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Abstract 

 

The prevalence of high stakes test scores as a basis for significant decisions necessitates 

the dissemination of accurate and fair scores. However, the magnitude of these decisions 

has created an environment prone to examinees resorting to cheating. To reduce the risk 

of cheating, multiple test forms are commonly administered. When multiple forms are 

employed, the forms must be equated to account for potential differences in form difficulty. 

If cheating occurs on one of the forms, the equating procedure may produce inaccurate 

results. A simulation study was conducted to examine the impact of cheating on IRT true 

score equating. Recovery of equated scores and scaling constants were assessed for five IRT 

scaling methods under various conditions. Results indicated that cheating artificially 

increased the equated scores of the entire examinee group administered the compromised 

form and no scaling methods adequately mitigated this effect. Future research should focus 

on the identification and removal of compromised items.  



CHAPTER 1 

Introduction 

The magnitude of the consequences associated with high-stakes tests has created 

an environment where some examinees resort to cheating (Cizek, 1999). A single score 

on a high-stakes test is often used to make potentially life-altering decisions about an 

individual. For example, test scores may determine whether an individual is certified to 

practice in a chosen profession or a student is accepted into an educational institution. 

With the increased prevalence of high-stakes testing, specifically in education through the 

No Child Left Behind legislation (NCLB, 2001), the threat of examinee impropriety has 

increased dramatically (Cohen & Wollack, 2006). When stakes are high, the testing 

organization must be certain that test scores accurately reflect each individual’s true 

ability. If any form of cheating, including prior knowledge of the item, influences the 

responses on a test, scores will inaccurately represent the individual’s ability and 

decisions based on the scores will be dubious at best (Haladyna & Downing, 2004).  

The susceptibility of high-stakes tests to cheating behaviors is increased through 

the re-use of test items. To prevent the spread of test items, testing companies frequently 

use multiple forms when tests are administered on different occasions. Despite attempts 

to create parallel test forms, the multiple forms that testing programs develop often vary 

in terms of difficulty. As a result, slight differences in form difficulty may unfairly 

disadvantage some test-takers. To assess test-takers accurately, equating designs are 

utilized in an effort to produce comparable scores across forms of varying difficulty. The 

most common equating design employed in large-scale testing is the non-equivalent 

anchor test design (NEAT; Holland, 2007). Under the NEAT design, common items, also 
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called anchor items, are placed on the multiple forms of the test and used to estimate the 

relationship between form difficulties. Consequently, as the number of forms increases, 

the exposure rate of anchor items also increases, rendering them prone to contamination. 

Because the anchor items are integral to the equating process, the contamination of 

anchor items will not only distort the meaning of an individual’s test score, but also 

inaccurately represent the differences between the test forms, potentially changing the 

scores for many examinees. 

Given the important decisions made from and the expanding use of high-stakes 

testing, it is necessary to investigate the potential effects of cheating on the equating 

process. Although much attention has been devoted to test security (Finkelman, Nering & 

Roussos, 2009; van der Linden & Veldkamp, 2004) and cheating detection (McLeod, 

Lewis & Thissen 2003; Wollack, 2006), little emphasis has been placed on understanding 

the interaction between cheating and the equating process. The purpose of this study is to 

examine how test scores are affected when cheating influences the equating process. 

Cheating in High-Stakes Testing 

The use of test scores to make high-stakes decisions has been frequently cited as 

motivation for test-takers to cheat (Nichols & Berliner, 2007). This motivation to engage 

in cheating behaviors undoubtedly increases as the stakes of the test increase. As 

previously stated, scores on educational tests, such as the SAT, GRE, LSAT and MCAT, 

often factor into selection. Low scores may impede access to higher education or to a 

desired career path. For certification and licensure tests, a single cut-off point may 

determine whether an individual receives a desired credential or is certified to practice in 
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a certain occupation. In these situations, even a slight increase in performance may push 

an individual past the critically important cut-off point. 

With the expansion of accountability testing, cheating has become disturbingly 

ubiquitous in society. Although it is difficult to ascertain the degree of cheating, 

particularly for large-scale exams due to the intense security surrounding testing 

procedures and possible negative publicity in revealing that cheating occurs 

(Cizek,1999), there is evidence that cheating behavior has seen a dramatic rise over time. 

A study conducted over the course of thirty years, from 1963 to 1993, on a sample of 

students from 99 United States based colleges revealed that test related cheating 

behaviors (copying from another examinee, providing answers to another student, and 

using prohibited notes) have each increased considerably (McCabe & Trevino, 1996). As 

a whole, the proportion of students from these colleges engaging in serious test related 

cheating has risen from 39% in 1963 to 64% in 1993, where serious test cheating was 

defined as copying answers, using prohibited notes, or having a confederate take the 

exam (McCabe, Trevino & Butterfield, 2001).  

Although no studies report the prevalence of cheating in high-stakes testing, there 

is no shortage of individual examples of cheating incidents. The Educational Testing 

Service (ETS) investigated a case of cheating on the Test of English as a Foreign 

Language (TOEFL) which led to the arrest and the potential deportation of 61 students 

(Li, 2003). Cisco Systems, a software security corporation, and Pearson VUE, a leading 

certification testing company, implemented new anti-cheating software to detect 

fraudulent examinees taking the test for another individual (Baron & Wirzbicki, 2008). 

An eight-month trial run of this software on a fraction of the company’s certification 
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exams caught 200 of these proxy test takers. Moreover, the president of the exam security 

vendor CertGaurd, Robert Williams, suspects that entire test forms may be compromised 

(all items obtained and released) in as few as 24 hours after the form’s initial use 

(Brodkin, 2008). It is clear that cheating still poses a serious threat despite the immense 

precautions and highly controlled environment employed in high-stakes testing.  

The methods employed by cheaters have become more ingenious in reaction to 

the increased security and pressure of testing (Cizek, 1999). There are many small scale 

methods exploited to cheat on tests. These methods are local to the test-taking site and 

include looking at other answer sheets, relaying information about the test through codes, 

bringing in cheat sheets hidden in discrete places, and having a substitute take the test for 

an individual. Localized methods will impact a small number of scores and are difficult 

to carry out in the strictly controlled and proctored testing environment that many large-

scale tests utilize.  

Large-scale cheating methods pose a much greater dilemma to testing programs, 

those interpreting the test scores, and the public. Large-scale cheating refers to severe 

breaches of test security that provide future test-takers access to items. One example of a 

large-scale cheating method is item harvesting. This method involves individuals or 

groups who take examinations with the intent to memorize and distribute the items. Item 

harvesting may severely compromise the item bank used to create test forms. Moreover, 

distribution of these items has become effortless with the proliferation of the internet. 

Cizek (1999) describes one such instance where item harvesters on the east coast would 

distribute items to west coast clients before they took the same tests later that day.  
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Research on statistical methods for preventing and detecting cheating has become 

increasingly popular with the rise of testing. A large portion of this research focuses on 

controlling the exposure rate of items in computer adaptive tests. Exposure rate refers to 

the proportion of examinees receiving an item in comparison to the total number of 

examinees administered the test. Put simply, items administered to the most examinees 

have the highest exposure rates. Therefore, items with high exposure rates are more 

vulnerable to contamination. In addition, the potential dissemination of these items poses 

a serious threat to the validity of test scores as the items are frequently encountered by 

examinees. It is necessary to control the exposure rate of items to prevent widespread 

dissemination of specific items, as well as reduce the negative impact resulting from a 

security breach.  

Several mathematical techniques have been developed in computer adaptive tests 

to limit the appearance of items (e.g., Stocking & Lewis, 1998), thus minimizing the 

opportunities for item harvesting. In non-adaptive testing, where forms are generated 

prior to administration of the test, item exposure is controlled through periodic testing 

administrations using different forms. Within each administration, the items that appear 

on a given form can be strictly controlled. In this case, testing companies can ensure that 

no item is repeated from one administration period to the next. However, the anchor 

items used in the NEAT equating design have necessarily appeared to a subset, if not all, 

of the examinees who have previously taken the exam. Therefore, the NEAT equating 

design introduces both positive and negative consequences for test-security. On one hand, 

the design controls the exposure of unique items on each form. In contrast, the threat of 

anchor set contamination is higher. Thus, exposure is minimized for a majority of the 
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items; however, exposure rates are raised for the items vital to establishing score equity 

across forms.  

Test Equating 

Equating is a process that adjusts scores from multiple forms to account for 

differences in form difficulty (Kolen & Brennan, 2004). When the equating function is 

accurate, the resulting scores on either form can be used interchangeably. Without 

equating, the form administered may influence scores intended to measure the same 

construct on a specified scale. Thus, equating is necessary to be fair to examinees 

receiving different forms and to help ensure that accurate decisions are made based on the 

scores.  

The need for equating can be demonstrated in the following situation. Consider 

two candidates applying for a position that uses scores on a certification exam as a 

measure of qualification. The candidates take the exam on different dates and thus are 

administered different forms. If the forms differ in difficulty, one candidate would be 

unfairly advantaged. The resulting scores would not necessarily be attributable to the 

ability of the candidates as they are confounded with form difficulty. This may create a 

situation where one candidate scores lower than the other solely due to the relative 

difficulty of their form. Moreover, failure to account for unequal difficulties in this 

situation may lead to the hiring of a less qualified candidate.  

Equating plays an especially prominent role in high-stakes testing. The 

importance of test security requires that testing companies develop multiple forms, as 

repeated administration of the same items would assuredly result in items becoming 

compromised. In addition, the significant decisions rendered based on high-stakes testing 
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require the equating function to be as precise as possible. Slight errors in the equating 

process can alter the scores for a large portion of the examinees (Holland & Dorans, 

2006). The consequences of an equating error may lead to students incorrectly being 

denied entry to the college of their choice or qualified professionals failing to achieve 

certification. In addition to the consequences for examinees, legal action can be taken 

against the testing companies when errors are found or suspected in the equating process 

(Allalouf, 2007). 

Prior to any statistical calculations, equating requires specific data collection 

procedures that allow for comparisons of difficulty across multiple forms. Three major 

equating designs exist: the single group design, random groups design, and the previously 

discussed non-equivalent anchor test design (Cook & Eignor, 1991; Kolen, 1988; Kolen 

& Brennan, 2004). Discussion on the single groups and random groups design are 

provided in chapter 2. In the NEAT design, anchor items are administered on both forms 

to be equated. Thus, equating scores on the two forms is facilitated through using the 

anchor items to account for existing ability differences between the groups taking the 

distinct forms. The logistic advantages of the NEAT design make it the most typically 

used equating design in practice. 

The NEAT design is particularly useful when a unique test form is given at each 

testing occasion, and results from latter administrations are linked back to the base form. 

Such is the situation for many high-stakes testing companies, which commonly 

administer tests on multiple, successive occasions throughout the year. For example, 

College Board administers the SAT on approximately seven occasions over the course of 

one year and introduces several new forms at each testing date (Cook & Eignor, 1991). 
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The use of multiple forms over time requires that items selected as part of an anchor 

block be used in previous administrations of the test (Kolen & Brennan, 2004). 

Consequently, the anchor items pose a threat to test security, as these items have been 

exposed to previous test-takers. The exposure of anchor items leaves them vulnerable to 

potential theft or harvesting during a previous testing occasion. As the NEAT design 

relies heavily on the anchor items to link the results from the otherwise distinct forms, 

even the slightest contamination of the anchor items will damage the integrity of the 

equating function.  

Item Response Theory in Equating 

A common method for conducting the equating of test scores is through item 

response theory (IRT). The advantages of IRT, specifically the invariance of item and 

ability parameters, make its use in test equating particularly appealing (Hambleton, 

Swaminathan, & Rodgers, 1991; Skaggs & Lissitz, 1986). Under IRT, each test 

calibration results in item parameters which are on a different metric. If the assumptions 

of IRT hold, the resulting item parameter metrics differ by a linear transformation. A 

critical step in the equating process is to obtain the appropriate slope (A) and intercept 

(B) constants to place the item parameters from different tests on the same scale through 

a process termed scaling. Accurate scaling is essential for the equating process to reflect 

the true difference between forms. Under the NEAT design, scaling constants are 

estimated entirely through the anchor items. Thus, any source of error in the estimation of 

the anchor item parameters could result in inaccurate scaling constants. 
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Purpose 

The proliferation of test scores as a basis for significant decisions necessitates the 

dissemination of accurate and fair scores. The validity of these scores has been threatened 

by the rise of cheating in high-stakes testing to epidemic status. Even though strict 

measures are taken to ensure test security, cheating has affected even the most secure 

tests. Moreover, equating requires test scores to accurately reflect examinee ability. If 

cheating causes the responses on a test form to inaccurately represent the ability 

distribution of a group of examinees, the equating function will incorrectly adjust the 

difficulty of the form. The prevalence of the NEAT design in large scale high-stakes 

testing further complicates this issue. The consistent exposure of anchor items may 

compromise the items specifically used to estimate the scaling constants and generate the 

equating function. When the equating process is compromised, the validity of the test 

scores for both cheaters and honest test takers comes into question. Moreover, honest test 

takers may be penalized if the equating inaccurately adjusts for the difficulty of the test. 

The purpose of the current study is to examine the impact of cheating on the 

equating process. Specifically, the study investigates how alterations in the equating 

process caused by cheating translate into errors in equated observed scores. In particular, 

the scaling constants and equated scores will be evaluated. Scaling constants provide a 

measure for evaluating how cheating specifically affects IRT equating. The evaluation of 

equated scores serves as a global measure to analyze the impact that the interaction 

between cheating and equating has on the scores reported to examinees. 

The current study will utilize a computer simulation to create a NEAT design 

equating procedure in which the anchor items have been exposed to a subset of the 
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examinees. Multiple IRT scaling methods will be evaluated under a variety of realistic 

conditions to determine if a specific scaling method consistently produces more accurate 

scaling constants in the presence of compromised items. Equating of number correct raw 

test scores will be carried out for each condition included in the study.  

The present study addresses a significant void in the literature. Previous studies 

have primarily focused on improving test-security through methods such as detection of 

cheaters and control of item exposure. Few studies have attempted to understand the 

effects of cheating on ability estimation in IRT (Guo, Tay, & Drasgow, 2009; Yi, Zhang, 

& Chang, 2008). Furthermore, no study has examined the interaction of cheating and the 

equating process. This study specifically addresses how cheating impacts the most 

commonly used equating design in high-stakes testing, which may have practical 

implications for both high-stakes testing companies applying equating procedures and 

examinees taking these tests.



CHAPTER 2 

Literature Review 

The purpose of this chapter is to discuss the relevant literature regarding Item 

Response Theory (IRT) equating. The chapter begins by outlining the basic tenets of item 

response theory in order to establish context for IRT equating. The following section 

presents the principles of equating, the prominent equating designs used in testing, and a 

brief overview of equating methods. Next, the five methods used in this study to place 

IRT parameters on a common scale are described and literature comparing the methods is 

evaluated. A comparison of IRT and conventional methods of equating is then presented, 

with a focus on the benefits IRT provides over conventional equating. The final section 

of the literature review assesses studies that have investigated the impact that 

compromised items can have on IRT estimation. At the conclusion of the chapter, the 

research questions addressed by the current study are presented and justified through the 

theoretical framework outlined in the literature review. 

