here. 

 Mechanical dehumidification systems do have their limitations. One of the most 

important caveats is associated with the temperature limitation of the mechanical 

dehumidification process (ASHRAE, 2012).  As mentioned earlier, mechanical 

dehumidification technology cannot usually handle air with a dew point below 40 °F (~4 

°C), thus it is impractical to use in cold and humid situations (ASHRAE, 2012), (La, Dai, 

Li, Wang, & Ge, 2009). Another concern with mechanical dehumidification is that it 

generally consumes more energy than desiccant dehumidification (La, Dai, Li, Wang, & 

Ge, 2009), (Goldsworthy & White, 2012), (ASHRAE, 2012).  The reason the mechanical 

approach consumes more than desiccant systems is that the main process of mechanical 

dehumidification requires compression of a refrigerant, and over-cooling air followed by 

reheating of air, while desiccant dehumidification requires only cooling and heating of 

the regeneration air (which is usually accomplished with low grade/waste heat) 

(ASHRAE, 2012).  Also, the mechanical dehumidification process is generally not as 

environmentally friendly as desiccant dehumidification, in fact many of the most 

prevalent refrigerants are fairly damaging to the environment if released into the 

atmosphere (La, Dai, Li, Wang, & Ge, 2009), (Calm J. M., 2006). These refrigerants are, 

in some cases, thousands of times more potent greenhouse gasses (GHG) than CO2. In the 

cases of R-22 and R-410A, they have a Global Warming Potential (how many times more 

potent a given substance is as a GHG than CO2 in comparable amounts over a certain 

time period) of 1,810 and 2,100 respectively over 100 years. In other words, R-22 is 

1,810 times more effective GHG than CO2 and R-410A is 2,100 times more effective 



36	  

	  
	  

than CO2 (Calm J. M., 2008).  Some of the refrigerants (R-22 is an example) are actually 

ozone-depleting substances and are being phased out by the EPA and other world 

governments that ratified the Montreal Protocol which requires ozone depleting-

substances to be phased out of new systems, and their use to be limited to existing 

systems (U.S. EPA, 2010).  It is also worth noting that R-410A is considered a viable 

replacement for R-22, although it has a GWP ~16% greater than that of R-22 (Calm J. M., 

2008). R-22 is also 6% more efficient as a refrigerant than R-410A (Calm J. M., 2008). 

R-22 is also the most popular refrigerant by a wide margin and is actually the refrigerant 

used at the facility under study (Calm J. M., 2006), (Study Site Energy Official, 2013).   

Alternatively, desiccants are generally considered not as environmentally 

damaging as are refrigerants, and are not nearly as prone to leaks or removal from a 

system, and as mentioned previously are only changed every 5 to 10 years. Refrigerant 

systems as a whole lose an average of 0.5% of their refrigerant due to leaks per year 

(Calm J. M., 2008), (ASHRAE, 2012).  It is apparent that both desiccant and mechanical 

dehumidification systems present both merits and disadvantages, but to fit the niche of 

dehumidification of 100% outside air in a hot & humid climate using heat pipes in with 

chilling dehumidifiers presents an excellent solution (Mazzei, Minichiello, & Palma, 

2005), (ASHRAE, 2012), (Allen, June 14, 2013).   
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Chapter 3: Heat Pipes 

 As was mentioned earlier, heat pipes function with three heat transfer coils but 

where only one is actively consuming power. The configuration is shown in Figure 7 and 

the process is described with the Psychrometric Chart in Figure 8 (OA: outside air, RA: 

return air, MA: mixed air = outside + return, LA: over cooled air, SA: reheated air) 

(Allen & Boll, [Florida] Heat Pipes for 100% Outside Air Units, 2008), (Brooke, Critical 

Dehumidification Systems in Tropical Locations, 2011).  The Psychrometric Chart can be 

read by starting at the MA and following the process (the green line) left, down, and right 

to the SA point. This allows you to track the state (temperature and RH) of the air as it 

undergoes dehumidification using heat pipes, the labels to the left also aid in designating 

which part of the dehumidification process the air in going through.  The process is as 

follows (Allen & Boll, [Florida] Heat Pipes for 100% Outside Air Units, 2008):	   

• Warm/hot and humid air enters the HVAC system, then passes through the pre-

cool heat pipe coil which is thermally conductive and filled with a refrigerant (in 

the case of the facility it is R-22) which is in liquid form; so it absorbs heat and 

changes state from a liquid to a gas, thus pre-cooling the air. 

• The refrigerant gas then migrates through connecting pipes to the reheat heat pipe 

coil,  

• The air flows through the HVAC unit’s cooling coil which is maintained between 

50-55 °F leaving air temperature. The air is over-cooled and dehumidified when it 

leaves the cooling coil and thus needs to be re-heated. 

• The air then flows into the reheat heat pipe coil, which reheats the air as a result 

of the refrigerant state change condensing from a gas to a liquid state due to the 
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entering cold air temperature.  The reheat temperature increase is the same 

difference as the temperature drop in the precool heatpipe coil.  This temperature 

difference (precool and reheat) is dependent on the entering air temperature (the 

warmer the air the larger the temperature difference) and he number of heatpipe 

rows (the more rows results in larger temperature difference).  It should also be 

noted that if the HVAC system were to stop cooling the heat pipe sub-cool and 

reheat effect would also stop. 

• Once the refrigerant has been condensed back into a liquid, it flows back into the 

pre-cool heat pipe by gravity (the refrigerant connection tubes are slopped 

downward from the reheat heat pipe coil to the precool heat pipe coil).  At this 

point the heat pipe sub-cool/reheat cycle can start over again. . . 

• If no additional heating is needed, the air is blown into the conditioned space, and 

if heating is needed it is usually provided by electric strip heating and then blown 

into the space. 
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Figure 7: Heat Pipe Diagram - From (Brooke, Critical Dehumidification Systems in Tropical 

Locations, 2011) 

 
 

Figure 8: Heat Pipe Process Psychrometric Chart - (Brooke, Critical Dehumidification Systems in 
Tropical Locations, 2011) 
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Florida Beach-Side Resort Heat Pipe Retrofit Case Study 

Heat pipes are currently in use in a Florida beach-side resort and have been shown to 

significantly reduce energy consumption in most situations in which they are installed.  A 

resort was retrofitted with heat pipes to supplement the conventional dehumidification 

process (sub-cool the incoming air to condense out moisture, then re-heat it using electric 

strip heating to the set room temperature) (Allen & Boll, [Florida] Heat Pipes for 100% 

Outside Air Units, 2008).   It was determined that, before the heat pipes were installed, an 

average of 733 kWh of electricity/day was used to re-heat the supply air before it entered 

the conditioned space, but after the heat pipes were installed the electric strip heater was 

not used at all (Allen & Boll, [Florida] Heat Pipes for 100% Outside Air Units, 2008).   

Shown in Table 4 is a summary of improvements corresponding to installation of the heat 

pipes (Allen & Boll, [Florida] Heat Pipes for 100% Outside Air Units, 2008): 

Table 4: Impacts of Installing Heat Pipes at Florida Beach-Side Resort 

	   Electricity	  (kWh)	   Financial	  ($)	  
Daily	  	  Savings	   788	   $100.09	  	  
Annual	  Savings	   	  189,120	  	   $24,022.00	  
Installed	  Cost	   n/a	   $66,920.00	  
	   	   	  
Payback	  period	  in	  years	  (PBP)	  	   	   2.786	  
	   	   	  
Service	  Area	  Humidity	  Reduction	   Air	  Handler	  8	   Air	  Handler	  9	  
	   4%	   10%	  

 

 As shown, the heat pipes significantly reduced energy consumption with a low PBP, and 

following payback the heat pipes are generating pure savings since there are minimal 

moving parts and little maintenance needed (Allen & Boll, [Florida] Heat Pipes for 100% 

Outside Air Units, 2008).   
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Heat Pipe Efficiency Simulation Study Over Time Considering Increased 

Temperatures Due to Climate Change  

Also worth noting is that heat pipe efficiency and effectiveness generally improve 

as temperature increases (Ahmadzadehtalatapeh & Yau, 2012), (Jouhara, 2009).  These 

data were supported by simulating the running of heat pipes to dehumidify a 622 cubic 

ft/min load using climate data from 2000 and simulated climate data from 2020 and 2050, 

the resulting energy savings considering using and not using rejected heat from the 

process for other HVAC applications are below in Table 5 (Ahmadzadehtalatapeh & Yau, 

2012), (Jouhara, 2009): 

Table 5: Heat Pipe Energy Savings Due to Temperature Increase 

Year	   2000	   2020	   2050	  
kWh	  Saved	   3,397	   5,639	   7,066	  

kWh	  Saved	  w/	  reject	  heat	  reuse	   6,794	   11,278	   14,132	  
  

The reason for this increase in efficiency is the fact that the ΔT (difference in 

temperature) between the refrigerant and the outside air is greater (Ahmadzadehtalatapeh 

& Yau, 2012). Because of the larger ΔT, the temperature drop across the evaporator 

(upstream) section of the heat pipe is expected to be greater, so there is more heat to 

replenish the over-cooled air in the condenser (downstream) section, thus requiring less 

electricity to re-heat the air (Ahmadzadehtalatapeh & Yau, 2012).   Because heat pipes 

actually increase effectiveness and efficiency in higher temperature climates, they are 

particularly well suited for sub-tropical/tropical climates such as in Florida. 
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EPA Pensacola, FL Lab Heat Pipe Retrofit Effectiveness Case Study 

A study performed by the Environmental Protection Agency (EPA) in one of their 

own buildings further demonstrates the effectiveness of heat pipes in Florida.  In 1997, 

the EPA retrofitted one of their Pensacola lab buildings with heat pipes in order to aid in 

dehumidification and cooling as well as to research heat pipe effectiveness (U.S. EPA, 

1997).  The installation of heat pipes was found to reduce the relative humidity inside the 

building from 75% to 65% without affecting temperatures (U.S. EPA, 1997).  If heat 

pipes had not been used, this level of dehumidification would have required an additional 

20 tons of cooling capacity (U.S. EPA, 1997).  The following effects in Tables 6 and 7 

were seen after the heat pipes were installed at the building (U.S. EPA, 1997): 

Table 6: Savings Seen During EPA Heat Pipe Study 

	  

Cooling	  savings	  (as	  %	  of	  
total	  previous	  installed	  

cooling)	  
Reheat	  energy	  

(Btu)	  

Projected	  
Electricity	  
(kWh)	  

Actual	  
Electricity	  
(kWh)	   Financial	  

Reheat	  
Energy	  
(kWh)	   Reheat	  Cost	  

Savings	   19	   4.6	  million/day	   153,780	   230,750	   $9,980.00	  98,020	   $4,900.00	  
Table 7: EPA Study Costs and PBP 

	   Heat	  Pipes	   Traditional	  20	  ton	  Cooling	   Premium	  paid	  
Cost	   $42,000.00	   $30,000.00	   $12,000.00	  
	   	   	   	  
PBP	  (years)	   1.2	  	   	  

  

Aside from the Financial savings, the 

positive environmental impacts 

were determined and are shown in Table 8 

(U.S. EPA, 1997):  As can be seen, if the fact that the site where this was tested was 

going to install additional cooling if heat pipes were not used the difference in cost is 

$12,000 between the two systems (U.S. EPA, 1997).  Because the price difference is only 

Substance	   Reduction	  (in	  lbs)	  
CO2	   230,660	  
SO2	   2,330	  
NOx	   850	  

Table 8: EPA Study Environmental Impacts 



43	  

	  
	  

$12,000 and the annual savings is $9,980 (found in Tables 7 & 6 respectively) the PBP is 

only 1.2 years (found in Table 7), the period after payback would then be pure savings 

(U.S. EPA, 1997).  These benefits described above are attributed to heat pipes not 

optimized for the building (U.S. EPA, 1997).  It was determined that the building HVAC 

system had a flow rate of 19,100 cubic feet per minute (cfm), but after heat pipe 

installation the flow rate decreased to 16,800 cfm, this resulted in a negative pressure 

situation (the air pressure inside the building is lower than outside pressure, which leads 

to greater outside air infiltration) (U.S. EPA, 1997).  If this were remedied by increasing 

the flow rate of the heat pipes, it would result in a 1.5 kW increase in fan load and a slight 

decrease in cooling and dehumidification due to the air not contacting the coil for as long. 

