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Influence of Soil Properties on the  
   Performance of Metal Detectors  
      and GPR

This article examines the effects of four soil types on metal detector and GPR performance and proposes 

the development of a classification system based on soil type to aid in the selection of effective methods 

for manual demining.

by Kazunori Takahashi [ Graduate School of Science, Tohoku University ], Holger Preetz [ Federal Competence Center for Soil and 
Groundwater Protection / UXO Clearance ] and Jan Igel [ Leibniz Institute for Applied Geophysics ]

A lthough landmine clearance em-
ploys various techniques, man-
ual demining still accounts for 

a large part of mine-removal operations. The 
metal detector is the most common tool used 
in manual demining. Ground-penetrating ra-
dar was studied and tested as a complemen-
tary tool to the metal detector, because it can 
identify buried objects and accelerate oper-
ations. As the metal detector and GPR em-
ploy electromagnetic techniques, the soil’s 
magnetic, electric and dielectric properties 
influence both devices. If the influence is sig-
nificant, these tools may not provide reliable 
information and the safety of operations can-
not be assured. Studying how soils affect de-
tection and how the detectability of the mines 
is influenced is important. In this article, field 
experiment results illustrate soil influence on 
detection performance.

Influential Soil Properties  
on Sensors

Magnetic susceptibility is the most influ-
ential soil property affecting metal detectors.1 
In general, the value of magnetic susceptibility 
at a certain frequency affects continuous wave 
metal detectors, and frequency dependence has 
more influence on pulse-induction detectors.2 
Soil with a high susceptibility or frequency de-
pendence generates additional responses to 
metal detectors. These responses can be mis-
interpreted as metal detection and/or interfere 
with responses from landmines so that the 
signature of the mine is changed. This can re-
sult in false alarms or missed mines. Although 
magnetic susceptibility theoretically affects 
GPR, it must be extremely high to influence 
the signal. For example, reportedly, suscepti-
bility must be greater than 30,000 x 10-5 SI to 
be influential compared to dielectric permit-
tivity.3 Values in this range are exceptional 

even for tropical soils, which are often highly 
susceptible, making the influence of magnetic 
susceptibility on GPR practically negligible.4

Electromagnetic induction-based devices 
can easily measure magnetic susceptibility at a 
single frequency. The measurements at multi-
ple frequencies may require soil sampling and 
laboratory setups.

If the electric conductivity of soil is ex-
tremely high, then it also influences metal 
detectors, though to a lesser extent than mag-
netic susceptibility.1 In contrast, the normal 
range of conductivity influences GPR. This 
property relates primarily to the attenuation 
of electromagnetic waves; a radar signal can-
not propagate a long distance in a highly con-
ductive medium. Anti-personnel mines are 
often shallower than 20 cm; thus the soil in-
fluence on radar signals may not be so criti-
cal. For example, electric conductivity of 60 
mS/m, which is very high for normal soils un-
less they contain salt or clay, attenuates radar 
signals to 1/e (~-8.7 dB) at a 20-cm depth in 
relatively wet soil (volumetric water content 
of 35%).

Dielectric permittivity also greatly in-
fluences GPR, and it directly relates to water 
content in the soil.5,6 In most soils, the permit-
tivity contrast between two materials main-
ly defines the reflectivity of radar signals. 
The difference in permittivity between soil 
and a buried object generates reflected sig-

Laterite Magnetic Sand Humus A Humus B

Humus [% of total soil] 0.8 <0.5 2.7 12.4
Clay [% of mineral soil] 31.5 1.3 16.6 17.1
Silt [% of mineral soil] 39.4 7.0 48.4 40.7
Sand [% of mineral soil] 29.1 91.7 35.0 42.2

Table 1. Texture and humus content of the test soils. 
All graphics courtesy of the authors.

nals, which are interpreted to identify a tar-
get. However, a permittivity change within 
the soil also generates reflected GPR signals, 
and they can be misinterpreted as an object. 
Additionally, a change may confuse signals 
reflected from a target. Therefore, dielectric 
permittivity is the most influential soil prop-
erty on GPR performance.

A time-domain reflectometry probe can 
easily measure permittivity at a single loca-
tion in the field. The spatial distribution can 
be obtained by repeating TDR measurements 
at various locations. A reliable determination 
of frequency dependence requires soil sam-
pling and laboratory measurements.

Testing Metal Detectors  
and GPR

The International Test and Evaluation 
Program for Humanitarian Demining tested 
metal detectors and a dual sensor in Germany 
in 2009 to evaluate their field performance. 
Kazunori Takahashi and Dieter Gülle report-
ed details of the test conditions and general 
considerations.7,8 This test used the following 
four soil types:

•	 Laterite: an iron-rich tropical weath-
ered soil, a red-colored clay loam with 
stone content of approximately 2–5%.9

•	 Magnetic sand: an artificial mixture of 
coarse sand and engineered magnetite 
with low fine-gravel content (2–5%).
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•	 Humus A: a humus loam originated from loess.10,11

•	 Humus B: a loamy humus forest soil with high stone content 
(about 30–40%) and high humus content.

