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Abstract— Max-plus linear systems are often used to model
timed discrete-event systems, which represent system operations
as discrete sequences of events in time. This paper presents the
observer-based controller to solve the disturbance decoupling
problem for max-plus linear systems where only estimations of
system states are available for the controller. This observer-
based controller leads to a greater control input than the
one obtained with the output feedback strategy based on
just-in-time criterion. A high throughput screening system in
drug discovery illustrates this main result by showing that
the scheduling obtained from the observer-based controller
solving the disturbance decoupling problem is better than the
scheduling obtained from the output feedback controller.

I. INTRODUCTION

Max-plus linear systems ([1], [3], [20]) are used to model
for timed discrete-event systems, which represent the system
operations as discrete sequences of events in time. The main
advantage of max-plus linear systems is incorporating the
traditional linear system theory for the nonlinear concurrent
behaviors in discrete-event systems. Over the past three
decades, many fundamental problems for max-plus linear
systems have been studied by researchers, for example,
controllability ([21]), observability ([11]), feedback control
([22]) and model reference control ([18]). However, the
geometric theory for max-plus linear systems introduced in
([5]) has not been well established as the traditional linear
systems ([2], [25]). Only a few existing research results on
fundamental concepts and problems in the geometric control
of conventional dynamic systems are generalized to max-plus
linear systems, such as computation of different controlled
invariant sets ([8], [13], [19]) and the disturbance decoupling
problem ([15]).

This paper reports upon further investigations on the
disturbance decoupling problem (DDP) and modified distur-
bance decoupling problem (MDDP) ([9], [23]) for max-plus
linear systems. For a manufacturing system, solving the DDP
means that the outputs will be delayed more than the delays
caused by the disturbances. From a practical point of view,
it would be interesting to ask the question as whether there
exists a controller such that the system is not disturbed more
than the delays caused by the disturbances. MDDP, on the
other hand, is to find a control such that the output signals
generated by the control will not be greater than the output
signals caused by the disturbances. In the previous work,
state-feedback controllers and output feedback controllers
[24] have been developed to solve the DDP and MDDP,
respectively. This paper presents an observer-based controller
for max-plus linear systems using the observer introduced in
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([10], [11], [12]), an analogy with the classical Luenberger
observer [17] for linear systems. The main result is that this
observer-based controller leads to a greater control input
than the one obtained with the output feedback strategy
solving the MDDP and DDP, in spite of the lack of sensors.
For instance, in a manufacturing setting, the observer-based
controller would provide a better scheduling by starting
the process later than the output feedback controller, while
ensuring the same finishing time of the output parts. This
scheduling would allow users to load the raw parts later
rather than earlier to avoid unnecessary congestions in man-
ufacturing lines.

This paper is organized as the following. Section II
presents some algebraic tools concerning max-plus algebraic
structures. Section III presents the definitions of DDP and
MDDP for max-plus linear systems. Section IV reviews the
state-feedback controller and the output feedback controller
solving DDP and MDDP, respectively, in [24]. Section V
reviews the max-plus observer in [11]. Section VI presents
the observer-based controller and compares its differences
in performance with the output feedback controller and the
state-feedback controller in [24]. Section VII illustrates the
main results using a high throughput screening example in
drug discovery. An observer-based controller is constructed
and proved to have a better performance than the output
feedback controller. Section VIII concludes this paper with
future research directions.

II. MATHEMATICAL PRELIMINARIES

Definition 1: A semiring is a set S, equipped with two
operations ⊕ and ⊗, such that (S,⊕) is a commutative
monoid (the zero element will be denoted ε), (S,⊗) is a
monoid (the unit element will be denoted e), operation ⊗ is
right and left distributive over ⊕, and ε is absorbing for the
product (i.e. ε⊗ a = a⊗ ε = ε,∀a).