However, these are offset by an increased heat transfer rate between the evaporator and 

condenser which would result in a further savings of 2.7 kW (U.S. EPA, 1997).  Heat 

Pipes also tend to have a direct correlation between their efficiency and the temperature 

of the air entering the system; this was demonstrated in the EPA study on September 21, 

1997 between 8 am and noon when the temperature increased from 79°F to 92°F (U.S. 

EPA, 1997).  Table 9 below shows the data from this period and demonstrates how the 

increased heat transfer rate caused by the increased temperature acts in favor of heat 

pipes and causes them to operate more efficiently (U.S. EPA, 1997): 

 

Table 9: EPA Pensacola Heat Pipe Study - Sept 21, 1997 - 8am to noon cooling and load information 

Outside	  dry	  bulb	  Temp	  °F	  
Total	  Cooling	  provided	  by	  systems	  

(tons)	   Load	  on	  Cooling	  Coils	  (tons)	  
79	   78.8	   67.6	  
92	   80.7	   60.8	  
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In short, even though the demand for cooling/dehumidification increased throughout the 

day, due to the way heat pipes work the load demanded from the non-heat pipe systems 

decreased. 

Early Case Study Conducted in Tampa, FL by W.H. Beckwith Showing Early Heat 

Pipe Potential in Hot and Humid Climates 

Although heat pipes have been typically shown to be very effective in hot and 

humid climates, actual studies about their effectiveness in these types of climates have 

been limited until recently (Yau & Ahmadzadehtalatapeh, 2009).  One of the earlier 

works that influenced the further development of heat pipes in Florida was by (Beckwith, 

1997), (Yau & Ahmadzadehtalatapeh, 2009).  In this study, heat pipes were tested in 

Tampa, Florida, and when they were retrofitted onto an existing system Table 10 shows 

the results (Beckwith, 1997), (Yau & Ahmadzadehtalatapeh, 2009): 

Table 10: Comparison of HVAC System Effectiveness With and Without Heat Pipes 

	   Cooling	  Provided	  (kW)	   Moisture	  Removal	  Rate	  (lb/min)	  

w/o	  Heat	  Pipe	   35.2	   0.487	  

w/	  Heat	  Pipe	   42.6	   0.694	  
 

We	  can	  gather	  the	  following	  from	  the	  above	  data	  that	  the heat pipes provided 7.4 kW 

of “free” additional cooling and the heat pipes increased moisture removal capacity by 

42.5%  (Beckwith, 1997), (Yau & Ahmadzadehtalatapeh, 2009).	  

As can be seen with the above two studies Florida is very well suited for the 

installation of heat pipes because of the fact that it is hot and humid.  With the likelihood 

that heat pipe efficiency will increase with global temperature increase 

(Ahmadzadehtalatapeh & Yau, 2012), it is fair to assume that heat pipes are going to 
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become increasingly more efficient and have shorter undiscounted payback periods in 

Florida.   

St. Petersburg, FL Museum Heat Pipe and VAV Retrofit Case Study 

Another novel application of heat pipes was in St. Petersburg where heat pipes 

were retrofitted onto the existing HVAC system in an art museum (Shirey, 1993).  The 

museum had the requirement that the spaces be kept at or below 50% relative humidity 

(Shirey, 1993).  A VAV system was also installed alongside the heat pipes (Shirey, 1993).  

The result was a significant increase in moisture removal capability as well as a 12% 

drop in energy consumption (Shirey, 1993). 

Dallas, Texas Heat Pipe Retrofit Simulation Case Study 

 Although many of the Florida studies garnered impressive results, one of the most 

impressive was a study that simulated in Dallas, Texas (Mathur, 1990).  This study 

simulated the retrofitting of a 17.6 kW AC system that had an efficiency ratio of 8 with a 

6-row heat pipe system to assess the improvement in cooling and dehumidification 

(Mathur, 1990), (Yau & Ahmadzadehtalatapeh, 2009).  After the heat pipes were 

installed the moisture removal capability of the system rose by 0.295 lb/min, the 

efficiency ratio increased to 15.7 (96%), and it was figured that the retrofit would have a 

payback period of less than 1 year (Yau & Ahmadzadehtalatapeh, 2009), (Mathur, 1990).   
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Heat Pipe Technology White Papers Case Studies 

Another important source of information was a study performed by one of the 

leading heat pipe manufacturing companies Heat Pipe Technology, which is based in 

Gainesville, Florida and is a subsidiary of MiTek (a Berkshire Hathaway company) 

(Brooke, Critical Dehumidification Systems in Tropical Locations, 2011).  This study 

took place in San Juan, Puerto Rico and concluded that the annual cost to run a 

conventional 10,000 cfm mixed air system was $53,900 with the set points in Table 11 

below (Brooke, Critical Dehumidification Systems in Tropical Locations, 2011).   

Table 11: Set-points and Cost for San Juan Heat Pipe Study – Using Brute Force Dehumidification 

Size	  (cfm)	   Supply	  Air	  Dry	  Bulb	  Temp	  °F	   Dew	  Point	  °F	   Relative	  Humidity	  %	   Annual	  Cost	  ($)	  

10,000	   62	   53	   50	   $53,900.00	  
 

This cost was obtained with the following information: 

• The system was run 24/7 

• The System used 50% outside air 

• The return air being mixed with the outside air was 75°F dry bulb, 50% RH 

• .7 kW/ton (kW/ton is the amount of energy consumed per cooling ton) cooling 

operated @ 70% heating system efficiency 

• Electricity cost was $0.15/kWh 

• Heating was $1.50/therm 

Aside from being expensive, this brute-force method is generally forbidden by ASHRAE 

standard 90.1 with the exception of process applications (these are applications that must 

have a humidity within a certain range for manufacturing, medical, or safety reasons) 

(Brooke, Critical Dehumidification Systems in Tropical Locations, 2011). 
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After the initial baseline was established with the “brute force”/conventional 

method of over cooling and reheating and obtaining the above results, heat pipes were 

installed and the annual cost dropped by 36% to $34,400 (Brooke, Critical 

Dehumidification Systems in Tropical Locations, 2011). Interestingly enough the 

ASHRAE standard 90.1 that forbids using brute force methods for dehumidification 

recommends using “waste” heat and allows heat generated in the dehumidification 

process to count toward this “waste” heat (Brooke, Critical Dehumidification Systems in 

Tropical Locations, 2011).  The life cycle cost of the heat pipe was also calculated in the 

study and is shown in Table 12 for both a new installation and retrofitting of existing 

systems (Brooke, Critical Dehumidification Systems in Tropical Locations, 2011).  With 

the life cycle costs and the savings from installing the heat pipes calculated, it was 

possible to figure that the payback periods for installing heat pipes were 9 months for a 

new system and 13 months for retrofitting (Brooke, Critical Dehumidification Systems in 

Tropical Locations, 2011). 

Table 12: Heat Pipe Technology San Juan Study - Heat Pipe Life Cycle Costs 

One	  Time	  Costs	   	  
Installed	  Cost	  (New)	   $13,000.00	  
Installed	  Cost	  (Retrofit)	   $21,000.00	  
Recurring	  Costs	   	  
Maintenance	  (hrs/year)	   2	  
Maintenance	  Cost	  ($/man	  hour)	   $80.00	  
Annual	  Parts	  Cost	   $50.00	  
Total	  Annual	  Maintenance	  Cost	   $210.00	  
Pay	  Back	  Period	  (Months)	   	  
New	   9	  
Retrofit	   13	  

  

Another white paper from Heat Pipe Technology specifically examined the effect 

different variables had on the payback period of heat pipes and revealed a few interesting 
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patterns (Brooke, Optimizing Wrap Around Heat Pipes, 2007).  The Study examined one 

variable/change to the base case at a time in order to determine how each variable by 

itself effects the payback period (Brooke, Optimizing Wrap Around Heat Pipes, 2007).  

The base case that was established for the study had the following parameters found in 

Table 13 below (Brooke, Optimizing Wrap Around Heat Pipes, 2007): 

Table 13: Heat Pipes Technologies - Heat Pipe Payback Period Base Case Parameters 

Location	   St.	  Louis,	  MO	  
Outside	  Air	  %	   20	  
Flow	  rate/size	  (cfm)	   20,000	  
Supply	  Air	  Temp	  °F	   59	  
Heat	  increase	  needed	  °F	   5	  
Return	  air	  temp	  °F	   78	  
Return	  Air	  RH	   50%	  
Central	  Plant	  Efficiencies	   	  
kW/ton	   0.75	  
heating	   0.75	  
System	  Efficiencies	   	  
motor	   0.92	  
fan	   0.7	  
Energy	  Costs	   	  
Electricity	  ($/kWh)	   $0.07	  
Heating	  ($/therm)	   $0.80	  

	  
It was found that with the above parameters the base case payback period is 26.1 months 

(Brooke, Optimizing Wrap Around Heat Pipes, 2007).   

The first variable discussed was the geographic location, it was found to have a 

profound effect on the payback period (Brooke, Optimizing Wrap Around Heat Pipes, 

2007).  The payback periods for the different locations are shown in Table 14 below 

(Brooke, Optimizing Wrap Around Heat Pipes, 2007). 
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Table 14: Heat Pipe Technologies Study – Payback Period Variation by Location 

Location	  
Payback	  Period	  
(Months)	  

Boston	   28	  

Newark	   23	  

St.	  Louis	   26.1	  

Atlanta	   19	  

Tampa	   13	  

Puerto	  Rico	   12	  
 

The variability in length of payback period above is due to the differences in cooling 

hours and the outside dry bulb temperature (which are generally related) (Brooke, 

Optimizing Wrap Around Heat Pipes, 2007).  The pattern found was that the closer to the 

tropics, the shorter the payback period (Brooke, Optimizing Wrap Around Heat Pipes, 

2007).  Obviously, the location of a project cannot be changed, but if a company owns 

properties in multiple regions this may help them prioritize projects; as is the case with 

the facility, the company owns and operates properties around the world (Brooke, 

Optimizing Wrap Around Heat Pipes, 2007).   

The next variable examined was flow rate (cfm) (Brooke, Optimizing Wrap 

Around Heat Pipes, 2007). Flow rate was relatively straightforward: a larger flow rate 

means a larger project volume and thus larger project, and larger projects end up costing 

less on a per cfm basis due to pricing breaks (Brooke, Optimizing Wrap Around Heat 

Pipes, 2007).  The next factors that were examined were plant efficiencies and utilities 

cost, which responded predictably (Brooke, Optimizing Wrap Around Heat Pipes, 2007).  

