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Abstract 

The study of reasoning and information processing in cognitive science has often used 

problems derived from classical propositional logic inference rules in order to see how 

people make decisions, often comparing the qualities of those that can and cannot 

successfully complete these tasks.  However, the majority of research that has been done 

has only focused on one inference rule: the material conditional.  This narrow focus does 

not allow for inferences to be made about the role of logical ability simpliciter in 

cognitive science research.  In order to better understand the relationship between 

cognitive ability and successfully completing tasks based on four binary logical 

connectives (conjunction, disjunction, material implication, and biconditional), 338 

participants were given the Propositional Logic Test (PLT), a N-Back task, a Belief Bias 

Syllogisms Task, and the Cognitive Reflection Test, that latter two of which have been 

used in support of a dual-process theory of reasoning.   Because no previous research 

exists examining the dimensionality of the PLT, multiple confirmatory factory analyses 

(CFA) were performed on the PLT to determine its factor structure.  The best fitting 

model was a 2-factor model with a disjunction factor and conditionals factor, indicating 

that the PLT is multi-dimensional and there are limitations on its use as a summed score.  

Multiple regression analyses were then performed on the PLT and the two factors present 

to reveal what differences between participants may be masked by using the PLT as a 

summed score.  The results indicate that ability to properly make the deductive inferences 

on the PLT is strongly associated with measures of Type 2 thinking and moderately 

associated with general intelligence.  Furthermore, the disjunction factor was moderately 

related to both traditional measures of cognitive ability and Type 2 processing, and the 



 

 

x 

 

conditionals factor was strongly related to the ability to engage in Type 2 processing and 

only weakly related to traditional measures of cognitive ability.  Thus, the ability to 

engage in specific types of deductive inferences requires different cognitive abilities, and 

the ability to engage in basic logical reasoning is significantly predicted by measures of 

general intelligence, but this alone is not sufficient. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 1 

Introduction 

The study of the psychology of reasoning has a long history in the tradition of 

psychology proper, but the topic also has roots in philosophy and religion that precedes 

this formal study by thousands of years.  How people reason, and more narrowly, how 

people make specific types of inferences is central to the study of reasoning and theories 

of information processing.  Not surprisingly, this study in psychology has often turned to 

evaluating how people make decisions or choices in tasks that are analogous to traditional 

(deductive) logical
1
 inferences.  The purpose of the present study is to identify what 

different measures of cognitive ability can significantly predict participants’ performance 

on a series of tasks that include English translations of propositional logic connectives.  

However, it is first necessary to give an overview of propositional logic before 

introducing previous research that has been done on examining the role of logic in 

reasoning and decision-making. 

Propositional Logic 

The study of logic dramatically changed starting in the nineteenth century, as the 

classic syllogistic form of inference in the West (historically associated with Aristotle) 

was augmented with a richer conception of logic that introduced quantifiers and the 

propositional logic structure, providing a mathematical, symbolic treatment of logic.  

That is, Aristotelian formal logic only dealt with inferences that depended upon the 

quantificational form of arguments; modern logic kept this, but added to it, recognizing 

                                                           
1
 “Deductive logic” will seem redundant to some; here it is included to indicate that when I speak of logic 

in this manuscript it is intended to only include deductive logic. 
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other ways that arguments could be deductively valid (B. Knorpp, personal 

communication, June 19, 2012).  More recently, logic has been applied in computer 

science and in the development of artificial intelligence, and it “has found radically new 

and important roles in computation and information processing” (Priest, 2010, p.vii).  

In general, logic “consists of a formal or informal language together with a 

deductive system” (Shapiro, 2009, p.1)
2
 that concerns the study of valid and invalid 

reasoning.  More plainly, logic is a formal system
3
 that allows for the analysis of 

expressions to see what other information can be validly derived from these expressions 

by using deductive inference rules.  Mathematical logic treats logic as an abstract 

mathematical system that consists of a vocabulary of primitive symbols, rules that specify 

which strings of those symbols are well-formed, and a set of rules for transforming one 

well-formed string of rules into another (T. Adajian, personal communication, June 19, 

2012). 

The most well-known formal system is a type of mathematical logic called 

propositional logic, which is also known as the propositional calculus, sentential logic, or 

the sentential calculus.  This formal system is often taught in the college philosophy 

departments, but may also be found in computer science or mathematics departments.  It 

includes simple symbols that stand for atomic propositions (declarative sentences that 

cannot be further broken down into smaller sentences) and symbols that operate on the 

atomic propositions to form compound propositions, the latter of which are often referred 

                                                           
2
 This definition is contested, but will serve for present purposes. 

3
 For more information on formal systems, see Kleene (1967) or Smullyan (1961). 
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to as logical connectives.  The main binary operators that are traditionally taught are 

conjunction (represented by , and commonly translated into English as meaning “and”), 

disjunction (, commonly translated into English as the inclusive “or”
4
), the material 

conditional
5
 (, “If, then”), and the biconditional (, “if and only if” or “just in case”)

6
.   

For example, the letter “P” may designate the sentence “Tom dances,” and the 

letter “Q” may designate the sentence “Mary sings.”  These two atomic propositions can 

be combined by means of logical connectives to form a compound expression.  Using the 

four binary connectives, one can now form several meaningful compound expressions: P 

 Q can symbolize “Tom dances and Mary sings;” P  Q can symbolize “Tom dances or 

Mary sings;” P  Q can symbolize “If Tom dances, then Mary sings;” and P  Q can 

symbolize “If, and only if, Tom dances, then Mary sings” or “Tom dances just in case 

Mary sings.” 

A formal language is employed in formal systems so that the meaning of the 

words (sentence letters) in the language is fixed so that inferences can be studied 

independently of the non-logical elements.  In an informal language, such as English, it 

                                                           
4
 It has been argued that the English “or” is linguistically indeterminate between the inclusive or exclusive 

“or.”  The difference between the two is when both of the given propositions are true.  When both P and Q 

are true, then the inclusive “or” is true, whereas when both P and Q are true obtain, the exclusive “or” is 

false. 

5
 The nature of the conditional is debated even within various systems of formal logic.  See chapter 7 of 

Humbleton (2011). 

6
 The symbols used to designate the different binary connectives may vary across different logic texts, 

although the concepts and English translations of these symbols are the same.  The present symbols and 

translations can be found in Allen and Hand (2001). 

 



4 

 

 

 

may be unclear what is meant due to ambiguity in natural languages, and this can make it 

difficult to understand the inferences that are being made.  Thus, propositional logic uses 

formal semantics to focus on what conclusions can be validly derived from a set of 

premises.  That is, given that the premises are true, by using the rules of inference in the 

system one can then infer what other information does and does not necessarily follow 

(Beall, 2010).   

The truth-value of an expression is determined by the inference rules of the 

formal system and the truth-values of the atomic propositions (sentence letters) involved 

in the expression.  In classical propositional logic, propositions can only take one of two 

values: true or false.  Thus, by having knowledge of the truth-value of the atomic 

propositions (if it is true that “Tom dances” and if it is true that “Mary sings”) and the 

how a specific logical connective functions in the system, it can be determined (via 

deduction) whether or not an expression formed from those atomic propositions is true.  

For example, if it is true that Tom dances, but not true that Mary sings, then “P  Q” is 

false, “P  Q” is true, “P  Q” is false, and “P  Q” is false.  Thus, there are four 

possible conditions that may obtain between any two propositions: both are true, one is 

true and the other is not (and its inverse), and both are false.  See Table 1 for the truth 

tables for these four (conjunction, disjunction, material conditional, and biconditional) 

binary logical connectives. 

 



 

 

 

CHAPTER 2 

Review of the Literature 

Previous Research on Logic in Psychology 

 In psychology, the study of logic in thinking and information processing has 

focused on only a few narrow aspects of the broad field of logic.  This previous work has 

been centered around two lines of study: (1) seeing if one can complete a task that 

mirrors classical logical inferences (most often involving the material conditional) and 

comparing the qualities of those than can and those that cannot complete the task 

correctly; and (2) studying how material conditionals (“If, then” statements) are 

understood in tasks that are structurally similar but differ in their content.   

The best known experiment on the role of logic in thinking is the Wason 4-card 

selection task, developed by Peter Cathcart Wason (1966).  Participants were provided 

with a rule had the form of the material conditional from classical sentential logic, stating 

that (parenthetically) “If the card has a vowel on one side, then it has an odd number on 

the reverse side.”  Participants were then shown a series of cards: one with a vowel face-

up, one with a consonant face-up, one with an odd number face-up, and one with an even 

number face-up.  By giving the participant these cards, the participant is given 

(respectively) a true antecedent, a false antecedent, a true consequent, and a false 

consequent.  Participants were then asked to turn over the cards that would invalidate the 

rule that they were given.    

Most all participants turned over the vowel face-up card in order to check if the 

back has an odd number on it, checking to see if the true antecedent has a true 

consequent.  However, most participants faltered in making an additional selection (if 
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they did make an additional selection) – many turned over the odd-numbered card (a false 

consequent), checking to see if the reverse side has a vowel or consonant on it (a true 

consequent).   

Unfortunately, turning over the odd number does nothing to test the validity of the 

rule.  The rule doesn’t stipulate that only vowels will have an odd number on their 

reverse side (which would be the case if the rule were a biconditional) – only that if it has 

a vowel on one side, it will have an odd number on the other.  The second correct choice 

in this task is the even-numbered face-up card – the false consequent.  Turning over this 

card to reveal a vowel could invalidate this rule, producing a situation with a true 

antecedent and false consequent.  Usually fewer than 10% of participants choose this 

option (Stanovich & West, 1998; Wason & Johnson-Laird, 1972). 

The Wason selection task has been replicated hundreds of times with each 

replication slightly varying different aspects of the task, such as altering the content of 

the problem to see if this influences participant responses (Evans, Newstead, & Byrne, 

1993; Newstead & Evans, 1995).  An interesting variant of the Wason task is the 

drinking-age problem (Griggs & Cox, 1982).  In this problem, participants are presented 

with the rule of “if a person is drinking beer, then the person must be over 19 years of 

age,” and presented with the cards of “drinking a beer,” “drinking a coke,” “16 years of 

age,” and “22 years of age.”  When presented with this information, participants were 

much more successful in correctly completing the task - 73% of participants correctly 

select both of the cards necessary to test the validity of the rule (Griggs & Cox, 1982). 
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This marked difference in the ability to correctly complete the selection task has 

produced more research looking at differences between the two problems, as the Wason 

selection task utilizes abstract rules, whereas the drinking-age problem uses deontic rules 

(Stanovich & West, 1998).  Stanovich and West (1998) gave participants a variety of 

selection tasks, with both deontic rules and nondeontic (abstract) rules.  Two clear 

patterns of correct responses emerged: those participants that were able to get the 

nondeontic problems were “people of higher cognitive ability” (Stanovich & West, 1998, 

p.217) - those that had statistically significantly higher combined SAT scores (SAT 

Verbal and SAT Mathematics together).  However, in deontic selection tasks, this 

difference in cognitive ability decreases significantly or disappears altogether.   

In the Stanovich and West (1998) experiments, the SAT total score was used to 

compare the groups, thus leaving it unclear if there were more specific differences in the 

cognitive profiles of the participants that contributed to them correctly answering the 

different types of tasks.  Additionally, only the SAT subscales were used to compare the 

groups, so it is unclear if additional characteristics of cognitive ability, such as those 

measured by non-traditional cognitive ability measures, might be more revealing as to 

predicting success on these tasks. 

Psychological Theories of Reasoning with Conditionals 

 The interpretation of Wason’s task, and, more broadly, the way humans use the 

conditional when reasoning, has given rise to several different theories of interpreting the 

way that people interpret “If, then” statements in English.  The Mental Models Theory 

was made most famous by Philip Johnson-Laird, one of Wason’s students (see Johnson-
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Laird 2006; Johnson-Laird, Byrne, & Schaeken, 1992; Wason & Johnson-Laird, 1972).  

In this theory, it is hypothesized that people create mental models of the world when 

reasoning with conditionals, and that the outcomes of decisions are modeled when doing 

so.  This theory assumes that humans are equipped with inference rules that preserve the 

truth-functional relationship with the antecedent and conditional found in truth tables of 

interpreting the material conditional in classical propositional logic.  Thus, in employing 

this theory, reasoning with false antecedents is relevant in entertaining other possible 

ways that the consequent could obtain. 

