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ABSTRACT 

Kathleen Hemeon 

Polyculture bioremediation: an analysis of nitrogen assimilation and removal by Mya 

arenaria and Gracilaria tikvahiae harvests in the Corsica River, MD 

 

An analysis of nitrogen bioremediation in a tidal tributary of the Chesapeake Bay by the use  of a 

hypothetical bivalve and macroalgae polyculture covering 1%, 3% and 5% of the Corsica River 

bottom area. This study was performed to illustrate the role ecosystem services play in managing 

diffuse watershed pollution, particularly nitrogen, resulting in water quality and living resource 

degradation. Excess concentrations of nitrogen in the Corsica River estuary lead to seasonal 

eutrophication and subsequent hypoxic events. Mya arenaria L. and Gracilaria tikvahiae 

(McLachlan, 1979) were chosen for this theoretical study due to their high assimilative capacities 

for nitrogen and established commercial value, whereas Ulva lactuca L. was analyzed as a 

biofouling harvest to increase the harvest nitrogen sink. M. arenaria nitrogen assimilation was 

calculated from literature values of nitrogen content in tissue, whereas G. tikvahiae was simulated 

from an existing macroalgae submodel. M. arenaria nitrogen removal ranged from 1000 kg N to 

7000 kg of nitrogen per year and did not reflect M. arenaria mortality or nitrogen remineralization 

from biodeposits. Simulation of the model indicates that G. tikvahiae can remove between 51-255 

kg of nitrogen per year and U. lactuca only removes 35-103 kg of nitrogen per year. Results indicate 

that the polyculture of M. arenaria and G. tikvahiae in the Corsica River can adequately reduce net 

nitrogen levels and demonstrate the use of bioremediation as a possible nutrient management tool 

for estuary restoration.  

 

Keywords: Bioremediation, nitrogen assimilation, nutrient management, Mya arenaria, Gracilaria 

tikvahiae, Corsica River, eutrophication
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1 INTRODUCTION 

1.1 BACKGROUND AND CONTEXT 
 

The Chesapeake Bay currently experiences seasonal eutrophication that not only reduces water 

clarity, but also results in the proliferation of harmful algal species, oxygen depletion at depth, the 

wide spread loss of seagrass and benthic algae and the decline of commercial and recreational 

species that are affected by habitat loss (Kemp et al., 2005). Current strategies to control 

eutrophication primarily focus on reducing nutrient discharge into the estuarine environment from 

identifiable sources with little management once the nutrients enter the waterways (Kemp, Testa, 

Conley, Gilbert & Hagy, 2009).  

 

The purpose of this study is to explore the introduction of bivalve and macroalgae polycultures in 

a tidal tributary of the Chesapeake Bay as a nitrogen management strategy. The native and 

marketable species of soft shell clam Mya arenaria L. and agar producing red-algae Gracilaria 

tikvahiae (McLachlan, 1979) were examined as culture species, while the nitrogen assimilation of 

the green algae Ulva lactuca L. was included as a biofouling harvest that can be collected off of 

the M. arenaria planting structures. By quantitatively assessing the potential nitrogen removal by 

nitrogen assimilation into the tissue of polyculture species, the implementation of bioremediation 

methods can be considered as a watershed restoration action strategy.  

 

Chesapeake Bay 

 

The Chesapeake Bay holds 68 trillion liters of water and nearly 193 billion liters of fresh water 

enter the bay each day from tidal tributaries (Chesapeake Bay Program, 2012). Over 2,700 

species of plants and animals reside in the Chesapeake Bay and nearly 173 of those species are 
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shellfish and the Bay’s fisheries produce over 220 million kilograms of seafood each year (2012). 

Chesapeake Bay is the largest estuary in the United with a watershed sprawling over 167,000 km2 

and seven jurisdictions (Fig 1) (Boesch, Brinsfield & Magnien, 2001).  

 

The Chesapeake Bay is a partially mixed 

estuary located on the mid-Atlantic coast of 

the United States and is bordered by Virginia 

to the south and Maryland to the north 

(Sowers & Brush, 2014). This region was 

historically formed by the retreat of a 

continental ice sheet that carved out the 

Susquehanna River valley, which was 

subsequently flooded during the Pleistocene 

glacier melts and sea level rise during 7400 

and 8200 years before present (Bratton, 

Colman, Thieler & Seal II, 2003; Pritchard, 

1967 as cited in Bricker, Rice & Bricker, 

2014). The present day estuary extends north to south for over 300 km and is on average 20 km 

wide with a deep narrow central channel remnant of the historic river valley and central depths 

reaching up to 54 meters and is lined by wide, shallow sills typically only 8 meters deep (Kemp et 

al., 2005; Bratton et al., 2003). Although the bay itself is bordered by just two states, its extensive 

watershed extends over seven jurisdictions and has a long history of anthropogenic intervention 

(Fig 1). 

 

 

Figure 1 Map of Chesapeake Bay watershed. Reprinted from 
the Chesapeake Bay Program 
(http://www.chesapeakebay.net/maps) 
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Chesapeake Bay has been affected by human activity for centuries for its comprehensive 

provisioning of natural resources. Sowers and Brush (2014) identify five periods of major land use 

change in the Chesapeake Bay watershed: 

1. Late precolonial (~1400s): Native American populations cleared less than 1% of the land  

2. Early colonial (1665-1720):  Tobacco agriculture took root, but employed less than 20% 

of the land  

3. Developing agriculture (1720-1800): Wheat became the dominant crop and 60% of the 

land was devoted to agriculture 

4. Intensive agriculture (1800-early 1900s): Identified with peak deforestation where 80-90% 

of the watershed was used for cultivation. Nearly half of the water shed was deforested 

during this time 

5. Urbanization and afforestation (early/mid 1900s-present): Some land is reclaimed by forest 

as human populations centralize and land use shifts from intense agriculture to developed 

land (Fig 2)  

 

Figure 2 Watershed population size by county and land use patterns. Reprinted from the Chesapeake Bay Program 

(http://www.chesapeakebay.net/maps) 
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With the advent of modern fertilizers, greater crop yields can be produced on smaller and less 

fertile land, resulting in intensive agricultural practices in regions not used for urban development 

(Fig 2) (Kemp et al., 2005).  

 

Nitrogen Loading and Eutrophication 

 

Changes to the Chesapeake Bay estuary due to land use alteration and anthropogenic inputs have 

led to the transition from benthic primary producers and consumers to a predominantly pelagic and 

opportunistic community (Kemp et al., 2005; Sowers & Brush, 2014). Developed land increases 

the area of impervious surfaces resulting in increased water runoff, carrying with it chemicals and 

nutrients used by humans. Historic changes in food web dynamics have also been observed in bay 

sediment cores where the proliferation of planktonic diatom populations has positively correlated 

with high sedimentation rates and nutrient flows (Sowers & Brush, 2014). As a result, losses have 

been seen in both the shellfish and finfish industries, in particular oyster, shad, Atlantic croaker and 

striped bass in direct response to anthropogenic activity in the watershed (Kemp et al., 2005).  

 

Nixon defines eutrophication as the “increase in the rate of supply of organic matter to an 

ecosystem” (1995, abstract) where the principal source of organic matter is from the overabundance 

and senescence of phytoplankton. Many events can lead to an increase influx of organic matter, but 

is primarily a reflection of excess nutrients. As organic matter at the surface expires and settle to 

the benthos, microbial processes use oxygen to decompose the organic matter and can lead to 

oxygen deprivation near the sediment (Boesch et al., 2001). In regions such as the Chesapeake Bay 

with strong stratification, oxygen deplete water at the bottom rarely get replenished with oxygen 

rich surface water. As turbidity increases due to phytoplankton blooms at the surface, benthic algae 

and submerged aquatic vegetation can receive inadequate light for primary production, further 

reducing the concentration of dissolved oxygen at the benthos.  
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Nutrients which fertilize such excessive phytoplankton blooms can be a result of either point source 

or nonpoint sources. Section 502 (14) of the Clean Water Act defines point sources as 

“any discernible, confined and discrete conveyance, including but not limited to any pipe, 

ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated 

animal feeding operation, or vessel or other floating craft, from which pollutants are or 

may be discharged. This term does not include agricultural stormwater discharges and 

return flows from irrigated agriculture.” 

Nonpoint sources were then defined as pollution that does not fall into the definition above. Point 

sources are relatively simple to identify and likewise easier to mitigate through best management 

practices and technology. Nonpoint source pollution is rapidly becoming the predominant supply 

of nutrients to waterways and is minimally reduced by watershed nutrient reduction strategies 

(Rose, Bricker, Tedesco & Wikfors, 2014). This pattern of undermanaged nutrient enrichment from 

the watershed followed by periods of phytoplankton blooms and hypoxia are common in the 

Chesapeake Bay, particularly in the tidal tributaries such as the Corsica River. 

 

Corsica River  

 

The Corsica River is one of over 100,000 tidal tributaries located in Chesapeake Bay and is located 

in Queen Anne County, Maryland (Chesapeake Bay Program, 2012). The watershed sprawls over 

more than 64 square kilometers and consists of three major sub watersheds (Fig 3) (McCoy, 2003).  

Over 64% of the Corsica River watershed is devoted to agricultural land and the corresponding 

deforestation, coupled with intense fertilization, significantly impacts the quality of local surface 

waters. 
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The Corsica River was first placed on the federal impaired waters list (303(d)) in 1996 for excessive 

sediment, nutrient and fecal coliform concentrations and was amended in 2002 to include 

polychlorinated biphenyl pollution and impacts on biological communities (Town of Centreville, 

2004; McCoy, 2003). Actions for managing water quality in the Corsica watershed tackle urban 

non-point pollution, waste water treatment by improving discharge technology and through the 

addition of extensive vegetation buffers on the margins of agricultural land (McCoy, 2003). In 

September 2005, nutrient levels in the watershed reached critical levels resulting in a nutrient 

induced algal bloom that killed off over 50,000 fish and prompted the development of more intense 

and broad reaching mitigation policy (Town of Centreville, 2004; Maryland Department of Natural 

Resources [MD DNR], 2003).  

 

Federal, state and community agencies have collaborated to mitigate nutrient loading and to instill 

best management practices 

throughout the watershed and 

ultimately remove the Corsica 

River from the impaired water 

303(d) listing. Currently, the 

Corsica River has been 

designated by the state of 

Maryland as a high priority 

watershed for restoration 

funding and action (Town of 

Centreville, 2004) and as of 

late, there has been a strong 

push to find methods for reducing diffuse source nitrogen in estuaries.  

Figure 3 Map of the Corsica River and three sub watersheds. Reprinted from: 
http://water.epa.gov/polwaste/nps/success319/md_corsica.cfm). 
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Current Research 

 

Current research exploring nutrients on water quality often incorporates the simulation of 

ecosystem functions under diverse environmental parameters often through the use of ecosystem 

models. The Farm Aquaculture Resource Management (FARM) model is one such example. 

