Powering Systems from Ambient Energy Sources

Rajeevan Amirtharajah University of California, Davis

Internet of Things

- Definition: network of uniquely identifiable objects communicating using an Internet-like structure
 - Wireless connectivity for embedded processors running TCP/ IP to enable machine-to-machine (M2M) communication
 - Physical channel and protocol choice is orthogonal
- Potential market volume on the order of billions of devices
 - 25 billion devices by 2015, 50 billion by 2020 (CISCO)
 - 15 billion devices by 2015 (Intel / IDC)
 - 3 billion subscribers with 5-10 devices each + 1.5 billion vehicles + 3 billion utility meters (Ericsson)
- Trillions of dollars at stake

IoT and Winemaking

- Instrumented networked fermentation tanks
 - Monitor temperature, brix, organic compound evolution, yeast growth
 - Control temperature, pump-over
- Precision irrigation
 - Sense single-vine water status and adjust delivered water volume
 - Improve grape quality
 - Decrease water use

Networked Smart Fermentation Tank

Precision Irrigation System

Leverage commercially-available M2M cloud solution Long-range battery-powered small form-factor wireless Centralized microcontroller-based valve control

Energy Scavenging Wireless Sensing IoT Node

Extend sensor node lifetime beyond battery limitation Scavenging energy from light, heat, and vibrations Efficient power management

Cope with the variability of the harvested power

Energy scalable data conversion & approximate signal processing

System Requirements

Functional Block		Power	V _{DD}	R _{EQ}
Sensor	[R. Amirtharajah et al, <i>SPIE</i> , 2005]	185 μW	1.2 V	7.78 kΩ
ADC	[M. Scott et al, <i>JSSC</i> , 2003]	3.1 μW	1 V	322 kΩ
DSP	[B. Warneke et al, <i>ISSCC</i> , 2004]	6 µW	<1 V	166 kΩ
RF	[B. Otis et al, <i>ISSCC</i> , 2005]	1 mW	1.2 V	1.44 kΩ

- System works with low duty-cycle, total average power = 5 μ W
- ADC requires low power and clean V_{DD}
- DSP requires low power, noisy V_{DD} ok
- RF requires high peak power

Multiple-Input Power Supply Measured Output

- DC/DC output controller switches between functional blocks
- DSP tolerates high ripple, so the controller trades efficiency for ripple

Review: CMOS Power Dissipation

Total Power:

$$\begin{split} P_{TOT} &= P_{dyn} + P_{sc} + P_{stat} + P_{leak} \\ &= \alpha C_L V_{dd}^2 f + V_{dd} I_{peak} \left(\frac{t_r + t_f}{2}\right) f \\ &+ V_{dd} I_{static} + V_{dd} I_{leak} \end{split}$$

- Neglect short circuit power, focus on reducing dynamic power, static power and leakage current
- Each subsystem will have different voltage/power/ energy requirements

Outline

- Introduction
- System Power Consumption
- Energy Harvesting and Power Management
- Conclusions

Device Power Consumption

0.33 mW

0.51 mW

3.75 mW

0.31-0.74 mW

0.45 mW – 9 mW

2 mW – 4 mW

Mobile Phone Peak Power Consumption

Li Ion battery capacity 800-3300 mAh at 3.7V (3-12 Wh)

XBee RF Module Power Consumption

Range	Active Power	Sleep Power	Frequency	Protocol	Tx Power	Data Rate
30 m	1 W	20 μW	2.4 GHz	802.11b/g/n	40 mW	1-72 Mbps
30 - 90 m / 90 m – 1.6 km	100 – 710 mW	33 μW	2.4 GHz	802.15.4	1 – 63 mW	115.2 Kbps
40 – 90 m / 120 m – 3.2 km	120 – 700 mW	3.3 – 13.2 μW	2.4 GHz	ZigBee	1.25 – 63 mW	1200 bps – 1 Mbps
305 – 610 m / 6.5 – 14 km	750 mW	10 μW	900 MHz	Proprietary	250 mW	10 – 200 Kbps

