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24 The Holobiont with Its Hologenome Is·a Level of Selection in 
Evolution 

· Scott F. Gilbert, Eugene Rosenberg, and Ilana Zilber-Rosenberg 

Symbiosis-once thought to be a peripheral phenomenon-is the hallmark oflife on Earth, 
from genomes through ecosystems (Gordon 2012). What concerns us here is the level of 
the organism. Symbiosis is replacing an essentialist conception of "individuality" with a 
new conception, the holobiont, which is a multilineage biological entity, and, we argue, 
a major level of natural selection. Zoological organisms have traditionally been defined 
as individuals on the bases of anatomical, embryological, physiological, immunological, 
genetic, or evolutionary criteria (Geddes and Mitchell 1911; Clarke 2010; Nyhart and 
Lidgard 2011; see Gilbert et al. 2012). These conceptions, though, are not wholly inde­
pendent of one another, and each of these definitions stems from the common tenet of 
genomic individuality: an individual contains a single genome. 

Over the past two decades, however, animals and plants have been revealed to be 
fi.mctiol!i!-1 consortia of many species living, developing, and evolving together (see Zilber­
Rosenberg and Rosenberg 2008; Gilbert et al. 2012; McFall-Ngai et al. 2013). This 
discovery that symbiosis is the rule and not the exception in animals and plants is fun­
damentally transforming the classical conception of an insular individuality into one in 
which interactive relationships among species creates a new entity, a "holobiont"-the 
integrated organism resulting from host cells and persistent populations of symbionts 
(Margulis 1993; Rosenberg et al. 2007). This notion challenges and seeks to replace the 
concept of a monogenomic individual whose essential identi_ty arises during development, 
is maintained by the immune system, and which is selected through evolution. 

The hologenome concept of evolution posits that the holobiont (host+ symbionts) with 
its hologenome (host genome+ symbiont genomes) is a level of selection in evolution 
(Zilber-Rosenberg and Rosenberg 2008; Rosenberg and Zilber-Rosenberg 2014). -The 
concept is supported by a growing body of data that demonstrate (I) that the holobiont 
functions as a unique biological entity anatomically, metabolically, immunologically, and 
during development (Gilbert 2011); (2) that the hologenome is transferred with fidelity 
from one generation to the next; and (3) that consideration of the holobiont as a level 
of selection brings forth several previously underappreciated modes of variation and 
evolution. 
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Since certajn specialized terms are used throughout this chapter, we would like to 
define them before discussing the concepts. The term holobiont was initially introduced 
by Margulis (1993) to describe a host and its primary symbiont. Rohwer et al. (2002) 
described the coral holobiont as inclu~ing all of its symbiotic microorganisms, including 
Bacteria, Archaea, protists, and viruses. Zilber-Rosenberg and Rosenberg (2008) further 
generalized on the term holobiont to include all animals and plants and introduced the 
term ho lo genome to describe the sum of the genetic information of the host and its sym­
biotic microorganisms. The aggregate of all microorganisms of a holobiont is known as 
the microbiota or microbiome, a term coined by Lederberg and McCray (2001). The term 
"host" is used here in the classical sense to denote the larger, eukaryotic, multicellular 
organism in or on which the "symbionts" reside. 

The Holobiont as an Anatomic Unit 

The anatomical individual animal has been regarded as a structured whole. Yet, polymerase 
chain reaction data combined with high throughput DNA sequencing show that animals 
and plants "share" their bodies with numerous "species" of bacteria and other microbes. In 
most animals, including Homo, the largest numbers of symbionts are found in the diges­
tive tract. Often, the number of symbiont cells exceeds that of the host. Although it has 
frequently been asserted that the number of cells in the human microbiota is ten times as 
numerous as the number of cells in the human body, the ratio is quite variable and closer 
to one (Rosner 2014). In some marine sponges, symbiotic bacteria account for around 
35% of the mass of the organism (Hentschel et al. 2012). Regarding plants, bacteria are 
by far the most numerous colonists of plant leaves, being found in numbers up to 108 cells 
per gram, sufficiently numerous to contribute to the behavior of the individual plants on 
which they live (Lindow and Brandl 2003). The rhizosphere of plants contains 105-106 

fungi and 107-10? bacteria per gram of soil, the highest concentration being attached to 
the root epidermis (Foster 1988). 

When analyzing the number of bacterial species associated with a specific host, it should 
be noted that the estimated number of species, such as those presented in table 24.1, are 
minimum numbers because species representing less than 0.01 % of the total population 
would not be detected with current methods. This reservation can have far-reaching impli­
cations since multiplication and amplification of minor species can play an important role 
in the adaptation of holobionts to changing conditions and also in their evolution. 

The growing data bank on microbial species associated with specific animals and plants 
has led to certain generalizations. Host microbiota is different from the community in the 
surrounding environment. Host microbiota is animal or plant species specific, even in 
different environments (Brucker and Bordenstein 2013; Franzenburg et al. 2013). Differ­
ent microbial communities dominate different tissues of the same organism. In addition 



Table 24.1 
Examples of bacterial species associated with animals and plants 

Host 

Invertebrates 

Drosophila melanogaster 

Marine sponge 

Coral 

Termite gut 

Vertebrates 

Human gut 

Human skin 

Bovine rumen 

Great ape gut 

Plants 

Phyllosphere 

Endophytes 

Rhizosphere 

Minimum number of bacterial species 

209 
2,996 
2,050 

800 

5,700 

1,000 

5,271 

8,914 

252 

77 

30,000 

Source: Adapted from Rosenberg and Zilber-Rosenberg (2014). 

to Bacteria, Archaea, protists, and viruses are also present in holobionts. We suggest the 
high diversity of microbes in holobionts results from the large variety of niches in differ­
ent tissues and from the constantly changing environmental conditions, especially diet. In 
addition, bacteriophages probably prevent any specific bacterial strain from dominating 
according to the "kill the winner" hypothesis (Thingstad 2000). 

Analyses of the microbiotas of humans indicate that there is a core micro biota, which 
includes bacterial species that are common to all individuals and are present most of the 
time in relatively large numbers (Turnbaugh, Hamady, et al. 2009). The noncore microbi­
ota includes those speci~s that are readily exchangeable and vary as a function of environ­
mental condition, such as diet and disease state. It is usually the noncore microorganisms 
that are changeable by external manipulation (prebiotics and probiotics). Sometimes these 
acquired microbes can become stable inhabitants of the holobiont ahd part of the core 
microbiota (Voss et al. 2015). 

The importance of microbiota as an anatomical unit has been highlighted in several 
organisms. What, for instance, is the entity that we call a cow? It is considered a her­
bivore, but without its gut symbionts-diverse communities of cellulose-digesting and 
fermenting bacteria, anaerobic fungi, and ciliated protists structured in its multichambered 
stomach-it cannot digest plant material. The symbionts have played a determinative role 
in its evolution (Kamra 2005). 

Similarly, what we call a coral is a holobiont. In reef-building corals, the algal symbi­
ont, Symbiodinium, enters into the ectoderm of their host where they transport up to 95% 
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of their photosynthetically produced carbon compounds to their hosts (Muscatine et al. 
1984). The entry ofthe algae into the eukaryotic cells is facilitated by changes in gene 
expression (Lehnert -et al. 2014). And in exchange, the coral gives the endosymbionts 
critical nutpents and a safe, sunlit habitat in an otherwise nutrient-poor habitat (Roth 
2014). When this symbiosis is broken (for instance, by a prolonged increase in sea-surface 
temperatures), these corals "bleach." That is to say, they lose their algal symbionts and 
may die (Rosenberg et al. 2007). 