FARM is an extensive model developed for the European Union to measure water quality impact 

and scenarios to maximize harvest and profit for designated sites and shellfish species (Ferreira et 

al., 2009). A model such as FARM is a comprehensive approach to minimizing an aquaculture’s 

impact while also providing the highest economic return for the shellfish harvest. However, 

ecosystem models are time consuming to construct and have often been created to set water quality 

standards by quantifying anthropogenic actions in the watershed and shallow waters on estuarine 

system dynamics. Models assembled for the Chesapeake Bay have not included interspecies 

aquaculture assemblages for collaborated nitrogen remediation purposes.  

 

The use of biofiltration to reduce diffuse nutrient loading is gaining support as a viable restoration 

tool for degraded estuaries. It is known that marine bivalves and macroalgae assimilate nitrogen 

into their tissue and the use of mariculture could potentially have significant impacts on regional 

water quality (Nelson, Leonard, Posey, Alphin & Mallin, 2004; Neori et al., 2004; Tyler & 

McGlathery, 2006; Higgins, Stephenson & Brown, 2011; Carmichael, Walton & Clark, 2012; 

Woods Hole Group, 2012; He, Zhang, Chai, Wen & He, 2014; Rose et al., 2014 and others). Rose 

et al.  identifies the importance of bivalve nitrogen assimilation and ecosystem services to estuarine 

and coastal waterways and assert shellfish aquaculture as a cost effective tool for comprehensive 

programs to reduce nitrogen enrichment (2014). It has recently been observed that some species, 

such as the soft shell clam Mya arenaria, may have higher nitrogen tissue composition when 

compared to other organisms in the system and assimilation may be dependent on ambient nitrogen 

concentrations (Carmichael, Shriver & Valiela, 2012).  
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Despite unanimous agreement acknowledging marine aquaculture’s role in nitrogen cycling, there 

is insufficient laboratory and field experiments measuring the direct nitrogen removal potential by 

marine species leading to underexplored uses of this natural process for nitrogen management 

(Carmichael et al., 2012b; Ray, Terlizzi & Kangas, 2014).   

1.2 POLYCULTURE AS A TOOL FOR NITROGEN MANAGEMENT 
 

Objectives 

 

The objective of this study is to identify the amount of nitrogen that can be removed from a nutrient 

enriched estuary through polycultures with high nitrogen assimilation capacities (Chopin et al., 

2010). The overall goal of the polyculture is to attain water quality standards, restore habitats and 

aquatic populations and revive the shellfish industry in the Corsica River.  

 

Methodology 

 

To estimate the potential nitrogen removed by multispecies’ harvests, culturing techniques and 

cultured species must be identified. 

 Site: The Corsica River was chosen for its listing as an impaired water (303(d)) and location 

in the upper Chesapeake Bay where oyster restoration projects have been less successful. 

Impairment is strongly linked with intense fertilizer application for agriculture and other 

diffuse sources of nutrient pollution. 

 Culturing Techniques:  

o Bivalves were utilized to assimilate organic nitrogen and regulate phytoplankton 

blooms through consumption, while macroalgae were chosen to uptake inorganic 

nitrogen and compete with opportunistic algae for nutrients. 
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o Bottom culture techniques were applied for bivalves, whereas floating rope 

cultures were considered for G. tikvahiae. 

o U. lactuca harvests were only considered when biofouling occurred on bivalve 

predation netting. 

 Species: 

o M. arenaria was chosen due to its historic population in the Corsica River along 

with the ability to assimilate organic nitrogen, improve water clarity through 

suspension feeding and an established market demand. 

o G. tikvahiae was chosen as a native macroalgae species to the Chesapeake Bay 

with high nitrogen uptake rates, high tolerance for changing environment, easy 

propagation and a strong market for agar products. 

o U. lactuca was chosen as a common biofouling organism which would normally 

be discarded back into the system, but instead will be harvested and removed. 

Nitrogen removal for M. arenaria was calculated from established nitrogen concentrations in 

marine organisms as well as current research identifying higher assimilation rates for M. arenaria 

compared to other bivalve species. Nitrogen removal in two algal species was determined from a 

macroalgae sub model that was modified for harvest and Corsica River environmental parameters. 

Nitrogen harvests for all three species were then added to a nitrogen nutrient budget created for the 

Corsica River to demonstrate the magnitude of nitrogen removal by the polyculture in comparison 

to nitrogen inputs and existing nitrogen sinks. 

 

Finding solutions to water quality degradation requires multifaceted and innovative approaches to 

tackle diffuse pollution. The United States Environmental Protection Agency’s Office of Water 

distinguishes water quality trading as an efficient means to meet watershed restoration goals by 
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using improved water quality in one sector to offset undermanaged pollution sources from 

alternative sources to meet total maximum daily loads for nutrients (2003). This strategy would 

primarily address the need to reduced diffuse pollution loading, such as sediment and agricultural 

nutrient runoff, which occurs in countless watersheds throughout the Chesapeake Bay. Polyculture 

may provide a regional solution to meet watershed restoration goals by trading nutrient credits from 

aquaculturalists to offset nutrient inputs from the Corsica River subwatersheds while also providing 

funding to initiate new algal markets and possible incentives to watermen. 

1.3 STRUCTURE OF THESIS 
 

This thesis is divided into five chapters. The second chapter is a more detailed examination of past 

and current research to provide background and motivation behind this analysis addressing relevant 

policy and regulations. The third chapter contains a thorough explanation of all methods used to 

complete the analysis. Chapter four is a presentation of relevant results and model outputs. The last 

chapter is a discussion of the results and how this study can contribute to the overall health and 

restoration of the Corsica River.
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2 LITERATURE REVIEW 

2.1 ENVIRONMENTAL OVERVIEW 
 

Over the past several centuries, human induced changes to the Chesapeake Bay watershed have led 

to declining water quality and drastic losses to native aquatic populations. Activities such as 

deforestation, intensive fertilization of crops, expansion of impervious surfaces and airshed 

contamination by the combustion of fossil fuels have all negatively impacted the waters of the 

Chesapeake Bay (Cloern, 2001). The Chesapeake Bay’s ratio of watershed area to water volume is 

quite high (2.2 m-1), indicates that the watershed has a profound influence on the estuary (Kemp et 

al., 2005). Sediment and nutrient movement from the watershed to the estuary have been linked to 

the loss of seagrasses and benthic algae, declines in dissolved oxygen in the benthos and the 

proliferation of phytoplankton biomass including harmful algal blooms (HABs) (Cooper & Brush, 

1993; Bartoli, Cattadori, Giordiani & Viaroli, 1996; Boynton, Hagy, Murray, Stokes & Kemp, 

1996; Cloern, 2001; Kemp et al., 2005). 

  

Sediment is typically introduced to surface waters when there is significant soil erosion on 

agricultural land or in areas of deforestation. During large rain events, water runs over the land at 

a substantial velocity that can carry away sediment to surface waters and eventually coastal 

environments. When high sediment loads reach the bay, it significantly increases turbidity and 

prevents light penetration through the water column which is vital to aquatic primary producers. 

 



12 

 

 

Nutrients are introduced to the Chesapeake Bay through point sources and diffuse sources (i.e. non 

point sources). The National Oceanic and Atmospheric Administration [NOAA] identifies point 

sources as sites of pollution where the pollution can be traced back to the site of discharge and can 

range from a smoke stack, sewage overflows or even concentrated animal feeding operations 

(2008). Diffuse sources, on the other hand, are extremely hard to regulate since no single polluter 

can be identified. Pollution from these sources 

typically enters the surface waters via rainwater 

runoff and can be from many sources including 

road residue and crop fertilizers (NOAA, 2008). 

Federal legislation has been successful at 

mitigating point source pollutants through strict 

standards and permitting process to the point that 

the facilities have upgraded to the bounds of 

feasible technology for further reduction of 

pollution loading. A majority of sediment, 

phosphorus and nitrogen loading to the 

Chesapeake Bay is draining from either 

agricultural land, particularly on the Eastern 

Shore, or urban communities with large areas of 

impervious surfaces for water runoff. 

 

Nitrogen and phosphorus are categorized as pollutants when concentrations stimulate algal blooms 

that adversely affect living resources and water quality. Both of these elements naturally enter 

estuarine nutrient cycles as a result of weathering and nutrient recycling, however the large increase 

of nitrogen and phosphorus reaching the Bay today can be traced back to anthropogenic sources 

Figure 4 Nitrogen loading from all sources. Loads 
represent amount generated in individual 
watersheds and amount of generated nitrogen 
that is “lost” to the Chesapeake Bay (higher 
losses indicate higher loading to the Bay). 
Reprinted from Chesapeake Bay Program. 
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predominantly in the forms of nitrate (NO3
-) and phosphate (PO4

3-). Nutrient introduction to the 

aquatic environments are sourced from various activities in the watershed and are retained in certain 

systems where the nutrients can severely impact ecosystems (Bukaveckas & Isenberg, 2013). 

 

2.1.1 Eutrophication 
 

Eutrophication is defined as the increase in the rate of supply of organic matter to an ecosystem 

(Nixon, 1995). Eutrophication is known to plague coastal margins and estuaries as a result of their 

close boundaries with human development and as the major mixing point for terrestrial runoff as it 

meets the marine environment. Smayda distinguishes phytoplankton blooms as the growth during 

nutrient replete conditions temporarily uninhibited from grazing pressures (1997), where growth is 

dependent on nitrate (NO3
-) and phosphate (PO4

3-) availability (Bruland, Rue & Smith, 2001). 

 

As seen in Figure 5, if a nutrient is not limiting, phytoplankton will continue to propagate and 

reduce water clarity at the surface until alternative factors limit growth or a nutrient store is deplete. 

Once the algal cells die off, they settle out of the water and begin to decompose as a result of the 

oxygen consuming process of denitrification. Eventually the bottom water becomes hypoxic which 

drives out grazing benthic macrofauna which regulate phytoplankton blooms, or benthic producers 

can no longer recover from the limited light availability and nutrient competition is eliminated. For 

the Chesapeake Bay and the Corsica River, nitrogen is identified as the limiting nutrient for 

phytoplankton in marine systems (Fisher, Peele, Ammerman & Harding Jr., 1992). As oxygen 

becomes unavailable, denitrification is restricted and remineralization allows NH4
+ to be recycled 

into the water column and made available to the phytoplankton (Kemp et al., 2009). Typically, if 

nitrogen is not reduced, the system will see no relief and will continue to degrade. 
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Figure 5 Causal relationships between watershed nutrient inputs eutrophication. Nitrogen is the 
limiting nutrient for phytoplankton in marine environments such as the Chesapeake Bay and is 
included in the diagram as the primary pollutant for marine eutrophication events. DIN is dissolved 
inorganic nitrogen, BOD is biological oxygen demand and DO is dissolved oxygen. 

 

Sediment analysis has been utilized to track the eutrophication over time to try and sync algal 

blooms with anthropogenic of geologic events. Colman and Bratton find early evidence of 

eutrophication based on burial of diatoms found in sediment cores taken throughout the Chesapeake 

Bay (2003). Sediment cores taken at the mouth of the Chester River and the paleochannel of Cape 

Charles by Sowers and Brush further strengthened this argument, identifying drastic shifts in 

salinity and food web assemblages are a result of human land use changes (2014).The Chesapeake 

Bay, along with other estuaries and coastal environments, see natural patterns of eutrophication. 

