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Packing rates of measures and a conjecture
for the packing density of 2413

Cathleen Battiste Presutti
Department of Mathematics
Ohio University - Lancaster

Lancaster, Ohio 43130 USA

Walter Stromquist
Department of Mathematics and Statistics

Swarthmore College

Swarthmore, Pennsylvania 19081 USA

Abstract

We give a new lower bound of 0.10472422757673209041 for the packing
density of 2413, justify it by a construction, and conjecture that this
value is actually equal to the packing density. Along the way we define
the packing rate of a permutation with respect to a measure, and show
that maximizing the packing rate of a pattern over all measures gives
the packing density of the pattern.

In this paper we consider the packing density of the pattern 2413.
This pattern is significant because it is not layered, and because up to

Fig. 1. The conjecture is based on this measure, µ2
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288 Presutti and Stromquist

Fig. 2. The measure µ∞

symmetry it is the smallest nontrivial pattern that is simple in the sense
of [3]. We conjecture that its packing density is given by

δ(2413) = 0.10472422757673209041 . . . ,

and we show by a construction that this value is a lower bound. It is
slightly larger than the lower bound of 0.10425 . . . given in [4].

We leap ahead briefly to describe the construction. Figure 1 describes
a probability distribution on the unit square. Probability is concentrated
on the dark shaded rectangles and the dark shaded segments. The dis-
tribution is described below. It is not uniform along the segments or
in the rectangles; in fact, the rectangles are “recursion bubbles,” mean-
ing that each of them is a scaled-down replica of the entire figure. To
construct a permutation of size n (for n large) with a large number of
occurrences of the pattern 2413, we select n points independently from
this distribution, and treat them as the graph of a permutation. In the
limit of large n, with probability one, the packing density of 2413 in the
resulting permutations approaches the value given above for δ(2413).
(Figure 1 is not drawn to scale. If it were, the smaller recursion boxes
would be too small to see.)

Permutations constructed in this way tend to consist of an initial
increasing sequence, then two interleaved increasing sequences (one of
high values, one of low values), then a final increasing sequence. Fig-
ure 9, below, shows the graph of one such permutation (with n = 8) and
Figure 11, a prototype of Figure 1, suggests the more general pattern.

The basic definitions related to packing densities are reviewed in Sec-
tion 1.

Our principal technique is to reinterpret packing densities in the lan-
guage of measures. By a measure we mean a probability distribution on
the unit square. In Section 2 we define the packing rate of a pattern
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Packing rates of measures 289

with respect to a measure, and define the packing rate δ′(π) of a pattern
π as the supremum of its packing rates over all measures. Our main
result, in Section 4, is that the packing rate of a pattern is equal to its
packing density, δ′(π) = δ(π). Finding the packing density of a pattern
is then a matter of finding an optimal measure for the pattern.

We return to the packing density of 2413 in Section 5. The language of
measures allows us to bring to bear the techniques of analysis, including
the calculus of variations and extensive calculations involving integrals
of probability distribution functions. In Sections 6 to 8 we define four-
segment measures, and by extensive calculation we find the optimal
measure for 2413 within this class. In Sections 9 to 11 we improve the
measure slightly by the use of recursion bubbles. We conjecture that
the optimal measure is the one we call µ2 , which is the measure that is
illustrated in Figure 1, on which the conjecture is based.

Figure 2 illustrates an attractive alternative called µ∞, in which there
is an infinite sequence of recursion bubbles at each end of each segment.
We do not believe that µ∞ is optimal, but we cannot rule it out.

1 Packing densities

Let π ∈ Sm . A sequence x1 , . . . , xm has the order type of π if, for all
i and j, xi < xj ⇔ πi < πj . This requires at least that the terms
xi be distinct. If σ ∈ Sn then an occurrence of π in σ is an m-term
subsequence of σ that has the order type of π. The number ν(π, σ) of
such occurrences is called the packing number of π in σ, and the ratio

δ(π, σ) =
ν(π, σ)(

n
m

) (1)

is called the packing density of π in σ. Clearly 0 ≤ δ(π, σ) ≤ 1. In this
context π is called a pattern. We always assume that π ∈ Sm , σ ∈ Sn ,
and n ≥ m ≥ 1.

For a fixed pattern π we are concerned with finding permutations
σ ∈ Sn that maximize the packing density, especially in the limit as
n → ∞. Write

δ(π, n) = max
σ∈Sn

δ(π, σ). (2)

If σ realizes this maximum—that is, if δ(π, σ) = δ(π, n)—then σ is called
an optimizer (or “optimizing permutation”) of size n for π. The packing
density of π is

δ(π) = lim
n→∞

δ(π, n). (3)
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290 Presutti and Stromquist

132

Fig. 3. ν(132, 132987654) = 46

ratio
3 :1

Fig. 4. A measure for 132

Galvin showed that the sequence {δ(π, n)} is non-increasing, so its limit
always exists.

Equivalently we could define the packing density as the largest number
D for which there is a sequence of permutations σ1 , σ2 , . . . of increasing
size with

D = lim
i→∞

δ(π, σi). (4)

Such a sequence with D = δ(π) is called an optimizing sequence for π,
and the permutations σi are called (collectively) near-optimizers. They
do not need actually to be optimizers; they need only be close enough
to give the right limit.

As an example consider the pattern π = 132. If σ = 132987654 then
ν(π, σ) = 46 and δ(π, σ) = 46/84 ≈ 0.548. This turns out to be the
unique optimizer of size 9 for π, so δ(π, 9) = 46/84 as well. These
permutations are illustrated in Figure 3. The shape of σ suggests a
recursive construction of near-optimizers for larger n. In fact, as is well
known, this construction does produce an optimizing sequence for 132,
whose packing density turns out to be δ(132) = 2

√
3− 3 ≈ 0.464. (Even

for π = 132 it is not so easy to find optimizers for particular values of
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Packing rates of measures 291

n. Rounding issues arise and many possibilities need to be considered.
Near-optimizers are easier.)

A simpler illustration of the near-optimizers for 132 is in Figure 4.
The points in the graph of σ line up along the diagonal lines in the
figure, and are distributed uniformly by length (to the extent possible
for any particular value of n).