Mastotermes darwiniensis, a termite of northern Australia, is especially problematic in 
terms of anatomical individuality. The worker termites eat the wood of trees, digesting 
the cellulose in their guts and constructing elaborate subterranean nests. But t4_e worker 
termite cannot digest cellulose''without its gut symbiont, Mixotricha paradoxa, which 
is itself an anatomical composite of at least five other species, including a eukaryotic 
protist, a bacterium that acts as a mitochondrion, about 250,000 Trepinema spirochetes 
that provide locomotion, a large bacillus, and about 200 larger spirochetes. Margulis and 
Sagan (2001,3) called it "the beast with five genomes." 

The communities of microbes have specific places where they live in and on the body, 
their biofilms are structured, and organs have evolved to include them (Lee and Mazma­
nian 2010). Moreover, many animals, especially insects, contain a specialized cell type, the 
bacteriocyte, which often coalesces into a bacteriome, an organ for housing the symbionts. 
The formation of this organ can involve the recruitment of genes used' for more general 
aspects of embryonic development (Matsuura et al. 2015). 

In summary, animals can no longer be regarded as individuals by anatomical criteria. 
Rather, we are holobionts, integrated organisms comprised of both host cells and persistent 
populations of symbionts. Anatomically, individual animals must be classified in the same 
ctades as centaurs, minotaurs, and fairies. 

Integrated Physiology of Holobionts 

The physiological view of ani~al individuality regards the organism as composed of 
parts that cooperate as .~n integrated whole (Milne-Edwards _1827; Leuckart 1851). The 
complexity of animal and plant organization is seen to be accompanied by the increasing 
division of labor among organ systems, a concept analogous to Adam Smith's concep­
tion that socioeconomic progress results from the division of labor (Limoges 1994). The 
present biological division of labor in animals and plants includes also their microbiota, 
which break down cellulose supplying energy in addition to providing amino acids, vita­
mins, short-chai~ fatty acids, and other essential materials for the holobiont (Rosenberg 
and Zilber-Rosenberg 2014) and much more. 

Molecular research has now demonstrated that symbionts can become part of an obliga­
torily integrated union (Douglas 2010; MacDonald et al. 2011; Vogel and Moran 2011). For 
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example, the "genome" of the mealy bug Planococcus is the product of a nested symbiosis: 
animal cells harbor the Be_taproteobacterium Tremblaya princeps, which in tum harbors a 
Gammaproteobacterium, Moranella endobia. The synthesis of amino acids is coordinated 
between the~e two microbes and the host. Three of the enzymes needed for phenylalanine 
biosynthesis are encoded by Moranella, five other enzymes are encoded by Tremblaya, 
and a final enzyme in this pathway is encoded by the genome ofJ:he insect itself (McCutch­
eon and voti Dohlen 2011). Note, the genomes of all three organisms have been altered 
through this symbiosis. Such metagenomic sequencing has demonstrated the importance 
of microbes in other insect physiological systems (Vasquez et al. 2012; Weiss et al. 2012). 

A bacterial symbiont of the pea aphid, Hamiltonella, provides immunity against para­
sitoid wasp infection (Oliver et al. 2009). But in this case, the protective variants of 
Hamiltonella result from the incorporation of a specific lysogenic bacteriophage within 
the bacterial genome. The aphid must be infected with Hamiltonella, and the Hamiltonella 
must be infected by phage APSE-3. As Oliver et al. (2009, 994) write: "In our system, the 
evolutionary interests of phages, bacterial symbionts, and aphids are all aligned against 
the parasitoid that threatens them all. The phage is implicated in conferring protection to 
the aphid and thus contributes to the spread and maintenance of H. defensa in natural A. 
pisum populations." This is not so much group selection of conspecies as team selection 
of consortia. 

Integrated host-symbiont biochemical pathways are characteristic of mammals, as well; 
cometabolism has been introduced to describe the physiology of the holobiont (Smith et 
aL 2013). This notion reflects the findings that about one third of a mammal's metabo­
lome has a microbial origin (Wikoff et al. 2009; McFall-Ngai et_ al. 2013). Microbes have 
even been shown to be important in synthesizing' certain mammalian hormones (Yano 
et al. 2015). The term cometabolism was introduced (Smith et al. 2013) to describe the 
findings that kwashiorkor was not just a disease of protein-poor diet. Rather, the disease 
originated through poor diet plus certain types of bacteria. The gut bacteria take our 
ingested foods and convert them into. new products. A person's metabolism is the result 
of cometabolism-a function ·of "microbiota and host diet" (Smith et al. 2013, 552). 

The epidemic of obesity in developed and developing countries has generated a wealth 
of literature r~garding the origin and mechanisms of this widespread phenomenon. A 
relatively novel connection that has been suggested is the contribution of the microbiota. 
It has been shown -in mice, chickens, and humans that obesity is correlated with different 
bacterial communities. An elegant.experiment by the Gordon group (Ridaura et al. 2013) 
demonstrated that both microbiota and diet influence obesity. Separate groups of germ-free 
mice, fed low-fat mo~se chow, a~ well as diets representing different levels of saturated 
fat and fruit and vegetables, were infected with microbiota from obese and lean human 
twins. Bacteria from the feces of the obese twin caused significantly greater increase in 
body mass and adiposity than bacteria from the lean twin. 
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Bacteria may also be critical in maintaining a woman's health during the last stages of 
pregnancy. When bacteria from pregnant women in their third trimester were transplanted 
into germ-free mice, the mice became fatter and developed insulin resistance, just as 
pregnant wome~ do. This, did not happen with the bacteria from first-trimester pregnant 
women (Koren et al. 2012). Microbial symbionts appear to be a normal part of animal 
physiology, working toward a functional holobiont. And when birth has occurred, the 
woman makes food not only for her newborn, but also for the newborn's microbes. The 
mother's milk even contains oligosaccharides that the mammal cannot digest but which 
serve as food sources for the symbionts, especially Bifidobacteria, which has evolved 
a group of glycosylases specifically for digesting these carbohydrates (Sela et al. 2011; 
Zivkovic et al. 2011; Yoshida et al. 2012). 

These examples and others· demonstrate that animals and plants are not individuals 
by physiological criteria. Rather, they are holobionts, integrated through their metabolic 
networks with microbes. 

Integrated Development of Holobionts 

The developmental view of animal individuality (Huxley 1852) is a variant of the ana­
tomical version of biological individuality. In this regard, the individual animal (or plant) 
is understood to be that which proceeds from ovum to ovum. That understanding was 
critically important after Robert Remak and others showed that animals were composed 
of myriads of smaller individuals, cells, each alive in its own right (see Nyhart and 
Lidgard 2011). Indeed, developmental mechanics (experimental embryology) centered on 
the question of developmental individuality, whic.;h E. B. Wilson (1986) considered the 
most important biological question of the day. 

This notion of a dynamic part-whole relationship is now being extended to symbionts 
as part oftbe development of the holobiont body. Indeed, new evidence demonstrates what 
we understand to be a broader sense of the "individual" through the interactions of animal 
cells and microbes (McFall-Ngai 2002; Gilbert and Epel 2009; Fraune and Bosch 2010; 
Pradeu 2011 ). The development of both vertebrates and invertebrates is predicated from 
the intimate relations with microbes, and to a large degree, we "codevelop" together with 
our symbionts (Gilbert and Epel 2009; 2015). 