Item Response Theory 

The use of item response theory for analyzing test data expanded in reaction to the 

shortcomings of classical test theory (Hambleton, Swaminathan, & Rogers, 1991). In 

common unidimensional IRT models, the probability of responding correctly to an item 

is dependent on the characteristics of that item and the ability of the examinee. Though 

IRT requires stringent assumptions to be met, IRT models allow for stronger inferences 

about the data than classical test theory. For example, the IRT standard error of 

measurement varies as a function of the latent ability, allowing practitioners to gauge the 

measurement quality of the instrument at different ability levels. The advantages of IRT 
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have made the use of these models appealing for equating purposes (Cook & Eignor, 

1991).  

IRT equating specifically benefits from the invariance property. The invariance 

property implies that, when the IRT model strictly fits the data, item parameters are 

independent of the ability distribution of examinees (Hambleton, Swaminathan, & 

Rogers, 1991). Thus, after a linear scaling transformation the same item parameters 

would be obtained regardless of the sample’s ability. Item parameter invariance alleviates 

much of the difficulty in disentangling group ability and form differences under the 

NEAT design. These advantages are discussed in more depth in subsequent sections.    

Numerous IRT models exist, each of which describe the relationship between 

items and ability in different manners. The following section focuses solely on the three-

parameter logistic (3-PL) IRT model given its widespread use in large-scale testing.  

The 3-PL model (Birnbaum, 1968) specifies that the probability of correct response to an 

item is a function of examinee ability and three item parameters. Mathematically the 3-

PL model is defined as, 

1.7 ( )

1.7 ( )
( ) (1 )

1

j j

j j
j j

i

i
i

a b

a b

e
P c c

e









  


,                                         (2.1) 

where P(θ) is the probability of correct response for an examinee of ability θi on item j. 

The scale of θ is arbitrary, ranging from negative infinity to positive infinity, and is often 

constrained to be normally distributed with a mean of 0 with variance of 1 in a particular 

sample of examinees. The parameters aj, bj, and cj  refer to specific item parameters for 

item j. The a parameter denotes how well the item discriminates examinees of varying 

abilities. Higher values of a indicate that the item is useful in discriminating examinees. 
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The b-parameter indicates the difficulty of the item, and is on the same metric as θ. 

Difficult items will result in higher values of b in comparison to easier items. The c-

parameter was developed to account for guessing behavior when multiple-choice items 

are administered. The c-parameter sets the absolute minimum probability of a correct 

response for a given item. Since the c-parameter often results in values below random 

chance due to quality distractors, this parameter is commonly referred to as the ―pseudo-

guessing parameter‖ (Hambleton, Swaminathan, & Rogers, 1991). 

The relationship between the probability of a correct response and the underlying 

latent ability can be visually represented through an item characteristic curve (ICC). For 

any particular item with estimated item parameters, the probability of correct response 

can be calculated for a given ability. This is accomplished through substituting the item’s 

parameters and the specified ability into Equation 2.1. The relationship between 

probability of correct response given the ability and item parameters is commonly 

represented as, 

( ; ;  ;  )ij i j j jp a b c ,                                                 (2.2) 

where pij is the probability of correct response for an examinee of ability θi on item j, 

given the item parameters aj, bj and cj. Item response theory assumes a monotonic 

relationship between ability and the probability of correct response. That is, examinees of 

higher ability will always have a greater probability of responding to the item correctly 

than examinees with lower ability values. Figure 1 displays an example ICC. Figure 1 

represents an item with the parameters: a = 1, b = .75 and c = .2.  

A test characteristic curve (TCC) can be calculated by summing the individual 

ICCs on a test. The TCC will range from the sum of the c-parameters for all items to the 
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total number of items and provides an expected number correct-score for a given ability 

(DeMars, 2010), referred to as the ―true score‖. Accordingly, the ―true score‖ for an 

examinee is found by evaluating the TCC at the examinee’s estimated ability value. In 

true-score IRT equating, the TCC plays an integral role in converting a score on one form 

to an equivalent score on another form.  

 
Figure 1. Sample Item Characteristic Curve Note. Item Parameters: a = 1, b = .75, c = .20. 

 

Equating 

As stated in the introduction, equating procedures were developed in order to 

ensure score comparability across multiple forms of a test by adjusting for minor 

differences in difficulty (Cook & Eignor, 1991; Kolen, 1988; Kolen & Brennan, 2004). 

Equating offers a method for disentangling the differences in test forms and examinee 

ability. Thus, equating is integral to preserve the accurate evaluation of an examinee’s 

ability. Several guidelines which define an equating procedure have been put forth.  
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Principles of equating. Several researchers have proposed requirements for a 

successful test equating (Angoff, 1984; Dorans & Holland, 2000; Kolen & Brennan, 

2004; Lord, 1980). Although differing slightly, the underlying themes of these 

conceptualizations are in accord. Five properties consistently arise from the literature: (1) 

the equating function must be symmetric, (2) the different forms to be equated must 

measure the same construct, (3) the statistical reliabilities of the two test forms should be 

equivalent, (4) after equating, the form administered to the examinee should be 

inconsequential, and (5) the equating function should be invariant of the group used to 

develop the function. The following section explicates these properties. 

 The symmetry property requires that the transformation of a score on form A to 

the scale of form B be the inverse of form B to form A (Kolen & Brennan, 2004). To 

demonstrate this property, envision an equating function in which a form A score of 50 

translates to a form B score of 55. The symmetry property requires that a score of 55 on 

form B convert to a form A score of 50. This property precludes the use of regression for 

equating, as the regression of X on Y is unequal to the inverse of the regression of Y on 

X, unless X and Y are perfectly correlated.  

 The same construct property states that truly equated scores can only exist if the 

forms are designed to measure the same cognitive ability or skill (Angoff, 1984). Strict 

care must be taken by the test developer to construct forms of the same specifications. No 

equating can produce interchangeable scores between forms that evaluate different 

constructs (Cook & Eignor, 1991).  

 Equal reliabilities across test forms has been argued by Lord (1980) as a necessity 

to equate forms. Strict adherence to this requirement would leave little hope for 
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successful equating. Even forms built to be strictly parallel will often result in disparate 

reliabilities. However, Dorans and Holland (2000) maintain that experience has shown 

adequate equating functions can result from two forms that differ in reliability and 

recommend that high, as opposed to equal, reliabilities be required for equating. The 

authors contend that concerns about equal reliability should be secondary and minor 

violations of the requirement tolerated. 

 Equity, proposed by Lord (1980), requires the form given to an examinee to be a 

matter of indifference. Lord defined equity to hold only if the conditional distributions of 

equated scores for all examinees at a given true score are identical for each form. The 

corollary of this definition requires examinees at a given true score to have equivalent 

observed score means, standard deviations, and distributional shapes for converted scores 

(Kolen & Brennan, 2004). As Lord himself notes, equating under the equity property is 

possible only if the two forms are identical, thus absolving the need for equating. 

Livingston (2004) further argues the attainment of equity is impossible in practice, 

whereas Dorans and Holland (2000) deem this property ―poorly specified‖ and claim the 

assumptions made by equity need not hold for successful equating. Issues with the 

practicality of the equity property arose quickly and a less restrictive form of equity, 

termed weak equity or first-order equity, was proposed by Morris (1982, also see Yen, 

1983; Harris & Crouse, 1993). Weak equity requires only the expected value of the 

equated score from Form A to Form B to be identical for all examinees with a given true 

score. Therefore, examinees of the same ability are expected to obtain the same equated 

score on form A and form B on average, a much less stringent condition than Lord’s 
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equity. Statistics based on first order equity are used to evaluate the accuracy of equating 

in this study. 

The final principle of equating commonly cited by the literature is population 

invariance. The equating relationship should be equivalent irrespective of the group used 

to develop the function. For example, the equating function found when using a group 

consisting of males should be identical to the function derived from a group of females 

(Kolen & Brennan, 2004). Lord and Wingersky (1984) describe how population 

invariance is theoretically inherent for true score methods of equating, however because 

observed scores are used in place of true scores in the equating function this assumption 

does not necessarily hold in practical situations. Dorans and Holland (2000) provide 

ample evidence that successful equating can be conducted when population invariance is 

approximated, yet equating should not be carried out under large violations of this 

assumption. 

Equating designs. In order to equate forms of a test, data must be collected in a 

fashion that allows the ability of the examinees and difficulty of form to be evaluated 

independently. As introduced previously, three prominent designs have emerged: single-

group, random equivalent groups, and non-equivalent anchor test design (NEAT). The 

choice of design is dependent on the practical constraints of the testing environment, with 

each design offering benefits and limitations. This section will describe the properties of 

each design with specific focus on the NEAT design because of its prevalence in large-

scale testing and its importance in the current research. 

Single-group design. In the single-group design, the same examinees are 

administered both test forms to be equated. Single-group designs provide the benefit of 
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strict control over examinee ability as the same examinees take both forms (von Davier, 

Holland, & Thayer, 2004). Often administrators counter-balance the order of forms to 

protect against fatigue effects (Kolen & Brennan, 2004). Because the same examinees 

take both forms, the difficulty of the forms manifests in the mean score of the examinee 

group on each form. If examinees are clearly performing better on form A, form B can be 

considered more difficult and adjusted accordingly.  

The assumptions and practical considerations required from the single-group 

design frequently render the design impractical. The administration of two full-length 

forms to a group of examinees doubles testing time and exposes two forms of a test to a 

subset of examinees. Given the length of most large-scale tests, requiring the completion 

of two forms is unfeasible under most circumstances (Cook & Eignor, 1991). 

Furthermore, the probability of fatigue influencing examinee scores in this situation is 

greatly increased. The group taking both forms of the test must also be a representative 

sample from the entire examinee population, an assumption deemed ―rarely more than a 

convenient fiction‖ by von Davier, Holland, and Thayer (2004, p. 23). As Kolen (1988) 

expresses, the limitations of single-group designs obviates its use in large-scale 

assessments. 

Random groups design. The random groups design, also denoted as the 

equivalent groups design (Holland & Dorans, 2006), involves administering the different 

forms to independent groups of equivalent ability. Obtaining a randomly equivalent 

sample can be accomplished through strict control of the testing environment (e.g., 

spiraling the test forms) or groups of test-takers may be assumed to have equivalent 
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ability. If the groups can be considered comparable, the differences in form difficulty can 

be inferred through the mean score on each form, as in the single-group design.  

The application of random-groups design circumvents limitations of the single-

group design, such as order and fatigue effects, as examinees complete only one form. 

However, this equating design introduces other practical limitations. In most 

circumstances, the assumption that two groups of examinees are inherently equivalent 

cannot be justified. This assumption becomes more problematic in large-scale testing, 

when the test forms commonly are administered to examinees at different times and 

locations. If a method such as spiraling test forms is used, both the old and new test forms 

must be administered in the same session (Cook & Eignor, 1991; von Davier, Holland & 

Thayler, 2004). Thus, test security may be compromised if the old form items have been 

exposed and examinees receiving this form would be unfairly advantaged.  

The non-equivalent anchor test design. The NEAT design disentangles ability of 

the examinees from difficulty of the form through the use of anchor items. Under the 

NEAT design, independent examinee groups take separate forms that contain a set of 

identical (anchor) items. The NEAT design is frequently employed in large-scale testing 

because it resolves the dependency on equivalent groups (Holland, 2007). The anchor 

items are used to assess potential differences in ability among examinees administered 

the different forms. Because the anchor items are identical, differences in mean scores on 

the anchor items for examinee groups administered separate forms reflect non-equivalent 

ability levels between these groups. After controlling for possible non-equivalent group 

ability, adjustments can be made for differences in form difficulty emerging from the 

unique items. Operational constraints arising from single-group and random groups 
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designs are resolved as all examinees within a session receive a single form and 

examinees receiving the different forms can be sampled from non-equivalent groups 

(Dorans & Holland, 2006). Therefore, the NEAT design can be employed easily when 

multiple forms of a test are administered at different testing periods. The logistic 

advantages of the NEAT design make it the most typically used equating design in 

practice (Cook & Eignor, 1991).  

There are two methods of incorporating the anchor set on the test (Kolen, 2007). 

When using internal anchors, examinee responses to these items count directly to their 

total score. Internal anchors are frequently employed in practice, with anchor items 

interspersed throughout the test. External anchors refer to when the anchor items do not 

contribute to an examinee’s total score. This anchor design often requires an additional 

testing section and thus is used less frequently in practice due to increased testing time 

and the need to restructure the test (Petersen, 2007).  

The gain in practical feasibility through use of the NEAT design comes at a price 

of statistical complexity (Kolen, 1988). The vital role assigned to anchor items under the 

NEAT design requires these items to undergo stringent evaluation. Two essential 

characteristics of anchor items have been examined in the literature: the number of 

anchor items and content representation.  

As Angoff (1984) noted, the anchor tests must be long and reliable enough to 

accurately capture the differences in ability. Angoff recommended the use of 20 items or 

20% of the test, depending on which number was greater. Since Angoff proposed this 

rule of thumb, several studies have empirically examined the effect of anchor set length 

on the accuracy of equating results. The focus of the following section will be on studies 
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that investigated anchor sets in the context of item response theory. Many of these studies 

focused on a process specific to IRT termed scaling. Scaling, discussed in detail in a 

following section, is the process of creating a common scale for item parameter estimates 

of two separate forms. Scaling is a prerequisite to equating when using IRT methods.  

McKinley and Reckase (1981) examined the number of anchor items necessary 

when scaling using a three-parameter logistic IRT model. The authors evaluated anchor 

sets at lengths of 5, 15, and 25 items on a test consisting of 50 items. Results suggested 

that the number of anchor items had little effect on the scaling procedures after a certain 

point. Therefore, McKinley and Reckase recommended the use of 15-item anchor sets, 

while advising against the use of 5 items. Regrettably, the results of this study are 

compromised by the use of unidimensional item-response theory models when the test 

evaluated was created to measure multiple constructs.  

Vale, Maurelli, Gialluca, Weiss, and Ree (1981) conducted a simulation study to 

investigate the effect of anchor length on scaling accuracy. The researchers determined 

the transformation required to scale the unique items through obtaining two ability 

estimates, one from the anchor set and the other from unique items. Consistent with the 

McKinley and Reckase (1981) study, the results indicated scaling with 15 anchor items is 

comparable to 25 anchor items but scaling with 5 items was inadequate. Increasing the 

length of the anchor set resulted in moderately more accurate discrimination parameters, 

but had little effect on the difficulty parameter. The scaling method applied by Vale et. al. 

(1981) is extremely uncommon in modern IRT equating. As such, the effects of using a 

contemporary scaling transformation cannot be explicitly inferred from this study. 
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However, the accuracy of scaling should improve given the stronger mathematical theory 

and empirical research behind current methods.  

The investigation of anchor test length was taken to an extreme by Wingersky and 

Lord (1984) who examined anchor lengths of 50, 25, and 2. Real data from two forms of 

the SAT mathematics test, 60 unique items per form, was used to evaluate scaling 

accuracy. Wingersky and Lord discovered the standard errors of unique items after 

scaling were nearly identical between the 50 and 25 item anchor sets. To examine an 

extreme case, the authors evaluated scaling using only 2 anchor items. Standard errors of 

unique items under scaling with 2 anchor items were comparable to scaling with 25 

items, if the standard errors of the 2 item anchor were low to begin with. In a condition 

containing 2 anchor items with high standard errors, scaling suffered from more 

pronounced bias. Though the authors suggested accurate scaling can be obtained with 

five common items, it should be noted that increasing the anchor length always provided 

more accurate results.  