Figure 4 could be understood as simply a guide to the imagination.
We prefer to give it a more formal meaning: we interpret pictures like
this as defining probability measures on the unit square. In the next
sections we will clarify this interpretation and show how it relates to
packing densities.

2 Packing rates for measures

We consider probability measures µ on the unit square S = [0, 1]×[0, 1] ⊆
R2 . In this section we define δ′(π, µ), the packing rate of a pattern π

with respect to a measure µ. The packing rate of the pattern, δ′(π), is
the supremum of the rates δ′(π, µ) over all measures µ.

Recall that a measure µ on S assigns a non-negative value µ(A) to
each Borel set A ⊆ S in such a way that µ(∪Ai) =

∑
(µ(Ai)) whenever

{Ai} is a finite or countable sequence of pairwise disjoint sets. It is a
probability measure if µ(S) = 1. Borel sets are subsets of S that can
obtained from closed rectangles in finitely many steps, each step being
a complementation, a union or intersection of finitely many sets, or a
union or intersection of countably many sets. In this paper all of the
sets we encounter are Borel sets and “measure” always means probability
measure.

A measure can be interpreted as a guide for selecting points randomly
from S. When we say that a point is selected “according to µ” we mean
that the probability that the point is in any set A is µ(A). Our plan
is to pick m points independently according to µ and look at the order
type of the resulting configuration.

Suppose that an m-tuple of points in S has no repeated x coordinates
and no repeated y coordinates. We say that it has the order type of π if,
when the points are arranged in order of increasing x coordinates, their
y coordinates form a sequence with the order type of π. See Figure 5.
(The order of the points in the m-tuple does not affect the order type.)
An m-tuple that has a repeated x coordinate or a repeated y coordinate
is called degenerate and has no order type.

An order-preserving transformation of S is a map of the form (x, y) 
→
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292 Presutti and Stromquist

Fig. 5. Graph of 2413, and a 4-tuple with the order type of 2413

(f(x), g(y)) where each of f and g is an order-preserving bijection of
[0, 1]. Transformations of this type preserve the order type of any m-
tuple. Given any two m-tuples with the same order type, we can find
an order-preserving transformation of S that maps one onto the other.

Let π ∈ Sm be a pattern and let µ be a measure. The packing rate of
π with respect to µ is the probability, if m points are selected indepen-
dently according to µ, that they have the order type of π. We denote
the packing rate by δ′(π, µ).

More precisely: Let µm = µ× · · · ×µ be the product measure on Sm ,
and let Cπ ⊆ Sm contain all m-tuples of points that have order type π.
Then the packing rate is

δ′(π, µ) = µm (Cπ ). (5)

The notation δ′ for packing rates is temporary. After we relate pack-
ing rates to packing densities in Theorem 4.1 we will replace δ′ with δ

everywhere.

Examples of packing rates.

(i) Let µ be the uniform measure on S (Figure 6). Then all order
types are equally likely. We have δ′(123, µ) = 1/6 and in general

δ′(π, µ) =
1
m!

(6)

if π has size m.
(ii) Let µ be concentrated on the main diagonal of S (Figure 7). Then

δ′(123, µ) = 1 (7)

and δ′(π, µ) = 0 for any other pattern π of size 3. It isn’t neces-
sary that µ be uniform on the diagonal as long as single points
have zero probability.
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Packing rates of measures 293

Fig. 6. uniform Fig. 7. diagonal

(iii) Let µ be concentrated along countably many diagonal segments as
shown in Figure 4, with probability being proportional to length.
Then

δ′(132, µ) = 2
√

3 − 3 ≈ 0.464. (8)

This is equal to the packing density of 132. We call this an
“optimal measure” for 132, because no other measure gives a
higher packing rate.

(iv) A challenge. Let µ be uniform on a disk in S (Figure 8). Then
what is δ′(123, µ)? (We don’t know!)

(v) Template measures. Let τ ∈ Sk be a permutation and form a
measure µτ as shown in Figure 9. The measure is concentrated
uniformly on the union of k small squares arranged like the graph
of τ . Then µτ is called the template measure corresponding to τ .
We will use template measures in the proof of Theorem 4.1 and we
will have more to say about them in Section 5. For now, consider
the packing rate of a pattern π with respect to its own template
measure µπ . If m points are selected from m different cells in the
template—an event that occurs with probability m!/mm —then
they are guaranteed to form an occurrence of τ . Therefore,

δ′(π, µπ ) ≥ m!
mm

. (9)

The packing rate of π is the supremum of δ′(π, µ):

δ′(π) = sup
µ

δ′(π, µ), (10)

the supremum being taken over all probability measures µ on S. An
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294 Presutti and Stromquist

Fig. 8. disk

optimal measure for π (or “optimizer” when we are considering only
measures) is a measure µ that achieves the supremum.

The example of the template measure shows that δ′(π) ≥ m!/mm for
any π ∈ Sm .

3 Limits of measures

Is there an optimal measure for every pattern? That is, is the supremum
in (10) really a maximum? The answer is yes, and we can prove it
by forming a limit of of a sequence of measures whose packing rates
approach the supremum. But the proof requires care for two reasons:

• We need a suitable definition for the limit of a sequence of measures;
and

• Limits of measures do not always respect packing rates.

Fig. 9. τ = 35827146 and the template measure µτ
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Packing rates of measures 295

As a cautionary example consider the measures µj defined as in Fig-
ure 10. Each µj is concentrated (uniformly) on the square [1/(j +
1), 1/j]2 ⊆ S for j = 1, 2, . . .. The only candidate for a limiting measure
is the measure µ defined by a point mass at the origin. Then for each j

we have δ′(123, µj ) = 1/6, but δ′(123, µ) = 0.
The trouble, of course, is that the limit measure allows degenerate

m-tuples. We need to identify circumstances in which this does not
occur.

First we define limits of measures. We say that µ is the limit of a
sequence of measures {µj},

µ = lim µj ,

if ∫
S

f(p)dµ(p) = lim
j→∞

∫
S

f(p)dµj (p) (11)

for every continuous function f : S → R. With this definition the limit
of a sequence is unique (if it exists) and the probability measures on S

form a compact topological space. This means that from any sequence
of measures {νi} we can select a sequence {µj} that has a limit measure.