In numerous organisms, the development of particular organs depends on chemical 
signals from symbionts (Douglas 1988; 2010). For instance, the_ ovaries of the parasitoid 
wasp, Asobara, require signals from their Wolbachia symbionts if they are not to undergo 
apoptosis (Pannebakker et al. 2007). Wolbachia bacteria are also responsible for the correct 
anterior-posterior patterning in the nematode Brugia malayi (Landmann et al. 2014). In 
numerous other animals, the development of certain new organs is made possible by 
interactions with microbes. Newborns of the squid Euprymna scolopes lack a light organ. 
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11his organ is responsible for protecting the squid against predators that could recognize 
its shadow on the seabed (Peyer et al. 2014). The instructions for making this organ are 
not encoded in the genome of the squid; rather the squid embryo has evolved the ability 
to cooperate with one particular bacterial species, Vibrio fischeri. Without this bacterium, 
the light organ does not develop, and without the ability of the squid to concentrate V. 
fischeri in the light organ, the luminescent genes of the bacteria are not expressed (Mil­
likan and Ruby 2001). 

In vertebrates, the development of the immune and digestive systems is not completed 
without gut bacteria (Ley et al. 2006; 2008; Lee and Mazmanian 2010). "Germ-free" mice 
have insufficient intestinal capillaries, poorly developed or absent gut-associated lymphoid 
tissue, and aT-cell repertoire so diminished that they have an immunodeficiency syndrome 
(Stappenbeck et al. 2002; Duan et al. 2010). In the developing guts of mice and zebra fish, 
hundreds of genes are activated by the micro biota (Hooper et al. 2001; Rawls et al. 2004). 
These are normal induction events that are required by the developing organism. In mice, 
the "normal" levels of angiogenin-4 and colipase gene expression are those levels induced 
by the bacteria. A germ-free mouse has only 10% of the normal levels of angiogenin-4 
m RNA ( encoding a protein needed for blood vessel formation), and around 2% of the 
normal levels of sprr2a mRNA, which encodes a matrix protein. In zebrafish, microbes 
act through the canonical Wnt pathway to regulate the normal proliferation of the intesti­
nal stem cells (Rawls et al. 2004; Bates et al. 2006). Without the microbes, the intestine 
is unable to develop the normal numbers of enteroendocrine and goblet cells (Rawls et 
al. 2004; Bates et al. 2006), and the fish pancreas has a paucity of insulin-secreting beta­
cells (Hill et al. 2016). In both fish and mice, normal differentiation and growth of the gut 
depends on symbiotic microbes. 

What actually can be observed is a mutualistic codevelopment. The mammalian tissues 
signal the microbes to form regionally specific biofilms, inducing gene expression in the 
microbes. Furthermore, the Angiogenin-4 induced by the microbes in the mouse intestinal 
cells also helps the microbes. It not only makes blood vessels, it is also an antibiotic against 
Listeria, the major competitor of Bacteroides (Cash et al. 2006). In macaques, mother's 
milk allows for the growth and survival of particular bacteria that secrete arachidonic acid, 
an inducer of a particular subset of helper T-lymphocytes that are important in preventing 
infections of the newborn by Candida and Salmonella (Ardeshir et al. 2014). 

One particularly interesting area of microbial effects on holobiont development involves 
mammalian brain formation. Germ-free mice, for example, have lower levels ofNGF-lA 
and BDNF (respectively, a transcription factor and a paracrine factor associated with 
neuronal plasticity) in relevant portions of their brains than,do conventionally raised mice. 
There are even anatomical differences in these brains. In germ-free mice, the brain microg­
lial cells (tissue macrophages that are critical in homeostasis and disease prevention) do 
not complete their maturation (Erny et al. 2015). Diaz Heijtz et al. (2011, 3051) concluded 
that "during evolution, the colonization of gut microbiota has become integrated into the 
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programming of brain development, affecting motor control and anxiety-like behavior." 
Other investigators have noticed similar effects and have concluded that a "microbe--gut­
brain" axis exists (Cryan and Dinan 2012). 

The relationship between symbiotic bacteria and the development of various cognitive 
states is now being explored (see Bravo et al. 2011; Mulle et al. 2013). Indeed, epide­
miological evidence in humans and experimental evidence in mice implicate bacteria as 
important in preventing the symptoms of autism (Hsiao et al. 2013). Indigenous bacteria 
from the gut microbiota regulate host serotonin biosynthesis (Yano et al. 2015). 

The microbiotas are thus integrated into the normal networks of animal development, 
interacting with the eukaryotic cells of their "host." Development is a matter of interspe­
cies communication (Gilbert 2001; 2003; McFall-Ngai 2002), and animals have out­
sourced some of their developmental signals to their symbionts. We not only coevolve, we 
codevelop. From the viewpoint of developmental biology, we are holobionts. 

Integrated Immunity of Holobionts 

Protection against pathogens is one of the most general and important contributions of the 
resident microbiota to the health of animal and plant holobionts. In humans, the normal 
microbiota has been shown to protect against infection by pathogens in the oral cavity, 
the intestine, the skin, and the vaginal epithelium. 

The discipline of immunology has been called "the science of self/non-self discrimina­
tion" (Klein 1982). In this view, the immune system consists of defensive "weaponry," 
evolved to protect the body against threats from pathogenic microbes. Accordingly, if it 
were not for the immune system, opportunistic infections would prevail (as they do in 
cases of immune deficiencies) and the organism would perish. 

In a fascinating inversion of this view of life, recent studies have shown that an indi­
vidual's immune system is in part created by the newly acquired microbiota. In vertebrates, 
the gut-associated lymphoid tissue is specified and organized by bacterial syrnbionts 
(Rhee et al. 2009; Lanning et al. 2005). When symbiotic microbes are absent in the gut, 
the immune system fails to function properly and its repertoire is significantly reduced 
(see Lee and Mazmanian 2010; Round et al. 2010). Microbial colonization is critical for 
the development of T-lymphocytes and B-lymphocytes in the intestinal mucosa (Olszak 
et al. 2012; Wesemann et al. 2013). Similarly, Hill and colleagues (2012) have shown that 
microbial symbionts provide developmental signals that limit the proliferation ofbasophil 
progenitor cells and thereby prevent basophil-induced allergic responses. Lee and Mazma­
nian (2010, 1768) conclude, "Multiple populations of intestina\ immune cells require the 
microbiota for their development and furiction." 

In general, most bacterial pathogens infect their animal hosts predominantly via mucosa! 
surfaces. In addition to mechanical and immunological barriers, mucosal surfaces are 
protected against pathogen infection by the high concentration of microbiota colonizing 
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the mucosa. It has been suggested (Innerebner et al. 2011) that resident bacteria occupy 
binding. sites needed by pathogens for adhesion and release antibacterials active against 
pathogens. In addition, it was shown that DNA derived from gut commensal bacteria of 
mice respond to foreign antigens, for example, pathogens, and activate the immune system 
(Hall et al. 2008). 