Length of the anchor set is not the only variable test developers must consider 

when selecting anchor items. It is essential that the anchor items represent the content of 

the full-length test as shown by Klein and Jarijoura (1985). The authors specifically 

investigated whether increasing the length of the anchor set could compensate for poor 

content representation. The test used in this study contained 250 items. Under the content 

representative anchor condition, 60 anchor items were included. The non-representative 

anchor conditions used lengths of 101 and 105 anchor items. Results indicated that the 

use of representative anchors is of utmost importance to accurate equating. Simply 

adding items cannot compensate for a lack of content coverage. Klein and Jarijoura 
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explained that when group differences exist on specific areas of the test, the differences 

would fail to manifest if the anchor did not include items representative of these areas. 

Similar sentiments are expressed by Cook and Petersen (1987). 

In summary, initial studies have illuminated the variables important in selecting a 

quality anchor set. The number of anchor items must yield reliable data which allow for 

comparisons of ability across groups (Angoff, 1984). Although several studies have 

shown as few as five anchor item can result in adequate equating (Wingersky & Lord 

1984), increasing the number of anchor items led to reduced error in the equating process 

(McKinley & Reckase, 1981; Wingersky & Lord 1984; Vale et al., 1981). The 

importance of length is mitigated by adequate content representation (Cook & Petersen, 

1987; Klein & Jarjoura, 1985). Anchor sets should essentially take the form of a smaller 

version, ―mini-test‖ (Kolen & Brennan, 2004, p. 19), of the total form. Thus, content 

representativeness is necessary to identify ability differences between groups accurately.  

Equating methods. In general, two categories of equating exist: conventional and 

item response theory methods. Conventional methods equate test scores using observed 

score methods such as linear and equipercentile equating (Braun & Holland, 1982; Kolen 

& Brennan, 2004). Item response theory equating derives the equating relationship 

between two forms of a test using an IRT model. The following section describes IRT 

scaling, which places the item parameter estimates for the new form onto the base form 

metric. The next section describes the process of IRT equating, which uses these re-

scaled item parameter estimates to equate the number-correct scores, with particular 

focus on true-score equating. Afterwards a brief review of literature comparing 

conventional and IRT equating is presented in order to explicate and justify the use of 
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IRT equating in this study. Although no definitively superior method of equating has 

been established, several theoretical and practical advantages of IRT based methods have 

emerged. Specifically, IRT equating has been shown to produce better results than 

conventional equating methods when examinee groups differ in ability (Lord & 

Wingersky, 1984; Petersen, Cook, & Stocking, 1983; Skaggs & Lissitz, 1986). This 

property is particularly beneficial when equating under the NEAT design, as the design 

accommodates differing level of abilities between groups. 

Item Response Theory Scaling 

IRT methods require the parameters of different forms to be on a common scale 

prior to equating number correct scores. As a result of the arbitrary nature of the latent 

ability scale however, IRT parameters from separate calibrations of the same items for 

different samples are commonly on different scales (Vale, 1986). As discussed 

previously, the ability metric for any single IRT calibration is typically constrained to be 

standard normal. Therefore, the group of examinees administered the test determines the 

metric for the ability distribution and thus the metric of the item parameters. 

Consequently, when the same items are administered to non-equivalent groups 

separately, the resulting parameters will not be on the same scale. For example, assume 

an IRT calibration was conducted for examinees scoring above the median of a test and 

another calibration for examinees below the median. The resulting ability distribution for 

each group will have an origin of 0 and variance of 1. Thus, it is impossible to identify 

the differences in ability across the two groups. A transformation of the item and ability 

parameters is required to establish a common metric.  



25 

 

 

When the IRT model fits the data for the calibrations to be scaled, a linear 

transformation can convert IRT parameters from different samples to a common scale. As 

the transformation is linear, the relationship between each pair of IRT parameters can be 

expressed through a multiplicative (A) and an additive (B) constant. This process is 

analogous to transforming any distribution in a linear fashion, such as when distributions 

are transformed to the z-score metric by dividing the variance and subtracting the mean to 

standardize the distribution. The ability values for examinee i on a calibration of a new 

form (NF) can be converted to the scale of the base form (BF) through the following, 

BFi = ANFi + B.                             (2.3) 

The linear transformations for individual item parameters are calculated as, 

a BFj = a NFj / A,         (2.4) 

bBFj = AbNFj + B,                                                  (2.5) 

cBFj = cNFj,                                                        (2.6) 

where j refers to item j on the specified test. The c parameter is independent of the scale 

transformation.  

 The A and B constants required for the transformation can be derived using 

several methods. The following section will focus on the properties of the predominant 

scaling methods in use. In general, these methods can be placed into two categories, 

moment and characteristic curve methods. Moment methods incorporate the mean and 

standard deviations of the IRT item parameters for the anchor items to form a common 

scale. Characteristic curve methods take into account all the item parameters 

simultaneously through each individual anchor item’s ICC or the TCC comprised of all 
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anchor items. Another scaling method will be presented in which the anchor item 

parameters are fixed to be equivalent to the original calibration.  

Moment methods.  

Mean-sigma. Marco (1977) described a simple procedure in which the scaling 

constants are derived from the means and standard deviations of the b-parameter 

estimates of the anchor items. Specifically, the A constant is found through dividing the 

standard deviation of the b-parameters on the scale setting the metric, the base form, by 

the standard deviation of the new form b-parameters. This function can be expressed 

mathematically as, 

A = 
( )

( )

BF

NF

b

b




                                                       (2.7) 

where ( )BFb and ( )NFb represent the standard deviation of b-parameters for anchor 

items on the BF and NF scale respectively. In this example, the base form sets the metric 

of the parameters. 

Derivation for the B constant is as follows, 

         B =   – ( )BF NFb A b                                              (2.8) 

where  BFb and  NFb  represents the mean of b-parameter for anchor items on NF 

and BF scale and A is the scaling constant defined previously. 

 Mean-Mean. Loyd and Hoover (1980) proposed a method similar to that of mean-

sigma. The mean-mean procedure expresses the scaling constants through the mean of 

the anchor item a-parameters in place of the standard deviation of b-parameters used in 

mean-sigma. Mathematical notation for mean-mean is as follows: 
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A = 
( )

( )

NF

BF

a

a




                                                       (2.9) 

and 

B =   – ( )BF NFb A b                                                (2.10) 

Theoretically, the use of the average a-parameter values may be appealing as means are 

typically more stable than standard deviations (Baker & Al-Karni, 1991). However, IRT 

values of the b-parameter are better estimated in comparison to a-parameters (Kolen & 

Brennan, 2004). Thus, each method provides theoretical advantages and limitations. 

Characteristic curve methods.  

Haebara method. Referring to Equations 2.1, 2.3, 2.4, and 2.5, it logically follows 

that the probability of correct response for an item on a new form scale can be placed on 

the scale of the base form through the following: 

 ( ; ; ; ) ( ;  / ; ; ).ij BFi BFj BFj BFj ij NFi NFj NFj NFjp a b c p A B a A Ab B c               (2.11) 

The result of Equation 2.11 allows for all parameters for each individual anchor item to 

be considered simultaneously in producing a common metric. However, because item 

parameter values are estimates, there is no guarantee that one set of scaling constants will 

produce perfect concordance for the probability of correct response across all examinees 

and items (Kolen & Brennan, 2004). Haebara (1980) suggested that a function 

minimizing the difference between probabilities of correct response across samples 

would produce the correct scaling constants. Haebara defined the error resulting from 

scaling as the squared difference between ICCs for each anchor item conditional on 

ability across samples. As shown in Equation 2.12, the Haebara method locates the A and 

B constants that minimize this error across all examines, i, and anchor items, j:  
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Fh =
21

[  ( ;  ;  ;  )    (   ;  / ;      ;  )] .
N n

ij BFi BFj BFj BFj ij NFi NFi NFi NFi

i j

p a b c p A B a A Ab B c
N

       (2.12) 

Given the non-linear nature of the minimization function (FH), a multivariate search 

technique is required to solve for A and B (Kim & Kolen, 2007). 

Stocking-Lord Method. Stocking and Lord (1983) introduced a similar approach 

that applies the TCC for anchor items in place of individual ICCs. As a result, the 

summation across ICCs is performed prior to squaring the difference between parameter 

estimates,  

Fsl
21

[  ( ;  ;  ;  ) - (     ;  / ;      ;  )] .
N n n

ij BFi BFj BFj BFj ij NFi NFj NFj NFi

j ji

p a b c p A B a A Ab B c
N

     (2.13) 

Thus, the Stocking and Lord approach evaluates the anchor test as a whole. As with the 

Haebara method, a multivariate search technique is used to solve for the scaling 

constants. 

 Fixed Anchor.  

 When a separate calibration of IRT item parameters is used for each form, a 

common metric can be obtained by fixing the anchor item parameter values to a previous 

estimation while estimating the unique item parameters (Mislevy & Bock, 1990). This 

procedure, termed fixed anchor, requires an initial IRT calibration to set the scale. The 

parameters for the anchor items from the initial calibration are held constant across any 

subsequent calibration. Thus, all future calibrations using the fixed parameters achieve a 

common metric.  

Comparison of scaling methods. Despite the importance of placing IRT 

parameters on a common metric, the research on this topic is sparse. The majority of 
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research on scaling compared characteristic curve methods against moment methods. 

Theoretically, the characteristic curve methods may produce more stable results as they 

incorporate all item parameters in calculating the scaling constants (Stocking & Lord, 

1983). Research generally supports this conclusion. When developing the method, 

Stocking and Lord (1983) compared the results of their new method to a weighted mean-

sigma procedure. The authors used model fit of the item parameters after scaling to assess 

the transformation quality. The Stocking-Lord method provided comparable or better 

fitting estimates for all comparisons.  

Baker and Al-Karni (1991) explored the differences between the Stocking-Lord 

and mean-mean methods. Scaling constants resulting from the two methods were 

compared through a simulation study and using real test data. In slight contrast to 

Stocking and Lord (1983), the authors obtained similar scaling constants under both 

methods. However, Baker and Al-Karni noted that the largest differences between 

methods occurred when the item parameters posed calibration problems, such as when a 

low ability examinee group is administered a difficult set of items with low 

discrimination. The Stocking-Lord method proved more robust to these atypical 

combinations of IRT parameters. 

Kaskowitz and de Ayala (2001) conducted a simulation study that investigated the 

robustness of Stocking and Lord’s method to parameter estimation error. Estimation error 

was created by varying the standard errors associated with the item parameters. Results 

from the study supported the notion that characteristic curve methods are robust to 

moderate estimation error. The authors concluded that Stocking and Lord’s method can 

provide accurate scaling even under the presence of moderate error. 
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Both characteristic curve methods were shown to recover equated scores with less 

error than the moment methods under a variety of conditions in a simulation study 

conducted by Hanson and Beguin (2002). The researchers compared the four separate 

estimation scaling methods described above when the ability distribution of examinees 

was both equivalent and non-equivalent. Different levels of sample size and number of 

common items were also investigated in the study. Characteristic curve methods provided 

significantly less biased and variable true score estimates under nearly all conditions. 

Differences between the characteristic curve methods themselves were negligible. When 

comparing bias and variability of true score estimates across the range of raw scores, the 

characteristic curve methods displayed nearly identical values at all raw score points.       

In comparison, the mean-sigma and mean-mean methods showed significantly larger 

errors that fluctuated at different levels of raw scores. 

 Hanson and Beguin’s study also provided one of the few comparisons between 

the mean-mean and mean-sigma methods. The mean-mean method resulted in smaller 

error variance when recovering equated scores. When the distribution of ability was 

unequal however, the mean-sigma method yielded less biased results. The error variance 

of mean-sigma methods varied drastically across the range of raw scores, while the mean-

mean variance remained relatively stable.  

The fixed anchor method of equating has received little attention in the literature. 

Equating results from the fixed anchor method were compared to mean-sigma in a study 

conducted by Jodoin, Keller, and Swaminathan (2003). The authors found that 

occasionally equating results differed depending on the scaling method applied. Because 
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Jodoin et. al. (2003) evaluated real data with unknown true values, the accuracy of 

methods cannot be determined in this study.  

Kim (2006) addressed the accuracy of various fixed anchor estimation methods in 

recovering the scaled item parameters of the new form through a simulation study. In 

general, the fixed anchor procedure was robust to unstable parameter estimates 

consistently producing relatively accurate item parameters. However, fixed anchor 

methods that do not update the prior ability distribution during estimation suffered 

increased bias when groups differed in ability distributions. Overall, Kim showed fixed 

anchor to be a viable method for establishing a common scale. Given the scarcity of 

research evaluating equating accuracy under various scaling methods, further 

investigation in this area would be beneficial.  

Item Response Theory Equating 

After a common metric is developed for the IRT parameters, examinee IRT 

ability estimates are on the same metric and can be compared directly. However, testing 

companies often use equated raw scores because they are more intuitive for practitioners 

to comprehend. In this situation, equating procedures must be applied to convert raw 

number correct scores for one form to another. Equating is necessary to convert raw 

scores because the unique items on different forms will cause equivalent ability estimates 

to result in different raw scores.  

Two IRT based equating methods exist: true score equating and observed score 

equating (Lord, 1980). Although fundamentally different, results from the two methods 

have been shown to produce similar equated scores (Lord & Wingersky, 1984). IRT true-
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score equating was conducted in this study due to its theoretical and computational 

advantages.  

In IRT true score equating, the true scores on two forms at a given ability are used  

to derive the equating relationship (Kolen & Brennan, 2004; von Davier & Wilson, 

2007). The true score for an examinee of ability θi is equal to the probability of a correct 

response to all items at θi as represented by the TCC. Conceptually, this probability 

represents the expected score of an examine at θi for the entire test form. Thus, the true 

score for the base form, denoted τBF, and new form, τNF, are defined as: 

 ;( )  ( ;  ;  ;)ij

n

BF i BFi BFj BFj BFj
j

p a b c                                    (2.14) 

and 

;( )  ( ;  ;  ;)ij

n

NF i NFi NFj NFj NFj
j

p a b c                                    (2.15) 

IRT assumptions imply that for a given θi, true scores τBF(θi) and τNF(θi)  are equivalent 

(Kolen & Brennan, 2004). Consequently, an equating relationship between the forms can 

be derived by finding the true score on the base form that corresponds to the true score on 

the new form X given θi. Kolen and Brennan (2004) outline this three-step process. First, 

a true score on the new form, τNF, is specified. Second, the ability, θi, corresponding to 

the true score selected in step 1 is calculated using a Newton-Raphson procedure. Third, 

the ability calculated in step two is used to compute the true score equivalent on the base 

form, τBF. In practice, this true score relationship is derived using number correct 

observed scores in place of the true scores (Kolen & Brennan, 2004). 
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Item response theory observed score equating uses the IRT model to generate a 

distribution of number-correct scores conditional on ability (Kolen & Brennan, 2004; 

Lord & Wingersky, 1984). The conditional score distribution is integrated over the ability 

distribution for a specified population. These calculations are repeated for the other form, 

integrating over the same ability distribution. The resulting score distributions are those 

that would have been observed if both forms had been given to a single group. The score 

distributions for both forms are then equated using traditional equipercentile techniques. 

A more thorough presentation of IRT observed score equating can be found in Kolen and 

Brennan (2004).  

