Journal of Conventional Weapons Destruction

Volume 7
Issue 1 The Journal of Mine Action

Article 6

April 2003

A Fresh Approach to Road Clearance Operations

Roger West
Golden West Humanitarian Foundation Humanitarian Foundation

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal
Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

West, Roger (2003) "A Fresh Approach to Road Clearance Operations," Journal of Mine Action : Vol. 7 : Iss. 1 , Article 6.
Available at: https://commons.lib.jmu.edu/cisr-journal/vol7/iss1/6

A Fresh Approach to Road Clearance Operations

UXB International has employed a combined approach to clearance activities in the Temporary Security Zone (TSZ) between Eritrea and Ethiopia. The author discusses how his organization uses this unique method of mine clearance.
by Roger R. Hess, Africa Regional Director, UXB International

Introduction

Many groups have inquired about the large number of hectares being searched and cleared by our small team assigned to the Route Verification and Clearance Program in Eritrea. While the approach we are using is unique, it is not completely original. Various clearance organizations have employed combined methods, and many have produced good results; ours simply takes the combined approach couple steps further

The objectives set out for our team were straightrorward: search and verify the roadways
in the TSZ; clear any signls in the TSZ; clear any signals encountered ang loe way, and do it if a manner Mat Action Cordination Center (MACC) The Action Coordination Center (MACC). The expected search rate of the Route Verification Team (RVT) was to be $15-20 \mathrm{~km}$ per working day while being able to detect a 100-mm piece fUXO 100 cm $100-\mathrm{mm}$ piece of UXO at 100 cm .

UXB had already developed some rapid wide-area search techniques for site characterization projects on formerly utilized defense sites (FUDS) in the United States; however, we needed to adapt the equipment and the methodology to meet

Infrastructure

The difference between Asmara and the TSZ is night and day, in both infrastructure and ambient temperature. Asmara is the capital city of Eritrea. It sits at $3,000 \mathrm{~m}$ above sea level, has modern facilities and good by the The TSZ is a 25 km wide strerch by the war. The TSZ is a 25 -km wide strect of land designated to separate the warring parties. To say this area is lacking develop understatemen. he primary activity in this region for the last 30 years has been war.

The drive into the western sector from

Asmara is less than to eight hours,

to eight hours,
depending on
En route to the
western sector, you pass through the cities of Keren and Berantu. One can find the basi food supplies to help sustain a field operatio here, but potable water and any major equipment repairs or spare parts are simply not available and need to be brought in.

Upon leaving Berantu, you enter one of the poorest regions of the world. Small huts constructed from rocks, mud and straw make up the most of the structures. In spite of the hardships the local population endures on a daily basis, they remain extremely friendly and sociable.

Roadways

The TSZ has various mountain ranges weaving through it, and being desert environment, washouts ar extremely common during the rain season. Berantu is the last city that has anything resembling pavement. The road from here on out vary from extremely steep, four-meter mountain passesto fairly hat, nime-meter-wide main supply routcs MSRs). In the last 18 monts, hre have been more than 25 accidents involving AT mines on these roads, claiming the lives locals and UN personnel

Prime Movers

The vehicle used as the prime mover for this project needed to be very robust highly mobile and mine-resistant. Eritre has a severe shortage of spare parts and trained maintenance technicians for the vehicle is, the better suited it becore

For his we selected the Sour "Samil" series of vehicles. They were widely used in southern Africa and are still readily available to meet the and and avalable to meet theongong demand. Lis other systems built in South Africa, the vericle was designed to work in harsh enorly. A denz air-cooled normally aspirated diesel engine powers th vehicke, it wis to drive, in is extrenty mobilloror conditions, very relia

Detection System

UXB designed the Kinematic Induction Magnetic Survey (KIMS) system as a modular detection platform for the site characterization projects in the United States. To meet our scope of works, we decided to use the UPEX 740 wideloop deep-buried landmine and UXO detection system made by Ebinger
The antenna portion of the UPEX is made from a flexible coil similar to coaxial cables. This allows the operator to change the loop configurations between $1 \times 1-\mathrm{m}$ or $1 \times 2-\mathrm{m}$ loops, depending on the detection requirements.
Each configuration has its own unique characteristics and detection depths. The cables themselves are to use the locally availabe maerias
as standard PVC pipe to fabricate the carrier system. We've had excellent succes with the UPEX in a "Mag \& Flag" role searching for deeply buried landmines and UXO in southeast Asia over the past four years, and we were very confident that it would meet or exceed the requirements.

