Infrared radiation, thermoelectricity and chaos

James Madison University, Harrisonburg VA, Wednesday June 17, 2015

Practical Realization of ZT>1 from the

Materials Perspective

Joseph Poon

Department of Physics, University of Virginia

Terry Tritt's group @ Clemson U. Lee Williams @ Nanosonic Supported by DOE STTR *Phases 1 & 2*

Estimated U.S. Energy Use in 2012: ~95.1 Quads

Source: LLNL 2013. Data is based on DOE/EIA-0035(2013-05), May, 2013. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

Major Source for Waste Heat Recovery

Spark Assisted Gasoline internal Combustion Engine (Light Truck or Passenger Vehicle)

Thermoelectric Effect

temperature difference \leftrightarrow electrical voltage

No moving parts, potentially green tech.

Areas that can benefit from thermoelectric include: Transportation systems, power plants, and geothermal etc. Cooling of computer chips, low noise amplifiers, IR detectors.

Thermoelectric Materials Performance

Figure-of-merit (Z), Dimensionless figure-of-merit (ZT)

S = Thermopower (Seebeck coeff.).

σ

К

 $\rho\text{=}$ Electrical resistivity, $\sigma\text{=}$ Electrical conductivity.

 κ = Thermal conductivity (electronic κ_{el} + lattice κ_{L}) Wiedermann-Franz Law κ_{el} =LσT.

> ZT optimization needed due to conflicting factors

> > Need independent tuning of $S(\sigma,..)$ and κ_{L}

 $\bigotimes_{\substack{\kappa=\kappa_{e}+\kappa_{e}}}^{\sigma\sim\kappa_{e}}$

Need ZT to be high along the legs of the device.

The rest of this talk will focus on

- Materials consideration.
- TE properties enhancing mechanisms.
- Half Heusler alloys and nanostructuring results.
- Future opportunities.

Nanostructured Thermoelectric Materials

Materials characterized by a high density of interfaces that provide

- . Efficient thermal barrier and scattering of phonons. Less effect on electrical conductivity (mean free path L_{electron}<L_{phonon}).
- . Efficient energy filtering effect leading to higher thermopower.

Materials Consideration Locating high-ZT compositions is a challenge!

ZT is increasing function of *E(bandgap)* and parameter $B=N_v\tau(m)^{3/2}/m_i\kappa_L$

where m = band mass determined by electronic density of states $m_i = band mass$ in direction of current ($m_i=m$ in cubic crystal) $N_v = degeneracy$ of the band near Fermi level

Several general guidelines: F. J. DiSalvo, Science 285, 703 (1999)

Semiconductor can be doped to a high carrier density of $\sim 10^{19}$ /cm³ to give optimal S²/p.

High symmetry crystal structure (high N_v) with a large number of heavy elements per unit cell (low κ_L). *Complex crystals can help*.

Small electronegativity differences between the elements favors high mobility.

Alloying or "rattling" to further reduce the thermal conductivity.

A high effective mass.

Complex Crystal Systems (ZT>1 to 2.6)

(Scatter phonons and enhance power factor)

ZrNiSn

Skutterudite

LaCo₄Sb₁₂

Chalcocite

Cu₂S

Lead Chalcogenide

(PbTe)_{1-2x}(PbSe)_x(PbS)_x

Chevrel Phase

Cu₄Mo₆Se₈

G. Nolas, S. J. Poon, M. Kanatzidis, MRS Bull. 30, 199-205 (2006).
R.J. Korkosz, T.C. Chasapis, S.H. Lo, J.W. Doak, Y.J. Kim, C.I. Wu, E. Hatzikraniotis, T.P. Hogan, D.N. Seidman, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 136, 3225 (2014).
Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L.D. Chen, and G.J. Snyder, Adv. Mater. 26, 3974 (2014).