The immune system of the holobiont therefore appears to be more a "passport control 
agent," or even a "bouncer," than a defensive army posted to keep the zoological organ­
ism "pure." It distinguishes, by evolutionary experience, between potential symbionts and 
potential pathogens (see Matzinger 1994). Indeed, the immune system actively recruits 
the symbionts. Peterson et al. (2007, 328) have shown that intestinal lgA, in addition to 
its well-known role iri attacking pathogens, plays a "critical role in establishing a sustain­
able host-microbial relationship." Similarly, these Peyer's patch (PP) antibodies, which 
are essential in fighting opportunistic pathogens, appear to be involved in "the creation of 
an optimal symbiotic environment on the interior of the PPs" (Obata et al. 2010, 7419). 
Even the Toll-like receptors that mediate innate immunity are utilized by Bacteroides to 
establish a host-commensal relationship. The ability of symbiotic bacteria to use the innate 
and acquired immunity pathways to initiate symbioses has led Round et al. (2011, 974) to 
conclude that "the immune system can discriminate between pathogens and the microbiota 
through recognition of symbiotic bacterial molecules in a process that engenders commen­
sal colonization." The host immune system has been co-opted to support the colonization, 
limitation, and persistence of symbiotic bacteria within the host. 

Thus, the immune system, built, in part, under the supervision of microbes, does not 
merely guard the body against hostile organisms in the environment; it also mediates the 
body's participation in a community of"others" that contribute to its welfare (Tauber 2016; 
Dale and Moran 2006). What counts as an individual is now seen as dynamic, context 
dependent, and responsive to symbionts. Throughout the animal and plant kingdoms, sym­
bionts are involved in the production of immune responses (see Gilbert and Epel 2015; 
Cytryn and Kolton 2011). Once in, they help keep others out. 

The immune system may have evolved for the suppression of potential "cheaters," those 
lower level parts of the group that would proclaim their own autonomy and that would 
multiply at the expense of the others (Tauber 2000; 2009; Ulvestad 2007; Eberl 2010; 
Pradeu 2010). The problem of cheaters, then, has to be solved in such a way that associ­
ates in a symbiotic relationship are under the social control of t~e whole, the holobiont 
(Steams 2007). 

Transmission of the Hologenome between Generations 
s 

The data described above clearly demonstrate that the holobiont with its hologenome is a 
unique biological entity in which the symbiotic micro biota is an integral part of its fitness. 
For the holobiont to be considered a level of selec,:tion, both host and symbiont genomes 
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must be transmitted with fidelity from one generation to die next. The precise modes of 
vertical transmission of host genomes are well understood and need not be discussed here. 
However, in recent years, it has become clear that microbial symbionts can also be trans­
mitted from parent to offspring by a variety of methods, including cytoplasmic inheritance, 
via eggs, coprophagy (consumption of feces), direct cont~ct during and after birth, via 
insect vectors, and via the environment (Rosenberg and Zilber-Rosenberg 2011). In the 
numerous cases (plant and animal) of vegetative (asexual) reproduction, the microbiota is 
automatically transferred to offspring. 

Regardless of the mechanism used, there is now good evidence that the microbial com­
ponent of the holobiont is transferred with fidelity from generation to generation. Many 
bacterial symbionts have coevolved with their hosts for many generations. In ants (genus 
Cephalotes), for example, many members of the microbiota have been present since the 
diversification of the host genus in the Eocene (Sanders et al. 2014), and great apes have 
reti,tined many of their micro biota by vertical transmission over similar evolutionary tim­
escales (Ochman et al. 2010). 

In humans, most of the colonization of the newborn gut occurs when the baby transits 
the birth channel via inoculation with maternalyaginal and fecal microbes. Furthermore, 
in addition to providing oligosaccharides to support particular classes of gut colonizers, 
human breast milk has been shown to be a continuous source of bacteria for the infant gut 
(Fernandez et al. 2013). From the point of view of the hologenome concept, it is reassur­
ing to realize that babies acquire microbial diversity from their mother's milk. Because 
some human symbionts are transmitted with great accuracy from mother to offspring for 
many generations, they can be used as a window onto human migration. In particular, 
the bacterium Helicobacter pylori has been used as a conserved marker of ancestry and 
migration (Dominguez-Bello and Blaser 2011). 

Genetic Variation of Holobionts 

According to the hologenome concept of evolution, genetic variation can arise from 
changes in either the host or the symbiotic microbiota genomes. In host genomes, variation 
occurs during sexual reproduction, chromosome rearrangements, epigenetic changes, and 
ultimately by mutation. These same processes leading to variation occur in microorgan­
isms. Such genetic changes in the host or in the microbial symbionts can be reflected in 
changes of the holobiont phenotype. 

In addition, genetic changes in the genome of the microbiota can occur by three further 
processes: microbial amplification, acquisition of novel strains from the environment, and 
horizontal gene transfer. These three processes can occur rapidly and are important ele-
ments in the evolution of animals and plants. · 

Microbial amplification involves changes in the relative numbers of the diverse types 
of associated microorganisms that can occur as a result of environmental factors, such as 
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diet, changing temperatures, and exposure to antibiotics. For example, children on a high­
fiber diet have a high abundance of bacteria from the genera Prevo tel/a and Xylanibacter, 
whereas children on a high-carbohydrate diet have abundant Shigella and Escherichia 
(De FVippo et a.I. 2010). Further support for amplification of certain bacteria following a 
change in diet comes from a study of infant gut microbiota (Koenig et al. 2010) in which 
changing the diet from milk to solid foods caused an alteration in infant gut microbiota 
with sustained increase in the abundance of Bacteroidetes. In a study performed on gno­
tobiotic mice, it was observed that a one-day change in diet from high fiber to high fat 
brought about an immediate change in microbiota (Turnbaugh, Ridaura, et al. 2009). 

An increase in the number of a particular microbe is equivalent to variation by gene 
amplification. Considering-the large amount of genetic information encoded in the diverse 
microbial population of holobionts, microbial amplification is a powerful mechanism for 
adapting to changing conditions. Microbial amplification at the level of the microbe is pure 
Darwinian selection (the result of favorable conditions), but at the level of the holobiont, 
amplification of a microbe is genetic variation. 

Acquiring new symbionts from the environment is another mechanism for introduc­
, ing variation into holobionts. Animals come in contact with billions of microorganisms 
during their lifetime in the food they eat, the water they drink, the air they breathe, and 
by direct interaction with other animals. Plants contact numerous microorganisms through 
their roots, the surrounding air, and also by insect vectors. It is reasonable to assume that 
occasionally, as a random event, one of these microorganisms will overcome the immune 
system, find a niche, and become established in the host. Unlike microbial amplification, 
acquiring new symbionts can introduce entirely ne1¥ sets of genes into the holobiont. 

In the pea aphid, Acyrthosiphon pisum, there are several species of bacteria that live 
within its cells. The bacterium Rickettsiella provides a pathway for aphid color change, 
turning genetically red aphids green through the synthesis of quinones (Tsuchida et al. 
2010). Similarly, variants of Buchnera spp. bacteria provide the aphid with thermotoler­
ance (at the expense of fecundity at normal temperatures; Dunbar et al. 2007); indeed, 
when Moran and Yun (2015) exchanged Buchnera symbionts having different thermotol­
erance alleles in different lines of aphids, the resulting aphid holobiont took on the char­
acteristics of the symbiont. Thus, whether the holobiont can reproduce in hot weather or 
have cryptic coloration can depend not on "its" genome, but the genome of its symbionts. 

Research on acquisition of microbes from the environment has focused during the past 
century mainly on pathogens because these harmful infections represent a key challenge to 
agriculture and to human health. However, many of the principles derived from studies on 
infection by pathogens should also ~pply to beneficial microorganisms. Probably, acquisi­
tion of beneficial bacteria occurs freqµently but generally goes unnoticed. 