Comparison of equating methods. Lord (1980) noted one caveat in true score 

equating. The equating function is generated based on the true score relationship between 

two forms. However, the equating relationship based on true score relationships is used to 

convert observed scores on the new form to the equivalent observed score on the base 

form metric (Kolen & Brennan, 2004; Lord & Wingersky, 1984). Although theoretically 

unjustified, several studies have shown IRT true and observed methods to produce 

similar conversions (Lord & Wingersky, 1984). In addition, Han, Kolen, and Pohlmann 

(1997) found IRT true score equating to produce more stable results than IRT observed 

score and traditional equipercentile techniques. However, the mean differences in 

equating stability between the two IRT methods were not statistically significant, further 

suggesting the comparability between methods. These results have been used to justify 

the applying the true score equating function to observed scores. 

Lord and Wingersky (1984) discussed the theoretical benefits and limitations of 

both observed-score equating methods and true-score IRT equating. As mentioned 
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previously, successful equating requires invariance of the equating function across 

samples. Under equipercentile methods of equating, when the test forms differ in 

difficulty or the examinee groups sampled from a population differ in ability, invariance 

will not hold strictly. Lord and Wingersky (1984) noted that under observed-score IRT, 

invariance holds only for the group used to derive the equating function and not for 

subgroups with different ability distributions. If the assumptions of IRT hold, true-score 

IRT equating necessarily meets invariance. This occurs because IRT parameters are 

invariant across the examinee population. Pragmatically, this assumption is not 

guaranteed by true-score methods, however, because the invariance of the item 

parameters may not be met. Additionally, instead of estimating the true score from the 

ability estimate, sometimes the observed score is substituted in the equating function 

derived for true scores. Treating observed scores as if they are true scores cannot be 

theoretically justified, and thus invariance is not assured in practice (see also, Kolen and 

Brennan, 2004). Given that observed-score methods are population dependent and 

theoretical justification for true-score IRT is unclear, theory alone cannot determine 

which equating method is appropriate 

Several empirical studies have compared the stability of equating under 

conventional and IRT methods. Kolen (1981) performed one of the initial studies 

comparing conventional equating to the then-burgeoning IRT methods. Equipercentile 

and linear equating comprised the conventional equating methods, while various IRT 

procedures were employed (including 3-PL true and observed score methods). Kolen 

used a cross validation statistic to evaluate the stability of equating procedures. 3-PL IRT 

observed and true-score equating methods were found to produce more stable cross-
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validation results. Petersen, Cook, and Stocking (1983) found similar results when 

investigating scale stability of IRT and conventional methods. Stability was evaluated 

through equating a form to three others then back to itself, i.e., form A to form B to form 

C to form D then back to form A (see also, Harris & Crouse, 1993). IRT methods 

generally performed comparably to or better than conventional methods. IRT equating 

proved particularly useful when the forms slightly differed in content and length. IRT 

methods also produced more stable results than traditional equipercentile when equating 

a test to itself (Han, Kolen, & Pohlmann, 1997).  

As noted by Lord and Wingersky (1984), stability, though desirable, does not 

guarantee the accuracy of an equating method. In fact, a method may exhibit stability 

because it is producing results that are consistently inaccurate. Thus, studies 

demonstrating the accuracy of IRT methods are reviewed as well.  

Cook and Eignor (1983) compared IRT methods of equating to linear and 

equipercentile methods across multiple tests using fit statistics for evaluation. In general, 

equating results between IRT and linear methods showed little difference. Equipercentile 

methods performed particularly poorly in comparison to other methods investigated. 

Based on the results, the authors promoted the use of IRT equating when applicable. 

Echoing a similar sentiment as Petersen, Cook, and Stocking (1983), the authors 

postulated that IRT methods outperform conventional methods when forms vary more in 

difficulty.  

In reaction to the propagation of studies on IRT equating, Skaggs and Lissitz 

(1986) synthesized the literature and present a comprehensive review. Several common 

themes were identified in relation to the comparison of IRT and conventional methods. 
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First, Skaggs and Lissitz concluded the research to this point had not indicated a clearly 

superior method of equating in all situations. Second, when the test forms were reliable 

and similar in difficulty, most equating methods will yield reasonable results. Third, 

when the sample of examinees differed in ability, IRT methods consistently produced 

more accurate equating results. The capability of IRT methods to handle groups of 

examinees who differ in ability is also put forth by Cook and Eignor (1991) in a 

theoretical manner. Because differences in form difficulty or group ability will manifest 

in non-linear fashion, due to floor and ceiling effects, IRT offers a viable solution that 

conventional methods cannot provide.  

Several practical advantages of IRT equating have also been discussed in the 

literature. As IRT scaling methods allow for alternative test forms to be placed on the 

same scale, any previously equated form can be used as the basis for scaling and 

equating. This allows a testing program great flexibility in regard to which items are used 

and when (Cook & Eignor, 1991). In addition, because the ability derived for each 

examinee is invariant of the items, when items are dropped or tests shortened, no 

rescoring, and thus no repeat equating, is necessary. Livingston (2004) also noted the 

flexibility of IRT, specifically in adaptive testing where items can be targeted to the 

examinee’s ability. However, these advantages come with drawbacks (Livingston, 2004). 

IRT is statistically and conceptually complex. The IRT model has stringent assumptions 

and large sample size requirements that may not be met in practice. Thus, the context for 

equating should always be considered in selecting equating methods.  

In summary, item response theory provides the theoretical advantage of being 

population invariant and the ability to deal with non-linear differences in examinee 
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ability. Empirically, IRT methods have performed comparably to conventional methods 

in terms of accuracy and stability. In cases where the examinee ability differs, IRT 

methods often yield superior equating results. These advantages prompted Lord and 

Wingersky (1984) to make the claim that, ―conventional [non-IRT] equipercentile 

equating of observed scores is not recommended in situations when anchor tests are 

required‖. Though this claim may be overstating the superiority of IRT methods, the 

flexibility and statistical advantages offered by IRT equating has made the use of these 

methods popular in large-scale testing (Kolen & Brennan, 2004). 

Effect of Compromised Items in Item Response Theory  

Inherently, IRT equating is dependent on accurate parameter estimation. 

Compromised items introduce construct irrelevant variance that assuredly distorts the 

estimation of parameters. For example, the ability parameter will reflect both ability and 

prior knowledge of the item when compromised items are present. As stated in the 

introduction, few studies have examined the effect of compromised items on IRT 

parameters. No articles were found evaluating cheating under IRT true-score equating. Of 

the studies investigating cheating in IRT, Yi, Zhang, and Chang (2008) compared the 

error in ability estimates resulting from compromised items under various CAT selection 

criteria. The researchers simulated a 40-item adaptive test, generated from an item pool 

containing 480 items, for each of the 10,000 examinees. Thirty of these examinees, 

labeled thieves, could memorize 10 of the 40 items they received. Once a thief had 

memorized an item, any subsequent examinee would answer the compromised item 

correctly. Thus, the probability of correct response was independent of examinee ability 

or the item’s parameters once the item was compromised. The resulting ability estimates 
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displayed severe positive bias for all item selection methods included in the study. The 

mean difference between estimated and true abilities for low ability examinees, -3.880 ≤ 

< -.890, increased by an average of over one standard deviation in 5 of the 6 conditions 

included. The influence of compromised items on examinee ability estimates decreased 

as the initial true ability was higher. 

Guo, Tay, and Drasgow (2009) compared the robustness of CAT and 

conventional tests to compromised items. Cheating was implemented through having 

simulated examinees randomly steal and share items with all successive test-takers. If one 

examinee compromised an item, the probability of correct response on that item for all 

examinees was set to .85. If the same item was stolen by two or more examinees,  a 

correct response was guaranteed. The authors found IRT ability estimates for 

conventional tests to be highly sensitive to comprised items. As in Yi et. al., ability 

estimates were positively biased in all conditions. In addition, examinees with low 

abilities ( = -3) benefitted the most, with some obtaining estimates as high as  = 2.23. 

Although, the addition of items and use of multiple forms lowered bias, the impact of 

compromised items remained substantial. 

Jurich, Goodman, and Becker (2010) investigated the effects of compromised 

items on the passing status of examinees. The researchers applied simulation techniques 

to create a situation in which cheating occurred on a new form of a previously calibrated 

test. Using IRT observed-score equating, the study compared how mean-sigma, Stocking-

Lord, and fixed anchor methods recovered the correct status of examinees. Under all 

scaling methods, examinees passed at drastically higher rates than expected when 

cheating existed. Unexpectedly, both cheaters and honest test-takers completing the new 
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form benefited from the compromised items. Jurich, Goodman, and Becker hypothesized 

that the scaling methods incorrectly adjust for differences in ability when anchor items 

become compromised. This occurs because the cheaters score higher on the anchor items 

then their true ability would suggest, thus inflating the ability distribution of the new 

form group as a whole. Consequently, when scaling is performed to place the NF abilities 

on the BF scale, the augmentation to the estimated NF ability distribution on the anchor 

items will cause the unique items on the NF to appear more difficult.  

The distortion in difficulty arises from a constraint specific to the NEAT design. 

As anchor items are used to estimate the relationship between examinee group abilities, 

when cheating is present for one group, this group will appear more able than their true 

ability, as discussed above. The unique items to both forms are considered in the equating 

function. Thus, as the ability of the cheating group overestimates the proficiency of 

examinees, the unique items will appear more difficult because no cheating has occurred 

on these items. The equating function will reflect the misrepresented difficulty of the new 

form, incorrectly adjusting examinee’s equated scores to be higher. Thus, the increased 

equated scores for new form examinees reflects the augmentation to the estimated NF 

ability distribution in the presence of cheating, benefitting both cheaters and honest test-

takers.  

Research Questions  

No study has investigated the impact of cheating on IRT true-score equating. 

However, the result of Yi et al. (2008) and Guo et al. (2009) imply serious consequences 

for the equating function when cheating occurs. Given the reliance on ability estimates to 

generate the equating function, minor errors in the estimation of ability could seriously 
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distort the relationship between two forms. Furthermore, estimation of item parameters 

will also be affected, resulting in inappropriate scaling constants. Studies on this topic are 

necessary to understand how the equating process is influenced by cheating.  

Thus, this study will be conducted to address the gap in the literature and evaluate 

the accuracy of equating in the presence of cheating. Several specific hypotheses will be 

investigated: 

Research question 1. To what extent do the proportions of cheaters and 

compromised anchor items affect the recovery of equated scores and scaling constants? 

The results from Yi et al. (2008) and Guo et al. (2009) indicate ability estimates 

will be severely inflated when compromised items exist. The parameters of these items 

are also assuredly distorted. Jurich et al. (2010) showed that equated scores for examinees 

taking a compromised form were significantly over-estimated. Further investigation is 

required to ascertain the degree to which cheating affects scaling constants. In addition, 

understanding the magnitude of equating error under different levels of cheating will 

provide practical information for testing companies concerned about the security of their 

tests.  

 Research question 2. Which scaling method performs best in recovering true 

scaling constants under the presence of cheating?   

 Research on scaling constants suggests that characteristic curve methods may 

produce more stable results. Although characteristic curve methods may be less sensitive 

to error in item parameters (Kaskowitz & De Ayala 2001), it is necessary to evaluate this 

robustness when item parameters are biased by cheating. For example, if cheating 

significantly biases the a-parameter, while only moderately altering b, the mean-sigma 
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method may produce more accurate results. Jurich et al. (2010) found the Stocking-Lord 

method to best classify examinees in the presence of cheating, however classification was 

poor for all methods investigated in the study. If one scaling method is found to perform 

better in recovering the true scaling constants, the use of this method would be desirable 

when cheating is suspected.   

Research question 3. Do differences in the ability distributions of the NF and BF 

examinees affect the recovery of equated scores and scaling constants in the presence of 

cheating? 

Given the purpose of utilizing the NEAT equating design is to account for 

possible difference in ability, it is necessary to evaluate the interaction of non-equivalent 

groups and cheating on the equating process. In addition, Hanson and Beguin (2002) 

found that differences in ability distributions cause the scaling constants to become more 

variable and produce more bias. Considering these results in conjunction with research 

question 2, it may be that one scaling method recovers parameters more efficiently when 

group abilities are non-equivalent and cheating has transpired. 

 Research question 4. Does the design of the anchor set, internal or external, 

impact the manner in which cheating affects equated scores? 

 The design of the anchor set will almost certainly alter the way cheating affects 

equated scores. As noted, an internal anchor is comprised of items that are accounted for 

in an examinee’s total score. In contrast, external anchor sets include items that are used 

for equating purposes only, and are not considered in the total test score. When the 

anchor is internal to the test, compromised items will count directly toward total score. 
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Accordingly, the internal anchor should considerably overestimate equated scores in 

comparison to the external anchor condition.  

Research question 5. How are the equated scores for honest test-takers affected 

when anchor items have become compromised? 

It is imperative to testing companies that test compromises do not impair scores 

for honest examinees. However, the benefit to ability estimates obtained by cheaters may 

come at a cost to honest test-takers. If the inflation of cheaters’ scores leads to the 

underestimation of item difficulty, it is possible that estimates of honest test-takers ability 

will suffer. In contrast, Jurich et al. (2010) found that both cheaters and non-cheaters 

were incorrectly passed at a higher rate when cheating occurred. In either case, the 

validity of all scores on the test is suspect. Thus, it is necessary to investigate the degree 

the equating process affects honest test-takers when cheating is present. Furthermore, the 

impact on honest examinees may depend on the anchor design (see research question 4). 

Under the internal anchor, examinees with access to compromised items will benefit 

immensely in comparisons to non-cheaters as the items directly influence the total score. 

Given an external anchor, the compromised items only come into consideration when 

scaling the two test forms. Investigating the degree of change between these two designs 

should provide important information on how alterations to equated scores manifest 

under each design



CHAPTER 3 

Method 

 A simulation was conducted to investigate the research questions presented in 

chapter 2. Simulation studies allow for systematic control over experimental conditions 

that are not manipulated easily in an actual testing environment. For example, 

systematically manipulating the degree of cheating in a testing situation would be 

unfeasible. Furthermore, true values of the parameters under investigation are known in 

simulations. These values provide an absolute level of comparison for the evaluation of 

parameter recovery. The results of a simulation are limited by the degree to which the 

conditions mimic real situations. Although it is impossible to capture the complexity of 

an authentic testing situation, the current study minimized this potential drawback 

through selecting conditions that reflect a typical large-scale examination. 

 Data were generated to simulate a non-equivalent anchor test (NEAT) equating 

design. The current study attempted to simulate a possible scenario in which anchor items 

have been exposed to the population through repeated test administrations. Specifically, 

the simulation addressed the common situation in which two administrations of a test are 

given at different, successive, testing occasions requiring the use of two forms. The first 

administration of the test was created as if the items were unique, thus none of the items 

on the original form were compromised. The second form required the use of anchor 

items for the NEAT equating, exposing these items to potential cheating. Hence, only 

anchor items on the new form were subject to possible cheating. In addition, various 

conditions were systemically altered to fully investigate the effects of cheating on the 

equating process. The following section provides a detailed description concerning the 
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methods used to investigate the research hypotheses of this study. First, a discussion is 

provided detailing the data generation process and conditions included in the study. Next, 

the statistics compiled to evaluate the results are described. Last, the expected results 

pertaining to each research question are presented.  