Table 1 (page 52) summarizes the texture and humus content of the 
test soils. In these soils, blind tests of various detector models were used 
to calculate the following performance measures:

•	 Probability of detection: the number of targets detected relative 
to the total number of targets

•	 False alarm rate: the number of false alarms produced 
•	 False alarm rate reduction: the number of metal junk the GPR 

correctly identified
•	 Probability of detection loss: the number of mines the GPR falsely 

identified as metal junk 7,8

Analyzing Soil Properties
A susceptibility bridge (Magnon VFSM) measured the frequency 

dependence of magnetic susceptibility on soil samples at the laborato-
ry. Figure 1 (page 53) shows the results. Both laterite and magnetic sand 
showed very high magnetic-susceptibility values; however, only laterite 
exhibited significant frequency dependence. Humus A and B had much 
lower values, but only humus A demonstrated a relatively high frequen-
cy dependence. Figure 2 (page 53) shows the spatial variation of the 
normalized magnetic susceptibility in a 1-D profile measured at a fre-
quency of 958 MHz in the field using a susceptibility meter (Bartington 
MS2 and its field loop MS2D). Only humus B exhibited remarkable 
spatial variation; however, the absolute level in humus B was very low 
(Figure 1 on page 53), and the absolute variation was thus small. Based 
on this result and classification systems of soil influence dependent on 
magnetic susceptibility, laterite is expected to significantly influence 
metal detectors because of the very high susceptibility values and fre-
quency dependence of magnetic susceptibility.12,13 In contrast, the easi-
est soil for metal detectors was humus B. All soils showed magnetic 
susceptibility much lower than 30,000 x 10-5 SI, and no significant in-
fluence on GPR was expected in any type of soil.

The spectral-induced polarization method (Radic-Research SIP 
Fuchs Lab) measured the frequency dependence of electric conductivity 
in the laboratory, and 3-D resistivity imaging (DMT Resecs) obtained 
the spatial distribution in the field. Figures 3 (page 53) and 4 (page 54)
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Figure 1. Frequency dependence of magnetic susceptibility of 
the test soils. Note that the magnetic susceptibility of humus A 

and B was multiplied by a factor of 10 for visibility.
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Figure 2. Spatial distribution of magnetic susceptibility for the test 
soils measured in 10-m long profiles at a frequency of 958 Hz. Val-
ues in this figure were normalized by the mean.
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Figure 3. Frequency dependence of electric conductivity of the test 
soils. The dots and lines show the measured values and model fits, 
respectively.

show the results. Conductivities in all soils were in the normal range and 
not particularly high. For example, a depth that attenuates radar signal 
to 1/e is more than 1 m in humus B, which exhibits the highest conduc-
tivity among all. Some amount of spatial variation can be observed in 
Figure 4, but again, the level is not high. Therefore, the influence of elec-
tric conductivity on metal detectors and GPR was expected to be negli-
gible in these soils.

Spatial changes in dielectric permittivity were measured in the 
field every 10 cm along 10 m profiles with a time-domain reflectometry 
(FOM/mts, Institute of Agrophysics of the Polish Academy of Sciences), 
as Figure 5 (page 55) indicates. Magnetic sand showed a low and con-
stant permittivity. Mainly because of the very small variation, clear ra-
dar signatures of targets were expected in magnetic sand. However, 
laterite and humus showed higher permittivity (higher water content) 
and larger spatial variations. The spatial variation causes additional 
response to GPR, which disturbs the signatures of targets. Therefore, 
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laterite and humus may be problematic for GPR. Especially in humus, 
the correlation length, which describes dimension of the variation cy-
cle in space and was determined by further analysis, was similar to the 
target dimension. Therefore, humus was expected to more severely im-
pact GPR than laterite.

Table 2 (page 54) summarizes the qualitative evaluation of soil-
property measurements and provides a comprehensive estimation of 
soil impact on metal detectors and GPR.

 
Soil Properties and Detector Performance

The performance of metal detectors (probability of detection and 
false alarm rate) calculated from the test results is shown in Figures 6 
and 7 (page 55) with respect to soil difficulty shown in Table 2 (page 
54). In Figure 6 (page 55) the performance measures are the average of 
all metal detector models tested. This figure clearly exhibits that POD 
(positive feature) decreased and FAR (negative feature) increased as soil 
became more difficult. In Figure 7 (page 55) the averaged performance 
measures of metal detectors are plotted for pulse-induction detectors 
and continuous wave detectors separately. A significant difference be-
tween PI and CW detectors is observed in FARs in magnetic sand. The 
FAR of a PI detector is lower than the FAR of a CW detector in magnet-
ic sand, which showed a high magnetic susceptibility but no frequency 
dependence. This result confirms that the susceptibility value at a cer-
tain frequency influences CW metal detectors more than PI detectors.2

Figure 8 (page 55) shows the identification performance of GPR 
(FAR reduction and POD loss) with respect to soil difficulty. Note that 
the order of soil types in the horizontal axis according to the estimated 
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Figure 4. Spatial distributions of electric conductivity at a depth of 5-10 cm in (a) laterite, (b) magnetic sand,  
(c) humus A, (d) humus B.