The way PBP reacted to existing efficiency (system kW/ton and heating plant efficiency) 

was that the lower the existing efficiency the lower the PBP (Brooke, Optimizing Wrap 
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Around Heat Pipes, 2007). The reason for this is that even though the heat pipes are 

operating the same regardless of plant efficiency, if the plant is less efficient, then the 

heat pipe is actually saving more energy since there is more being used than can be saved.  

The same principle also applies for cost; the higher the cost for electricity and heating, 

the lower the PBP because of the fact that even though the heat pipe operates the same 

regardless of cost, the higher the costs the more money can be saved (Brooke, Optimizing 

Wrap Around Heat Pipes, 2007).  

 A variable that had surprising results was face velocity; as the face velocity 

increased, the PBP decreased (Brooke, Optimizing Wrap Around Heat Pipes, 2007).  The 

reason this is surprising is that the face velocity is generally kept lower in order to 

prevent water blowing off the cooling coil (used for the dehumidification) and to keep 

airside pressure drop low (Brooke, Optimizing Wrap Around Heat Pipes, 2007).  

Designers and owners must decide if the decreased PBP is worth sacrificing the increased 

benefits of lower face velocities and find a balance that fits the needs of the project.  

Another interesting result was seen with the outside air % variable (Brooke, Optimizing 

Wrap Around Heat Pipes, 2007).  What was found was that as the outside air % increased, 

so did the PBP, this was found to be heavily dependent on location though (Brooke, 

Optimizing Wrap Around Heat Pipes, 2007).  The reason for this was that the typical dry 

bulb temperature of return air in St. Louis was 78°F but the outside air had more hours 

between 55-75°F dry bulb than above, so the average entering air temperature was lower 

than the return air, thus the heat pipe wasn’t as effective (Brooke, Optimizing Wrap 

Around Heat Pipes, 2007).  If the location were changed as well during this test, it is 

likely that this result would also be different; if the outside air dry bulb temperature is 
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higher than the return air temperature, you will likely see the opposite effect than was 

seen here: as the OA % increased, the PBP would decrease (Brooke, Optimizing Wrap 

Around Heat Pipes, 2007).  The last factor that was taken into account was the reheat 

amount; it was found that the higher the reheat amount the shorter the PBP (Brooke, 

Optimizing Wrap Around Heat Pipes, 2007).  What was interesting about the pattern 

observed is that there was a very large initial drop in PBP going from 3°F to 5°F reheat 

(PBP dropped from 40 months @ 3°F to 25 months @ 5°F). However, the PBP only 

dropped an additional 5 months when the amount of reheat was increased from 5°F to 

11°F (Brooke, Optimizing Wrap Around Heat Pipes, 2007).  As was shown above, many 

different variables factor into the PBP of heat pipes and must be considered when 

deciding if heat pipes are a worthwhile investment and also when designing the heat pipe.  

As can be seen by all the studies above, heat pipes are an extremely effective 

method of dehumidification, and their effectiveness is actually enhanced by larger ΔT 

between the evaporator (upstream) and condenser (downstream) portion of the heat pipe.  

Such improvement in effectiveness is one reason why Florida and other hot and humid 

climates are ideal for heat pipe implementation; normally the extreme heat makes 

dehumidification and cooling difficult, but the extreme heat acts as a benefit for heat 

pipes as was shown in Table 9 (U.S. EPA, 1997).  This effect will also only become more 

apparent in the future as the world starts to feel the effects of global climate change and 

the temperatures climb (Jouhara, 2009), (Ahmadzadehtalatapeh & Yau, 2012).  This is 

well demonstrated by Table 5, which clearly shows how much energy can be saved even 

on a very small scale as temperatures increase over the next 37 years 

(Ahmadzadehtalatapeh & Yau, 2012), (Jouhara, 2009). 
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In addition to heat pipes becoming more effective with increasing air 

temperatures, they also enhance the dehumidification capabilities of the traditional 

dehumidification systems they are retrofitted to, as seen in Tables 4,10, and 12 (Allen & 

Boll, [Florida] Heat Pipes for 100% Outside Air Units, 2008), (Beckwith, 1997), (Yau & 

Ahmadzadehtalatapeh, 2009), (Brooke, Critical Dehumidification Systems in Tropical 

Locations, 2011). 

There is a caveat that needs to be mentioned, which is that it has been found in 

practice that additional reheat is generally needed if the inlet air starts at a temperature 

below the set point for the conditioned space (Allen, June 14, 2013), (Study Site Energy 

Official, 2013).  This means that for a portion of the time at the facility, reheating is 

needed to bring the air temperature up to the desired temperature after it leaves the heat 

pipe. Additional electricity or natural gas is needed to run the reheat section depending on 

whether it is electric strip heat or a hot water loop (both are used in the facility).  Because 

the additional reheat section is only being used to make up a few degrees difference (i.e. 

in one of the heat pipes at the facility the air leaves the heat pipe at 69.5°F but the 

required temperature is 72-74°F in every season except winter), it may be possible to 

make up the reheat energy deficit with renewable sources such as solar thermal or 

photovoltaic (Allen, June 14, 2013). 
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Chapter 4: Solar Energy and Dehumidification 

 Combining solar energy with dehumidification technology is not a new idea, as 

discussed previously in the desiccant system section. Low grade heat is often used to 

provide the heat in the regeneration air stream, and solar thermal provides an appropriate 

thermal match (Grossman, 2002). Solar can be and has also been used in cooling systems, 

but that isn’t examined here (Grossman, 2002).  There is one study that investigated 

integrating both solar PV and thermal into heat pipes and heat pumps. The paper 

investigated creating what is called a photovoltaic-solar-assisted heat pump/heat pipe 

system (PV-SAHP/HP) that could operate in three different modes:  normal air/air heat 

pump, solar-assisted heat pump, and solar-assisted heat pipes (Fu, Pei, Ji, Long, Zhang, & 

Chow, 2012).   

It was determined that with a total collection area of 50.2 ft2 for solar thermal/hot 

water, and for PV a collection area of 31.3 ft2 the system could heat 147.9 gallons of 

water to more than 94.1°F if the solar irradiation was greater than 87.4 MJ (Fu, Pei, Ji, 

Long, Zhang, & Chow, 2012).  With the solar radiation between 47.2 and 98.3 MJ during 

the test period, the heat (solar thermal) energy generated was between 7,030.9 and 29,868 

Btu (7.4 and 31.5 MJ), operating at between 18.5% and 38.4% efficiency (Fu, Pei, Ji, 

Long, Zhang, & Chow, 2012).  The electrical energy generated under the above 

conditions was between 0.86 and 1.89 kWh (3.1 and 6.8 MJ), operating at 10.1 to 11.6% 

efficiency (Fu, Pei, Ji, Long, Zhang, & Chow, 2012).   

It was also found that, although the heat pipes provided better performance at 

higher solar irradiation ranges, they performed rather poorly in lower irradiation 

conditions, but the solar-assisted heat pumps could provide residential hot water 
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throughout the full range of solar irradiation levels (Fu, Pei, Ji, Long, Zhang, & Chow, 

2012).  The cost of the system was $1904.80 for the photovoltaic and thermal (PV/T) 

system and $952.40 for the remainder of the system. It can therefore be assumed that the 

$952.40 would be significantly less if the heat pipes and heat pumps were already 

installed, because there would be less equipment to purchase and install) (Fu, Pei, Ji, 

Long, Zhang, & Chow, 2012).  The PBP for this system was calculated to be 14.1 years, 

but it must be stressed that this is highly dependent on the location (Fu, Pei, Ji, Long, 

Zhang, & Chow, 2012). The location governs which of the three systems is operating, as 

well as the electricity/fuel cost which are significantly lower than the facility site at 

$0.03/kWh vs. ~$0.13/kWh (Fu, Pei, Ji, Long, Zhang, & Chow, 2012).  The fact that the 

HVAC portion (the heat pipe/pumps) was included in the cost, along with the information 

presented above, makes it unlikely that the PBP for such a system would be as high in the 

facility site (Fu, Pei, Ji, Long, Zhang, & Chow, 2012).   

Since this system is very small in size, and the location is so different from the 

location being examined, this study works as a jumping-off point more than anything else.  

The work shows that it is possible to use a heat pipe system in conjunction with PV 

and/or solar thermal systems in order to provide hot water and electricity to a system.  It 

is worth investigating to determine whether retrofitting the existing heat pipes with solar 

PV and/or thermal technology would be cost-effective. As it has already been shown to 

be possible to integrate solar PV/T (photovoltaic/thermal) into heat pipes, what must also 

be considered is the cost of the solar PV and thermal technology. 

 An excellent source of information regarding PV pricing and associated trends is 

the U.S. Department of Energy (DOE) Sun Shot—Photovoltaic (PV) Pricing Trends: 
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Historical, Recent, and Near-Term Projections report compiled in partnership with the 

National Renewable Energy Laboratory and Lawrence Berkeley National Laboratory 

(Feldman, Barbose, Margolis, Wiser, Darghouth, & Goodrich, 2012).  The DOE priced 

the installed cost of 150,000 installed PV systems in 2011 and generated the statistics 

shown below in Table 15 (Feldman, Barbose, Margolis, Wiser, Darghouth, & Goodrich, 

2012).  What the data in Table 15 shows is that as the capacity of the installation 

increases as seen in the left column, the price of the PV system per watt decreases, as 

seen in the right column (Feldman, Barbose, Margolis, Wiser, Darghouth, & Goodrich, 

2012).  This is going to be due largely to the economies of scale, as you buy more of 

something it becomes cheaper (Feldman, Barbose, Margolis, Wiser, Darghouth, & 

Goodrich, 2012). 

Table 15: Average PV Installed Price - 2011 

Capacity	  Range	   Cost	  /Watt	  
<10	  kW	   $6.13	  
10-‐100	  kW	   $5.62	  
>100	  kW	   $4.87	  

 

The report stated that PV prices are on a downward trend, with the price decreasing 

an average of 5 to 7% per year between 1998 and 2011 depending on the sector in which 

it is installed and between 11 and 14% in 2010-11 alone (Feldman, Barbose, Margolis, 

Wiser, Darghouth, & Goodrich, 2012).  This amounts to the decreases in price shown in 

Table 16 attributable to 2010-11 (Feldman, Barbose, Margolis, Wiser, Darghouth, & 

Goodrich, 2012). 
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Table 16: PV Price Drop Information - 2010 to 2011 

Capacity	  Range	   Price	  Drop/Watt	  ($)	   Price	  Drop/Watt	  (%)	  

<10	  kW	   $0.72	  	   11	  

10-‐100	  kW	   $0.89	   14	  

>100	  kW	   $0.77	   14	  
  

 The report also found that the average increase in PV installed capacity increased 

an average of 53% per year between 1998 and 2011, but increased 109% between 2010 

and 2011 (Feldman, Barbose, Margolis, Wiser, Darghouth, & Goodrich, 2012).  It was 

also found that, on an international scale, the more mature markets (such as Germany) 

tended to have significantly lower prices than the U.S., so as the U.S. market matures 

with incentives and improved manufacturing techniques, this will lead to lower 

manufacturing costs and lower costs to consumers (Feldman, Barbose, Margolis, Wiser, 

Darghouth, & Goodrich, 2012).  With the lower manufacturing costs and costs to 

consumers it can be expected that the price of PV will decrease as the market matures 

(Feldman, Barbose, Margolis, Wiser, Darghouth, & Goodrich, 2012).  The report also 

determined that the installed cost of PV will continue to decrease at the 2010-2011 rate 

(see Table 16 above) or even faster, and that the installation of PV is also going to 

continue to increase (Feldman, Barbose, Margolis, Wiser, Darghouth, & Goodrich, 2012).  