It is not generally true that µ(A) = lim µj (A) for an arbitrary set A.
(Consider A = {(0, 0)} in the cautionary example.) But it can be shown
from the definition that if A is a closed set,

µ(A) ≥ lim sup
j→∞

µj (A). (12)

and if B is an open set,

µ(B) ≤ lim inf
j→∞

µj (B). (13)

µj is concentrated on
[1/(j + 1), 1/j]2 .

µ is a point mass at
the origin.

Fig. 10. Limiting measures do not always respect packing rates
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296 Presutti and Stromquist

Well-behaved measures. We now identify some special classes of
measures. For this paper, a measure µ is smooth if µ(A) = 0 whenever
A is a vertical or horizontal line. If points are selected independently
according to a smooth measure, the probability of their forming a de-
generate configuration is zero.

A measure µ is normalized if its projection onto each axis is the uni-
form measure; that is, if

µ([0, a] × [0, 1]) = µ([0, 1] × [0, a]) = a (14)

for every a ∈ [0, 1]. Every normalized measure is smooth. Better, as we
now show, the limit of a sequence of normalized measures is necessarily
normalized, and limits of normalized measures respect packing rates.

Lemma 3.1. If µ = limj→∞ µj and each µj is normalized, then µ is
also normalized and for any pattern π,

δ′(π, µ) = lim
j→∞

δ′(π, µj ).

Proof. To see that µ is normalized note that

µ([0, a] × [0, 1]) ≥ lim sup
j→∞

µj ([0, a] × [0, 1]) (15)

because this set is closed. Every term in the right-hand sequence is a,
so µ([0, a] × [0, 1]) ≥ a. If ε > 0 then

µ ([0, a] × [0, 1]) ≤ µ ([0, a + ε) × [0, 1])

≤ lim inf
j→∞

µj ([0, a + ε) × [0, 1]) (16)

so µ([0, a] × [0, 1]) < a + ε. Since this holds for every ε > 0 it follows
that

µ([0, a] × [0, 1]) = a. (17)

The same is true in the other dimension, so µ is normalized.
To see that these limits respect packing rates, note that according to

any of the normalized measures µ or µj , the boundary of each Cπ has
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Packing rates of measures 297

measure zero. Therefore

δ′(π, µ) = µm (Cπ )

= µm (int Cπ )

≤ lim inf µm
j (int Cπ )

= lim inf δ′(π, µj )

≤ lim sup δ′(π, µj )

= lim sup µm
j (cl Cπ )

≤ µm (cl Cπ )

= µm (Cπ )

= δ′(π, µ). (18)

This is enough to force lim δ′(π, µj ) = δ′(π, µ).

Lemma 3.2. If µ is any measure on S then there is a normalized mea-
sure µ̃ such that δ′(π, µ̃) ≥ δ′(π, µ) for every pattern π.

We call µ̃ a normalization of µ. It is unique if µ is smooth. We
conclude from Lemma 3.2 that if we want to maximize δ′(π, ν) it suffices
to look among normalized measures ν.

Proof. If µ is smooth we can find an order-preserving transformation of
S that maps µ to a normalized measure. More precisely, we can define
µ̃ by

µ̃([0, a] × [0, b]) = µ([0, x] × [0, y]) (19)

for every pair (a, b), where x is the least value for which

µ([0, x] × [0, 1]) = a (20)

and y is the least value for which

µ([0, 1] × [0, y]) = b. (21)

The values specified in (19) are enough to determine µ̃ on all Borel sets.
Now δ′(π, µ̃) = δ′(π, µ) for all patterns π.

If µ is not smooth, we apply (19) whenever x and y are uniquely
determined, and then extend µ̃ arbitrarily to a normalized measure on
S. The implied mapping is not a bijection, and some m-tuples which
have no order type at all (because an x coordinate is repeated or a y

coordinate is repeated) may be mapped to m-tuples that do have order
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298 Presutti and Stromquist

types. So, the probability of an order type π arising may be greater
under µ̃ than under µ, and we may have δ′(π, µ̃) > δ′(π, µ).

The next theorem says that every pattern has an optimal measure.

Theorem 3.3. For every pattern π there is a normalized measure µ

for which δ′(π, µ) = supν δ′(π, ν), the supremum being taken over all
measures ν on S.

Proof. Let D = supν δ′(π, ν). Find a sequence {νi} of measures such
that

lim
i→∞

δ′(π, νi) = D. (22)

Replacing each νi with its normalization does not change the limit (it
might increase some values of δ′(π, νi), but not above D) so we might
as well assume that each νi is normalized. We can find among them a
subsequence {µj} of {νi} that converges to a limit measure µ. Then µ

is necessarily normalized and we have

δ′(π, µ) = lim
j→∞

δ′(π, µj ) = D (23)

as required.

4 Packing rates are packing densities

Theorem 4.1. For every pattern π,

δ′(π) = δ(π).

Proof. First we show that δ(π) ≥ δ′(π).
More generally, if µ is any measure we show that there exists a se-

quence of permutations {σi} such that limi→∞ δ(π, σi) ≥ δ′(π, µ). Since
this result holds for every measure µ, including the optimal measure, it
follows that δ(π) ≥ δ′(π).

First suppose that a permutation σ of length n is chosen randomly
according to µ—that is, n points are selected independently according to
µ, and σ is their order type. Suppose then that we select an m-element
subsequence from σ, also randomly. Then we might has well have chosen
m-element subsequence directly according to µ, so the probability that
it is an occurrence of π is exactly δ′(π, µ). This means that the expected
value of δ(π, σ) is at least δ′(π, µ).
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Packing rates of measures 299

It follows that (for each n) there exists at least one specific permuta-
tion σ such that δ(π, σ) ≥ δ′(π, µ). From the sequence of these permuta-
tions select a subsequence {σi} for which the limit limi→∞ δ(π, σi) = D

exists; then δ(π) ≥ D ≥ δ′(π, µ). Since this result holds for every mea-
sure µ, including the optimal measure, it follows that δ(π) ≥ δ′(π).