Test Generation 

 Two forms of a test, both containing 100 items, were generated for each 

replication of this study. One test represented a base form (BF), the form that sets the 

scale of the scores. The other generated test form represented a new form (NF) of the test 

that was equated to the scale of the BF. As this study employed a NEAT design to equate 

scores from the NF to the BF scale, a certain number of items were common across the 

two forms. The current study followed Angoff’s (1984) original guidelines in using 20 

items as the anchor set. This value should ensure reliable estimation of ability 

differences. The remaining 80 items were unique to each form. To assess the impact of 

cheating when the compromised items do not influence an examinee’s total score, a facet 

was included that examined internal and external anchor sets. 

Item parameters from the 1996 administration of the National Assessment of 

Educational Progress (NAEP) mathematics test (Allen, Donoghue, & Schoeps, 2001) 

were used as the basis for creating both the BF and the NF. Items with extreme location 

(b) or discrimination (a) parameters were excluded from selection to minimize the 

potential for estimation issues confounding the results. Specifically, items with b-

parameters with absolute values greater than 2.5 or a-parameters above 1.7 or less than .5 

were removed from the item set. This process left a total of 216 items available for 

selection.  
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For each replication, item parameters for both forms were randomly selected from 

the pool of 216. Anchor items were created by holding 20 randomly selected items 

constant across the two forms. That is, the item parameters were equivalent for these 

items across both forms. The unique items were then sampled without replacement from 

the remaining 196 item parameters.  

Examinee Population 

 For each simulated test, the probability of correct response on each item was 

generated for 3,000 simulated test-takers using a 3 parameter logistic (3PL) IRT model. 

This sample size was chosen to reflect a typical sample for a large scale test. In addition, 

a large sample size reduces the risk of estimation problems confounding the results of the 

study. The probability of correct response was calculated using a randomly generated 

latent ability for each examinee in conjunction with the item parameters of the form 

administered to that examinee.  

The IRT latent ability of examinees responding to the BF was generated from a 

standard normal distribution, denoted as N(0,1). The latent ability distribution of 

examinees administered the new form was systematically varied to compare situations in 

which the NF examinees have an ability distribution that differs from the BF group in 

mean and/or variance. Four levels of this condition were investigated including a 

condition in which the two groups of examinees were of equivalent ability. The specific 

distributions which  NF examinees’ abilities were generated from are: N(-.5,1), 

N(0,1.25), N(-.5,1.25), or  N(0,1). The mean NF ability was selected to be lower than the 

mean BF ability to prevent a situation in which the majority of examinees score near the 
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maximum possible value. A potential ceiling effect in the data would make capturing the 

benefits of cheating nearly impossible. 

Cheating  

Cheating conditions. Two conditions were manipulated to simulate the degree of 

cheating: 1) the proportion of compromised items, and 2) the number of examinees with 

access to these items (referred to as cheaters). The proportion of anchor items 

compromised was varied at 25% and 100%. In addition, two proportions of cheaters were 

examined, 10% and 50%. These levels were chosen to reflect low and high amounts of 

cheating in a real testing situation. To assign cheaters, the first X amount of generated 

examinees, where X corresponds to the proportion of cheaters in the current replication, 

were designated as cheaters. Delegation of compromised anchor items was carried out in 

the same manner.  

As cheating often goes undetected, determining what constitutes a low and high 

degree of cheating is difficult. Although the condition including 50% cheaters and 100% 

compromised anchor items may seem extreme, situations have occurred in which the vast 

majority of examinees had access to a high number of test questions, if not the entire 

form. Therefore, results from the higher degree of cheating conditions still provides 

practical information. Furthermore, this condition provides a picture of how equating is 

influenced by an extreme case of cheating.  

The simulation incorporated an additional condition that included no 

compromised items. This condition allowed for investigation of the quality of the 

equating process in the context of this simulation without the influence of cheating, and 

thus served as a baseline for relative comparisons. 
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  Cheating Implementation. Cheating was implemented by adding .5 to the 

probability of answering a compromised item correctly for any examinee designated as a 

cheater. For example, if a cheating examinee's original probability of correct response on 

a compromised item was .3, the adjusted probability would increase to .8. If the cheating 

examinee's original probability of responding correctly was above .5, the examinee would 

necessarily get the item correct as the adjusted probability would exceed 1.  

The cheating adjustment value of .5 was selected as it greatly improved the 

probability of correct response for a cheating examinee. However, the increase still 

allowed for incorrect responses to compromised items by cheaters with low abilities. 

Admittedly, the designated increase was arbitrary. However, there is a deficiency in 

research detailing benefits to having prior knowledge of an item. Further research should 

consider different methods to conceptualize and implement cheating behavior. 

Scoring 

 After the probability of a correct response was determined for each examinee on 

each item, a dichotomous score was created for each simulated response by comparing 

the probability of correct response to a random number generated from a uniform 

distribution ranging from 0 to 1. If the probability of correct response was greater than 

the randomly generated value, the response was scored as correct. When the probability 

of correct response was less than the random value the response was scored as incorrect. 

This is a standard procedure for scoring generated IRT data (Macdonald & Paunonen, 

2002) and allows for error in the data, thus better approximating reality. 

 Item parameters for each of the simulated tests were estimated separately using 

BILOG-MG (Zimowski et al., 2003). The FLOAT command was applied to remove the 
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influence of incorrectly specified prior-distributions on the item parameter estimates 

(Hendrickson & Kolen, 1999). When the FLOAT command is applied in BILOG, b 

parameter’s prior distribution standard deviation is set equal to the mean of the 

distribution. As the mean of the b-parameters can be negative, the prior is inappropriate 

for a standard deviation. Thus, the standard deviation of the prior-distribution for the b 

parameter was set to 1. The maximum number of Gauss-Newton iterations for the 

expectation-maximization algorithm was increased to 100. Ability distributions were 

estimated using an empirical distribution over 40 quadrature points. Aside from the 

modifications described above, default BILOG-MG options were used for estimation.  

Scaling 

 Once item parameters for both forms were estimated, the NF item parameters 

were placed on the BF scale. Scaling was applied using five common IRT scaling 

methods. The five methods under investigation in this study include: (a) the mean-mean 

method (MM: Loyd & Hoover, 1983) (b) the mean-sigma method (MS: Marco, 1977), (c) 

the Stocking-Lord (SL: Stocking & Lord, 1983) approach, (d) the Haebara method and 

(e) the fixed anchor method (FA: Lord, 1980; Kolen & Brennan, 2004). The five scaling 

methods utilized in this study allowed for a comparison of moment, characteristic curve, 

and concurrent methods of scaling. As discussed in chapter 2, each of these methods 

calculate the slope (A) and intercept (B) scaling constants necessary to transform the 

parameter estimates from the NF to the BF scale. Both scaling constants were retained 

after the completion of a replication. 
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Equating 

 In the final step of the simulation process, true score IRT equating was applied to 

establish equivalence between NF and BF scores. As discussed in chapter 2, true score 

equating converts an examinee’s raw score on the NF to an equivalent score on the BF. 

This conversion was accomplished by calculating the ability value corresponding to a 

number correct total score on the NF. The resulting ability was then used to derive the 

expected true score on the BF. Because the minimum true score for the three-parameter 

IRT model will equal the sum of the c parameters, no true score exists for observed 

scores below this sum. Kolen (1981) proposed a method for equating scores that fall 

outside the range of possible true scores that can be used to address this issue. First, a 

score of 0 on the NF was set to a score of 0 on the BF. Second, a score of the sum of the 

c-parameter on the NF was set to equal the sum of the c-parameter on the BF. Linear 

interpolation was then conducted to find the equivalent BF score for NF scores that fall 

outside the range of possible true scores. This procedure was applied when an observed 

score fell below the lowest possible true score. 

When the anchor items were internal to test scoring, all 100 items were used to 

estimate the true score relationship between the forms. When the anchor was external to 

the test, the true score relationship was determined through the 80 items unique to each 

form. The external anchor condition presented a situation in which the compromised 

items do not count towards examinees’ total scores, yet are used in the scaling process. 

Note that the maximum possible number correct score differed between the two anchor 

conditions, 80 for the external anchor and 100 for the internal. Estimated scaling 
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constants and equated scores were retained at the completion of each replication to 

examine the effects of cheating on the equating process. 

Summary of Conditions 

 The current study varied five conditions to investigate the effects of cheating on 

the equating process across a range of factors. Two proportions of cheaters, 10% and 

50%, and two proportions of compromised items, 25% and 100%, were included to 

explore how the degree of cheating affects the equating process. True ability for 

examinees administered the new form was generated from four normal distributions: 

N(0,1), N(-.5,1), N(0,1.25), N(-.5, 1.25). Five scaling methods were used to place item 

parameters on the same scale. These methods included mean-mean, mean-sigma, 

Stocking-Lord, Haebara, and fixed anchor. The anchor items were manipulated to be 

either internal or external to the scoring of the test. To allow for exploration of complex 

interactions, the five conditions were fully crossed. The interaction of conditions resulted 

in a 2 x 2 x 4 x 5 x 2 design, for a total of 160 unique conditions. The simulation process 

was replicated 500 times for each combination of conditions. New tests and examinees 

were generated for each replication. Appendix A displays a summary of the study's 

simulation design.  

Comparison Criteria  

 The accuracy of recovered scaling constants and equated scores was used to 

evaluate the effects of cheating on the equating process. Comparisons across all 160 

conditions in the study were made to assess how the experimental conditions alter the 

effects of cheating on parameter recovery. Within each replication, two scaling constants 

(A and B) and 100 equated scores were produced.  
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Scaling Constants. In evaluating the accuracy of recovering scaling constants, it 

is necessary to calculate the true scaling constants without the influence of cheating or 

error in estimation. True scaling parameters were derived by calculating the A and B 

constants necessary to set the estimated NF examinee ability distribution, which was 

constrained to be N(0,1), equal to the true NF distribution. These constants can be 

derived by solving for the linear transformation that shifts the constrained, N(0,1), new 

form distribution to the true distribution. As seen in Equation 2.3, the A scaling constant 

corresponds to the slope of a linear transformation and the B constant corresponds to the 

intercept. For example, to shift the estimated N(0,1) distribution to a true distribution of 

N(-.5,1.25) the scores would first need to be multiplied by 1.25 to expand the variance, 

then .5 would be subtracted from each score to shift the mean. Therefore, the true scaling 

constants in this situation would be 1.25 and -.5 for A and B respectively. Recall that the 

true NF ability distribution was a condition under investigation in the study, thus 

requiring the computation of different true scaling constants depending on the condition 

used to generate the data. The true scaling constant values were compared to the 

estimated values retained after each replication across each condition.   

To quantify errors in recovery, bias and root mean squared error (RMSE) were 

calculated for both A and B scaling constants. Bias identifies systematic deviation of the 

estimated scaling constant from the true parameter. Bias is mathematically defined as the 

average difference of the estimated parameter from its true value across all replications,  
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where λ is the true value of the scaling constant, ̂  is the estimated value of the scaling 

constant and m represents the total number of  replications.  

 RMSE provides a measure of absolute accuracy in parameter recovery. The 

RMSE statistic incorporates both the bias and the variability of the sampled parameter. 

RMSE is computed by taking the square root of the average squared deviation between 

the estimated parameter and the true value. Mathematically, RMSE can be expressed by: 
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The mathematical terms in RMSE are equivalent to those in the measure of bias. 

RMSE differs from bias in that it captures both bias and sampling variability. Thus, 

RMSE assesses the overall variability of the estimated scaling constant around the true 

scaling constant. As with bias, RMSE was calculated for each A and B scaling constant 

across replications. 

Equated Scores. Quantifying the impact of cheating on equated scores involved 

comparing an examinee’s equated score derived from the observed responses to the 

examinee’s equated score derived from that examinee’s true ability (θ) and the true item 

parameters on the BF (Hanson & Beguin, 2002). In other words, this process compared τ̂ , 

the estimated true score, to τ , where τ  is the true-score of the examinee given perfect 

conditions of measurement. Before calculating the actual true score for an examinee, the 

new form ability estimate was scaled to the base form metric using the true equating 

constants. The BF true score equivalent ( τ ) was obtained by evaluating the TCC at the 

true latent ability associated with an examinee administered the NF using the true item 
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parameters on the BF. To clarify, true item parameters refer to the generated item 

parameters from the test creation process and not the estimated item parameters. Thus, 

these item parameters reflect the true properties of the item and are unaffected by 

conditions under investigation or error associated with parameter estimation. The true 

score obtained when using true parameters represents the equated score an examinee 

would receive under perfect estimation and no extraneous influences. As the current 

study examined an equating design that sets a clear base form, only recovery of true 

scores for examinees administered the new form was assessed. 

  As with scaling constants, bias and RMSE were used to evaluate the recovery of 

equated scores. As equated scores were produced for each examinee in a replication, it 

was necessary to sum across all examinees within a replication prior to averaging across 

replications when calculating bias and RMSE. Accordingly, bias in equated scores is 

mathematically defined as: 
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where i is the individual examinee and n denotes the sample size. ˆ
ji and ji refer to the 

estimated and population true score for examinee i and replication j respectively. The 

mathematical notation is equivalent to that of Equation 3.1 for all other terms. RMSE for 

equated scores is calculated as, 
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where the terms are equivalent to Equation 3.3. In addition to the overall bias and RMSE, 

these indices were plotted as a function of the new form raw score to examine how 

deviations from truth vary across the observed score. 

Evaluating Honest Test Takers. To address research question 5 and examine 

how cheating influences ability estimates for honest test takers, a separate calculation of 

bias and RMSE for equated scores was conducted including only honest examinees. That 

is, Equations 3.3 and 3.4 were applied using only the honest test takers in the given 

replication. The resulting statistics captured the degree of deviation an honest examinee’s 

ability estimate, on the true score metric, was from truth.  

Expected Results 

 Conditions without cheating. The accuracy of the equating and scaling 

processes under conditions in which cheating was not present should produce consistent 

results with negligible deviations from truth. Given that the data were generated in a 

method conducive to adequate model fit and item parameters were constrained to 

reasonable values, estimation of scaling coefficients and equated scores in conditions free 

of cheating should accurately recover the true values, aside from sampling error. The 

conditions with no cheating can serve as a baseline to compare against cheating 

conditions. Recovery of true parameters under conditions without cheating would suggest 

that any deviation from truth in cheating conditions, beyond the deviations in the baseline 

condition, arises due to a main effect of cheating or an interaction with cheating and 

another manipulation. 

Effects of cheating on scaling constants. Scaling constants were expected to 

deviate from true values within cheating conditions. As discussed previously, cheating 
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will mask the true ability differences between examinee groups by making new form 

examinees appear more able. Hence, estimation of the scaling constants will be affected 

by this shift in ability. Furthermore, estimation of the discrimination parameter may be 

severely altered when cheating occurs as cheating can become the primary factor 

influencing whether an anchor item was responded to correctly. Thus, scaling methods 

that utilize both location and difficulty parameters (Stocking-Lord, Haebara, and mean-

mean) may produce scaling constants further from truth in comparison to the mean-sigma 

and fixed anchor methods. It is difficult to predict the direction of bias in either the A or 

B scaling constants under any of the scaling methods. The multiple interactions of 

conditions in this study were expected to produce different and unpredictable results in 

regards to the scaling coefficients.  

