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Abstract 

Cutaneous leishmaniasis (CL), a vector-borne infectious disease caused by protozoan 

parasites of the genus Leishmania, is one of the most important neglected infectious diseases 

worldwide. Currently, 10 million people in 82 (mostly developing) countries are infected. 

Those infected develop ulcerative skin lesions on exposed parts of the body, causing serious 

disability and permanent scarring. All mice are susceptible to infection with Leishmania major, 

however, the outcome of infection is different depending on the mouse strain. For example, 

resistant C57BL/6 mice develop lesions, which like in humans, ultimately heal. In contrast, 

lesions in susceptible BALB/c mice progressively worsen, ultimately resulting in mortality. 

Resistance or susceptibility to Leishmania parasites is largely dependent on whether the host’s 

CD4+ T cells develop into Th1 or Th2 effector cells, respectively. Resistant Th1 responses 

are typically driven by cytokines like interleukin (IL)-12 and interferon- which promotes 

healing and parasite clearance. In contrast, susceptible Th2 responses are marked by elevated 

IL-4 production which inactivates the mechanisms of effective parasite clearance and 

promotes disease progression through an ineffective, antibody-dominated humoral response. 

IL-3 is a cytokine which promotes hematopoiesis and has the ability to act on numerous cell 

lineages. In particular, IL-3 appears to have specialized functions in regards to the activation 

of basophils. For example, IL-3 has been shown to be indispensable for increases in basophil 

numbers in response to certain infections. Moreover, IL-3 has been shown to increase the 

functional ability of basophils as IL-3-stimulated basophils are shown to secrete higher levels 

of IL-4. IL-3 is primarily secreted by activated CD4+ effector T cells, the same cells which 

are so influential in determining resistance and susceptibility to CL. However, the role of 

IL-3 during the response to CL remains largely unknown. In the present study we show that  
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infected mice genetically deficient in IL-3 (IL-3 -/- mice) develop smaller lesions, have a 

lower parasite burdens, and express lower levels of B cells in draining lymph nodes as 

compared to infected IL-3 +/+ mice. These data suggest IL-3 promotes susceptibility to 

Leishmania infection and may play an important role in the development of a Th2 immune 

response characteristic of susceptible BALB/c mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ix 



 

 

Introduction 

Cutaneous Leishmaniasis 

Cutaneous Leishmaniasis (CL) is a vector-borne disease induced by multiple protozoan 

species of the genus Leishmania. Transmission of this disease to a susceptible individual leads 

to formation of ulcerated lesions in the dermis. Although lesions ultimately heal after a few 

months, they often lead to secondary bacterial infections and can leave permanent scarring 

and disfigurations. CL is a major threat to developing countries, although cases are reported 

virtually worldwide. Overall, incidents of CL are concentrated in certain areas with over 90% 

of all cases being reported in Afghanistan, Algeria, Iran, Iraq, Saudi Arabia, Syria, Brazil, and 

Peru (1). The United States Department of Defense has recently heightened their interest in 

this disease due to the deployment of U.S. troops into regions where leishmaniasis is 

endemic (2). Exposure to Leishmania parasites in these regions has caused the number of 

cases in the U.S. to increase to a level not seen since World War II (3). Currently, the Centers 

for Disease Control and Prevention (CDC) reports Leishmania infection has become endemic 

to 88 countries and causes 1.5 million new cases of CL each year. Although these numbers 

are staggering, a true approximation of how many people this disease affects is impossible to 

assess due to misdiagnosis, unreported cases, and insufficient communication with health 

officials.   

Leishmania major (L. major) is the causative agent of zoonotic CL. This protozoan parasite 

has a digenetic life cycle made up of two developmental stages (4). The first is an 

extracellular developmental stage located inside the sand fly vector where the parasite 

assumes a spindle, flagellated morphology called a promastigote (Fig. 1). The second 

developmental stage is intracellular and occurs primarily within host mammalian  
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Figure 1 Microscopic image of flagellated L. major promastigotes in culture (1000 x 

magnification).  
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macrophages where parasites take on a smaller, non-flagellated ovoid shape referred to as an 

amastigote (4, 6). The complete life cycle of Leishmania parasites is depicted in Figure 2.  

The first stage of the parasite’s life cycle begins when the sand fly ingests macrophages 

containing Leishmania amastigotes while feeding on a mammalian host. Once ingested, 

infected macrophages travel to the midgut of the vector where they lyse, releasing the 

amastigotes. Upon release, amastigotes transform to immature promastigotes termed 

procyclics, whose surface is coated with lipophosphoglycan (LPG) (7). On immature 

Leishmania promastigotes LPG molecules bind to insect gut epithelial cells (7) to provide 

stability and allow for parasite maturation. 

Leishmania parasites undergo development in the sand fly referred to as metacyclogenesis. 

This maturation results in modifications to the LPG molecules causing them to elongate and 

dissociate from gut epithelial cells rendering the parasites motile (7). Metacyclogenesis 

produces mature parasites called metacyclic promastigotes, which are infective to humans 

and other mammalian hosts (4). Infected sand flies inject these infective parasites into a new 

host while taking a blood meal, thus beginning the second developmental stage in mammals.  

Metacyclic promastigotes present within the mammalian hosts, quickly become engulfed 

by macrophages (8). Parasites lose their flagellum inside these cells and transform to 

amastigotes, the developmental stage in which they remain in the mammalian host (7). 

Macrophages provide a venue for parasitic division which is accomplished by binary fission 

(7). Replication ultimately lyses the host cell releasing amastigotes, which can infect other 

phagocytes. Parasites are transmitted back to the sand fly when cells harboring amastigotes 

are ingested from infected hosts during subsequent blood meals.  

Innate immune response to L. major 

Like other pathogens, L. major parasites are quickly confronted by effector  
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Figure 2 Life cycle of Leishmania spp. showing developmental stages in both the 

mammalian host and sand fly vector (8). 
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mechanisms of the innate immune system such as complement proteins. The complement 

system is comprised of numerous proteins that function to work against pathogens 

immediately following infection. Normally, there are two primary outcomes for pathogens 

which activate the complement system. First, complement can form a membrane attack 

complex (MAC) which perforates the membranes of invading pathogens causing them to 

degrade. Alternately, complement can opsonize pathogens allowing phagocytes expressing 

complement receptors to bind and engulf these pathogens. 

L. major metacyclic promastigotes, the infective stage for the mammalian host, are able to 

avoid the detrimental effects of MAC formation by the alterations which occur during 

metacyclogensis. In both non-infective promastigotes and metacyclic promastigotes, LPG 

molecules are the primary binding site for complement proteins (9). However, as metacyclic 

promastigote LPG molecules become elongated, they are able to prevent the complete 

formation of MACs. This was demonstrated by Puentes et al. who noted effective MACs 

formed on LPG molecules of non-infective promastigotes, whereas MACs could not form 

on LPG molecules of metacyclic promastigotes (10). This finding suggests the longer LPG 

molecules seen on metacyclic promastigotes may act as a physical barrier, inhibiting the 

formation of intact MACs. 

Another way L. major is able to avoid initial immune responses is through their ability to 

hide within cells such as macrophages, which are typically responsible for eliminating 

pathogens. Macrophage uptake of parasites is thought to occur in a number of different 

ways. For example, Russell et al. (1988) demonstrated phagocytosis of Leishmania parasites 

occurred through binding of complement receptor CR3 on macrophages directly to gp63, a 

major surface glycoprotein expressed on promastigotes (11). Additionally, macrophage 

uptake of Leishmania promastigotes has been shown to occur indirectly by complement 
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receptors CR1 and CR3 binding C3b and iC3b opsonized LPG molecules, respectively (9, 

12). Collectively, these studies suggest macrophage internalization of Leishmania 

promastigotes can happen in a number of different ways and could be dependent upon 

complement proteins. Once located intracellularly, L. major must use a number of 

specializations to survive in the hostile environment of macrophages. 

