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Abstract 

As our day to day interaction with technology continues to grow, so does the amount of 

data created through this interaction.  The science of digital forensics grew out of the 

need for specialists to recover, analyze, and interpret this data. When events or actions, 

either by accident or with criminal intent create, delete or manipulate data, it is the role of 

a digital forensics analyst to acquire this data and draw conclusions about the discovered 

facts about who or what is responsible for the event.  This thesis identifies a gap in the 

research between data analysis and interpretation.  Current research and tool development 

has been focusing on data acquisition techniques and file carving.  Data acquisition is the 

process of recovering a forensically sound copy of the evidence, such as a bit-by-bit copy 

of  a  hard  drive  or  an  image  of  the  contents  of  a  computer  system’s  RAM.    File carving is 

the process of searching for and extracting files from the acquired data.  Few tools 

provide a means of quick and easy file validation and data extraction once they have been 

recovered, and the tools that do are either limited in their ability or very complex and 

require a lot of overhead and a steep learning curve to use effectively.  The tool created 

through this research fills this gap.  The tool utilizes a file description language that can 

textually describe the layout and on-disk format of a  file  type’s  data.  This language is 

very intuitive and easy to read and understand by humans.  By using a description as 

input, the tool builds a syntax tree which can be used to parse and extract various fields of 

interest from any file matching the provided description.  This allows for the quick 

analysis and interpretation of any file type, even those with uncommon or proprietary 

formats, as long as a valid description is provided.   

  



 
 

1.  Introduction 

As technology advances, so does our daily interaction with it.  For many of us, it is hard 

to think of going a day without the use of some form of computer, smart phone, PDA, or 

any other kind of electronic device.  As our use and dependency on technology grow, so 

does the amount of data created by them. The field of digital forensics has evolved based 

on the increasing need to recover and analyze data when events such as hard drive 

crashes, virus infections, or actions taken by users cause damage or provide insight to a 

criminal investigation. 

Technology has become integrated and necessary in our day-to-day lives.  It is highly 

likely most crimes have a digital element.  Terrorists are using the Internet to 

communicate, recruit new members, or spread propaganda.  The threat of network-based 

attacks are an impending concern for governments, companies, and individuals alike; the 

Internet Crime Complaint Center (IC3) has seen a drastic increase in the number of 

reported Internet based crimes over the past decade [1].  Computers are being utilized by 

a variety of offenders for various goals.  They are, for example, being used by some 

criminals to communicate, plan crimes, and lure targets or by those wanting to store and 

share contraband material such as child pornography.   

This interaction with technology creates evidence and this evidence can take many forms.  

Files are downloaded, created, edited, transferred and deleted.  Many computer systems 

keep logs of user, system, or network activity that contain evidence of illicit activity.  A 

computer  system’s  RAM  can  also  hold  evidence  of  a  criminal’s  activity:  what  processes  

were running, files were open, or other operating system metadata. 
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Traditional forensics has  long  upheld  Locard’s  Exchange  Principle [2].  This principle 

states that any interaction between two items results in a transfer of evidence: between a 

culprit and victim, weapon, or even the crime scene itself.  This rule extends to the digital 

realm as well.  Attackers in a network intrusion often leave trails of their activity through 

system logs, file system or operating system metadata, as well as many other sources.  

The role of a digital forensics analyst is to collect and analyze this data and, importantly, 

be able to attest to its accuracy and soundness [3]. 

Digital forensics and the importance of digital evidence acquisition has existed for many 

years, but only recently has been identified as a scientific discipline.  In 2008 the 

American Academy of Forensic Science (AAFS) created a new department that focuses 

on the development of Digital and Multimedia Sciences (DMS).  Although the creation of 

the DMS established digital forensics as a scientific discipline, academics and 

practitioners in the field still face many challenges.  The DMS is working towards the 

creation of digital forensic standards and practices that is still in its infancy [3].  In 2009 

the National Academy of Sciences (NAS) stated [4]: 

Over the past 10 years, this process has become more routine and subject to the 

rigors and expectations of other fields of forensics science.  Three holdover 

challenges remain: (1) the digital evidence community does not have an agreed 

certification program or list of qualifications for digital forensic examiners; (2) 

some agencies still treat the examination of digital evidence as an investigative 

rather than a forensic activity; and (3) there is wide variability in and uncertainty 

about the education, experience, and training of those practicing this disciple. 

Members of the NAS and the AAFS along with other United States and international 

agencies and organizations are working together to develop a standardized set of 
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guidelines, qualifications, and practices to establish digital forensics as a recognized and 

reputable field of hard science.  There are also many law enforcement officers and 

academic researchers working to develop tools and methods for the collection, analysis 

and interpretation of digital evidence. 

Evidence from digital devices can be collected in numerous ways; for example, through 

physical acquisition utilizing specialized hardware tools, or by logical acquisition through 

the  device’s  file  system. Research to improve and develop new methods to acquire 

forensically sound copies of recovered data has been an area of interest and have been 

rapidly developed over the past few decades.  One topic of data recovery that has seen 

numerous advancements in recent years is file carving [5].  File carving is the process of 

locating and extracting files from a larger source, such as an image of a hard drive or 

memory. 

Equally important to obtaining data are the specific techniques and methods employed to 

analyze the recovered data throughout an investigation. Regardless of how the data is 

recovered, until it is analyzed and presented in a useable form, no information can be 

obtained or interpreted from it.  The goal of analysis is to take acquired evidence and 

produce a timeline of events, draw correlations, and ideally insights into whom or what 

was responsible for the event of interest.  Both academic and commercial research and 

tool development has been conducted, which has led to great advancements in this area.  

It is the purpose of this research to contribute to this specific area of digital forensics by 

proposing an innovative method of metadata extraction from recovered files. 

Upon reviewing the current body of knowledge regarding file carving and the freely and 

commercially available tools to assist with this task, it is clear a gap exists in the research.  



4 
 

 
 

Much of the research being conducted deals with methods of carving data from memory 

dumps, hard drive images, or other sources of acquired data. Many of the available tools 

simply rely on implementations of these various methods.  Although there have been 

great improvements over the past few years in carving techniques [5], few tools focus on 

interpreting the data within the files once they have been carved.  Some commercially 

available tools, such as EnCase [6] or X-Ways [7], support a minimal amount of 

interpreting, parsing, and presenting the meta-data and data within the files, but both are 

limited to files the application supports or great effort from the examiner is required to 

parse specific fields of data. 

This gap in the research makes clear a need to develop more effective solutions to the 

problem of how to analyze and interpret data once it has been recovered through carving 

techniques.  A tool should be developed to resolve this issue because time and effort are 

wasted when an examiner needs to manually interpret data or write program(s) to 

interpret data from an unsupported file type.  Such a tool should possess the following 

characteristics: 

1. Readable and structured input and output. 

2. Customizable to fit the needs of any investigation. 

3. Automatically parses meta-data from files. 

This thesis outlines the development of such a tool.  To allow for customization, the tool 

relies on an existing file description language.  The language allows an examiner to 

textually describe the layout of a binary file type. This description is human readable and 

easily understood.  This existing description language will be used as input to a tool that 

parses and interprets a binary file for the file type the examiner provides.  The tool will 
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allow the examiner to validate a file and quickly extract any fields of data of interest from 

the file. Using the file description language has the advantage of quickly parsing for any 

file type needed, even uncommon or proprietary files types, as long as a valid description 

is provided. 

The remainder of this thesis discusses background research, tool development, and results 

of this thesis.  Chapter 2 reports in further detail related work regarding digital forensics 

and data carving. It also discusses the currently available tools that accomplish tasks 

similar to the tasks this tool does.  The limitations of these tools are also identified. 

Chapter 3 provides a detailed discussion of the file description language used by this tool.  

It covers all the features of the language supported by the initial prototype of the tool. 

Chapter 3 also discusses the features left out and details the reasons for their omission.  

Chapter 4 presents the development of the tool and provides detailed discussions of the 

phases of development and the implementation of the program.  Chapter 5 discusses the 

capabilities of the tool prototype, provides examples of its execution, and presents future 

work possibilities and extensions to future versions of the tool.



 
 

2.  Background 

One particular area of interest in recovery is data carving.  Data carving, sometimes 

referred to as file carving or simply carving, is usually defined as the process of finding 

and extracting useful data from a data source [5] [8].  Files recovered from hard drive 

images, memory dumps, or other sources of data can be a source of evidence in an 

investigation.  This has made carving an area of great interest within the digital forensics 

field and new methods, techniques, algorithms, and tools are being actively developed.  

Data carving and recovery techniques can broadly be divided into two large categories: 

hardware and software.  Hardware recovery is the development of hardware devices to 

extract data from a source of interest.  Software recovery refers to the development of 

pieces of software that can help interpret and make sense of data after it has been 

recovered [5]. 

2.1 History of Data Carving 

The history of data recovery and carving started with 0traditional techniques that relied 

on  the  file  system’s  structures.  In many file systems, when a file is deleted the data is 

actually still present, and links between associated blocks are active until the data is 

overwritten.   

The evolution of data carving tools started with Start of File (SOF)/End of File (EOF) 

carving.  SOF/EOF carvers use a simple method of scanning the data image for common 

file type headers and possibly common file footers, then extracting data in between.  

Although the method is simplistic, these carvers were (and sometimes still are) fairly 

effective and yielded good results [9].   

However, fragmentation poses a large problem for SOF/EOF carvers. Fragmentation 
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occurs  when  a  file’s  data  is  not  stored  in  contiguous  sectors  of  the  storage medium, and is 

instead split into two or more fragments. Although many file systems try to keep 

fragmentation to a minimum whenever possible, and modern operating systems have 

defragmentation services which run regularly, it is still impossible to avoid completely.  

Garfinkel discusses three conditions where files must be written in at least two fragments 

[10].  

1. There are no sectors in a contiguous manner large enough to hold the file data. 

2. A file is appended with additional data, and not enough empty sectors follow the 

original data.  Although some systems will relocate the file, most will simply add 

the appended data elsewhere. 

3. Certain file systems may not support writing very large files in more than a 

certain number of contiguous sectors. 

Statistical surveys show fragmentation occurs more often in certain file types.  For 

example, Garfinkel showed that, on average, Outlook files are the most commonly 

fragmented files, with 58% of files being split into at least two parts across the file 

system. Other file types identified as commonly being fragmented were 15% of .exe, 

16% of .dll, and 17% of .doc files [10]. 

Current research and development pertaining to data carving is largely centered on 

methods of finding possible data from large data sources.  As the field advances, more 

and more data carving methods and tools are being invented.  Garfinkel and Metz have 

proposed eleven carving taxonomy categories [8]. 

1. Carving 
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2. Block-Based Carving 

3. Statistical Carving 

4. Header/Footer Carving 

5. Header/Maximum Size Carving 

6. Header/Embedded Length Carving 

7. File Structure Based Carving 

8. Semantic Carving 

9. Carving with Validation 

10. Fragment Recovery Carving 

11. Repackaging Carving 

The first category, Carving, is the general term applied to the process of searching for and 

extracting  a  file’s  data  from  a  larger  source  of  raw  data.  The  other  categories each refer to 

the specific technique the tool or method executes to achieve its goal. 

Block-Based Carving tools scan the input in a block-by-block manner and attempt to 

determine if the current block is part of a file [8].   The carving tool Revit implements this 

technique, for example.  Revit scans each block of input data against its configuration of 

file definitions [11]. 

Statistical Carving algorithms scan input clusters and use a set of characteristics and 

statistics related to them to determine if the cluster is a part of an output file.  Veenman’s  

work offers examples of certain features and characteristics that can be used to help 

statistically locate portions of files; the repetition or frequent use of the same symbol, 

such as angle braces in HTML files,  or  a  data’s  entropy  can  be  used  as  a  statistical  feature  

in these carving tools [12]. 
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Header/Footer based carving methods is the category created for the techniques explained 

earlier in this section.  Start of File and End of file carving methods, where the tool or 

examiner looks for well-known file headers or footers, fall into this category of carving 

tools. 

The Header/Maximum Size Carving technique is similar in methodology to the 

Header/Footer algorithms.  The carving tool or examiner scans the input for well-known 

file headers. Once located, the carver simply extracts the maximum file size specified. 

Although this is a crude technique and often data not associated with the file is also 

extracted, it is still an effective option for certain file types that are not affected if they 

contain extraneous data following a valid file [8]. 

The Header/Embedded length method of carving is an effective method for certain types 

of files, specifically files that contain a size, or means of determining its size, embedded 

within the header or data of the file. Tools using this method scan the input data searching 

for file header patterns. Once a file header is found, the size of the file is determined from 

values in the header or file data and only that amount of data is extracted. 