The suppositional theory (most associated with Jonathan St. B. T. Evans - another 

one of Wason’s students – and David Over, e.g., in Evans & Over, 2004) posits that 

people reason given that the antecedent is true.  That is, they consider only the cases in 

which the antecedent is true.  Thus, when reasoning through conditionals they normally 

(heuristically) reason through those scenarios in which the antecedent is true, and may, 

analytically, reason through various counter-factual scenarios where the consequent may 

obtain without the conditional being true.  On the suppositional theory, false antecedents 

are irrelevant in reasoning with “If, then” statements, as this false antecedent has no 

bearing on the consequent obtaining.  The “If, then” statement is not truth-preserving in 

the same respect as the material conditional in classical logic; it not truth-functional in the 

manner that the mental models theory suggests. 

The probabilistic reasoning theory (also known as Bayesian rationality – presently 

most associated with Mike Oaksford and Nick Chater, e.g., in Chater & Oaksford, 2004; 

Oaksford & Chater, 2007) suggests that people reason probabilistically.  They determine 
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the probability of the antecedent obtaining and then infer the probability of the 

consequent obtaining given the antecedent’s probability.  Thus, in this view, a false 

antecedent is given a low (or infinitesimal) probability, so reasoning with a false 

antecedent to a given outcome results in an expected low (but not necessarily zero) 

probability of the consequent obtaining given the antecedent. 

A variant of the Mental Models theory has also recently been argued for by (e.g., 

Schaeken, Vandierendonck, Schroyens, & d’Ydewalle, 2007).  According to this variant, 

people heuristically reason with conditionals probabilistically, but analytically reason 

with mental models.  That is, when making faster, more intuitive judgments, people often 

employ the probabilistic approach to interpreting the conditional, and when people slowly 

deliberate about the conditional in question, they then take on the framework of the 

mental models theory. 

While these theories of psychological interpretations of the conditional may seem 

different, if one looks at these theories within a dual-processing theory of reasoning 

framework a common theme emerges.  Dual-process theories of cognition posit “two 

distinct processing mechanisms, which employ different procedures and may yield 

different, and sometimes conflicting, results” (St. B. T. Evans & Frankish, 2009, p.1).  

One of the best-known characterizations of the dual-process theory of cognition stems 

from Stanovich and West’s extensive research on rationality that focuses on the 

differences between Type 1 and Type 2 processing
7
 (Stanovich & West, 2000).   

                                                           
7
 This distinction has been characterized in several different ways with slight nuances between each of the 

descriptions. For a list of alternative terms used by theorists for Type 1 and Type 2 processing, see 

Stanovich, 2011, p. 18. 
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This distinction provides a framework in which many aspects of cognition can be 

detailed (such as thinking heuristics and biases), as these two types of processing describe 

two very different aspects of cognition.  The most salient feature of Type 1 processing is 

its autonomy; the execution of Type 1 processing is rapid, requires little conscious 

awareness, and this processing is “mandatory when the triggering stimuli are 

encountered” (Stanovich, 2010, p.128).  These processes also include emotional 

regulation, which “can produce responses that are irrational in a particular context if not 

overridden” (Stanovich, 2010, p.129).  Type 1 processing is independent of high level 

control systems (possibly as an artifact of its evolutionary development), and can operate 

in parallel with other Type 1 or Type 2 processes without interference.  This is a default 

mode of processing that employs several heuristics and biases, which can be both 

beneficial and detrimental in making decisions.  This reliance on heuristics allows for 

quick processing and problem-solving, but non-optimal choices can often result due to 

this quick processing (Stanovich, 2010).   

Type 2 processing is in stark contrast to Type 1 processing.  Type 2 processing is 

a very controlled, serial, conscious type of processing that is very slow and 

computationally taxing, and a “critical function of Type 2 processing is its ability to 

override Type 1 processing” (Stanovich, 2010, p.129).  This large amount of 

computational expenditure results in a narrow focus of awareness (a limitation of 

conscious attention) when engaging in Type 2 processing, and it is constituted by its 

more deliberate procedure to decision making. 
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Thus, when people think quickly and heuristically (engage in Type 1 processing) 

through a problem analogous to the material conditional, they do not entertain the 

possibility in which the consequent could obtain with a false antecedent, or even of 

scenarios with a false antecedent altogether.  However, when people engage in Type 2 

processing, they may entertain scenarios in which the antecedent fails to obtain, but yet 

the consequent obtains.  All of the models suggest that participants that more 

deliberatively think through tasks employing the material conditional are more likely to 

be able to correctly complete the task. 

 Each of the previous theories described are supported by empirical studies and 

often the purpose of these studies is to provide evidence that supports one theory over 

another.  For example, a study by Sevenants, Dieussaert, and Schaeken (2011) was 

comprised of three experiments to compare the mental models theory and the 

suppositional theory by testing the idea that a false antecedent was “irrelevant.
8
”  

Participants were given a series of selection tasks, and then were asked to indicate if 

specific information about the task was relevant to reasoning through the problem.  The 

respondents were divided into two groups, those who indicated that a false antecedent 

was relevant and those who indicated a false antecedent was irrelevant.  The study then 

compared the groups’ abilities on a working-memory task developed by De Neys, 

d’Ydewalle, Schaeken, and Vos (2002) that had been shown to correlate highly with 

measures of intelligence (Engel, 1999), as well as with performance on the Cognitive 

Reflection Test (Frederick, 2005) as measures of cognitive ability.  The study found that 

                                                           
8
 This idea is not new in thinking about conditionals; Pierce (1898) points out a similar debate between the 

Hellenistic philosophers Philo and Diodorus (p.125). 
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those participants who chose the false antecedent as being irrelevant to the problem were 

associated with higher cognitive ability, and, conversely, the group of participants who 

considered the false antecedent as relevant had lower cognitive ability.   

The study of how people reason with conditionals and the differences between 

those who can and cannot complete tasks analogous to traditional logical paradigms has 

contributed to the literature on reasoning and information processing, but the scope of 

these studies in understanding the role of logic simpliciter in these fields is insufficient.  

While this study of logic in psychology has produced numerous books and research 

programs (for instance, besides those previously mentioned: Rips, 1994; Garnham & 

Oakhill, 1994; Leighton & Sternberg, 2004; Johnson-Laird, 2006; Manktelow & Chung, 

2004; Stenning, 2002), it has been limited in its study of the place of basic logical ability 

in cognitive architecture and information processing.  Given that logic entails 

understanding what does and does not necessarily follow from given information, better 

understanding the role of logic in information processing is an essential component to 

understanding how people reason.  Thus, the development of measures of logical thinking 

that are psychometrically sound and that can be used in cognitive science research is 

prudent. 

Propositional Logic Test 

A search was made to identify any previously existing measures that would fulfill 

the role of measuring basic logic ability in psychological science research. The 

Propositional Logic Test (PLT; Piburn, 1989) was identified as a potential measure of 

interest, as it was the only measure found that attempts to test all four of the basic logical 
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connectives used in propositional logic and thus would be able to give a more complete 

understanding of the ability of the participants to make specific types of deductive 

inferences.  The test consists of 16 problems, four problems of each of the four traditional 

binary logical connectives: conjunction, disjunction, material conditional, and 

biconditional.   

An advantage of the PLT is that it provides a simple way of testing the ability to 

understand and apply translated logical connectives in a simple (but slightly abstract) 

context, and it also tests all four of the basic logical connectives.  The participants are 

given a sentence that includes a translation of a logical connective (e.g., “If it is round, 

then it is striped”) and four figures are displayed below the rule (e.g., a white circle, a 

white square, a striped square, and a round square).  Students are then instructed to 

indicate which figures are allowed by the sentence and not allowed by the sentence.  The 

four figures presented after each stem correspond with the four possible relationships 

between the two propositions (true ‘P’ and true ‘Q’, true ‘P’ and false ‘Q’, false ‘P’ and 

true ‘Q’, and false ‘P’ and false ‘Q’).  Thus all four possible response options are 

represented, and whether or not an object is determined to be allowed or not allowed by 

the rule depends on the truth-conditions of propositions involved in the expression.  On 

the PLT the biconditional was not translated using one of the traditional English 

translations (“P if and only if Q”); instead, it was translated as a conjunction of two 

material conditionals in the form of “If P, then Q, and if Q, then P.”  This translation 

emphasizes the close relationship between the material conditional and the biconditional. 
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It was necessary that a participant mark all four of the figures correctly in order to 

get the item correct.  This showed that the participant had a complete understanding of 

the logical connective tested in that problem.  Additionally, by scoring the four options 

on a problem as a single item and not each option as a response, the influence of 

participant guessing was minimized.  The number of correct responses on the PLT was 

summed into a total score.  Additionally, subscale scores were created by summing 

together the number of correct responses on the items that included a translation of a 

specific logical connective.  Thus, four subscale scores could be created that were 

purported to measure how well participants could correctly interpret conjunction items, 

disjunction items, material conditional items, and biconditional items.  

The PLT has been shown to predict success on a test of scientific reasoning 

(Piburn, 1990), where both the total PLT score and scores on the four PLT subscales 

were used in the regression models.  Almstrum (1999) used the test in order to identify 

shortcomings in the abilities of computer science students when applying logical 

connectives to simple problems, again using both the PLT total score and subscale scores.  

Almstrum also notes several studies (Kim, 1995; Owens & Seiler, 1996; Stager-Snow, 

1985) in which the PLT was used, but results of these studies were non-significant, both 

statistically and practically.  For example, a study by Stager-Snow (1985) found that the 

PLT had little predictive power for females in predicting final course grades in an 

introductory computer-science course for non-computer science majors, and no predictive 

power for males.  However, in these previous studies mentioned by Almstrum (1999), it 

is not clear which scoring method is used for the PLT.  Almstrum notes the use of the 
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material conditional subscale in studies by Stager-Snow (1985) and Kim (1995), but is 

not explicit in mentioning which scoring method Owens and Seiler (1996) used for the 

PLT.   It is unclear if PLT total scores, subscale scores, or both were used in these 

studies. 

The original version of the PLT was a paper-and-pencil test where students were 

directed to circle those figures that were allowed by the rules and to cross through those 

figures that were not allowed by the rule.  On the reverse side of the 16 problems was a 

directions page that gave an example of how to complete each of the four types of 

problems on the test. (See Appendix A for the original PLT.)  This method of 

administration presented two possible problems: (1) the participant could use the 

examples as an aid on the test if they were unsure of how to answer a question (which 

Piburn said rarely happened; personal communication from Michael Piburn to Thomas 

Adajian, July 7, 2010), and (2) if a figure was not marked it could not automatically be 

assumed to be either “allowed by the sentence” or “not allowed by the sentence”  If a 

figure was left unmarked, it could not be validly inferred that the participant intend for 

the unmarked figure to designate one choice or the other, as the participant may not know 

whether or not the figure is allowed by the sentence. 

Given these potential difficulties with test administration, it was converted into a 

computerized format where participants clicked on the “allowed by the sentence” figures 

to turn them green and the “not allowed by the sentence” figures to turn them red.  The 

items were presented one at a time on the screen, and participants were also required to 
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mark an answer for each figure before going on to the next item.  (See Appendix B for the 

computerized version of the PLT.) 

The computerized version of the test was piloted against the original pencil-and-

paper measure, and the computerized version of the test had slightly better coefficient 

alpha
9
 levels than in Piburn’s original report.  More importantly, no data were lost.  On 

the pencil-and-paper version of the measure administered at approximately the same 

time, almost half of the participants (17 of 32) were thrown out due to not following the 

directions.  During the pilot testing the proctor repeated the specific method of marking 

the figures several times when giving the participants the directions for taking the test and 

also wrote these specific instructions for marking the figure on the classroom whiteboards 

for emphasis.  Thus, it is reasonable to assume that data would be lost due to incomplete 

response patterns of the participants, should the paper-and-pencil version of the test 

continue to be used.  

While the PLT was identified as a test that could be used as a measure of basic 

logic ability, research on this test found that the measure’s development did not fulfill all 

of the aspects of Benson’s (1998) strong program of construct validation.  Benson’s 

program of construct validation details the steps in which a construct undergoes 

validation, as this process is “the most critical step in test development and use because it 

is the process by which test scores take on meaning” (1998, p.10). 