When promastigotes are engulfed, they become surrounded by the plasma membrane of 

macrophages forming a compartment called a phagosome. Lysosomes inside the host 

macrophage then fuse with phagosomes to form parasitophorous vacuoles (PVs), the site 

where promastigotes develop into amastigotes (13). Survival at this stage requires that 

parasites be able to withstand the harsh, protease rich environments of PVs that can reach 

pH values as low as 4.74 (14). It has been shown that parasites express a variety of molecules 

which aid their survival in this environment (15, 16). However, the adjustments made by 

amastigotes to avoid destruction in PVs are not fully understood and will require further 

investigation. Eliciting these mechanisms may reveal important targets for therapeutics in the 

fight against CL.   

Engulfment of Leishmania parasites induces cytokine and chemokine production by cells 

at the site of infection. Released cytokines and chemokines recruit other immune cells to the 

site of infection. As immune cells begin trafficking to the infection site, antigen presenting 

cells (APCs), such as skin dendritic cells (a.k.a. Langerhans cells), become infected and then 

proceed to the draining lymph nodes (LNs) of the host (17). Dendritic cells then initiate 

adaptive immune responses by presenting the parasites to T helper (Th) lymphocytes 

expressing T cell receptors (TCRs) specific for Leishmania antigens. These TCRs were found 

to primarily recognize a particular Leishmania-peptide sequence which was designated LACK 

(Leishmania homolog of the receptor for activated C Kinase) (18). Once Leishmania-specific 
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Th lymphocytes become primed, they differentiate into subpopulations of effector cells 

which initiate adaptive immune responses against the parasites.  

T helper 1/T helper 2 cell paradigm 

A pivotal point in the immune response is when CD4+ T helper cells differentiate into 

sub-populations such as T helper 1 (Th1) and T helper 2 (Th2) (Fig. 3). Naive CD4+ T cells 

become activated in lymphoid tissue by APCs expressing antigens in the context of a 

molecule known as the Major Histocompatibility Complex (MHC) Class II. APCs such as 

dendritic cells, located at the initial site of infection, take up pathogens and process their 

antigens by the endocytic pathway. This ultimately results in the expression of the pathogen’s 

antigenic peptides on the surface of APCs. During antigen processing, APCs make their way 

to secondary lymphoid tissues such as the draining LNs and spleen where they present 

pathogen derived antigenic peptides to naive CD4+ T cells. If CD4+ cells have TCRs specific 

for the particular antigen being presented, they will undergo clonal expansion and 

differentiation into effector cell subsets such as Th1 and Th2 cells. Th1 and Th2 cell 

differentiation is regulated by cytokines and each subset of cells has distinct effector 

mechanisms. 

Whether a naive T helper cell becomes a Th1 or Th2 cell primarily depends on the type 

of cytokines present in the cellular environment during the early stages of infection. If 

secondary lymphoid tissue is rich in cytokines like interleukin-12 (IL-12) and interferon-

IFN- ), T cells will predominately develop into Th1 cells (19). After differentiation, CD4+ 

Th1 cells can exit lymphoid tissue and activate CD8+ T cells, macrophages, and other 

phagocytic cells which are effective at eliminating intracellular invaders (20-22). For example, 

Th1 cells are able to activate macrophages causing them to boost production of nitric oxide 
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Figure 3 Schematic representation of naive CD4+ T helper cells differentiating into 
subpopulations in response to different cytokines (Figure modified from Mesquita etal. 
(23)). 
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and its derivatives which results in a hostile intracellular environment for pathogens (23).  

In contrast, naive CD4+ T cells in the presence of cytokines such as IL-4 and IL-10 

develop into Th2 cells (19). CD4+ Th2 cells primarily function to stimulate activated B cells 

to further differentiate into antibody (Ab) secreting plasma cells, thus leading to a humoral-

dominated immune response. Th2 polarized immunity has been shown to effectively combat 

extra cellular pathogens such as helminths (24) and is associated with promoting the 

pathology seen in asthma and other IgE-dependent allergic diseases (25).  

Th1 and Th2 lymphocytes in murine CL 

Th2 immunity produces responses which are primarily effective against extracellular 

pathogens while Th1 immunity is better equipped for eliminating intracellular pathogens. 

Because Leishmania parasites remain intracellular within the mammalian host, to clear this 

infection a host must mount an INF- and IL-12-driven Th1 response. There are well-

established mouse models used to study host immune responses against CL. The most 

popular of these models utilizes genetically susceptible BALB/c mice and resistant C57BL/6 

mice (26).  

In susceptible strains such as BALB/c, Leishmania infection induces Th2 type immunity 

resulting in elevated Ab levels, high IL-4, and low IFN-  expression (21) resulting in 

progressive disease and parasite visceralization which ultimately becomes lethal to BALB/c 

mice (27). In contrast, resistant C57BL/6 mice mount a Th1 polarized immune response to 

Leishmania infection that is characterized by modest Ab levels, high IFN- , and low IL-4 

expression (27). This type of immunity upregulates the production of reactive oxygen species 

by Leishmania-infected macrophages, which impedes parasite growth and results in disease 

clearance (28).  
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Direct evidence for the necessity of a Th1 response in clearing Leishamania infection has 

been shown by using purified Th1 and Th2 cells specific for Leishmania antigen (Ag) and 

transferring them into susceptible BALB/c mice prior to infection (29). These studies were 

able to show that L. major-infected mice which were passively immunized with L. major-

specific Th2 cells displayed accelerated lesion development compared to control mice. 

However, susceptible BALB/c mice were protected from infection following passive 

immunization with L. major-specific Th1 cells.  

Interleukin-3  

Interleukin-3 (IL-3) is a cytokine primarily secreted by CD4+ T cells which have become 

activated by antigens during infection (30). This cytokine is a 28-kDa glycoprotein comprised 

of 133 amino acids and has been implicated in the expansion of hematopoietic progenitor 

cells (31). This expansion leads to increased production of cells such as neutrophils, 

macrophages, eosinophils, erythrocytes, megakaryocytes, dendritic cells, mast cells and 

basophils (31). In addition to expanding the population of its target cells, IL-3 also appears 

capable of increasing the functional ability of these cells, which affects the levels of secretory 

product expressed by target cells.  

Once secreted, IL-3 binds to target cells expressing IL-3 receptors composed of two 

subunits. The first receptor component is an alpha subunit (IL-3R ) which is specific for 

IL-3. The second receptor component is referred to as the beta common (βc) subunit, which 

is shared by the receptors for IL-3, IL-5, and granulocyte macrophage-colony stimulating 

gactor (GM-CSF) (32). Both the  and βc subunits are required for IL-3 to optimally activate 

target cells (33). However, it is important to note that IL-3 can utilize an additional βc 

subunit called βcIL-3, which is not shared among IL-5 and GM-CSF receptors (34). 
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Therefore, in mice which are lacking a functional βc subunit, IL-3 can remain functional by 

binding IL-3R  and βcIL-3 subunits.    

The process of IL-3 activation begins when the cytokine associates with an IL-3-specific 

 subunit. This interaction produces a low affinity binding complex which is not sufficient 

for activating the signaling pathways which stimulate target cells. However, in the presence 

of the βc or βcIL-3 subunits, the affinity of IL-3 for the receptor increases causing the 

receptors to aggregate and transmit signals to internal regions of cells (35). Aggregated βc (or 

βcIL-3) subunits allow enzymes located in the cytoplasm of target cells to phosphorylate these 

receptors, a mechanism required for IL-3 signaling (36). 

Once neighboring βc subunits aggregate, they interact with tyrosine kinases known as 

Janus kinases (JAKs). Although there are a number of JAKs proteins which have been 

identified, JAK-2 appears to dominate in the activation of IL-3 receptors (37). Activity from 

JAK-2 results in the phosphorylation of multiple tyrosine residues, which converts them to 

binding sites for intracellular signaling proteins (38, 39). The most important intracellular 

signaling proteins for IL-3 activation of target cells are proteins called signal transducers and 

activators of transcription (STATs) (40). STATs dock to the phosphorylated tyrosine 

residues and transmit signals to the cell’s nucleus activating transcription of particular genes 

(33). Activating transcription pathways results in the stimulation of target cells and leads to 

proliferation and increased cellular function.   