File Structure Based Carving methods involve using more specific information about the 

structure  and  format  of  a  file  type’s  data  in addition to the header and footer to help 

determine if a sector belongs to a file.  Semantic Carving and Deep Carving have been 

used as names for this method [8].  Metz and Mora explain that the characteristics of a 

file’s  structure  can  be  used  to  locate  sectors  belonging  to  it.    In JPEG files, for example, 

each section after the header begins with the byte 0xff. Each section also contains an 

entry for its size, which can be used to extract sections of the file accurately[11]. 
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Semantic Carving should not to be confused with the older name given to File Structure 

Based Carving methods.  Semantic Carving methods involve examining the contents of a 

candidate file’s  data and using linguistic, grammatical, syntactic and semantic analysis to 

determine which sections are actually parts of the file.  The Forensic Wiki offers an 

example of locating an English HTML file, with blocks of French text located within it.  

Using a semantic carver, the tool might determine that the French sections do not belong 

to the file and are extraneous data extracted from another file or a deleted file [8]. 

Fragment Recovery Carving is a category for any method that attempts to locate, extract 

and reconstruct fragmented files.  Tools can incorporate other file carving strategies to 

locate fragmented pieces of a file. 

Repackaging Carving involves locating and extracting parts of a larger file type and adds 

new headers, footers, or other necessary structures so the data can be examined using 

standard  tools.    Garfinkel’s  ZIP  Carver  locates and extracts single ZIP archive entries and 

places them into a new central directory so the files can be accessed with any available 

zip explorer or utility [8]. 

2.2 Volatility 

The Volatility Framework is a collection of open source Python-based tools released 

under the GNU General Public License.  Volatility is designed to help with collecting and 

extracting  artifacts  from  a  system’s volatile memory (RAM).  Volatility has a large range 

of supported memory formats and OS distributions.  Currently Volatility supports all 

major 32 and 64 bit Windows versions (XP up to 7) and support for Linux kernels 2.6.11 

– 3.5.x were recently added.  OSX and Android support are currently being developed for 

future releases of the framework as well. 
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The Volatility Framework is a tool for analyzing  a  system’s  kernel  memory  space.  Given 

a memory dump, a Windows hibernation file, virtual machine snapshot, or other 

supported copy of RAM, the framework can help in the analysis by parsing out relevant 

information.  Volatility can quickly give the user a summary of the state of the system at 

the time of the memory snapshot: what and how many processes were running by each 

user, open files, logged in users, and hundreds of other possibly valuable pieces of 

metadata stored in the kernel memory. 

As helpful as the Volatility Framework is, it is limited to assisting in understanding and 

analyzing the contents of a system's RAM.  The work in this thesis is similar in focusing 

on the parsing and extraction of meta-data, but differs in the source of data interpreted.  

Where Volatility focuses on the interpretation of kernel memory, this work focuses on 

interpreting any piece of binary data as long as a valid file description is provided [13]. 

2.3 EnCase and EnScript 

Guidance Software’s  EnCase is arguably the market’s  current leading forensic tool kit 

[14].  EnCase has become a standard and well trusted tool for criminal, private, and 

corporate investigations.  EnCase is a full-featured tool suite that assists practitioners 

through every stage of an investigation.  The software has tools to assist in forensically 

sound data acquisition from disk and RAM on a wide range of supported devices and 

technologies.  It also offers assistance in data carving and file recovery from acquired 

disk images and tools for analyzing the recovered data.  EnCase can generate timelines 

and reports based on recovered logs, file system metadata, and other sources of recovered 

evidence [6]. 

The most important feature, in regards to this thesis,  is  EnCase’s  automation  and  



12 
 

 
 

extensibility features.  The EnCase suite includes a scripting language called EnScript.  

EnScript began as a scripting language enabling users to automate other built-in features 

in EnCase, but quickly evolved into a complex higher-level language.  The EnCase 

program has a built-in EnScript editor and compiler, allowing the user to write, edit, 

compile and package their EnScripts to share with other EnCase users. 

Since its inception EnScript has grown substantially and has outgrown its original use of 

automating EnCase features.  EnScript can access the local file system, execute other 

Windows programs, and the Enterprise edition provides remote access [15]. A full 

discussion on the possibilities of EnScript programs is well outside the scope of this 

paper because of its ever growing list of features and abilities.  However, the remainder 

of this section provides an introduction to the basics of the language and examples of 

using EnScript to perform metadata extraction from recovered files. 

The EnScript programming language is syntactically very similar to the C or C++ 

languages.  Like C++, each EnScript must have a main class which contains a main 

method; other classes and methods can be created as needed by the examiner.  Figure 1 

shows how a simple EnScript program is structured. 
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Figure 1 Structure of a simple EnScript [15] 

These EnScripts can be compiled to a proprietary format called EnPack. Since EnPacks 

are executed by EnCase, they can be transferred among investigators and executed on any 

platform that EnCase supports. 

The EnScript language can be used to open a file, navigate through it, and extract various 

fields of data that might be of interest. Figure 2 below shows an excerpt from an EnScript 

program that parses Microsoft XP System Restore Logs [16]. 

... 
class MainClass { 
  void Main(CaseClass c) { 
    // INPUT VALIDATION, Is there any evidence to process? 
    SystemClass::ClearConsole(); 
    if (!c || !c.EntryRoot().FirstChild()) { 
      SystemClass::Message(0, "No input defined!", "No entries in case! 
Add an evidence file and then run script again."); 
      return; 
    } 
    // INPUT VALIDATION END 
 
 
    // SEARCH OBJECT CREATE AND INITIALIZE 
    SearchClass search(); 
    
search.AddKeyword("\\x12\\xEF\\xCD\\xAB....\\x15\\x00\\x00\\x00....", 
KeywordClass::GREP); 
    search.Create(); 
    // 
 
    // MAIN RECURSION LOOP 
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    forall (EntryClass e in c.EntryRoot()) { 
 
      // The following logic checks if name begins with "change.log" 
and parent folder name begins with "RP" and its parent name begins with 
"_restore{" 
      if (e.Name().Find("change.log")  == 0 && 
          e.Parent().Name().Find("RP") == 0 && 
          e.Parent().Parent().Name().Find("_restore{") == 0) { 
 
// Create EntryFileClass object 
        EntryFileClass file();  
 
// Open the change.log file with the file object just created          
        if (file.Open(e)) {              
 
        // This invokes Find function and checks whether there     
        are any search hits 
          if (search.Find(file) > 0) {   
 
            // Print information about folder RPxx to console 
            Console.WriteLine("\n Created : " +  
                               e.Created().GetString() + "  
                               Folder: " +  
                               e.Parent().FullPath());  
 
            file.SetCodePage(CodePageClass::UNICODE); // <-- do not 
forget to do this, the file object needs to be set to read unicode 
 
            // ITERATE THROUGH SEARCH HITS HERE 
            foreach (SearchClass::HitClass hit in search.GetHits()) { 
 
              // Seek to 64 bytes from hit offset 
              file.Seek(hit.Offset() + 64); 
 
              // Define path and name variables as strings 
              String fullpath, 
                     newfilename;                      
 
              // Read path 
              file.ReadString(fullpath);               
 
              // Skip 8 bytes after path 
              file.Skip(8);                            
 
              // Read name 
              file.ReadString(newfilename);            
 
              // Print information to console 
              Console.WriteLine(newfilename + "      " + fullpath);  
            } 
            // END ITERATION LOOP 
          } 
          file.Close(); // Close the change.log file 
        } 
      } 
    }// END MAIN RECURSION LOOP 
  } 
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} 
Figure 2 Excerpt of EnScript program for parsing Microsoft XP System Restore Change Logs [16]. 

 

The example script in Figure 2 performs three tasks:  

1. Checks that the current case has evidence 

2. Loops over the evidence looking for restore logs  

3. Loops over each log and parses out the log entries. 

The first goal is accomplished by: 

SystemClass::ClearConsole(); 
    if (!c || !c.EntryRoot().FirstChild()) { 
      SystemClass::Message(0, "No input defined!", "No 
entries in case! Add an evidence file and then run script 
again."); 
      return; 
    } 

The script first clears the console.  Then, if the current case opened in EnCase does not 

contain any evidence files, an error message is printed and the script aborted.  Evidence is 

checked by the line if  (!c || !c.EntryRoot().FirstChild()). The variable c is the 

opened case and the logic checks if it exists and that its first child in its list of evidence 

exists as well. 

Before the program enters the two nested loops that look for log files and parse out the 

contents, a search object is made. 

// SEARCH OBJECT CREATE AND INITIALIZE 
    SearchClass search(); 
    
search.AddKeyword("\\x12\\xEF\\xCD\\xAB....\\x15\\x00\\x00\
\x00....", KeywordClass::GREP); 

       search.Create(); 

As with many higher level languages, EnScript provides a standard library of classes and 
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functions and SearchClass is among these.  A SearchClass object is created and 

initialized by adding the keywords for the search.  The hex string 0x12EFCDAB is at the 

start of each entry in the change logs files and is used as the keyword for the 

SearchClass. This will be used in the later loops to search the logs for entries to parse. 

If the file is a change log file, the search initialized earlier is executed on them, if 

(search.Find(file) > 0). A message about the file is printed to the console and the 

inner loop is entered.  The inner iteration loop loops over the search results: foreach 

(SearchClass::HitClass hit in search.GetHits()).  Reading, writing, and 

seeking within files in EnScript is syntactically very similar to C or C++; file.seek() is 

used to move 64 bytes from the start of the log entry and file.  ReadString is used to read 

in the full path name. Similarly, the filename is found 8 bytes later and read in. For each 

log entry, the full path name and the file name are read in and printed to the console.  

Figure 3 shows an example output of the script. 

 

Figure 3 Example output of the XP System Restore Log parser [16]. 

The script enters the two nested loops that the author refers to as MAIN RECURSION 
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LOOP and ITERATION LOOP.  The main recursion loop loops over each piece of 

evidence in the open case, then checks if the file is an XP System Restore Log file by 

checking its filename and parent directory names.  

Much like the goal of the tool discussed in this thesis, EnScript can be used to extract and 

present fields of metadata from files as well.  For example, Muller provides on his 

website an EnPack for a script written to read, extract, and display the metadata fields 

within a Microsoft Document file [17].  The source code for the script is not provided, 

but Figure 4 shows a screen shot of its execution. 

 

 

Figure 4 Output from Microsoft Office file metadata parser written in EnScript [17]. 

Although useful, the source code of EnScript programs can quickly become hard to read 

and understand, especially for large or complex file types. Another disadvantage of using 

EnScript for the purpose of meta-data extraction is its steep learning curve.  The EnScript 

language has many built-in classes and functions that require programmers to have much 

prior knowledge and experience to program more advanced tasks.   

Due to its reliance on C++ style syntax, the language does not lend itself very well to the 
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description  of  a  file’s  format  and  data  structures.    Overhead is required to open, navigate, 

and read a file and this extra code can distract the reader from  learning  the  file’s  structure. 

The final limitation observed for using EnScript for metadata extraction is that the 

examiner must write an entirely new program for each file type of interest.  This requires 

the examiner to not only learn and understand the structure of the file, but also to  spend 

the added time and effort to write the code to extract the data.  Unless integration with 

EnCase’s  case  management  or  other  features  is  required,  the  examiner  would  most  likely  

benefit from writing standard C or C++ code as EnScript adds an additional level of 

complexity without offering any additional features in navigating and extracting data 

from a file. 

2.4 X-Ways and WinHex 

The WinHex forensic tool kit began as a universal hexadecimal editor for the Windows 

platform, but quickly expanded far beyond this scope.  WinHex provides features to 

image disks, inspect data, attempt to locate and recover data either deleted or lost, and 

edit and create new data.  As WinHex began to become much more than a simple HEX 

editor, X-Ways AG released its flagship forensic application X-Ways Forensics.  X-Ways 

Forensics is a forensic toolkit based on WinHex.  Much like other forensic workstations, 

X-Ways can assist an investigator with a wide range of tasks: case management, audit 

logging, file carving and data recovery.  X-Ways provides an extension API called X-

Tensions, which allows users to add additional features or automate existing features 

already in the toolkit. 

One of X-Way’s  data  interpretation  features is of particular interest to this work.  WinHex 

comes with built-in support for interpreting 20 common file types such as jpegs, zip 
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archives, mp3s, and system data structures like Ext and FAT file system directory entries.  

This template feature is used to interpret and display binary data in dialog boxes for 

viewing, editing, or creating data.  The templates can be used to examine data from either 

a file, an image of a disk sector, or virtual memory.  The templates are saved in plaintext 

files and contain a textual description of the file or data structure for which the template 

is written. 