Horizontal gene transfer (HGT), also knowri as lateral gene transfer, refers to the move­
ment of genetic information across normal mating'barriers, between more or less distantly 
related organisms, and thus stands in distinction to the standard vertical transmission of 



316 Scott F. Gilbert, Eugene Rosenberg, and Ilana Zilber-Rosenberg 

genes from parent to offspring. HGT is common in bacteria but can also take place from 
microorganisms to animals and plants and vice versa. Examples include transfer of carot­
enoid biosynthetic genes from a fungus to aphids: (Moran and Jarvik 2010), transfer of 
alpha- and beta-tubulin genes from eukaryotes to the bacterium Prosthecobacter (Jenkins 
et al. 2002), and transfer of functional cellulase genes from bacteria to a nematode (Mitreva 
et al. 2009). Large tracts of Wolbachia DNA have been horizontally transferred from these 
common intracellular bacterial endosymbionts to the nuclear genome of their insect hosts 
(Nikoh et al. 2008). In general, it is clear that introduction of genes by HGT into eukaryote 
genomes has been a major force propelling biological innovation and evolution. 

Evolution of Holobionts 

How does microbial-driven variation lead to the evolution of complexity? Microbes 
were the only forms of life on this planet for 2.1 billion years. During this period, they 
"invented" biochemistry, evolved enormous genetic diversity, and split into two domains, 
Bacteria and Archaea. The first eukaryote was probably formed by the uptake of bacteria to 
eventually form mitochondria and chloroplasts, and possibly by the uptake of an Archaea 
by Bacteria to form the nucleus (i.e., variation by acquisition of a microbe). Subsequent 
evolution of multicellular organisms proceeded both by the uptake of whole microbes and 
by HGT of genes from microbes into the genomes of the 'microbiota and into the host 
genome. All of the anatomical, metabolic, physiological, developmental, and immunologi­
cal traits of holobionts ascribed to microbes fit into this category. Probiotics are applied 
examples of this principle. 

An example of a major evolutionary event that was driven by the acquisition of bacteria 
is the ability of some animals to use cellulose and other complex polysaccharides as nutri­
ents. Evolution of termite and cockroach hindgut micro biota may be viewed as a gradual 
process of internalizing microbial consortia that digest plant litter from the environment. 
Instead of plant debris decaying in the external environment prior to ingestion, it "rots" 
primarily in the hindgut after ingestion (Dietrich et al. 2014). Similar arguments have 
been put forth for the origin of herbivorous dinosaurs and the first plant-eating mammals. 

· A possible example of evolution of humans by HGT between bacteria. is the ability of 
Japanese to digest agar because they have ~ bacterium in their gut that contains a gene that 
codes for agarose. Europeans lack this bacterium and cannot digest agar. The gene coding 
for agarase was obtained by HGT to a resident gut bacterium from a marine bacterium 
that was present on raw seaweed that is part of the traditional Japanese diet (Hehemann 
et al. 2010). 

A key event in the evolution of placental mammals, including humans, was the acqui­
sition by HGT from a retrovirus of the gene coding for the protein syncytin (Dupressoir 
et al. 2012). Originally, syncytin allowed retroviruses to fuse host cells together so they 
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could spread from one cell to another. Now the viral protein allows the formation of pla­
cental structures necessary for the attachment of the embryo to the uterus (Dupressoir et 
al. 12012). Similarly, retrovirally derived enhancers appear to have played a critical role 
in the generation of the progesterone-sensitive uterine decidual cell, which is also critical 
for maintaining pregnancy (Wagner et al. 2014). These data indicate that the integration 
of viral DNA into a host genome played a primary role in a major evolutionary leap, the 
formation of placental mammals. 

Recent analysis has shown that HGT in animals and plants typically results in tens or 
hundreds of active foreign genes, the majority of which seem to be involved in metabo­
lism. In humans, 145 genes (not found in other primates) were attributed to HGT (Crisp 
et al. 2015). These genes play a variety ofroles, such as fatty acid degradation as well as 
antimicrobial or inflammatory responses. Most of the foreign genes identified in the study 
came from bacteria, but some originated from viruses and yeasts. One hundred twenty­
eight genes found in land plants but absent from algae were identified as derived from 
prokaryotes, fungi, or viruses. Many of these genes are related to essential or plant-specific 
metabolic and developmental processes (Yue et al. 2013). 

Role of Microbiota in Speciation 

Lactobacillus plantarum is responsible for mating preference in Drosophila by altering 
the cuticular hydrocarbon pheromone concentrations (Sharon et al. 2010). It is generally 
accepted that mating selection represents an early step in sexual isolation and speciation 
(Coyne and Orr 2004). Since microbes are largely responsible for the odor of animals, it 
is likely they play a general role in mating preference. 

Micro biota also plays a role in postzygotic reproductive success. When recently diverged 
wasp species were crossbred, the hybrids died during the larval stage. Antibiotics rescued 
hybrid survival. The authors conclude, "In this animal complex, the gut microbiome and 
host genome represent a co-adapted hologenome that breaks down during hybridization, 
promoting hybrid lethality and assisting speciation" (Brucker and Bordenstein 2013, 699). 
Similar results-have been shown in subspecies of mice (Wang et al. 2015). 

Coda 

The organism as a holobiont represents a paradigm change in biology. Twenty-first century 
techniques have revealed tliat symbiotic relationships are the rule and not the exceptions. 
Animals and plants are holobionts consisting of the host and diverse symbiotic microor­
ganisms. What we had thought was a monogenomic individual is actually a consortium on 
the anatomical, physiological, developmental, immunological, and even behavioral levels. 
Moreover, these microbial symbionts can be transmitted from parent to offspring by a 
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variety of methods, including germ-line transmission, proximate transmission (as during 
mammalian birth), and environmental infection. Consideration of the holobiont as a unique 
biological entity elicits the hologenome concept of evolution, wherein the holobiont (host 
+ symbionts) with its hologenome (host genome +, symbiont genomes) is a level of selec­
tion. Indeed, the acquisition of microbes and their genes provides powerful mechanisms 
for driving the origin of species and evolution of complexity. Evolution proceeds both via 
cooperation and competition, the two going hand in hand. 

References 

Ardeshir, A., Narayan, N. R., Mendez-Lagares, G., Lu, D., Rauch, M., Huang, Y., et al. (2014). Breast-fed and 
bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Science Translational 
Medicine, 6, 252rl20. 

Bates, J.M., Mittge, E., Kuhlman, J., Baden, K. N., Cheesman, S. E., & Guilemin, K. (2006). Distinct signals 
from the microbiota promote different aspects of zebrafish gut differentiation. Developmental Biology, 297, 
374-386. 

Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., et al. (2011). Ingestion of 
Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus 
nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055. 

Brucker, R. M., & Bordenstein, S. R. (2013). The hologenomic basis of speciation: Gut bacteria cause hybrid 
lethality in the genus Nasonia. Science, 341, 667--669. 

Cash, H. L., Whitman, C. V., Benedict, C. L., & Hooper, L. V. (2006). Symbiotic bacteria direct expression of 
an intestinal bactericidal Iectin. Science, 313, 1126-1130. 

Clarke, E. (2010). The problem of biological individuality. Biological Theory, 5, 312-325. 

Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer. 

Crisp, A., Boschetti, C., Perry, M., Tunnacliffel, A., & Micklem, G. (2015). Expression of multiple horizontally 
acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biology, 16, 50. 

Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: The impact of the gut microbiota on brain 
and behaviour. Nature Reviews. Neuroscience, 13, 701-712. 