It can be gathered from this report, as pertains to this study, that even if prices cause 

integration of PV into heat pipes to be prohibitive at the current time, future likely 

decreases in prices may make incorporation of PV a more attractive option in the future. 

One must also consider not only the installed cost of a system, but incentives being 

offered that pertain to solar PV technology as well. One of the incentives currently in 
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place is the Florida Renewable Energy Production Tax Credit (Fla. Stat. § 220.193, H.B. 

7117).  This incentive was originally enacted on June 19, 2006, and went into effect on 

July 1, 2006, but was allowed to expire in 2010; it was then reenacted April 13, 2012 and 

went into effect on July 1, 2012 (North Carolina State University; NREL, 2013).  The 

Incentive provides for $0.01 per kWh of renewable energy produced in the form of a tax 

credit (North Carolina State University; NREL, 2013).  The incentive is based on either 

total capacity for new facilities placed in service after May 1, 2012, or in the case of 

expanded facilities, the additional production of the expansions placed in service after 

May 1, 2012 (North Carolina State University; NREL, 2013).  The maximum allowed 

credit is $1,000,000 per corporation with a statewide cap of $5,000,000 for fiscal year 

2012/2013, and $10,000,000 every year thereafter (North Carolina State University; 

NREL, 2013).  If there is not enough money to meet the total credits, a priority system is 

used with a maximum credit of $250,000 for the highest priority corporations (North 

Carolina State University; NREL, 2013).  This incentive also has the stipulation that it 

cannot be used in conjunction with Florida’s Renewable Energy Technologies Investment 

Tax Credit (North Carolina State University; NREL, 2013).   

Additional incentives are also available from Florida electric power utilities; these 

are summarized in Table 17 below.  It is worth noting that, for Tampa Electric Customers, 

any PV installations over 10 kW in installed capacity will still receive only $20,000, but 

for Duke Energy the price paid per watt simply decreases incrementally but still has a 

much higher maximum payout of $130,000.  It is also important that FPL has no limit on 

the rebate but the amount paid decreases quicker than Duke Energy, and that the limit on 

Gulf Power is only 5 kW (North Carolina State University; NREL, 2012).  
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Table 17: Florida Utility Company PV Incentives 

Company 
$ given/Watt @ 
< 10 kW 

$ given/Watt 
@ 10 - 50 kW 

$ given/Watt 
@ 50 - 100 
kW 

Maximum 
Rebate 
Possible Annual Budget 

Duke 
Energy  $2.00   $1.50   $1.00  

 
$130,000.00   $1,300,000.00  

Tampa 
Electric  $2.00  n/a n/a  $20,000.00   $1,000,000.00  

 

$ given/Watt @ 
≤ 10 kW 

$ given/Watt 
@ 10 - 25 kW 

$ given @ > 
25 kW 

Max 
Rebate 
Possible Annual Budget 

Florida 
Power and 
Light (FPL)  $2.00   $1.50   $1.00  n/a  $15,500,000.00  
Gulf Power  $2.00  n/a n/a  $10,000.00   $435,000.00  

 

Other important incentives to consider are from the Federal government.  One of the 

better incentives currently in place with regard to solar PV is the Business Energy 

Investment Tax Credit (ITC) (26 USC § 48, H.R. 8 - American Taxpayer Relief Act of 

2012) (North Carolina State University; NREL, 2013). The Business Energy ITC 

provides a tax credit of up to 30% of the installed cost for any PV for which construction 

is started by the end of 2013 (North Carolina State University; NREL, 2013).  The Act 

was passed and enacted in 2008, but in January 2013 the rules governing who can claim 

the credit were changed. Projects that had started construction by the end of 2013 were 

allowed to claim the credit; previously, systems had to be operational in order to claim 

the credit (North Carolina State University; NREL, 2013).  There are many opportunities 

to save money, both initially and over the lifetime of a solar energy installation, in 

Florida it is possible to profit from installation of PV if appropriate efficiency measures 

are taken and incentives utilized.  

 Another factor that should be considered is the actual energy production potential 

of a location, as can be seen in Figures 10 and 11, the global horizontal irradiance (GHI) 
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and solar resource potential vary greatly with geography across the United States 

(Mapcruzin, 2012), (NREL | The Open PV Project, 2012), (Hoilett, Average Annual GHI 

from 2001-2012 and Installed PV Capacity in MW, 2013).  It is important to note that 

sometimes policies bolster PV installation in places where the energy generation potential 

would otherwise make it cost-prohibitive.  This is made more apparent in Figure 10 

( which shows the GHI and installed PV capacity between 2001-2012) as well as in 

Figure 11, which shows the locations of the major PV installation sites and whether they 

would be supported by policy or the utility of the site (i.e. the ability to generate power) 

(Mapcruzin, 2012), (NREL | The Open PV Project, 2012), (Hoilett, Average Annual GHI 

from 2001-2012 and Installed PV Capacity in MW, 2013), (U.S. EPA, 2009).  

As is seen in Figures 10 and 11, the two areas (the Northeast and Southwest) with 

the highest installed capacity are also the areas with the greatest GHI (Southwest) and the 

lowest GHI (Northeast) (Mapcruzin, 2012), (NREL | The Open PV Project, 2012), 

(Hoilett, Average Annual GHI from 2001-2012 and Installed PV Capacity in MW, 2013), 

(U.S. EPA, 2009).  The only way the lowest GHI would likely demonstrate this level of 

installed capacity is if PV were incentivized (Solar Energy Industries Association, 2013), 

(U.S. Department of Energy, 2012). It is worth noticing in Figure 11 that policy-driven 

PV installations are dominant in the eastern half of the U.S. while utility scale or both are 

dominant in the western U.S. (U.S. EPA, 2009).  It appears from examination of Figures 

10 and 11 that the lack of installed PV in Florida is not a result of poor location, but 

rather is attributable to a lack of incentives to make an initial investment.  The lack of 

incentives is shown by the incentive information discussed above and shown in Table 17; 
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Florida’s state government provides no incentives to help cover the installation costs of 

large PV projects, only the utility companies provide such incentives.  

 It may be the case that if an initial investment in PV is considered affordable with 

limited incentives, then commercial installations would likely see benefits from the 

installation of PV capacity in the form of energy savings and federal incentives. As has 

been shown using solar energy is steadily becoming a more viable option to generate 

electricity at all scales from utility to residential.  This is being driven by technology 

improvements and cost reduction and also by policies incentivizing PV installation at the 

Federal, State, and Local levels.  The following chapter will investigate the potential of 

supplementing heat pipe technology in the facility with solar energy generation 

technologies in order to sustainably supply the energy required to re-heat air in 

dehumidification systems. 
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Figure 10: Average Annual Global Horizontal Irradiance (GHI) and Installed PV Capacity 
in MW 

Figure 11: EPA Tracked PV Installations by Type and Location Energy Generation Potential 
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Chapter 5: Methodology, Results, & Analysis 

Methodology 

 The purpose of this project is to assess the effectiveness and efficiency of heat 

pipes used for dehumidification at a facility in Florida. A range of parameters associated 

with the facility and the heat pipes were considered. These include the following: 

• climate and weather patterns in the region of the facility; 

• operational parameters of heat pipes including 

o minimum operating temperature; 

o type of air being provided to conditioned space by heat pipes; 

o criteria for applying re-heat; 

o method for applying re-heat; 

• set points of the conditioned space including 

o desired temperature; 

o desired relative humidity; 

• solar resource associated with the location. 

Several other parameters were analyzed, these include 

• priorities of management; 

• solar PV efficiency and cost; 

• solar thermal/hot water efficiency/capacities and cost; 

• solar PV and thermal/hot water incentives. 
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Data	  Collection	  

The first element of the analysis was to gather critical data.  The Site Energy Official 

(SEO) of the facility provided the data pertaining to the operational parameters of the 

heat pipes and the conditioned space set points (Study Site Energy Official, 2013).  The 

SEO was deeply involved in choosing and designing the heat pipe systems to be installed, 

and therefore is highly knowledgeable about the workings of the system. He has 

cooperated throughout the study and is considered an extremely reliable source of data.  

Weather data were collected for the period between September 10, 2012 and September 

13, 2013 from the website “Weather Underground” in the form of a comma separated 

value file (CSV) and includes the parameters found in Table 18 (Weather Underground, 

2013): 

Table 18: Types of Weather Data Gathered 

Data	  Type	   Units	  	   Daily	  info	  gathered	  

Temperature	   °F	   high,	  low,	  mean	  
Dew	  Point	   °F	   high,	  low,	  mean	  

Humidity	   	  %	  relative	  to	  saturation	  point	   high,	  low,	  mean	  

Sea	  Level	  Pressure	   inches	  Hg	   high,	  low,	  mean	  
Visibility	   miles	   high,	  low,	  mean	  

Wind	  Speed	   mph	   high,	  low,	  mean	  
Precipitation	   Inches	   sum	  

Events	   n/a	  
type	  of	  event	  (rain,	  fog,	  thunderstorm,	  
etc.)	  

 

The weather data were collected within 12 miles of the facility and thus should be highly 

representative of the conditions at the facility (Weather Underground, 2013).  The data 

for PV efficiency rankings were located on http://solarplaza.com and verified on the 

websites of the respective manufacturers as available (Solarplaza, 2012). The data for the 

solar PV energy generation potential in kWh/m2/day were gathered from maps located on 
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the National Renewable Energy Laboratory (NREL) website (NREL, 2013).  The data 

were found in the form of maps that showed average measurements for kWh/m2/day on a 

country-wide scale; the maps present both the annual average and monthly averages of 

kWh/m2/day for 1998–2005 (NREL, 2013).   

PV pricing information were gathered from the most recent (November 2012) 

NREL/SunShot report about the topic: “Photovoltaic (PV) Pricing Trends: Historical, 

Recent, and Near-Term Projections” (Feldman, Barbose, Margolis, Wiser, Darghouth, & 

Goodrich, 2012).  This report lists the current average prices for installed systems per 

Watt for 3 different sized systems – <10 kW, 10–100 kW, and >100 kW (Feldman, 

Barbose, Margolis, Wiser, Darghouth, & Goodrich, 2012). The report also provides data 

on pricing trends for larger, utility-scale systems (2–10 MW), but it was stated that these 

prices were not as accurate as the smaller-scale prices due to the fewer samples and 

highly individualized nature of the utility systems (Feldman, Barbose, Margolis, Wiser, 

Darghouth, & Goodrich, 2012).  

Information concerning the applicable incentives to install solar energy generation 

capabilities (mainly PV) was found on the NREL and NC State University Database of 

State Incentives for Renewables & Efficiency site, and then verified on the website of the 

body giving the incentive.  All data gathered were organized and processed as described 

below. 