Next we show that δ′(π) ≥ δ(π).
Let {σi} be a sequence of permutations of increasing size satisfying

lim δ(π, σi) = δ(π). From each σi construct a template measure νi as
defined above. Suppose that each σi has size ni .

Select an m-tuple according to νi . For it to have the order type of π

it suffices that

• the points come from m different boxes, and
• the boxes correspond to an occurrence of π in σi .

The probability of the first event is ni !/(ni −m )!
nm

i
and then the conditional

probability of the second event is δ(π, σi). Therefore

δ′(π, νi) ≥
ni !/(ni − m)!

nm
i

δ(π, σi). (24)

Each νi is normalized, so there is a subsequence {µj} with a limit µ that
is also normalized, and

δ′(π, µ) = lim
j→∞

δ′(π, µj )

= lim
i→∞

(
ni !/(ni − m)!

nm
i

)
lim

i→∞
δ(π, σi)

= δ(π). (25)

It follows that δ′(π) ≥ δ(π).

We now abandon the notation δ′ in favor of δ in all uses. The packing
rate of π with respect to a measure µ is δ(π, µ), and the packing density
is δ(π) whether it arises from a sequence of permutations or an optimal
measure.

Open question: Is the normalized optimal measure for π unique?

5 The packing density of 2413

With the language of measures now firmly in place, we come to the
packing density of 2413. In this section we summarize the existing lower
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bounds on δ(2413), all of which have been obtained using template mea-
sures in one form or another.

Recursive template measures. Let τ ∈ Sk . In Section 2 we defined
the template measure µτ to be uniform on k small squares arranged like
the graph of τ (Figure 9). One way for a pattern π to occur in µτ is for m

points to be chosen from different squares which happen to correspond
to an occurrence of π in τ . The probability of this event is given in
equation (24); in the current context it is

k!/(k − m)!
km

δ(π, τ).

If we substitute δ(π, τ) = ν(π, τ)/
(

k
m

)
we get the equivalent form

m!
km

ν(π, τ). (26)

This construction can be refined by modifying the measure within
each small square to be a reduced-scale copy of the measure on S itself.
We call the result the recursive template measure corresponding to τ .
(From now on we will reserve the notation µτ for the recursive template.)
In a recursive template there is another good way for occurrences of
a pattern π to occur: if m points are drawn from the same square
(probability k/km ) then they form an occurrence of π with probability
δ(π, µτ ). Combining these two ways gives

δ(π, µτ ) ≥ m!
km

ν(π, τ) +
k

km
δ(π, µτ ) (27)

which can be solved to give

δ(π, µτ ) ≥ (m!)ν(π, τ)
km − k

. (28)

This formula appears in [4]. It is an inequality because there may be yet
other ways for a pattern to occur (although this is not the case when
π = 2413).

For any pattern π we can use this construction with τ = π (whence
ν(π, τ) = 1) to obtain

δ(π, µπ ) ≥ m!
mm − m

(29)

which gives a lower bound for the packing density of any pattern of size
m. In the case of π = 2413, we have m = 4 and the bound is

δ(2413) ≥ 2/21 ≈ 0.0952. (30)

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902499.015
Downloaded from https://www.cambridge.org/core. Swarthmore College Libraries, on 16 Mar 2020 at 15:09:57, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511902499.015
https://www.cambridge.org/core


Packing rates of measures 301

In [2] the same construction was applied using τ = 35827146 (Figure 9)
to obtain

δ(2413) ≥ 51/511 ≈ 0.099804. (31)

This follows from equation (28) with k = 8, m = 4, and ν(2413,

35827146) = 17.
Warren [5] used this construction with k = 12 and τ = 5 4 7 12 11 3

10 2 1 6 9 8 to obtain

δ(2413) ≥ 16/157 ≈ 0.101911. (32)

Weighted templates. The above construction can be improved
in another way. We can alter the probabilities allocated to the small
squares in the template. The probabilities (weights) can be assigned
arbitrarily, as long as they add to 1.

Presutti [4] uses a template based on the permutation

579(11)(16)4(15)3(14)2(13)168(10)(12)

(with m = 16) and optimizes weights using Mathematica to obtain

δ(2413) ≥ 0.104250980068974874, (33)

which is the best lower bound that has appeared.
Empirical results. Other researchers have used empirical methods

to find optimizing permutations σ for 2413, including cases with large
n. Michael Albert, Nik Ruskuc, and Imre Leader found optimizers and
near-optimizers for large values of n, and were able to use them to es-
tablish lower bounds greater than 51/511. Albert and Vince Vatter
(separately) used simulated annealing to find additional examples [1].
The optimizers seem to have a consistent form. If σ is one of these
optimizers, then generally σ consists of. . .

• An initial, increasing segment, consisting of middle-range values;
• A segment with two interleaved decreasing sequences, one with high

values and one with low values; and
• A terminal, increasing segment, with middle-range values overlapping

those of the initial segment.

In effect, the points in the graph of σ seem to be lining up along the
segments illustrated in Figure 11, below. The optimizers also have some
local complications corresponding to the “recursion bubbles” that we
introduce in Section 9.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902499.015
Downloaded from https://www.cambridge.org/core. Swarthmore College Libraries, on 16 Mar 2020 at 15:09:57, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511902499.015
https://www.cambridge.org/core


302 Presutti and Stromquist

The template permutations used above are all of this form. For ex-
ample, 35827146 (illustrated in Figure 9) consists of an initial increasing
segment 35, two interleaved decreasing sequences 8 7 (with high values)
and 2 1 (with low values) and a terminal increasing segment 46. The
templates used by Warren (size 12) and Presutti (size 16) are also of this
form. (Well, actually, Warren’s template is not of this form, and does
not even have four-fold symmetry. But the slightly modified template
τ = 457(12)(11)3(10)21689 is of the above form and has exactly the
same 2413-occurrences as Warren’s template. None of these examples is
large enough to show recursion bubbles.)

This form of the optimizers motivates the definition of a “four-segment
measure” in the next section.

6 Four-segment measures

We define a class of measures that offer good packing rates for 2413.
A symmetrical four-segment measure (SFS measure) is a measure on

S which is

• symmetrical with respect to four-fold rotations of S, and
• concentrated on the line segment from (1/4, 1/4) to (3/4, 0) and the

three segments obtained from it by rotations of S.