However, since the 1950s, there has been a clear increase and intensification of nutrient induced 

eutrophication events followed by hypoxic conditions in the deeper waters.  
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Hypoxia is defined as water where oxygen levels cannot support indigenous organisms (or < 2 mg 

l-1) and anoxia as waters lacking oxygen (Boesch, Brinsfield & Magnien 2001; Kemp et al., 2009). 

This is the most severe consequence of eutrophication and can devastate fisheries and ecosystems. 

Low dissolved oxygen disrupts the metabolism of macro organisms and if prolonged can lead to 

mortality. The Chesapeake Bay experiences “persistent seasonal” and stratified hypoxia which is 

further amplified by the bay’s loss of key habitats such as oyster reefs, seagrass beds and tidal 

marshes that regulate and support sedimentation and nutrient cycling (Kemp et al., 2009).  

 

In addition to oxygen diminution resulting from increased biological oxygen demand at the 

resulting from phytoplankton biomass settling on the sediment, eutrophication also increases light 

attenuation and restricts benthic primary production. Benthic primary production includes 

photosynthesis from submerged aquatic vegetation (SAV), benthic diatoms and benthic macroalgae 

(seaweeds), which not only supply oxygen near the sediment, but also provides critical habitat for 

benthic communities (e.g. blue crabs, sponges, sea squirts, barnacles, zooplankton, white perch and 

American shad) whether it be for foraging, refuge or as a nursery for juveniles. As a result, areas 

of the bay and tributaries with recurring eutrophication are seeing shifts from a strong benthic 

community to primarily pelagic and/or opportunistic species (Kemp et al., 2005; Sowers & Brush, 

2014). Species tolerant of low dissolved oxygen can drastically change dynamics of food web 

structures by extending foraging and refuge territory (Nestlerode & Diaz, 1998) 

 

Seasonal eutrophication is common in the Chesapeake Bay and its tidal tributaries, but when 

nutrients are supplied in excess it can drastically alter estuarine communities and change the trophic 

level dynamics.  
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2.1.2 Impact of Eutrophication and Sedimentation on Seagrass Beds 
 

Seagrasses are marine flowering plants commonly belonging to the Zostera, Thalassia and 

Posidonia genera (McRoy & McMillan, 1977 as cited in Waycott et al., 2009). Seagrass beds 

support commercial fisheries (Watson, Coles & Lee Long, 1993), while also providing essential 

ecological functions including sediment stabilization (Orth et al., 2006), nutrient cycling and carbon 

sequestration (Romero, Lee, Pérez, Mateo & Alcoverro, 2006; McGlathery, Sundbäck & Anderson, 

2007). 

 

Sixteen species of bay grasses are common to the Chesapeake Bay and are vital food and habitats 

for fish, invertebrates and waterfowl (Chesapeake Bay Program, 2005). Bay grasses, or SAV, 

provide protection from storm surges while also improving water quality through oxygen 

production, sediment stabilization and nutrient filtration. Although historic bay grass beds were 

once as large as 200,000 acres, by 1984 they were reduced to only 38,000 and by 2013 were 

averaging 68,000 acres, only 37% of the 2010 restoration goal. SAVs are sensitive to environmental 

changes and growth is limited primarily by light availability, which is currently being reduced by 

sediment suspension and nutrient enrichment. 

 

Orth and Moore identify the periods of seagrass losses over the past 80 years, proceeded by limited 

recovery, as a result of climate change and anthropogenic pressures including high sediment and 

nutrient inputs (1983; Neff et al., 2000). Even short exposures to heightened turbidity or increased 

temperature can have profound effects on seagrass meadows even after only a few days (Moore, 

Shields & Parish, 2013).  

 

Zostera marina (eelgrass) is the most abundant seagrass in the western North Atlantic including 

lower regions of the Chesapeake Bay with smaller populations found in the northeastern Bay 
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(Moore & Short, 2006; Maryland Department of Natural Resources [MD DNR], 2010). The 

Chesapeake Bay marks the southern range of Z. marina in the western Atlantic and therefore favors 

water of cooler temperatures in the Bay (MD DNR, 2010 ). Jarvis, Brush and Moore have 

demonstrated that the collective stress of warming water temperatures and low light availability 

have resulted in significant declines in Z. marina production in the York River of Chesapeake Bay 

(2014). It has also been proposed that Z. marina beds do not recover unless there is enough 

improvement to water quality to support existing beds, which would augment rising water 

temperatures (2009). If water quality does not improve, these “severely threatened” seagrass beds 

may be completely eradicated in certain parts of the Bay (CBP, 2005; Moore et al., 2013).  

 

2.1.3 Summary of Pressures, Impacts and Responses of the Chesapeake Bay  
 

 

Figure 6 DPSIR diagram. Identifies the major drivers, pressures, states, impacts and 
responses that the Chesapeake Bay is experiencing due to excess nitrogen inputs from the 
watershed. 
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Many factors influence water quality in such a large system such as the Chesapeake Bay, but it is 

evident that human induced changes within the watershed are increasing the amount of nutrients 

entering the bay, which stimulate eutrophication and subsequent hypoxic conditions (D’Elia, 

Harding, Leffler & Mackiernan, 1992). Fig 6 illustrates the drivers, pressures, state and impacts 

previously discussed in this chapter so far. Diffuse sources of nitrogen, such as fertilizer leachate 

into ground water from agriculture, create pressure on estuaries in the form of pollution. The system 

reacts to the nitrogen with prolific algal blooms which reduce water clarity and increase biological 

oxygen demand. This alters the water quality state of the estuary into an oxygen deprived and turbid 

environment. Many trophic levels are impacted resulting in loss of benthic primary production, 

hypoxic bottom waters, and overabundance of opportunistic species. Habitat loss such as sea grass 

beds reduce spawning or recruitment of some native species which in turn can collapse fisheries 

and human livelihood.  

 

These processes are well observed in the Chesapeake Bay and as a result it was the first estuary in 

the United States to be chosen for major restoration efforts designated for incorporated watershed 

and ecosystem management (Chesapeake Bay Program, 2012).  

 

2.2 WATER QUALITY MANAGEMENT OF THE CHESAPEAKE BAY 
 

The Chesapeake Bay is the largest estuary in the United States and is supplied by a 165,760 square 

kilometer watershed divided over seven jurisdictions consisting of Virginia, Maryland, Delaware, 

Pennsylvania, New York, West Virginia and the District of Columbia (Sowers & Brush, 2012). 

Creating and implementing policies between states to minimize transboundary pollutants is 

extremely difficult and has resulted in federal intervention for many surface waters throughout the 
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nation (e.g. the Clean Water Act).  In the case of the Chesapeake Bay, very few water quality and 

ecosystem goals established by federal legislation have been attained, while cultural eutrophication, 

seasonal hypoxia and critical habitat degradation remain persistent. Over the past century, federal 

and state agencies have layered multitudes of management and regulatory policies to restore the 

Bay’s water quality and ecosystems by identifying sustainable, yet equitable, management 

practices. 

 

2.2.1 Federal Water Pollution Control Act: Clean Water Act (CWA) 
 

The Federal Water Pollution Control Act of 1948 was a major milestone for creating federal 

funding and research incentives to reduce the influx of pollution into national water bodies (New 

Hampshire Department of Environmental Services [NHDES], n.d.). However, it was not until 

major amendments were instated in 1966, 1972, 1977 and 1987 that the legislation made 

considerable advances for setting water quality standards and implementation strategies to meet 

standards and became commonly known as the Clean Water Act (CWA) (NHDES, n.d.). Two key 

targets for the CWA, was to “eliminate the discharge of pollutants into navigable waters by 1985” 

and for the protection and propagation of fish, shellfish and wildlife populations while maintaining 

the recreational uses of water bodies by July 1, 1983 (Clean Water Act, 1972). The CWA also 

delegated management planning to each state to control pollutant sources within their jurisdictions 

and to create programs to address non-point sources of pollution (Clean Water Act, 1972). The 

1972 amendments also gave rise to the National Pollution Discharge Elimination System (NPDES) 

which requires permits to discharge pollutants into surface waters by point sources and is credited 

as drastically reducing point source pollution such at waste water facilities and concentrated animal 

production to name a few (NHDES, n.d.).  
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The Federal Water Pollution Control Act and all subsequent amendments pertain to overarching 

water quality standards and grants authority to the Environmental Protection Agency (EPA) for 

enforcing such regulations on ALL United States domestic surface waters (NHDES, n.d.). In order 

to maintain state sovereignty, states and local jurisdictions are allowed to create and implement 

individual management strategies, with EPA oversight, to meet federal requirements.  

  

2.2.2  Chesapeake Bay Agreements 
 

In response to mounting public concern of Chesapeake Bay water quality despite implementation 

of the CWA, Senator Charles Mathias of Maryland sought and received congressional funding in 

the mid 1970’s for a five year study of the Bay estuary to account for the observed declines in living 

resources (United States Environmental Protection Agency [USEPA], 2010). Following this initial 

evaluation, the 1983 Chesapeake Bay Agreement was created as a formal but voluntary contract to 

begin restoration efforts of Chesapeake Bay ecosystems and water quality, with signatories from 

cabinet secretaries of Maryland, Virginia, Pennsylvania, Washington D.C., the administrator of the 

EPA and the Chesapeake Bay Commission chairman (USEPA, 2010). Five years later, a 1987 

Chesapeake Bay Agreement was established which identified nutrient loading as the primary 

contributor to estuarine biotic decline, and  the agreement called for a 40% reduction of 

“controllable” nitrogen and phosphorus loads to mainstream Chesapeake Bay  by the year 2000 

(Chesapeake Executive Council, 1987; USEPA, 2010; Linker, Batiuk, Shenk & Cerco, 2013).  

Although it was recognized in 1987 that both point sources and nonpoint sources contributed to 

nutrient loading in the bay, sources such as atmospheric deposition and forest loading would not 

be accounted for due to implementation feasibility (Linker et al., 2013).  

 



21 

 

 

Two benchmark evaluations took place in 1991 and 1997 to assess the progress of the two 

agreements as the 2000 target date approached. The 1991 appraisal led to an amendment to the 

Chesapeake Bay Agreements, which included tributary restoration and a goal for the greater 

distribution of submerged aquatic vegetation (SAV) (USEPA, 2010). The 1997 evaluation reveals 

that between 1985 and 1996, phosphorus loads had decreased by 6 million pounds annually and 

that nitrogen loads decreased by 29 million pounds annually (USEPA, 2010).  The USEPA 

observed that by 1997, wastewater plants lessened their phosphorus loads by 51% and nitrogen by 

15%, with nitrogen improvements primarily attributed to biological nutrient removal and facility 

upgrades (2010). However, despite progress made at point sources, nonpoint sources only reduced 

their phosphorus and nitrogen loads by 9% and 7% respectively (USEPA, 2010).  

 

The Chesapeake 2000 Agreement used the momentum of previous agreements by maintaining the 

40% reduction goal from 1987 nutrient levels, but redirected the development water quality 

standards to be based on restoring the Bay’s living resources (USEPA, 2010; Linker et al., 2013). 