 Benson’s program consists of three stages: a substantive stage, a structural stage, 

and an external stage.  In the substantive stage, the construct of interest is researched and 

                                                           
9
 Coefficient alpha is a measure of the reliability (internal consistency) of a scale or test. 
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theoretical and empirical definitions are made.  The theoretical definitions are developed 

by the theory surrounding the construct of interest, and the empirical definition consists 

of identifying (or writing) items that would adequately represent the construct (which 

operationalizes the construct).  The structural stage consists of only the empirical items 

themselves, as it examines how these items covary with one another, specifically seeing 

if these items covary in the manner specified in the theoretical domain.  Often 

intercorrelations between items and subscales or factor analysis (exploratory or 

confirmatory) are employed at this stage in order to test the internal characteristics of the 

measure to ensure that it functions as intended.  The final, external, stage comes about 

when the result of the structural stage analysis reflects that the scale or test is functioning 

internally as intended.  In this stage the measure is then correlated with other established, 

related measures to see that it is representing the hypothetical construct correctly by 

having the expected relationships present. 

In evaluating the PLT, Piburn (1989) appears to have addressed the substantive 

stage insofar as he notes that logic instructors reviewed the items and deemed them 

appropriate for measuring the basic logic connectives.  Similarly, he addresses the 

external stage by correlating the PLT with several alternative measures of logical 

reasoning. Unfortunately, the internal structure of the test was not examined.  This is an 

important stage, as the results of different tests of the internal structure help to understand 

if a test is being appropriately scored.  A test should only be scored as a summed score 

and used as such in psychological research when it has been established that the test is 

unidimensional (Gerbing & Anderson, 1988).   While the PLT will be used in the current 
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investigation to address a research question (see below) related to the external stage of 

validation, a structural analysis of the PLT will additionally be provided as a necessary 

precursor to focusing on the results at the external stage.   

Research Questions 

Despite the wealth of the literature on role of logical thinking in the psychology of 

reasoning, relatively little research has been done to better ascertain the general logical 

abilities of participants by looking at a wider breadth of deductive reasoning tasks.  

Additionally, no studies have examined the characteristics of participants to see what 

types of cognitive ability measures may be significant predictors of this type of logical 

reasoning ability.  While individual differences have been examined for the selection task 

(e.g., Stanovich & West, 1999) and syllogistic reasoning (e.g., Sá, West, & Stanovich, 

1999),  they have not been examined for tasks that attempt to measure the ability of 

participants to apply a wider breadth of propositional logic connectives.  The current 

investigation will be able to provide a more robust understanding the relationship 

between basic logical reasoning and cognitive ability.  In doing so, it will provide insight 

into the relationship between the ability to make specific types of deductive inferences 

and the cognitive abilities most strongly associated with making these deductive 

inferences. 

The present study uses the PLT as a measure of basic logic ability because the 

PLT tests the four binary connectives used in propositional logic and can provide a 

broader conception of basic logical reasoning than merely testing one of the connectives 

alone.  A multiple regression analysis will then be performed to see what cognitive ability 
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measures best predict scores on the PLT.  Of greatest interest is seeing if non-traditional 

measures of cognitive ability (i.e., the Belief Bias Syllogisms and the Cognitive 

Reflection Test) will be able to account for a significant amount of unique variance once 

all of the shared variance has been controlled for in multiple regression models. 

As a necessary precursor to using the PLT as a measure of basic logic ability, the 

factor structure of the measure must be known.  This is important for properly 

understanding the results of the multiple regression analyses.  If the PLT is multi-

dimensional, then a single regression analysis on the total score of the PLT can mask 

important differences between the cognitive abilities that are most strongly associated 

with each dimension of the PLT.  Thus, a confirmatory factor analysis will be performed 

on the PLT to better understand its factor structure, a secondary benefit of the present 

study.   

The mental processes that underlie the ability to use the four binary logical 

connectives on the PLT are significantly different from one another, and the result of the 

confirmatory factor analysis is expected to support that the PLT is a multi-dimensional 

measure.  This expectation is based upon the notion that the success of properly 

employing one of the logical connectives is not necessarily dependent on successfully 

understanding how to employ the others.  One exception to this expectation is between 

the material conditional and the biconditional; given their conceptual similarity, the 

ability to solve these types of problems will be represented by a single construct. 

I hypothesize that the results of the multiple regression analysis will show that the 

ability to make the deductive inferences characteristic of logical reasoning on the PLT 
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will be most strongly related to measures of cognitive ability that involve Type 2 

thinking.  This is because previous research has shown that Type 2 thinking significantly 

predicts other measures of logical reasoning (Sá, West, & Stanovich, 1999; Stanovich & 

West, 1999).  This should be particularly true for the material conditional and the 

biconditional connectives, given that they are both cognitively sophisticated and are 

conceptually similar.  Furthermore, given that the material conditional and biconditional 

connectives are conceptually distinct from the conjunction and disjunction connectives, it 

also was expected that the cognitive ability measures that significantly predict the PLT 

will vary based upon the type of deductive inference being made.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 3 

Methods 

Participants 

Participants in the study were 338 students (249 women, 89 men) from a medium-

size, mid-Atlantic public state university who were recruited through an introductory 

psychology participant pool in exchange for partial course credit.  The mean age of the 

participants was 18.79 years old (SD = 0.92), and 87% of the participants were 

Caucasian.  Participants were tested in small (2-4) groups in a private computer lab on 

campus, and participants were supervised by undergraduate research assistants. 

Procedure 

Upon arriving at the computer lab, participants signed the consent form, giving 

permission for verified SAT Mathematics and Verbal scores to be obtained from the 

university.  Participants then answered demographic questions and proceeded to complete 

the study.  The measures in the current analysis were presented along with other 

measures of cognitive ability, as well as various thinking disposition scales.  In addition 

to the Propositional Logic Test (PLT), other measures of cognitive ability included the 

Cognitive Reflection Test, the Belief Bias Syllogisms task, and the N-back task.  In the 

study the PLT was given after the Cognitive Reflection Test and the Belief Bias 

Syllogisms task, but before the N-back task.  Those measures and scales not pertinent to 

the present analysis are excluded from the manuscript. 

Cognitive Ability Measures 

Cognitive Reflection Test.  The Cognitive Reflection Test (CRT) was developed 

by Frederick (2005) as a “simple measure of one type of cognitive ability” (p.26), which 
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is “predictive of the types of choices that feature prominently in tests of decision-making 

theories“ (p.26).  The test consists of 3 items, and the task has been described to 

“measure the tendency to override a prepotent response alternative that is incorrect and to 

engage in further reflection that leads to the correct response” (Toplak, West, & 

Stanovich, 2011, p.1275).  That is, the items are such that an initial (false) answer quickly 

arises in participants, and in order to correctly respond to the item the participant must 

suppress this initial response and think through the problem more carefully
10

.  The three 

items on the test are: 

(a) A bat and a ball cost $1.10 in total.  The bat costs a dollar more than the ball.  

How much does the ball cost?  ____ cents 

(b) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 

100 machines to make 100 widgets?  _____ minutes 

(c) In a lake, there is a patch of lily pads.  Every day, the patch doubles in size.  If 

it takes 48 days for the patch to cover the entire lake, how long would it take 

for the patch to cover half of the lake?  _____ days 

For item (a), the most common answer given, 10 cents, is false.  If this were the case, 

then the bat and the ball would cost $1.20.  The correct answer, 5 cents, is given by those 

that can suppress the heuristic, quick response of 10 cents and think through the 

implications of this initial response.   

                                                           
10

 Frederick (2005) provides substantial discussion for why one may reasonably infer that this is the 

mechanism underlying the task, including that the false responses are commonly the same response.  See 

Frederick (2005) pp. 26-28 for this discussion. 



   23 

 

 

 

The CRT has high correlations with measures of general cognitive ability, but has 

been shown to account for unique variability in a series of heuristics-and-biases tasks 

after traditional measures of cognitive ability have been controlled for (Toplak, West, & 

Stanovich, 2011).  Thus, it measures a component of good thinking that is not captured 

on traditional measures of cognitive ability.  In the dual-processing theory of cognition 

paradigm, this task measures how well one can override their Type 1 response and 

engage in Type 2 processing to correctly answer the problem (Toplak, West, & 

Stanovich, 2011, p.1275).  The problems are in an open-answer format, and participants 

were only given credit for a correct response when the correct answer (10 [cents], 5 

[minutes], 47 [days]) is provided. 

Belief Bias Syllogisms.  The Belief Bias Syllogism task was developed by Evans, 

Barson, and Pollard (1983) to test the idea that when people are given an argument to 

evaluate, they will more often default to using a priori knowledge instead of carefully 

examining the logical structure of the information that is given to them.  The task consists 

of a series of 16 syllogisms that are presented to the participants, and they are asked to 

evaluate the syllogisms and indicate if the conclusion logically follows from the 

premises. 

The current version of the task has been adapted from the initial Evans, Barson, 

and Pollard (1983) task and incorporates problems from the work on George (1995).  The 

task consists of four valid syllogisms with believable conclusions, four valid syllogisms 

with unbelievable conclusions, four invalid syllogisms with believable conclusions, and 
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four invalid syllogisms with unbelievable conclusions.  Thus, a total of 8 of the problems 

are logically valid and 8 are not logically valid.   

Four basic statements are used within the syllogisms: a universal affirmative 

statement (All X are Y), a universal negative statement (No X are Y), a particular 

affirmative statement (Some X are Y), and a particular negative statement (Some X are 

not Y).  The tasks given to the participants consisted of presenting them with two 

premises and a conclusion, and participants were then asked to evaluate if the conclusion 

logically follows from the premises.   

For example, a participant may be given the premises of “all living things need 

water” and “roses need water,” and then asked if the conclusion that “roses are living 

things” follows from these premises.  This conclusion is believable, as it is true that roses 

are living things, but the conclusion does not follow from the premises.  The first premise 

does not indicate that being a living thing is the only sufficient condition for needing 

water, and as such other things could need water but not be a living thing.  The fact that a 

rose is, in the actual world, a thing that needs water provides the participant with 

conflicting results based whether the conclusion follows from the form or the content of 

the problem.  (See Appendix C for the Belief Bias Syllogism items.) 

Thus, in order to answer each item correctly the participant must evaluate the 

logical structure of the syllogism free from its content and base their answer on the 

structure alone.  The “belief bias” is said to be present when participants are unable to 

successfully decouple the form from the content of the problem and responds only to the 

content of the problem.  That is, participants will incorrectly answer a problem because 
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they will be basing their answers on the believability of the conclusion, and not on the 

structure of the argument. 

This task has been shown to provide evidence for the dual-process theory of 

reasoning, as those participants who were forced to quickly endorse an item after being 

exposed to it were more likely to demonstrate the belief bias, as they had less time to 

slowly deliberate through the problem (Evans & Curtis-Holmes, 2005).  Thus, it is 

thought that those participants who get more of the items correct are more likely 

engaging in the slow, deliberate processing characteristic of Type II processing.  

N-back Task.  The N-back task (Kirchner, 1958) has traditionally been used as a 

measure of working memory, and working memory is characterized as referring to 

“processes used for temporarily storing and manipulating information in the face of 

ongoing processing and distraction” (Jaeggi, Buschkeuhl, Perrig, & Meier, 2010, p. 394).  

That is, it is a component of fluid intelligence that allows one to process new information 

while still keeping other recent information present.  Working memory has also been 

shown to correlate highly with general intelligence (Conway, Kane, & Engle, 2003), but 

it has also been shown that working memory and general intelligence are not equivalent 

(Ackerman, Beier, & Bole, 2005). 

The N-back task presents participants with a series of letters (in both lower-case 

and upper-case formats), and asks participants if a specific letter was n places back.  For 

example, a participant may be presented with a series of letters: S F s D f d F D s F d.  As 

each letter is presented, they would be asked if that same letter was presented n letters 

back.  If the task was 2-back, then the participant would need to enter the following 
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sequence to be correct (corresponding with the above example): N N Y N N Y Y Y N N 

N. 

  The current study used a series of 2-back and 3-back tasks, each with 16 possible 

correct positive responses out of 32 responses.  A participant’s score is the result of 

subtracting the percentage of correct positives from the percentage of false positives for 

the both the 2-back and 3-back task.  These two percentages were then averaged for a 

single N-back score. 

Recent research suggests that the traditionally low reliability of these N-back 

tasks indicates that inferences made from this measure may be limited (Jaeggi, 

Buschkeuhl, Perrig, & Meier, 2010).  However, this study was specifically aimed at 

testing the psychometric properties of the different variants of the N-back task, where 

visuospatial, auditory, and dual tasks were tested.  It was found that the N-back task may 

diverge from other tasks of working memory, suggesting that different processes are 

being measured by the different tasks, and that the N-back task is not a “pure” measure of 

working memory.  However, for present purposes only a proxy of such functioning was 

desired in order to test the general relationship between working memory, other measures 

of cognitive ability, and the PLT. 