Data	  Management	  and	  Initial	  Calculations	  

 Data were pasted into and organized within a set of Excel® worksheets.  The data 

from the SEO were provided in spreadsheet form and were processed as follows: 
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• Data irrelevant to this study i.e. those pertaining to locations other than the facility 

considered in this study were removed. 

• Missing data values were acquired directly from the SEO or estimated by 

interpolation: 

o The Florida Beach-Side Resort location data were incomplete, but the 

report that discussed them (Allen & Boll, [Florida] Heat Pipes for 100% 

Outside Air Units, 2008) included the daily total energy consumption for 

the heaters in kWh. After the SEO provided the hours per day that the 

heaters operated (recorded for a previous study), the heating capacity of 

the heaters was able to be calculated. 

• Daily fuel and electricity usage were calculated. 

• Costs (electric and fuel) to run the heaters in the systems were calculated. 

The data pertaining to PV efficiencies were input into a separate sheet for later use. The 

weather data were imported from a CSV file into a separate sheet, thus making easily 

accessible all data relevant to this study. 

Data	  Processing	  

After data were input and organized within Excel® worksheets, data processing was 

carried out as described below.   

Weather	  Data	  and	  Heat	  Pipe	  Operational	  Parameters	  

The heat pipe operational parameters and set points were used in conjunction with 

weather data for the site in order to determine the following: 
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• the number of days that the heat pipes were not operating, because the 

temperature was below 65°F; 

• the dates and number of days that heat pipes and heaters were operating at the 

same time, because outside temperature was below the set point temperature but 

above 65°F; 

• the dates and number of days when heating was required, days that were below 

68°F in winter and below 72°F during other periods; 

• the dates and number of days that required dehumidification (days in which the 

RH was >50% at room temperature), and the number that did not. 

• absolute humidity in g/m3 (AH). 

o AH was calculated with the following formula in Excel®:   

where D2 represents the mean temperature in °C and H2	  the	  mean	  relative	  

humidity	  (Vaisala	  Oyj,	  2013);!	  

• relative humidity at room temp given outside relative humidity by implementing 

the following steps (Mahidol Wittayanusorn School), (Vaisala Oyj, 2013): 

1. calculate the AH; 

2. calculate the saturated vapor density in g/m3 (SVD) using the following 

empirical formula in which Tc represents temperature in °C: 

𝑆𝑉𝐷 = 5.018+ .32321𝑇! + 8.1847×10!!𝑇!! + 3.1243×10!!𝑇!!          (2) 

3. divide AH by SVD and multiply by 100 in order to determine RH. 

𝐴𝐻 = 2.16679×

⬚

!!!6.116441×10
!.!"#$%&∗!!
!!!!"#.!"#$

⬚ !×
𝐻2
100

×100!! ((273.15+ 𝐷2)]          (1)! 	  
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Solar	  PV	  Cell	  Efficiency,	  Heater	  Energy	  Consumption,	  and	  Solar	  Energy	  Potential	  

The solar PV efficiency and cell size were used in conjunction with the heater energy 

consumption and energy generation potential data, to calculate the area and number of 

PV cells needed for placement of a sufficient number of solar cells to power the heaters, 

expressed in terms of both m2 and acres.  This was accomplished by dividing the power 

load of the heaters used in the heat pipes (Lh) by the efficiency of a given cell (EPV), and 

then dividing that answer by (4 kWh/m2/day ÷24 hours) (4 is the lowest expected 

kWh/m2/day “possible” in the area). It was divided by 24 hours to account for the fact 

that the 4 kWh is generated over the course of 24 hours; this results in the area (in m2) 

needed to generate the electricity required in a worst case scenario (where minimum 

average solar energy is provided at all times) (APV).  The 4 kWh/m2/day value is also 

used to aid in allowing for the space needed to avoid cross-shading, maintenance, 

inspection, and other factors that wouldn’t be accounted for otherwise.  It is also 

important to mention that the irradiance levels do not remain the same throughout the 

day, but the 4 kWh/m2/day is an average throughout the day.  The formula for this 

process is: 

𝐴!" =
𝐿!/𝐸!"

4  𝑘𝑊ℎ/𝑚!/𝑑𝑎𝑦  
24  ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦

          (3) 

Where APV is area (in m2) needed to generate the electricity in a worst case 

scenario: Lh	  is	  the	  power	  load	  of	  the	  heaters	  (in	  kW);	  and	  EPV	  is	  Efficiency	  of	  

given	  PV	  cell	  (as	  a	  decimal).	  

Efficiency for the heaters was not factored in because, according to the SEO, the heaters 

are 100% efficient, thus no energy loss (Study Site Energy Official, 2013). The total 
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number of cells was calculated by dividing the given cell area by the area needed to 

generate the needed energy.   

Financial	  Data	  Processing	  

The approximate cost of PV installation was calculated using the average installed 

cost for solar PV installations greater than 100 kW according to Table 15, and 

multiplying it by the total power load of the heaters (Feldman, Barbose, Margolis, Wiser, 

Darghouth, & Goodrich, 2012).  This approach was taken because the costs given in the 

NREL report are for installed capacity, which is calculated to meet the energy needs of 

the location at which the PV is being installed, and already accounts for the efficiency of 

the cells and the PV energy generation potential of the location.  The one-time utility 

incentives were calculated from those relevant to the facility site (North Carolina State 

University; NREL, 2013), (North Carolina State University; NREL, 2012). 

The Florida Renewable Energy Production Tax Credit was somewhat more 

complicated to consider.  Installed capacity and area calculated was assumed to be the 

minimum solar irradiance of 4 kWh/m2/day on each day throughout the year as a 

conservative measure, in order to maximize assurance that the PV system accounts for 

all electricity required by the heaters.  In reality, the average annual solar irradiance 

ranges typically between 5.5 and 6.0 kWh/m2/day, dropping as low as about 4 

kWh/m2/day only in December (NREL, 2013).  The most probable tax credit scenario 

was estimated as follows: 

1. The most frequently-occurring solar irradiance value in a given month was 

determined within a 0.5 kWh/m2/day range (for instance 5.5–6.0 kWh/m2/day) 

the larger was used and the quotient of the most probable irradiance level and the 
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lowest irradiance level (4 kWh/m2/day) was calculated, (i.e. if the given was 5.5-

6 the calculation would look like 6/4 = 1.5) this quotient was used to calculate the 

most probable amount of electricity generated from the PV installation. 

2. The monthly frequency distribution of the solar irradiance values throughout the 

year was then determined by calculating the number of days at each irradiance 

level. (i.e. the higher of the average irradiance levels was 5.0 in September and 

November, each has 30 days, so 30 + 30 = 60 days the irradiance level was at 5 

kWh/m2/day, so the frequency distribution for the irradiance level of 5 would be 

60 days out of the year). 

3. The following formula was then applied in order to obtain a dimension-less 

factor for the actual irradiance level versus the “worst case scenario” irradiance 

and also to obtain the total amount of electricity generated by the PV installation 

at the given irradiance level during the year: 

𝐶!   ×   
𝐼𝑅
4   ×  24   ×  𝐷!"           (4) 

Where Ci represents the installed capacity of the PV system (in kW) 

assuming a PV energy generation potential of 4 kWh/m2/day; IR 

represents the most probable solar irradiance level for a group of days; and 

DIR is the frequency distribution of a given solar irradiance level (IR).  The 

result was multiplied by 24 in order to account for the fact that the system 

was sized to generate the energy needed to completely power the heaters 

all day (24 hrs), so the capacity needs to be multiplied by 24 hours to 

account for the fact that the system is providing the given “x” kWh/m2/day 

every hour. 
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4. Equation 4 was then applied for each of the different irradiance levels. 

5. The quantities determined in Step 4 were summed and then multiplied by $0.01 

(the amount given per kWh generated by the tax credit) (North Carolina State 

University; NREL, 2013) 

6. This final result represents the best estimate of annual tax credit accounting for 

the varying solar irradiance level throughout the year. 

Since the heaters would likely be used even when dehumidification was not active, the 

annual cost savings (and thus the current annual cost) due to energy consumption is 

calculated according to the following steps: 

1. Calculate the number of days below 72 °F for spring, summer, and fall; and 

below 68 °F for winter; 72 °F and 68 °F are the set point temperatures for the 

conditioned spaces and processed air is used to maintain these temperatures 

(Study Site Energy Official, 2013). 

2. Calculate the electricity cost per hour to run the heaters by multiplying the sum 

of the total electric heating capacity (in kW) by 1.07 to account for transmission 

loss, then by the cost per kWh ($0.0655 per kWh) (Study Site Energy Official, 

2013).  

3. Multiply the result from Step 2 by 24 hours to determine the cost to run the 

electric heaters for one day. 

4. Multiply the result from Step 3 by the answer from Step 1 which represents the 

cost savings attributable to reductions in energy required from the grid needed 

and associated energy costs to run the heaters throughout the year.  In algebraic 

terms:  
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𝐶𝑜𝑠𝑡! = 𝐻𝐶  ×  𝐶𝑜𝑠𝑡!   ×  1.07   ×  24   ×  𝐴1          (5) 

where CostA is the annual cost to run heaters (this would also be the 

amount saved due to energy savings if PV is installed); HC represents the 

total capacity of all electric heaters in kW; Coste is the cost of electricity 

in $/kWh; and A1 is the results from Step 1, the number of days during 

which heating was required. 

The approximate initial cost with incentives was estimated by subtracting the two one-

time incentives from the calculated installed cost of the PV.  The undiscounted payback 

period (UPBP, in years) was then calculated using the following formula: 	  

𝑈𝑃𝐵𝑃 =   
𝐶𝑜𝑠𝑡! −   𝐼!"
𝐹𝐿!" + 𝑆!

           6  

Where Costi is the initial cost ($); IOT is the amount paid out from the one-time 

incentives ($); FLTC  is the amount paid out annually from FL renewable energy 

production tax credit ($); and SA is the annual savings from reduced energy usage 

($).   

 

Emissions	  and	  Fuel	  Data	  Processing	  

 The emissions and fuel usage values were more straightforward to calculate.  

Annual fuel usage was determined as follows: 

1. Determine the total kWh consumed in a year by multiplying the total heating 

capacity in kW by 24, then by 1.07 (to account for transmission loss), then by the 

number of heating days 
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2. Multiply the result from Step 1 by the amount of oil required to generate 1 kWh 

as found on the EIA website (Energy Information Administration, 2012): 

𝑂𝑖𝑙  𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 =    𝐻𝐶  ×  24   ×  1.07  ×𝐴1   ×  𝑃          (7) 

  

Where HC is the total capacity of all electric heaters in kW; A1is	  the	  

number	  of	  days	  that	  heating	  was	  needed	  (calculated	  for	  Equation	  5	  

already);	  and	  P	  is	  the	  amount	  of	  oil	  (US	  gallons)	  need	  to	  generate	  1	  

kWh	  of	  electricity.	  

3. Oil was assumed since it is the primary fuel used in FL for energy generation. 

Annual emissions were calculated as follows: 

1. Annual MWh consumption was estimated by multiplying the electrical load of the 

heaters (in kW) by 24 hours, then by 1.07 to account for transmission loss, then 

by the number of heating days, this represents the total kWh as above, then this is 

divided by 1000 to express as annual MWh consumption. 