Cytryn, E., & Kolton, M. (2011). Microbial protection against plant disease. In E. Rosenberg & U. Gophna 
(Eds.), Beneficial Microorganisms in Multicellular Life Forms (pp. 123-138). Heidelberg, Germany: Springer. 

Dale, C., & Moran, N. A. (2006). Molecular interactions between bacterial symbionts and their hosts. Cell, 126, 
453-465. 

De Filippo, C., Cavalieria, D., Di Paolab, M., Ramazzotti, M. M., Poullet, J. B., Massart, S., et al. (2010). 
Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural 
Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 14691-14696. 

Diaz Heijtz, R. D., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., et al. (2011). Normal gut 
microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the 
United States of America, 108, 3047-3052. 

Dietrich, C., Kohler, T., & Brune, A. (2014). The cockroach origin of the termite gut microbiota: Patterns in 
bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology, 80, 
2261-2269. 



The Holobiont 319 

Dominguez-Bello, M. G., & Blaser, M. J. (2011). The human microbiota as a marker for migrations of individuals 
and populations. Annual Review of Anthropology, 40, 451-474. · 

Douglas, A. E. (1988). Experimental studies on the mycetome symbiosis in the leafhopper Euscelis incisus. 
Journal of Insect Physiology, 34, 1043-1053. 

Douglas, A. E. (2010). The Symbiotic Habit. Princeton, NJ: Princeton University Press. 

Duan, J., Chung, H., Troy, E., & Kasper, D. L. (2010). Microbial colonization drives expansion ofIL-1 receptor 
I-expressing and IL-17-producing y/6 T cells. Cell Host & Microbe, 7, 140-150. 

Dunbar, H. E., Wilson, A. C. C., Fergus.on, N. R., & Moran, N. A. (2007). Aphid thermal tolerance is governed 
by a point mutation in bacterial symbionts. [</jm>]. PLoS Biology, 5, e96. 

Dupressoir, A., Lavialle, C., & Heidmann, T. (2012). From ancestral infectious retroviruses to bona fide cellular 
genes:;Role of the captured syncytins in placentation. Placenta, 33, 663-671. 

Eberl, G. (2010). A new vision of immunity: Homeostasis of the superorganism. Mucosa/ Immunology, 3, 
450-460. 

Erny, D., Hrabe de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, 0., David, E., et al. (2015). Host micro­
biota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18, 965-977, 

Fernandez, L., Langa, S., Martina, V., Maldonadoa, A., Jimenez, E., Martin, R., et al. (2013). The human milk 
microbiota: Origin and potential roles in health and disease. Pharmacological Research, 69, 1-10. 

Foster, R. C. (1988). Microenvironments of soil microorganisms. Biology and Fertility of Soils, 6, 189-203. 

Franzenburg, S., Walter, J., Kiinzel, S., Baines, J. F., Bosch, T. C. G., & Fraune, S. (2013). Distinct antimicrobial 
tissue activity shapes host species-specific bacterial associations. Proceedings of the National Academy of Sci­
ences of the United States of America, 110(39), 3730-3738. 

Fraune, S., & Bosch, T. C. G. (2010). Why bacteria matter in animal development and evolution. BioEssays, 
32, 571-580. 

Geddes, P., & Mitchell, P. C. (1911). Morphology. In Encyclopedia Britannica (11th ed., pp. 863-869). Cam­
bridge, UK: Cambridge University Press. 

Gilbert, S. F. (2001). Ecological developmental biology: Developmental biology meets the real world. Devel­
opmental Biology, 233, 1-12. 

Gilbert, S. F. (2003). The genome in its ecological context: Philos.ophical perspectives on interspecies epigenesis. 
Annals of the New York Academy of Sciences, 981, 202-218. 

Gilbert, S. F. (2011). Symbionts as genetic sources of hereditable variation. In S. B. Gissis & E. Jablonka 
(Eds.), Transformations of Lamarckism: From Subtle Fluids to Molecular Biology (pp. 283-293). Cambridge, 
MA: MIT Press. 

Gilbert, S. F., & Epel, D. (2009). Ecological Develop'inental Biology: Integrating Epigenetics, Medicine, and 
Evolution. Sunderland, MA: Sinauer. 

Gilbert, S. F., & Epel, D. (2015). Ecological Developmental Biology: The Environmental Regulation of Develop­
ment, Health, and Evolution. Sunderland, MA: Sinauer. 

Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view oflife: We have never been individuals. Quar­
terly Review of Biology, 87, 325-341. 

Gordon, J. I. (2012). Honor thy gut symbionts redux. Science, 336, 1251-1253. 

Hall, J. A., Bouladoux, N., Sun, C. M., Wohlfert, E. A., Blank, R. B., Zhu, Q., et al. (2008). Commensal DNA 
limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity, 29, 
637-649. . 



320 Scott F. Gilbert, Eugene Rosenberg, and Ilana Zilber-Rosenberg 

Hehemann, J. H., Correc, G., Barbeyron, T., Helbert, W., Czjiek, M., & Gurvan, M. (2010). Transfer of 
carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 464, 908-914. 

Hentschel, U., Piel, J., Degnan, S., & Taylor, M. W. (2012). Genomic insights into the marine sponge microbiome. 
Nature Reviews. Microbiology, JO, 641--654. 

Hill, D. A., Siracusa, M. C., Abt, M. C., Kim, B. S., Kobuley, D., Kubo, M., et al. (2012). Commensal bacteria­
derived signals regulate basophil hematopoiesis and allergic inflammation. Nature Medicine, 18, 538-546. 

Hill, J. H., Franzosa, E. A., Huttenhower, C., & Guillemin, K. (2016) .. A conserved bacterial protein induces 
pancreatic beta cell expansion during zebrafish development. eLife, 5, e20145. 

Hooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G., & Gordon, J. I. (2001). Molecular analysis of 
commensal host-microbial relationships in the intestine. Science, 291, 881-884. 

Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde; E. R., McCue, T., et'al. (2013). Microbiota modulate 
behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155, 1451-1463. 

Huxley, T. H. (1852). Upon animal individuality. Edinburgh New Philosophical Journal, 53, 172-177. 

lnnerebner, G., Knief, C., & Vorholt, J. A. (2011). Protection of Arabidopsis thaliana against leaf-pathogenic 
Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental 
Microbiology, 77, 3202-3210. 

Jenkins, C., Samudrala, R., Anderson, I., Hedlund, B. P., Petroni; G., Michailova, N., et al. (2002). Genes for 
the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proceedings of the National Academy of 
Sciences of the United States of America, 99, 17049-17054. 

Kamra, D. N. (2005). Rumen microbial ecosystem. Current Science, 89, 124-135. 

Klein, J. (1982). Immunology: The Science of Self-Nonself Discrimination. New York: Wiley. 

Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., et al. (2010). Succession of 
microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences 
of the United States of America, /08, 4578-4585. 

Koren, 0., Goodrich, J. K., Cullender, T. C., Spor, A., Laitinen, K., Backhed, H.K., et al. (2012). Host remodel­
ing of the gut microbiome and metabolic changes during pregnancy. Cell, 150, 470-480. 

Landmann, F., Foster, J.M., Michalski, M. L., Slatko, B. E., & Sullivan, W. (2014). Co-evolution between an 
endosymbiont and its nematode host: Wolbachia asymm_etric posterior localization and AP polarity establishment. 
PLoS Neglected Tropical Diseases, 8(8), e3096. 