That means that the measure is concentrated on the four segments il-
lustrated in Figure 11.

There is no requirement that the measures be uniform on the seg-
ments. In fact, the measures in this class differ precisely in their distri-
butions along the segments. Because of symmetry, each is determined
by the distribution along the bottom segment.

We give a name to this distribution. Let µ be a four-segment measure
and let t ∈ [0, 1]. Then let F (t) be the probability, given that a point
is on the bottom segment, that it is in the leftmost fraction t of the
segment.

One way to make this definition precise is to write

F (t) = 4µ([1/4, 1/4 + t/2] × [0, 1/4]) (34)

for t ∈ [0, 1].
(This is an awkward formula, mainly because—for convenience in later

calculations—we have chosen to make F have domain [0, 1] and range
[0, 1]. This forces a mismatch of coordinates. While the argument t
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F(t) =
fraction of this
segment’s probability
that is in the
leftmost fraction t of
the segment

Fig. 11. The segments on which four-segment measures are concentrated

runs from 0 to 1, the coordinate x runs from 1/4 to 3/4. One unit of t

corresponding to 1/2 unit of x.)
Now any SFS measure is completely determined by the function F .

Like any cumulative distribution function on [0, 1], F is non-decreasing
and satisfies F (1) = 1. It is not necessarily differentiable.

An SFS measure is not a priori smooth or normalized. Since we are
concerned with maximizing packing rates we can limit our attention
to smooth measures, but we can’t usually normalize an SFS measure
without bending the segments. We can, however, partially normalize
the measure by requiring that, projected onto the x axis, the measure
be uniform on [1/4, 3/4]. To preserve symmetry we then do the same
thing for the y axis. The geometry of the four segments is such that
the two operations do not interfere with each other. This process does
not alter the packing rate for 2413 or any other pattern, so we might as
well limit our attention to SFS measures that are partially normalized
in this sense.

This assumption gives us the formula

F (t) + (1 − F (1 − t)) = 2t (35)

for every t ∈ [0, 1]. We call this the normalization identity, and we as-
sume that this relationship holds for every SFS measure we consider.
This relationship forces the measure to be smooth and forces the distri-
bution F to be continuous. It also implies that the slope of F is bounded
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between 0 and 2. (More precisely, since the graph of F need not always
have a slope, it implies that every difference quotient

F (b) − F (a)
b − a

is in the interval [0, 2].) On intervals where F is flat, all of the probability
is in the upper segment; on intervals where the graph of F has slope 2,
all of the probability is on the lower segment. On other intervals there is
probability on both segments (which accounts for interleaved sequences
in the empirical optimizing permutations).

We now have a class of measures with which to proceed. We make
the following non-conjecture:

Non-Conjecture 6.1. The optimal measure for 2413 is a symmetrical
four-segment measure determined by a distribution function F satisfying
(35).

We call this a non-conjecture because we will prove in Section 9 that
it is false. In that section we will show that adding recursion bubbles to
the best SFS measure increases the packing rate; hence, the best SFS
measure isn’t optimal. Still, it’s a starting point. Our plan in the next
two sections is to find, with proof, the SFS measure that optimizes the
packing density of 2413 among SFS measures. Then we can begin to
improve that measure with recursion bubbles.

7 The packing rate for an SFS measure

In this section we give a formula for the packing rate of 2413 with respect
to a symmetrical four-segment measure. Most of the rest of the section
consists of the proof, which involves heavy calculation. Theorem 7.2, at
the end of the section, gives an alternative formula.

Theorem 7.1. Let µ be the symmetrical four-segment measure deter-
mined by a distribution function F satisfying the normalization iden-
tity (35). Then the packing rate of 2413 with respect to µ is given by

δ(2413, µ) =
5
32

+
3
4

(∫ 1

t=0
F (t) dt

)2

+
∫ 1

t=0

((
3
4
t − 9

8

)
F (t)2 − 1

4
F (t)3
)

dt. (36)
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Type 1 Type 2 Type 3

Fig. 12. Three types of 2413-occurrences

Proof. For full generality we will use the notation of Stieltjes integrals.
Recall that the integral ∫ b

t=a

H(t)dF (t) (37)

gives the mean of H(t) when t is drawn from the probability distribution
defined by F . If F has a derivative f then the integral can be understood
as ∫ b

t=a

H(t)dF (t) =
∫ b

t=a

H(t)f(t)dt. (38)

More generally the integral is defined using Riemann-like sums:∫ b

t=a

H(t)dF (t) = lim
n∑

i=0

H(x∗
i ) (F (xi) − F (xi−1)) (39)

where x∗
i is an arbitrary point in [xi−1 , xi ] and the limit is over partitions

a ≤ x0 < x1 < · · · < xn = b with decreasing mesh size. The formula for
integration by parts is∫

H(t)dF (t) = H(t)F (t) −
∫

F (t)dH(t) (40)

or ∫ b

t=a

H(t)dF (t) = H(t)F (t)|bt=a −
∫ b

t=a

F (t)dH(t). (41)

With these tools in hand we begin the evaluation of δ(2413, µ). There
are three ways for a 4-tuple of points selected according to µ to be an
occurrence of 2413: Types 1, 2, and 3, each illustrated in Figure 12.

The 4-tuple is an occurrence of Type 1 if

• One point is chosen from each segment (probability 3/32);
• The top point is to the left of the bottom point; and
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• The right point is above the left point.

Let X be the probability (given that there is one point on each segment)
that the top point is to the left of the bottom point. Then X is given
by

X =
∫ 1

t=0
(1 − F (1 − t))dF (t). (42)

Using the identity (35) and integration by parts we obtain

X =
∫ 1

t=0
(2t − F (t))dF (t)

= 2
∫ 1

t=0
tdF (t) −

∫ 1

t=0
F (t)dF (t)

= 2
(

1 −
∫ 1

t=0
F (t)dt

)
− 1

2
F (t)2
∣∣1
t=0

= 2
(

1 −
∫ 1

t=0
F (t)dt

)
− 1

2

=
3
2
− 2
∫ 1

t=0
F (t)dt. (43)

As an example, consider the measure µ determined by a uniform distri-
bution along the four segments; that is, consider the case of F (t) = t.
In this case we would expect to find X = 1/2, and that is indeed the
value given by equation (43).