 Effects of Cheating on Equated Scores. The effect of increasing the proportion 

of compromised items and increasing the proportion of cheaters was expected to create 

positive bias in the estimated equated score. Positive bias was expected to occur because 

as the degree of cheating increases, the cheating examinees in the new form group will 

score higher on the anchor items than their true ability predicts. As a result, the ability 

distribution of NF examinees on the anchor items will be overestimated. Following from 

the results of Jurich et. al. (2010), the augmented NF ability distribution will cause the 

unique items on the NF to be estimated as more difficult. Thus, the positive bias in 

equated scores will arise as examinees are correctly answering unique items above what 

their true ability would predict due to the inflated difficulty. This process was expected to 

benefit both cheaters and honest test-takers.  
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In conditions where the anchor items, and thus compromised items, were internal 

to test scoring, cheaters were expected to benefit at a higher degree than non-cheaters in 

terms of equated scores. The equated scores were expected to reflect the fact that the 

compromised items were used in the estimation of cheaters’ ability levels. In external 

anchor conditions, cheaters and non-cheaters should achieve similar benefits toward their 

equated scores. As external anchor items were excluded in the calculation of a total score, 

the compromised items in this situation were not used in the estimation of ability. 

Therefore, any impact on the equated scores was expected to arise from the use of 

compromised items in the scaling process.



CHAPTER 4 

Results 

 The results of this study are reported and interpreted in reference to the five 

research questions posited in chapter two.  

Research question 1. To what extent do the proportions of cheaters and 

compromised anchor items affect the recovery of equated scores and scaling constants? 

Research question 1 addressed how the amount of compromised anchor items and 

proportion of cheaters influenced IRT equating. Specifically, the research question 

explored how the cheating conditions affect equated scores and the scaling constants 

produced by the four scaling methods investigated in the study. To explore the extent 

cheating influenced the recovery of these parameters, bias and RMSE for equated scores 

and the scaling constants were aggregated over the various ability distribution conditions 

examined in the study.  

Table 1 presents the bias for equated scores under the different levels of cheating 

by the five scaling methods. A positive value for bias indicates the average equated score 

is overestimated whereas a negative bias reflects the average equated score is 

underestimated. Table 1 reports the results for the internal anchor; results for the external 

anchor followed the same pattern. As expected, bias across the five scaling methods for 

the condition including no cheating approached zero except for the fixed anchor 

condition. The fixed anchor method showed a slight positive bias when no cheating 

occurred
1
. For the cheating condition including the 25% compromised anchor items with 

                                                           
1
 We believe this result occurred because, when the NOAdujust option is specified, BILOG does not adjust 

the quadrature density to reflect that the new form ability distribution may not be distributed N(0,1) relative 

to the scale of the fixed item parameters (Kim, 2006). 
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10% cheaters, bias increased slightly for each scaling method. Within this cheating 

condition, both moment methods produced less biased scores than the characteristic curve 

and fixed anchor methods. The fixed anchor method yielded the largest bias in equated 

scores, with the individual scores on average being 1.253 raw score points above the 

expected scores.  

Table 1 

Internal Anchor Equated Score Bias Aggregated across Ability Distribution 

% Compromised 

Anchor Items 
% Cheaters 

Scaling Method 

SL HB MM MS FA 

0 0 -0.036 -0.039 0.008 0.007 0.676 

25 
10 0.812 0.603 0.419 0.409 1.253 

50 4.296 2.924 2.812 2.842 3.696 

100 
10 3.621 2.992 2.829 2.767 3.227 

50 18.972 17.515 16.078 19.461 14.758 

Note. MM = Mean-mean, MS = Mean-sigma, SL = Stocking-Lord, HB = Haebara, FA = Fixed anchor 

 

When the proportion of cheaters was increased to 50%, bias in the equated scores 

increased considerably. The condition including 100% compromised items and 10% 

cheaters resulted in a similar trend, with a smaller magnitude of bias across the scaling 

methods. The most extreme cheating condition including 100% compromised items and 

50% cheating resulted in drastically large positively biased equated scores. The average 

equated score across all scaling methods was 17.36 above the true equated score.  

Figure 2 depicts the equated score bias as a function of the new form raw score by 

the different cheating conditions. The figure presents the SL method in the internal 

anchor condition with N(0,1) new form ability distribution. Trends seen in Figure 2 

replicate in the various scaling methods and new form ability distribution conditions. The 
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baseline condition trend noticeably differed from the cheating conditions. In the baseline 

condition, scores were well recovered near the middle of the new form score distribution. 

Examinees obtaining low raw scores received underestimated equated scores on average 

whereas equated scores were overestimated for examinees scoring high. When cheating 

occurred, equated scores were consistently overestimated. Specifically, equated scores for 

examinees with low raw scores were drastically overestimated. Overestimation decreased 

at higher raw scores values. The disparity among cheating conditions is readily apparent 

in the figure. In the extreme cheating condition, the positive bias greatly exceeded even 

the moderate cheating conditions explored in this study. At the peak bias for the extreme 

cheating condition, equated scores were inflated by approximately 23 points above the 

raw score. This value is considerably larger than in either of the two moderate cheating 

conditions. 

 
FIGURE 2 Equated Score Bias for the Stocking-Lord Scaling Method at Varying Degrees of Cheating as a 

Function of the New Form Raw Score. Note. Biases are presented for the N(0,1) new form ability 

distribution and the internal anchor. In the legend, the first number in parenthesis represents the percentage 

of compromised anchor items, whereas the second number indicates the proportion of cheaters. 
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 Table 2 displays the RMSE of equated scores produced by the five scaling 

methods for the internal anchor set. RMSE is a function of both the bias and sampling 

variability of the parameter of interest. Thus, for conditions in which the bias is large, the 

RMSE must also be large. A RMSE unusually larger than the corresponding bias 

suggests estimation of the parameter is highly variable. For the current conditions, the 

increase in RMSE follows the increase in cheating proportions closely. Examining the 

bias and RMSE of the largest cheating conditions concurrently reveals that as cheating 

increases, sampling variability of the equated score estimates do not increase. The rise in 

RMSE in larger cheating conditions seems to be entirely a function of the increased bias 

in equated scores.  

Table 2 

Equated Score Root Mean Squared Error (RMSE) Aggregated across Ability Distribution 

% Compromised  

Anchor Items  
% Cheaters 

Scaling Method 

SL HB MM MS FA 

Internal Anchor Set 

0 0 4.848 4.849 4.891 4.899 4.927 

25 
10 4.963 4.943 4.957 4.971 5.088 

50 6.660 5.848 5.832 5.901 6.255 

100 
10 6.564 6.269 6.161 6.248 6.396 

50 21.112 19.748 18.042 22.178 17.091 

       

Table 3 displays the bias and RMSE for the A scaling constant across the cheating 

conditions and scaling methods. The A scaling constant is recovered well in the baseline 

condition, with nearly no bias in estimation. For the moderate cheating conditions, the A 

constant was consistently underestimated. In the extreme cheating condition, however, 

the A scaling constant was highly overestimated by the mean-sigma scaling method. In 



61 

 

 

contrast, for the same cheating condition mean-mean severely underestimated the 

constant. RMSE indicates that the recovery of the A scaling constant became less 

accurate as the proportion of cheating increases.  

Bias and RMSE for the B scaling constant are presented in Table 4. When no 

cheating is present, the B constant was recovered with virtually no bias. Bias in the B 

scaling constant systematically increased as cheating increased. Bias severely increased 

from the moderate cheating conditions to the extreme condition. As with equated scores, 

the RMSE for the B constant indicated that the parameter was less accurately recovered 

as cheating increases. However, the small discrepancy between the RMSE and bias again 

suggests that the inaccuracy in recovering the B constant was largely attributable to the 

bias in estimation.  

Table 3 

Bias and Root Mean Squared Error for Scaling Constant A 

% Compromised  

Anchor Items  
% Cheaters 

Scaling Method 

SL HB MM MS  

Bias 

0 0 -0.001 -0.001 -0.005 -0.003  

25 
10 -0.029 -0.014 -0.014 -0.008  

50 -0.145 -0.097 -0.039 -0.091  

100 
10 -0.050 -0.012 -0.068 0.002  

50 0.000 0.075 -0.221 0.257  

RMSE 

0 0 0.030 0.029 0.042 0.046  

25 
10 0.042 0.034 0.045 0.049  

50 0.152 0.117 0.058 0.133  

100 
10 0.067 0.038 0.084 0.053  

50 0.335 0.127 0.245 0.321  
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Table 4 

Bias and Root Mean Squared Error for Scaling Constant B 

% Compromised  

Anchor Items  
% Cheaters 

Scaling Method 

SL HB MM MS  

Bias 

0 0 0.001 0.001 0.005 0.004  

25 
10 0.060 0.044 0.033 0.031  

50 0.288 0.200 0.185 0.193  

100 
10 0.237 0.194 0.192 0.178  

50 1.182 1.088 0.963 1.258  

RMSE 

0 0 0.032 0.032 0.047 0.048  

25 
10 0.069 0.055 0.058 0.069  

50 0.293 0.206 0.196 0.293  

100 
10 0.240 0.197 0.199 0.240  

50 1.344 1.091 0.968 1.344  

 

 Research question 2. Which scaling method performs best in recovering true 

scaling constants under the presence of cheating?   

Results corresponding to the second research question attempted to determine 

whether certain scaling methods performed more accurately in recovering the true scaling 

constants when cheating occurred. To address this question, scaling methods were 

compared on their bias and accuracy in recovering the true A and B scaling constants. 

In reference to the A scaling constant, reexamining the RMSE from Table 3 shows 

that the Haebara method provided the most accurate recovery on average. As noted, there 

was a systematic underestimation of the A constant when cheating was present across the 

scaling methods, except in the most extreme condition of cheating. For the extreme 

condition, the mean-mean method highly underestimated the true A scaling constant, 
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whereas the mean-sigma method overestimated the scaling constant. Although the bias of 

the Stocking-Lord method for the largest degree of cheating approximated zero, as seen 

in Table 3, this occurred solely due to the aggregation of the data across the differing 

ability distributions. Additional detail on this effect is presented under research question 

3.  

 The mean-mean scaling method performed most accurately in recovering the B 

scaling constant when cheating was present. Despite this fact, the mean-mean method 

still displayed large amounts of bias when a moderate degree of cheating was present. 

Results regarding the scaling constants indicate that no scaling method would adequately 

combat the effects of cheating to justify employing these methods when cheating has 

been known to occur.  

The accuracy of recovering scaling constants corresponded with accuracy in 

recovering equated scores, displayed in Table 1. At low to moderate conditions, the two 

moment methods along with the Haebara method yielded lower biases in comparison to 

the Stocking-Lord method. Under the extreme cheating condition mean-sigma and 

Stocking-Lord produced larger biases than the other methods. The fixed anchor method 

of scaling yielded large biases at low and moderate degrees of cheating. However, fixing 

the anchor item parameters displayed the least amount of bias within the extreme 

cheating condition.  

Research question 3. Do differences in the ability distributions of the NF and BF 

examinees affect the recovery of equated scores and scaling constants in the presence of 

cheating? 
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Question 3 addresses the influence of the different new form ability distributions 

on equated scores and scaling constants. To investigate this question, recovery of the 

equated scores and two scaling constants were examined for each of the cheating 

conditions and scaling methods by the four ability distributions conditions. Tables 

reporting the RMSE for subsequent research questions are included in the appendix as the 

RMSE values consistently indicated that bias accounted for the majority of inaccurate 

recovery.  

Table 5 contains the equated score bias by the various ability distributions. As 

noted, RMSE for equated scores was largely a function of bias. This trend held across 

subsequent analysis. Thus, RMSE for the current and subsequent analyses are presented 

in the Appendix. Generating the new form examinees from an ability distribution with a 

mean of -.5 increased the bias in equated scores for a majority of the cheating conditions. 

This increase in bias was more pronounced in conditions with a larger degree of cheating. 

The fixed anchor method of scaling was particularly affected when the mean of the new 

form ability distribution was below the old form. 
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Table 5 

Internal Anchor Equated Score Bias by Ability Distribution  

% Compromised  

Anchor Items  
% Cheaters Ability Distribution 

Scaling Method 

SL HB MM MS FA 

0 0 

N(0.0,1.00) 0.020 0.016 -0.001 -0.001 0.055 

N(-0.5,1.00) -0.156 -0.165 -0.082 -0.082 1.197 

N(0.0,1.25) 0.068 0.067 0.120 0.120 0.143 

N(-0.5,1.25) -0.075 -0.071 -0.007 -0.007 1.306 

25 

10 

N(0.0,1.00) 0.873 0.666 0.423 0.422 0.616 

N(-0.5,1.00) 0.754 0.511 0.380 0.356 1.826 

N(0.0,1.25) 0.835 0.666 0.472 0.476 0.669 

N(-0.5,1.25) 0.784 0.568 0.402 0.384 1.902 

50 

N(0.0,1.00) 4.313 3.020 3.031 2.936 3.006 

N(-0.5,1.00) 4.598 3.063 2.832 3.036 4.468 

N(0.0,1.25) 3.969 2.764 2.767 2.649 2.930 

N(-0.5,1.25) 4.302 2.850 2.619 2.745 4.380 

100 

10 

N(0.0,1.00) 3.516 2.987 2.718 2.825 2.524 

N(-0.5,1.00) 3.811 3.068 3.160 2.872 3.993 

N(0.0,1.25) 3.409 2.896 2.575 2.670 2.481 

N(-0.5,1.25) 3.746 3.015 2.862 2.700 3.912 

50 

N(0.0,1.00) 18.006 16.783 14.938 18.157 13.654 

N(-0.5,1.00) 20.485 18.921 18.133 22.128 16.537 

N(0.0,1.25) 17.340 15.963 13.982 16.423 13.070 

N(-0.5,1.25) 20.056 18.395 17.260 21.134 15.773 

 

Changes to the variance of the new form examinees ability distribution appeared 

to affect the equated score bias dependent on the degree of cheating. In the baseline and 

lowest cheating condition, a larger new form examinee variance led to more biased 
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estimates of the equated scores. This effect was reversed within higher cheating 

conditions, where a larger new form variance resulted in less biased estimates on average. 

This trend was consistent across the five scaling methods.  

Tables 6 and 7 show the bias for the A and B scaling constants by the varying 

ability distributions investigated in this study, respectively. Results suggest that the A 

scaling constant is affected by both the mean and variance of the new form ability 

distribution. On average, the bias in estimating the A constant was larger when the mean 

of the ability distribution was -.5. This effect was more pronounced in the two moment 

methods of scaling. It is interesting to note that the -.5 mean ability condition increased 

the absolute value of bias even when the scaling constants yielded biases in opposite 

directions. For instance, in the cheating condition including 100% compromised items, 

50% cheaters, and a variance of 1, the underestimation of the A scaling constant in the 

mean-mean method increased when the ability distributions differed. For the same 

condition, the other three scaling methods overestimated the value of the A scaling 

constant. This overestimation was more severe at the -.5 mean ability value. Increasing 

the variance of the ability distribution also resulted in less accurate recovery of the A 

constant. The conditions with a larger variance consistently produced higher biases 

except in the extreme cheating condition. In the extreme condition, a more variable new 

form ability distribution led to less biased, or more negatively biased, estimation of the A 

scaling constant. Also within the extreme cheating condition, the Stocking-Lord method 

showed both positive and negative bias at different levels of the new form ability 

distribution. When aggregating across these ability conditions, the Stocking-Lord bias 

averaged to zero as seen in Table 3.