Data Screening 

 Prior to the analysis, the data were screened to check for invalid response 

patterns, incomplete data, outliers, and both univariate and multivariate normality.  The 

original sample contained 429 participants; 91 students were removed using listwise 

deletion for missing data for missing a score on at least one of the measures used in the 
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present study.  The largest numbers of participants (70) were excluded from the analysis 

because their verified SAT Mathematics score or SAT Verbal score was not on record. 

Because the PLT is scored such that participants get an item correct or incorrect, a 

tetrachoric correlation matrix was estimated using PRELIS (Jöreskog & Sörbom, 2007) 

in order to understand the relationships between the items.  Tetrachoric correlations were 

used because Pearson and Spearman correlations are attenuated in situations where the 

data are dichotomous (Finney and DiStefano, in press).  Table 2 presents the tetrachoric 

correlation matrix for the items on the PLT, including how many participants got each 

item correct.  Examination of the tetrachoric correlation matrix showed relationships 

between the items ranging from moderate, negative correlations (-.389) to very strong, 

positive correlations (.991).  The tetrachoric correlation matrix also shows that the 

disjunction, material conditional, and biconditional items are correlating highly within 

each subscale, with very high correlations between the material conditional and 

biconditional items and moderate correlations between the disjunction and material 

conditional items and the disjunction and biconditional items.  The conjunction items 

have low to moderate correlations within the subscale, and a wide range of correlations 

with the other items on the PLT, ranging from -.389 to .884. 

Table 3 presents the distribution of scores on each of the subscales of the PLT, 

indicating that a large majority of the participants got all of the conjunction problems 

correct.  Very few participants (5) got 0 or 1 of the conjunction items correct; thus, there 

is very little variance in the conjunction subscale scores.  The scores on the disjunction 

subscale indicated that, in general, participants did well in completing these items, and 
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there was moderate variability in the scores.  Lastly, a large majority of the participants 

did not get any of the material conditional or the biconditional items correct, but there 

were some students that got some (and all) of these items correct; the distribution in these 

categories ranged from 9 – 22 participants.  This is consistent with the results of Piburn 

(1990). 

Table 4 presents the polychoric correlations between the subscales on the PLT. 

Most interestingly, the conjunction subscale scores have almost no relationship to the 

other subscale scores; at best, there is a very weak positive correlation with the 

disjunction subscale scores (.015), and there are weak negative correlations with the 

material conditional and biconditional subscales (-.011 and -.054, respectively).  This is 

an artifact of the participants doing well on this subscale, as there is not much variance in 

the summed scores of the conjunction items.  The polychoric correlation matrix also 

shows that the material conditional and biconditional subscales are highly correlated with 

each other (.903), and both of these subscales had moderate correlations with the 

disjunction subscale.   

The zero-order Pearson correlations between the cognitive ability measures and 

the PLT (including the PLT subscales) are presented in Table 5.  Examination of this 

correlation matrix shows that the conjunction subscale does not have a strong relationship 

with many of the other measures of cognitive ability.  Again, because participant are 

doing so well on this subscale, there is little variance to explain and there are no factors 

that would distinguish those participants that are doing well (or poorly) on this measure.  
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The correlations between the material conditional subscale and the biconditional subscale 

with the other measures of cognitive ability are again similar. 

Confirmatory Factor Analysis 

A series of confirmatory factor analyses (CFA) were performed on the PLT in 

order to determine the dimensionality and factor structure of the test, as CFA allows 

researchers to test models of hypothesized interrelationships among items in a measure.  

This is desirable in order to understand how one should score and use the test in studies, 

should a theoretically plausible factor structure be identified and supported by the 

respective CFA.  Previously the PLT was scored as a summed score, which is only 

appropriate when there is a unidimensional factor structure, as the score then represents 

the measurement of a single construct.  Each of the 4 subscales has also been used in 

analyses to see how the ability to do well on these subscales relates to the other constructs 

of interest.  This scoring method is only appropriate if there are 4 unique dimensions to 

the PLT, represented by each of the subscales. 

Confirmatory factor analysis is most informative when several models can be 

specified a priori in order to make comparative and absolute judgments about the 

hypothesized relationships between the items.  The PLT has been used in past studies 

(e.g., Piburn, 1990; Almstrum, 1999), and thus confirmatory factor analysis was 

appropriate. 

Hypothesized Models 

A total of nine models were tested in order to understand the factor structure of 

the PLT.  Three of these models are plausible explanations of the data from all of the 
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items on the PLT, four are intended to test the data from the individual subscales of the 

PLT without the influence of the other subscales, and two models are to test the 

hypothesis that a single construct is responsible for representing the data from the 

material conditional and biconditional items (again without the influence of the other 

subscales).  The purpose of these tests is to identify the best-fitting model that is a 

plausible explanation of the data from the PLT, as well as to better understand the 

structure of the subscales and the possible relationships between the subscales.  This 

information is essential to understanding how the PLT should be scored, thus allowing 

more precise inferences to be made about what measures of cognitive ability predict how 

well one can make deductive inferences based on the logical connectives used in 

propositional logic.  See Figures 1-9, respectively, for diagrams of the nine hypothesized 

models.   

Model 1 is a unidimensional model with all 16 items loading onto a single factor 

representing the construct of basic logic ability.  This model was of interest because the 

PLT has previously been used as a summed score (which is only appropriate with a 

unidimensional factor structure) and the logical connectives tested are the traditional 

binary connectives that are taught at the same time in an introductory propositional logic 

class.  Thus, it could be thought that the ability to correctly answer problems these binary 

logical connectives is closely related. 

The second model (model 2) is a 4-factor model with each of the individual 

subscales representing a unique factor, where the subscales are moderately, but not 

highly, correlated with one another.  The hypothesized model has the 4 conjunction items 
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being explained by a construct representing the ability to understand how to properly 

interpret the conjunction connective (a “conjunction” factor), with the other 3 factors 

representing the other 3 logical connectives mutatis mutandis.  This model represents the 

hypothesis that the abilities to properly interpret the four binary logical connectives are 

related to each other, although not enough to be considered to be the product of a single 

construct.  

A similar model is hypothesized in model 3, but this model is a 3-factor model 

that collapses the distinction between two separate factors explaining the ability to 

correctly apply the material conditional connective and the ability to correctly apply the 

biconditional connective, resulting in a single “conditionals” factor.  This hypothesis is 

supported by the similar concepts that the material conditional and the biconditional 

represent.  Other, less common translations of these logical connectives show the 

similarities between the two: while “If P, then Q” is the most common translation for the 

material conditional, the connective is also translated as “P is sufficient for Q” or “Q is 

necessary for P;” the biconditional is also translated as “P is necessary and sufficient for 

Q” (Allen & Hand, 2001).  Thus, the biconditional is the conjunction of two material 

conditional statements, and the wording of the biconditional items on the PLT makes this 

link even more explicit. 

Models 4, 5, 6, and 7 are one-factor models representing the conjunction, 

disjunction, material conditional, and biconditional subscales, respectively.  Each of these 

models treats one of the subfactors of Model 2 as a single factor. As in Model 2, each 

subfactor is measured by 4 items.  These models were tested to see if each of the 
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subscales were plausible explanations of the data from only that subscale.  Additionally, 

this also shows the strength of the individual pattern coefficients from the subfactor to 

each of the items independent of the other subfactors on the PLT.  However, if the 

subscales are significantly correlated, it would not be appropriate to use these scales 

independently, nor appropriate to use the scores from these subscales individually in 

research or practice. 

The hypothesis that a single construct is responsible for driving the correct 

responses to the material conditional items and the biconditional items led to the two final 

models to be tested.  Model 8 is a 2-factor model where the material conditional items 

and the biconditional items are explained by their respective factors, whereas model 9 

posits that a single construct, the ability to correctly interpret conditionals, is responsible 

for explaining the scores on both of these sets of items. These two models provide 

information about the relationships among these two subfactors independent of the other 

subfactors. 

Method of Estimation and Measures of Model Fit 

Structural equation modeling was used to perform the confirmatory factor 

analyses on the proposed models, and LISREL 8.80 (Joreskog and Sorbom, 2007) was 

used to estimate the models.  While maximum-likelihood (ML) estimation produces less 

biased estimates of fit and parameter estimates than other types of estimation under 

conditions of model misspecification (Olsson, Foss, Troye, & Howell, 2000; Olsson, 

Troye, & Howell, 1999), this is only appropriate when the data have a multivariate 

normal distribution, including that the data are continuous in nature.  Since the indicators 



   33 

 

 

 

in the present models are dichotomous, categorical variable methodology (CVM) is more 

appropriate to estimate the models (Finney and DiStefano, in press).  In such a situation, 

robust diagonally weighted least squares (DWLS) estimation is more appropriate for 

modeling the dichotomous data.  This estimation method uses only the diagonal elements 

of the weight matrix used in weighted least squares (WLS) estimation; WLS estimation 

requires extremely large sample sizes in order to converge to an admissible solution, 

however DWLS can more easily converge on an admissible solution without such large 

sample size requirements.  It has been shown that DWLS can adjust for departures from 

normality similarly to the Satorra-Bentler adjustment with ML estimation, and DWLS 

performs better (is less biased and gives more correct estimates) than WLS (Satorra & 

Bentler, 1994; Finney & DiStefano, in press). 

To assess the fit of the proposed models, several absolute and incremental fit 

indices are reported.  Absolute measures of model fit provide an absolute measure of how 

well the proposed model reproduces the observed covariance matrix, whereas 

incremental measures of model fit compare the reproduced model to a baseline model in 

which no relationships between the items are specified.  The 
2 

statistic, the most 

common absolute fit measure, is reported, as it provides an exact test of the discrepancy 

between the observed covariance matrix and the model-implied covariance matrix.  

Hence, a non-significant 
2
 test implies that there is not significant amount of 

discrepancy between the two matrices, and that the suggested model is a plausible 

explanation of the hypothesized relationship between the variables.  Because the 
2
 test is 

an exact test that is influenced by sample size, it is supplemented with several other fit 
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indices
11

.  Since the data is non-normal, robust 
2
 values from DWLS will be reported, as 

the robust 
2
 is adjusted for non-normality in the data.  This robust 

2
 test has been 

shown to be fairly accurate in CVM, although there has been limited research on the 

misspecification of models in CVM (Finney & DiStefano, in press). 

The fit indices reported are the standardized root mean square residual (SRMR, an 

absolute fit index; Joreskog & Sorbom, 1981, Bentler, 1995), the root mean square error 

approximation (RMSEA, an absolute fit index; Steiger & Lind, 1980; Steiger, 1990), and 

the comparative fit index (CFI, an incremental fit index; Bentler, 1989, 1990).  Measures 

of approximate fit have been shown to vary under different conditions of model 

misspecification when using robust DWLS in CVM, but Yu (2002) found that the 

RMSEA and CFI performed well under these conditions.  Additionally, these 

approximate fit indices are considered to be “robust” versions of the indices, as these are 

estimated with the adjustments made to the model by employing DWLS estimation. 

The SRMR is an absolute index of model fit using a standardized (correlation) 

metric that is an indication of the average amount of discrepancy between actual and 

reproduced correlation matrices.  This fit index is the very sensitive to misspecified factor 

covariances and moderately sensitive to factor loading misspecification (Hu and Bentler, 

1998).  A cutoff value of .08 or less is recommended (Hu and Bentler, 1999), but the 

results of Nye and Drasgow (2011) have found that more stringent cutoff standards (.04 

or .03) are necessary with CVM, especially with large samples.   

                                                           
11

 As sample size increases, the 
2 
test becomes more powerful, rejecting plausible hypothesized 

relationships due to trivial differences between the covariance matrices. 
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RMSEA is an absolute fit index based on the non-centrality parameter that 

“assesses lack of fit due solely to model misspecification and provides a measure of 

discrepancy per degree of freedom” (Finney, Pieper, & Barron, 2004, p. 375).  This index 

is sensitive to misspecified factor loadings (Hu & Bentler, 1998), and a values of .05-.08 

indicate close fit and values of .10 or greater indicate poor fit (Browne & Cudeck, 1993).  

RMSEA was found to function well in CVM, although more stringent cutoff values are 

suggested (Nye & Drasgow, 2011). 