By symmetry the probability that the right point is above the left
point is also X, so the probability of a Type 1 occurrence is

3
32

X2 =
27
128

+
3
8

(∫ 1

t=0
F (t)dt

)2

− 9
16

∫ 1

t=0
F (t)dt. (44)

The 4-tuple is an occurrence of Type 2 if

• Two points are on the top segment and one each are on the left and
bottom segments (probability 3/64 before allowing for rotations);

• The point on the bottom segment is horizontally between the points
on the top segment.

Let Y be the probability, given that the points are on the correct seg-
ments, that the bottom point is horizontally between the top points.
Then Y is given by

Y = 2
∫ 1

t=0
F (1 − t)(1 − F (1 − t))dF (t). (45)
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The initial factor 2 appears because the two points on the top segment
can occur in either order. Substituting 1 − t for t makes this

Y = 2
∫ 1

t=0
F (t) (1 − F (t)) dF (1 − t). (46)

Differentiating (35) gives

dF (1 − t) = 2dt − dF (t), (47)

and substituting this into our expression gives

Y = 4
∫ 1

t=0
F (t) (1 − F (t)) dt − 2

∫ 1

t=0
F (t) (1 − F (t)) dF (t). (48)

The second integral is
( 1

2 F (t)2 − 1
3 F (t)3

)∣∣1
t=0 = 1

6 , so we can rewrite
(48) as

Y = −1
3

+
∫ 1

t=0

(
4F (t)dt − 4F (t)2) dt. (49)

For example, if F (t) = t, then Y = 1
3 as we would expect. Now the

probability of a Type 2 occurrence (including a factor of 4 to account
for the rotations) is

4 · 3
64

Y = − 1
16

+
∫ 1

t=0

(
3
4
F (t)dt − 3

4
F (t)2
)

dt. (50)

A 4-tuple is a Type 3 occurrence if

• Two points are from the top segment and two from the bottom seg-
ment (probability 3/128 before allowing for rotations); and

• From the left, the four points have the order bottom, top, bottom,
top.

Let Z be the probability, given that the points are on the correct seg-
ments, that they have the correct order. Then Z is given by

Z = 4
∫ 1

t=0

∫ 1

s=1−t

F (1 − t)F (1 − s)dF (s)dF (t). (51)

In this formulation t represents the distance from the left end of the
bottom segment to the rightmost bottom point, and s represents the
distance from the right end of the top segment to the leftmost of the top
points. These must satisfy s > 1 − t, hence the limits of the integrals.
The order requirement is that one bottom point is left of s, one top point
is at s, one bottom point is at t, and one top point is right of t; hence
factors of F (1−t), dF (s), F (1−s), dF (t) respectively. The initial factor
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of 4 is there because the top points can exchange roles and the bottom
points can exchange roles.

Write this expression as an iterated integral:

Z = 4
∫ 1

t=0
F (1 − t)

[∫ 1

s=1−t

F (1 − s)dF (s)
]

dF (t). (52)

To evaluate the inner integral we first substitute 1− s for s, again using
the identity dF (1 − s) = 2ds − dF (s):

∫ 1

s=1−t

F (1 − s)dF (s) =
∫ t

s=0
F (s)dF (1 − s)

=
∫ t

s=0
F (s)(2ds − dF (s))

= 2
∫ t

s=0
F (s)ds −

∫ t

s=0
F (s)dF (s)

= 2
∫ t

s=0
F (s)ds −

(
1
2
F (s)2
)∣∣∣∣t

s=0

= 2G(t) − 1
2
F (t)2

where G(t) =
∫ t

s=0 F (s)ds. Substituting this into the main integral gives

Z = 4
∫ 1

t=0
F (1 − t)

(
2G(t) − 1

2
F (t)2
)

dF (t)

= 4
∫ 1

t=0
(1 − 2t + F (t))

(
2G(t) − 1

2
F (t)2
)

dF (t).

Expanding this integral into six terms and integrating (usually by parts)
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gives

Z = 8
∫ 1

t=0
G(t)dF (t) − 16

∫ 1

t=0
tG(t)dF (t) + 8

∫ 1

t=0
F (t)G(t)dF (t)

−2
∫ 1

t=0
F (t)2dF (t) + 4

∫ 1

t=0
tF (t)2dF (t) − 2

∫ 1

t=0
F (t)3dF (t)

= 8
(∫ 1

t=0
F (t)dt −

∫ 1

t=0
F (t)2dt

)
−16

(∫ 1

t=0
F (t)dt − 1

2

(∫ 1

t=0
F (t)dt

)2

−
∫ 1

t=0
tF (t)2dt

)

+8
(

1
2

∫ 1

t=0
F (t)dt − 1

2

∫ 1

t=0
F (t)3dt

)
−2
(

1
3

)
+ 4
(

1
3
− 1

3

∫ 1

t=0
F (t)3dt

)
− 2
(

1
4

)
=

1
6

+ 8
(∫ 1

t=0
F (t)dt

)2

+
∫ 1

t=0

(
−4F (t) − 8F (t)2 − 16

3
F (t)3 + 16tF (t)2

)
dt.

When F (t) = t this is 1/6 as we would expect. The probability of a
Type-3 occurrence (multiplying by 2 to account for the rotation) is

2 · 3
128

Z =
1

128
+

3
8

(∫ 1

t=0
F (t)dt

)2

+
∫ 1

t=0

(
− 3

16
F (t) − 3

8
F (t)2 − 1

4
F (t)3 +

3
4
tF (t)2
)

dt. (53)

Combining the probabilities for the three types, we have

δ(2413, µ) =
5
32

+
3
4

(∫ 1

t=0
F (t)dt

)2

+
∫ 1

t=0

((
3
4
t − 9

8

)
F (t)2 − 1

4
F (t)3
)

dt (54)

as required.