67 

 

 

Table 6 

Internal Anchor Bias for Scaling Constant A by Ability Distribution  

% Compromised 

Anchor Items 
% Cheaters 

Ability 

Distribution 

Scaling Method 

SL HB MM MS  

0 0 

N(0.0,1.00) 0.001 0.002 0.000 0.001  

N(-0.5,1.00) -0.002 -0.002 -0.007 -0.008  

N(0.0,1.25) 0.000 0.000 -0.003 -0.001  

N(-0.5,1.25) -0.003 -0.003 -0.011 -0.003  

25 

10 

N(0.0,1.00) -0.022 -0.008 -0.006 -0.004  

N(-0.5,1.00) -0.026 -0.013 -0.014 -0.010  

N(0.0,1.25) -0.032 -0.016 -0.012 -0.007  

N(-0.5,1.25) -0.036 -0.021 -0.022 -0.013  

50 

N(0.0,1.00) -0.121 -0.081 -0.031 -0.069  

N(-0.5,1.00) -0.131 -0.088 -0.039 -0.090  

N(0.0,1.25) -0.160 -0.107 -0.039 -0.099  

N(-0.5,1.25) -0.169 -0.112 -0.047 -0.104  

100 

10 

N(0.0,1.00) -0.024 0.006 -0.043 0.019  

N(-0.5,1.00) -0.036 -0.005 -0.074 0.005  

N(0.0,1.25) -0.061 -0.016 -0.058 -0.003  

N(-0.5,1.25) -0.080 -0.032 -0.096 -0.014  

50 

N(0.0,1.00) 0.040 0.113 -0.128 0.223  

N(-0.5,1.00) 0.107 0.147 -0.194 0.404  

N(0.0,1.25) -0.092 0.010 -0.214 0.103  

N(-0.5,1.25) -0.053 0.029 -0.348 0.299  
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Table 7 

Internal Anchor Bias for Scaling Constant B across Ability Distribution  

% Compromised 

Anchor Items 
% Cheaters 

Ability 

Distribution 

Scaling Method 

SL HB MM MS  

0 0 

N(0.0,1.00) 0.001 0.001 0.001 0.000  

N(-0.5,1.00) 0.002 0.001 0.007 0.008  

N(0.0,1.25) 0.001 0.000 0.004 0.004  

N(-0.5,1.25) 0.002 0.002 0.010 0.006  

25 

10 

N(0.0,1.00) 0.054 0.040 0.026 0.026  

N(-0.5,1.00) 0.066 0.047 0.039 0.036  

N(0.0,1.25) 0.052 0.040 0.027 0.027  

N(-0.5,1.25) 0.069 0.050 0.039 0.035  

50 

N(0.0,1.00) 0.256 0.181 0.179 0.175  

N(-0.5,1.00) 0.321 0.221 0.196 0.219  

N(0.0,1.25) 0.251 0.176 0.173 0.168  

N(-0.5,1.25) 0.323 0.220 0.191 0.210  

100 

10 

N(0.0,1.00) 0.207 0.174 0.162 0.164  

N(-0.5,1.00) 0.256 0.205 0.224 0.190  

N(0.0,1.25) 0.215 0.181 0.163 0.166  

N(-0.5,1.25) 0.272 0.215 0.218 0.191  

50 

N(0.0,1.00) 1.075 1.013 0.851 1.142  

N(-0.5,1.00) 1.232 1.139 1.073 1.387  

N(0.0,1.25) 1.145 1.021 0.845 1.088  

N(-0.5,1.25) 1.277 1.179 1.083 1.416  

 

Results suggest that the mean of the ability distribution was the main 

distributional factor influencing estimation of the B scaling constant. The conditions 

including a mean NF ability distribution of -.5 consistently produced a more positively 
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biased estimate of the B constant. The additional overestimation of the B scaling constant 

was more severe in conditions including more cheating. For example, in the condition 

with the highest degree of cheating, conditions including a mean of -.5 consistently 

overestimated the B constant by approximately .15 to .30 more than the condition with a 

mean new form distribution of 0. Results showed that the variance of the new form 

distribution had little effect on recovery of the B constant.  

 Research question 4. Does the design of the anchor set, internal or external, 

impact the manner in which cheating affects equated scores? 

 Question four explores potential differences that may arise in equated score bias 

when implementing an external anchor set. Bias and RMSE for the equated scores were 

compared between the two anchor conditions to identify possible differential effects. 

Recall, in an external anchor set, the anchor items are used to compute the scaling 

constants only. Anchor items are not included in calculations of the examinees' abilities 

or raw scores. Thus, the maximum possible score on the simulated test with an external 

anchor set was 80. The difference between total possible scores of the internal and 

external tests precludes direct comparisons between these conditions. To alleviate these 

issues, bias and RMSE for the external anchor conditions were converted to a proportion 

correct. The proportion correct scores for the external anchor were then multiplied by 100 

to make the values directly comparable to the internal anchor test. Note that the anchor 

type employed does not affect the calculation of scaling constants. Thus, no comparisons 

were made across internal and external conditions for recovery of the scaling constants. 

 Bias for equated scores for both the internal and external anchor conditions are 

displayed in Table 8. Results indicate that cheating on the anchor items has less of an 
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effect on the accuracy of equated scores under the external anchor condition. Across the 

majority of conditions and scaling methods, an internal anchor resulted in more positively 

biased scores than an external anchor set. The difference in bias between the two anchor 

sets was exacerbated at higher degrees of cheating. Results of research question 5 expand 

on the differential effects of the anchor sets. 

Table 8 

Equated Score Bias by Anchor Type across Ability Distribution 

% Compromised  

Anchor Items  
% Cheaters 

Scaling Method 

SL HB MM MS FA 

Internal Anchor Set 

0 0 -0.036 -0.039 0.008 0.007 0.676 

25 
10 0.812 0.603 0.419 0.409 1.253 

50 4.296 2.924 2.812 2.842 3.696 

100 
10 3.621 2.992 2.829 2.767 3.227 

50 18.972 17.515 16.078 19.461 14.758 

External Anchor Set 

0 0 -0.050 -0.053 -0.006 0.009 0.844 

25 
10 0.781 0.460 0.258 0.219 1.495 

50 4.311 2.478 1.963 2.364 3.484 

100 
10 3.304 2.363 2.569 2.031 2.938 

50 15.769 13.365 14.189 14.545 11.081 

 

Research question 5. How are the equated scores for honest test-takers affected 

when anchor items have become compromised? 

 Research question five investigated the influence of cheating on the equated 

scores assigned to honest test-takers. To explore how cheating affects honest test-takers, 

equated score bias for honest examinees was compared to the bias in dishonest examinees 
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scores. Table 9 contains the bias in equated scores for honest and dishonest test takers. 

Results were aggregated across the scaling methods to ease the interpretability of the 

findings.  

 Examining the bias for honest test takers indicates that equated scores were 

positively biased in all conditions. In the internal anchor condition, bias for dishonest 

examinees is consistently more positive across all conditions. Specifically, increasing the 

amount of compromised items greatly benefitted the cheating test takers in the internal 

anchor condition. In the most extreme cheating condition, dishonest test takers obtained 

equated scores 20 to 26 raw score points above their true scores on average across the 

various ability distributions and scaling methods. In comparison, honest examinees 

benefited by 14 to 16 score points with these conditions. In stark contrast, differences 

between dishonest and honest test takers do not arise in the external anchor condition. 

Across all cheating conditions and ability distributions within the external cheating 

condition, bias for equated scores was nearly identical between honest and dishonest test 

takers.  
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Table 9 

Bias for Honest and Dishonest Test Takers by Anchor Type 

   

 Figure 3 graphically depicts the equated score bias for the Stocking-Lord scaling 

method for both internal and external anchor conditions. The figure illustrates that 

cheaters in the internal anchor condition benefit the most from cheating across the scale 

of new form scores. However, the magnitude of bias for honest examinees in the internal 

anchor condition was nearly identical to the external anchor condition across the entire 

distribution. The figure also illustrates that cheaters and honest examinees in the external 

anchor condition benefited equivalently from cheating. 

% Compromised 

Anchor Items 
% Cheaters 

Ability 

Distribution 

Internal  External 

Honest Dishonest  Honest Dishonest 

25 

10 

N(0.0,1.00) 0.421 2.211  0.492 0.512 

N(-0.5,1.00) 0.567 2.554  0.603 0.583 

N(0.0,1.25) 0.456 2.130  0.678 0.679 

N(-0.5,1.25) 0.616 2.538  0.797 0.803 

50 

N(0.0,1.00) 2.362 4.160  3.027 3.037 

N(-0.5,1.00) 2.566 4.633  2.856 2.849 

N(0.0,1.25) 2.158 3.874  2.974 2.983 

N(-0.5,1.25) 2.375 4.384  2.819 2.814 

100 

10 

N(0.0,1.00) 2.200 9.341  2.468 2.460 

N(-0.5,1.00) 2.551 10.846  2.627 2.643 

N(0.0,1.25) 2.121 8.971  2.675 2.675 

N(-0.5,1.25) 2.456 10.367  2.794 2.788 

50 

N(0.0,1.00) 12.274 20.341  13.668 13.689 

N(-0.5,1.00) 13.788 24.693  13.055 13.060 

N(0.0,1.25) 11.503 19.209  14.025 14.045 

N(-0.5,1.25) 13.459 23.588  14.400 14.376 
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FIGURE 3 Equated Score Bias for the Stocking-Lord Method Scaling Method for Internal and External 

Anchor Tests. Note. Bias is presented for the condition including 25% compromised items, 50% cheaters, 

and a N(0,1) new form ability distribution.
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CHAPTER 5 

Discussion 

 This study employed simulation techniques to examine the effects of cheating on 

IRT equating under various realistic testing conditions. The study focused on identifying 

how cheating influences the recovery of equated scores and IRT scaling constants when 

anchor items are compromised in the non-equivalent anchor test equating design. 

Furthermore, the study attempted to determine whether a certain method of scaling 

performed best in recovering the correct IRT scaling constants. Recovery was assessed 

for various new form examinee ability distributions, levels of cheating, and internal and 

external anchor sets. The following discussion expands on the results presented in chapter 

four, followed by general implications of the study and recommendations for future 

research. 

 The prominent question of interest in this study concerned the impact of 

compromised items and proportion of cheaters on equated scores and scaling constants 

obtained from IRT true score equating. Results indicated that an increase in either 

compromised items or proportion of cheaters led to positively biased equated scores. 

Although overestimated equated scores were predictable, the extent of bias at even 

moderate degrees of cheating was disconcerting. Thus, the results suggest that scores 

obtained from even slightly compromised tests overestimate examinees’ true abilities.  

 Compromised items introduce positive bias in the equating procedure in part 

because cheaters respond correctly to the compromised items above the level implied by 

their true ability. Therefore, cheaters obtain inflated raw scores that, in turn, inflate 

estimates of their true ability. Although this process helps explain why cheaters benefit 
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directly from compromised items, it does not account for the extensive degree of bias in 

equated scores or why honest takers benefited from cheating as well. 

 Investigating the effects of cheating on the scaling constants provides further 

insight into biased equated scores. Specifically, the severe overestimation of the B scaling 

constants reveals how all the examinees in the new form group can benefit from cheating. 

When scaling the new form parameters to the metric of the base form, a large B constant 

will have two major effects. First, as seen in Equation 2.3, a large B constant will cause 

ability estimates for new form examinees to be increased. As a result, all examinees will 

receive an overestimated ability if the B constant is positively biased. Furthermore, 

Equation 2.5 indicates that the b item parameters for the new items will also be 

artificially increased when the B constant is overestimated. Thus, the new form unique 

items appear more difficult than truth. Because the inflated new form b parameters cause 

the unique new form items to appear more difficult, responding correctly to the these 

items will considerably increase an examinee’s ability estimate. Therefore, both cheaters 

and honest test-takers benefit from responding to these inaccurately difficult unique 

items.  

 In less technical terms, access to compromised anchor items distorts the ability 

differences between new form examinees and base form examinees. Because cheaters 

increase the average score on the anchor items, the ability of the new form group as a 

whole is inflated when scaled to the base form. Consequently, as the new form group 

appears more proficient, the unique new form items, where no cheating occurred, appear 

more difficult. This benefits both honest and dishonest examinees. 
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 The large positive bias in the B scaling constant arises because cheating occurs on 

the items specifically used to scale the test form. As cheaters are artificially responding 

correctly to several compromised items, the difficulty of the anchor items will be 

underestimated for the new form group. When deriving the scaling constants, each 

scaling method must overestimate the B constant to account for decreased difficulty. 

Excessive degrees of cheating increase this bias as a large portion of the examinees have 

access to a majority of anchor items. Under these circumstances, the b parameter for the 

majority of anchor items will be severely underestimated, drastically inflating the B 

constant to overcorrect for this effect. 

 For example, the moment methods calculate the B scaling constant through 

subtracting the mean new form anchor item b parameters, multiplied by the A constant, 

from the mean of the base form parameters as seen in Equations 2.8 and 2.10. Therefore, 

the B constant estimate increases because the mean of the new form anchor item b 

parameter decreases when cheating occurs. The two moment methods produce unequal B 

constants because the methods calculate the A constant using different item parameters. 

These differences are discussed subsequently. Characteristic curve scaling methods 

utilize all three IRT item parameters in the calculation of the B constant. Thus, the 

underestimated b parameters assuredly play a role in the overestimation of B in 

characteristic curve methods.  

 The influence of cheating on estimating the A scaling constant depended on the 

scaling method used to derive A. For the majority of conditions and methods the A 

constant is slightly underestimated. This underestimation occurs because cheating 

introduces a factor irrelevant to the construct that influences responses, thus decreasing 
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the discriminatory power, the a parameter, of new form anchor items. However, under 

the extreme cheating condition, the moment methods diverged in the direction of bias. 

Under extreme cheating conditions, the mean-mean method underestimated the A 

constant. As shown in Equation 2.9, the A constant for the mean-mean scaling method is 

derived through dividing the mean of the new form anchor item a parameters by the 

mean of the base form anchor item a parameters. As cheating decreases the anchor item a 

parameters for the new form, the mean of the new form anchor items will decrease in 

turn. Thus, the numerator decreases in Equation 2.9, while the denominator remains 

unaffected. This causes the A constant to be underestimated in the mean-mean scaling 

method.   

 Calculation for the A constant in the mean-sigma method applies the standard 

deviation of the anchor item b parameters, as shown in Equation 2.7. Specifically, the A 

constant is found by dividing the standard deviation of the base form anchor item b 

parameters by the standard deviation of the new form anchor item b parameters. As 

discussed previously, cheating will cause the b parameters for the anchor items to be 

underestimated. If this underestimation is severe, as in the extreme cheating condition, 

the fact that a majority of the examinees respond correctly to the anchor items causes the 

standard deviation of the b parameters to decrease considerably. Thus, the A scaling 

constant will be overestimated for the mean-sigma method. As discussed previously, the 

characteristic curve methods consider all item parameters when estimating the scaling 

constants. Thus, it is difficult to identify the specific factors influencing the bias in these 

scaling approaches. 
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 Underestimation of the A scaling constant has several effects on scaling. First, an 

underestimated A constant will underestimate the true variability of ability and b 

parameters as indicated by Equations 2.3 and 2.5. Second, the new form unique item a 

parameters will be inflated, as shown in Equation 2.4. Inflating the new form a 

parameters will cause correct responses to increase an examinee’s ability estimate at a 

higher rate and incorrect responses to decrease the estimated ability more drastically.  