The CFI is an incremental fit index that is based on the noncentrality parameter, 

and it compares the fit of the proposed model to an independence model, one where no 

relationships between the observed variables are said to exist.  CFI is moderately 

sensitive to misspecified factor covariances, very sensitive to factor loading 

misspecification, and, importantly, it is not sensitive to sample size, meaning that it gives 

a reliable estimate at smaller sample sizes (Hu & Bentler, 1999).  A cutoff of .95 or above 

is recommended for the CFI under conditions of multivariate normal data (Hu & Bentler, 

1999), but Nye and Drasgow (2011) found that the “CFI appears to be less affected [than 

the Tucker-Lewis Index, another incremental fit index,] by nonnormality, although Type 

I errors [were] still higher in both moderate and severe skew conditions” (p.560).  Thus, 

the CFI is still reported and the results were interpreted with this caution in mind, and 

more stringent cutoff values will be used. 

 In addition to these global fit indices, the standardized covariance residuals were 

also analyzed.  These residuals represent the differences between the actual and 

reproduced covariance matrix, allowing one to identify areas of local misfit.  Because the 
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residual is standardized, these residuals can be interpreted as z-scores, and Byrne (1998) 

says that absolute values larger than 3 should be considered large.  However, these 

covariance residuals are influenced by sample size, and larger samples will produce 

larger standardized covariance residuals than smaller samples with identical covariance 

matrices.  Since these standardized covariance residuals are influenced by sample size, 

these residuals may not properly reflect areas of local misfit in the present sample, and 

the resulting analyses would be under-powered to detect areas of local misfit
12

.  In these 

cases the residual covariance matrix should be converted into correlation matrix so the 

magnitude of the residual values can be more appropriately assessed.  A cutoff of |.10| for 

individual correlation residuals has been recommended (Kline, 2011), although this 

recommendation is based on continuous data and more research is needed to better 

understand appropriate suggested cutoffs when estimating models with dichotomous data. 

 

 

 

 

 

 

 

                                                           
12

 This would also be appropriate for SEM procedures that are highly over-powered due to a very large 

sample size, as this would inflate the standardized covariance residuals. 



 

 

 

 

CHAPTER 4 

Results 

Confirmatory Factor Analysis Results 

The unidimensional, 1-factor model (model 1) for all 16 items converged, but 

inspection of the output revealed a negative error variance (-0.070) associated with item 

I4 (a material conditional item), which is an inadmissible solution.  Models 2 and 3 also 

failed to converge to an admissible solution.  In model 2, the phi matrix, representing the 

correlations between the exogenous variables (in this case, between the PLT subscales) 

was non-positive definite, and problems in estimating the phi matrix can result when 

there are high correlations between the some of the items or  some of constructs in the 

model.  The reproduced correlation between the conjunction factor and the material 

conditional factor was 2.36, and the reproduced correlation between the conjunction 

factor and the biconditional factor was 2.38; both out-of-bounds solutions.  Additionally, 

the theta-delta matrix was also non-positive definite, which results when a negative error 

variance is estimated in one of the items; item I4 (a material conditional item) had a 

negative error variance (-0.039). 

 Model 3 failed to converge to an admissible solution, and the problems that were 

present in estimating model 2 were also present in model 3.  The reproduced correlation 

between the conjunction factor and the conditionals factor was 2.50, and item I4 had a 

negative error variance (-0.084).  Thus, models 1, 2, and 3 were not plausible 

explanations of the data from the 16 PLT items.
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The model representing on the conjunction factor and the four conjunction items 

(Model 4) is a plausible explanation of the data from these items.  (Table 6 presents the 

fit indices for the models that converged to admissible solutions and allows conclusions 

to be drawn about the research questions of interest.)  The χ
2
 test was non-significant, the 

CFI was above suggested cutoff values, the RMSEA was below suggested cutoff values, 

and the SRMR was within suggested cutoff limits.  Additionally, only 1 standardized 

(correlation) residual was above |.10|.  However, analysis of the pattern coefficients 

(relationships of the individual indicators and the factor) showed large differences 

between each indicators and the conjunction factor.  The values of the pattern coefficients 

between the four conjunction items (I1, I2, I3, and I4) and the conjunction factor were 

(respectively) .33, .47, .79, and .68.   (See Table 7 for the standardized pattern 

coefficients for the models that converged, indicating the correlations between each item 

and the factor explaining the item.)  These values indicate that there is a large amount of 

variance in the conjunction items that was not explained by the construct that represents 

the ability to correctly complete the conjunction items. Cronbach’s alpha for the factor 

was .388
13

.  These results are consistent with the distribution of scores on the conjunction 

subscale, as there is not much variance to be explained by the model. 

The model representing the disjunction factor and the four disjunction items 

(model 5) fit the data moderately well.  While the χ
2
 test was significant, this test is 

extremely sensitive to exact model fit, so the other fit indices and individual correlation 

                                                           
13

 Cronbach’s alpha is a lower-bound (and thus conservative) estimate of the factor reliability.  McDonald’s 

(1999) omega coefficient is more commonly reported, as it produces more precise estimates of reliability 

(DeShon, 1998), however this is only in cases of linear structural equation modeling (SEM).  In the cases of 

non-linear SEM, such as the present models, a different method of calculating the reliability of the 

construct is advised (Green & Yang, 2009). 
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residuals were examined to further understand the fit of the model.  The CFI was above 

suggested cutoff values, and but the RMSEA was larger than the suggested cutoff values.  

However, because the RMSEA assesses misfit per degrees of freedom and thus 

“penalizes” models with low numbers of degrees of freedom (model 4 only has 2 degrees 

of freedom), the SRMR and standardized residuals were examined in order to draw 

conclusions about model fit.  The SRMR was within suggested cutoff limits, and only 1 

standardized residual was above |.10|, so the model was deemed to have adequate fit.  The 

values of the pattern coefficients between the four disjunction items (D1, D2, D3, and 

D4) and the disjunction factor were (respectively) .79, .86, .75, and .86.  These values 

indicate that the construct of the ability to solve disjunction problems was able to account 

for a modest amount of variance in each of the disjunction items.  Cronbach’s alpha for 

the factor was .752.  

Model 6, representing the material conditional factor and the four material 

conditional items, did not converge to an admissible solution.  Item I4 had an error 

variance of -0.16, a pattern coefficient of 1.01 (representing a correlation higher than 1 

with the factor), and the amount of variance explained in the item by the factor was 

102%, all out-of-bounds values.  Thus, the model is not a plausible explanation of the 

data from the items on the material conditional subscale. 

The model with the biconditional items being explained by a biconditional factor 

(model 7), is a plausible explanation of the data from the biconditional items.  The χ
2
 test 

was non-significant, but the CFI was above suggested cutoff values and the RMSEA was 

below suggested cutoff values.  The SRMR was extremely low (.022), and no 

standardized residuals were above |.10|.  The values of the pattern coefficients between 
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the four biconditional items (B1, B2, B3, and B4) and the biconditional factor were 

(respectively) .96, .95, .98, and .98.  These values indicate that the construct of the ability 

to solve biconditional problems was able to account for a large amount of variance in 

each of the disjunction items.  Cronbach’s alpha for the factor was .899. 

The models testing the hypothesis that the material conditional items and the 

biconditional items are explained just as well by a single factor (model 9) as by two 

separate factors (model 8) also did not converge to admissible solutions.  Again, the error 

variance associated with item I4 was negative in both models. 

Model Modifications 

None of the models hypothesized to be plausible explanations of all 16 PLT items 

(models 1, 2, and 3) converged on an admissible solution.  Given that a negative error 

variance was associated with item I4 in these models, as well as in models 6, 8, and 9, the 

tetrachoric correlation matrix was analyzed to diagnose the problem of model 

convergence.  The tetrachoric correlations between the four material conditional items 

were very high within the subscale, and highest between I3 and I4 (.991).  I4 and I3 also 

had similar correlations with I1 and I2, suggesting that these items are redundant.  A 

cross tabulation of how participants responded to items I3 and I4 found that only 9 

participants were on the off-diagonal, indicating that 329 of the participants either got 

both items correct or incorrect.  This was the smallest off-diagonal number found when 

all four of the material conditional items were compared to one another. 

The intent of the CFAs was to identify the dimensionality of the PLT so that the 

proper scoring method can be employed in order to better understand which measures of 

cognitive ability best predict performance on the factor (or factors) in the selected model.  
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In order to continue to try and identify the dimensionality of the PLT, item I4 was 

dropped and the tests of model 1 (the 1-factor model), model 2 (the 4-factor model), 

model 3 (the 3-factor model), model 8 (the 2-factor model explaining the material 

conditional and biconditional items), and model 9 (the 1-factor model explaining the 

material conditional and biconditional items) were tested again with the remaining 15 

PLT items.  These modified models are designated with the suffix “b” to reflect this 

change; see Figures 10-14 for diagrams of the updated models.  Model 6, the model 

representing that the material conditional factor explaining the material conditional items, 

could not be tested as it was now saturated and just-identified, as it only has 3 indicators.   

By examining the fit indices for model 1b, the unidimensional model with all 15 

items representing a single “logical ability” factor, this model is not a plausible 

explanation of the data.  The χ
2
 test was significant, the CFI value was well below 

suggested cutoff values, the RMSEA was well above suggested cutoff values, and the 

SRMR was large, indicating several areas of local misfit.  The pattern coefficients for the 

items ranged from -.11 to .98, indicating items ranged from being weakly and negatively 

associated with the factor to strongly and positively associated with the factor; see Table 

7 for the standardized factor pattern coefficients for models 1b, 4b, and 5b.   

Models 2b and 3b both did not converge to an admissible solution again.  In both 

of these solutions, the phi matrix was non-positive definite.  In Model 2b, the reproduced 

correlation between the conjunction subscale and the material conditional subscale was 

2.31, and the reproduced correlation between the conjunction subscale and the 

biconditional subscale was 2.32; both out-of-bounds solutions.  Similarly, in Model 3b 

the reproduced correlation between the conjunction subscale and the conditionals 
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subscale was 2.54.  Given that the conjunction subscale had little variance and did not 

correlate well with the other subscales, the inclusion of this subscale in models 2b and 3b 

was the reason that models were not able to converge to an admissible solution.   

Model 8b, the 2-factor model with the material conditional factor explaining the 3 

material conditional items and the biconditional factor with 4 items, is a plausible 

explanation of the data.  The χ
2
 test was significant, so the other fit indices were 

examined to further understand the fit of the model.  The CFI was above suggested cutoff 

values, the RMSEA was below the suggested cutoff values, and the SRMR was very low.  

Importantly, no standardized (correlation) residuals were above |.10|.  The values of the 

pattern coefficients between the three material conditional items (I1, I2, and I3) and the 

material conditional factor were (respectively) .93, .97, and .96.  The values of the pattern 

coefficients between the four biconditional items (B1, B2, B3, and B4) and the 

biconditional factor were (respectively) .96, .96, .98, and .97.  The correlation between 

the material conditional factor and the biconditional factor was .94.  These values 

indicate that both of these constructs are able to account for a large amount of variance in 

these items.   

Model 9b, a 1-factor model representing the conditionals explaining the 3 material 

conditional items and 4 biconditional items, is also a plausible explanation of the data, as 

the fit statistics for this model were similar to those found in model 10b.  Again, no 

standardized residuals were above |.10|.  The values of the pattern coefficients between 

the seven conditionals items (I1, I2, I3, B1, B2, B3, and B4) and the conditionals factor 

were (respectively) .91, .96, .94, .95, .95, .97, and .97.  These values indicate that a single 
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factor representing the conditionals items accounted for a large amount of variance in 

each of the conditional items.  Cronbach’s alpha for the factor was .924.   

Model Modifications 2 

Admissible solutions were now obtained for models 8b and 9b, so conclusions 

can be drawn about the hypothesis that a single conditionals factor explains the data from 

the material conditional and biconditional items.  The fit statistics for model 8b and 

model 9 are similar, and the correlation between the two factors in model 8b was very 

high (.94).  Thus, the hypothesis that a single factor explains the data of these items is 

supported, and the more parsimonious model is said to best represent the data from these 

two subscales.   

However, no models still were able to provide insight into the dimensionality of 

the remaining 15 PLT items, as model 1b did not fit the data well and models 2b and 3b 

did not converge to an admissible solution.  The conjunction subscale had little variance, 

which can lead to problems in obtaining an admissible solution when this subscale was 

included in a model, so this subscale and the accompanying four conjunction item were 

dropped.  A final model was tested (3c), a 2-factor model with a disjunction factor and a 

conditionals factor, in order to see if this model could be a plausible explanation of the 

remaining 11 items on the PLT.  See Figure 15 for a diagram of the hypothesized model.   