IL-3 and Leishmania infection 

There have only been a limited number of studies suggesting that IL-3 functions during 

immune responses to Leishmania. Lelchuk et al. (1988) suggested a role for IL-3 in 

exacerbating CL following experiments which used spleen cells from genetically resistant and 
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susceptible mice strains (41). These researchers showed cells isolated from resistant 

C57BL/6 mice generated lower levels of IL-3 when exposed to Leishmania antigens 

compared to cells isolated from susceptible BALB/c mice. These studies suggest the 

presence of IL-3 may be at least partially responsible for susceptible mice strains mounting 

an ineffective immune response to Leishmania parasites.   

Other investigators evaluating IL-3 in CL include Feng et al. (1988) who experimentally 

infected footpads of susceptible BALB/c mice with L. major (42). After infection, 

investigators injected recombinant IL-3 into the mice and then assessed lesion sizes. They 

found that infected mice that were treated with IL-3 had larger lesions compared to mice 

treated with Phosphate Buffered Saline (PBS) as a control. These findings were supported by 

Saha et al. (1999) who also experimented with L. major infected mice (43). These investigators 

injected mice with Leishmania parasites and then treated them with neutralizing antibodies 

against murine IL-3. They found disease severity was markedly reduced in mice given anti-

IL-3 antibodies, which in accordance with the above studies, indicated IL-3 promotes 

susceptibility to Leishmania infection in BALB/c mice. Collectively, the results from these 

experiments suggest susceptibility to CL is influenced by IL-3. 

Basophils 

IL-3 production can influence the number and activational status of most hematopoietic 

cells, especially basophils. Basophils are granulocytes that compose a very small portion of 

peripheral white blood cell (WBC) populations during homeostasis, representing less than 

1% of circulating leukocytes (44). Due to meager levels of these cells, it has been difficult to 

study the functions of basophils in vivo. However, a number of recent studies have 

underscored the importance of basophils during the immune response. 
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Hematopoietic progenitors in bone marrow produce granulocytes such as basophils (5). 

In response to certain infections, basophils are recruited to the site of invasion and 

participate in inflammatory attacks on pathogens (45). Basophils express high levels of 

Fc RI, the receptor for Fc regions of IgE antibodies. Cross-linkage of antigen-specific IgE 

on the surface of basophils activates the cell causing degranulation and the release of 

preformed mediators such as histamine. Activation also causes basophils to produce a 

number of cytokines such as IL-4 (46).   

There has been a renewed interest in basophils and their role in immunity because of 

their ability to produce IL-4 (47, 48). Pioneers in basophil biology have recently determined 

that basophil derived IL-4 is especially important in Th2 differentiation. For example, Sokol 

et al. (2008) showed basophils exposed to protease allergens can travel to the draining lymph 

node and provide the initial signal to promote Th2 differentiation in vivo, likely through their 

production of IL-4 and other similarly acting cytokines (49). In fact, mounting evidence 

indicates basophils and their production of IL-4 are directly responsible for producing Th2 

responses (44, 46, 48, 50, 51).  

Recent studies indicate basophils can promote Th2 immune responses independent of 

IL-4 production alone. For example, investigators have demonstrated that basophils, rather 

than dendritic cells, can serve as APCs and provide the essential cytokines which drive Th2 

responses to the cysteine protease papain (49). Two additional studies have also suggested 

basophils can function as APCs (52, 53), which until recently, was an unknown function of 

this cell. 

The function of IgE cross-linked basophils can be increased by a variety of other stimuli 

including cytokines (54, 55), proteases (49), helminth products (56, 57), and possibly toll-like 

receptors ligands and complement proteins (58). However, the most powerful stimulus 
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which synergizes with activated basophils appears to be IL-3 (46), which has been shown to 

be indispensable for increased basophil functionality and proliferation during certain 

infections. For instance, Lantz et al. (1998) showed at physiological conditions basophil levels 

in IL-3 +/+ and IL-3 -/- mice were approximately equal indicating IL-3 is not required for 

producing baseline levels of basophils. However, IL-3 +/+ mice produce markedly higher 

levels of basophils in bone marrow and blood compared to IL-3 -/- mice following infection 

with the nematodes Stronglyoides venezuelensis and Nippostrongylus brasiliensis (24, 59). 

Importantly, these investigators also show basophil levels in nematode-infected IL-3 -/- 

mice were essentially the same as basophil levels seen in uninfected mice. These studies 

indicate that, although IL-3 is not required for producing baseline levels of basophils, it is 

essential for practically all increases in basophils in response to gastrointestinal nematodes.  

More recently, Lantz et al. (2008) showed that IL-3 stimulation induces activated 

basophils to upregulate their production of IL-4 (24). As stated above, IL-4 is the primary 

cytokine responsible for driving Th2 development, the susceptible response to CL. 

Nevertheless, it has not been determined if IL-3 stimulated-basophil-derived IL-4 is 

responsible for Th2 responses characteristic of L. major-infected susceptible BALB/c mice.   

Project goals 

A number of studies have reported that IL-3 production correlates with susceptibility of 

BALB/c mice to infection with L. major and that IL-3 can promote basophil expansion and 

enhance basophil cytokine production. However, the precise role of IL-3, and IL-4-

producing basophils, in CL has yet to be addressed. We propose to take advantage of 

exciting opportunities to analyze the role of IL-3 and basophils in a mouse model of CL. 

Specifically, we will use BALB/c IL-3-deficient (IL-3 -/-) mice and their wild type 

counterparts (IL-3 +/+ mice), to test two major but related hypotheses: 1) that endogenous 
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IL-3 significantly promotes the susceptibility of BALB/c mice to Leishmania major infection 

as reflected by measures of lesion size and parasite burden, and 2) that Leishmania major 

infection induces IL-3-dependent increases in basophils.  

The specific aims of this project are as follows: (start revision Rajeev here) 

Aim 1 - Assess the extent to which IL-3 influences the course and outcome of 

disease in Leishmania major-infected BALB/c mice. We used BALB/c IL-3 -/- 

and +/+ mice infected with different inocula of L. major to test the hypothesis that 

endogenous IL-3 contributes to the development of cutaneous lesions and the high 

parasite load characteristic of susceptible BALB/c mice.  

Aim 2 - Assess the extent to which basophils influence disease susceptibility in 

Leishmania major-infected BALB/c mice. We employed IL-3 +/+ mice to test the 

hypotheses: 1) that L. major induces increases in basophil numbers in bone marrow, and 

2) that L. major infection and associated IL-3 production induces basophil migration to 

the draining lymph nodes in IL-3 +/+ mice. 

 

 

 

 

 

 



 
 

 

Materials and Methods 

Mice 

The production of IL-3 -/- BALB/c mice, and many of the phenotypic characteristics of 

these mice, has been described in detail (60-62) and were graciously provided by Dr. Chris 

Lantz. Wild type BALB/c mice were purchased from Jackson laboratories and used as IL-3 

+/+ mice. For the present studies, mice were 8-12 weeks of age at the beginning of the 

experiment. For individual experiments, IL-3 +/+ and IL-3 -/- mice of the same sex and 

approximately the same age were used (n = 3 – 5) and experiments were repeated up to 

three times. The genotypes of randomly selected mice were verified by PCR essentially as 

previously described (61) (Appendix Fig. 14). Mice were housed in microisolater cages in the 

Department of Biology’s animal facility under a 12h light-dark cycle and were maintained 

and used in accordance with James Madison University’s Institutional Animal Care 

guidelines.   

Parasites and infection 

Leishmania major LmFV1, a virulent clonal derivative of the Friedlin line 

(MHOM/IL/80/Friedlin) was kindly provided by Dr. David Sacks (National Institutes of 

Health). L. major promastigotes were cultured in medium 199 containing Hank’s salts and L-

glutamine (M-199) (Sigma-Aldrich) with 0.1 mM adenine (in 50 mM HEPES), 100 U/mL 

Penicillin, 100 g/mL Streptomycin (Sigma), 5 g/mL hemin (in 50% (v/v) 

triethanolamine) (Fluka, Aldrich), and 20% heat inactivated fetal calf serum (FCS) at a pH of 

approximately 7.15 (cM-199).   

cM-199 facilitates the process of metacyclogenesis allowing parasites to develop from a 

dividing, noninfective stage to a nondividing, infective stage (Appendix Fig. 15). During the 
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initial days of culture (days 1-2), parasites grow at an exponential rate and are said to be in 

logarithmic phase until day 3-4 when growth starts to plateau. Once growth levels off, 

parasites cultures enter the stationary phase, which tends to yield a sufficient number of 

metacyclic promastigotes for infecting mice (Appendix Fig. 16).  