Figure 5 contains the description for a FAT file system directory entry included with 

WinHex and X-Ways and how the associated template dialog box will appear in the 

program, respectively. 

template "FAT Directory Entry" 
 
// Template by Stefan Fleischmann 
// X-Ways Software Technology AG 
 
// To be applied to a sector of a FAT16 or FAT32 drive 
// that contains a directory.  Not suitable for LFN 
// (long filename) directory entries. 
 
description "Normal/short entry format" 
applies_to disk 
multiple 
 
begin 
 char[8] "Filename (blank-padded)" 
 char[3] "Extension (blank-padded)" 
 hex 1  "0F = LFN entry" 
 move  -1 
 binary "Attributes ( - -a-dir-vol-s-h-r)" 
 goto  0 
 hex 1  "00 = Never used, E5 = Erased" 
 move  11 
 read-only byte "(reserved)" 
 move  1 
 DOSDateTime "Creation date & time" 
 move  -5 
 byte  "Cr.  time refinement in 10-ms units" 
 move  2 
 DOSDateTime "Access date (no time!)" 
 move  2 
 DOSDateTime "Update date & time" 
 move  -6 
 uint16 "(FAT 32) High word of cluster #" 
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 move  4 
 uint16 "16-bit cluster #" 
 uint32 "File size (zero for a directory)" 
end 
Figure 5 FAT Directory Entry Template Code [7] 

 

Figure 6 FAT Directory Entry Template dialog box in X-Ways program [18] 

As Figure 6 shows, the template is applied to the data opened in the WinHex viewer and 

the values are parsed and presented to the user in a neat and organized manner.  The 

template dialog box provides the ability to view, edit and create new entries. 

This template feature provides a system for extending support for additional file 

definitions.  Users can create their own template files with a definition for any data 

structure they may be interested in viewing.  X-Ways hosts a repository of user-generated 

template files for additional file types and data structures on their website.  X-Ways 

encourages users to submit their own template files to be shared and hosted within the 

repository. Figure 7 shows an example template file for the description of the BMP file 

type written by Khomenko Volodymr [19]. 
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... 
begin 
 section "BMP File Header" 
  read-only char[2] "BMP_ID"  // 00 
  uint32 "File size"    // 02 
  uint32 "Reserved"    // 06 
  uint32  "ImageDataOffset"   // 0A 
 endsection 
 
 section "BMP Info Header" 
  uint32 "HeaderSize"    // 0E 
  uint32 "Width"     // 12 
  uint32 "Height"    // 16 
  uint16 "Planes"    // 1A 
  uint16 "BPP"     // 1C 
  uint32 "CompessionMethod"   // 1E 
  uint32 "ImageSize"    // 22 
  uint32 "XPixelsPerMeter"   // 26 
  uint32 "YPixelsPerMeter"   // 2A 
  uint32 "PaletteSize"    // 2E 
  uint32 "ColorsImportant"   // 32 
 endsection 
 
 section "Palette(If PaletteSize=0 then no palette)" 
  numbering 0 
 
  { 
   byte "B[~]" 
   byte "G[~]" 
   byte "R[~]" 
   byte "A[~]" 
 
  } [PaletteSize] 
 endsection 
end 
Figure 7 Template description for a BMP file [19] 

Figure 8 shows the specifications of the BMP file type from Microsoft [20]. 

typedef struct tagBITMAPFILEHEADER 
{ 
  WORD  bfType; 
  DWORD bfSize; 
  WORD  bfReserved1; 
  WORD  bfReserved2; 
  DWORD bfOffBits; 
} BITMAPFILEHEADER, 
*PBITMAPFILEHEADER; 
 

typedef struct tagBITMAPINFOHEADER 
{ 
  DWORD biSize; 
  LONG  biWidth; 
  LONG  biHeight; 
  WORD  biPlanes; 
  WORD  biBitCount; 
  DWORD biCompression; 
  DWORD biSizeImage; 
  LONG  biXPelsPerMeter; 
  LONG  biYPelsPerMeter; 
  DWORD biClrUsed; 
  DWORD biClrImportant; 
} BITMAPINFOHEADER, 
*PBITMAPINFOHEADER; 

Figure 8 Bitmap file header and info header specifications [20]. 
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As Figure 7 and Figure 8 show, the WinHex template file for the BMP file type are true to 

the file specification and it is just as easy to read and comprehend the type, size and 

meaning of each field from the WinHex template as from the BMP file specification. 

Figure 5 and Figure 7 give an example of the level of complexity and breadth of the 

description language used in the template files.  The language used in the template is 

barebones and basic.  It supports all common data types: 16 and 32-bit integers and 

floating points, booleans, hex values, characters and strings.  Lines such as 

 uint32 "Width" 

perform 3 actions: reads 4 bytes of data from the current position, stores the value in a 

variable named Width as an unsigned 32-bit integer, and move the current position into 

the data 4 bytes forward.  The language provides the ability to move backwards and 

forwards any number of bytes through the data using the move keyword. 

 move  -1 
 move  1 

The preceding lines of code move the position in the data backwards and forwards one 

byte respectively.  This allows the user to move past uninteresting data fields, or for 

certain fields to be read and interpreted in different ways and stored in different variables.  

There is also the goto keyword, which can be used to seek to various offsets within the 

data structure.  A goto can be used by providing a variable which has been read before 

such as: 

 uint16  “Example” 
 goto  “Example” 

This will move the position pointer to the offset read into the Example variable, relative 

to the start of the data structure. 
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The language has a minimal amount of logic and control flow keywords.  It supports 

conditionals and simple loops.  The following code excerpt from X-Way’s  template  for  

ZIP archives demonstrates both. 

… 
section "Compressed file local headers" 
    numbering 0 
    { 
        section "File header" 
            hex 4 Value             
             
            IfEqual Value 0x504B0304 
                move -4 
            Else 
                ExitLoop 
     EndIf 
 
     hex 4     "ZIP local file header signature" 
     hex 2     "Version needed to extract" 
     hex 2     "General purpose bit flag" 
     hex 2     "Compression method" 
     DOSDateTime    "Last mod file date/time" 
            hex 4          "CRC 32" 
     uint32     "Compressed size" 
     uint32     "Uncompressed size" 
     uint16     "Filename length" 
            uint16     "Extra field length" 
     string     "Filename length" "File name" 
            hex             "Extra field length" "Extra field" 
            move     "Compressed size" // to end of file data 
        endsection 
    }[100]         
Endsection 
… 
Figure 9 Except from ZIP archive X-Way template [21] 

The instructions between the curly brackets are executed 100 times, as denoted by the 

[100] following the closing bracket, unless the loop is exited prematurely by the Else 

statement if the value read into Value does not equal 0x504B0304. This template excerpt 

is comparable to the specified structure  of  a  ZIP  archive  file’s  local  file  header.  Figure 10 

shows the actual specification of a ZIP file header for each contained file [22].  Both the 

specification and the template file are similarly structured and easy to read.  The template 

file only adds a small amount of complexity to the  description for control flow and loop 
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execution;  for simple control flow such as this, the added complexity is not very 

distracting from the overall structure of the data. 

File header: 
 
      local file header signature     4 bytes 
      version needed to extract       2 bytes 
      general purpose bit flag        2 bytes 
      compression method              2 bytes 
      last mod file time              2 bytes 
      last mod file date              2 bytes 
      crc-32                          4 bytes 
      compressed size                 4 bytes 
      uncompressed size               4 bytes 
      file name length                2 bytes 
      extra field length              2 bytes 
 
      file name (variable size) 
      extra field (variable size) 
Figure 10 ZIP local file header specification [22]. 

The language does have its limitations.  It is more akin to a simple scripting language 

than a file description language; each line is a command to either read bytes of data, 

compare data, or move the current cursor position.  Complex templates require lots of 

logic and control flow; the overall structure of the data can get lost in the details.   

The language also does not offer any level of abstraction.  No compound data structures 

can be declared and used to make the template more human readable and accessible. 

The final limitation of the language is its linear format.  It becomes hard to read and 

comprehend the full scope and layout of the data structure.  With only two options for 

control flow and no support for lists or arrays, some template descriptions can become 

unnecessarily complex for the human reader. 



 
 

3.  File Description Language 

One main objective of this project is to address the problems and short comings of the 

languages used by other available tools.  Other tools like EnCase or X-Ways have 

languages that lose focus on the data being interpreted.  They either lack power, making 

simple descriptions of files convoluted and hard to read, or contain too many features and 

the big picture of the structure being described is lost.  Some  languages,  like  EnCase’s  

EnScript, were not originally designed with this function in mind; they were designed for 

tool automation or extension, and the feature of parsing a data structure was added later 

and forced into the syntax and styling of the language.   

The tool developed through this research took advantage of a file description language 

being developed in part by Dr. Florian Buchholz at James Madison University.  The 

language was designed to describe the layout of binary data within a file.  As such, it is 

low-level, but remains intuitive.  The language focuses solely on describing the structure 

of a binary file, and is not bloated with extraneous features outside of this scope.  The 

syntax and grammar of the language creates a textual description of data that is human 

readable and easy to comprehend.  Because of its flexibility and ease of use, the language 

offers an excellent medium to share and discuss file structures with others. 

Support is provided for the following: 

 All basic data types 

 Declaring and creating higher level constructs for basic data types 

 Lists 

 Pointers (global and local) 
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 Logic and common flow control 

The individual elements of the language are discussed in further detail in the following 

sections. 

3.1 Basic Types 

There are four basic types of data in the description language:  

 boolean  - a single bit of data 

 uint - unsigned integer value of either 1, 2, 4, or 8 bytes in size (unit1, unit2, 

unit4,uint8) 

 sint - signed integer value of length 1, 2, 4, or 8 bytes in size (sint1, sint2, sint4, 

sint8) 

 char - 1 or 2 byte character value (char1, char2) 

The following line of code shows how these four basic types are assigned to variables. 

 V1 := sint4; 

This line creates a variable named V1 assigning the type of a 4 byte signed integer.  

Simple file types can be fully described using only these basic types as Figure 11 below 

shows. 

SIMPLEFILE := { 
    Field1          := sint4; 
    Field2          := uint2; 
    Flag            := boolean; 
    SecondFlag      := boolean; 
    Field5          := char1; 
} 
Figure 11 Simple file description using only basic types 

The preceding example is a complete description of a very simple file type that holds two 

integer values, two booleans and one character value in that order.  Files with large lists 
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of integers or strings of characters would be excruciatingly arduous to both compose and 

to comprehend. Since files this simple rarely exist, the description language can 

accommodate the need for more complex data structures. 

3.2 Declarations 

As preceding discussion on basic types showed in its simple example, a declaration can 

assign a type to a name.  There are expanded declarations which that for the inclusion of 

descriptions, a name, permissible values and common values for the data type.  For 

example, Figure 12 shows how the declaration of Field1 in the earlier file description 

could be expanded. 

SIMPLEFILE := { 
 
    Field1 := { 
        sint4; 
        description  :=  “A  description of the data field.”; 
        name  :=  “a  more  explicit  name  for  the  field”; 
        permissible := [1,2,3]; 
        common := [1,3]; 
    } 
 
} 
Figure 12 Expanded variable declaration 

An  expanded  declaration  contains  the  field’s  type,  descriptions,  name,  permissible  and  

common values surrounded by curly brackets.  The field type is the only required entry. 

The description and name entries in an expanded declaration are strings allowing for a 

more accurate and descriptive name for the data and a human readable description of 

what the data represents.  

The permissible entry allows the author to list all possible values that are legitimate 

possibilities for the field. Similarly, the common entry offers a way to express common 

values likely to be found in this field. 
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3.3 Structs 

The description language, like many modern programming languages, offers a method to 

create complex structures of data using the basic types and declarations as building 

blocks. Similar to many C style languages, a struct in the description language is a 

method of grouping together various declarations into one logical unit.  In this description 

language they are declared as shown in Figure 13. 

Identifier := { 
    declaration_1; 
    declaration_2; 
    … 
    declaration_n; 
} 
Figure 13 Definition of a struct 

Figure 13 above demonstrates how a struct is merely a collection of declarations, either 

simple, extended, or a mixture of the two.  After a struct has been declared, it can be used 

in the declaration of other structs as well, as seen below. 

struct1 := { 
    v1 := uint2 
    v2 := sint1 
} 
 
struct2 := { 
    v1 := struct1; 
    v2 := boolean; 
} 
Figure 14 Using structs in declarations 

Individual elements of a struct can later be addressed using dot style notation. 

 Struct1.v1 

 

3.4 Lists 

A common feature in many file types and data structures is the repetition of data types in 

long running lists.  These lists in the description language are similar to arrays in many 
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programming languages.   

Continuing with the simple file type example, the Field2 declaration could be expanded 

to be a list of several uint2 types: 

SIMPLEFILE := { 
    … 
    Field2 := uint2[5]; 
    … 
} 
Figure 15 Declaration of a list 

As with arrays in most modern programming languages, after a list has been declared, 

individual elements can be addressed using indexing.  Given the declaration above, 

Field2[2]accesses the second uint2 value in the Field2 list. 

Since a list of higher level structures is a common occurrence in more complex file types, 

lists can also be used when the type of a declaration is not a basic type, but rather a user-

defined struct or any complex type such as lists, conditionals, or char or bit fields. 

3.5 Conditionals 

Another common paradigm in file types is the ability for field values to affect others.  For 

instance, a one bit boolean field can be used as a flag and if true the next field in the file 

will be a char2 list otherwise the field will be a uint1. An example such as this is not an 

uncommon occurrence, and the description language offers a means to express this. 