This final model is a plausible explanation of the data from the disjunction, 

material conditional, and biconditional items.  The χ
2
 test was significant, but the CFI 

was above suggested cutoff values and the RMSEA was below the suggested cutoff 

values, even when using the more stringent values than suggested for models with non-

normal data, as per Nye and Drasgow (2011).  The SRMR was lower than suggested 
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cutoff values and seven standardized residuals were above |.10|: two had values of -.17, 

two had values of |.15|, one had a value of -.14, one had a value of -.11, and one had a 

value of .10.  The pattern coefficients between the disjunction subscale and D1-D4, were, 

respectively, .79, .85, .72, and .90, indicating that this factor is explaining a moderate 

amount of variance in these items.  The pattern coefficients between the conditionals 

subscale and items I1-I3 and B1-B4, were, respectively, .91, .96, .94, .95, .94, .97, and 

.97, indicating that this factor is explaining a large amount of variance in their respective 

items.  The correlation between the conditionals factor and the disjunction factor was .40.  

Thus, the 2-factor model (3c) was said to have adequate fit and to be a plausible 

explanation of the data from the 11 PLT items. 

Multiple Regression Results 

With the factor structure of the PLT properly understood, multiple regression 

analysis could be used to answer the main research questions of interest.  I hypothesized 

that the cognitive ability measures that are associated with Type 2 thinking, the Belief 

Bias Syllogisms (Evans & Curtis-Holmes, 2005) and the Cognitive Reflection Test 

(Toplak, West, & Stanovich, 2011), would be significant predictors of performance on 

the PLT.  I also hypothesized that the cognitive ability measures that significantly predict 

the ability to make the deductive inferences necessary on the two subscales present in the 

PLT will be different.  Furthermore, because the items on the conditionals subscale are 

more cognitively sophisticated than those on the disjunction subscale, the BBS and CRT 

were expected to be more strongly associated with scores on the conditionals subscale 

than the scores on the disjunction subscale. 
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In light of the multi-dimensional factor structure of the PLT, it is possible that 

some of the significant predictors of performance on the PLT could be masked if relying 

solely upon a total score.  To avoid this potential limitation, three multiple-regression 

analyses were planned.  These included comparisons of which measures of cognitive 

ability are significant predictors of: (1) the participant’s performance of the 11-item PLT; 

(2) the participant’s performance on the disjunction subscale alone; and (3) the 

participant’s performance on the conditionals subscale alone.   

A final multiple regression model was planned to see which predictors might be 

able to best explain the variance on the conjunction subscale model.  However, the factor 

analysis revealed that this subscale did not consistently explain a significant proportion of 

the variance in the conjunction items. Despite this lack of variance that limits the 

inferences than can be made from the conjunction subscale, the results of this analysis are 

reported for the sake of completeness. 

In order to best understand the relationship and unique contribution of each 

predictor in the models, the variables were entered in four steps.  The SAT Mathematics 

and SAT Verbal scores were entered first, as these scores have consistently been found to 

correlate highly with general intelligence in psychological science research.  The N-back 

task was entered next; the inclusion of this task is to serve as another measure of general 

intelligence that would account for additional unique variance over and above the SAT 

scores, allowing for more informative interpretations of the other cognitive ability 

measures included.  The Belief Bias Syllogisms task scores were entered next and the 

Cognitive Reflection Test scores were entered last.  These last two measures are thought 

to be able to account for unique variance associated with Type II processing and higher 
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levels of cognitive sophistication, after controlling for the shared variance between the 

measures.  While the variables were entered one at a time in the model in order to better 

understand the effect of each measure in the models given the previous variables already 

in the model, the final models (including all of the cognitive ability measures) are of most 

interest.  As such, only the final models for each dependent variable will be interpreted. 

Importantly, even though the range of scores on the disjunction and conjunction 

subscales was limited (0 – 4), multiple regression analyses were used because this 

analysis has been demonstrated to be robust to violations of the assumption that the 

underlying variable of interest is normally distributed (i.e. large kurtosis and skewness 

absolute values) when sample sizes are large (greater than 200; Waternaux, 1976).  The 

data from the conjunction subscale suggests that that this variable is not normally 

distributed in the sample, so even more caution is warranted (in addition to the previous 

cautions) when making inferences based on the results of the model predicting the 

conjunction subscale.   

11-item PLT.  The final model including all of the cognitive ability measures 

accounted for a significant percentage of the variance in the 11-item PLT (R
2 

= .343, F 

(5,332) = 34.610, p < .001, 95% CI: .252 to .417), and more variance than the model with 

only SAT scores, the N-back task, and BBS (R
2
Δ = .030, FΔ (1,332) = 22.349, p < .001).  

The CRT (β = .256, p < .001, sr = .210), the Belief Bias Syllogisms (β =.230, p < .001, sr 

=.192), the N-Back Task (β =.134, p = .008, sr =.120), and SAT Verbal scores (β =.119, 

p = .027, sr =.099) all contributed to the model, while SAT Mathematics scores did not (β 

= .070, p = .259, sr = .050).  Summaries of the predictors in each of the models can be 

found in Table 9.  Table 9 shows that as the N-Back, BBS, and CRT are added into the 
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models, the semi-partial correlations between SATM and SATV and the 11-item PLT 

decrease substantially, and that the measures indicative of Type II processing account for 

a significant amount of variance in the 11-item PLT scores.  The multiple regression 

model summaries can be found in Table 10, showing that the addition of the N-Back, 

BBS, and CRT all produced statistically significant increases in the amount of variance 

explained in the 11-item PLT. 

Disjunction Subscale.  The final model including all of the measures accounted 

for a significant percentage of disjunction subscale score variance (R
2 

= .218, F (5,332) = 

30.830, p < .001, 95% CI: .134 to .289), and more variance than the model with only 

SAT scores, the N-back task, and BBS (R
2
Δ = .010, FΔ (1,332) = 4.068, p = .045).  The 

N-back task (β = .125, p = .021, sr = .112), Belief Bias Syllogisms (β = .164, p = .005, sr 

= .137), and the Cognitive Reflection Task (β = .119, p = .045, sr = .098) all contributed 

to the model, with SAT Math (β =.130, p = .053, sr = .094) and  SAT Verbal (β = .106, p 

= .071, sr = .088) no longer contributing to the model.  Summaries of the predictors in 

each of the models can be found in Table 11.  Table 11 also shows that as the N-Back, 

BBS, and CRT are added into the models, the semi-partial correlations between SATM 

and SATV and the disjunction subscale scores decrease substantially, and that the 

measures indicative of Type II processing account for a significant amount of variance in 

the disjunction subscale.  The multiple regression model summaries can be found in 

Table 12, showing that the addition of the N-Back, BBS, and CRT all produced 

significant increases in the amount of variance explained in disjunction subscale scores.   

Conditionals Subscale.  The model including all of the measures accounted for a 

significant percentage of the Conditional subscale variance (R
2 

= .213, F (5,332) = 
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17.954, p < .001, 95% CI: .129 to .284), and more variance than the model with only 

SAT scores, the N-back task, and BBS (R
2
Δ = .047, FΔ (1, 332) = 19.670, p < .001).  

Interestingly, only the BBS scores (β = .192, p = .001, sr =.161) and CRT scores (β 

=.263, p = .<.001, sr = .216) contributed to the model, with SAT Mathematics (β = -.003, 

p = .960, sr = -.002), SAT Verbal (β =.083, p = .158, sr = .069), and the N-back task (β 

=.089, p = .104, sr = .079) not contributing to the model.  Summaries of the predictors in 

each of the models can be found in Table 13, again showing that as the N-Back, BBS, 

and CRT are added into the models, the semi-partial correlations between SATM and 

SATV and the conditionals subscale decrease substantially and that the measures 

indicative of Type II processing account for a significant amount of variance in the 11-

item PLT scores.  The multiple regression model summaries can be found in Table 14, 

showing that the addition of the N-Back, BBS, and CRT all produced statistically 

significant increases in the amount of variance explained in the conditionals subscale.   

When comparing the results of the multiple regression analysis on the 11-item 

PLT to the results on of the multiple regression analyses of the disjunction and 

conjunction factors, specific differences should be noted.  Because there are seven items 

that are explained by the conditionals factor on the 11-item PLT, the significant 

predictors in the conditionals multiple regression model are more strongly related to the 

significant predictors in the  11-item PLT multiple regression model.  The BBS and CRT 

in the 11-item PLT (semi-partial correlations of .192 and .210, respectively) are more 

similar to the relationships between these measures and the conditionals factor (.161 and 

.216) than in the disjunction factor (.137 and .098).  The SAT Verbal score was more 

strongly related to the 11-item PLT score (.099) than to both the disjunction items alone 
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(.088) or the conditionals items alone (.069).  The N-Back task also was more strongly 

related to the 11-item PLT (.120) than to the disjunction items alone (.112) and the 

conditionals items alone (.079). 

It is important to note that inclusion of the N-Back task, Belief Bias Syllogisms, 

and the Cognitive Reflection Test impact the semi-partial correlations differently in the 

conditionals subscale multiple regression model than in the disjunction subscale multiple 

regression model.  With inclusion of these measures in the models predicting the 

disjunction subscale scores and conditionals subscale scores, SATM has a semi-partial 

correlation of .094 (p = .053) with the disjunction subscale scores, whereas this 

correlation is -.002 (p = .960) in the conditionals model.  SATV scores were less so 

affected, with a semi-partial correlation of .088 (p = .071) in the last disjunction multiple 

regression model and a semi-partial correlation of .069 (p = .158) in the last conditionals 

multiple regression model.  The rank-order of the semi-partial correlations also differed 

in the models.  The disjunction subscale was best predicted by (in order from largest to 

smallest semi-partial correlation) the BBS, the N-Back task, the CRT, SATM, and 

SATV.  The conditionals subscale was best predicted by the CRT, BBS, the N-Back task, 

SATV, and SATM. 

Conjunction Subscale.  None of the models tested accounted for a significant 

percentage of conjunction subscales scores.  However, while the final model did not 

account for a significant amount of variance in conjunction subscale scores, the N-Back 

task was a significant predictor in the model, (β = .124, p = .041, sr = .111).  See Table 

15 for summaries of the predictors in each of these models, showing that in the last model 

was the N-Back identified as a significant predictor.  Table 16 presents the multiple 
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regression model summaries, showing that no set of predictors were significant of the 

multiple regression models tested on the conjunction subscale.  An ancillary regression 

analysis was performed using only the N-Back task as a predictor of the conjunction 

subscale scores, and it was found that this model was significant (p = .016).  Because it 

was the only predictor in the model, the zero-order correlation between the N-Back task 

and the conjunction subscale (.131) is the same as the standardized coefficient (β). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 5 

Discussion 

As expected, the confirmatory factory analysis revealed that the PLT is not a 

unidimensional measure of logical ability.  Rather, a 2-factor model (3c), with separate 

factors representing the items from the disjunction subscale and the items from the 

conditionals subscale, was found to best fit the data.   While the PLT has been used as a 

summed score (Almstrum, 1999; Piburn, 1990), this finding suggests that using the PLT 

as such is not appropriate if the PLT is intended to be used as a unidimensional measure 

of basic logic reasoning.  Additionally, it is not well-advised to use the four subscales 

present on the PLT as individual subscores (Almstrum, 1999; Kim, 1995; Piburn, 1990; 

Stager-Snow, 1985) for two reasons: (1) the conjunction subscale doesn’t function 

properly due to the ceiling effect of the scores (See Table 3), causing a lack of variation 

in the items responses; and (2) the subscales created by the material conditional items and 

the biconditional items are explained by a single construct.  

The PLT can still be important in cognitive science research.  If a general 

understanding of the participants’ ability to make the types of deductive inferences 

present in the disjunction, material conditional, and biconditional items is desired, the test 

may still be used as a summed score, although it must be understood that it is 

multidimensional and thus measuring several aspects of deductive reasoning.  

Additionally, given the high correlations within the items on the material conditional and 

biconditional subscales, fewer items may be used in order to assess these abilities, 

enabling a shorter measure to be created.
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The two dimensions on the PLT can also be used as individual subscales.  This is 

supported by the moderate fit of the disjunction subscale (model 5) and good fit of the 

conditionals subscale (model 9b) when these subscales were tested without the inclusion 

of the items from the other subscales.  In the final model (model 3c), these factors were 

only moderately correlated (.40), further indicating that these abilities are distinct from 

one another. 