Infective stage metacyclic promastigotes of L. major were isolated from stationary 

cultures (4-6 day old) using negative selection with peanut agglutinin (Vector Laboratory 

Inc.) as previously described (63). 1.0 x 104- 2.5 x 104 infective stage parasites in 10 or 15 μL 

were then injected into the dermis of either the right or left ear of BALB/c mice (Appendix 

Fig. 17). The uninfected ear was used as a control and injected with an equal volume of 

sterile Phosphate Buffered Saline (PBS). Images of uninfected and L. major-infected ears are 

shown in Appendix Figure 18. All injections were given with 31 gauge hypodermic needles 

fitted on a 0.3 mL syringes. 

The course of L. major infection was monitored at weekly intervals by measuring the 

thickness of infected ears with a Mitutoyo digital micrometer. Lesion sizes were expressed as 

the change in thickness by measuring the infected ears and subtracting the thickness of the 

ear prior to infection (baseline). Photographs were also taken of representative mice from 

IL-3 +/+ and IL-3 -/- groups at different time points during infection. 

Parasite Quantification 

To determine parasite load in L. major infected mice, a serial dilution assay was 

performed in vitro essentially as previously described (63). Infected ear samples were collected 

at different time points post-infection and weighed. Using sterile forceps, infected ears were 

separated into ventral and dorsal sheets and placed into sterile 35mm petri dishes containing 

Dulbecco’s Modified Eagle Medium (DMEM), 100 U/mL penicillin, 100 µg/mL 

streptomycin, and 0.5 mg/mL Liberase TL (Roche). Infected ear sheets were digested at 
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37°C at 5% CO2 for approximately three hours. After incubation, ear sheets were removed 

and placed in a clean sterile 35 mm petri dish and cut into small pieces using a sterile scalpel. 

Ear tissues were then transferred to a microfuge tube containing 100 µL CM-199 and 

homogenized with a Teflon coated pestle. After homogenization, 0.9 mL of CM-199 was 

added and the homogenates were strained twice through a 70 µm cell strainer. A 125 µL 

sample of the resulting single cell suspension was added to one well of a 96-well plate 

containing 250 µL of cM-199, resulting in a 1:3 dilution. Serial dilutions (1:3) were then 

performed on the 96-well plate to extinction. Each dilution was then plated in duplicate in 

96-well plates containing slanted blood agar and incubated for 7 days at 26°C. After 

incubation, each dilution was monitored for parasite growth via an inverted microscope. The 

reciprocal of the largest dilution at which promastigotes could be detected in duplicate 

samples was then averaged and reported for each mouse.  

Parasitic load was also determined using quantitative, relative real-time PCR to detect 

different levels of L. major DNA in IL-3 +/+ and IL-3 -/- ears essentially as previously 

described (64). Briefly, infected and uninfected ears of IL-3 +/+ and IL-3 -/- mice were 

collected, snap frozen in liquid nitrogen, and the DNA extracted using GenElute 

Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich). Each sample of extracted DNA 

(10 ng) was subjected to real-time PCR in triplicate using Platinum SYBR Green qPCR 

SuperMix-UDG cocktail (invitrogen) essentially according to manufacturer’s protocol and a 

Bio-Rad CFX96 Real-Time PCR Detection System. Amplification of Leishmania-specific 

DNA was performed using the previously described primers, forward: 5-

CCTATTTTACACCAACCCCCAGT-3 (JW11); and reverse: 5-GGGTAGGGGCGTTC 

TGCGAAA-3 (JW12) (Intergrated DNA Technologies) (64, 65). DNA was initially 

denatured for a single cycle at 95°C. After the initial denaturation step, DNA was denatured 



22 
 

 

at 95°C for 5 sec followed by a combined annealing/extension step at 58°C for 5 sec. 

Denaturation and annealing/extension steps were repeated 39 times and fluorescence 

intensity was measured at the end of each cycle. Relative amounts of parasite DNA present 

in L. major- infected IL-3 +/+ and IL-3 -/- ears is reported as the threshold cycle (CT), at 

which there was a positive signal for parasite DNA over the background. Samples from 

uninfected IL-3 +/+ and IL-3 -/- mice ears were used as controls to ensure primers were 

specific for L. major DNA.  

Quantification of lymphocytes by flow cytometry 

LN cells were collected from L. major infected IL-3 +/+ and IL-3 -/- mice to identify 

CD4+ and B cell populations using an Accui C6 flow cytometer. All samples were treated 

with purified anti-mouse monoclonal antibody (mAb) CD16/CD32 (clone 2.4G2) (10 

g/mL) for 10 min to prevent antibody binding to Fc RII/III prior to staining cells. All 

staining and incubation steps were performed at 4 °C. To identify CD4+ cells, samples were 

stained with Fluorescein isothiocyanate (FITC) anti-mouse CD4 mAb (clone L3T4) 

(5 g/mL). To identify B cell populations, LN cells were stained with and Phycoerythrin 

(PE) anti-mouse CD45R mAb (clone B220) (4 g/mL). Prior to examining stained cells, 

lymphocytes were initially identified by their characteristic forward (FSC) and side scatter 

(SSC) properties. 

Quantification of basophils by flow cytometry 

LN and bone marrow samples were also evaluated via flow cytometry for the presence 

of basophils. Bone marrow-derived basophils were identified based on their expression of 

Fc RI by incubation with mouse IgE (30 min) followed by staining with FITC anti-mouse 

IgE mAb (clone R35-72) (10 g/mL). Because B cells also express low affinity IgE Fc 
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receptors (CD23), they were distinguished from basophils by staining with PE CD45R mAb 

(clone B220) (4 g/mL). To identify basophils in LN samples, cells were first treated with 

purified anti-mouse CD23 mAb (clone B3B4) to block low affinity Fc IgE receptors on B 

cells. Samples were then incubated with ascites IgE (30 min) prior to staining with FITC 

anti-mouse IgE mAb (clone R35-72) (10 g/mL) and PE anti-mouse CD49b mAb (clone 

DX5) (4 g/mL). All flow cytometric data was analyzed on the Accuri C6 using CFLOW 

Plus Software. 

Statistical analysis 

Values of p ≤ 0.05 were considered statistically significant as determined by an unpaired, 

two tailed Student’s t test unless otherwise noted.  

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Results 

IL-3 influences cutaneous lesion development in L. major-infected mice  

To evaluate the functions of IL-3 in CL, IL-3 +/+ and IL-3 -/- mice were infected with 

L. major to determine the ability of this cytokine to influence the size of developing lesions. 

The thickness of L. major-infected IL-3 +/+ and IL-3 -/- mice ears were measured weekly 

over a course of ten weeks. As expected, BALB/c IL-3 +/+ mice developed noticeable 

lesions which appeared approximately three weeks post-infection. By four weeks, IL-3 +/+ 

lesions were readily apparent and displayed visual inflammation accompanied by ulceration 

that persisted throughout the 10 week infection. Interestingly, IL-3 -/- mice developed 

lesions which were barely detectable at three weeks and inflammation was not noticeable 

until approximately six weeks post-infection. Overall, IL-3 +/+ mice developed significantly 

thicker ears compared to IL-3 -/- mice throughout the 10 week infection (Fig. 4). The 

degree of inflammation was also visually different in IL-3 +/+ and IL-3 -/- mice (Fig. 5).  