Conditionals in the language allow for the assigned type in a declaration to depend on the 

value of another declared field. 
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SIMPLEFILE := { 
    Field1 := uint1; 
    Field2 := case(Field1) { 
        0:  uint1; 
        1:  uint2; 
        2: anotherDeclaredStruct; 
        else: char2; 
    } 
} 
Figure 16 Conditional declaration 

In this example, the value in the Field1 variable determines the declared type of the 

Field2 variable.  The list of cases can be as long and diverse as the author needs and can 

be followed by an optional else case, which will be the default type if the value does not 

match any of the cases. 

3.6 Bitfields and Charfields 

Many file types contain continuous lists of individual single bits. A collection of flag bits 

in a file header is an excellent example.  Although this pattern could be expressed in the 

description as a list of boolean types, the language offers a more concise approach using 

the bitfield type.  Bitfields are a sequence of bits of a given size with the ability to 

provide an optional name and description fields for each bit. Their declaration follows 

either of the two syntaxes: 

identifier := bitfield[size]; 
identifier := bitfield(size, name_0, description_0, ..., 
   name_(size-1), description_(size-1)); 

Where size is the number of desired bits. In the second declaration, for each bit in the 

bitfield, a name and a description must be provided as strings.  Figure 17 provides an 

example of a bitfield declaration. 
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SIMPLEFILE := { 
    Bfield1 := bitfield[5]; 
    Bfield2  :=  bitfield(5,  flag1,  “a  description”, 
                           flag2,  “flag  2’s  description.”, 
                           flag3,  “flag  3’s  description.”, 
                           flag4,  “flag  4’s  description.”, 
                           flag5,  “flag  5’s  description.”  );; 
 
} 
Figure 17 Declarartion of bitfields 

Likewise, a list of character types grouped together as a string is also a common feature 

in many file types.  As with bitfields, this feature could be described in the language 

using lists of char1 or char2 types, but again, this is not as readable and easily understood 

by the user.  The language therefore offers another type to help in the declaration of 

strings: a charfield. A charfield is a sequence of char types of a given size and an optional 

encoding. Charfields can be declared in a number of ways: 

identifier := charfield(type, size, encoding); 
identifier := charfield(type, size); 
identifier := charfield(type, character, encoding); 
identifier := charfield(type, character); 
//where type must be char1 or char2 
//instead of specifying a size, the latter specify a terminating 
character, which must be of type type. 
 
The following short syntax is permissible: 
 
identifier := char1[size]; // ASCII charfield of given size 
identifier := char2[size]; // Unicode charfield of given size 

3.7 Language Features Left Out of Initial Research 

The following features of the language were chosen not to be supported for this initial 

research.  Even without their support included in the parser, the features discussed above 

provide a wide set of possible descriptions, and many common file types can be 

adequately described using only them.  It is necessary to at least mention the skipped 

language features which will hopefully make it into future versions of the parser. 
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3.7.1 Lists of Unknown Size 

Lists can also be declared with an unknown size.  This can occur in certain file types 

which have a list of data or some data structure of arbitrary size not explicitly shown 

anywhere else in the file.  Declarations of lists of unknown size are similar to standard 

lists with the size omitted. 

 identifier := type[]; 

3.7.2 Virtual Fields 

A virtual list is an abstract concept that allows querying of list members, which are 

computed over an actual structure of the data type.  For this, the actual data type needs to 

be described first (using a struct), and then a formula for computing a given member of 

the list needs to be given.  Within the name space of the formula the identifier i can be 

used to reference the ith element. 

 identifier := vlist(size, ctype, formula); 
 identifier := vlist(ctype, formula); 

3.7.3 Pointers 

Pointers are similar in practice to pointers in C; they are numeric values that hold the 

location of a piece of data or structure.  Pointers can be declared in one of two ways, 

either global or local.  Global pointers require the absolute offset from the beginning of 

the file for the pointer, while local pointers are given the location of another identifier to 

which the offset is applied. 

identifier := globalp(size, type, address); 
identifier := localp(size, type, offset); 
identifier := localp(size, type, identifier, offset);   



 
 

4.  Development 

This chapter discusses the Binary Analysis Tool (BAT) developed for this thesis.  The 

BAT takes as input a file description and uses this to build a syntax tree representing the 

structure of the binary file type described.  The tool then parses a binary file and 

interprets the data according to structure of the syntax tree.  The data parsed out of the 

binary file is presented to the user in an organized manner for easier analysis. Figure 18 

shows an overview of the BAT. 

 

Figure 18 Overview of the BAT. 

The tool performs three distinct tasks during execution: 

1. Break the file description received as input into a stream of individual tokens 

2. Construct a syntax tree based on the token stream. 

3. Parse the binary file and present the data to the user in a readable format. 

The tool is divided into three components: the tokenizer, the parser, and the binary parser. 

Each module is responsible for one of three tasks.  The tokenizer component is 

responsible for breaking the file description into tokens which can be used by the parser 

to help build the syntax tree.  The parser module's role is to interpret the token stream 

produced by the tokenizer using the grammar of the file description language and builds 

the syntax tree.  The final component, the binary parser, uses the syntax tree created by 

the parser to read and interpret the data within a binary file.  This data is presented to the 
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user in an organized and readable manner. Figure 19 shows an overview of the execution 

process of the BAT's individual modules. 

 

Figure 19 Overview of the BAT execution process 

The following sections of this chapter discuss in further detail each phase of the BAT's 

development.  Section 4.1 discuss the tools and development environment chosen to 

implement the tool. Section 4.2 discusses the Lexical Analysis phase and the 

implementation of the tokenizer. Section 4.3 discusses the development of the file 

description language parser and the construction of the syntax tree.  Section 4.4 discusses 

the implementation of the binary parser module that uses the syntax tree to parse a binary 

file. 

4.1 Development Environment and Tool Research 

The first step was to research and decide upon the development platform, environment, 

and tools (if any) that would be used to create this program.  Given the importance of 

lexical analysis and parsing the tools Flex and Bison [23] were considered.  The Flex and 

Bison tools are free GNU tools for the production of lexical analyzers and parsers 

respectively.  They are decedents of the original LEX and YACC tools developed in 1975 

[24].   

During research, an open source Python library named PLY [25] was found.  PLY, which 

stands for Python LEX and YACC, is an implementation of the LEX and YACC tools in 

Python.  The PLY library slightly deviates from the LEX and YACC standards, but keeps 
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the general development constructs and layout the same.  The changes take advantage of 

Python-specific improvements, such as returning tuples or objects from the tokenizer.  

Because of the similarities of the tools PLY is straightforward to learn if one has prior 

knowledge of LEX and YACC as well as Python. 

Due to existing knowledge of the LEX and YACC frameworks and personal preference 

for Python, I decided to use Python with PLY as my development language.  The Python 

interpreter is becoming standard on all Linux and MAC OSX distributions and easily 

accessible on Windows machines. This choice makes the BAT more platform 

independent than using FLEX and Bison.  FLEX and Bison are C-based tools and would 

need to be compiled and distributed for each targeted platform. 

4.2 Lexical Analysis 

The first stage of developing any parser, interpreter, translator, or compiler tool is called 

lexical analysis or scanning.  The following sections discuss what the role of a lexical 

analysis is, how its function is accomplished, and how the lexical analyzer is 

implemented in this work. 

4.2.1 Lexical Analysis Background, Terms, Definitions and Tools 

Aho et al. [26] describe the role of a lexical analyzer as reading a character stream from 

the input, grouping the characters together into lexemes, and producing a stream of 

tokens from these lexemes as output to the parser.  The authors also offer the following 

terms and definitions, which I will adhere to for my discussion: 

 Token – a name representing a lexeme matched by a pattern, may also be paired 

with an associated attribute. For example, the token for an identifier might be 
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paired with the actual string of the identifier name. 

 Pattern – an informal description of the set of lexemes corresponding to a given 

token. 

 Lexeme – a sequence of characters that matches a particular token based on a 

pattern.  It is possible for a token to have several lexemes. 

Table 1 demonstrates the relation between these three terms with examples from the file 

description language. 

 

 

Token Pattern  Lexeme 

Case Characters c, a, s, e Case 

Id A letter followed by zero or 

more letters, numbers, or 

underscores. 

Field1, file_header, Xy2Z 

hexadecimal_number  Characters 0, x, followed by 

one or more digits 0-9 or 

letters A-F 

0xFF, 0x10, 0x0A 

Table 1 Token, Pattern, and Lexeme examples 

A lexical analyzer can be developed by hand for any language with a list of language 

tokens and pattern rules for these tokens.   Scanners and lexers generally work by 

scanning input one character at a time and checking it against a list of patterns.  However, 

over the past few decades many tools have been developed to help in the creation of 

lexical analyzers.  As discussed in the previous section, Lex (and its descendent Flex) 
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were among the first developed and are still widely used today.  There are many other 

tools available for lexical analysis, many of which, including the PLY library used by the 

BAT, are based upon the design of Lex.  Most of these tools use regular expressions as 

the means of defining the patterns to match input against, and Lex, Flex, and PLY are no 

exceptions [23].   

Although Lex and Flex are based on C-style syntax and PLY is based on Python, the 

structure of a lexical analyzer specification using the tools are similar.  A program written 

with these tools is generally divided into three sections: declarations, transition rules, and 

auxiliary functions.  The declarations section contains any constants, variables and most 

importantly, any regular expression definitions needed for the lexer.  The transition rules 

section contains a list of new regular expressions or predefined expressions and actions to 

be carried out when the pattern is matched.  Finally, the auxiliary section is a place for 

any arbitrary code or helper functions the author might need to assist with the actions 

taken in the transition section. 

4.2.2 Language Tokens 

To begin work on the lexical analyzer, I first broke down the file description language 

into the individual token types required.  As the file description language conforms to 

most programming language archetypes, I was capable of following the general token 

outline described by Aho et al. for the creation of my token list [26]. 

1. A token for each keyword or reserved word.  

2. Tokens for each operator. 

3. A token to represent all identifiers 

4. At least one token for constants. 
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5. Tokens for each punctuation symbol. 

Using these rules, I constructed my token list and the patterns that would be used to 

match individual lexemes to them.  Appendix A shows the entire token list the first 

version of the parser supports.  The table contains the symbol, keyword, or regular 

expression used to match each token in the list. 

The table of tokens shows that there is one token for each of the language's reserved 

words; this includes the basic types, case, else, bitfield, charfield, description, name, 

permissible, and common.  There is also one token for each of the language's operators 

and one for each punctuation symbol. The pattern for all of these tokens is the reserved 

word itself or the symbol. 

The remaining tokens, BIN_NUMBER, OCT_NUMBER, DEC_NUMBER, 

HEX_NUMBER, STRING, COMMENT, and ID all require a more complex regular 

expression for its matching pattern.   

Tokens for the unsupported features such as the globalp and localp keywords are also 

included in the tokenizer implementation.  This added no substantial work effort to the 

implementation of the lexer and was done so that future work on the tool will only need 

to focus on the parsing module of the tool.  In the current version of the parser, if one of 

these unsupported tokens is used the parser will throw an unexpected token error and  the 

parser will stop.  It is unnecessary for the parser to continue because the syntax tree 

produced will no longer be an accurate representation of the binary file without support 

of these features. 
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4.2.3 Lexical Analyzer Implementation 

Using the token list discussed in the previous section, a lexical analyzer for the file 

description language was developed.  The full source code for the lexical analyzer written 

in python using the PLY library can be found in Appendix B. 

Using PLY to assist in the creation of a lexical analyzer is similar to creating lexers with 

Lex or Flex; there are, however, some structural and syntactical differences. In PLY, the 

first task that must be done when creating a lexical analyzer for a grammar is to create a 

list of reserved words within the language.  As seen in the full source code and Figure 20, 

the list reserved is a list of all the keywords in the file description language.  The last four 

reserved words in the list (main, struct, little_endian, and big_endian) were added to the 

language during the development of this thesis.  Their purposes will be discussed in 

further detail later in this chapter. 

reserved = ( 
       'BITFIELD', 'CHARFIELD', 'GLOBALP', 'LOCALP',  
       'CASE', 'ELSE', 'DESCRIPTION', 
       'NAME', 'PERMISSIBLE', 'COMMON', 'UINT1', 'UINT2', 'UINT4', 'UINT8',  
       'SINT1', 'SINT2', 'SINT4', 'SINT8', 'CHAR1', 'CHAR2', 'BOOLEAN', 
       'STRUCT', 'MAIN', 'LITTLE_ENDIAN', 'BIG_ENDIAN'  
 ) 
Figure 20 list of reserved words 

A second list also needs to be created to hold all the tokens of the grammar.  As seen in 

the code excerpt in Figure 21, the tokens list is the reserved words list plus the additional 

tokens for the language.   

tokens = reserved + ( 
 # Literals 
 'BIN_NUMBER', 'OCT_NUMBER', 'DEC_NUMBER', 'HEX_NUMBER', 'STRING', 
 # Operators 
 'PLUS', 'MINUS', 'ASTERISK', 'FWDSLASH', 'PERCENT', 
 'PIPE', 'ASSIGN', 'COLON', 'SEMI', 'COMMA', 'DOT', 
 
 # Delimeters ( ) [ ] { } 
 'LPARAN', 'RPARAN', 
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 'LBRACKET', 'RBRACKET', 
 'LBRACE', 'RBRACE', 
 
 'ID', 'NEWLINE', 
 'COMMENT' 
 ) 

Figure 21 delcaration of list of tokens 

Once a list of tokens has been defined, the rules and regular expressions for matching 

these new tokens are defined in the next section of the PLY program.  Any token added to 

the tokens list needs to be specified with a regular expression rule to match.  Each rule is 

defined through declarations with the special prefix t_, which indicates it defines a token. 