The Chesapeake Executive Council (2000a) stated four primary goals to meet water quality 

standards: 

 Restore, enhance and protect the finfish, shellfish and other living 

resources, their habitats and ecological relationships to sustain all fisheries 

and provide for a balanced ecosystem (pg. 2) 

 Preserve, protect and restore those habitats and natural areas that are vital 

to the survival and diversity of the living resources of the Bay and its rivers 

(pg. 4) 

 Achieve and maintain the water quality necessary to support the aquatic 

living resources of the Bay and its tributaries and to protect human health 

(pg. 6) 
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 Develop, promote and achieve sound land use practices which protect and 

restore watershed resources and water quality, maintain reduced pollutant 

loadings for the Bay and its tributaries, and restore and preserve aquatic 

living resources (pg. 8) 

The 2000 Agreement not only mitigates nutrient loading into the bay, but also the consequences of 

land use changes on aquatic life. For instance, sediment import from deforestation can increase 

turbidity and negatively impact primary producers such as SAVs, which in turn decreases dissolved 

oxygen necessary for sustaining life in both the water column and the benthos. This document also 

emphasizes the importance of good stewardship, such as education and best management practices, 

to uphold the integrity of Chesapeake Bay’s watershed management strategies.  

 

Soon after the Chesapeake 2000 Agreement was finalized, a Memorandum of Understanding 

(MOU) was signed between the six watershed states (Delaware, Maryland, Virginia, Pennsylvania, 

New York and West Virginia), Washington D.C. and the EPA to collaborate restoration efforts 

between all jurisdictions of the watershed (Chesapeake Executive Council, 2000b). The MOU 

allowed for the synergistic establishment of nutrient and sediment caps by all seven jurisdictions 

in 2003. These limits were created from modeled projections of dissolved oxygen levels, 

chlorophyll a concentrations and water clarity that were determined detrimental to living resources 

(Link et al., 2013; USEPA, 2010).  

 

2.2.3 Chesapeake Bay Protection and Restoration Executive Order 13508 
 

By 2009, it was clear that the Chesapeake Bay not meet designated use goals determined by the 

CWA. Therefore, on May 12, 2009, President Barack Obama prepared the Executive Order 13508: 

Chesapeake Bay Protection and Restoration (Exec. Order No. 13508; USEPA, 2010). Under order 
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13508, the Federal Leadership Committee was created and granted authority to manage restoration 

strategies as well as organize data reporting efforts from various agencies within the watershed. 

After four decades of mounting water quality policy, insufficient progress was made resulting in 

the implementation of  total maximum daily loads (TMDL)  for  nitrogen, phosphorus and sediment  

input into the Bay (Linker et al., 2013; USEPA 2010). 

 

2.2.4 2010 Total Maximum Daily Loads (TMDL) 
 

The USEPA reports that 97% of the Bay’s segments are listed as “impaired” resulting from excess 

nutrients and total suspended solids (TSS) (2010). Excess nutrients can drive systems towards 

eutrophication and a subsequent increase in biological oxygen demand (BOD), hypoxia and 

eventually aquatic animal death. Large algal blooms can also drive other primary producers out of 

a system by increasing light attenuation at the surface and preventing light penetration to benthic 

algae and SAV. In order to protect the health Chesapeake Bay’s living resources and ecosystems, 

the largest and most complex US TMDL system was established (USEPA, 2010). 

 

The 2010 TMDL allocations were formed as a mediation strategy to satisfy the 2009 executive 

order. This watershed management scheme is a step towards meeting the policy goal of having all 

pollution control procedures in place by 2025 to ensure full restoration of the Bay and tidal rivers, 

where 60% of the implementation completed by 2017 (USEPA, 2010). One of the largest watershed 

management predicaments is the transboundary contribution of nutrients and sediments to the main 

channel of Chesapeake Bay from seven distinct jurisdictional sources, each with their own 

legislative, hydrological, geophysical and chemical processes. To resolve this complexity, 

allocations set for major river basins within each jurisdiction (USEPA, 2010). These allocations 

enforce the polluter pays principle so that watersheds contributing the most to the degradation of 
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mainstream Chesapeake Bay’s water quality, will have to employ even greater control measures 

for both point source and diffuse pollution to surface waters (USEPA, 2010; Linker et al., 2013).  

 

The 2010 allocations are significant in that they are the first TMDLs to introduce atmospheric 

nitrogen deposition as well as federal land and federal facilities which constitute 6.2% of the 

Chesapeake Bay watershed (Linker et al., 2013). The airshed was represented using the Community 

Multiscale Air Quality Model (CMAQ) along with a regression model to account for “wet fall 

nitrogen deposition” while a third model, the Watershed Model Phase 5.1, was created for the 

Chesapeake watershed dynamics (Linker et al., 2013). Linker et al. then took several model 

scenarios representative of the airshed and watershed, and fed them into the Water Quality and 

Sediment Transport Model (WQSTM) to evaluate potential dissolved oxygen, presence of SAV, 

water clarity and chlorophyll a (2013). As a result of these models and simulation, allocations were 

biologically determined for each major river basin based on their fulfillment of accumulated policy 

to protect living resources from degradation and preserve the designated uses of the Chesapeake 

Bay’s water segments, which can be recreational, commercial or ecological uses (Linker et al., 

2013; USEPA, 2010). It is also critical that river basin allocations reflect the magnitude of influence 

of each river basin on the estuary, meaning that larger polluters will have to do more to meet water 

quality standards (Table 1).  
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Table 1 Final nutrient and sediment allocations for the Chesapeake Bay. Data sourced from the 

Chesapeake Bay TMDL (USEPA, 2010).  

Jurisdiction 
Nitrogen Allocations 

(million lbs/year) 

Phosphorus 

Allocations (million 

lbs/year) 

Sediment Allocations 

(million lbs/year) 

Pennsylvania 73.93 2.93 1,983.78 

Maryland 39.09 2.72 1,218.10 

Virginia 53.42 5.36 2,578.90 

District of Columbia 2.32 0.12 11.16 

New York 8.77 0.57 292.96 

Delaware 2.95 0.26 57.82 

West Virginia 5.45 0.59 310.88 

Total Basin Allocation 185.93 12.54 6,453.61 

Atmospheric 

Deposition Allocation 15.70 N/A N/A 

Total Basin wide 

Allocations 201.63 12.54 6,453.61 

 

In order to reach the appointed allocations, watershed implementation strategies (WIPs) are created 

by each jurisdiction with final approval of the EPA (USEPA, 2010). A mandatory 45 day public 

comment period is required, from which final revisions are made to the WIP and the ultimate 

TMDL is created to meet established allocations. Mitigation strategies in place to meet WIPs 

include, but are not limited to, planting of riparian buffers, best management practices (BMP) for 

soil conservation (such as no-till) and strict permitting and controls at point sources such as 

wastewater treatment facilities. However, throughout the Chesapeake Bay, very few water quality 
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and ecosystem goals established by federal legislation have been attained, while cultural 

eutrophication, seasonal hypoxia and critical habitat degradation remain persistent. 

 

2.2.5 Corsica River Management 
 

The Corsica River was placed on the “impaired waters” list in 1996 and was classified as a Category 

1 watershed, indicating that the watershed was not meeting water and other natural resource 

standards detailed by the EPA and is in need of restoration (Town of Centreville, 2004). After being 

designated as a category 1 watershed, the town of Centreville signed a memorandum of 

understanding with the State of Maryland to create a watershed restoration action strategy (WRAS) 

under the CWA framework for storm water management, sewer and water regulations and 

comprehensive land use. 

 

The Corsica River WRAS included an action plan for denitrification technology in septic systems, 

forest buffers, restoration of wetland and submerged aquatic vegetation and over 4000 acres of 

cover crops (McCoy, 2003). Restoration projects also include the restoration of native shellfish for 

turbidity reduction via biofiltration, primarily focusing on historic oyster populations for their high 

water column filtration rates (Town of Centreville, 2004).  

 

In 2000, the EPA approved and set TMDLs for the Corsica River stating that nitrogen loads should 

not exceed 130,485 kg of nitrogen a year (Town of Centreville, 2004). WRAS projects have been 

successful at reducing nitrogen input to the estuary, but it is often the seasonal spikes of dissolved 

nitrogen in the late winter and early spring that produce profuse algal blooms (MD DNR, 2003).  
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Resource managers are now looking towards ecosystem services to utilize the natural assimilative 

capacities of organisms for nitrogen bioremediation.   

 

2.3 OVERVIEW OF STUDY  
 

Despite efforts by policy to set standards and restoration strategies for nutrient impacted 

watersheds, many of the nutrients entering the waterways are from poorly regulated sources such 

as agricultural runoff and groundwater contamination. Once the nutrients enter the tributaries it is 

up to the inherent processes of the estuary to move, transform or eliminate the excess nutrients.   

2.3.1 Site Selection  

 

   

Figure 7 Map of the Corsica River in the Chesapeake Bay 

The Corsica River was chosen for several reasons. First, this river is located in the upper 

Chesapeake Bay (Fig 7), which supports large expanses of agricultural lands on the Delmarva 

Peninsula, which are a considerable supply of diffuse nitrogen. Second, the estuary is of a practical 

size to support aquaculture and to be impacted in return. Finally, the Corsica River community is 

forthcoming in its desire to restore the river and is currently implementing several components of 

a WRAS.  
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The Corsica River receives high inputs of nutrients from its agriculturally dominated watershed 

and is at an ecological “tipping point” (Boynton, Testa & Kemp, 2009).  High nutrient loads 

coupled with sediment transport result in light only penetrating to 10% of the estuary bottom to 

sustain submerged aquatic vegetation and only 28% which can support benthic algae. Although by 

2006 nitrogen inputs were only reaching about 119,000 kg of nitrogen per year (well below the 

allotted 130,000 kg nitrogen per year TMDL), the estuary still experiences frequent nutrient 

induced algal blooms resulting in hypoxia and subsequent fish kills.  

 

Of five water quality monitoring stations located in the Corsica River (Fig 8), at least three sites 

show seasonal spikes of dissolved inorganic nitrogen (DIN) that fall between “fair” and “poor” 

water quality standards with one station far exceeding the limit for “poor” quality as set by the 

United States Environmental Protection Agency (US EPA) (Fig 9) (2012). In addition, Figure 10 

demonstrates that the chlorophyll a trends between April and October at all five stations exceed 

fair water quality standards. Diffuse sources of nutrients are the primary contributors to nitrogen 

loading in the Corsica River, while also being the most difficult to reduce. This watershed and 

estuary would greatly benefit from a nitrogen remediation strategy.  
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Figure 8 Map of environmental monitoring stations in the Corsica River 

 

 

Figure 9 Annual dissolved inorganic nitrogen concentrations in the lower Corsica River (2013). Data was obtained from 
the Chesapeake Bay Program at three different monitoring stations. *US EPA (2012) 
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Figure 10 Chlorophyll a concentrations in the Corsica River (2013). Monthly data from April through October were 
collected at five monitoring stations. Data obtained from the Chesapeake Bay Program. *US EPA (2012) 

 

The lower Corsica River, along with the upper and lower regions of the Chester River, is currently 

designated as an oyster sanctuary with Yates Bars running throughout the channels (Fig 11). These 

Yates Bars are currently being restored, but the lower Corsica River is still open to shellfish 

harvesting. In 2011 the Maryland Department of Natural Resources allowed a select number of 

aquaculture leases to be awarded in the sanctuary (Davidsburg, 2011). Such opportunities are 

developed to promote stewardship of the sanctuary and the enhancement of substratum through 

sediment stabilization and habitat provisioning (Davidsburg, 2011). This act demonstrates that the 

MD DNR is willing to improve estuary and living resource health through the implementation of 

aquaculture and aligns well with this study to use polycultures for nutrient remediation.  
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Figure 11 Corsica River fishery zoning and restoration sites. Grey, cross-hatched line segments 
represent Yates Bars, purple areas represent active restoration sites and red shading indicates 
areas closed to shellfish harvesting (http://gisapps.dnr.state.md.us/Aquaculture/index.html). 