Thermoelectric Materials with $ZT \ge 1$

Overview of *ZT* vs temperature for different thermoelectric materials. The detailed compositions are Bi–Te (*n*): $Cu_{0.01}Bi_2Te_{2.7}Se_{0.3}$ [4]; Bi–Te (*p*): $Bi_xSb_{2-x}Te_3$ [5]; Pb–Te (*n*): PbTe_{0.9988}l_{0.0012} [8]; Pb–Te (*p*): $K_{0.02}Pb_{0.98}Te_{0.15}Se_{0.85}$ [9]; skutterudite (*n*): $Ba_{0.08}La_{0.05}Yb_{0.04}Co_4Sb_{12}$ [10]; skutterudite (*p*): $Ce_{0.45}Nd_{0.45}Fe_{3.5}Co_{0.5}Sb_{12}$ [11]; half-Heusler (*n*): $Hf_{0.25}Zr_{0.75}NiSn_{0.99}Sb_{0.01}$ [17]; half-Heusler (*p*): $Hf_{0.44}Zr_{0.44}Ti_{0.12}CoSn_{0.8}Sb_{0.2}$ [18]; Si–Ge (*n*): $(Si_{95}Ge_{5})_{0.65}(Si_{70}Ge_{30}P_{30})_{0.35}$ [6]; Si–Ge (*p*): $(Si_{80}Ge_{20})_{0.8}(Si_{100}P_{3})_{0.2}$ [7]. **S. Chen and Z. F. Ren, Mater. Today 16, 387 (2013).**

Workhorse bulk materials (ZT ≈ 1)

Cooling **Bi₂Te₃**

Power Generation Si_{1-x}Ge_x

Half-Heusler Alloys (ZT~1) N-type: S. J. Poon, D. Wu, S. Zhu, W. J. Xie, T. M. Tritt, P. Thomas, and R, Venkatasubramanian, J. Mater. Res. 26, 2795 (2011).

P-type: X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren, Nano Lett, DOI: 10.1021/n/104138t (2010).

Recently, we reported ZT~1.2 <u>http://arxiv.org/abs/1505.07773</u>.

Elemental Relative Abundance

Abundance (atom fraction) of the chemical elements in Earth's upper continental crust as a function of atomic number. The rarest elements in the crust (shown in yellow) are not the heaviest, but are rather the siderophile (iron-loving) elements in the Goldschmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core. Their abundance in meteroids materials is relatively higher. Additionally, tellurium and selenium have been depleted from the crust due to formation of volatile hydrides. [Wikipedia]

Materials Scarcity, Volatility, Toxicity

Material	ZT (high T)	Abundance in Earth's crust (ppm)	Volatility Toxicity
Skutterudites	P-type ~1.5 CeFe4Sb12, N-type ~0.9	Ce (60), other RE (~1), Fe (~10 ⁵), <mark>Sb (0.2)</mark> .	Sb(MAJOR element) Sb
Pb(Te,Se,S)	N-type ~1.4 P-type ~2	Pb (12), <mark>Se (0.05)</mark> , Te (0.001).	Se, Te Pb, Te
Half Heuslers	N type ~1 HfZrNiSn(Sb), P-type ~1 HfZrCoSbSn.	e.g. Hf (3), Zr (180), Ti (6.10 ³), Nb (20), V (150), Fe (~10 ⁵), Ni (100), Co (25), Sn (2.2), Sb (0.2), Mg (~10 ⁵), Ag (0.08).	Sb (non-major element)

Cu₂S chacocite with ZT~1.5-1.8 is promising: Cu and S are abundant.

TE Properties Enhancement Mechanisms Examples Involving Nanostructuring Electronic Effects Enhancing Seebeck Coeff.

Search for good thermoelectrics

Energy filtering

J. Martin, Li Wang, L. Chen, and G. S. Nolas, Phys. Rev. 79, 115311 (2009).
M. Zebarjadi *et al*, Appl. Phys. Lett. 94, 202105 (2009).
A. Popescu and L. M. Woods, Appl. Phys. Lett. 97, 052102 (2010).

p-type (TiZrHf)CoSb InSb-nanoinclusions result in Seebeck coeff. enhancement

ZT ~ **S**²

W. J. Xie, J. He, S. Zhu, X. Su, S. Wang, T. Holgate, J. W. Graff, V. Ponnambalam, S. J. Poon, X. Tang, Q. Zhang, and T. M. Tritt, Acta Mater. 58, 4705 (2010).