 

   

This can be done in two ways with PLY. The expression can be specified as a string for 

simpler tokens, such as the following example: 

t_WORD  = r'[a-z]+' 
 

If the matching is more complex or the programmer needs the tokenizer to take additional 

actions once matched, a new method can be defined.  

def t_NUMBER(t): 
  r'\d+' 
  t.value = int(t.value) 
  return t 

The above example, taken from the PLY documentation [27], shows the matching rule for 

any decimal number. PLY reads all input in as strings so  the observed value needs to be 

converted into a Python integer before returning the token.   

Each token specified in this manner takes one argument: an instance of LexToken.  
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LexToken is a PLY object with the following attributes:  

 t.type The token type as a string. 

 t.value The observed value from the scanned input. 

 t.lineno  The line number the token was found. 

 t.lexpos   The position of the token, relative to the start of the file. 

The default t.type will be the token type being specified; continuing with the t_NUMBER 

example, the t.type value will be set to the token type NUMBER by default.  The values 

of the LexToken can be manipulated as necessary, including the token type, before being 

returned. 

Figure 22 shows an excerpt of the declaration of many of the simple language tokens.  

The symbols of the language (i.e.  ‘+’,’-‘,  ‘|’,  etc.)  are  all simple regular expressions and 

no additional steps are needed by the tokenizer so the first method of defining the 

appropriate expressions was used.  During execution, PLY scans the input file and when 

one of the declared regular expressions is matched, it will return the associated token.  

For example, in Figure 22 the  t_PLUS  token  is  declared  to  be  the  regular  expression  ‘\+’.    

If PLY finds the symbol + during execution, the t_PLUS token will be returned. 

# Operators 
t_PLUS  = r'\+' 
t_MINUS = r'-' 
t_ASTERISK = r'\*' 
t_FWDSLASH = r'/' 
t_PERCENT = r'%' 
t_PIPE  = r'\|' 
 
t_ASSIGN = r':=' 
t_COLON = r':' 
t_SEMI  = r';' 
t_COMMA = r',' 
t_DOT  = r'\.' 
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t_LPARAN = r'\(' 
t_RPARAN = r'\)' 
t_LBRACKET = r'\[' 
t_RBRACKET = r']' 
t_LBRACE = r'{' 
t_RBRACE = r'}' 

Figure 22 declaration of token regular expressions 

Like FLEX, PLY adheres to two rules to avoid ambiguity when matching tokens.  First, 

the longest string possible is matched.  Second, when there is a tie, the first specified rule 

is used [23]. For example, the regular expressions "0[1-9]+" and "[0-9]+" will match the 

token 07.  In this case, PLY will return which ever rule is specified first. 

Several of the tokens were slightly more complex and required the second approach of 

matching.  For example, the method t_ID shown in Figure 23 is used to match all 

identifiers.  The first line of any token function in PLY must be the regular expression 

used to match the token.  The t_ID function matches the regular expression [a-zA-Z_][a-

zA-Z_0-9]*, which will match any word starting with an upper or lower case letter or an 

underscore followed by any number of letters, numbers, or underscores.  Before the 

method returns it needs to check if the matched word is in the reserved list and if so 

returns that token value instead of an ID. 

def t_ID(t): 
    r'[a-zA-Z_][a-zA-Z_0-9]*' 
    if t.value.upper() in reserved: 
        t.type = t.value.upper() 
    return t 
Figure 23 t_ID function for matching identifiers or keywords 

The final method t_error is a requirement of PLY that will execute if the tokenizer 

encounters a character that cannot be matched to any of the rules above.  This lexical 

analyzer prints an error message alerting the user of the illegal character and the line 

number it was found on and skips it all together.  Improvements to this error handling 
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function can be made in the future versions of the lexical analyzer. 

def t_error(t): 
    print("Illegal character %s" % repr(t.value[0])) 
    t.lexer.skip(1) 
Figure 24 error handling function required by PLY. 

 

4.3 File Description Language Parser 

The second phase in of the BAT is syntax analysis or parsing.  The following sections 

discuss the role of the parser, how it accomplishes this role and how the parser for this 

tool is implemented. 

4.3.1 Grammar 

The first step of developing the file description parser was to finalize the grammar of the 

file description language.  Although tools such as YACC, BISON and PLY have support 

for GLR parsers, from my experience it is easier to work with LALR(1) parsers.  GLR  

grammars are ambiguous by default and require extra work from the parser to determine 

what is actually being expressed in the input.  When a GLR parser encounters a conflict 

due to the ambiguous grammar, it splits the job and continues along both possible parse 

paths in parallel.  The added complexity to resolve these conflicts can make the parser 

slow.   Unless all possible conflicts are known beforehand and resolved appropriately, 

unexpected errors can be common in GLR parser [23].  GLR parsers can, however, 

support a much larger variety of grammars.   

The grammar for the description language is not ambiguous enough that a GLR parser is 

needed;  a LALR(1) parser will correctly handle the language.  By default PLY will 

attempt to build a LALR(1) parser unless specified otherwise, so no special action is 
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needed. 

The grammar productions used for the first version of the parser can be found in Figure 

25.  As stated earlier in this chapter, four reserved words were added to the language 

during the course of this work.  The little_endian and big_endian keywords were added 

to denote the endianess of the file.  Specifying the endianess is optional, but must be the 

first field of the description if included.  If no endianess is specified, the binary parser 

will assume the file is little endian.  The main keyword was added to denote which struct 

should be interpreted as the start of the binary structure.  There must be one and only one 

main struct and it must be the first struct defined in a description.  The struct keyword 

was added to further differentiate the struct and declaration productions of struct. 

 

description  ->  endianess main_struct struct_list 
 
endianess             ->          LITTLE_ENDIAN 
                                          BIG_ENDIAN 
                                          empty 
 
main_struct  ->  MAIN struct 
 
struct_list   -> struct_list struct 
   struct 
 
struct   -> STRUCT ID := { decl_list  } 
 
decl_list                -> decl_list decl 
   decl 
 
decl  -> ID := type ; 
   ID := { extendedDecl } 
 
extendedDecl -> type ; extendedOP_list 
 
extendedOp_list -> extendendOp_list extendedOp ; 
   extendedOp ; 
 
extendedOp  -> DESCRIPTION := STRING 
   NAME := STRING 
   PERMISSIBLE := STRING 
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   COMMON := STRING 
 
type  -> UINT1 
   UINT2 
   UINT4 
   UINT8 
   SINT1 
   SINT2 
   SINT4 
   SINT8 
   CHAR1 
   CHAR2 
   BOOLEAN 
   ID 
   list 
   charfield 
   bitfield 
   conditional 
 
list  -> type [ number ] 
   type [ reference ] 
 
charfield  -> CHARFIELD ( CHAR1 , number , STRING ) 
   CHARFIELD ( CHAR2 , number , STRING ) 
   CHARFIELD ( CHAR1 , number ) 
   CHARFIELD ( CHAR2 , number ) 
   CHARFIELD ( CHAR1 , ID , STRING ) 
   CHARFIELD ( CHAR2 , ID , STRING ) 
   CHARFIELD ( CHAR1 , ID ) 
   CHARFIELD ( CHAR2 , ID ) 
   CHAR1 [ number ] 
   CHAR2 [ number ] 
 
bitfield  -> BITFIELD [ number ] 
   BITFIELD [ bit_list ] 
bit_list  -> bit_list bit_def 
   bit_def 
 
bit_def  -> ID , STRING 
 
conditional -> CASE ( reference ) { case_list } 
 
case_list                -> case_list case 
   case 
 
case  -> case_value : type ; 
   ELSE : type ; 
 
case_value -> number 
   STRING 
 
number  -> BIN_NUMBER 
   OCT_NUMBER 
   DEC_NUMBER 
   HEX_NUMBER 
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reference -> ID . reference 
   ID 
Figure 25 File description language grammar 

There are six shift/reduce conflicts in the above grammar.  A shift/reduce conflict is 

caused when PLY has the option to either reduce the current stack of input tokens or to 

continue by shifting the next input token onto the parsing stack.  The conflicts in this 

grammar come from the recursion in the reference, case_list, bit_list, extOp_list, 

decl_list, and struct_list productions. 

By default, PLY will resolve shift/reduce conflicts by shifting the next token [25].  This 

solution will correctly resolve the conflicts in this grammar and no special actions or 

precautions are required. 

Before development began, a few caveats to the language were introduced.  Firstly, 

structs are to be treated with a global scope.  This allows for easy referencing of 

declarations between structs, but does limit the user by forcing all structs to have unique 

names.  Declarations defined within the same struct must to be named uniquely as well. 

The second caveat pertains to declaration referencing.  Declarations are treated in a top-

down manner during parsing.  This limitation restricts references to only the declarations 

that have been declared earlier in the file description. The following example would not 

be a valid description because of this caveat: 

main struct file := { 
  x := uint1[y]; 
  y := uint1; 
} 
 

4.3.2 Representing the Binary Structure 

Using Python or other languages with support for object oriented-programming provides 
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a useful feature when constructing a parser.  As the YACC module of PLY uses the earlier 

defined lexical analyzer to tokenize the input and parse the language based on the 

grammar, the parser can construct a tree of node objects to represent the structures being 

defined. 

The following node classes were defined for the construction of this syntax tree: 

 StructNode 

 DeclareNode 

 TypeNode 

 CharfieldNode 

 BitfieldNode 

 ListNode 

 BasicTypeNode 

 ConditionalNode 

Figure 26 contains the definition of the StructNode.  Instance of this node type contains 

two attributes: a name, and a list of DeclareNodes.  The list is initialized empty in the 

node's constructor and as the parser parses the struct's declarations they are appended.  

During instantiation, each struct node adds itself to the symbol table.  The symbol table is 

a global dictionary used to store each defined struct using its name as the key.  The 

symbol table is used again after the entire description has been read to update any pointer 

references to the correct structNode. 

class StructNode(Node): 
     
    def __init__(self, name): 
        self.name = name 
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        self.declarations = [] 
         
         
        SymbolTable[name] = self 

Figure 26 StructNode definition 

The definition for a DeclareNode is shown in Figure 27.  A DeclareNode is constructed 

for each declaration read by the parser.  These nodes contain 6 attributes: name, 

longname, description, permissible, common, and type.  The name attribute is the 

identifier associated with the declaration. Longname and description store the string for 

the name and description options if present in the declaration.  Likewise, the permissible 

and common attributes holds the list of values if they are provided in the declaration. The 

final attribute of the node, type, hold a pointer to an instance of a TypeNode. 

class DeclareNode(Node): 
    def __init__(self, name, t): 
        self.name = name 
        self.longname = "" 
        self.description = "" 
        self.permissible = [] 
        self.common = [] 
        self.type = TypeNode(t) 

Figure 27 DeclareNode definition 

The TypeNode definition can be found in Figure 28.  A TypeNode only contains one 

attribute: type.  The type attribute is a pointer to one of several different possibly node 

types.  The constructor for a TypeNode is sent one parameter by the parser; the parameter 

t  will either be a fully constructed CharfieldNode, BitfieldNode, ListNode, 

ConditionalNode, or a string.  First t is checked if it is among the list of basic type strings 

and, if so, a new BasicTypeNode is created. If t is not a basic type, it is checked if it is an 

instance of one of node objects and set appropriately. If none of these cases return true for 

t, then t must be a user defined struct.  However, there is the chance this struct has yet to 

be defined as the parser is reading the input. The TypeNode puts itself into the global 
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dictionary patchTable by using itself as the key and the struct name as the value.  After 

the entire file description has been read by the parser, this will be updated with a pointer 

to the appropriate node type; this will be discussed in further detail later in this chapter. 