2. The MWh consumption is then multiplied by the emissions factor in lbs/MWh 

obtained from (EIA, 2010) as shown below: 

𝐴𝑛𝑛𝑢𝑎𝑙  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =   
𝐻𝐶  ×  24   ×  1.07  ×  𝐴1

1000   ×  𝐸𝐹          (8) 

where HC is the total capacity of all electric heaters in kW; A1is the 

number of days heating was needed (calculated with Equation 5 already); 

and EF is the emissions factor in lbs/MWh. 

3. Equation 8 was applied to Sulfur Dioxide, Nitrogen Oxides, and Carbon Dioxide 
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The natural gas used to heat the hot water used in heaters that don’t use electric 

heaters was calculated in the following manner: 

1. Capacities of the heaters were summed to determine total MBtu/hr 

2. The total from Step 1 was multiplied by 1000 to get the Btu/hr 

3. The total from Step 2 was multiplied by 24 to determine Btu/day 

4. The result from Step 3 was then divided by 100,000 to determine the number of 

therms of natural gas consumed in a day  

5. The number of therms was then multiplied by the billing rate for the natural gas 

(which is on a per therm basis and was obtained from the SEO) to get the daily 

cost. 

6. The result from Step 5 was then multiplied by the number of days that required 

heating to obtain the annual heating cost 

7. The formula for this would be:  

𝐶𝑜𝑠𝑡!" =
𝐻𝐶!"  ×  1000  ×  24

100,000   ×  𝐶𝑜𝑠𝑡!   ×  𝐴1          (9) 

where CostHW is annual cost to run hot water heaters in heat pipes; HCng is 

total capacity of heaters (in MBtu/h) using hot water in the heat pipes; 

Costt is cost per therm of natural gas; and is A1 is the number of days 

heating was needed (already figured for Equation 5). 

8. No additional calculations were performed with regard to this form of heating. 

After the annual cost to run hot water systems was calculated; the complexity of 

the system that would need to be installed was determined; along with the 

complexity involved in calculating a reasonably accurate capital cost was 

determined; it was decided that it would be impossible to calculate a reasonably 
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accurate initial cost with the available information.  In order to further explain 

solar hot water heating and address why more detailed assessments are needed on-

site, more research was performed to gain more insight into the components of a 

solar hot water system and how they are arranged in different types of systems.  

This information is presented in the first part of the results & analysis section.  

Priorities	  for	  Analysis	  

Once all requisite values were calculated as described above, the resultant data along 

with the information described in previous chapters were analyzed with guidance from 

the facility and with consideration for specific environmental concerns that are described 

below: 

• The SEO emphasized that financial savings were a major priority of the facility. 

• The SEO also articulated that simplicity of the system is important because it 

minimizes the need for maintenance and reduces outages.  These factors relate 

directly to minimization of costs and with respect to logistics given that the 

facility is in use twenty-four hours each day, 7 days each week (Study Site Energy 

Official, 2013).   The facility operates in this manner throughout the entire year, 

with un-planned outages presenting extreme inconvenience, and where even 

routine maintenance requires a great deal of planning and coordination. 

• The Facility also has corporate citizenship goals (described in more detail later) 

that must be met. The current goals have already been met but the SEO 

anticipates new goals being set in the near future.  The current and future goals 

consider (or will likely consider) GHG emissions and renewable energy sources, 
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and the 2012 performance summary also stated that new goals would likely be 

announced in the near future. 

• As mentioned, the environmental impacts associated with installation of PV and 

reduction of fuel requirements were considered. 

 

With these priorities in mind, the data and associated information were analyzed to 

determine what, if any, improvements could be justified to reduce the cost of operating 

the heaters in the heat pipe dehumidification systems.               
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Results & Analysis 

Hot	  Water	  Heat	  Pipe	  Heaters	  and	  Solar	  Hot	  Water	  	  

As seen in Table A1 in the appendix, there is a fairly even split between electric strip 

heat and central hot water being used to reheat air after it leaves the heat pipes, with 11 heat 

pipes using electric strip heat and 9 using hot water (Study Site Energy Official, 2013).  It is 

also important to note that the annual cost to operate the hot water heating systems is more 

expensive than running the electric heaters as shown by Tables A1 and 19.   

Table 19: Gas and Electricity Costs 

This cost (282,195 Therms/year @ $0.6038/Therm 

with the 80% efficiency given by the SEO= $170,389.34 per 

year) suggests that pursuing a retrofit would likely yield 

economic benefit. The issue is that because of the complex 

nature of integrating solar thermal into an existing hot water 

system an accurate cost would be extremely difficult if not impossible to obtain without an 

onsite inspection performed by an experienced professional with access to all of the relevant 

system. (Study Site Energy Official, 2013).  

One critical factor is that hot water flow rates through the heater in these systems can 

be varied (Study Site Energy Official, 2013).  Such control suggests that the $170,389.34 

per year in fuel cost is likely to be reduced in cases when the heaters do not need to operate 

at maximum capacity.  Further, these systems do not often need to operate all day, as was 

assumed to be the case in order to estimate the annual cost of operation; these particular 

systems provide air to maintain the set-point temperature and need not necessarily provide 

neutral air or be on constantly, rather they operate as “on-demand” systems.  This suggests 

Cost of electricity $/kWh 
0.0655 

Cost- $/Therm of Natural Gas 
0.6038 

Total Electricity cost/hr ($) 
45.4439 

Total Gas cost/hr ($) 
56.80 
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that when the EMS/BCS determines a rise in entering air temperature is needed, it switches 

the system on and sets it to the appropriate heating setting, then turns the system off when it 

is determined that heating is no longer needed.  This means that the annual cost is likely 

lower than the $170,839.34 estimated.  

 It is also important to note that these systems are already connected to a central hot 

water system that provides hot water for other uses. This means that the heating system only 

needs a heat exchanger, variable volume valve or pump, and some connections to the central 

system, making it much simpler than a solar system (Study Site Energy Official, 2013).  

This is because the type of solar thermal system needed (likely an indirect active system – a 

system that is actively pumped and where the water is heated by a refrigerant/coil that is 

heated by the sun and not directly by the sun) would need a refrigerant, multiple heat 

exchangers, storage tank for the water, a pump, and heating system exposed to the sun, in 

this case likely an evacuated tube system (U.S. Department of Energy, 2012).   

 The reason an active indirect solar thermal system would likely be best suited for 

this location is because the pumps help control the volume of water being used and with the 

hot water storage tank the water being heated can be stored for hours until it is needed (U.S. 

Department of Energy, 2012). The storage capability is important since the most heating 

would be needed at night (Study Site Energy Official, 2013).   

Along with the above information, it is important to note that if the system were to 

be roof mounted structural loads would need to bear much high loads for the water storage 

tanks, or else have them mounted elsewhere on the premises.  If they were mounted 

somewhere else on the premises then measures to inconspicuously install pipes and pumps 

would also need to be taken, adding more to the costs and complexity.  The cost of a solar 
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hot water system also varies greatly; it was found that in OECD countries the price ranges 

from $460 - $2050 per kW of installed heating capacity (REN21, 2013).  This wide variance 

in price is due in part to the cost of labor, parts, availability of components, quality of solar 

resource, and specifics to the site (REN21, 2013).  For example, it tended to cost more for a 

retrofit than a new installation due to the extra labor involved (REN21, 2013).  This wide 

range of prices and the lack of available information regarding the hot water system and 

other location specific information make it impossible to assess an accurate cost. 

Having the heaters in the central hot water loop may also invite a “single point of 

failure” situation where if the central hot water system goes down, so does the heater.  

However, this heating system is extremely well maintained; if it goes down, the chance of it 

going down on a day that would need heating is 34% of the chance of failure and 24% on a 

day that would require the heat pipes and heating (Study Site Energy Official, 2013).  This 

single point of failure argument can also be rebutted with the fact that if solar thermal is 

installed it would add many more systems to fail (mainly pumps, tanks, and collectors for all 

the systems required) and add more components to maintain as opposed to one main boiler.   

Another operating parameter to consider is the water temperature required for the 

heaters.  The water in the hot water system is 160°F, which is fairly high for a solar hot 

water system solar as they typically heat water to the mid to high 90s°F (Fu, Pei, Ji, Long, 

Zhang, & Chow, 2012). This is well below the temperature required for the heaters in the 

heat pipes (Study Site Energy Official, 2013).  There are two types of systems that can be 

used to heat water to the temperatures required, these are flat-plate collectors and evacuated 

tube collectors.  For flat-plate collectors the highest temperatures are generally only 

reachable when the sun is directly aligned with the panels (Sunmaxx Solar Hot Water 
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Solutions, 2012).  The evacuated tube collectors are generally capable of maintaining water 

at over 200°F even when outside air temperatures reaches below freezing (maximum 

temperatures range from 170°F to 350°F). They are also capable of generating these high 

temperatures at a variety of solar altitude angles; this would make them well suited for the 

heat pipe heaters (Sunmaxx Solar Hot Water Solutions, 2012), (U.S. Department of Energy | 

Energy Efficiency & Renewable Energy, 2013).   

The downside with both of these systems is that they tend to be fairly expensive and 

large (Sunmaxx Solar Hot Water Solutions, 2012), (U.S. Department of Energy | Energy 

Efficiency & Renewable Energy, 2013).  The size issue is especially important for the 

evacuated tube systems, as they are extremely efficient and run the risk of over-heating and 

over-pressurizing when the water gets too hot.  Because of this it would need to be over-

sized to avoid over-heating and pressurization or have a “dummy load” to dump excess heat 

into (which would add to the space requirement) (U.S. Department of Energy | Energy 

Efficiency & Renewable Energy, 2013).  The issue of overheating is especially relevant 

because the heater would not likely be used when the solar irradiance is at its highest (this is 

because heating is usually not needed when solar irradiance is higher, this is shown in Table 

A2 in the appendix) unless they are connected to the existing hot water system and used for 

normal hot water loads (again adding more complications).  Because of this the hot water 

would not get used as often and would build (along with pressure) for extended amounts of 

time; so this must either be compensated for when designing the system (as mentioned 

before) or the heater can be connected to the rest of the system and allow the water to be 

used.   
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One must also consider the time of year when these heaters are most often needed, 

which is typically during the colder months when a lower solar irradiance prevails. This 

means that in order to make them effective they would have to be sized to provide the hot 

water required during the coldest months and remain under-utilized during the warmer 

months when they are most efficient, or else used to supplement the boiler. This suggests 

that the solar thermal heating system would take up a fair amount of space, only be utilized 

for its original purpose about 34% of days, and be utilized to its full capacity an even lower 

amount of the time.  This point is verified by examination of Table A2 which shows the 

mean temperature, date, and solar irradiance in kWh/m2/day and the pattern that is shown is 

that typically as the temperature drops, so does the solar power generation potential.  Tables 

26 & A2 also show and summarize the days during which heating would be necessary, and 

thus the days when the heaters would be active. 

The existing technique of using hot water from a central source to meet the heat 

pipes re-heat requirements is cost effective.  The fact that the annual cost is $170,389.34 to 

operate the hot water heaters makes it likely that installation of a solar thermal system to 

provide an alternative heating source would be a worthy investment.  But without proper 

investigation into the buildings heating systems, it is impossible to obtain any semblance of 

an accurate capital cost. Further, solar thermal systems would require possible structural 

reinforcement, would involve a fairly large investment due to the relatively high 

temperatures needed, and would only be used ~1/3 of the time for their intended purpose. 