Lesion size has been shown to be dependent on dose of parasites used to infect mice 

(66-68). Therefore, infections were repeated with lower parasite inocula (1.5 x 104 or 1.0 x 

104) to determine if differences in lesions among IL-3 +/+ and IL-3 -/- mice could still be 

observed when infecting with fewer parasites. Comparison of lesion size between the two 

genotypes showed IL-3 +/+ mice infected with 1.5 x 104 metacyclic promastigotes displayed 

lesions which were thicker compared to similarly infected IL-3 -/- mice (Fig. 6A). Likewise, 

similar differences were seen in lesion thickness when mice were infected with 1.0 x 104 

parasites (Fig. 6B). Regardless of infectious dose, IL-3 +/+ mice lesions displayed an 

advanced level of ulceration and appeared to be more inflamed compared to IL-3 -/- mice at 

similar time points of infection. Similar to mice shown in Fig. 4, statistically significant 

differences in lesion size became apparent at three to four weeks post-infection. This
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Figure 4 Infected ear thickness from IL-3 +/+ and IL-3 -/- mice. Both BALB/c IL-3 
+/+ and IL-3 -/- mice were infected into the ear dermis with 2.0x104 metacyclic 
promastigotes in 15uL inoculums. Contralateral ears were injected with 15uL of sterile 
PBS. Thickness of infected ears were measured weekly for 10 weeks. Data represent the 
mean ± SEM (n = 4 mice/group). Statistical significance was determined by an unpaired, 
two tailed student’s t-test. P value was ≤ 0.05 at weeks 4 – 9. P value = 0.056 at 10 weeks. 
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Figure 5 L. major infected IL-3 +/+ (A) and IL-3 -/- (B) mice 6 weeks post-infection 
with 2.0x105 metacyclic promastigotes. 
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Figure 6 Lesion development in BALB/c IL-3 +/+ and IL-3 -/- mice infected with 1.5 

x 104 (A) or 1.0 x 104 (B) infective stage L. major metacyclic promastigotes.  L. major 

promastigotes were injected subcutaneously into the dermis of either the right or left ear.  

The contralateral ear was injected with equal amounts of sterile PBS. Data represent 

mean ± SEM (n = 4 or 5 mice/group). Statistical significance was determined at four 

weeks post-infection by an unpaired, two-tailed Student’s t-test. Asterisk (*) indicates a p 

value ≤ 0.05 versus corresponding values for mice of the other genotype. 
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suggests that irrespective of infectious dose, IL-3 influences the development of L. major-

induced cutaneous lesions.  

These data indicate IL-3 influences lesion size starting at three weeks post-infection and 

that these differences are maintained as long as 10 weeks post-infection. We next wanted to 

see if the effects of IL-3 were evident at greater than 10 weeks post-infection. For this 

experiment, mice were infected with 1.0x104 parasites. Fewer metacyclic promastigotes were 

used in this experiment because in BALB/c mice given higher doses, L. major becomes lethal 

through its ability to visceralize and infect other organs such as the spleen and liver (26).  

These studies found that differences seen in lesion sizes from four to 10 weeks post-

infection could also be detected in mice infected for four months (Fig. 7). In fact, lesions in 

IL-3 +/+ mice were on average twice the size of those observed in IL-3 -/- mice. Consistent 

with data from shorter-term experiments, IL-3 +/+ mice appeared to have more necrosis 

and inflammation at the site of infection. Collectively, these data suggests IL-3 can influence 

the degree of lesion development at both high and low parasite doses and continues to affect 

lesion inflammation in more chronically infected mice.  

Surprisingly, two of the four IL-3 -/- mice infected for four months appeared to clear 

the infection. These two mice had significant lesions at four weeks post-infection. However, 

by four months post-infection lesion size had essentially returned to baseline levels and very 

little inflammation could be detected visually (Fig. 8). The ability of some IL-3-/- mice to 

apparently clear their infection is an exciting finding because it may suggest in the absence of 

IL-3, mice possibly develop a more protective Th1-dominated immune response.  

IL-3 influences parasitic load L. major-infected mice 

Past research has shown lesion size in L. major-infected mice does not always correlate 

with numbers of parasites present in infected tissue. For example, some investigators have 
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Figure 7 Ear thickness of uninfected and L.major-infected BALB/c IL-3 +/+ and IL-3   

-/- mice. Measurements were taken four months post-infection with 1.0x104 metacyclic 

promastigotes in 10uL inoculums. Data represent mean ± SEM (n = 4 mice/group). 

Statistical significance was determined by an unpaired, two tailed Student’s t-test.   

Double asterisk (**) indicates a p value ≤ 0.01 compared to mice of the other genotype.  
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Figure 8 Image of IL-3 -/- mouse ear four months following infection with 1.0 x 104 

metacyclic promastigotes. Minimal inflammation was detectable in these infected ears 

which appeared visually similar to control uninfected ears (see Fig. 18). 
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reported increased lesion size is a function of increased parasite load (69). However, others 

have shown maximum parasite burden occurs prior to the time infected mice present 

greatest lesion size (70). Therefore, it was next determined if differences seen in lesion sizes 

of IL-3 +/+ and IL-3 -/- mice correlated with differences in parasite burden.  

The standard procedure for estimating parasite load during L. major infection is a cell 

culture assay in which serial dilutions of infected ear tissue are cultured in blood agar. 

However, new protocols which utilize real-time PCR (qPCR) and the ability to identify L. 

major DNA have been described which are less laborious and could prove to be much more 

accurate. Therefore, both limited dilution culture of parasites from infected tissue and 

relative qPCR were used to estimate parasite burden in infected groups of mice. 

 Limited dilution culture assays indicated IL-3 +/+ mice had substantially more L. major 

parasites per milligram of tissue at four weeks post-infection compared to similarly infected 

IL-3 -/- mice (Fig. 9). Furthermore, qPCR results indicated samples from L. major-infected 

IL-3 +/+ mice had significantly lower CT values four months post-infection than IL-3 -/- 

mice (Fig. 10). CT values indicate the cycle at which a positive signal for target DNA is 

detected. Therefore, lower CT values in IL-3 +/+ mice indicates they had more L. major 

DNA at the infection site, suggesting chronically infected IL-3 +/+ mice have higher 

parasite burdens compared to similarly infected IL-3 -/- mice. There was also a general trend 

in these experiments showing mice which had the thickest lesions also had the highest 

concentration of parasites at the site of infection, regardless of genotype. This suggests there 

is a positive correlation between lesion thickness and concentration of parasites in infected 

tissue. Additionally, the two IL-3 -/- mice that appeared to clear the chronic infection 

showed only slightly higher levels of L. major DNA compared to uninfected controls. 

IL-3 influences lymphocyte populations in L. major-infected mice 
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Figure 9 Number of parasites per mg of infected ear tissue. L. major-infected BALB/c 

IL-3 +/+ and IL-3 -/- mice ears were collected and weighed 4 weeks following infection 

with 1.0x104 metacyclic promastigotes. Cells harboring parasites were extracted from 

infected ears and serially diluted as described in the materials and methods. The reciprocal 

of the largest dilution at which promastigotes could be detected in duplicate assays was 

then averaged and reported as the mean ± SEM (n=5 mice/group). Statistical significance 

was determined by an unpaired, two tailed Student’s t-test. p value = 0.0503 for infected 

IL-3 +/+ and  IL-3 -/- mice. The data shown are from a single experiment that is 

representative of two separate experiments. 
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Figure 10 Parasite load in L. major-infected BALB/c IL-3 +/+ and IL-3 -/- mice ears 4 

months following infection with 1.0x104 metacyclic promastigotes. Infected ears (n = 4 

mice/group) were collected and analyzed for L. major DNA via qPCR as described in the 

materials and methods. One uninfected ear from each group was also collected to serve 

as a negative control. Data represents mean threshold cycle (CT) at which each sample 

was positive for L. major DNA. Statistical significance was determined by an unpaired, 

two tailed Student’s t-test. Asterisk (*) indicates a p value ≤ 0.05 versus corresponding 

values for mice of the other genotype.  
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Generation of adaptive immune responses against Leishmania parasites coincides with the 

expansion of certain cell populations in the LNs of infected organisms. The sub-populations 

of lymphocytes which undergo expansion influence if a host is resistant or susceptible to this 

infection. Therefore, the effect of IL-3 on lymphocyte populations was monitored in LNs of 

uninfected and L. major-infected IL-3 +/+ and IL-3 -/- mice. Levels of CD4+ T cells and B 

cells were identified in auricular LNs by flow cytometry from L. major-infected mice at four 

weeks post-infection and in uninfected mice.  