 

class TypeNode(Node): 
    def __init__(self, t): 
        if t in basicTypes: 
            self.type = BasicTypeNode(t) 
        else: 
            if ( isinstance(t, ListNode) or  
                 isinstance(t, CharfieldNode) or 
                 isinstance(t, BitfieldNode) or 
                 isinstance(t, ConditionalNode) ): 
                self.type = t  
 
            else: 
                #a struct. Might not be defined yet. type will be reset after                 
                #full description is read. 
                self.type = t 
                patchTable[self] = t 

Figure 28 TypeNode definition 

Figure 29 shows the definition of the CharfieldNode class.  The CharfieldNode has 3 

attributes: type, size and termChar. The type attribute is a pointer to a BasicTypeNode 

and will always be either a char1 or char2.  The size of the CharfieldNode is set by the 

parser if the declaration of the charfield provided one.  The termChar attribute is likewise 

set by the parser if one is provided in the declaration. 

class CharfieldNode(Node): 
    def __init__(self, t): 
        self.type = BasicTypeNode(t) 
        self.size = 0 
        self.encoding = "" 
        self.termChar = "" 

Figure 29 CharfiledNode definiton 

The BitfieldNode class definition can be found in Figure 30.  The BitfieldNode is simple 

and only contains 2 attribute: size and bits. The size attribute is set by the parser as the 
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number of bits in the bitfield. The bits attribute is a strings used to store the names of the 

individual bits if included in the file description. 

class BitfieldNode(Node): 
    def __init__(self, size): 
        self.size = size 
        self.bits = [] 

Figure 30 Bitfield definition 

The definition for the BasicTypeNode can be found in Figure 31.  The BasicTypeNode 

contains one attribute: type. The type attribute is a string, which will always be equal to 

one of the basic types.  The BasicTypeNode also defines the function getSizeInBits(). 

This function returns size of the basic type in bits. 

class BasicTypeNode(Node): 
     
    def __init__(self, t): 
        self.type = t 
         
    def getSizeInBits(self): 
        if self.type in ["uint1", "sint1", "char1"]: 
            return 1 * 8 
        elif self.type in ["uint2","sint2","char2"]: 
            return 2 * 8 
        elif self.type in ["uint4", "sint4"]: 
            return 4 * 8 
        elif self.type in ["uint8", "sint8"]: 
            return 8 * 8 
        elif self.type == "bool": 
            return 1 
        else: 
            return 0 

Figure 31 BasicTypeNode definition 

The ConditionalNode definition can be found in Figure 32.  ConditionalNodes contain 

only one attribute: conditions. The conditions attribute is a dictionary, which is initialized 

empty, but is filled with the possible conditions as the parser continues.  The conditions 

are added to the dictionary by using the case value as the key and a TypeNode as the 

value.  
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class ConditionalNode(Node): 
    def __init__(self): 
        self.conditions = {} 

Figure 32 ConditionNode definition 

For example, if the following file description excerpt is being parsed, each case will be 

added to the conditions dictionary.  The key 1 will be added to the dictionary with the 

value of a new typeNode constructed with the value 'uint1'. Likewise, the keys 4 and 

'else' will be added with the new typeNodes constructed with the values 'uint4' and 'unit8' 

respectively. 

x := case(y) { 
    1: uint1; 
    4: uint4; 
    else: uint8; 
} 
 

4.3.3 Tables 

There are two global tables referenced throughout the parser.  The symbolTable and the 

patchTable.  Both are instances of the built-in dictionary Python data type.   

The symbolTable is used to store structNodes after they have been defined.  The struct's 

name is used as the key and the instance of the structNode is stored as the value.   

The patchTable is used to store typeNodes if they were defined referencing a user defined 

struct.  There is the chance the struct has not been parsed at the time of the typeNode's 

creation.  To address this issue, the typeNode is stored in the table as the key to ensure 

uniqueness and the referenced struct's name as the value.  After the parser has completed 

parsing all the input, the patchTable is iterated over. For each typeNode it contains the 

pointer to the referenced structNode is updated with the correct value found in the 

symbolTable. 



52 
 

 
 

4.3.4 Parser Implementation 

Using the grammar and the node structures discussed in the previous sections, a parser 

for the language was developed.  The full source code for the parser using the PLY library 

can be found in Appendix C. 

One of the original and most widely used tools for parser generation is YACC (Yet 

Another Compiler Compiler). YACC, and its more recent descendant BISON, contain a 

series of rule-action pairs.  A rule is a series of symbols, tokens, or other rules. 

Using PLY to assist in the creation of a parser is conceptually similar to writing a YACC 

or BISON definition.  A PLY program's rules are defined through functions.  Similarly to 

token definition in PLY's implementation of LEX, each grammar rule in the language 

needs to be defined through a function with the special prefix p_.  Each function's 

docstring must contain the appropriate context-free grammar rule [25]. The following 

example shows the definition of the main_struct rule: 

def p_main_struct(p): 
    'main_struct : MAIN struct' 

The docstring must contain the rule's name and the context-free grammar specification 

separated by a colon. The specification can contain any series of token types, literal 

symbols or other defined grammar rules.  The main_struct rule's docstring, 'main_struct 

: MAIN struct' specifies that a main_struct consists of the keyword token MAIN and a 

struct.  The grammar specification for a struct must be defined elsewhere in the PLY 

program. 

Each rule in PLY receives one parameter p. This parameter is a list of the values returned 

by each element of the rule.  The following example taken from the PLY documentation 
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demonstrates the mapping of the grammar symbols to p [25]: 

def p_expression_plus(p): 
    'expression : expression PLUS term' 
    #   ^            ^        ^    ^ 
    #  p[0]         p[1]     p[2] p[3] 
 
    p[0] = p[1] + p[3] 

If the element is a token type, the value of the grammar element will be same as the 

t.value set by the tokenizer.  For other non-terminal grammar elements, the value will be 

determined by the value placed in p[0] of the subsequent grammar rules.  In the 

main_struct rule, for example, p[1] will contain the value 'MAIN' and p[2] will contain 

the return value of the struct rule defined later in the PLY program. 

The body of a grammar rule function can contain any Python code the user would like.  

Typically, the body will contain instructions to perform any necessary syntax or semantic 

checking and to construct new node instances to be added to the syntax tree the parser is 

building. 

As the parser is executing, each grammar rule associated with a node type is responsible 

for collecting the necessary information and constructing a new instance of the node.  

Each grammar rule returns the new instance of the node by setting the value of p[0]. 

The following excerpt shows how the struct grammar rule constructs and returns a new 

structNode instance. 

def p_struct(p): 
    'struct : STRUCT ID ASSIGN LBRACE decl_list RBRACE' 
    global currentDeclareList 
    p[0] = StructNode(p[2]) 
    p[0].declarations = currentDeclareList 
    currentDeclareList = [] 

The method creates a new struct node in p[0] by providing the value of the ID token to 
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the constructor.  The new structNode's declarations list is set to the current value of the 

global variable currentDeclareList.  Like YACC, PLY uses the bottom-up parsing method 

[25], meaning that the decl_list non-terminal will have already been parsed by the time of 

this rule's execution.  The currentDeclareList is used by the decl_list production to store 

pointers to each of the declareNodes created while parsing the current struct.  Finally the 

function creates a new currentDeclareList for the next struct to be parsed. 

As the following code shows, the currentDeclareList is used in the decl_list grammar rule 

to store the list of declarations of the struct currently being parsed: 

def p_decl_list(p): 
    '''decl_list : decl_list decl 
                |  decl  ''' 
    if len(p) == 3: 
        currentDeclareList.append(p[2]) 
    else: 
        currentDeclareList.append(p[1]) 

As mentioned in the previous section, if a declaration's type is a struct, there is the chance 

the struct has not been defined in the input at parse time.  To address this issue, all type 

nodes with a struct type are placed into a dictionary called patchTable when the typeNode 

is created.  The nodes use themselves as the dictionary key to ensure uniqueness and set 

the value to the name of the struct the type node should point to. 

After the entire input has been read, the treePatch function is called to update any type 

nodes that are missing a pointer because the type was a structNode that may not have 

been defined at the time of its declaration.  The function can be seen below: 

def treePatch(): 
    for node in patchTable.keys(): 
        node.type = SymbolTable[patchTable[node]] 

For each type node in the patchTable's keys, the node's type field is updated with a 
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pointer to the correct struct by looking it up in the symbol table using the struct's name 

stored in the patchTable. 

4.3.5 Example Syntax Tree 

This section illustrates the syntax tree produced by the parser by discussing a simple 

example.  Figure 33 shows a description of a simple binary file type.  Figure 34 shows a 

graphical representation of the resulting syntax tree after the parser has completed parsing 

the file description.  The file and footer structNodes each contain a list of pointers for all 

of their respective declareNodes. The ConditionalNode contains a pointer to a typeNode 

for each possible case value defined in the description. 

main struct file := {  
 v1 := sint4; 
 x := uint8[2]; 
 y := footer; 
 cfield := charfield( char1, 12); 
 c1 := case(y.f1) { 
  1: uint1; 
  2: uint2; 
  3: uint4; 
  else: uint8; 
 }; 
} 
 
struct footer := { 
 f1 := uint1; 
 f2 := uint2; 
} 
Figure 33 Simple file description used to demonstrate the syntax tree 
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Figure 34 Syntax tree of the simple file type 

4.4 Binary Parsing 

Once the parser has completed its full pass of the input, the tree that correctly represents 

the file type described will be completed. During the parsing phase enough data is 

collected and can be used to create each node and correctly structure the tree so that a 

binary file can accurately be parsed while traversing the tree. The BinaryParser class was 

implemented to accomplish this task.  This section discusses the implementation and 

function of the binary parser. 

The binary parser is defined as follows: 

class BinaryParser: 
    def __init__(self, root): 
        self.root = root 

The constructor method of the parser takes as its single parameter a pointer to the root 
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node of the earlier constructed tree. The binary parser class also defines the following 

functions: 

 def parse(self, filename): 
 

 def parseStruct(self, structNode): 
 
 def parseDeclaration(self, declNode): 
 
 def parseType(self, tNode): 
 
 def parseList(self, lNode): 
 
 def parseBasicType(self, btNode): 
 
 def parseCharfield(self, cfNode): 

 
 def parseBitfield(self, bfNode): 

 
 def parseConditional(self, cNode): 

The parse takes one parameter: the filename of the binary which is to be parsed. As the 

code excerpt below shows, the function is relatively simple.  It first opens the file as read-

only and in binary mode.  The function then starts the parsing traversal of the tree by 

passing the root node to the parseStruct function. 

def parse(self, filename): 
         
        self.binaryFile = open(filename, "rb") 
         
        self.parseStruct(self.root) 
 
 

The parseStruct function is passed an instance of a struct node as a parameter and enters 

a loop over the list of declaration nodes contained inside the struct node.  For each 

declaration node in the struct, a pointer to node is passed along to the parseDeclaration 

functions. The following code shows how this is done: 
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def parseStruct(self, sNode): 
        print(sNode.name + " :\n") 
         
        for decl in sNode.declarations: 
            self.parseDeclaration(decl) 
 
             

Each declaration node passed to the parseDeclaration function simply reports the 

declaration's name and continues the tree traversal by sending a pointer to the declaration 

node's type node to the parseType function. 

def parseDeclaration(self, dNode): 
        print(dNode.name) 
        self.parseType(dNode.type) 

 
 
The parseType function receives as a parameter a pointer to a typeNode.  The function 

performs checks to determine which type the node points to; it's type will either be a 

BasicTypeNode, StructNode, ListNode, CharfieldNode, BitfieldNode, or a 

ConditionalNode.  Depending on the outcome of these checks, the traversal of the tree 

continues by passing the pointer to the correct parsing function, as the following excerpt 

shows: 

def parseType(self, tNode): 
        if isinstance(tNode.type, BasicTypeNode): 
            self.parseBasicType(tNode.type) 
             
        elif isinstance(tNode.type, StructNode): 
            self.parseStruct(tNode.type) 
             
        elif isinstance(tNode.type, ListNode): 
            self.parseList(tNode.type) 
         
        elif isinstance(tNode.type, CharfieldNode): 
            self.parseCharfield(tNode.type) 
         
  elif isinstance(tNode.type, BitfieldNode): 
            self.parseBitfield(tNode.type) 
 
        elif isinstance(tNode.type, ConditionalNode): 
            self.parseConditional(tNode.type) 
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The parseList function is passed as a parameter an instance of a ListNode.  The function 

enters a loop that will execute lnode.length times.  Each pass of the loop will perform 

similar checks as the parseType function to determine which parsing function to call to 

continue parsing the binary. 

def parseList(self, lNode): 
        string = "" 
        for i in range(lNode.length): 
            string += "\n[" + str(i) + "] :\t" 
 
            if isinstance(lNode.type, BasicTypeNode): 
                string += self.parseBasicType(lNode.type) 
             
            elif isinstance(lNode.type, StructNode): 
                string += self.parseStruct(lNode.type) 
                 
            elif isinstance(lNode.type, CharfieldNode): 
                string += self.parseCharfield(lNode.type) 
 
            elif isinstance(lNode.type, BitfieldNode): 
                string += self.parseBitfield(lNode.type) 
 
            elif isinstance(lNode.type, ConditionalNode): 
                string += self.parseConditional(lNode.type) 

ConditionalNodes are parsed by the parseConditional function.  To parse a conditional 

node, the value read into the declaration being referenced must first be looked up.  The 

conditionalNode's reference attribute is a list of declaration names as strings.  These 

strings are used as keys into the globalDecTable to look up the value parsed from the 

binary.  The value is then checked to see if it is a member of the node's list of conditions.  