More importantly, several conclusions also can be drawn about the relationship 

between basic logical reasoning and the other measures of cognitive ability.  For 

example, as hypothesized, the result of the multiple regression analysis on the 11-item 

PLT was most strongly predicted by the measures indicative of Type 2 processing.  This 

result means that the ability to make the deductive inferences on the 11-item PLT are 

more strongly associated with Type 2 processing than with general cognitive ability.  

Thus, when making certain deductive inferences that are shown to be valid in 

propositional logic, general intelligence alone is not sufficient to be able to understand 

what does and does not follow by necessity.  The ability to engage in Type 2 processing, 

when slow, computationally taxing thinking occurs (Stanovich, 2010) is necessary in 

order to be able to make the correct choices on these tasks.  This is consistent with 

suggestions from previous research on other types of logical thinking (e.g., Evans & 

Curtis-Holmes, 2005; Toplak, West, & Stanovich, 2011). 

Because the PLT is multi-dimensional, it was also hypothesized that the 

relationship between the different factors on the PLT and the measures of cognitive 

ability would be different.  The disjunction subscale was most strongly predicted by the 

Belief Bias Syllogisms, then the N-Back task, and then the Cognitive Reflection Test, the 
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three statistically significant predictors in the model.  However, while SATM and SATV 

were not statistically significant by traditional cutoff standards (p = .053 and p = .071), 

the total range of semi-partial correlations between the items was .088 to .137.  These 

results have two implications: (1) that traditional general cognitive ability is influential in 

correctly completing the items testing the disjunction connective; and (2) that Type II 

processing is also influential in completing the disjunction items.  That is, the type of 

thinking necessary to make the deductive inferences necessary to complete the 

disjunction problems is driven both by general intelligence and Type II processing, but 

neither of these dominates this type of thinking. 

A contrasting outcome was obtained for the conditionals subscale.  Specifically, 

the cognitive ability measures that have been associated with engaging in Type II 

processing were much stronger predictors of performance on the conditionals subscale. 

For example, the Cognitive Reflection Test had a .216 semi-partial correlation with the 

scores on the conditional subscale, and the Belief Bias Syllogisms had a .161 semi-partial 

correlation with the scores on the conditional subscale.  Both of these semi-partial 

correlations are stronger than any of the semi-partial correlations in the disjunction 

multiple regression model.  In contrast, SATV and N-Back, both of which are more 

indicative of general intelligence, were not statistically significant predictors (p = .158 

and p = .104, respectively) and had much weaker semi-partial correlations with 

conditional subscale scores (.069 and .079, respectively).  Likewise, SATM had no 

unique relationship to the conditionals subscale score (sr = -.002, p = .960).  Taken 

collectively, these findings suggest that the type of thinking associated with Type 2 

processing more strongly drives this type of deductive inference.  One must be able to 
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engage in slow, deliberate processing in order to be able to understand what does and 

does not follow by necessity when reasoning with the material conditional and 

biconditional. 

Two similar mistake patterns in the responses to the material conditional items 

and the biconditional items indicate that the thinker that is not engaging in the type of 

thinking characteristic of Type II processing, and this was most responsible for the 

participant not correctly completing these items.  Participants often did not select figures 

in which the antecedent of the material conditional is false as being allowed by the 

sentence, and participants often did not select figures in which the both atomic 

propositions were false in the biconditional as being allowed by the sentence.  Being able 

to solve both of these types of problems requires the participant to engage in deliberative 

thinking, as they must consider the implications of the sentence for the figures which are 

not directly spoken about in the sentences provided to the participants. 

For example, the first material conditional item has the sentence of “If it is large 

then it is round,” and is followed by a large circle, a small square, a large square, and a 

small circle (these are all striped and tailed, but this information is irrelevant to the stem).  

In order to correctly mark all of the figures correctly, the participant must consider what 

implications the rule has when the figure is not large (small).  A participant that is 

engaging in quick, heuristic thinking will not engage in the deliberative type of thinking 

necessary to think through the implications of the rule for the small items.  That is, since 

the rule starts with “If it is large,” a participant engaging in heuristic processing will not 

consider what this rule implies for figures that are not large.  It is necessary to understand 
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that “If it is large then it is round” does not prohibit small figures from being allowed, 

and thus they should be marked as “allowed by the sentence.” 

Correctly marking all of the figures for the biconditional items follows a similar, 

deliberative method of reasoning in which figures that are not directly spoken about are 

not prohibited by the sentence.  For example, the first biconditional item has the sentence 

of “If it is round it is striped and if it is striped it is round,” and is followed by a white 

square, a striped circle, a striped square, and a white circle.  In order to correctly mark all 

of the figures correctly, the participant must think through what the implications are of 

the sentence for the figure that is not round and is not striped (a white square).  Again, 

there is nothing present in the sentence that prohibits a white square from being allowed 

by the sentence, and correctly identifying this figure as being allowed by the sentence 

requires the participant to follow the implications of the sentence all the way through for 

all of the figures presented.   

A large number of participants often make these mistakes in the material 

conditional and biconditional items.  They fail to mark the figures with false antecedents 

as “allowed by the sentence” in sentences that are translations of the material conditional, 

and a similar number of participants fail to mark those figures in which neither 

proposition obtains in the biconditional as being “allowed by the sentence.”  See Table 17 

for an indication of the abundance of incorrect responses to these specific figures.   

 In summary, the results of the present study show that the ability to make the 

types of basic deductive inferences found in propositional logic is related more to the 

ability to engage in sophisticated thinking than to general intelligence.  Furthermore, the 

degree of cognitive sophistication required to make these inferences differs as a function 
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of the form of the deductive inference being made.  The ability to logically reason 

through deductive tasks is multidimensional and different cognitive abilities are 

necessary to reason through problems on these different dimensions.  Thus, while the 

ability to engage in logical reasoning is clearly associated with general intelligence, 

intelligence cannot solely predict the ability to make valid deductive inferences. 

Future Research with the Propositional Logic Test 

Future research should continue to develop tests that appropriately measure 

different aspects of deductive reasoning in propositional logic.  Classical propositional 

logic concerns the study of valid inferences and no current measure (or set of measures) 

appropriately captures the breadth of this study.  The PLT only captures a small part of 

this breadth, and revisions to the PLT and the creation of other measures would be 

beneficial to better understand the relationship between deductive inference, decision-

making, and cognitive ability. 

 More broadly, it is important to note that the classical view of symbolic logic has 

been rivaled by different philosophies of logic and philosophical logics, such as temporal, 

modal, relevantist, intuitionist, many-valued, and conditional logics (e.g., Beall, 2010; 

Burgess, 2009; Priest, 2008).  These views of logic question the axioms, inference rules, 

and truth-functionality of classical logic, as well as expand upon the very foundations of 

logic itself.  That is, current measures in psychological science are insufficient to assess 

classical propositional logic inferences, and classical propositional logic is only a small 

part of the current study of logic simpliciter.  There has been very little research to date in 

psychological science non-classical logic.  However, there has been some work (e.g., 

Ripley, 2009) on these topics in the field of experimental philosophy, a new branch of 



  57                    57                                                                                                                                                                                             

   

 

 

philosophy the employs experimental methodology often found in psychological science 

studies to have empirical data to inform philosophical questions.  Future research in 

psychology should incorporate these advances in the study of logic in order to better 

understand the role of deductive inference in reasoning. 

In addition to the insufficient study on classical propositional logic and its 

variants, there is a rich history of the rigorous study of logic in non-Western cultures that 

has not yet been examined in modern cognitive science.  For example, there is a long 

history of Tibetan monastic debate (Perdue, 1992; Perdue, in press) and extensive 

scholarship of signs and semiotics in the Tibetan monastic tradition (Rogers, 2009), but 

this study has not yet been formalized or incorporated into the study of reasoning in the 

West.   
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Table 1 
Truth Tables for Conjunction, Disjunction, Conditional, 
and Biconditional Logical Connectives 

P Q    

T T T T T T 

T F F T F F 

F T F T T F 

F F F F T T 

Note:   = conjunction;  = disjunction;  = material 

conditional;  = biconditional. 
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Table 3 

Distribution of Scores on the Propositional Logic Test Subscales     

 
Score 

Subscale 0 1 2 3 4 5 6 7 

Conjunction 1 4 19 63 251 -- -- -- 

Disjunction 58 33 56 86 105 -- -- -- 

Material 
conditional 

283 12 9 13 21 -- -- -- 

Biconditional 274 11 17 14 22 -- -- -- 

Conditionals 266 12 10 9 12 7 10 12 

Note: Range of scores on the conjunction, disjunction, material conditional, and 
biconditional subscales was 0-4.  The conditionals subscale range of scores was 
0-7; one material conditional item was deleted because it was redundant. 
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Table 4 
    Polychoric Correlations between the Propositional Logic Test Subscales 

 
Conjunction Disjunction 

Material 
Conditional Biconditional 

Conjunction 1.00 
   

Disjunction .015 1.00 
  Material 

Conditional -.011 .284 1.00 
 

Biconditional -.054 .308 .903 1.00 

     

 
Conjunction Disjunction Conditionals 

 
Conjunction 1.00 

   
Disjunction .015 1.00 

  
Conditionals -.022 .302 1.00   

Note: Range of scores for the subscales is 0-4.  The conditionals subscale 
score is the combination of scores on the material conditional and 
biconditional subscales. 
N = 338. 
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Table 6 

      Fit Statistics for the Proposed Propositional Logic Test Models 

Model Χ
2
NTWLS Χ

2
S-B df CFIS-B RMSEAS-B SRMR 

Model 1b 36987.78 630.99 90 0.74 0.13 0.280 

Model 3c 2313.34 66.45 43 0.99 0.04 0.060 

Model 4 15.63 1.32 2 1.00 0.00 0.053 

Model 5 75.52 11.57 2 0.99 0.12 0.052 

Model 7 248.16 5.42 2 1.00 0.07 0.022 

Model 8b 1171.21 29.35 13 1.00 0.06 0.027 

Model 9b 1489.33 38.64 14 1.00 0.07 0.038 

Note: CFIS-B = robust comparative fit index; RMSEAS-B = robust root mean 
square error of approximation; SRMR = standardized root mean square 
residual. 
N = 338. 
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Table 8 
      Summary of Multiple Regression Predictors in Predicting the 11-Item Propositional Logic 

Test 

Model & Predictors B SE B β t p sr 

Model 1 
      SATM .012 .002 .323 5.776 <.001 .278 

SATV .008 .002 .217 3.883 <.001 .187 

Model 2 
      SATM .010 .002 .261 4.543 <.001 .215 

SATV .007 .002 .190 3.427 .001 .162 

N-Back Task 2.191 .595 .191 3.683 <.001 .174 

Model 3 
      SATM .007 .002 .189 3.257 .001 .150 

SATV .005 .002 .127 2.287 .023 .105 

N-Back Task 1.758 .585 .154 3.006 .003 .138 

Belief Bias Syllogisms .255 .055 .254 4.640 <.001 .213 

Model 4 
      SATM .003 .002 .070 1.131 .259 .050 

SATV .004 .002 .119 2.214 .027 .099 

N-Back Task 1.529 .569 .134 2.687 .008 .120 

Belief Bias Syllogisms .232 .054 .230 4.326 <.001 .192 

CRT .732 .155 .256 4.727 <.001 .210 

Note: B = unstandardized regression coefficient; SE B = standard error of the 
unstandardized regression coefficient; β = standardized regression coefficient; sr = semi-
partial correlation of the predictor and the conjunction subscale score. 
N = 338. 
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Table 9 
         Summary of Models Predicting Performance on the 11-Item Propositional Logic Test 

Model R R
2
 df F p R

2
Δ df FΔ p 

1 .472 .223 2, 335 47.987 <.001 -- -- -- -- 

2 .503 .253 3, 334 37.712 <.001 .030 1, 334 13.564 <.001 

3 .546 .298 4, 333 35.405 <.001 .045 1, 333 21.529 <.001 

4 .585 .343 5, 332 34.610 <.001 .044 1, 332 22.349 <.001 

Note: R
2
Δ = R

2
 change; FΔ = F change.  