Table 2. Qualitative evaluation of measured soil properties and comprehensive estimation of soil impact on the per-
formance of detectors. κ, σ and є denote magnetic susceptibility, electric conductivity and dielectric permittivity, 
respectively.

Laterite Magnetic Sand Humus A Humus B
κ at a certain frequency Very high Very high Very low Very low
Frequency dependence of  κ Very high Low High Low
Spatial variation of κ Small Small N/A Very large
σ at a certain frequency Low Very low Low Low
Spatial variation of σ Large Very small Small Large
Absolute level of єr High Low High High
Spatial variation of єr Large Very small N/A Very large
єr at a certain frequency Very severe Moderate Moderate Neutral
Impact on GPR Moderate Neutral Moderate/severe Very severe

soil impact is different for GPR (Figure 8, page 55)  and metal detectors 
(Figures 6 and 7, page 55), since the test-soil difficulties were graded dif-
ferently for each. In the case of GPR performance, FAR reduction (posi-
tive feature) was nearly constant for all test soils, and POD loss (negative 
feature) increased with soil difficulty. Therefore, GPR performed poorly 
in soils classified as difficult. These results demonstrate that comprehen-
sive soil characterization and classification, according to the geophysical 
analyses, agreed with the performance of detectors.

Discussions
Soil characterization, based on geophysical measurements, agreed 

with detector test results: high POD and low FAR in unproblematic soil, 
and low POD and high FAR in difficult soil for metal detectors; low POD 
loss in easy soil, high POD loss in difficult soil and constant FAR for 
GPR. The results indicate that the performance of detectors can be pre-
dicted qualitatively by analyzing soil properties obtained by geophysi-
cal measurements. 

As shown, heterogeneity and spatial distribution of soil properties 
are necessary to assess detector performance, especially for GPR. The 
soil characterization for sensors shown in this article is very general, 
and the criteria for grading soils can be applied to all detector models. 
However, because each metal detector and dual-sensor model is unique, 
the amount of soil influence on performance (i.e., the slopes of curves in 
Figures 6–8, page 55) ) may differ.

Detector performance can be assessed during clearance through 
soil characterization as follows: Geophysical measurements can be car-
ried out on a representative area, other than the minefield, before actual 
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Figure 5. Spatial distribution of relative permittivity of the test 
soils measured in 10-m long profiles and corresponding water 
content determined by an empirical equation.11
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demining operations, i.e., in the stage of Technical Survey. The soil char-
acterization allows for the selection of appropriate clearance techniques. 
For example, if soils in an area are assessed as easy for GPR, the use of a 
dual sensor in this area may accelerate clearance operations. However, if 
soils are assessed as difficult for GPR, a dual sensor should not be used 
because the operations may not be safe and/or effective. Furthermore, if 
soils are expected to be difficult for metal detectors, manual prodding 
should be used. Such performance assessment and selection of detec-
tion techniques can reasonably be made by analyzing soil properties. As 
a complementary survey, geophysical measurements are very useful for 
mine clearance with detectors.

Only four soil types were available for this study, although these soils 
were selected to represent a wide variety of natural soil types in mine-
affected countries. By collecting more samples, a classification system 
based on soil magnetic and dielectric properties may be established. 
Such a classification system will advance the benefit and safety of using 
metal detectors and GPR for clearance.

Detailed results of geophysical measurements shown in this article 
can be found in Preetz et al., and a more technical, detailed discussion of 
the analysis can be found in Takahashi et al.15,16,17,18 

See endnotes page 66
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On 4 December 2012 Poland became the 161st state to ratify the 1997 Convention on the Prohibition of the Use, Stockpiling, 
Production and Transfer of Anti-personnel Mines and on Their Destruction (Anti-personnel Mine Ban Convention or APMBC).1 
Poland originally signed the APMBC in 1997.1 The Undersecretary of State at the Ministry of Foreign Affairs, Maciej Szpunar, 
made the announcement at the 12th Meeting of the States Parties to the APMBC, which took place in Geneva, Switzerland, on 
3—7 December 2012.2 

Explosive remnants of war and a small number of landmines from World War II and the Soviet occupation heavily contaminat-
ed Poland. However, the Polish Ministry of Defense states that mined areas or areas suspected of mine contamination no longer 
remain, eliminating the need for regular clearance or mine risk education programs.3 Nonetheless, Polish armed forces conduct 
landmine and ERW clearance in response to emergency requests for explosive ordnance disposal and in routine checks on former 
Soviet and Polish military bases before they are handed over to local civilian communities.4 

The APMBC will take effect in Poland on 1 June 2013. Remigiusz Henczel, Poland’s ambassador to the U.N. in Geneva stressed 
Poland’s commitment to a world without landmines, stating that Poland is “ready to actively participate in endeavors promoting 
the universal adherence to the Convention and its humanitarian impact.”1 

See endnotes page 67

~ Sarah Peachey, CISR staff

Poland Ratifies the APMBC
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