 

2.3.2 Species Selection 

 

Mya arenaria 

 

Shellfish require nitrogen as an essential component in both tissue and shell proteins and is 

dominantly sourced from the consumption of phytoplankton (Woods Hole Group, 2012). Bivalve 

shells contain small amounts of nitrogen also in the form of protein, on which calcium carbonate 

crystals are deposited to develop a shell matrix. Although the metabolic processes are similar 

amongst shellfish species, the nitrogen content contained within the tissue vary slightly between 

bivalve species (Fig 12). 

 

M. arenaria were chosen as a polyculture species for their historic presence in the upper 

Chesapeake Bay, preference for soft sediment, commercial value, established hatchery practices, 

http://gisapps.dnr.state.md.us/Aquaculture/index.html
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sediment stabilization and moderate to high nitrogen assimilation in tissue (Forster & Zettler, 2004; 

Woods Hole Group, 2012; Carmichael et al., 2012a; Maryland Department of Natural Resources 

[MD DNR], n.d.).  

 

Figure 12 Potential nitrogen removal by various bivalves. Study was developed by the Woods Hole Group for an 
assessment of bivalve nitrogen remediation.  M. arenaria demonstrates the highest nitrogen removal while C. virginica 
removes the least during the same growing period (May-September, 150 days) and the same initial shell length. (Woods 
Hole Group, 2012). 

M. arenaria experienced a fishery collapse 

in 1968 and the current population is only 

10% of its original size (MD DNR, n.d.). M. 

arenaria not only prefers fine sediment 

which allows for burrowing, but also 

shallow habitats. The highest filtration 

impacts have been recorded at depths less 

than 5 meters below the surface (Forster & 

Zettler, 2004). The MD DNR lists Mya as 

having filtering rates higher than that of 

Crassostrea virginica (eastern oyster) where 
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1,500 juveniles only 5mm long and in an area of 1 m3 can filter 2.5 m3 of water a day, where 

filtration rates are highly dependent on food availability, water temperature and size of the 

individual clam (n.d.). M. arenaria also demonstrate increased growth rate in waters with high 

nutrient loading (Fig 13) and this relationship is closely linked with the proliferation of 

phytoplankton in the presence of nitrogen (Carmichael et al., 2012a) and due to fast growth rates 

can reach market size in less than two years (Baker & Mann, n.d.). This is ideal for aquaculture as 

it indicates probable food supply and prompt grow out season before harvest. 

 

Today M. arenaria is being studied for its potential to assimilate nitrogen as compared to other 

bivalve species. Out of six marketable bivalves analyzed by the Woods Hole Group, M. arenaria 

is reported to have the highest nitrogen removal capacity over a single harvest season (Fig 12). This 

species also survives well in shallow waters of varying sediment type providing predation nets are 

available in muddy substrate (Baker & Mann, n.d.). 

 

Gracilaria tikvahiae 

 

G. tikvahiae was incorporated into the polyculture due to its established commercial value, high 

tolerance for significant changes in temperature, euryhaline adaptability and ability to uptake 

inorganic nitrogen during photosynthesis and store the nitrogen as biomass (Ray et al., 2014).  

 

G. tikvahiae is a red algae that can survive temperatures ranging from 15-30ْ C and salinities 

between 10-40 ppt (Yarish, Redmond & Kim, 2012). This alga prefers shallow and nitrate/ammonia 

rich environments and easily propagates by reproductive spores or vegetative propagation. Using 

vegetative propagation is an easy, asexual method to accumulate biomass for planting and ensuring 

consistent morphologies. 
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In order to reduce the waste stream and prevent moving the nitrogenous biomass from the water to 

a landfill, the harvest needs to be recycled in an alternative system.  Macroalgae aquaculture 

accounts for 24% of global aquaculture and is primarily produced in China, Korea, Japan and Chili 

(FAO, 2012) Gracilaria is the most cultivated macroalgae in the world due to its common use in 

food, medicine and the microbiological industry for products such as agar (He et al., 2014) Despite 

the massive cultivation in other parts of the world, production does not yet meet the global demand 

and is heavily imported into the United States (Yarish et al., 2012). Due to its easy cultivation on 

floating rope lines and tolerance for changing environments, planting and harvesting of this crop 

goes well beyond just nitrogen. 

 

Ulva lactuca 

 

When waters are loaded with high levels of dissolved inorganic nitrogen, U. lactuca proliferates 

quickly and is often a contributor to seasonal eutrophication.  Ulva is also known to grow in mats 

over aquaculture gear and prevent adequate water flow through bivalve cages. Biofouling material 

is scraped from the gear and brushed back into the water, which returns organic waste to the system 

and ultimately increases benthic BOD. By providing an incentive for watermen to collect the algal 

discards could result in an additional nitrogen sink for the Chesapeake Bay and its tidal tributaries.  

 

U. lactuca is commonly found as a food product in many countries and could potentially be used 

for biofertilizers and many cosmetic products. 

 

Both U. lactuca and G. tikvahiae species have demonstrated competitor interactions with 

phytoplankton over nutrient supplies and ultimately reduce phytoplankton biomass (Brush & 

Nixon, 2010).  M. arenaria, on the other hand, act as pelagic-benthic couplers which removes 

nitrogen and sediment from the water column and transfers energy and materials to the benthos. By 
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increasing the dominance of benthic primary production and reducing turbidity, the nutrient 

enhanced system can ultimately be restored to a dynamic and healthy environment for more than 

just opportunistic species while also reaching federal and state water quality standards.  

 

2.3.3  Polyculture Design 
 

M. arenaria will be planted in the sediment with predation material over the planting area. 

Predation is the leading cause of mortality for young soft shell clams and predation netting is 

necessary for survival of juvenile clams. This material will undoubtedly become a suitable habitat 

for U. lactuca to propagate and will serve as a dual source of harvest for the same amount of 

materials and space traditionally used just for clams. Bottom cultures will be maintained regularly 

and as U. lactuca collects as biofouling material, it will be removed from the system as harvest.   

 

Adjacent to the bottom culture will be a series of floating rope cultures with G. tikvahiae. Since the 

Corsica River has relatively high turbidity, the algae will need to be suspended at 0 meters from 

the surface, which will also promote high rates of gross primary production. The rope cultures 

should be easy to access during the growing season with limited disturbance to the surrounding 

area and oyster reefs. 

 

The Corsica River is home to historic oyster bars and it is important that the polycultures are divided 

into smaller plots to avoid disturbing the shell reefs. It is also ideal to strategically place the plots 

at different locations to maximize exposure of the water column to the polycultures, while allowing 

clams to burrow in the fine sand-mud sediment along the shores. Figure 14 shows the transition 

from mud at the head of the river to a mud/sand mixture in the lower Corsica and predominantly 

sand coverage at the mouth and the southeastern side of the Chester River (mud=brown, 
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sand=beige). Areas in red indicate oyster reef that would be avoided so as to not disturb oyster 

restoration. 

 

 

Figure 14 Sediment composition of the Corsica River. Reprinted from: MD DNR, 
http://gisapps.dnr.state.md.us/Aquaculture/index.html). 

 

2.3.4 Corsica River Nitrogen Budget 
 

Boyton, Testa and Kemp constructed a nutrient budget for the Corsica River to trace the movement 

and transformations of nutrients in the system, while also ensuring all significant nutrient inputs 

and outputs are accounted for (2009). This tool can provide project managers a framework from 

which dominant nutrient contributors can be identified and addressed.  

 

The nutrient budget was computed from 2006 and 2007 and nitrogen loads and exports were broken 

into the following sources (Fig 15): 

http://gisapps.dnr.state.md.us/Aquaculture/index.html
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Diffuse in Stream: Primarily agricultural runoff and leachate from corn, soybean and 

wheat cultivation 

Storm Water Runoff: Sourced from the urban center of Centerville, Maryland 

Atmospheric Deposition: Deposited through rainfall directly on the surface waters of the 

Corsica 

Point Source: Sourced from the Centerville sewage treatment plant  

Septic Leachate: Only includes septic tanks within a close proximity to the tidal shores of 

the river (non-tidal range septic systems contribute to the “diffuse” nitrogen load into 

ground water) 

Export to Chester: Nitrogen lost to the Chester River and eventually the main channel of 

the Chesapeake Bay 

Denitrification: Includes denitrification process in both estuarine and marsh sediments 

Burial: Nitrogen buried in the sediment, typically from shore erosion and watershed land 

use change  

 

Figure 15 Nitrogen Budget for the Corsica River (2006). Blue bars represent nitrogen inputs while the red bars correspond 
to nitrogen losses. Graph adapted from Boynton, Testa and Kemp (2009).  
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Diffuse inputs contribute the largest share of nitrogen, whereas point sources only account for 2,000 

kg N per year. The Corsica River also has three main routes of nitrogen losses including export to 

the Chester River, denitrification and burial. Of particular concern is the annual export of nitrogen 

to the already nutrient enriched waters of the Chester River.  

 

After the nitrogen assimilation values have been determined, they will be added to the nitrogen 

budget to assess the impact the polycultures may have on system as well as their ability to be 

incorporated into a watershed restoration action strategy.  
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3 METHODS 

3.1 CULTURE SITE 
 

Nitrogen removal potential was evaluated for three sizes of planting areas covering 1%, 3% and 

5% of the total bottom area (BA) of the Corsica River. Of each area designated for the polycultures, 

a third will be portioned for the G. tikvahiae floating rope cultures. The rope cultures would ideally 

be set upstream from the bivalves so algal detritus will flow with the current over the bivalve plot 

for possible consumption. Since the demand for consumable shellfish is high, more benthic area is 

devoted to the bivalves.  

Table 2 Designation of plot sizes for different species of polyculture 

 

Nitrogen removal for the entire polyculture site will be assessed from three different designations 

of bottom area (BA) for the entire Corsica River. For instance, a 1% BA polyculture uses 1% of 

the entire river’s BA, which is then further divided so the M. arenaria plot consists of 2/3 of the 

designated BA and G. tikvahiae uses the other 1/3 of the plot area (Table 1). 