Commercial Wireless Sensor Mote

Moteiv Sky mote, 2006

Jiang, IPSN/SPOTS 2005

- 2000's sensor node: 70 mW all active, 17 μW idle
- 2012 mote-on-chip: 100 mW all active, 3 μ W deep sleep
- Power sources contribute significant volume and cost
- Smaller system (1 cm³) desirable (less obtrusive military sensor, implantable biomedical device)
- Reduce power consumption, get energy from environment 14

UC Davis Wireless Display Node

- 3" QVGA Display
 - Requires 5 V, +/- 20 V, etc.
 - Update requires 27.6 mW for 6.61 s (155 mJ)
- Wi-Fi Communication
 - Receives & transmits data
 - Requires 190 mW for 4.10 s (778 mJ)
- Temperature Sensing
 - Thermistor on PCB
 - Requires 11.8 mW for 6.87 ms (81.1 uJ)
- EFM32GG990 MCU
 - 3.3 V
 - 28 nA (92.4 nW) in deep sleep

Display Node Power Transient

Cardiac Tissue Stimulator Powered By Indoor PV

Sensor Data Processing Subsystem

Microcontroller

- Sensor calibration
- DSP configuration
- High active power
- Low duty cycle

DSP Coprocessor

- Continuous sensor data processing (e.g., event detection)
- High duty cycle
- Ultra low active power
- Reconfigurability enables power vs. performance tradeoff

Extending Sensor Node Lifetime

- Controller chooses appropriate configuration based on input, available energy, desired output quality
- Power awareness leads to 60-200% battery lifetime improvement (Bhardwaj TVLSI01)

Energy Scalable DA Array Architecture

- DA tile functional unit performs energy scalable computation for a set of linear/nonlinear functions
- Low power island-style reconfigurable interconnect permits the direct realization of DSP flowgraphs
- Switch boxes and connection boxes implemented with full transmission gates

Power Scalable FIR Filter Results

 Simulated power and projected recognition performance for biomedical event detection application

Outline

- Introduction
- System Power Consumption
- Energy Harvesting and Power Management
- Conclusions

Battery Energy Density

 Battery energy density increased 3% per year from 1950-2010 (Zu and Li, *Energy Envron. Sci.*, 2011)

Power and Energy Density

Technology	Conditions	Power Density	Energy Density	
Solar	Outdoors	20mW/cm ²	73Wh/cm ²	
301ai	Indoors	$20\mu W/cm^2$	73mWh/cm ²	
Thermoelectric	Mounted on Skin	60µW/cm ²	219mWh/cm ²	
	Piezoelectric	$67 \mu W/cm^3$	245mWh/cm ³	
Vibration (Human)	Electrostatic 6µW/cm ³		22mWh/cm ³	
	Electromagnetic	75μ W/cm ³	274mWh/cm ³	
A mbiont PE	Within 3km of TV Antenna	0.8-2.6µW/cm ²	3-9.5mWh/cm ²	
Amolent Kr	General Urban Environment	3nW/cm ²	11µWh/cm ²	
Broadcast Power	From 3W at 10m	< 0.294mW	< 1Wh	
AAA Battery	Lithium-Ion		403mWh/cm^3	
AAA Dattery	(not rechargeable)	-	495111 W II/CIII	
AAA Battery NiMH (rechargeable)		-	268mWh/cm ³	

 Energy density calculated by assuming two hours of harvesting every day for five years.