Thus, the current approach appears to be an appropriate one.  Even though the current 

system requires the burning of natural gas to obtain heat, the fact that the system is already 

installed and simpler than any solar hot water system that could be added, suggests that the 
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status quo is the most attractive option for the present time.  But it is also possible that an in 

depth investigation into the costs and benefits of installing solar thermal heating capabilities 

would yield favorable results.  Because of the complexity, lack of access to needed 

information (namely hot water system schematics and labor costs from local installers), the 

wide range of possible costs, and the lack of incentives, PV was focused on for this thesis 

since a usable conclusion and recommendation could not be drawn with available 

information. 

Electric Strip Heat Pipe Heaters and Solar PV 

As was observed in Table A1, eleven of the twenty heat pipes use electric strip 

heating (this is demonstrated by the fact 

that eleven heat pipes shown in Table A1 have 

values in the “Heating kW” column and nine 

have values in the “Heating MBtu/h” column), 

which would consume a great deal of energy 

and cost only slightly less than the hot water 

heating system as can be seen in Table 21. In 

Table 21, the Annual energy savings is equal to 

the annual cost of electricity to run the electric 

strip heaters.  There is the potential for significant energy and cost savings. 

As shown in Table 20, the most efficient production PV cell model is the 

Sunpower Gen3 Maxeon cell, which can operate at a peak efficiency of 22.5% 

(Solarplaza, 2012), (Sunpower, 2011).  Table 20 also describes the number of cells and 

associated area would be required to generate sufficient electricity at the most 

PV summary  
PV Cell type 

Sunpower - Gen3 Maxeon Cell 
Cell area (mm^2) 

16900 
Cell efficiency (%/100) 

0.225 
Assumed kWh/m2/day 

4 
Area of solar cells/panels needed 
(m2) 

18,501.33 
Area of solar cells/panels needed 
(acres) 

4.57 
# Cells needed 

1,094,754 

Table 20: Solar PV Needed Capacity Summary 
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 conservative value of irradiance to 

power all heaters at full capacity.  The 

number of panels needed would be 

15,205, 11,404, or 8553 depending on 

which size panel was used.  Table 21 

shows a summary of the financial 

implications of installing PV, as can be 

seen there are a possible $150,000 

worth of one-time incentives to be 

used toward the installation price of the system.  The cost of the system with incentives 

was calculated to be approximately $3.2 million.  

       One caveat to consider is that this analysis assumed an installed cost of $4.87/watt 

installed consistent with the NREL PV Price report by (Feldman, Barbose, Margolis, 

Wiser, Darghouth, & Goodrich, 2012) for systems >100 kW.  The same report also 

mentioned that utility-scale installations (defined as installations between 2 and 10 MW 

in capacity) are subject to more uncertain prices depending on the specific situation 

(Feldman, Barbose, Margolis, Wiser, Darghouth, & Goodrich, 2012).  The NREL report 

gave the following prices per watt for utility-scale systems:  

•  $6.25 was the highest price 

• $3.42 was the capacity-weighted average price in 2011 

• $2.97 was the lowest price 

If the initial costs (fewer incentives) are based upon the prices shown above, the results 

vary according to Table 22. 

Financial/Fiscal Results 
Approx. Initial cost for solar cells ($) w/o incentives 

$3,378,806.00 
Total Utility Incentives  

$150,000.00 
Florida Renewable Energy Production Tax Credit 
Max/year 

$85,087.63 

Approx. Initial cost for PV w/ incentives 
$3,228,806.00 

Annual energy savings (from reduced energy 
consumption) 

$145,875 
Undiscounted payback period (years) 

13.98 

Table 21: PV Financial Implications 



83	  

	  
	  

 

 As shown, there is significant cost variation to be considered when working on a large 

scale.  As the installed capacity increases, the installed cost per watt generally decreases 

(Feldman, Barbose, Margolis, Wiser, Darghouth, & Goodrich, 2012).  It is not 

unreasonable, therefore, to assume that a system of the size in question (693.8 kW) would 

have an installed cost closer to $3.42/Watt as opposed to $4.87/Watt (Feldman, Barbose, 

Margolis, Wiser, Darghouth, & Goodrich, 2012). 

 The initial cost is not the only financial aspect to be concerned with; one must also 

consider the annual energy savings, the continuous incentives, and ultimately the PBP.  

As shown in Table 21, the annual energy savings from reduced heater energy 

consumption were the same as the annual energy costs ($145,875) (Study Site Energy 

Official, 2013).  Also shown in Table 21, the annual tax credit was found to be 

$85,087.63 per year, which would likely vary year to year due to variations in solar 

irradiation.  When these annual savings are added together the total repeating annual 

savings/credit pertaining to the installation of PV cells ($230,963) is determined.  From 

this the PBP of the system considering only the energy saved from reduced heater energy 

use is determined, which for an installed cost of $4.87/W would be 13.98 years, although 

this is a conservative estimate because of the economics of scale pattern mentioned above.  

	  
Cost	  -‐	  $/Watt	   Initial	  Cost	  for	  PV	  system	  ($)	   PBP	  (years)	  

Minimum	   $2.97	   $1,549,810.00	   6.71	  
Maximum	   $6.25	   $4,186,250.00	   18.13	  
Average	   $3.42	   $2,222,796.00	   9.62	  

Table 22:  Undiscounted Payback Period and Initial Cost for PV System Adjusted for 
Different Prices/W. 
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The PBP for three alternate prices are also shown in Table 22 above.  There is a variation 

of over 10 years between the shortest and longest PBP, and a difference of 4.36 years 

between the 2 median PBPs; this suggests that it is critical to receive a highly accurate 

estimate from the company that installs the system.   

 A major benefit of PV in this application is that, when not being used to power 

the heaters, the PV 

system they can 

still be utilized for 

other purposes.  

This suggests that 

the PBP is likely to 

be even shorter 

than estimated due 

to additional 

energy savings.  These savings are described in Table 23. As seen in Table 23, if the PV 

installations are connected to the balance of the electricity grid in the facility and utilized 

full-time, they have the potential to generate significant savings annually ($596,337).  

This would reduce the PBP value to the ones shown in Table 24.	  

 

	  

Cost	  -‐	  
$/Watt	  

Adjusted	  
PBP	  
(years)	  

Difference	  
(years)	  

Average	  @	  >100kW	  Cap	   $4.87	   4.74	   9.24	  
Minimum	   $2.97	   2.27	   4.44	  
Maximum	   $6.25	   6.14	   11.99	  
Average	   $3.42	   3.46	   6.16	  

Florida Renewable Energy Production Tax Credit Max/year 
$85,087.63 

Approx. Initial cost for PV w/ incentives 
$3,228,806.00 

Annual energy savings (from heater reduced energy consumption) 
$145,875 

Undiscounted payback period (years) 
13.98 

Possible annual Savings w/ PV being utilized full-time 
$596,337 

Undiscounted payback period - assuming best case PV energy 
generation (years) 

4.74 

Table 23: Financial fringe benefits of PV installation 

Table 24: PBP for PV System Adjusted for Savings From Utilizing PV Full-time 



85	  

	  
	  

    This potential for significant savings must be considered when considering a PV 

installation.  Once a system pays back, future energy savings results directly in new 

revenues to the organization. 

    As shown, there is a considerable Financial benefit to be realized if solar PV system 

were implemented.  If a system were to perform according to the estimations presented, it 

would be cost effective to pursue PV since the area required is only 4.57 acres (according 

to Table 20) out of more than 10,000 acres across the entire facility. 

It is also important to consider environmental benefits.  As shown in Table 25, the 

fuel oil used to generate the electricity required to power the heaters each year has 

associated with it emissions (EIA, 2010).  Oil-burning power plants are the most common 

in the area where the 

facility is located, 

and in the state of 

Florida in general, 

unlike the majority 

of the country 

throughout which 

coal is the more 

common fossil fuel used for power generation (EIA, 2010), (Duke Energy, 2013). 	  

	   If it is considered that PV is utilized even when the heaters are not, than the 

potential oil and emissions savings can be seen in the green text in Table 25.  An offset of 

pollutant emissions and fuel usage would result.  There are several implications from this.  

First, improved air quality in the area nearby and downwind of the power plant(s) 

Oil required to meet annual energy demands (US Gallons) 
178,168 

Sulfur Dioxide Emissions (lbs) 
3,340.65 

Nitrogen Oxide Emissions (lbs) 
2,227.10 

Carbon Dioxide Emissions (lbs) 
2,652,470 

Possible Oil savings w/ PV utilized full-time (US Gallons) 
728,350 

Possible Sulfur Dioxide Emissions Prevented (lbs) 
13,656.6 

Possible Nitrogen Oxide Emissions Prevented (lbs) 
9,104.37 

Possible Carbon Dioxide Emissions Prevented (lbs) 
10,843,300 

Table 25: Oil Consumption and Emissions usage and possible 
prevention 
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generating the electricity used at the facility would be realized.  Second, positive 

publicity for improved “green” practices and becoming one of the first large facilities in 

the area to install large-scale renewable energy could result.  Third, such implementation 

could be used to meet future citizenship goals. 

Table 25 quantifies the magnitude of emissions that can be avoided by powering 

only the heaters with PV (shown in orange), and how much pollution and fuel usage can 

be offset by maximizing use of PV (shown in green).   

 Another important factor that must also be considered is the manner in which the 

heaters are controlled.  The heaters are not simply “on/off” systems; they operate on a 4-

stage protocol, meaning that they have 1 “off” and 4 “on” settings.  The settings are as 

follows: off, 25% capacity, 50%, 75%, and 100% (full) capacity (Study Site Energy 

Official, 2013).  This suggests that the heaters are likely not going to operate at full 

capacity every time they are activated, but instead at one of the lower capacities.  The 

issue presented with this type of system is that the EMS/ECS controls the capacity at 

which the heater operates and does so “on the fly” (Study Site Energy Official, 2013).   

The concern is that the EMS/ECS doesn’t record how often the heaters are at a 

certain capacity step, in fact, there are no meters on the heaters at all, electricity usage is 

just per building or system, not parts of a system (Study Site Energy Official, 2013).  

This implies that there is no way to procure an exact reading of the amount of energy the 

heaters consume without installing meters (which is time-, cost-, and permission- 

prohibitive in this case).  Given that there is at present no way to install meters, 

assumptions had to be made about how often they operated, and thus it was assumed that 

when operating the heaters would be all day at full capacity.  The reason for this 
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assumption is that, in order to estimate the amount of time spent at each capacity, the 

author would have needed to be well versed in the operating parameters of the EMS/ECS 

system specific to the different heat pipes. Time constraints prevented such 

familiarization and thus the access to the system needed was unavailable.   

This suggests that it is very likely that the heaters did not use as much energy as 

was assumed, thus estimations of emissions prevented, energy saved, fuel saved, and 

financial savings associated with heater consumption of non-renewable energy is likely to 

be lower than predicted.  However, it is important to observe that power generated by PV, 

even if demanded less by the heaters, is still available to serve other purposes.  Thus, 

there is the possibility of similar savings, but from a different energy usage sector.  In 

summary, the fact that the heaters operate at incremental capacities and do not necessarily 

operate all day when they are on does not necessarily negate the savings calculated, but 

shifts a portion of the savings to another energy usage sector. 