 As noted, the moment methods considerably diverged in estimating the A 

constant at extreme degrees of cheating. This led to the methods producing different B 

scaling constants. Equations 2.8 and 2.10 show that the B constant is a function of the 

anchor item mean b parameters and the A scaling constant. Specifically, the mean of the 

old form anchor item b parameters is subtracted from the product of the new form anchor 

item b parameters and the A scaling constant. Because the new form anchor item b 

parameters are underestimated when compromised, and thus more negative on average, 

multiplying them by a larger A results in an even more negative value. Because this 

negative value is subtracted, B is more positively biased. For this reason, the positively 

biased A constant found for the mean-sigma method leads to larger overestimation of the 

B constant in comparison to the mean-mean method. This effect can be seen in Table 4, 

where the mean-sigma method produced a considerably larger bias than mean-mean 

method under extreme cheating.  

 This study attempted to determine if a particular scaling method was robust to the 

effects of cheating and could accurately recover scaling constants as well as equated 

scores. Results indicated that cheating severely influences the recovery of scaling 

constants for each method. No scaling method investigated in this study produced results 
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that could justify applying these methods to counteract cheating given the consequences 

associated with high-stakes tests. In general, the mean-mean method performed best in 

recovering equated scores at low to moderate degrees of cheating. The fixed anchor 

method displayed the least bias under extreme cheating. Yet, all scaling methods 

produced consistently overestimated equated scores with little differences among the 

methods. Perhaps more important, the degree of bias, even at moderate cheating 

conditions for the best performing scaling methods, would not be acceptable for a high-

stakes test.  

 Results regarding the influence on the new form examinee ability distribution 

suggest that the mean ability of the new form group can influence recovery of equated 

scores. Bias in the equated scores increased when the new form examinees had a lower 

mean ability than the base form examinees. The overestimated equated scores occur for 

lower and middle ability examinees because examinees with higher ability have less to 

gain from cheating. Figures 2 and 3 help illustrates this effect; the largest bias in equated 

scores occurs for examinees at true raw scores slightly at or below the middle of the score 

scale. Equated score bias decreases sharply at higher values of new form raw scores. 

When the new form examinee population is less able than the base form examinee 

population, there is a larger proportion of new form examinees falling within the area of 

the distribution where cheating is most beneficial. Thus, the overall bias resulting from 

cheating increases when the new form examinees are less able on the test in comparison 

to the examinees setting the metric. These results have negative implications for testing 

programs. As lower ability examinees benefit the most from cheating, unqualified 

examinees may appear qualified solely because cheating occurred.  
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 Another condition investigated by this study was whether employing an external 

anchor would alter the influence of cheating on equated scores. Employing an external 

anchor negates the direct influence of compromised anchor items on total scores as 

anchor items are used for scaling purposes only. Thus, cheating examinees that have 

access to the compromised items should not receive a benefit from these items 

specifically. Results demonstrated that the overall bias for the external anchor was less 

positive than when the anchor employed was internal. However, the overall bias for the 

external condition was still considerable.  

 To explore the differential effects of anchor types further, bias in equated scores 

was compared between honest and dishonest test-takers within the two anchor conditions. 

As expected, within the internal condition cheaters benefited from the compromised 

items at a higher degree than honest test takers. This difference was exacerbated when the 

proportion of compromised anchor items was increased. In contrast, cheaters and honest 

test takers benefitted equally from cheating in the external anchor condition. This result 

supports the hypothesis that the direct benefit from the compromised items in the internal 

anchor introduces additional bias for cheating examinees. Bias in equated scores arises in 

the external anchor condition solely as a result of the impact of cheating on IRT scaling 

discussed previously. This result is demonstrated in Figure 3, where honest examinees in 

the internal anchor condition benefited at an equal rate as all examinees administered an 

external anchor test across the range of ability. The considerable bias obtained in the 

external condition displays the severe impact that cheating has on the scaling process. 

Employing an external anchor will prevent bias attributable to scores on compromised 
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items directly, however, the substantial amount of bias related to inaccurate scaling will 

continue to plague the scores obtained from equating. 

 The overall trends found in this study demonstrate the detrimental effects of 

cheating on equated scores estimated under the non-equivalent anchor test design. When 

examinees have access to the items used to scale a new form of a test to a common 

metric, equated scores for the entire group of examinees will be overestimated. Although 

relatively few examinees may be cheating on the test, scores for the entire group of 

examinees administered the form will appear more proficient. Clearly, decisions made 

based on the test scores when any amount of cheating has occurred will be dubious at 

best. Specifically, these results suggest that if cheating occurs on their form, under-

qualified examinees —whether they engage in cheating behaviors or not—may be 

unfairly given preference over qualified examinees that completed an uncompromised 

form.  

 Unfortunately, no scaling methods examined in this study were robust to the bias 

introduced by cheating. Given the detrimental implications of compromised anchor items, 

focus should be given to identifying these items and removing them from the equating 

process and scoring. As such, future studies must address the detection of cheating and 

compromised items. Several results of this study may be useful in developing models that 

identify compromised items under the NEAT design. For example, understanding  a and 

b parameters for the compromised anchor items will be for underestimated for cheating 

examinees, a mixture IRT (von Davier & Carstensen, 2007) model can be specified that 

contains a two class mixture with a ―cheater‖ class containing lower a and b parameters 

in reference to the other, ―honest examinee‖, class. Items that show large parameter 
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differences across the two classes may be removed from scaling, equating and scoring to 

protect against the negative consequences of cheating.  

 Admittedly, simulation studies cannot capture the complexity of applied situations 

completely. Although this simulation was designed to address this issue by exploring 

realistic conditions and using real item parameters, several limitations remain. Perhaps 

most important, the cheating adjustment value selected in this study may not reflect the 

actual benefit of knowing the item prior to administration. Although prior item 

knowledge assuredly benefits examinees, future research should examine the functional 

relationship between probability of correct response and prior knowledge to gauge the 

strength of this effect. In addition, because details of cheating often go unreported, the 

cheating conditions selected in this study may not reflect the degree of cheating occurring 

in actual high stakes testing. However, the results of this study should generalize well to 

other degrees of cheating. That is, the positive bias in equated scores should be a function 

of the degree of cheating such that any increase in cheating will only further overestimate 

the equated scores.   

 In conclusion, this study addressed a gap in the literature by exploring the effects 

of cheating on equated scores obtained from IRT equating under the NEAT design. If 

examinees have prior access to the items used to scale a test form, equated scores 

obtained for the all examinees administered the form may be overestimated. Even small 

amounts of cheating call into question the results obtained from the test, with large 

degrees of cheating distorting the scores completely. Given the influential decisions made 

based on high-stakes tests, it is imperative that scores reflect the examinees' true abilities 

on the attribute measured. The impact that cheating has on the entire distribution of 



83 

 

 

scores is a severe threat to the validity of inferences made from test scores. Scores for all 

examinees, both honest and dishonest, may indicate that the examinee is more proficient 

than reality. Thus, examinees administered forms where no cheating occurred may be 

unfairly disadvantaged. Research investigating methods to detect compromised items 

must take priority to ensure that scores, and thus decisions made, from high stakes tests 

accurately reflect the ability of the examinees.
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Appendix A  

Simulation Conditions Investigated 

 
Note. MM = Mean-mean, MS = Mean-sigma, SL = Stocking-Lord, HB = Haebara, FA = Fixed anchor 

 

Anchor
Cheaters 

(%)

Compromised 

Items (%)
MM MS SL HB FA MM MS SL HB FA MM MS SL HB FA MM MS SL HB FA

25 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

100 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

25 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

100 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

0 0 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

25 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

100 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

25 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

100 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

0 0 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

New Form Examinee Ability Distributions

External

10

50

10

50
Internal

Scaling Method

N(0,1) N(-.5,1) N(0,1.25) N(-.5,1.25)

8
4
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Appendix B 

 

Internal Anchor Equated Score RMSE by Ability Distribution  

 

  

% Compromised  

Anchor Items  
% Cheaters 

Ability  

Distribution 

Scaling Method 

SL HB MM MS FA 

0 0 

N(0.0,1.00) 4.556 4.562 4.588 4.592 4.554 

N(-0.5,1.00) 4.542 4.542 4.558 4.563 4.712 

N(0.0,1.25) 4.330 4.330 4.364 4.375 4.318 

N(-0.5,1.25) 4.434 4.435 4.475 4.483 4.614 

25 

10 

N(0.0,1.00) 4.629 4.602 4.609 4.615 4.582 

N(-0.5,1.00) 4.539 4.504 4.536 4.542 4.782 

N(0.0,1.25) 4.448 4.416 4.438 4.453 4.452 

N(-0.5,1.25) 4.467 4.426 4.457 4.464 4.850 

50 

N(0.0,1.00) 6.002 5.232 5.208 5.290 5.093 

N(-0.5,1.00) 5.927 5.130 5.038 5.262 5.647 

N(0.0,1.25) 5.801 5.037 5.017 5.106 5.116 

N(-0.5,1.25) 5.828 5.013 4.910 5.096 5.773 

100 

10 

N(0.0,1.00) 5.383 5.125 5.141 5.151 4.974 

N(-0.5,1.00) 5.397 5.040 5.220 5.033 5.473 

N(0.0,1.25) 5.297 4.985 4.959 4.970 4.911 

N(-0.5,1.25) 5.429 5.025 5.092 4.963 5.564 

50 

N(0.0,1.00) 15.041 13.512 12.783 14.756 11.328 

N(-0.5,1.00) 15.392 13.911 14.520 16.629 12.647 

N(0.0,1.25) 15.762 13.863 12.552 14.335 11.873 

N(-0.5,1.25) 16.373 14.642 14.716 17.226 13.066 
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Appendix C  

Internal Anchor RMSE for Scaling Constants A by Ability Distribution 

 

  

% Compromised 

Anchor Items 
% Cheaters 

Ability  

Distribution 

Scaling Method 

SL HB MM MS 

0 0 

N(0.0,1.00) 0.025 0.024 0.037 0.041 

N(-0.5,1.00) 0.027 0.026 0.039 0.044 

N(0.0,1.25) 0.035 0.032 0.043 0.051 

N(-0.5,1.25) 0.033 0.032 0.046 0.049 

25 

10 

N(0.0,1.00) 0.034 0.027 0.039 0.042 

N(-0.5,1.00) 0.037 0.031 0.043 0.045 

N(0.0,1.25) 0.046 0.037 0.045 0.056 

N(-0.5,1.25) 0.048 0.040 0.051 0.053 

50 

N(0.0,1.00) 0.126 0.100 0.048 0.109 

N(-0.5,1.00) 0.136 0.107 0.057 0.124 

N(0.0,1.25) 0.166 0.126 0.060 0.142 

N(-0.5,1.25) 0.175 0.133 0.067 0.152 

100 

10 

N(0.0,1.00) 0.042 0.030 0.058 0.046 

N(-0.5,1.00) 0.050 0.030 0.086 0.052 

N(0.0,1.25) 0.075 0.039 0.074 0.056 

N(-0.5,1.25) 0.089 0.048 0.109 0.059 

50 

N(0.0,1.00) 0.119 0.136 0.138 0.257 

N(-0.5,1.00) 0.140 0.167 0.207 0.427 

N(0.0,1.25) 0.628 0.090 0.226 0.189 

N(-0.5,1.25) 0.139 0.097 0.357 0.355 
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Appendix D  

Internal Anchor RMSE for Scaling Constants B by Ability Distribution 

 

  

% Compromised 

Anchor Items 
% Cheaters 

Ability  

Distribution 

Scaling Method 

SL HB MM MS 

0 0 

N(0.0,1.00) 0.028 0.027 0.042 0.044 

N(-0.5,1.00) 0.033 0.032 0.052 0.053 

N(0.0,1.25) 0.034 0.033 0.043 0.044 

N(-0.5,1.25) 0.035 0.035 0.049 0.051 

25 

10 

N(0.0,1.00) 0.061 0.049 0.051 0.052 

N(-0.5,1.00) 0.075 0.059 0.067 0.066 

N(0.0,1.25) 0.062 0.052 0.051 0.051 

N(-0.5,1.25) 0.077 0.062 0.065 0.064 

50 

N(0.0,1.00) 0.261 0.186 0.189 0.187 

N(-0.5,1.00) 0.326 0.228 0.209 0.236 

N(0.0,1.25) 0.257 0.182 0.183 0.178 

N(-0.5,1.25) 0.327 0.227 0.202 0.229 

100 

10 

N(0.0,1.00) 0.209 0.177 0.168 0.171 

N(-0.5,1.00) 0.260 0.208 0.231 0.197 

N(0.0,1.25) 0.218 0.184 0.170 0.173 

N(-0.5,1.25) 0.275 0.218 0.225 0.198 

50 

N(0.0,1.00) 1.078 1.016 0.856 1.157 

N(-0.5,1.00) 1.236 1.142 1.078 1.394 

N(0.0,1.25) 1.781 1.025 0.850 1.110 

N(-0.5,1.25) 1.280 1.182 1.089 1.430 
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Appendix E  

Equated Score RMSE by Anchor Type across Ability Distribution 

 

  

% Compromised  

Anchor Items  
% Cheaters 

Scaling Method 

SL HB MM MS FA 

Internal Anchor Set 

0 0 4.847 4.849 4.890 4.899 4.925 

25 
10 4.962 4.942 4.957 4.970 5.084 

50 6.658 5.847 5.831 5.899 6.237 

100 
10 6.561 6.266 6.158 6.246 6.377 

50 21.058 19.698 17.962 22.015 17.019 

External Anchor Set 

0 0 5.582 5.584 5.621 5.629 5.687 

25 
10 5.651 5.609 5.638 5.648 5.833 

50 7.362 6.379 6.304 6.485 6.759 

100 
10 6.721 6.305 6.379 6.286 6.538 

50 19.552 17.478 17.053 19.671 15.286 
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Appendix F  

RMSE for Honest and Dishonest Test Takers for Internal and External Conditions 

 

% Compromised 

Anchor Items 
% Cheaters 

Ability 

Distribution 

Internal  External 

Honest Dishonest  Honest Dishonest 

25 

10 

N(0.0,1.00) 4.969 5.355  5.760 5.752 

N(-0.5,1.00) 5.053 5.558  5.727 5.726 

N(0.0,1.25) 4.764 5.189  5.551 5.552 

N(-0.5,1.25) 4.935 5.471  5.669 5.668 

50 

N(0.0,1.00) 5.573 6.468  6.712 6.724 

N(-0.5,1.00) 5.800 6.841  6.764 6.763 

N(0.0,1.25) 5.371 6.257  6.527 6.531 

N(-0.5,1.25) 5.650 6.676  6.670 6.675 

100 

10 

N(0.0,1.00) 5.505 10.558  6.445 6.447 

N(-0.5,1.00) 5.759 11.867  6.543 6.553 

N(0.0,1.25) 5.269 10.374  6.283 6.285 

N(-0.5,1.25) 5.598 11.550  6.524 6.530 

50 

N(0.0,1.00) 14.174 21.497  16.927 16.952 

N(-0.5,1.00) 16.641 25.819  18.344 18.358 

N(0.0,1.25) 13.611 20.769  17.172 17.190 

N(-0.5,1.25) 16.216 24.982  19.098 19.086 
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