Differential Global

 Positioning Systems (DGPSs)A DGPS is incorporated into the KIMS to accurately track, record and relocate the suspect signals. The KIMS was initially designed to search wide areas such as open fields, so static RTK transmitters with a "roving" receiver mounted on the detection platorm were previously employed. This provides reacquisition capabilities of less than 20 cm ; however he drawback is the limited range Depending on the terrain, the Rover can only travel four to six km from the static transmiter. Beyond that, the trans

To improve our range and productivis we incorpor wide and productivity from Omni-Sar which is comms system in large-scale arriculum pplications. This des not and maritime base station does not require a static ted 100 dhe sysun is only tracked anywhere in Africa

Computers, Software and Peripherals

To keep everything as commercial off-he-shelf (COTS) as possible, normal Panasonic "ToughBook" laptops were used and standard PCMICA port expanders were installed. The detectors are timed and

fired from a central control box, which also collects the signals. A custom-made "black box combines the signals with the DGPS location and feeds this directly into the computer through the PCMICA slots. The commercially available Geosoft "Geourveyor" program was then slightly The the with the new system.
The advantage of this approach is that the data is recorded and stored over 20 times faster than what can be accomplished with standard data-logging devices. The hardware involved with this configuration is small enough to be packed into a footlocker for transport and requires very little space when ataled in the prime mover.
The XI locations of the route raveled and of the suspect signals located during the search are directly transferable into an MS Access database program. This lows all of the data recorded during the search to be used in standard Geographic nformation System (GIS) software programs, such as Arc View or the Mine Action (IMSMA) database.

Mounting Systems

\qquad great deal of flexibility in how it is great deal of flexibility in how it is mounted, whics
largest benefits.

Prior to our arrival in country, we planned to use a flexible sled design to tow the detection array. However, upon conducting operational assessments of th area, it was decided that the material of fust we could assemble them. We the decided to go with the tradions ferrs dailer

Once the on the previous KIMS. we found that the undeveloped roadway in Eritrea were too much for the material used. The flex of the fiberglass beam limited the search speed to boun to limited the search speed to two to three km per hour and began to
cracks even prior to our deployment.
to correct these problems and increase our search speed, a suspended front-mounted carrier was fabricated using hergass beams from raila locally available materials. This design Pr " "wi" " included wings on either side that could be rased and row the vehicle to allow for traffic and tight spots, Heav-duy hinges wed rinced on encarrier frame abeds it placed on the carrier frame, alowng flex upward when makg oon road while crossing riverbeds and washouts. In spite of its crude appearance, th pers. The eed wa in best. The speed was inceased to eight nire of the carrier allowed the KIMS path of the carrier allowed the KIM
system to scan over $35 \mathrm{~km} / 210,000 \mathrm{sq} \mathrm{m}$ per day. This was a major accomplishment or the team, but it was only half the job. The next task is to clear the suspected signals located by the KIMS.

Mapping

Once the data is processed and analyzed, maps like the one in Figure are printed for the clearance team. The blue path displays the total search swath, while the black lines show the individual search coils (three coils were used during the scan shown below). The red areas show the estimated boundaries of the suspect items and the yellow dots indicate the estimated center (or centers) of mass.

Combined Clearance Approach

Upon receiving the maps, the clearance teams begin planning their tasks. Areas that show very few signals obviously go very quickly, but most of the roadway produce a large number of signals, so the work becomes more intensive.

As the teams are working on roadways, the AP mine/tripwire threat is non-existent and freedom of movement is quite good. This allows for a great deal of flexibility in adjusting the approach.

Reacquisition

To accurately relocate the suspect targets, the location of each signal is transferred from the computer into handheld DGPS/GIS unit with a backpack mounted antenna. The reacquisition person then guides the team within two m of the suspect item and indicates where the poin hould be Even hough the accurey of the backpack is rated the same as the vehite DGPS ($+/-1 \mathrm{~m}$), in actual clearance

operations, the reacquisition person has commonly achieved +30 cm whi relocating the signal.

Once in the area the deminer sweep wh the detctor, looking for ny signts. wurtace scrap normally for any signals. Surface strap normaly accouts for 80 is safely removed the ated, so once that for subure signas. Should one be for substrace signals. Should one be form 1 . ection dog (MDD) search

Mine Detection Dogs

The MDD handler checks the area with both of the dogs. The area will be marked as hot from a single "positive" gral by either dog. However if b th dicate no presence of explosive, then dinal is marked as "no explosive harard" and the team moves on.