If so, parsing continues by passing the typeNode associated with the case value to the 

parseType function.  If the value is not found in the conditions list and no else case was 

defined, an error is reported to the user.  

def parseConditional(self, cNode): 
        #get value stored 
        value = self.globalDecTable 
        for ref in cNode.reference: 
            value = value[ref]; 
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        #check if value is in conditions list 
        if value in cNode.conditions: 
            self.parseType(cNode.conditions[value]) 
        elif 'else' in cNode.conditions: 
            self.parseType(cNode.conditions['else']) 
        else: 
            print("error: case not found.") 

As the tree is traversed by these parsing methods, eventually the tree will reach one of the 

three types of leaf nodes: BasicTypeNode, CharfieldNode, and BitFieldNode.  These 

three parsing methods are the only functions which actually perform any reading of the 

binary file. 

Reading values of more than one byte introduces the issue of endianness.  As stated 

earlier, the keywords litte_endian and big_endian were added to the file description 

language to denote the file's endianness.  When reading values greater than one byte the 

parser will interpret the bytes according to the stated endianness, or if no endianness was 

provided, little endian is assumed. 

def parseBasicType(self, btNode): 
        print(btNode.type) 
        value = self.binaryFile.read(int(btNode.getSizeInBits() / 8)) 
         
      if btNode.type in ["uint1","uint2","uint4","uint8", 

                         "sint1","sint2","sint4","sint8"]: 

          if   btNode.type == "uint1": 
                if self.BigEndian:  
                    value = struct.unpack('>B', value)[0] 
                else: 
                    value = struct.unpack('<B', value)[0] 
                     
          elif btNode.type == "sint1": 
                if self.BigEndian:  

                           value = struct.unpack('>b', value)[0] 
                       else: 

                    value = struct.unpack('<b', value)[0] 

As seen in the partial excerpt of the parseBasicType function above, the program 
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performs a read operation on the binary file and reads one, two, four, or eight bytes from 

the binary file depending on the size of the type being parsed.  As discussed earlier, the 

BasicTypeNode defines a function named getSize() that returns the size of the type in 

bits.  The read operation in Python, however, operates on the byte level, thus the size is 

divided by eight before being sent as a parameter to the read function.   

This introduces a problem when attempting to read boolean values, which are only one 

bit in size.  At this time, the binaryParser class does not support the reading of single bits 

of data.  Python is not alone in operating on the byte level; very few programs are capable 

of operating at the bit level of granularity when reading binary data. Furthermore, it is 

rare for a file type to contain single boolean values in its specification; boolean flags are 

typically grouped together and expressed on the byte level even if the extra bits are 

unused.  Therefore, it is usually best to express these flags using bitfields in the file 

description language. 

After the value has been read, it is unpacked using the struct module.  The struct module 

is a part of the Python standard library and is used to unpack bytes read from a file 

according to a specified endianness and interprets them as a specified Python type.  The 

struct module is used by the parser to unpack the values to either Python integers or 

strings.  The value read in is printed to the console before the function returns. 

The parseCharfield function performs a series of read operations on the binary file.  It 

performs either cfNode.size reads if the charfield was specified with a length, or it 

continues to read and interpret the data as characters until it reads in the terminating 

character defined in the Charfield declaration.  The following excerpt demonstrates how 

the string is read, unpacked, and decoded. 



62 
 

 
 

 

def parseCharfield(self, cfNode): 
        string = "" 
        if cfNode.size >= 0: 
            for i in range(cfNode.size): 

                if cfNode.type.type == "char1": 
                    if cfNode.encoding != "": 
                        string += value.decode(cfNode.encoding) 
                    else: 
                        string += value.decode('utf-8') 
                else: 
                    if self.BigEndian: 
                        value = struct.unpack('>H', value)[0] 
                    else: 
                        value = struct.unpack('<H', value)[0] 

                    string += "\\u" + str(hex(value))[2:] 
 

The final parsing method is the parseBitfield function.  This function is passed a 

BitfieldNode as a parameter and performs a read operation on the binary file.  The 

function reads in the size of the bitfield in bytes and prints the value of the bits in 

hexadecimal format. 

def parseBitfield(self, bfNode): 
        value = self.binaryFile.read(int(bfNode.size / 8)) 
        print( str(binascii.hexlify(value))) 



 
 

5 Results 

The previous chapter presented the design and implementation of the BAT's lexical 

analyzer, parser, and binary parser components.  This chapter presents two of the test 

cases created to test and verify accuracy of the parsing tool. 

5.1 Test cases 

During development, several files were created for testing and debugging purposes.  

These test files were designed to test each feature of the language supported by the BAT.  

Although meaningless in the data it contains, the structure of the file and the associated 

description provided a broad test of the supported features of the description language. 

The full description of the new file type can be found in Figure 35. 

LITTLE_ENDIAN; 
main struct file:= { 
   magic_number := { 
      uint4; 
      description := "must start every file."; 
      permissible := 0x1a2b3c4d; 
   } 
    
   _header := HEADER; 
   _body   := BODY; 
} 
 
struct HEADER := { 
   v1 := uint1; 
   v2 := uint2; 
   v3 := uint4; 
   v4 := uint8; 
    
   v5 := sint1; 
   v6 := sint2; 
   v7 := sint4; 
   v8 := sint8; 
    
   v9 := char1; 
   v10 := char2[2]; 
} 
 
struct BODY := { 
   cf:= char1[_header.v3]; 
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   _ext := case(_header.v1) { 
      0: uint8; 
      1: EXT; 
      else: char1[10]; 
   }; 
} 
 
struct EXT := { 
   bfield1 := bitfield[0x8]; 
   bfield2 := bitfield(8, bit0, "a bit", 
                          bit1, "another bit", 
                          bit2, "a third bit", 
                          bit3, "the last bit", 
      bit4, "padding", 
      bit5, "padding", 
      bit6, "padding", 
      bit7, "padding",); 
   cfield := charfield(char1, 5, "ascii"); 
} 
Figure 35 Test file description 

Test files that fit the above description were created to test the BAT. One of the test files 

is shown in Figure 36. 

 
Figure 36 binary test file 

Figure 37 shows the output from the BAT tool using the test file description and binary 

file. As the figure shows, the BAT accurately parses out each field and presents them to 

the user.  The BAT's output displays character and charfields as the literal character or 

string read from the file; integer type fields are displayed with their decimal, 

hexadecimal, and binary representations.  Bitfields are represented in hexadecimal 

format. 
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Figure 37 BAT output from test file description. 
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The custom file type discussed above tested a wide array of the features supported by the 

parser, but ultimately it is a meaningless data structure.  Further tests were conducted on 

real world data structures.  The following example using FAT32 directory entries 

provides a more realistic illustration of the capabilities of the BAT.   

FAT32 directory entries are 32 byte data structures used to store the short name, 

timestamps, starting cluster number, and other meta-data stored by the file system for a 

file.  Table 2 shows the official specification of a FAT32 directory entry provided by 

Microsoft [28]. 

Name Offset(byte) Size(bytes) Description 
DIR_Name 0 11 Short name. 
DIR_Attr 11 1 File attributes: 

ATTR_READ_ONLY    0x01 
ATTR_HIDDEN  0x02 
ATTR_SYSTEM  0x04 
ATTR_VOLUME_ID  0x08 
ATTR_DIRECTORY 0x10 
ATTR_ARCHIVE   0x20 
ATTR_LONG_NAME  ATTR_READ_ONLY 
| ATTR_HIDDEN | ATTR_SYSTEM | 
ATTR_VOLUME_ID 
The upper two bits of the 
attribute byte are reserved 
and should always be set to 0 
when a file is created and 
never modified or looked at 
after that. 

DIR_NTRes 12 1 Reserved for use by Windows 
NT. Set value to 0 when a 
file is created and never 
modify or look at it after 
that. 

DIR_CrtTimeTenth 13 1 Millisecond stamp at file 
creation time. This field 
actually contains a count of 
tenths of a second. The 
granularity of the seconds 
part of DIR_CrtTime is 2 
seconds so this field is a 
count of tenths of a second 
and its valid value range is 
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0-199 inclusive. 
DIR_CrtTime 14 2 Time file was created. 
DIR_CrtDate 16 2 Date file was created. 
DIR_LstAccDate 18 2 Last access date. Note that 

there is no last access time, 
only a date. This is the date 
of last read or write. In the 
case of a write, this should 
be set to the same date as 
DIR_WrtDate. 

DIR_FstClusHI 20 2 High  word  of  this  entry’s  
first cluster number (always 
0 for a FAT12 or FAT16 
volume). 

DIR_WrtTime 22 2 Time of last write. Note that 
file creation is considered a 
write. 

DIR_WrtDate 24 2 Date of last write. Note that 
file creation is considered a 
write. 

DIR_FstClusLO 26 2 Low  word  of  this  entry’s  
first cluster number. 

DIR_FileSize 28 4 32-bit DWORD holding this 
file’s  size  in  bytes. 

Table 2 FAT32 directory entry specification [28]. 

 

Using the specification provided by Microsoft, a description of a directory entry can be 

written using the file description language. Figure 38 shows a description of a file 

containing a list of ten FAT32 directory entries.   

Main struct dirList := { 
 directories := directoryEntry[10]; 
} 
 
struct directoryEntry := { 
 filename  := char1[8]; 
 extension  := char1[3]; 
  
 attributes  := bitfield(8, 
                                   READ_ONLY, "File is read only.", 
                                   HIDDEN, "File is hidden.", 
                                   SYSTEM, "", 
                                   VOLUME_ID, "" 
                                   DIRECTORY, "Entry is a directory.", 
                                   ARCHIVE, "Entry is an archive.", 
                                   RES1, "Reserved, should be 0.", 
                                   RES2, "reserved, should be 0."); 
 reserved  := uint1; 
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 creationTimeMs  := uint1; 
 creationTime  := uint2; 
 creationDate  := uint2; 
 accesssDate := uint2; 
 
 StartingClusterHighWord := { 
  uint2; 
  name := "High word of the entry's starting cluster"; 
 } 
 
 writeTime := uint2; 
 writeDate := uint2; 
  
 StartingClusterLowWord := { 
               uint2; 
               name := "Low word of the entry's starting cluster"; 
 
 filesize := uint4; 
} 
Figure 38 Description of a list of FAT32 directory entries 

 

The FAT specification indicates that the date and timestamps are all stored in 16 bit words 

using the MS-DOS format.  Currently, neither the file description language nor the BAT 

have a method of specifying the format timestamps are stored. A uint2 is used to specify 

the time and date stamps.  Until the interpretation of timestamps is supported by future 

versions of the parser, it will be the duty of the examiner to interpret the values stored in 

these fields. 

A binary file matching the description shown in Figure 38 was created. Figure 39 shows 

the contents of the binary file. 
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Figure 39 Binary content of FAT32 directory entry list file. 

The BAT was executed using the above description and binary file.  Figure 40 shows an 

excerpt of the BAT's output. 
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Figure 40 BAT output  from parsing FAT32 directory entries 



 
 

6 Conclusion 

The current state of file carving and data extraction research is largely focused on the 

recovery of files from hard drive images, memory dumps, or other sources of data.  

Research on data extraction from files to assist in the analysis of recovered files has been 

limited.  The small number of currently available tools that can be used display binary 

file contents in a readable form, all have their limitations and drawbacks.   The tools can 

be overly complex and require a substantial learning curve.  They can be too simplistic 

and lack the ability to support complex file structures. This thesis identified a gap in the 

research and attempted to offer a tool to fill this gap. 

6.1 Accomplishments 

The BAT developed through this thesis offers a unique approach to data extraction by 

parsing and interpreting a binary file based on a textual description of the file type.  Both 

time and effort are wasted when an examiner is required to develop custom programs to 

extract data from files.  Not only is the examiner tasked with first gaining a deep 

understanding of the file type to be parsed, but then also with writing, debugging, and 

testing custom code to perform the data extraction.  The BAT developed through this 

thesis removes this work load from the examiner. 

The results from the initial version of the BAT demonstrate its effectiveness.  The tool is 

easy to use and accurate at interpreting binary data.  It only requires the user to provide a 

valid description of the binary to be parsed.  The file description language offers an 

effective means of describing a binary format; it is easy to read, write, and understand 

due to the relatively small learning curve.  The ease of use and effectiveness of this 

method of data extraction make this a worthwhile contribution to field of digital 
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forensics.  The BAT can be used to display a binary file effectively and accurately and 

assist the examiner in the analysis of the data contained within. 