We aren’t free to choose F (t) arbitrarily for all t ∈ [0, 1]. We may
choose F (t) on [0, 1/2] subject to certain constraints, but then the values
on [1/2, 1] are forced on us by the normalization identity (35). It is
helpful, therefore, to have an alternative to Theorem 7.1 in which the
integrals are limited to the interval [0, 1/2].
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Theorem 7.2. Let µ be the symmetrical four-segment measure deter-
mined by a distribution function F satisfying (35). Then the packing
rate of 2413 with respect to µ is given by

δ(2413, µ) =
3
32

+ 3

(∫ 1/2

t=0
F (t)dt

)2

+
∫ 1/2

t=0

[(
3t − 3

4

)
F (t) +

(
3
2
t − 9

4

)
F (t)2 − 1

2
F (t)3
]

dt. (55)

Proof. Divide each of the integrals in Theorem 7.1 into two integrals,
substitute 1 − t for t in the second integral, simplify using the normal-
ization identity, and recombine the integrals. For example:

∫ 1

t=0
F (t)dt =

∫ 1/2

t=0
F (t)dt +

∫ 1

t=1/2
F (t)dt

=
∫ 1/2

t=0
F (t)dt +

∫ 1/2

t=0
F (1 − t)dt

=
∫ 1/2

t=0
F (t)dt +

∫ 1/2

t=0
(1 − 2t + F (t))dt

= 2
∫ 1/2

t=0
F (t)dt +

∫ 1/2

t=0
(1 − 2t)dt

= 2
∫ 1/2

t=0
F (t)dt +

1
4

(56)

The other integral in (36) can be restated in the same way, and the
results can be combined to give (55). We leave the calculation to the
reader. (Actually we invite the reader to leave the calculation to us. This
is a good time to thank the volunteer referees who make mathematical
publication possible.)

8 The optimal SFS measure

In this section we use the calculus of variations to find a measure that
maximizes δ(2413, µ) among symmetrical four-segment measures µ.
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Define a functional Φ by

Φ[F ] =
3
32

+ 3

(∫ 1/2

t=0
F (t)dt

)2

+
∫ 1/2

t=0

((
3t − 3

4

)
F (t) +

(
3
2
t − 9

4

)
F (t)2 − 1

2
F (t)3
)

dt (57)

when F is defined on the interval [0, 1/2]. This is the formula from
Theorem 7.2, which says that δ(π, µ) = Φ[F ] when µ is the SFS measure
determined by F . To find the optimal SFS measure, we need to maximize
Φ[F ] subject to certain constraints on F .

We are free to choose any distribution F provided that F (0) = 0,
F is non-decreasing, and F satisfies the normalization identity (35).
Equivalently: We can choose F (t) arbitrarily on the interval 0 ≤ t ≤ 1/2
subject to two constraints:

• F (0) = 0, and
• The difference quotients of F satisfy

0 ≤ F (t) − F (s)
t − s

≤ 2 (58)

whenever 0 ≤ s < t ≤ 1/2.

Then F can be extended to all of [0, 1] using equation (35), and equation
(58) is automatically satisfied on the entire interval. These requirements
also force F to be continuous and nondecreasing on [0, 1] and to satisfy
F (1) = 1.

We say that F is unconstrained at t if, in some neighborhood of t,
the difference quotients are bounded away from 0 and 2. Otherwise,
F is constrained at t. The easiest way for F to be constrained at t

is for the graph of F to have slope 0 or 2 on an interval containing t,
but F can also be constrained at t (for example) if t is a limit point of
such intervals. If F is unconstrained at t, we are free to make positive
or negative adjustments to F in a neighborhood of t in an attempt to
maximize δ(2413, µ).

(When F is constrained at t, the corresponding measure has proba-
bility only on one segment—on top when F (t) = 0, and on the bottom
when F has slope 2. When F is unconstrained, there is probability on
both segments.)

Theorem 8.1. Let J =
∫ 1/2

0 F (t)dt. If F maximizes δ(2413, µ) subject
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to the above requirements, then F (t) must be given by

F (t) =

√(
t − 1

2

)2

+
3
2

+ 4J +
(

t − 3
2

)
(59)

whenever F is unconstrained at t.

This is a local requirement. We will prove it first, then extend it to a
global description of F in the next theorem.

Proof. Let H be any function with a continuous derivative on [0, 1/2]
and satisfying H(0) = 0 and H(t) = 0 whenever F is constrained at t.
Then F may be altered by adding or subtracting a small multiple of H.
It follows that the derivative of

Φ[F + εH]

with respect to ε must be zero at ε = 0. Compute:

lim
ε→0

Φ[F + εH] − Φ[F ]
ε

=
∫ 1

t=0

((
6J + 3t − 3

4

)
+
(

3t − 9
2

)
F (t) − 3

2
F (t)2
)

H(t) dt. (60)

This expression must be zero for F to be optimal, for any suitable H.
When F is unconstrained at t we can choose H to be positive in a small
neighborhood of t. Therefore we must have(

6J + 3t − 3
4

)
+
(

3t − 9
2

)
F (t) − 3

2
F (t)2 = 0 (61)

whenever F (t) is unconstrained.
This can be solved uniquely for F (t) (since F (t) ≥ 0) giving

F (t) =

√(
t − 1

2

)2

+
3
2

+ 4J +
(

t − 3
2

)
. (62)

as required.

That is a local result. To understand the behavior of F globally, we
must know when F is unconstrained. If J < 1/8 (which is the case for all
plausible F ) we can check that equation (59) never gives a slope greater
than 2, but that it sometimes does give negative values for F .

In fact, equation (59) gives F (t) ≤ 0 whenever t ≤ 1/4 − 2J. Write
t∗ = 1/4−2J. This means that for the optimal F we must have F (t) = 0
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when t ≤ t∗, and F (t) given by the formula when t∗ ≤ t ≤ 1/2. To
summarize:

F (t) =

{
0 when t ≤ t∗√(

t − 1
2

)2 + 3
2 + 4J +

(
t − 3

2

)
when t∗ ≤ t ≤ 1

2 .
(63)

This formula for F is circular because it makes F depend on its own
integral J . In fact, there is only one value of J that makes the formula
consistent, which we will call J∗, and only one corresponding value of
t∗. We turn to Mathematica for a numerical integral and solution:

J∗ ≈ 0.05110454191162339225 (64)

t∗ =
1
4
− 2J∗ ≈ 0.14779091617675321550 (65)

(This calculation is almost analytic. If K is the smallest positive
solution of K ln K = K − 5/2 then the above values are given by J∗ =
(K − 3/2)/4 and t∗ = 1 − K/2.)