N = 338. 
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Table 10 
      Summary of Multiple Regression Predictors in Predicting the Disjunction Subscale Score 

Model & Predictors B SE B β t p sr 

Model 1 
      SATM 0.006 .001 .288 4.963 <.001 .248 

SATV 0.004 .001 .176 3.045 .0003 .152 

Model 2 
      SATM 0.005 .001 .235 3.929 <.001 .194 

SATV .003 .001 .154 2.656 .008 .131 

N-Back Task 1.019 .344 .161 2.966 .003 .146 

Model 3 
      SATM .004 .001 .185 3.016 .003 .147 

SATV .002 .001 .110 1.867 .063 .091 

N-Back Task .854 .344 .135 2.483 .014 .121 

Belief Bias Syllogisms .098 .032 .175 2.966 .003 .147 

Model 4 
      SATM .003 .001 .130 1.939 .053 .094 

SATV .002 .001 .106 1.813 .071 .088 

N-Back Task .795 .344 .125 2.313 .021 .112 

Belief Bias Syllogisms .092 .032 .164 2.831 .005 .137 

CRT .189 .094 .119 2.017 .045 .098 

Note: B = unstandardized regression coefficient; SE B = standard error of the 
unstandardized regression coefficient; β = standardized regression coefficient; sr = semi-
partial correlation of the predictor and the disjunction subscale score. 
N = 338. 
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Table 11 
         Summary of Models Predicting Performance on the Disjunction Subscale   

Model R R
2
 df F p R

2
Δ df FΔ p 

1 .407 .165 2, 335 33.186 <.001 -- -- -- -- 

2 .432 .187 3, 334 25.572 <.001 .021 1, 334 8.798 .003 

3 .457 .208 4, 333 21.921 <.001 .022 1, 333 9.107 .003 

4 .467 .218 5, 332 18.512 <.001 .010 1, 332 4.068 .045 

Note: R
2
Δ = R

2
 change; FΔ = F change.  

N = 338. 
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Table 12 
      Summary of Multiple Regression Predictors in Predicting the Conditionals Subscale Score 

Model & Predictors B SE B β t p sr 

Model 1 
      SATM 0.006 0.002 0.226 3.799 <.001 .195 

SATV 0.004 0.002 0.165 2.771 .006 .142 

Model 2 
      SATM 0.005 0.002 0.181 2.918 .004 .149 

SATV 0.004 0.002 0.145 2.43 .016 .124 

N-Back Task 1.172 0.463 0.142 2.528 .012 .129 

Model 3 
      SATM 0.003 0.002 0.119 1.882 .061 .094 

SATV 0.002 0.002 0.091 1.508 .132 .075 

N-Back Task 0.904 0.461 0.109 1.961 .051 .098 

Belief Bias Syllogisms 0.158 0.043 0.216 3.635 <.001 .182 

Model 4 
      SATM <.001 0.002 -0.003 -0.05 .960 -.002 

SATV 0.002 0.002 0.083 1.414 .158 .069 

N-Back Task 0.734 0.45 0.089 1.63 .104 .079 

Belief Bias Syllogisms 0.14 0.042 0.192 3.306 .001 .161 

CRT 0.543 0.123 0.263 4.435 <.001 .216 

Note: B = unstandardized regression coefficient; SE B = standard error of the 
unstandardized regression coefficient; β = standardized regression coefficient; sr = semi-
partial correlation of the predictor and the conditionals subscale score. 
N = 338. 
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Table 13 
         Summary of Models Predicting Performance on the Conditionals Subscale   

Model R R
2
 df F p R

2
Δ df FΔ p 

1 .341 .117 2, 335 22.097 <.001 -- -- -- -- 

2 .365 .133 3, 334 17.099 <.001 .016 1, 334 6.39 .012 

3 .408 .166 4, 333 50.112 <.001 .033 1, 333 13.21 <.001 

4 .461 .213 5, 332 51.338 <.001 .047 1, 332 19.67 <.001 

Note: R
2
Δ = R

2
 change; FΔ = F change. 

N = 338. 
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Table 14 
      Summary of Multiple Regression Predictors in Predicting the Conjunction Subscale Score 

Model & Predictors B SE B β t p sr 

Model 1 
      SATM .000 .001 .029 .467 .641 .025 

SATV .001 .001 .090 1.429 .154 .078 

Model 2 
      SATM <.001 .001 -.006 -.099 .922 -.005 

SATV .001 .001 .074 1.173 .242 .063 

N-Back Task .324 .174 .111 1.861 .064 .101 

Model 3 
      SATM <.001 .001 .078 .078 .938 .004 

SATV .001 .001 1.294 1.294 .197 .070 

N-Back Task .342 .176 1.938 1.938 .053 .105 

Belief Bias Syllogisms -.011 .017 -.643 -.643 .521 -.035 

Model 4 
      SATM <.001 .001 .635 .635 .526 .034 

SATV .001 .001 1.337 1.337 .182 .072 

N-Back Task .362 .177 2.051 2.051 .041 .111 

Belief Bias Syllogisms -.009 .017 -.513 -.513 .608 -.028 

CRT -.066 .048 -1.376 -1.376 .170 -.074 

Note: B = unstandardized regression coefficient; SE B = standard error of the 
unstandardized regression coefficient; β = standardized regression coefficient; sr = semi-
partial correlation of the predictor and the conjunction subscale score. 
N = 338. 
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Table 15 
         Summary of Models Predicting Performance on the Conjunction Subscale   

Model R R
2
 df F p R

2
Δ df FΔ p 

1 .108 .012 2, 335 1.980 .140 -- -- -- -- 

2 .148 .022 3, 334 2.484 .061 .010 1, 334 3.463 .064 

3 .152 .023 4, 333 1.963 .100 .001 1, 333 0.413 .521 

4 .169 .029 5, 332 1.953 .085 .006 1, 332 1.893 .170 

Note: R
2
Δ = R

2
 change; FΔ = F change.  

N = 338. 
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Table 16 
      Number of Participants Correctly Identifying the False Antecedent of the 

Material Conditional and the Two False Propositions of the Biconditional 
as "Allowed By The Sentence" 

 

Material Conditional 
False Antecedent and False 

Consequent 

Material Conditional 
False Antecedent and True 

Consequent 

 
I1 I2 I3 I1 I2 I3 

Correct 53 57 66 46 43 41 

Incorrect 285 281 272 292 295 297 

       

 

Biconditional 
Two False Propositions 

  

 
B1 B2 B3 B4 

  Correct 49 37 61 61 
  Incorrect 289 301 277 277     

Note.  According to the propositional logic truth tables, these items should 
be "allowed by the sentence." 
N = 338. 
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Figures 

Figure 1. 

 

Model 1. A one-factor model based on all 16 Propositional Logic Test items 
representing the construct of basic logic ability. 
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Figure 2. 

 

Model 2. A 4-factor model based on all four of the binary logical connectives on 
the individual subscales of the Propositional Logic Test correlating with one 
another. 
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Figure 3. 

 

Model 3.  A 3-factor model combining the material conditional and biconditional 
subscales of the Propositional Logic Test into a conditionals subscale, with the 
three Propositional Logic Test subscales correlating with one another. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



  77                    77                                                                                                                                                                                             

   

 

 

Figure 4. 

 

Model 4. A model representing the conjunction subscale of the Propositional 
Logic Test.  Standardized results are reported. 
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Figure 5. 

 

Model 5. A one-factor model representing the disjunction subscale of the 
Propositional Logic Test.  Standardized results are reported. 
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Figure 6. 

 

Model 6. A one-factor model representing the material conditional subscale of the 
Propositional Logic Test. 
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Figure 7. 

 

Model 7. A one-factor model representing the biconditional subscale of the 
Propositional Logic Test.  Standardized results are reported. 
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Figure 8. 

 

Model 8. A two-factor model representing the material conditional and 
biconditional subscales of the Propositional Logic Test correlating with one 
another. 
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Figure 9. 

 

Model 9.  A one-factor model representing the combination of the material 
conditional and biconditional items representing a conditionals factor. 
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Figure 10.

 

Model 1b. A one-factor model based on 15 Propositional Logic Test items 
representing the construct of basic logic ability; one of the material conditional 
items (I4) has been removed from Model 1. 
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 Figure 11. 

 

Model 2b. A 4-factor model based on all four of the binary logical connectives on 
the individual subscales of the Propositional Logic Test correlating with one 
another; one of the material conditional items (I4) has been removed from Model 
2. 
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Figure 12. 

 

Model 3b. A 3-factor model combining the material conditional and biconditional 
subscales of the Propositional Logic Test into a conditionals subscale, with the 
three Propositional Logic Test subscales correlating with one another; one of the 
material conditional items (I4) has been removed from Model 3. 
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Figure 13. 

 

Model 8b. A two-factor model representing the material conditional and 
biconditional subscales of the Propositional Logic Test correlating with one 
another; one of the material conditional items (I4) has been removed from Model 
8. Standardized results are reported. 
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Figure 14. 

 

Model 9b. A one-factor model representing the combination of the material 
conditional and biconditional items representing a conditionals factor; one of the 
material conditional items (I4) has been removed from Model 9. Standardized 
results are reported. 
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Figure 15. 

 

Model 3c. A two-factor model based on the combination of the disjunction 
subscale and the conditionals subscale of the Propositional Logic Test; one of 
the material conditional items (I4) has been removed from Model 5. Standardized 
results are reported. 
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Appendices 

Appendix A 

Original Paper and Pencil Version of the Propositional Logic Test 

Propositional Logic Test Instructions Page 
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Propositional Logic Test Items 
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Appendix B 

Screenshots of the Computerized Version of the Propositional Logic Test 

Computerized Propositional Logic Test Instructions Page 

 
 



  92                    92                                                                                                                                                                                             

   

 

 

 

Computerized Propositional Logic Test Items 
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Appendix C 

Belief Bias Syllogism Items 

 

Participants are given the following instructions: 

 

In the following problems, you will be given two premises which you must assume 

are true.  A conclusion from the premises then follows.  You must decide whether 

the conclusion follows logically from the premises or not.  You must suppose that 

the premises are all true and limit yourself only to the information contained in the 

premises.  This is very important.  Decide if the conclusion follows logically from the 

premises, assuming the premises are true, and select your response. 

 

After each item the participant is given the choices “Conclusion follows logically from 

premises” and “Conclusion does not follow logically from premises.” 

 

1.  PREMISES: 

All guns are dangerous. 

Rattlesnakes are dangerous. 

CONCLUSION: 

Rattlesnakes are guns. 

 

2.  PREMISES: 

All living things need water. 

Roses need water. 

CONCLUSION: 

Roses are living things. 

 

3.  PREMISES: 

All things made of wood can be used as fuel. 

Gasoline is not made of wood. 

CONCLUSION: 

Gasoline cannot be used as fuel. 

 

4.  PREMISES: 

All African countries are hot. 

Canada is not an African country. 

CONCLUSION: 

Canada is not hot. 

 

5.  PREMISES: 

All bats have wings. 

Hawks are not bats. 

CONCLUSION: 

Hawks do not have wings. 
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6.  PREMISES: 

All birds have feathers. 

Robins are birds. 

CONCLUSION: 

Robins have feathers. 

 

7.  PREMISES: 

All fish can swim. 

Tuna are fish. 

CONCLUSION: 

Tuna can swim. 

 

8.  PREMISES: 

All large things need oxygen. 

Mice need oxygen. 

CONCLUSION: 

Mice are not large things. 

 

9.  PREMISES: 

All mammals walk. 

Whales are mammals. 

CONCLUSION: 

Whales walk. 

 

10.  PREMISES: 

All nuts can be eaten. 

Rocks cannot be eaten. 

CONCLUSION: 

Rocks are not nuts. 

 

11.  PREMISES: 

All things that are alive drink water. 

Televisions do not drink water. 

CONCLUSION: 

Televisions are not alive. 

 

12.  PREMISES: 

All things that are smoked are good for the health. 

Cigarettes are smoked. 

CONCLUSION: 

Cigarettes are good for the health. 
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13.  PREMISES: 

All things that have a motor need oil. 

Automobiles need oil. 

CONCLUSION: 

Automobiles have motors. 

 

14.  PREMISES: 

All things that move love water. 

Cats do not love water. 

CONCLUSION: 

Cats do not move. 

 

15.  PREMISES: 

All things with four legs are dangerous. 

Poodles are not dangerous. 

CONCLUSION: 

Poodles do not have four legs. 

 

16.  PREMISES: 

All unemployed people are poor. 

Rockefeller is not unemployed. 

CONCLUSION: 

Rockefeller is not poor. 
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