Linear Regulator Fundamentals

Dynamically Biased LDO Linear Regulator

- Output capacitor-less flipped voltage follower architecture
- Dynamic biasing to speed up load response
- Adaptive biasing to improve light load efficiency
- 180 nm CMOS implementation

Integrated Photovoltaics

90nm CMOS PV Array

- On-die PV array using CMOS passive pixels
- Characterized across multiple process nodes
- Metal "gratings" can concentrate light
 - Improve indoor harvesting efficiency
 - Expand range of incident angles

Integrated PV Performance Across Process

Technology	0.35 μm P+/ NW	90 nm P+/ NW	180 nm P+/ NW	180 nm PW/ DNW
Illumination	20 kLux	20 kLux	17 kLux	17 kLux
Voc	533 mV	486 mV	523 mV	508 mV
Isc density	680 µA/mm²	824 μA/mm²	134 μA/mm²	52 μA/mm²
Power Density	225 μW/mm²	325 μW/mm²	56 μW/mm²	21 μW/mm²
Figure of Merit (FF)	0.66	0.8	0.8	0.81

•Area for 5 μ W = 164 μ m x 164 μ m (0.35 μ m), 124 μ m x 124 μ m (90 nm)

Switched-Capacitor Boost Converter

- Phase 2 Charge capacitors to VIN
- Phase 1 Boost output to 4x VIN

Switched-Capacitor Boost Converter

- Phase 2 Charge capacitors to VIN
- Phase 1 Boost output to 4x VIN

Switched-Capacitor Boost Converter

- Phase 2 Charge capacitors to VIN
- Phase 1 Boost output to 4x VIN

Integrated PV SC Boost Conversion

Electromagnetic Harvester Characterization

<u>Walking Experiment</u> <u>Test Fixture</u>

Results

• 38µW output power (neglecting conversion losses)

Multi-Electrode Piezoelectric Generator

- PZT (lead zirconate titanate) disk diameter = 1.5", top plate divided into quarter-circle sections, bottom plate not divided, yielding 5 electrodes in total
- Multiple mechanical resonances means more efficient harvesting from random or time-varying vibrations
- 78μW output power at 615Hz after AC/DC conversion

Full Wave CMOS Controlled Rectifier

Frequency Variation With AC Supply

- Self-timed datapath must be initialized at power-on
- Must maintain state across power supply cycles

Measured Frequency Variation with AC Supply

Die Photo and Summary

Technology	180 nm CMOS	
Dimensions	2.6 mm x 2.6 mm	
Transistors	135K	
I/O V _{DD}	1.8 V	
AC Supply (V _{PP} = 1.8 V)	60 Hz – 1 kHz	
Core Freq. (max)	75.6 MHz	
Power (Core)	127 – 113 μW	

Published Symposium on VLSI Circuits, 2007

Multiple-Input Power Management Unit

- AC/DC combines a rectified V_{vibe} with V_{solar}
- DC/DC further smoothes harvested energy to form V_{out}

Multiple-Input Power Management Unit

- DC/DC output controller switches between functional blocks
- DSP tolerates high ripple, so the controller trades efficiency for ripple
- 0.25 μm CMOS
- Low quiescent current version in 180 nm CMOS under development

Outline

- Introduction
- Energy Scalable Computation
- Energy Harvesting and Power Management
- <u>Conclusions</u>

- Energy harvesting for wireless sensors is made practical by leveraging low performance demands
- Energy and voltage scalable digital and mixed-signal circuits and architectures crucial for energy harvesting systems
- Managing peak (10 mW 3 W) and average (1 μ W 1 mW) power essential
- Exploiting the AC nature of mechanical vibration energy harvesting using self-timed circuits and dynamic memory can improve total system efficiency
- Integrated DC/DC conversion can reduce power and cost

Acknowledgments

- Scott Block
- Jamie Collier
- Erin Fong
- Liping Guo
- Nate Guilar
- Stanley Hsu
- Vipul Jain

- Mackenzie Scott
- Jeff Siebert
- Justin Wenck
- Kameron Zhou
- Greg Winter, TI
- Prof. Diego Yankelevich, UCD
- Prof. Paul Hurst, UCD
- National Science Foundation CAREER Award
- FCRP Interconnect Focus Center
- Xilinx University Program and Xilinx Research Labs
- U.S. Dept. of Education GAANN Fellowship
- Texas Instruments