This has reliably eliminated an dditional 80 percent of the subsurf sgnals remining after the reacquisitio team has moved on.

Mechanical Assistance

Trying to uncover a suspect signal buried deep in a sun-baked, dirt, clay and gravel roadway is simply asking for trouble. If done safely, only small gardening tool could be used making it extremely tedious and time consuming Picks are actually no need his is unecessarily dangerous for the demine So to counter this situation echaical asistance is brow in to help mechanical the task.

The teams have a 5.5 -ton armored mini-excavator, which performs 90 percent of all intrusive work and greatly improves the speed and safery A mine protected vehicle is also parked at the site, allowing the ceam leader to observe th from thase leader to observe the accident occur.
Small signals comparable to those of $60-\mathrm{mm}$ mortar or a hand grende are imply scooped up in the bucket and spread our for inspection by the manu peam. Larger signals comparable to an AT mine are marked with a crossed circle Th tells the phat operator to dig oneach sid without touching the circle itself. This gives the manal team good access to th
des of the suspect item without applying any pressure to the top.

Quality Control (QC

Checks

An additional benefit of this approach is the ability to conduct verifiable QC checks using "seeds." These ensure the system is operating correctly and the depth of detection is being met.

A "seed" is an identical copy of what is being searched for (i.e, TM-57 AT Mine $82-\mathrm{mm}$ Mortar etc). They are free from explosive (FFE) to ensure safery but are otherwise identical to the thea munitions of the area.

The Team Leader or Quality Assurance (QA) Inspector buries the seeds in randomly selected areas that have been scanned and directs the KIMS to rescan the site.

This can be used to compare against the other signals that have been located, or can be used in areas that show no contamination to verify that nothing is actually present. The system is fairly fool proof: it either shows up constituting a "pass," or doesn't show up, which means it has failed and the area must be re-searched. To date, no seed has ever been missed.

Management Assistance

As mentioned before, the tracking and mapping system used on the KIMS can be directly transferred into GIS. This can also be overlaid onto geo-referenced satellite images or aerial photography to give accurate information over topographical details that are only two to three months old This provides the mine action manager an effective tool that can accurately track the progress and clearly show what is now considered safe.

A Fresh Approach to Road Clearance Operations

Performance Data

Manufacturers often claim their systems "can, might or could" accomplish " X " number of sq m over a set period of time if the right conditions apply, However, the bottom line of "What has done?" is not often answered with 100 percent accuracy.

The combined approach we are using in Eritrea has produced the following results in less than four months of operations:

The KIMS scanned over $388 \mathrm{~km} /$ $2,700,000 \mathrm{sq} \mathrm{m}$ of roadway. This was done in 19 days of scanning with a single vehicle and a four-man crew. Daily progress varies between 15 and 35 km per day dependin on traffic and satellite reception. The remaining time was spent processing the da to produce maps for the clearance team

- During this period, the single Manual Clearance Team using th combined approach cleared over $112 \mathrm{~km} /$ $785,000 \mathrm{sq} \mathrm{m}$ of the roadway scanned by the KIMS. This single team is compried of only five personnel
- Within the 112 km area, 2,167 suspect signals were recorded during the scan. The combined approach eliminated 2,090 of those signals without intrusi actions (i.e., digging)
-The remaining 77 intrusive actions produced one Russian-made PMD-6 AP mine, a Czech model 34 hand grenade, and various bomb fragments with explosive residue at depths ranging between 10 cm and 75 cm .

In comparison,

- A well-known clearance organization operating in the same area recently published that they had cleared $2,000,000$ sq m in the last 24 months. This was accomplished through conventiona methods and with a staff of over 350 people

- Another clearance organization king in a nearby country with a much smaller team used conventional manual/ MDD methods to clear 11 km of roadway. This project took 12 months.

The numbers speak for themselves.
While the system is still in its infancy for mine action, this combined approach of geophysical searching, topographical mapping, and following with manual, DD already proven to be fast, accurate and very cost-effective. As with any system,
 results produced so fa, hose inprovemen
-All praphics courtes of the aut
Since this article was written, the author has lef his position at UXB International. To contact his directly, please use his personal e-mail address

Contact Information

UXB International E-mail: solutions@uxb.com Website: www.uxb.com

Gareth Hawkin
of DDG/ Karenswood
checking a subsurface signal with MD Tom."If the MDD does no
ick upan pick up an explosive s
the area is ouble-checked with a second is clear.