Lanning, D. K., Rhee, K. J., & Knight, K. L. (2005). Intestinal bacteria and development of the B-lymphocyte 
repertoire. Trends in Immunology, 26, 419-425. 

Lederberg, J., & McCray, A. T. (2001). "Orne Sweet Omics"-A genealogical treasury of words. Scientist 
(Philadelphia, Pa.), 15, 8. 

Lee, Y. K., & Mazmanian, S. K. (20 I 0). Has the microbiota played a critical role in the evolution of the adaptive 
immune system? Science, 330, 1768-1773. 

Lehnert, E. M., Mouchka, M. E., Burriesci, M. S., Gallo, N. D., Schwarz, J. A., & Pringle, J. R. (2014). Exten­
sive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda, Md.), 4(2), · 
277-295. . 

Leuckart, R. ( 1851 ). Ober den Polymorph is mus der Individuen oder die Erscheinungen der Arbeitsteilung in der 
Natur: Ein Beitrag zur Lehre vom Generationswechsel. Giessen, Germany: Ricker. 

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., et al. (2008). Evolution 
of mammals and their gut microbes. Science, 320, 1647-1651. 



The Holobiont 321 

Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and evolutionary forces shaping microbial diversity 
in the human intestine. Cell, 124, 837-848. 

Limoges, C. (1994). Milne-Edwards, Daiwin, Durkheim and division of labour: A case study in reciprocal 
conceptual exchanges between the social and natural sciences. In I. B. Cohen (Ed.), The Natural Sciences and 
Social

1 
Sciences: Some Critical and Historical Perspectives (pp. 317-343). Dordrecht, the Netherlands: Kluwer 

Academic. 

Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Micro­
biology, 69, 1875-1883. 

MacDonald, S. J., Thomas, G. H., & Douglas, A. E. (2011). Genetic and metabolic determinants of nutritional 
phenotype in an insect-bacterial symbiosis. Molecular Ecology, 20, 2073-2084. 

Margulis, L. (1993LSymbiosis in Cell Evolution. New York: Freeman. 

Margulis, L., & Sagan, D. (2001). The beast with five genomes. Natural History, 110, 3. 

Matsuura, Y., Kikuchi, Y., Miura, T., & Fukatsu, T. (2015). Ultrabithorax is essential for bacteriocyte develop­
ment. Proceedings of the National Academy a/Sciences of the United States of America, 112, 9376-9381., 

Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunology, 12, 991-1045. 

McCutcheon, J.P., & von Dohlen, C. D.(2011). An interdependent metabolic patchwork in the nested symbiosis 
of mealybugs. Current Biology, 21, 1366-1372. 

McFall-Ngai, M. J. (2002). Unseen forces: The influences of bacteria on animal development. Developmental 
Biology, 242, 1-14. 

McFall-Ngai, M., Hadfield, M. G., Bosch, T. C., Carey, H. V., Domazet-Loso, T., Douglas, A. E., et al. (2013). 
Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of 
Sciences of the United States of America, 110, 3229-3236. 

Millikan, D.S., & Ruby, E.G. (2001). Alterations in Vibriofischeri motility correlate with a delay in symbiosis 
initiation and are associated with additional symbiotic colonization defects. Applied and Environmental Micro­
biology, 68, 2519-2528. 

Milne-Edwards, H. (1827). Organisation. In J. B. G. M. Bory de Saint-Vincent (Ed.), Dictionnaire Classique 
D'histoire Naturelle (pp. 332-344). Paris: Beaudoin. 

Mitreva, M., Smant, G., & Helder, J. (2009). Role of horizontal gene transfer in the evolution of plant parasitism 
among nematodes. Methods in Molecular Biology, 532, 517-535. 

Moran, N. A., & Jarvik, T. (2010). Lateral transfer of genes from fungi underlies carotenoid production in aphids. 
Science, 328, 624-627. 

/ 

Moran, N. A., & Yun, Y. (2015). Experimental replacement of an obligate insect symbiont. Proceedings of the 
National Academy of Sciences of the United States of America, 112, 2093-2096. 

Mulle, J. G., Sharp, W. G., & Cubells, J. F. (2013). The gut microbiome: A new frontier in autism research. 
Current Psychiatry Reports, 15, 337. 

Muscatine, L., Falkowski, P. G., Porter, W., & Dubinsky, Z. (1984). Fate of photosynthetic fixed carbon in 
light- and shade-adapted colonies ofJhe symbiotic coral Stylophora pistillata. Proceedings of the Royal Society 
of London. Series B, Biological Sciences, 222, 181-202. 

Nikoh, N., Tanaka, K., Shibata, F., Kondo, N., Hiziime, M., Shimada, M., et al. (2008). Wolbachia genome 
integrated in an insect chromosome: Evolution and fate of laterally transferred endosymbiont genes. Genome 
Research, 18, 272-280. 



322 Scott F. Gilbert, Eugene Rosenberg, and Ilana Zilber-Rosenberg 

Nyhart, L. K., & Lidgard, S. (2011). Individuals at the center of biology: RudolfLeuckart's Polymorphismus der 
Individuen and the ongoing narrative of parts and wholes. With an annotated translation. Journal of the History 
of Biology; 44, 373--443. 

Obata, T., Goto, Y., Jun Kunisawa, J., Sato, S., Mitsuo Sakamoto, M., Setoyama, H., et al. (2010). Indigenous 
opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues aqd share a mucosa! antibody-mediated 
symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 107, 7419-7424. 

Ochman, H., Worobey, M., Kuo, C.H., Ndjango, J. N., Peeters, M., Hahn, B. H., et al. (2010). Evolutionary 
relationships of wild hominids recapitulated by gut microbial communities. PLoS Biology, 8(11), el000546. 
doi: I 0.1371/joumal.pbio. 1000546. 

Oliver, K. M., Degnan, P. H., Hunter, M. S., & Moran, N. A. (2009). Bacteriophages encode factors required for 
protection in a symbiotic mutualism. Science, 21, 992-994. 

Olszak, T., An, D., Zeissig, S., Vera, M. P., Richter, J., Franke, A., et al. (2012). Microbial·exposure during early 
life has persistent effects on natural killer T cell function. Science, 336, 489--493. 

Pannebakker, B. A., Loppin, B., Elemans, C. P. H., Humblot, L., & Vavre, F. (2007). Parasitic inhibition of cell 
death facilitates symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 
104, 213-215. 

Peterson, D. A., McNulty, N. P., Guruge, J. L., & Gordon, J. I. (2007). IgA response to symbiotic bacteria as a 
mediator of gut homeostasis. Cell Host & Microbe, 2, 328-339. 

Peyer, S. M., Pankey, M. S., Oakley, T. H., & McFall-Ngai, M. J. (2014). Eye-specification genes in the bac­
terial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues. 
Mechanisms of Development, 131, 111-126. 

Pradeu, T. (2010). What is an organism? An immunological answer. History and Philosophy of the Life Sciences, 
32, 247-268. 

Pradeu, T. (2011). A mixed self: The role of symbiosis in development. Biological Theory, 6, 80-88. 

Rawls, J. F., Samuel, B. S., & Gordon, J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved 
responses to the gut microbiota. Proceedings of the National Academy of Sciences of the United States of 
America, 101, 4596--4601. 

Rhee, S. H., Pothoulakis, C., & Mayer, E. A. (2009). Principles and clinical implications of the brain-gut--enteric 
microbiota axis. Nature Reviews. Gastroenterology & Hepatology, 6, 306-314. 

Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., et al. (2013). Gut microbiota from 
twins discordant for obesity modulate metabolism in mice. Science, 341(6150), 1241214. 

Rohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated 
bacteria. Marine Ecology Progress Series, 243, 1-10. 

Rosenberg, E., Koren, 0., Reshef, L., Efrony, R., & Zilber-Rosenberg, I. (2007). The role of microorganisms in 
coral health, disease and evolution. Nature Reviews. Microbiology, 5, 355-362. 

Rosenberg, E., & Zilber-Rosenberg, I. (2011). Symbiosis and development: The hologenome concept. Birth 
Defects Research. Part C, Embryo Today: Reviews, 93, 56-66. ' 

Rosenberg, E., & Zilber-Rosenberg, I. (2014). The Hologenome Concept: Human, Animal and Plant Microbiota. 
Heidelberg, Germany: Springer. 

Rosner, J. L. (2014). Ten times more microbial cells than body cells in humans? Microbe, 9, 47. 

Roth, M. S. (2014). The engine of the reef: Photobiology of the coral-algal symbiosis. Frontiers in Microbiology, 
5,422. doi:10.3389/finicb.2014.00422. 



The Holobiont 323 

Round, 1.IL., Lee, S. M., Li, J., Tran, G., Jabri, B., Chatila, T. A., et al. (2011). The Toll-like receptor 2 pathway 
establishes colonization by a commensal of the human microbiota. Science, 332, 974-977. 

Round, 1. L., O'Connell, R. M., & Mazmanian, S. K. (2010). Coordination oftolerogenic immune responses by 
the commensal microbiota. Autoimmunity, 34, 1220-1225. 

Sanders, J. G., Powell, S., Kronauer, D. J., Vasconcelos, H. L., Frederickson, M. E., & Pierce, N. E. (2014). 
Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Molecular Ecology, 23, 
1268-1283. 

Sela, D. A., Li, Y., Lerno, L., Wu, S., Marcobal, A. M., German, 1. B., et al. (2011 ). An infant-associated bacte­
rial commensal utilizes breast milk sialyloligosaccharides. Journal of Biological Chemistry, 286, 11909-11918. 

Sharon, G., Segal, D., Ringo, 1. M., Hefetz, A., Zilber-Rosenberg, I., & Rosenberg, E. (2010). Cornmensal 
bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of 
Sciences of the United'States of America, 107, 20051-20056. 

Smith, M. I., Yatsunenko, T., Manary, M. 1., Trehan, I., Mkakosya, R., Cheng, J., et al. (2013). Gut microbiomes 
of Malawian twin pairs discordant for kwashiorkor. Science, 339, 548-554. 

Stappenbeck, T. S., Hooper, L. V., & Gordon, 1. I. (2002). Developmental regulation of intestinal angiogenesis 
by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences of the United States 
of America, 99, 15451-15455. 

Steams, S. C. (2007). Are we stalled part way through a major evolutionary transition from individual to group? 
Evolution; International Journal of Organic Evolution, 61, 2275-2280. 

Tauber, A. I. (2000). Moving beyond the immune self? Seminars in immunology, 12, 241-248. 

Tauber, A. I. (2016). Philosophy of immunology. In E. N. Zelta (Ed.), Stanford Encyclopedia of Philosophy. 
Available at https://plato.stanford.edu/entries/immunology/ 

Thingstad, T. F. (2000). Elements of a theory for the mechanisms controlling abundance, diversity, and bio­
geochemical role oflytic bacterial viruses in aquatic systems. Limnology and Oceanography, 45, 1320-1328. 

Tsuchida, T., Koga, R., Horikawa, M., Tsunoda, T., Maoka, T., Matsumoto, S., et al. (2010). Symbiotic bacterium 
modifies aphid body color. Science, 330, 1102-1104. 

Turnbaugh, P. J., Hamady, M., Brandi, T., Cantarel, L., Duncan, A., Ley, R. E., et al. (2009). A core gut micro­
biome in obese and lean twins. Nature, 457, 480-484. 

Turnbaugh, P. 1., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, 1. I. (2009). The effect of diet 
on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Science Translational 
Medicine, 1(6), 6ra14. 

Ulvestad, E. (2007). Defending Life: The Nature of Host-Parasite Relations. Dordrecht, the Netherlands: 
Springer. -

Vasquez, A., Forsgren, E., Fries, I., Paxton, R. 1., Flaberg, E., Szekely, L., et al. (2012). Symbionts as major 
modulators·ofinsect health: Lactic acid bacteria and honeybees. PLoS One, 7, e33188. 

Vogel, K. 1., & Moran, N. A. (201'1). Sources of variation in dietary requirements in an obligate nutritional 
symbiosis. Proceedings. Biological Sciences, 278, 115-121. 

Voss, 1. D., Leon, J.C., Dhurandhar, N. V., & Robb, F. T. (2015). Pawnobiome: Manipulation of the hologenome 
within one host generation and beyond. Frontiers _in Microbiology. doi:10.3389/frnicb.2015.00697. 

Wagner, G. P., Kin, K., Muglia, L., & Pavlicev, M. (2014). Evolution of mammalian pregnancy and the origin 
of the decidual stromal cell. International Journal of Developmental Biology, 58, 117-126. 



324 Scott F. Gilbert, Eugene Rosenberg, and Ilana Zilber-Rosenberg 

Wang, J., Kalyan, S., Steck, N., Turner, L. M., Harr, B., Kiinzel, S., et al. (2015). Analysis of intestinal microbiota 
in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nature Communications, 6, 
6440. doi: IO.I 038/ncomms7440. 

Weiss, B. L., Maltz, M., & Aksoy, S. (2012). Obligate symbionts activate immune system development in the 
tsetse fly. Jour~al of Immunology (Baltimore, Md.: 1950), 188, 3395-3403. 

Wesemann, D.R., Portuguese, A. J., Meyers, R. M., Gallagher, M. P., Cluff-Jones, K., Magee, J.M., et al. (2013). 
Microbial colonization influences early B-lineage development in the gut lamina propria. Nature, 501, 112-115. 

Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics 
analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National 
Academy of Sciences of the United States of America, 106, 3698-3703. 

Wilson, E. B. (1986). The Cell in Devefopment and Inheritance. New York: Macmillan. 

Yano, J.M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from 
the gut microbiota regulate host serotonin biosynthesis. Cell, 161, 264-276. 

Yoshida, E., Sakurama, H., Kiyohara, M., Nakajima, M., Kitaoka, M., Ashida, H., et al. (2012). Bifidobacterium 
longum subsp. in/antis uses two different ~-galactosidases for selectively degrading type-I and type-2 human 
milk oligosaccharides. Glycobiology, 22, 361-368. 

Yue, J., Hu, X., & Huang, J. (2013). Horizontal gene transfer in the innovation and adaptation of land plants. 
Plant Signaling & Behavior, 8(5), e24130. 

Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: 
The hologenome theory of evolution. FEMS Microbiology Reviews, 32, 723-735. 

Zivkovic, A. M., German, J.B., Lebrilla, C. B., & Mills, D. A. (2011). Human milk glycobiome and its impact 
on the infant gastrointestinal microbiota. Proceedings of the National Academy of Sciences of the United States 
of America, 108, 4653-4658. 


	The Holobiont With Its Hologenome Is A Level Of Selection In Evolution
	Recommended Citation

	tmp.1585140720.pdf.hw8sW