Extending F to [0, 1] using (35) leaves the formula (59) unchanged.
For t > 1 − t∗ it gives F (t) = 2t − 1. We have proved:

Theorem 8.2. There is a unique distribution F that maximizes Φ[F ]
for four-segment measures. If J∗ and t∗ are chosen as above with ap-
proximate values given by (64) and (65), then J∗ =

∫ 1/2
0 F (t)dt and F

is given on [0, 1] by

F (t) =

⎧⎪⎨⎪⎩
0 when 0 ≤ t ≤ t∗√(

t − 1
2

)2 + 3
2 + 4J +

(
t − 3

2

)
when t∗ ≤ t ≤ 1 − t∗

2t − 1 when 1 − t∗ ≤ t ≤ 1.

(66)

Figure 13 is a graph of F . The function is convex, has F (1/2) ≈
0.30553 and F ′(1/2) = 1, and has no derivative at t∗ or 1 − t∗. We
call the corresponding measure µ. Its packing density is calculated from
(59):

δ(2413, µ) = Φ[F ] ≈ 0.10472339512772223636. (67)

This number is a new lower bound for the packing density δ(2413),
and we have proven that it is the best packing rate possible using a
symmetrical four-segment measure.
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Fig. 13. Graph of F for µ or µ1

9 The first recursion bubble

Having found the optimal four-segment measure, we now improve it
using recursion.

The measure µ defined at the end of the last section is determined
by a function F with F (t) = 0 for t ∈ [0, t∗]. This corresponds to the
part of S with x ∈ [1/4, 1/4 + t∗/2]. In this region all of the probability
is concentrated on the upper segment, in the rectangle R = [1/4, 1/4 +
t∗/2] × [1 − t∗/4, 1]. The probability itself is µ(R) = t∗/2.

There is no probability above, below, or to the left or right of this
rectangle, so it is easy to check that no occurrence of 2413 includes
more than one point from this rectangle. Therefore nothing is lost by
rearranging probability within the rectangle.

Define µ1 recursively by µ1 = µ except on the rectangle R and its
rotated images, in which µ1 is a reduced-scale image of µ itself. (It
makes no difference that the transformation between S and R is not
aspect-preserving.) We call the four altered rectangles recursion bubbles.
(We have seen recursion bubbles before, in recursive templates and in
Figure 3.)

Now we have the same 2413 occurrences as before, plus additional
occurrences when all four points fall within one of the recursion bubbles
(probability 4(t∗/2)4) and happen to form a 2413 occurrence within the
bubble. Therefore

δ(2413, µ1) = Φ[F ] + 4
(

t∗

2

)4

δ(2413, µ1) (68)

or, solving,

δ(2413, µ1) =
Φ[F ]

1 − 4
(

t∗

2

)4 . (69)
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Using the values of Φ[F ] and t∗ from the previous section we obtain

δ(2413, µ1) ≈ 0.10473588696991414716 . . . , (70)

a new lower bound for δ(2413). The increase due to the recursion bubble
appears in the fifth decimal place.

10 The second recursion bubble

Shouldn’t the recursion bubble be bigger?
The measure µ was optimal in the absence of recursion. With recur-

sion, there is a greater advantage to selecting points in the recursion box
than there was before. At the margin, shouldn’t that shift the optimum
configuration in the direction of a larger bubble?

So, let’s increase the size of the bubble. We can’t do that in isolation,
because it would cause F to be inconsistent with (59) immediately to
the right of the bubble. We must allow F to increase with slope 2 until
it catches up with the formula. This creates a small region in which all
of the probability is on the lower segment, so we might as well turn it
into a second recursion bubble.

The resulting measure is the same as an SFS with this distribution:

F (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 when t ≤ t1
2(t − t1) when t1 ≤ t ≤ t2√(

t − 1
2

)2 + 3
2 + 4J +

(
t − 3

2

)
when t2 ≤ t ≤ 1 − t2

1 − 2t1 when 1 − t2 ≤ t ≤ 1 − t1
2t − 1 when 1 − t1 ≤ t.

We have extended F to [0, 1] using the normalization identity. There are
now two recursion bubbles on each segment, one corresponding to the
interval [0, t1 ] (probability (t1/2)2 for each box) and one corresponding
to the interval [t1 , t2 ] (probability ((t2 − t1)/2)2 for each box). Both t1
and t2 are parameters that we can choose, along with J , subject to the
requirement that F be continuous at t2 and have integral J on [0, 1/2].

We optimize t1 and t2 by naked calculation:

t1 = 0.14861089461296151506 . . .

t2 = 0.14909030676438411460 . . .
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and if µ2 is the measure with these revisions, we get

δ(2413, µ2) =
Φ[F ]

1 − 4
(

t1
2

)4 − 4
(

t2 −t1
2

)4 ≈ 0.10473602526603545023 . . . .

The improvement over µ1 is about 10−7 . This is the best lower bound
we have found for δ(2413).

Conjecture 10.1. The measure µ2 is optimal for 2413 and the packing
density of 2413 is δ(2413) = 0.10473602526603545023 . . ..

The measure µ2 is illustrated in Figure 1.
How much is proof and how much is conjecture? We conjectured that

the optimal measure would be related to a four-segment measure, and we
proved that the optimal four-segment measure is given by Theorem 8.2.
We conjectured that adding two recursion bubbles would make this op-
timal, and calculated the best location of the recursion bubbles by brute
force. Hence, gaps remain before we can be sure that µ2 is optimal.

11 More bubbles

An alternative possibility is that the recursion bubbles continue to mul-
tiply, alternating between the top and bottom segment and reaching a
limit point before the center of the segment. We cannot calculate a pos-
itive contribution even for the third box, which may just mean that it is
too small to be found by our methods. A measure µ∞ with an infinite
sequence of recursion blocks is illustrated in Figure 2.
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