3.2 POTENTIAL NITROGEN ASSIMILATION  
 

Mya arenaria 

 

M. arenaria will be grown by bottom culture with predation netting to ensure survival (MD DNR, 

n.d.) To assess nitrogen content assimilated in M. arenaria tissue, upper and lower potential 

Percent of BA 

for 

polyculture 

Total BA for 

polyculture (km2) 

Total BA for 

Mya/Ulva culture 

(km2) 

Total SA for 

Gracilaria culture 

(km2) 

1% 56.45 37.64 18.82 

3% 169.36 112.91 56.45 

5% 282.27 188.18 94.1 
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nitrogen removal was calculated for each of the three culture scenarios and the average was used 

for final evaluation. Since planting and harvesting of clams is measured by shell length, it was 

important to establish shell length to tissue dry weight (DW) ratio to calculate nitrogen composition 

in tissue. This data was collected by Glaspie at Virginia Institute for Marine Science and was 

analyzed using linear regression (unpublished).  

 

Lower nitrogen values were estimated from literature grams of carbon to dry weight ratios and 

converted to grams of nitrogen using a standard literature ratio for C:DW (Chauvaud, Thompson, 

Cloern & Thouzeau, 2003) and Redfield Ratio of 16 mol N:106 mol C (Eq 1) (Redfield, Ketchum 

& Richards, 1963). Calculations were made for an ideal clam at time of planting with a shell length 

of 10 mm (Beal, Lithgow, Shaw, Renshaw & Ouellette, 1995). 

 

Eq 1: Lower estimate of nitrogen in tissue for a 10mm shell length clam 

𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑔𝑁) = (𝑥𝑔𝐷𝑊) (
0.4𝑔𝐶

1𝑔𝐷𝑊
) (

1𝑚𝑜𝑙𝐶

12.011𝑔𝐶
) (

16𝑚𝑜𝑙𝑁

106𝑚𝑜𝑙𝐶
) (

14.007𝑔𝑁

1𝑚𝑜𝑙𝑁
) 

 

Maximum values were calculated using field data collected by Carmichael et al. for several bivalve 

species in an estuarine system in Cape Cod, Massachusetts (2012a). This study found that nitrogen 

assimilation by Mya arenaria is positively correlated with nitrogen loading rates and provides 

higher than Redfield Ration assimilation rates of nitrogen (Fig 16) (2012a; Woods Hole Group, 

2012). Calculations were made for clams harvested at 42 mm at a stocking density of 197 clams 

per square meter under the assumption that the clams were reared in the same system (Beal et al., 

1995). It is assumed that the shellfish are reared in the Corsica River so all nitrogen in tissue was 
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derived from the Corsica River at time of harvest. Nitrogen assimilated into clam shells were not 

evaluated based on inadequate data and variable reporting.  

 

 

Eq 2: Upper estimate of nitrogen in tissue   

𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑖𝑛 𝑇𝑖𝑠𝑠𝑢𝑒 = 0.86 ln(𝑥) + 6.58 

 

Where x is the N load (kg N ha-1 yr-1) 

 

Nitrogen removal values for M. arenaria were reported as the average between the high and low 

estimates for each of the three polyculture plot sizes. Total biomass harvested was also recorded.  

 

Figure 16 Increased nitrogen assimilation by clams. 
Both Mya arenaria and Mercenaria mercenaria 
exhibit positive correlation between nitrogen loading 
and nitrogen content in clam tissue, while no 
relationship was determined for Argopecten irradians 
and Crassostrea virginica [M. arenaria: y = 0.86 ln(x) + 
6.59; R2 = 0.69; P = 0.01]. Percent nitrogen was 
determined by mass spectrometry (Reprinted from 
Carmichael et al., 2012a). 
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Macroalgae 

 

An ecosystem model for Greenwich Bay, a shallow sub-estuary in Narragansett Bay Rhode Island, 

was amended to only include macroalgae relationships for Ulva lactuca and Gracilaria tikvahiae 

(Brush & Nixon, 2010). STELLA software was used to modify and run the model under conditions 

appropriate for the Corsica River. Both G. tikvahiae and U. lactuca were amended to include a 

harvest converter and harvest biomass stock to collect harvested algae in carbon units (gC m-2) as 

well as depth conversions so only kD values at the appropriate culture depths were used.  

 

The forcing functions were modified to be applicable to the Chesapeake Bay by using QA/QC data 

collected in or within close proximity to the Corsica River and missing data was interpolated with 

MATLAB. 

I0: 2008 PAR data from Horn Point Laboratory, UMCES (Cambridge, MD) (Fisher, 2008).  

Temperature: 2013 temperature data from the National Data Buoy Center; QA/QC 

(NOAA, 2013). 

DIN/ kD: 2013 nutrient and kD data from the CBP monitoring station XHH4528 in the 

Corsica River; QA/QC (Chesapeake Bay Program, 2013). This site was chosen for 

providing recent 2013 data, as well as being located in a region open for shellfish harvest. 

It was also important that this water quality monitoring station not be located at a tributary 

exchange interface. 

 

Water temperature data imported in the model must be continuous data for the entire year. Since 

the Corsica River has very little data publicly available, monthly samples taken at station XHH4528 

were compared with the daily averages for station 44043 located in the upper Chesapeake Bay 

(39.152 N, 76.391 W) and was accepted as a substitute data station for the model (Fig 17).  
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Figure 17 Water temperatures for the Corsica River and the upper Chesapeake Bay  

 

The theoretical G. tikvahiae culture would be grown on 0.025m thick polyethylene rope suspended 

directly on the surface of the river by floats. Since the Corsica River has such high turbidity, macro 

algae would grow the best at 0 m depth for high gross primary production. The rope would be 137 

meters long and the amount of ropes is dependent on the polyculture plot size. The 1%, 3% and 5% 

BA plots have 69, 206 and 343 culture ropes, respectively. Total surface area for Gracilaria referred 

to the total surface area of the culture ropes in the plot since this is the only substratum on which 

algae can collect and be harvested. Initial biomass for the culture assumed that each rope would be 

planted with about 20 grams of wet weight (WW) every 0.1m (Lindell et al. 2013). Initial biomass 

must be in the form of grams carbon per square meter. To calculate this value, the G. tikvahiae 0.2 

DW to WW ratio was used (Food and Agriculture Organization [FAO], 1976) and a 0.26 carbon to 

DW ratio (Brush & Nixon, 2010). 

 

Eq 3: Wet weight to carbon conversion for input of initial biomass into the model 

𝐺𝑟𝑎𝑐𝑖𝑙𝑎𝑟𝑖𝑎 (
𝑔𝐶

𝑚2
) = (𝑥𝑔𝑊𝑊) (

0.2𝑔𝐷𝑊

1𝑔𝑊𝑊
) (

0.26𝑔𝐶

1𝑔𝐷𝑊
) (

1

𝐺𝑟𝑎𝑐𝑆𝐴(𝑚2)
) 
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U. lactuca depth converter was set to the same depth and area as the clam cultures to account for a 

biofouling harvest. Due to the poor water clarity of the Corsica River, the model was run at three 

different depths for the bivalve/green alga culture to compare potential U. lactuca harvests with 

different rates of primary production. The depths were 1.0, 0.5 and 0.25 meters below the river 

surface.  

 

To calculate accumulated harvest for each species of macroalgae, a harvest function was created 

using the following “IF-THEN-ELSE” statements: 

 

Grac_Harvest = IF (GRAC_C [S1] > (Grac_Init * Grac_Harvest_Threshold)) THEN 

(GRAC_C [S1 ]- Grac_Init)   ELSE 0 

Ulva_Harvest = IF (ULVA_C [S1] > (Ulva_Init*Ulva_Harvest_Threshold)) THEN 

(ULVA_C [S1]-Ulva_Harvest_quantity) ELSE 0 

 

Where 1.5 is the harvest threshold that the algal mass must reach before it is “harvested”. All 

biomass after this threshold is moved to a harvest stock that accrue mass over time until the original 

algal stock can no longer support harvest.  

 

 For these biomasses to be useful in this study, they must be converted from grams of carbon per 

square meter to total grams of nitrogen using a nitrogen to carbon minimum ratio built into the 

model by Brush & Nixon (2010). 

 

Eq 4: Carbon per square meter conversion to total nitrogen 

𝐺𝑟𝑎𝑐𝑖𝑙𝑎𝑟𝑖𝑎 𝑁 (𝑔) = (
𝑥𝑔𝐶

1𝑚2
) (

1𝑚𝑜𝑙𝐶

12.011𝑔𝐶
) (

1𝑚𝑜𝑙𝑁

6𝑚𝑜𝑙𝐶
) (

14.007𝑔𝑁

1𝑚𝑜𝑙𝑁
) (𝐺𝑟𝑎𝑐 𝑅𝑜𝑝𝑒 𝑆𝐴 (𝑚2)) 
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𝑈𝑙𝑣𝑎 𝑁 (𝑔) = (
𝑥𝑔𝐶

1𝑚2
) (

1𝑚𝑜𝑙𝐶

12.011𝑔𝐶
) (

1𝑚𝑜𝑙𝑁

5𝑚𝑜𝑙𝐶
) (

14.007𝑔𝑁

1𝑚𝑜𝑙𝑁
) (𝑈𝑙𝑣𝑎 𝐵𝐴 (𝑚2)) 

 

Finally, a total harvest biomass was calculated by converting the harvest model output from grams 

of carbon back to grams of DW using carbon to DW ratios (Brush & Nixon, 2010). 

 

Eq 5: Carbon to DW conversion 

𝐺𝑟𝑎𝑐𝑖𝑙𝑎𝑟𝑖𝑎 𝐻𝑎𝑟𝑣𝑒𝑠𝑡 (𝑔𝐷𝑊) = (
𝑥𝑔𝐶

𝑚2
) (𝑅𝑜𝑝𝑒𝑆𝐴(𝑚2)) (

1𝑔𝐷𝑊

0.26𝑔𝐶
) 

𝑈𝑙𝑣𝑎 𝐻𝑎𝑟𝑣𝑒𝑠𝑡 (𝑔𝐷𝑊) = (
𝑥𝑔𝐶

𝑚2
) (𝑈𝑙𝑣𝑎𝐵𝐴(𝑚2)) (

1𝑔𝐷𝑊

0.28𝑔𝐶
) 

 

3.3 CORSICA RIVER NUTRIENT BUDGET 

Nitrogen assimilation values were incorporated into the existing Corsica River nitrogen budget 

for a holistic perspective and to provide a scale to which the values can be compared. The 

addition of the polyculture will contribute additional nitrogen “loss” for the system for which 

there is a current net stock of nitrogen (Fig 13). 
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Figure 18 Diagram of the Corsica River nitrogen budget. Nitrogen loading is represented by the light 
grey arrows and is dominated by diffuse nitrogen loading, whereas nitrogen leaves the system 
primary through denitrification and export to the Chester River and ultimately the Chesapeake 
Bay. All values represent kg 103 N year-1 and there is an annual net pool of 7000 kg of nitrogen in 
the system (Boynton, Testa & Kemp, 2009). 

 

 

 

 

 

 

 

 

 



47 

 

 

4 RESULTS 

4.1 POTENTIAL NITROGEN ASSIMILATION 
 
Mya arenaria 

Nitrogen removal for M. arenaria was calculated for an ideal clam of 10 mm shell length, which is 

the approximate size used for planting. A ratio of shell length to dry weight (DW) of tissue was 

calculated to obtain the grams of DW for the 10 mm ideal clam (Fig 17 and 18).  