6.2 Limitations of This Work 

The BAT developed during this thesis does have limitations.  The parser does not support 

every feature of the file description language.  By not supporting global and local 

pointers, lists of unknown size, and virtual fields, the parser is unable to parse and 

interpret more complex binary file types.   

The current version of the parser also does not support the parsing of single boolean 

values.  The occurrence of single boolean values within a binary file is low;  boolean 

flags are usually found in groups and padded to the nearest byte.  However, there is the 

chance that single boolean values could occur and the current parser will not be able to 

parse and interpret these binary files.  It is the hope that future versions of the parser will 

support this feature. 

Another limitation of the tool is the lack of code generation.  The current version of the 

parser must read the file description and rebuild the syntax tree during every execution to 

parse a binary file. 

6.3 Future Work 

The results observed during this thesis are promising  and the BAT has many possibilities 

for future work and extensibility.  The most obvious choice for future work on the parser 

includes implementing the language features left unsupported by this initial research.  

Adding support for these extra language features would allow the parser to support the 

parsing of a larger variety of file types. 
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Another obvious topic for future work would be the creation of a file description 

repository.  Hosting a repository of descriptions for common file type and data structures 

would provide a useful resource for examiners.  This repository should also allow for 

user submissions, to provide an easy means of sharing descriptions among the digital 

forensics community. 

Offering code generation instead of parsing the binary by traversing the syntax tree is 

also a topic for future work.  Adding this feature would improve runtime speed by 

providing a separate program to perform the parsing of the binary file.  The file 

description would only need to be read and parsed once instead of at the beginning of 

every execution and code would be generated from the resulting tree. 

Improvements to the BAT's output and reporting functionality could also be made.  The 

current version of the parser reports the values interpreted from the binary file by printing 

to standard out.  For large files, this method can become quickly overwhelming for the 

user.  Reports could be improved upon by generating an xml or database like structure 

which can allow for easier querying of individual fields or groups of fields that are of 

interests. 

As discussed in the results from FAT32 directory entry test case, the file description 

language and the BAT have no means of interpreting timestamps.  Timestamps can be 

common attributes, especially if parsing file system data structures.  Future advancements 

could include adding features to the description language to denote the style and format 

of timestamps and implementing features in the BAT to handle timestamps and present 

them in a human readable format for easier analysis and interpretation.  
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Appendix A – Lexical Analyzer token list 

TOKEN Symbol or Regular Expression 
t_PLUS + 

t_MINUS - 

t_ASTERISK * 

t_FWDSLASH / 

t_PERCENT % 

t_PIPE | 

t_ASSIGN := 

t_COLON : 

t_SEMI ; 

t_COMMA , 

t_DOT . 

t_LPARAN ( 

t_RPARAN ) 

t_LBRACKET [ 

t_RBRACKET ] 

t_LBRACE { 

t_RBRACE } 

t_BIN_NUMBER b[0-1]+ 

t_OCT_NUMBER [0][0-7]+ 

t_DEC_NUMBER [1-9][0-9]* 

t_HEX_NUMBER 0[xX][0-9a-fA-F]+ 

t_STRING \“[^\”]+\” 

t_COMMENT //.* 

t_ID [a-zA-Z_][a-zA-Z_0-9] 

t_MAIN Main 

t_BITFIELD Bitfield 

t_CHARFIELD Charfield 

t_GLOBALP Globalp 

t_LOCALP Localp 

t_CASE Case 

t_ELSE Else 

t_DESCRIPTION description 

t_NAME name 

t_PERMISSIBLE permissible 
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t_COMMON common 

t_UINT1 unit1 

t_UINT2 unit2 

t_UINT4 unit4 

t_UINT8 unit8 

t_SINT1 sint1 

t_SINT2 sint2 

t_SINT4 sint4 

t_SINT8 sint8 

t_CHAR1 char2 

t_CHAR2 char2 

t_BOOLEAN boolean 

Table 3 File description language token list with associated matching patterns 
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Appendix B – Lexical Analyzer Implementation 

import ply.lex as lex 
 
 
reserved = ( 
 'MAIN', 'BITFIELD', 'CHARFIELD', 'GLOBALP', 'LOCALP', 'CASE', 'ELSE', 
'DESCRIPTION', 
 'NAME', 'PERMISSIBLE', 'COMMON', 'UINT1', 'UINT2', 'UINT4', 'UINT8', 
'SINT1', 'SINT2', 
 'SINT4', 'SINT8', 'CHAR1', 'CHAR2', 'BOOLEAN', 'STRUCT' 
 ) 
tokens = reserved + ( 
 # Literals 
 'BIN_NUMBER', 'OCT_NUMBER', 'DEC_NUMBER', 'HEX_NUMBER', 'STRING', 
 # Operators 
 'PLUS', 'MINUS', 'ASTERISK', 'FWDSLASH', 'PERCENT', 
 'PIPE', 'ASSIGN', 'COLON', 'SEMI', 'COMMA', 'DOT', 
 
 # Delimeters ( ) [ ] { } 
 'LPARAN', 'RPARAN', 
 'LBRACKET', 'RBRACKET', 
 'LBRACE', 'RBRACE', 
 
 'ID', 'NEWLINE', 
 'COMMENT' 
 ) 
 
# Operators 
t_PLUS  = r'\+' 
t_MINUS = r'-' 
t_ASTERISK = r'\*' 
t_FWDSLASH = r'/' 
t_PERCENT = r'%' 
t_PIPE  = r'\|' 
 
t_ASSIGN = r':=' 
t_COLON = r':' 
t_SEMI  = r';' 
t_COMMA = r',' 
t_DOT  = r'\.' 
 
t_LPARAN = r'\(' 
t_RPARAN = r'\)' 
t_LBRACKET = r'\[' 
t_RBRACKET = r']' 
t_LBRACE = r'{' 
t_RBRACE = r'}' 
 
t_BIN_NUMBER = r'b[0-1]+' 
t_OCT_NUMBER = r'[0][0-7]+' 
t_HEX_NUMBER = r'0[xX][0-9a-fA-F]+' 
 
def t_DEC_NUMBER(t): 
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 r'[1-9][0-9]*' 
 t.value = int(t.value) 
 return t 
 
def t_STRING(t): 
    r'\"[^\"]+\"' 
    t.lexer.lineno += t.value.count("\n") 
    return t 
t_COMMENT = r'//.*' 
 
def t_ID(t): 
    r'[a-zA-Z_][a-zA-Z_0-9]*' 
    if t.value.upper() in reserved: 
        t.type = t.value.upper() 
    return t 
 
t_ignore = ' \t' 
 
def t_NEWLINE(t): 
    r'\n' 
    t.lexer.lineno += 1 
    #return t 
 
def t_error(t): 
    print("Illegal character %s" % repr(t.value[0])) 
    t.lexer.skip(1) 
 
lexer = lex.lex() 
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Appendix C - Parser Implementation 

import tokenizer 
from tokenizer import tokens 
import ply.yacc as yacc 
 
from Nodes.StructNode import * 
from Nodes.DeclareNode import * 
from Nodes.ListNode import * 
from Nodes.TypeNode import * 
from Nodes.CharfieldNode import * 
from Nodes.BitfieldNode import * 
from Nodes.ConditionalNode import * 
 
from SymbolTables.SymbolTables import * 
 
currentDeclareList = [] 
currentID = "" 
 
currentConditionals = {} 
 
def p_description(p): 
    'description : main_struct struct_list' 
    p[0] = p[1] 
    treePatch() 
     
def p_main_struct(p): 
    'main_struct : MAIN struct' 
    p[0] = p[2] 
 
def p_struct_list(p): 
    '''struct_list : struct_list struct 
                   | struct''' 
 
     
def p_struct(p): 
    'struct : STRUCT ID ASSIGN LBRACE decl_list RBRACE' 
    global currentDeclareList 
    p[0] = StructNode(p[2]) 
    p[0].declarations = currentDeclareList 
    currentDeclareList = [] 
     
def p_decl_list(p): 
    '''decl_list : decl_list decl 
                |  decl  ''' 
    global currentDeclareList 
    if len(p) == 3: 
        currentDeclareList.append(p[2]) 
    else: 
        currentDeclareList.append(p[1]) 
     
def p_decl(p): 
    '''decl : ID ASSIGN type SEMI 
            | ID ASSIGN LBRACE extDecl RBRACE''' 
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    if len(p) == 5: 
        p[0] = DeclareNode(p[1], p[3]) 
    else: 
        p[0] = DeclareNode(p[1], p[4]) 
     
def p_extDecl(p): 
    '''extDecl : type SEMI extOp_list 
    ''' 
    p[0] = p[1]     
     
def p_extOp_list(p): 
    '''extOp_list : extOp_list extOp SEMI 
                  | extOp SEMI''' 
     
def p_extOp(p): 
    '''extOp : DESCRIPTION ASSIGN STRING 
            |  NAME ASSIGN STRING 
            |  PERMISSIBLE ASSIGN STRING 
            |  COMMON ASSIGN STRING''' 
     
def p_type(p): 
    '''type :  UINT1 
             | UINT2 
             | UINT4 
             | UINT8 
             | SINT1 
             | SINT2 
             | SINT4 
             | SINT8 
             | CHAR1 
             | CHAR2  
             | BOOLEAN 
             | ID 
             | list 
             | charfield 
             | bitfield 
             | conditional''' 
    p[0] = p[1] 
     
def p_list(p): 
    '''list : type LBRACKET number RBRACKET 
            | type LBRACKET reference RBRACKET''' 
    if isinstance(p[3], int): 
        p[0] = ListNode(p[1], p[3]) 
    else: 
        p[0] = ListNode(p[1], p[3]) 
 
def p_charfield(p): 
    '''charfield : CHARFIELD LPARAN CHAR1 COMMA number COMMA STRING RPARAN 
                 | CHARFIELD LPARAN CHAR2 COMMA number COMMA STRING RPARAN 
                  
                 | CHARFIELD LPARAN CHAR1 COMMA number RPARAN 
                 | CHARFIELD LPARAN CHAR2 COMMA number RPARAN 
                  
                 | CHARFIELD LPARAN CHAR1 COMMA ID COMMA STRING RPARAN 
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                 | CHARFIELD LPARAN CHAR2 COMMA ID COMMA STRING RPARAN 
                  
                 | CHARFIELD LPARAN CHAR1 COMMA ID RPARAN 
                 | CHARFIELD LPARAN CHAR2 COMMA ID RPARAN 
                  
                 | CHAR1 LBRACKET number RBRACKET 
                 | CHAR1 LBRACKET reference RBRACKET 
                 | CHAR2 LBRACKET number RBRACKET 
                 | CHAR2 LBRACKET reference RBRACKET''' 
     
    if p[1].upper() == "CHARFIELD": 
        p[0] = CharfieldNode(p[3]) 
        if isinstance(p[5], int): 
            p[0].size = p[5] 
        else: 
            p[0].termChar = p[5] 
            p[0].size = -1  
    else: 
        p[0] = CharfieldNode(p[1]) 
        p[0].size = p[3] 
 
def p_bitfield(p): 
    ''' bitfield : BITFIELD LBRACKET number RBRACKET 
                 | BITFIELD LPARAN number COMMA bit_list RPARAN 
    ''' 
    p[0] = BitfieldNode(p[3]) 
     
def p_bit_list(p): 
    ''' bit_list : bit_list bit_def COMMA 
                 | bit_def COMMA 
                 | bit_def 
    ''' 
     
def p_bit_def(p): 
    ''' bit_def : ID COMMA STRING 
    ''' 
 
def p_conditional(p): 
    '''conditional : CASE LPARAN reference RPARAN LBRACE case_list RBRACE 
    ''' 
    global currentConditionals 
    p[0] = ConditionalNode() 
    p[0].reference = p[3] 
    p[0].conditions = currentConditionals 
    currentConditionals = {} 
 
def p_case_list(p): 
    '''case_list : case_list case 
                 | case 
                 | empty 
    ''' 
 
def p_case(p): 
    '''case : case_value COLON type SEMI 
            | ELSE COLON type SEMI 
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    ''' 
    global currentConditionals 
    currentConditionals[p[1]] = TypeNode(p[3]) 
 
def p_case_value(p): 
    '''case_value : number 
    ''' 
    p[0] = p[1] 
     
     
def p_number(p): 
    '''number : DEC_NUMBER 
              | BIN_NUMBER 
              | HEX_NUMBER 
              | OCT_NUMBER 
    ''' 
    p[0] = p[1] 
     
def p_reference(p): 
    '''reference : ID DOT reference 
                 | ID 
    ''' 
    if len(p) == 4: 
        p[0] = [] 
        p[0].append(p[1]) 
        p[0].extend(p[3]) 
    else: 
        p[0] = [p[1]] 
 
def p_error(p): 
    print("unexpected token: ", p) 
    exit() 
 
def p_empty(p): 
    'empty :' 
    pass 
 
def treePatch(): 
    for node in patchTable.keys(): 
        node.type = SymbolTable[patchTable[node]] 
         
     
fdp = yacc.yacc() 
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