These analyses revealed essentially no difference in the levels of CD4+ T cells and B cells 

in uninfected IL-3 +/+ and IL-3 -/- mice. However, four weeks after infection with 1.0 x 

104 metacyclic promastigotes, IL-3 +/+ mice had a significantly higher percentage of B cells 

than similarly infected IL-3 -/- mice (Fig. 11). Interestingly, LNs from IL-3 +/+ mice also 

contained a substantially lower percentage of CD4+ T cells compared to IL-3 -/- mice (Fig. 

11). These data indicate IL-3 may promote the expansion of B cells and inhibit T helper cell 

development. This effect on B and T cells indicates that IL-3 could be abrogating a 

protective immune response, although it is unclear if this effect is direct or indirect.  

IL-3 regulation of basophil development in L. major-infected mice  

Activated basophils have gained interest from investigators studying the immune system 

because of their recently discovered ability to promote TH2 responses by producing IL-4 (50, 

71). Furthermore, studies have demonstrated IL-3-stimulated basophils can undergo 

increased proliferation and IL-4 production in response to certain infections (24, 59). As 

previously mentioned, susceptibility to CL is promoted by IL-4-driven Th2 host responses. 

However, to our knowledge no one has examined the effects of IL-3 or basophils during 

Leishmania infection. Therefore, basophil levels were monitored in infected mice to see if 
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Figure 11 Percent of CD4+ T cells and B cells in LNs of uninfected and L. major-infected 

mice (A). Uninfected and L. major-infected LNs were collected from IL-3 +/+ and      

IL-3 -/- mice at 4 weeks post-infection with 1.0x104 metacyclic promastigotes and 

analyzed via flow cytometry. (B, C) Dot plots representative of data from Fig. 3.10A 

showing CD4+ and B220+ cells from uninfected (B) (n = 3) and infected (C) (n = 5) LN 

populations. The data shown are from a single experiment that is representative of two 

separate experiments. Statistical significance shown in Fig 3.10A was determined by an 

unpaired, two tailed Student’s t-test. Asterisk (*) indicates a p value ≤ 0.05 versus 

corresponding values for mice of the other genotype.  
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increases could be detected in response to L. major parasites. Initially, these studies were only 

performed with IL-3 +/+ mice because increases in basophils were not expected in IL-3 -/- 

mice (24, 50). Therefore, if no increases in basophil levels were detected in IL-3 +/+ mice, it 

is unlikely that increases would be seen in IL-3 -/- mice.  

As expected, results from these experiments indicate basophil numbers in bone marrow 

samples from uninfected BALB/c IL-3 +/+ mice were less than 1 percent, typical for mice 

under baseline physiological conditions (59). Interestingly, after infecting mice with 2.0 x 104 

metacyclic promastigotes, basophil levels in the bone marrow remained below one percent 

and were essentially the same as compared to uninfected mice. This experiment indicated 

infection with a relatively high dose of Leishmania parasites induces no increases in basophil 

numbers in BALB/c mice at 5 weeks post-infection (Fig. 12).  

Basophil activity was also evaluated in other tissues of L. major-infected BALB/c IL-3 

+/+ mice. LNs, which are typically devoid of basophils, were studied because any observed 

increase in basophil numbers might suggest they migrate to lymphoid tissue and contribute 

to IL-4 dependent immune responses. Draining LNs were collected from mice infected with 

1.0 x 104 metacyclic at days four, nine, and four weeks post-infection and basophils were 

detected by flow cytometry. However, detectable levels of basophils were not observed in 

LN samples from BALB/c IL-3 +/+ mice at any time point evaluated (Fig. 13); suggesting 

Leishmania infection may not induce basophil proliferation and/or basophil migration to 

LNs.  
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Figure 12 Basophil levels in uninfected and infected BALB/c IL-3 +/+ mice injected 
with 2.0x104 metacyclic promastigotes (A). Bone marrow samples were collected 5 weeks 
post-infection from uninfected (n=3) and infected (n=4) BALB/c IL-3 +/+ mice and 
analyzed for basophil levels via flow cytometry. (B, C) Dot plots representative of data 
from Fig 3.11 A showing PE B220+ and FITC IgE+ cells from bone marrow samples of 
uninfected (B) and infected (C) mice. Basophils were considered FITC anti-IgE+ and PE 
B220-.  
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Figure 13 Basophil levels in LNs from BALB/c IL-3 +/+ mice infected with 1.0x104   
L. major metacyclic promastigotes. LN cells were collected at days 4 (A), 9 (B), and 4 
weeks (C) post-infection and analyzed via flow cytometry. No IgE+, CD49b+ basophils 
were observed in LNs from any mouse at the time points evaluated (n = 3-5). 
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Discussion 

A limited number of in vitro studies have suggested that IL-3 influences the course of CL, 

however, to our knowledge no studies have shown an in vivo role for IL-3 during this disease.  

BALB/c WT (IL-3 +/+) and IL-3 deficient (IL-3 -/-) mice were subcutaneously injected 

with L. major promastigotes in one ear and the clinical course of infection was monitored for 

up to four months. In the absence of IL-3, normally susceptible BALB/c mice infected with 

2.0 x 104 metacyclic promastigotes showed less inflammation based on lesion size compared 

to BALB/c IL-3 +/+ mice. These differences were especially evident throughout the course 

of a 10 week infection (Fig. 4).  

Significant differences in infected ear sizes of IL-3 +/+ and IL-3 -/- mice examined at 

four weeks post-infection were also noted when mice were infected with smaller parasite 

doses (Fig. 6). Likewise, IL-3 -/- mice infected for four months also showed smaller lesions 

compared to similarly infected IL-3 +/+ mice (Fig. 7). However, it is important to mention 

the mice used in the four month experiment became co-infected with Syphacia obvelata 

(mouse pinworms). Lesion sizes among co-infected IL-3 +/+ and IL-3 -/- were not 

significantly different (data not shown), likely due to a strong Th2 type immune response 

produced by BALB/c mice in order to clear the pin worm infection (72). However, after 

pinworm treatment, significant differences in lesions sizes of IL-3 +/+ and IL-3 -/- mice 

were seen four months post-infection(Fig 7).  No evidence of pinworm infection was 

observed with other experiments reported in this study. 

Significant differences in lesion sizes among the two genotypes of mice suggest IL-3 

operates in vivo during the immune response to Leishmania parasites, a previously unknown 

function of this cytokine. Thus, based on measurements of lesion size alone, it appears IL-3 
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exacerbates disease. However, a number of reports suggest that lesion size does not 

necessarily correlate with the number of parasites present at the inflammatory site (reviewed 

by (63)).  

The sizes of inflamed lesions that develop during the course of L. major infection can be 

attributed to a number of factors. First, lesion size can be influenced by the number of 

parasites present at the site of infection, with a higher number of parasites leading to larger 

lesions. One could also argue lesion size is regulated by the potency of the host organism’s 

immune response. For example, if an organism makes a robust immune response, many 

effector cells become activated and migrate to the site of infection where they can initiate 

pro-inflammatory activities resulting in increased lesion sizes. Alternatively, weak immune 

responses results in fewer or inefficient activation of cells causing less cell migration to the 

infection site resulting in smaller lesions. Therefore, observing larger lesions in IL-3 +/+ 

mice could be caused either by a higher parasite burden or a more robust immune response.  