 

Figure 19 M. arenaria shell length vs dry weight. Data represents a small spring sample of M. 
arenaria organisms collected at five sites throughout Chesapeake Bay (M=1.63, SD=1.37 at 95% 
confidence) (Glaspie, unpublished data).  

 

Figure 20 Logarithmic transformation of M. arenaria shell length vs dry weight. Parameters have a 
strong positive relationship and were evaluated by regression analysis (R2=0.97; p < 0.001). 
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Shell length to dry weight conversion when shell length is 10 mm 

y = 1E-05x3.2383 

y = 1E-05(10)3.2383 

 y = 0.0173g DW/10 mm shell length 

 

Dry weight was then used to calculate the lower estimate of percent nitrogen assimilated into clam 

tissue. 

 

Eq 1: Lower estimate of nitrogen in tissue for a 10mm shell length clam 

Nitrogen (g) = (
0.0173𝑔𝐷𝑊

10𝑚𝑚𝑆ℎ𝑒𝑙𝑙
) (

0.4𝑔𝐶

1𝑔𝐷𝑊
) (

1𝑚𝑜𝑙𝐶

12.011𝑔𝐶
) (

16𝑚𝑜𝑙𝑁

106𝑚𝑜𝑙𝐶
) (

14.007𝑔𝑁

1𝑚𝑜𝑙𝑁
) 

𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 = (
0.0012𝑔𝑁

0.0173𝑔𝑇𝑖𝑠𝑠𝑢𝑒
) 

7.04% 𝑁 𝑖𝑛 𝑡𝑖𝑠𝑠𝑢𝑒 

 

An upper estimate of percent nitrogen in tissue was calculated from field measurements of percent 

nitrogen in M. arenaria as a function of nitrogen loading in the Corsica River (Eq 2). Field data 

was collected for M. arenaria by Carmichael et al. (2012a) and 2006 Corsica River nitrogen loading 

was calculated by Boynton, Testa and Kemp (2009).  

 

Eq 2: Upper estimate of nitrogen in tissue   

y = 0.86ln(x) + 6.59 

x = 210.79 kg N ha-1yr-1 (Boynton, Testa & Kemp, 2009) 

y = 11.19% N tissue 
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The nitrogen percent range in tissue is between 7.04% and 11.19%. The largest culture plots have 

the highest mass of nitrogen and total harvest (Table 3 and 4). These values identify potential 

nitrogen removal through harvest and does not include clam mortality or movement of nitrogen 

from clams to sediment as biodeposits. 

 

Table 3 Planting density and total potential nitrogen removal through Mya arenaria harvest 
at 1%, 3% and 5% bottom plantings.  Upper and lower nitrogen values are calculated using 
nitrogen content in tissue from Eq 1 and Eq 2.  

 

PLANTING 
Shell Length 

(mm) 

Total Planting Area 

(km2) 

Number of Clams 

Planted (106) 

1% Bottom Area 8-15 37.64 7.41 

3% Bottom Area 8-15 112.91 22.24 

5% Bottom Area 8-15 188.18 37.01 

    

HARVEST 
Shell Length 

(mm) 

Total Biomass 

Harvested (kg DW)* 

Potential N Removed 

(kg yr-1)* 

1% Bottom Area >42 14,457.79 1,018-1,618 

3% Bottom Area >42 43,373.38 3,053-4,853 

5% Bottom Area >42 72,288.96 5,089-8,089 

*Calculations are for a 42 mm clam 

 

Macroalgae 

 

Temperature data from monitoring station 44043 was statistically analyzed to determine if the data 

was significantly different from the data collected in the Corsica River at the same monitoring 

station used for other data parameters (kD and DIN).  
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 Ho: There is no significant difference between the two stations 

 H1: There is a significant difference between the two stations  

 

A two sample T-test (equal variance) was performed and a high p-value indicates that the null 

hypothesis is not rejected and a statistical difference cannot be determined [t (12) = 0.29; p > 0.05] 

Temperature data was then determined suitable for the model.  

 

Once the harvest begins for G. tikvahiae, the biomass plateaus and then drops off in June and July 

with the highest production occurring in early spring and summer (Fig12).  

 

Figure 21 Response of floating G. tikvahiae culture to regular harvest. Carbon mass equal 
between the three plot sizes since they were planted at the same density. Harvest ends when 
algal biomass drops below initial planting as algae begins to declines with the onset of summer. 

 

The model for U. lactuca was run for three depths that correspond to the planting depth of the M. 

arenaria (Fig 22). At the most shallow depth, a larger biomass of U. lactuca was produced and at 

the deepest depth, the least amount of biomass was produced.  
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Figure 22 Comparison of U. lactuca that grows on M. arenaria aquaculture. U. lactuca grows 
more densely 0.25 m below the surface. U. lactuca grown at 1 m below the surface grows less 
dense and has a shorter production season than the shallower depths. 

 

As biomass increases, so does the mass of nitrogen per square meter (Fig 23).Therefore, shellfish 

grown at shallow depths will produce larger amounts of biofouling mass and nitrogen harvested. 

 

Figure 23 Nitrogen Density in U. lactuca harvests at three different depths. At the shallowest 
depth (0.25m), there is more nitrogen per square meter than at the deepest depth (1m). 

 

0

1

2

3

4

5

6

J M M J A O D

C
ar

b
o

n
 in

 T
is

su
e 

(g
 C

 m
-2

)

Date
1 m 0.5 m 0.25 m

0

2

4

6

8

10

12

14

1 0.5 0.25

N
it

ro
ge

n
 A

ss
im

ila
te

d
 in

 T
is

su
e 

(g
 N

 m
-2

)

Depth of U. lactuca Harvest (m)



52 

 

 

At the 1 meter depth, U. lactuca is harvested after it surpasses the harvest threshold and continues 

to be harvested until the density drops below the harvest threshold (Fig 24). Once harvesting 

begins, the biomass does not recover after the summer and biofouling is not present for the 

remainder of the year. 

 

Figure 24 Response of U. lactuca culture to regular harvest over time. Harvest ends when 
culture can no longer remain above the biomass harvest threshold. 

 

Summary of Total Polyculture 

 

U. lactuca had the highest nitrogen removed and total biomass harvested at 0.25 meters from the 

surface. Yet, it was the nitrogen removed from the 1 meter plot area that was used in the budget 

analysis.  
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Table 4 Macroalgae model data. Identifies the nitrogen density, nitrogen removed and total harvest of 
U. lactuca at three depths and G. tikvahiae cultured at the surface. 

Species 
Depth 

(m) 

Nitrogen 
Density 
(g N m-2) 

Polyculture 
BA 

Total N Removed 
(kg N yr-1) 

Total Biomass Harvested 
(kg DW yr-1) 

U. 
lactuca 

0.25 12.87 1% 484.46 7,418.28 

      3% 1,453.38 22,254.85 

      5% 2,422.30 37,091.42 

  0.5 7.16 1% 269.49 4,126.50 

      3% 808.46 12,379.49 

      5% 1,347.43 20,632.48 

  1 0.92 1% 34.67 530.93 

      3% 104.02 1,592.80 

      5% 173.37 2,654.67 

G. 
tikvahiae 

0 69.05 1% 51.30 1,015.22 

      3% 153.08 3,029.27 

      5% 254.86 5,043.33 

 

 

Table 5 Total nitrogen and harvest removed from 1% BA 

Species Potential N Removed (kg yr-1) Harvested Biomass (kg DW yr-1) 

M. arenaria* 1,318 14,458 

G. tikvahiae 51 1,015 

U. lactuca** 35 531 

Total 1,404 16,004 

 

 

Table 6 Total nitrogen and harvest removed from 3% BA 

Species Potential N Removed (kg yr-1) Harvested Biomass (kg DW yr-1) 

M. arenaria* 3,953 43,373 

G. tikvahiae 153 3,029 

U. lactuca** 104 1,593 

Total 4,210 47,995 
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Table 7 Total nitrogen and harvest removed from 5% BA 

Species Potential N Removed (kg yr-1) Harvested Biomass (kg DW yr-1) 

M. arenaria* 6,589 72,289 

G. tikvahiae 255 5,043 

U. lactuca** 173 2,655 

Total 7,017 79,987 

*Average N Removed 

**Values are 1 (m) harvest 

 

4.2 MODIFIED CORSICA RIVER BUDGET 
 

It is evident that the primary nitrogen sink for the polyculture is the M. arenaria harvests and the 

algal co-harvests only make minimal contributions to net nitrogen (Fig 16-18). Fig 18 shows that a 

5% BA of polyculture can remove nearly all of the net nitrogen in the system and produces a 

substantial harvest for all species.  

 

Figure 25 Modified Corsica River nitrogen budget with 1% bottom area harvest. M. arenaria could 
potentially remove 1,320 kg N yr-1, G. tikvahiae 50 kg N yr-1 and U. lactuca 40 kg N yr-1. (Photos: 
D. Cowles, Rosario Beach Marine Laboratory [M. arenaria]; K. Peters, Wikipedia [U. lactuca]; J. 
Preston, Connecticut Sea Grant [G. tikvahiae]). 
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Figure 26 Modified Corsica River nitrogen budget with 3% bottom area harvest. M. arenaria could 
potentially remove 4,000 kg N yr-1, G. tikvahiae 150 kg N yr-1 and U. lactuca 100 kg N yr-1. (Photos: 
D. Cowles, Rosario Beach Marine Laboratory [M. arenaria]; K. Peters, Wikipedia [U. lactuca]; J. 
Preston, Connecticut Sea Grant [G. tikvahiae]). 

 

 

Figure 27 Modified Corsica River nitrogen budget with 5% bottom area harvest. M. arenaria could 
potentially remove 7,000 kg N yr-1, G. tikvahiae 260 kg N yr-1 and U. lactuca 170 kg N yr-1. (Photos: 
D. Cowles, Rosario Beach Marine Laboratory [M. arenaria]; K. Peters, Wikipedia [U. lactuca]; J. 
Preston, Connecticut Sea Grant [G. tikvahiae]). 



56 

 

 

5 DISCUSSION 

5.1 SUMMARY OF RESULTS 
 

The Corsica River has a long history of high nutrient and sediment loading resulting from land use 

changes throughout the Corsica watershed. Great efforts have been made from federal, state and 

local communities to implement nutrient management strategies for water quality and living 

resource restoration. Progress includes upgrades to waste water treatment plants and septic systems 

as well as riparian buffers and cover crops at agriculture sites. Yet, despite drastic reductions to 

point sources nitrogen discharges, diffuse sources are the primary source for nitrogen loading and 

loading rates are 50 times that of point sources. Diffuse sources are the most difficult to manage as 

it often requires a concerted effort across a suite of sources ranging from septic leaching to fertilizer 

applications. Once contaminants enter a body of water they are nearly impossible to remove, 

thereby necessitating a preventative approach. While policy and technology work together to 

impede inorganic nitrogen movement from the watershed to estuaries, many regions need an 

immediate method of nitrogen remediation for water quality restoration.  