Non-Isoelectronic Resonant States (Orbitals Hybridization)

(A) Cartoon model of PbTe valence band with Tl doping. (B) Effect on ZT

J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

J. W. Simonson, D. Wu, W. J. Xie, T. M. Tritt, and S. J. Poon, Phys. Rev. B 83, 235211 (2011).

Resonant States in Half-Heusler alloys

Half Heusler Phases

Finding low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling (Carrete, Li, Mingo, Wang, and Curtarolo, Phys. Rev. X 4, 011019 (2014)).

Н	Elements present in mechanically stable HH compounds in:													He			
Li	Be inequivalent positions											в	С	Ν	0	F	Ne
Na	Mg) po	th								AI	Si	Р	s	СІ	Ar
к	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ва	Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At R										Rn					
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uu

100s' compositions

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ac	Th	Ра	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Reaching for ZT~2 in Half Heusler Alloys

Even if such high ZT can be achieved in bulk-nano HH alloys, we still need to address the issue of grain growth as much as for any nanostructured systems!

Refs. on effective medium modeling of lattice thermal conductivity: S. J. Poon, A. S. Petersen, and D. Wu, Appl. Phys. Lett. (2013); S. J. Poon and K. Limtragool, J. Appl. Phys. 110, 114306 (2011).

Nano-Bulk Synthesis by Spark Plasma Sintering, Hot Press, Shock Compaction, Extrusion. Powders via Ball Milling, Atomization, Solution, Vapor Condensation.

Spark Plasma Sintering (SPS)

(Electric Current Assisted Sintering, Direct Current Sintering)

Advanced Technologies

Nanostructuring Results

$$P-Zr_{0.5}Hf_{0.5}CoSb_{0.8}Sn_{0.2}$$

Nanostructuring results in thermal conductivity reduction

X. Yan, G. Joshi, W.S. Liu, Y.C. Lan, H. Wang, S.Y. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 11, 556 (2010).

Barrier to Higher ZT

Half-Heusler alloy microstructure shows 100-200 nm grains with some 20-50 nm particulates. Yan *et al*, Nano Lett. 11, 556 (2010). The uncontrolled grain growth is barrier to higher ZT.

N-type nano-SiGe. Wang *et al*, Appl. Phys. Lett. 93, 193121 (2008).

With further development of SPS processing, it is possible to produce the desirable nanostructure and structural order.

Can Nanostructures be Stable?

Particles-in-Matrix Approach

Devices Based on ZT~1 Half Heusler Materials

T hot [C]	T cold [C]	DT (K)	Heat Qout (W)	Electric P max (V	Qiin (W)	EE.(%)	ZT avg of p-n couple
505	43	462	9.45	0.745	10.19	7.31	0.44
510	43	467	9.65	0.766	10.42	7.35	0.44
603	50	553	11.62	1.117	12.73	8.77	0.50
726	62	664	17.14	1.640	18.78	8.73	0.45
748	65	683	17.84	1.716	19.56	8.77	0.45
768	68	700	19.34	1.775	21.12	8.41	0.42
797	72	726	20.59	1.951	22.54	8.66	0.43
815	75	740	22.22	2.037	24.26	8.40	0.41
826	77	749	23.20	2.114	25.32	8.35	0.41

HH *n-p* couples based on ZT~0.8-1 led to device efficiency near 9%. J. Poon, D. Wu, S. Zhu, W. Xie, T. Tritt, P. Thomas, and R, Venkatasubramanian, J. Mater. Res. 26, 2795 (2011).

High-performance three-stage cascade thermoelectric devices with 20% efficiency. B.A. Cook, T.E. Chan, G. Dezsi, P. Thomas, C.C. Koch, S.J. Poon, T.M. Tritt, R. Venkatasubramanian, J. Electr. Mater., DOI: 10.1007/s11664-014-3600-9 (2015).

Opportunities:

High throughput search of materials systems (data mining, properties prediction and screening, including doping...) has begun.

Particles-in-matrix approach for stability (phase separation, metal-ceramics...) may retain nanostructure.

Energy filtering approach needs to be better developed.

Challenges exist in transitioning from materials design to device implementation (e.g. electrical contact, materials compatibility..).

Great opportunities for cross-disciplinary R & D.