To determine if larger lesions present in IL-3 +/+ mice were caused by a higher parasite 

burden, L. major infected IL-3 +/+ and IL-3 -/- mice were sacrificed four weeks post-

infection and the parasite load of each individual lesion that developed in the two genotypes 

of mice were examined (Fig. 9). This experiment was repeated twice using serial dilutions of 

cells from infected ear tissue. Both of these experiments showed IL-3 +/+ mice maintain a 

higher parasite burden than similarly infected IL-3 -/- mice indicating their increased lesion 

size is likely caused by a higher parasite burden. Higher parasitic loads in IL-3 +/+ mice are 

likely caused by an inability to effectively eliminate the parasites suggesting IL-3 may inhibit 

leishmaniacidal activities of the immune system. Taken together, the experiments that 

examined lesion size and parasite burden suggest that IL-3 is detrimental to the host during 

Leishmania infection.  
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Protocols for the diagnosis and evaluation of parasite burden have been improved as 

research with Leishmania progresses. Traditional protocols call for separation and enzyme 

degradation of infected tissues into a single cell suspension. These single cell suspensions are 

then serially diluted and incubated with nutrient rich medium which promotes promastigote 

growth. Each dilution is monitored for parasites approximately seven to ten days after 

plating, and the reciprocal of the highest dilution at which parasites are present is considered 

to be the parasite burden. Determining parasite load with such protocols is not accurate 

because they only enable an estimate of the true parasite burden. This method only provides 

an estimate because the data reported are dilution factors instead of absolute parasite 

numbers. Due to the drawbacks inherent with this method, a fairly new protocol utilizing 

real-time PCR was performed to validate the data on parasite burden. According to previous 

work, this technique is extremely sensitive and can detect minute levels of L. major DNA 

equivalent to 0.1 parasites (65). Increased assay sensitivity is ideal, particularly when 

attempting to diagnose or quantitate levels of parasites in mildly-infected animals. Therefore, 

quantitative PCR was initially employed to determine parasite load in mice infected for four 

months (Fig. 10). This experiment was chosen to determine if IL-3 -/- mice that had 

seemingly cleared their parasite infection still harbored L. major DNA. These data showed 

that IL-3 +/+ mice had markedly higher CT values when compared to IL-3 -/- counterparts 

indicating that infected tissue from IL-3 +/+ mice contained more L. major DNA compared 

to IL-3 -/- mice  Interestingly, two mice from the IL-3 -/- group showed CT values which 

were only slightly lower than uninfected ear tissue. Such a high CT value indicates low 

amounts of L. major DNA which could be caused by small amounts of viable parasites that 

persisted at the site of infection or, alternatively, fragments of DNA from dead parasites that 

remained after parasite clearance (73, 74). This is an interesting finding because it may 
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suggest in the absence of IL-3, BALB/c mice mount a more protective Th1 response against 

Leishmania infection. However, to verify the type of immune response produced by IL-3 

+/+ and IL-3 -/- mice, cytokine levels characteristic of those secreted by Th1 and Th2 cells 

need to be monitored. Such studies are currently underway in our laboratory. Nevertheless, 

these data suggest at least some of the IL-3 -/- mice were able to more effectively combat 

the L. major parasites than were IL-3 +/+ mice.  

Resistance and susceptibility to L. major infection has been repeatedly shown to be 

dependent on the type of adaptive immune response produced by the infected host. 

Adaptive immunity, including the development of Th1 and Th2 cells, is typically generated 

in lymphoid tissues like LNs. Therefore, draining LNs of infected mice were evaluated to 

determine if IL-3 was affecting the local cellular environment. Because LNs provide a venue 

for the development of resistant and susceptible immune responses to CL, the differences 

observed in disease severity among IL-3 +/+ and IL-3 -/- mice could be explained if IL-3 

has the ability to influence the types of cells present in draining LNs. If IL-3 +/+ and       

IL-3 -/- mice have different types of cells within their draining LNs, it is highly likely these 

cells are producing different types of cytokines, which could in turn influence the type of 

immune response. 

To test this idea auricular LNs that drained the lesion of L. major-infected IL-3 +/+ and 

IL-3 -/- mice were collected at four weeks post-infection and monitored for levels of CD4+ 

T cells and B cells by flow cytometry. In uninfected IL-3 +/+ and IL-3 -/- mice, the levels 

of CD4+ T cells and B cells were essentially identical. However, four weeks after L. major 

infection, IL-3 +/+ mice had notably lower percentages of CD4+ T cells and significantly 

higher percentages of B cells compared to IL-3 -/- mice (Fig. 11). These findings indicate 

IL-3 can either directly, or indirectly, influence the level of lymphocyte populations in 
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draining LNs during the course of CL. However, the mechanism by which IL-3 is able to 

affect lymphocyte populations is unknown. 

Increases in B cell percentages at four weeks post infection by IL-3 +/+ mice suggests B 

cell proliferation was induced by some factor(s) at points earlier in infection. Perhaps the 

most potent factor which drives antigen-activated B cell proliferation is IL-4. Moreover, IL-4 

is the primary cytokine implicated in promoting Th2 immune responses that leads to 

susceptibility to Leishmania infection. Therefore, higher numbers of B cells in IL-3 +/+ mice 

may indicate there is increased production of IL-4 in infected IL-3 +/+ mice, potentially 

resulting in a more polarized Th2 immune response. Since expansion of IL-4-producing 

basophils is acutely dependent on IL-3, it would make sense to observe higher levels of IL-4 

in IL-3 +/+ mice compared to IL-3 -/- mice. Ongoing experiments in the laboratory are 

aimed at assessing IL-4 levels in IL-3 +/+ and IL-3 -/- mice. 

In pilot experiments of L. major infection, BALB/c IL-3 +/+ mice had increased disease 

severity compared to similarly infected BALB/c IL-3 -/- mice. IL-3 is particularly influential 

on basophils; it is the major cytokine that increases the function and proliferation of 

basophils in response to infection (59). Increasing the numbers and functional ability of 

basophils influences the amount of secretory products (i.e. IL-4) these cells produce. 

Therefore, it was hypothesized that increased disease severity seen in Leishmania-infected 

IL-3 +/+ mice is caused by IL-3-stimulated basophils promoting Th2 susceptible immune 

responses, possibly through their ability to secrete IL-4. 

To begin evaluating this hypothesis, it was first determined if L. major infection induced 

the expansion of basophil populations in bone marrow which is where basophil 

development occurs. At physiological conditions, basophils comprise approximately 0.5 - 0.9 

% of bone marrow samples from BALB/c mice (59). Because basophil levels are so low at 
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homeostasis, relatively small increases to 2 - 4% would represent significant basophil 

proliferation (59) . To monitor the proliferative ability of basophils in response to Leishmania 

parasites, bone marrow samples were collected from uninfected and L. major-infected 

BALB/c IL-3 +/+ mice and subjected to flow cytometry. IL-3 -/- mice were not initially 

evaluated in these studies because IL-3 is the only known factor to promote proliferation of 

these cells, and it was assumed that in the absence of IL-3, there would be no basophil 

expansion. These studies showed that at five weeks post-infection, basophil levels in bone 

marrow from L. major-infected IL-3 +/+ mice were essentially the same as basophil levels 

from uninfected IL-3 +/+ mice (Fig. 12). Although no basophil proliferation was detected 

at five weeks post infection, this does not conclusively show that basophil populations do 

not expand during the course of CL. In fact, basophil populations in bone marrow could 

have expanded earlier in response to L. major but had returned to baseline levels by 5 weeks 

post-infection. To ensure Leishmania infection does not induce early expansion of basophil 

populations, ongoing studies are being completed which look at basophil levels in bone 

marrow at earlier time points post-infection.   

Basophil levels were also monitored in draining LNs to determine if these cells migrate 

to lymphoid tissue in response to L. major infection. Typically, basophils are not detectable in 

LNs. However, recent work describing the immune response to nematode infections 

reported that basophils transiently migrate to LNs and can influences the type of immune 

response by their ability to secrete IL-4 (75). To monitor lymphoid tissue for basophil 

migration, L. major-infected IL-3 +/+ mice were sacrificed at days four, nine, and four 

weeks post-infection to collect LN cells for flow cytometric analysis. However, no IgE+, 

CD49b+ basophils were detected in draining LNs at any of these times following L. major 
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infection (Fig. 13). CD49b+ is surface protein expressed by basophils, and together with IgE 

staining, is commonly used to distinguish basophils by flow cytometry. 

Because basophil were undetectable at the indicated times, these studies suggest that 

basophils may not migrate to any significant degree to draining LNs of BALB/c mice in 

response to Leishmania infection. However, recent experiments which were able to detect 

basophils in LNs suggest basophil migration to LNs is transient (75). Thus, if LNs are not 

evaluated at the optimal time, evidence of basophil migration could be missed entirely. 

Therefore, it is possible L. major infection does induce basophil migration to LNs but, due to 

the transient nature of this migration, we were unable to identify basophils at the specified 

time points examined.   