Mya Summary 

This study indicates that Mya arenaria can potentially remove between 1,000-7,000 kg of nitrogen 

when harvested from three different plot areas. Harvest can account for some or all of the net 

nitrogen residing in the system or, if combined with another nitrogen sink such as algae, can 

significantly diminish excess nitrogen with smaller clam plantings. In this analysis, nitrogen 

mineralized from biodeposits was not included in the calculations as it would require a clear 

knowledge of sediment and microbial processes, but may lower the estimate for total nitrogen 

removed. On the other hand, nitrogen content in the shells was also not accounted for which could 

ultimately raise the nitrogen removal estimate. If this is the case, this species of clam mariculture 

could potentially provide a much larger nutrient sink than was previously estimated.  
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This species of clam is a great candidate for restoration projects, not just for its nitrogen integration 

capacity, but for all of the additional ecosystem services they can provide. Bivalves are considered 

the “benthic-pelagic coupler” for many ecosystems as they filter particles from the water column 

and deposit them on the sediment and act as an intermediary between trophic level predation. This 

provides the benthic community with critical materials for growth. Clams are burrowing bivalves 

and M. arenaria prefer to burrow vertically in the sediment and only migrate up and down 

through the riverbed. It is speculated that this process of bioturbation allows for oxygenated 

water to reach microbial communities, which is a necessary constituent for denitrification. 

Burrowing macroinvertebrates have also been attributed with bank stabilization and 

reduced sediment loss to erosion forces.  

Despite their other qualities, bivalves are most known for their biofiltration and ability to 

improve water clarity. As with most bivalves, M. arenaria filter not only plankton from 

the water, but also sediment which is then redeposited on the river bed. This is important 

for the Corsica River since one of the watershed restoration action strategies was to 

promote biofiltration to reduce turbidity. The planning commission for this project 

identified oysters as a primary tool for this endeavor, but M. arenaria would be a 

worthwhile investment as well. 

Gracilaria Summary 

G. tikvahiae made moderate reductions to nitrogen in the studied polyculture arrangement, where 

the largest contribution to nitrogen removal came to only 225 kg nitrogen a year. The Corsica River 

is progressing towards attaining water quality standards and the lower river has less frequent spikes 

in nitrogen concentrations from the subwatersheds. Therefore, the lower Corsica may benefit from 

small reductions to nutrient concentrations at a localized scale.  



58 

 

 

The model simulated a peak in growth during the spring and early summer followed by a quick 

decline in growth by mid-summer. Nitrogen loading is at its highest in winter and spring as the 

water table is relatively high and is easily penetrated with dissolved surface nitrates and nitrites. As 

the months get increasingly drier leading into the summer, the water table drops and deeper 

groundwater with less surface leachate feeds into the rivers. It is then advantageous that Gracilaria 

thrive when nitrogen is at its peak as it allows G. tikvahiae to compete for nutrients directly with 

phytoplankton.  

Furthermore, this species of algae is in high demand for its agar and hydrocolloid producing 

capabilities. Not only by using this species for aquaculture can watersheds work towards water 

quality standards, but also turn a profit from harvest production. In 2009 Gracilaria supplied up to 

80% of the world’s agar production, whereas only a decade earlier the species accounted for only 

63% of production (Santelices, 2014). There is a growing need for Gracilaria cultivation and it can 

provide both monetary value for the region’s watermen while also providing a water quality service 

for the estuary. 

Ulva Summary 

Despite only being harvested as a biofouling agent, U. lactuca generated a large amount of 

harvested biomass and a comparable nitrogen removal to G. tikvahiae. The model was run at three 

different depths for M. arenaria plantings and the shallowest depth provided ideal light conditions 

for high primary production. However, the budget only considered nitrogen removed at the deepest 

depth to reflect watermen’s preference for reduced biofouling. In this study, M. arenaria is the 

foundation species in the polyculture and also provides a large nitrogen sink for the system, whereas 

U. lactuca grows in mats on the culture materials and reduces adequate water flow over the clam 

cultures. Therefore, it is better for the viability of the Mya population that as little U. lactuca is 

grown as possible. As the market for this algae expands in the United States, it may be more 
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advantageous to culture the clams at shallower depths to harvest more algae. Currently, excessive 

biofouling maintenance is not cost or time effective for the watermen. 

5.2 FURTHER RESEARCH 

This study was performed to assess the potential nitrogen stored and removed by increasing an 

available nitrogen sink in the Corsica River via polyculture. Analysis methods were developed 

from current literature and agency published data to represent the impact of these cultures on 

nitrogen stocks in the system. However, based on resources and data available, different 

quantitative procedures were used for the M. arenaria and macroalgae with different limitations. 

Ideally, this assessment would be an integrated analysis and thus requires a single model where 

waste streams are cycled into the available nitrogen stores. If bivalve and macroalgae polyculures 

were implemented as a bioremediation strategy, additional data and collaborations would be 

required.  

Comprehensive Model 

In order to make the M. arenaria calculations more accurate, data for nitrogen assimilation into the 

shell would need to be available. In addition, remineralization rates of biodeposits would need to 

be accounted for. Although ecosystem models have taken great strides to incorporate the 

environmental impacts of bivalve aquaculture on a regional scale, there is still discrepancy as to 

the magnitude and consistency of these results to other systems. Much of this has been attributed 

highly variable denitrification rates of sediment and prevents the wide spanning use of particular 

models by resource managers.   

This study would be most effective if an integrated ecosystem model was created to incorporate all 

three polyculture species. For this to be attainable, a sediment analysis for denitrification rates as 

well as continuous monitoring data for all potential aquaculture sites would be needed. This data 
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would ideally include water temperature, PAR, salinity, dissolved oxygen, total nitrogen, total 

phosphorus and current velocity. It would also be interesting to design this model with specific 

converters based on aquaculture best management practices and ideal harvest schedules.  

Stakeholder Analysis 

After this preliminary study, it would be crucial to involve all relevant stakeholders at all stages of 

the project’s development. The Corsica River watershed is known for strong community activism 

when it concerns Corsica River restoration projects. Since aquaculture can be met with mixed 

opinions it would be beneficial to have residents involved early in the project’s design to prevent 

resistance against future implementation.  

If the river is opened to polycultures, watermen would need to be consulted to determine if M. 

arenaria and G. tikvahiae cultures are desirable harvests. Watermen would need to embrace the 

concept of polycultures and be willing to apply for the leases if the zoning is granted. It is also 

imperative to learn what would make this venture appealing to them enough so they can become 

sound stewards of the estuary. 

State and federal agencies would also need to be consulted for the new establishment of aquaculture 

leases in the Corsica River. The river was opened to aquaculture in 2011 by Maryland Department 

of Natural Resources to boost stewardship and productivity. The U.S. Environmental Protection 

Agency will also need to be referenced for potential grants or rebates to accredit towards TMDLs 

and potential nutrient trading schemes as part of the Corsica River WRAS.  

Pilot Study 

Finally, a pilot study would be used to determine best management practices or techniques specific 

to each culture site. Methods identified in this study were created for a generic site in the lower 
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Corsica River from a diverse set of literature and may not be practical if the site is moved upstream 

or into another tidal tributary. A field study is required to determine location of plot sites in 

coordination with zoning and aquaculture leasing agencies without impacting water channel traffic 

and other designated water uses. 

5.3 CONCLUSIONS  
 

Enhanced eutrophication in estuarine systems has long been documented as a leading cause in 

habitat and water quality degradation. Fortunately, great strides have been made to reduce nutrient 

loading including massive upgrades to waste water treatment plants and septic systems in close 

proximity to tidal waters as well as nutrient and water retention on agricultural land. However, 

diffuse sources of nutrients are still the largest contributors to nutrient pollution and are also the 

most difficult to prevent and regulate. Using the natural ecosystem services of organisms to 

assimilate or fix nitrogen is a critical method to restore eutrophic systems.  

 

Seasonal eutrophication increases turbidity, which reduces light penetration to the benthos and 

destroys submerged aquatic vegetation while contributing to hypoxic conditions. If watermen are 

permitted to culture even small areas of the Corsica River with M. arenaria and G. tikvahiae, a 

substantial amount of nitrogen can be removed through harvest. An even larger nitrogen sink can 

be created if biofouling macroalgae, such as the common U. lactuca, were also harvested and 

removed from the system.  

 

Integrated cultures have the opportunity to provide many ecosystem services beyond nitrogen 

assimilation. The extractive capacity of the macroalgae compete with phytoplankton for available 

resources and prevent algal blooms, while also providing dissolved oxygen and habitat for fish and 

invertebrates. The shellfish aquaculture stabilizes the sediment through M. arenaria burrowing 
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activity as well as introduced materials and netting. The suspension feeding also pulls sediment out 

of the water column and redeposits the particles on the benthos to add material nutrients. Burrowing 

animals like clams provide the sediment with oxygenated water, which drives the denitrification 

cycles and reduces remineralization. Aquaculture material also provide needed hard substrate for 

oyster larvae recruitment and other filter feeders. Additional habitat such as aquaculture materials 

boost local biodiversity and amplify water conditioning by supporting various ecosystem services 

from associated flora and fauna.  

 

This analysis is meant to show the potential nitrogen removal capacity that biofiltration can 

accomplish, but also requires a much more rigorous investigation to fully understand the 

environmental impact an infrastructure such as this would create. First, a complete model 

incorporating all three harvestable species would need to be completed using continuous 

monitoring data (CONMON). Second, it would be beneficial to know the denitrification rates of 

the sediment to ensure proper fixation of bivalve biodeposits to prevent remineralization. Finally a 

pilot study and cost analysis would be critical to determine best management practices for the 

project and potential markets for the new macroalgae harvests. It is also imperative that there would 

be strong stakeholder involvement at all stages to promote stewardship for the restoration effort. 

 

Waterman may be incentivized to culture soft shell clams and macro algae if the state participates 

in a nutrient trading scheme from which waterman can be credited for their nitrogen sink harvests. 

States such as Maryland may also be willing to negotiate startup costs or rebates if cultures can 

assist with meeting watershed restoration action strategies (WRAS). Not only are the clams and 

macroalgae assimilating nitrogen, but clams can filter the water column while macroalgae compete 

with phytoplankton for nutrients. This reduces turbidity allowing more light can reach the sediment, 

thereby supporting SAV restoration goals.  



63 

 

 

 

When shellfish and/or macroalgae aquaculture are recognized and implemented for their nutrient 

remediation capabilities, this project can be adapted for alternative ecosystems. For instance, less 

marketable species such as Ischadium recurvum can be cultured in regions with high concentrations 

of fecal coliforms where shellfish harvests are prohibited. Additionally, since the highest nutrient 

concentrations and eutrophication events occur at the head of the tributaries, fresh water species 

can be used in such locations.  If water quality trading is implemented to include shellfish and algal 

aquaculture and public stock enhancement, credits can offset the loss of harvest profits in 

contaminated sites or ecosystems that support nonmarketable species. 

  

Although this study only examines one method for nitrogen management, which may not suitable 

for all tidal tributaries, it can assist with regional water quality restoration and provide buffers to 

prevent tributary degradation from transferring to the main channel of Chesapeake Bay. 

Polycultures offer ecosystem based management to capitalize on natural ecosystem services to 

improve environmental health and provide economic stability for a historic industry and, when 

coupled with watershed policy, can mitigate the detrimental impacts of nutrient enrichment. 
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