Weather Data and Heat Pipes vs. Desiccant Dehumidification 

 As seen in Tables 26 & A2 (Table A2 in Appendix) there was a wide range of 

temperatures and 

humidity levels 

observed. It can 

be determined 

from the data in 

Table 26 that 

almost every day the site requires dehumidification to some degree (346 of 368 days), 

#	  Days	  Heat	  Pipe	  not	  Cycling	  (OA<65°F)	   83	  
Heat	  Pipe	  and	  Heating	  Days	   89	  
Days	  That	  Needed	  Heating	  (T<72°F	  or	  T<68°F	  in	  
winter)	   125	  
Non-‐Dehumidification	  Days	   21	  
Dehumidification	  Days	   346	  
Days	  Requiring	  Dehumidification	  w/o	  Heat	  Pipes	   26	  
Days	  Using	  Heat	  Pipes	  and	  Heating	   88	  

Table 26: Summary of Heating and Dehumidification Demands: 9/10/2012 

- 9/11/2013 
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and that for those days needing dehumidification only 88 of the 346 days require heating.  

Another observation is that among the days requiring dehumidification, only 26 were too 

cold for the heat pipes to operate, this suggests that the heat pipes only use energy for 

heating 88 days of the period examined (Study Site Energy Official, 2013), (Weather 

Underground, 2013).  All this implies that the facility has chosen one of the more 

appropriate dehumidification techniques for their location.  One of the reasons for this 

assessment is that, as was mentioned in the previous chapters, the other major type of 

dehumidification that has been generally deemed suitable for this type of climate 

(desiccant dehumidification) has the disadvantage of requiring excessive cooling after the 

air has exited the dehumidification chamber (ASHRAE, 2012). The reason this excessive 

cooling is needed is because the air exits the dehumidification stage significantly  

hotter than it entered (ASHRAE, 2012).  The need for such cooling increases the energy 

demand to a level much greater than when powering the heaters for the heat pipes since 

active cooling generally requires more energy than for active heating of a space 

(ASHRAE, 2012).  

The last statement speaks to why Florida outpaces the rest of the nation in terms of 

electricity consumption, and why 27% of the electricity consumed in Florida is to power 

air conditioning systems (the largest percentage in the nation) (EIA, 2013).  Another 

reason why the heat pipes are best suited for the facility being examined is that they offer 

a much simpler design than for a typical desiccant system.  The simplicity of heat pipes 

becomes apparent when comparing Figures 6 and 7; in Figure 5, we note that there are at 

least four major moving parts in this system	  (Narayanan, Saman, & White, 2013):	  

• the fan that moves the regeneration air; 
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• the fan that moves the cooling air; 

• the fan that moves the supply air; 

• the desiccant wheel (rotates). 

In Figure 6, we see only one major moving part, the fan that drives the air through 

the heat pipe and into the space (Allen & Boll, [Florida] Heat Pipes for 100% Outside Air 

Units, 2008).  Desiccant systems are also more complex in terms of maintenance 

(ASHRAE, 2012).  As mentioned above, typical desiccant systems require desiccant 

replenishment or replacement every 5 to 10 years if routine filter cleaning and 

maintenance are done; if proper maintenance is not applied then the desiccant can 

become contaminated and may need to be replaced every ~2 years (ASHRAE, 2012).  

Alternatively, heat pipes require only routine inspection, leak repair (if/when it occurs), 

and cleaning; these maintenance steps amount to much lower annual labor and part 

(maintenance) costs (Allen, June 14, 2013), (Wu, Johnson, & Akbarzadeh, 1997). One 

potentially problematic aspect of heat pipes at the facility is that they use R-22 as the 

refrigerant (Study Site Energy Official, 2013).  The small amount used and the fact that 

the system is closed and sealed, however, reduces the risk of refrigerant escaping and 

causing damage to the ozone layer and adding to GHG emissions (Study Site Energy 

Official, 2013).   

Prior analyses and the weather data presented in Tables 26 & A2 show that cold 

weather dehumidification is not required in the facility because of the few number of 

days that are below the minimum operational temperature of the heat pipes that require 

dehumidification.  The complexity of the desiccant systems also disqualifies it from 

being suitable for use in the facility given the simplicity of the heat pipes.  The desiccant 
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systems are also not well suited for use at the facility because they don’t work well with 

100% outside air systems, and all but four of the heat pipes are 100% OA (Study Site 

Energy Official, 2013), (ASHRAE, 2012).  Desiccant systems are not suitable with 100% 

OA because of the heat gain. If the inlet air temperature is assumed to be 90°F @ 80% 

RH (typical daily conditions seen at the site during the summer) the outlet temperature 

would be 130°F, this would then need to be cooled to 72°F at the highest to be usable in 

the conditioned space.  
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Chapter 6: Conclusions and Recommendations for Possible Improvements to 
Heat Pipes 

Heat Pipes with Hot Water Heaters 

 As discussed in the previous section, the hot water heat pipe heaters are already 

operating at an annual cost close to that of the electric heaters.  Because of the annual 

cost (approximately $170,000) and the fact that it is integrated into central systems that 

operate with or without the heat pipes connected, any attempts to improve upon the 

effectiveness of these systems would likely be cost effective and is recommended under 

one condition.  The condition is that a thorough investigation be conducted into the costs 

and benefits of retrofitting the heating system(s) with solar hot water capabilities as well 

as new and more efficient boilers (no information about the actual central boilers was 

provided aside from the information provided in Table A1 regarding the capacity of the 

heaters).  Some of the costs for the solar hot water system may include the capital cost of 

the system itself, the labor involved installing the system, and the cost to reinforce the 

structures if needs be (this is far more likely than with PV since the storage tanks and 

pumps would weigh much more). 

Heat Pipes with Electric Strip Heaters and Implementation of Solar PV 

 The electric heat pipe heaters present a major opportunity for improvement in 

efficiency and implementation of renewable energy technologies.  The opportunity exists 

to implement renewable technologies to offset the energy required to operate the heat 

pipe heaters by incorporating solar photovoltaic. PV would have the potential to provide 

power for the heaters, and while the heaters do not operate at all times, the PV can be 

used to provide power for other applications as well.  It is shown in Table 23 that the 

implementation of PV has the potential to save the facility a total of almost $600,000 
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including the roughly $146,000 saved just for the heaters.  The financial analysis 

presented justifies the recommendation that solar PV be installed with a PBP between 

6.14 and 2.27 years, assuming an electricity cost between $2.45/watt and $6.25/watt with 

the likeliest cost falling between $4.87/watt and $3.42/watt).  In terms of environmental 

benefits, to the PV system could save about 728,000 US gallons of residual fuel oil and 

prevent roughly 11,000,000 lbs of CO2, 9,100 lbs of NOx, and 13,600 lbs of SO2 from 

being emitted and aid in meeting the citizenship goals for the facility. 

Another consideration is the area needed to install the PV system, which for the 

facility being examined is not a barrier. The large size of the buildings involved would 

also make it possible to install a portion of the PV cells on the building roofs, reducing 

the ground area needed (Study Site Energy Official, 2013).  Table 20 reinforces the 

notion that area requirements would not affect the recommendation to pursue PV as a 

viable option to implement renewable energy technology to save energy.   

As mentioned above, implementation of PV technology would aid in meeting two 

of the current cooperate citizenship goals, and may even aid in meeting more depending 

on the details of future goals (Study Site Energy Official, 2013).  It is likely that 

installation of PV at this time could be applied toward the next round of corporate 

citizenship goals, further strengthening the recommendation to install PV.  The majority 

of corporate citizenship goals expire in 2013. It is therefore recommended that the 

installation of PV should be timed to occur when new citizenship goals are released, in 

order to meet the new goals and gain positive publicity. 

It is strongly recommended that solar PV be pursued in order to provide the power 

needed to operate the heat pipe reheat coils and provide a clean source of power for other 
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ancillary systems. This analysis identifies multiple benefits: almost $600,000 in energy 

savings per year with an undiscounted payback period of 6.14 years, significant GHG 

offsets, 728,000 US gallons of fuel oil conserved annually, and contributions toward two 

citizenship goals. The required land areas for the PV installation is estimated at 4.57 acres 

of land,  It is also recommended that the SunPower Maxeon Gen3 silicone 

monocrystalline cells be considered for installation as they are the most efficient cells 

commercially and readily available (more efficient cells exist but are not in mass 

production at this time) (Solarplaza, 2012), (Sunpower, 2011). 

Heat Pipe vs. Desiccant Dehumidification 

 Because of the simplicity and versatility of the existing system, it is recommended 

that the facility continue to use heat pipes for dehumidification rather than desiccant 

dehumidification.  First, the major advantage of desiccant dehumidification is the 

extremely low minimum operating temperature as compared to mechanical systems (i.e. 

heat pipes); this benefit does not apply given the location of the facility.  For example, 

there were only 23 days that required dehumidification where the temperature was below 

the operational temperature range of heat pipes.   

Second, the desiccant system is more complex, featuring at least four major 

moving parts as opposed to only one for heat pipes (which isn’t necessarily part of the 

heat pipe but outside the heat pipe).  Third, the significant energy requirement to cool the 

air after it goes through the desiccant system (assuming typical site conditions the air 

would need to be cooled from ~130°F to 72°F after it exits the desiccant system due to all 

outside air being used) is not needed with mechanical systems.   
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Maintenance time and costs are also much lower for heat pipes as compared to 

desiccant systems given the lack of moving parts and the fact heat pipes are a closed, 

sealed system (Allen, June 14, 2013).  Only occasional cleaning and leak repairs are 

required on the heat pipes, while desiccant systems require routine filter cleaning 

multiple times per year, and desiccant replenishment/replacement every two to ten years 

depending on the type of desiccant and whether the filters are properly maintained (Allen, 

June 14, 2013), (ASHRAE, 2012). 

 Finally, replacement of the system would require a fairly complex operation and 

major investment of time and labor, thus unlikely that management would consider it.  

This is attributable to the high regard in which they hold their appearance and the fact 

that guests are in many spaces throughout the day and year.  To conclude, it is not 

recommended that desiccant systems be pursued; rather, heat pipes should continue to 

serve as the major dehumidification apparatus throughout the facility. 

Final Remarks 

 Heat pipes represent one of the more elegant solutions to dehumidification ever 

devised as they have no moving parts, and can re-heat the incoming air to within a few 

degrees of the temperature required without any extra energy input.  This is the main 

reason why the facility uses them.  They operate in conjunction with hot water heaters 

and electric strip heaters in order to heat air to the required temperature on the occasion 

that heat pipes alone cannot support a load.  It is recommended that the heat pipes 

equipped with hot water heaters be left to function as they do at present.  But it is also 

recommended that an investigation be conducted to accurately assess the costs and 
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benefits of installing solar hot water to replace the natural gas fired boiler currently 

providing hot water to the heat pipes.  

 It is also recommended that solar PV be considered as a means to implement 

renewable energy technologies and provide a renewable source of power for the electric 

heaters in heat pipes as well as to reduce the power drawn from the grid for other 

applications when the heaters are not being used.  Finally it is recommended that heat 

pipes be kept in place since desiccant systems are more complex, require more energy, 

and their low-temperature operation is not relevant at this facility.  The facility has 

already executed plans to conserve energy by implementing heat pipes and using single 

vendor ECS/EMS/BCS, among other measures.  PV-driven heaters in heat pipes used for 

dehumidification provide an opportunity for the facility to further advance as a leader in 

implementing green/renewable energy technology. 
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