Our studies indicate that IL-3 influences the course and outcome of L. major infection in 

susceptible BALB/c mice. It was originally hypothesized that susceptibility to Leishmania 

parasites would be promoted by IL-3 through its ability to increase basophil numbers. 

However, no increases in basophil proliferation were detected in the bone marrow or 

draining LNs of     L. major-infected IL-3 +/+ mice, suggesting IL-3 may not induce 

basophil proliferation during CL. Although no increases in basophils were observed, the 

hypothesis cannot be fully rejected because IL-3 could act by increasing the functional status 

of basophils independent of their proliferation. For instance, IL-3 stimulation could result in 

elevated   IL-4 production by basophils even though basophils remain at approximately 

baseline levels. In fact, some studies which indicate that basophils drive Th2 responses have 

observed that basophil numbers do not increase during these responses (76). 

Experiments which monitor basophil levels in different tissues at multiple times post-

infection will be needed in order to rule out the possibility that basophils function during 

CL. For example, monitoring bone marrow samples earlier than five weeks following 
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infection could rule out the chance that expansion of basophil populations occurs early 

during infection and returns to baseline levels by five weeks. Also, basophil levels in LNs 

from infected mice could be examined on a day-to-day basis to ensure a transient migration 

of these cells to lymphoid tissue is not overlooked. Along with monitoring different time 

points following infection, tissues which were not evaluated in the current study, such as 

infected ears and blood, should be monitored for basophil increases. If still no basophil 

proliferation is noted at these sites and time intervals, the functional ability of these cells 

should be evaluated during Leishmania infection. For example, studies could be initiated to 

determine if basophils present following L. major infection are able to produce more IL-4 

than basophils existing under physiological conditions.  

If basophil proliferation and/or function are not increased during CL, IL-3 is likely 

functioning independent of basophils. Although the major functions of IL-3 appears to be 

its ability to increase the proliferation and secretory ability of basophils, conclusive evidence 

regarding the involvement of basophils will require the use of animals selectively deficient in 

basophils. If basophils do not have a role in CL, then IL-3 may influence the course and 

outcome of Leishmania infection by acting on other cell types known to be influenced by 

this cytokine.  

IL-3 is known to play a major role in the growth and differentiation of rodent mast cells 

(77). IL-3 has also been shown to upregulate mast cell release of mediators like histamine 

(78) and anti-inflammatory cytokines such as IL-10 and IL-13 (79). Furthermore, infection 

of BALB/c mice with L. major induces significant mast cell degranulation at early stages of 

the infection (80), and promotes mast cell proliferation at the site of infection (81). Because 

IL-3 is known to influence the development and function of mast cells, and because mast 
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cells have been shown to influence the course of Leishmania infection, it is feasible to 

speculate that the function of IL-3 during CL could be mast cell dependent. 

IL-3 could influence the course and outcome of L. major infection through its role in the 

recruitment of effector cells. IL-3 participates in inflammatory responses by inducing the 

expression of adhesion molecules on endothelial cells (82, 83). The expression of cell 

adhesion molecules by blood vessel endothelial cells near the site of infection facilitates 

diapedesis (migration of cells from blood into tissue) of effector cells. In turn, increased 

diapedesis would cause higher levels of leukocyte migration to the site of infection resulting 

in an advanced degree of inflammation. Therefore, it is possible that IL-3 functions during 

CL to promote inflammation through the expression of cell adhesion molecules, which 

would explain why higher degrees of inflammation were detected in L. major-infected IL-3 

+/+ mice.  

Differences seen between L. major-infected IL-3 +/+ and IL-3 -/- mice may also be due 

to this cytokine’s ability to influence macrophages. IL-3 has been shown to modulate the 

expression of certain molecules on macrophages resulting in different levels of macrophage 

activation (84). These cells play such a vital role during CL because amastigotes remain 

primarily in macrophages during Leishmania infection. Past studies have monitored the 

effects of IL-3 on macrophages in the context of Leishmania infection. For example, Feng et 

al. (1988) showed addition of IL-3 to cultured macrophages infected with L. major promoted 

the growth of intracellular parasites (42). To further address the role of IL-3 and 

macrophages, Saha et al. (1999) examined leishmanial-antigen pulsed macrophages derived in 

vitro with either IL-3 or GM-CSF that were adoptively transferred into BALB/c mice just 

prior to infection with L. major. While BALB/c mice receiving GM-CSF-derived 

macrophages significantly resist infection, BALB/c mice receiving IL-3-derived 
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macrophages exacerbated disease as assessed by footpad thickness (43). Currently, in vivo 

experiments are being conducted to determine the effects of IL-3 on macrophage function 

during CL. These studies are focused on the activational status of macrophages at the site of 

L. major inoculation to determine if endogenous IL-3 does in fact induce anti-leishmaniacidal 

effects. 

This study has established a novel finding which shows that endogenous IL-3 

significantly contributes to the susceptibility of BALB/c mice during L. major infection. This 

is supported by data showing that L. major-infected IL-3 +/+ mice have increased 

inflammatory lesions and increased parasite burdens relative to similarly infected IL-3 -/- 

mice. That IL-3 may function in CL to promote a Th2-dominated immune response is 

supported by our data that shows infected IL-3 +/+ mice have increased levels of B cells 

and decreased of CD4+ T cells. Although these studies indicate that basophil numbers do 

not increase during infection at the time points examined, these data do not rule out the 

possibility that physiological levels of IL-3-dependent basophils influence the immune 

response. Because IL-3 can influence cellular differentiation, and expression of molecules by 

a number of different cell lineages, several possibilities could explain how IL-3 functions 

during CL. It is unlikely that the function of IL-3 during this disease can be completely 

explained by its effects on a single population of cells. Instead the differences observed in 

IL-3 +/+ and IL-3 -/- are likely caused by IL-3 acting on numerous cell types in a concerted 

fashion. Although the mechanism(s) by which endogenous IL-3 functions during CL has yet 

to be fully determined, the current study has established an important and novel finding 

regarding the immune response to CL. Furthermore, the current work justifies further 

examination of the role of IL-3 in CL and will reveal new insights on the role of IL-3 in 

health and disease. 
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Appendix 

The following figures have been added for further clarification and are intended to 

supplement both the materials and methods and the results sections. 
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Figure 14 Genotyping IL-3 +/+ and IL-3 -/- mice. Constructs used to produce IL-3 -/- 

mice allow the genotypes to be distinguished by PCR. Using specific primers permits the 

amplification of DNA fragments which are different sizes and correspond to either      

IL-3 +/+ (1200bp) or IL-3 -/- (800bp) mouse DNA. Tail biopsies were collected from 

both groups of mice and DNA was extracted by enzyme degradation and subjected to 

PCR. After PCR, DNA products were then run on an agarose gel and stained with 

ethidium bromide to detect amplicons.  
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Figure 15 Images of L. major parasites in culture at different developmental stages. 
Cytospins of L. major culture samples were fixed and stained with Giemsa for 15 min. 
Plates A, B, and C represent images of parasites taken at days 2, 3, and 4, respectively. 
Plate D represents purified metacyclic promastigotes isolated from culture on day 5 by 
negative selection via peanut agglutinin. Metacyclic parasites display a homogeneous 
morphology and can be distinguished from less mature promastigotes based on their 
slender cell body, long flagellum, and tapered anterior tip. In each plate, scale bars 

represent 10 m. 
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Figure 16 Leishmania major growth curve. L. major parasites were cultured in c-M199 

media for 5 days to facilitate the development of infective stage metacyclic promastigotes. 

Metacyclics were then separated from the rest of the culture to initiate infections via 

negative selection with PNA. Data represents total number of parasites (left y axis) each 

day after initiating the culture, and the total number of metacyclic promastigotes (right y 

axis) isolated on day 5 of culture.  
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Figure 17 L. major metacyclic promastigotes being injected into the ear dermis of an 

anesthetized mouse. 
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Figure 18 Image of L. major-infected and PBS-injected mouse ears. (A) PBS-injected 

mouse ear showing no pathology or visually detectable inflammation. (B) L. major-

infected ear showing distinct lesion and inflammation at site of infection. 
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