A semiring S is idempotent if a ⊕ a = a for all a ∈ S.
In an idempotent semiring S, operation ⊕ induces a partial
order relation a � b ⇐⇒ a = a ⊕ b, ∀a, b ∈ S . Then,
a ∨ b = a⊕ b. An idempotent semiring S is complete if the
sum of infinite numbers of terms is always defined, and if
multiplication distributes over infinite sums too. In particular,
the sum of all the elements of the idempotent semiring is
denoted > (for “top”). In this paper, we denote Zmax =
(Z ∪ {−∞,+∞},max,−∞,+, 0), where ε = −∞ is the
neutral element to max and e = 0 is the neutral element to
+. the integer max-plus semiring. A non empty subset B of
a semiring S is a subsemiring of S if for all a, b ∈ B we
have a⊕ b ∈ B and a⊗ b ∈ B.

Definition 2: A mapping f : S → S , where S is a
complete idempotent semiring, is residuated if and only if
f(ε) = ε and f is lower-semicontinuous, that is,

f

(⊕
i∈I

ai

)
=
⊕
i∈I

f (ai) ,

for any (finite or infinite) set I . The mapping f is said to be
residuated and f ] is called its residual.
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When f is residuated, f ] is the unique order preserving
mapping such that

f ◦ f ] � Id f ] ◦ f � Id, (1)

where Id is the identity mapping from S to S. It is
straightforward that : La : S → S, x 7→ ax and Ra :
S → S, x 7→ xa are lower semi-continuous. Therefore
these mappings are both residuated i.e., La(x) � b (resp.
Ra(x) � b) admits a greatest solution, then the following
notations are considered :

L]a(b) = a ◦\b =
⊕
{x|ax � b} and

R]a(b) = b◦/a =
⊕
{x|xa � b} , ∀a, b ∈ S.

All these results admit a natural extension to the matrix case,
where the sum and product of matrices are defined with the
same rules as in classical theory (see [1]). Over complete
idempotent semiring, the implicit equation x = ax⊕b admits
x = a∗b as the least solution, where a∗ = ⊕i∈Nai (Kleene
star operator) with a0 = e.

Property 1: ([20]) Given a complete semiring S, and two
matrices A ∈ Sp×n, B ∈ Sn×p, the following equations
hold :

A ◦\A = (A ◦\A)∗, B◦/B = (B◦/B)∗. (2)

III. DISTURBANCE DECOUPLING IN MAX-PLUS LINEAR
SYSTEMS

A max-plus linear system can be described by the follow-
ing

x(k) = Ax(k − 1) ⊕Bu(k)⊕ Sq(k),
y(k) = Cx(k), (3)

where the state is x(k) ∈ Znmax, the input is u(k) ∈ Zpmax, the
disturbance is q(k) ∈ Zrmax, and the output is y(k) ∈ Zqmax,
for k ∈ Z. This kind of system makes it possible to describe
the behaviors of timed-event graphs(TEGs)1 by associating
to each transition xi a firing date sequence xi(k) ∈ Zmax,
and predict the system evolution thanks to Eq. (3).

Definition 3: System (3) is called disturbance decoupled
by an external control if and only if any disturbance signal
will not affect the system output y(k) for all k ∈ Z, that is,
the output signals y(k) remain the same as the output signals
of the undisturbed system, for all k ∈ Z.

In manufacturing systems, for example, when the system
breaks down for one hour, the control will delay the system
operation more than one hour in order to achieve the DDP. In
practical scenarios, production lines need to resume as soon
as the system breakdown is fixed. Hence, a modified DDP is
introduced in order to find the optimal just-in-time controls
such that the system will start running as soon as possible
once the system breakdown is recovered. The MDDP means
that, for manufacturing systems, the controls will delay the
starting dates of the process such that the finishing date of
the output parts would be sooner than the finishing dates
after the system breakdown.

Definition 4: The max-plus linear system described in Eq.
(3) is called modified disturbance decoupled by an external
control if and only if the system output signals generated
by the controls will not be greater than the output signals
generated by only the disturbances.

Control signals that can solve DDP ad MDDP, respec-
tively, are loop controls u(k) = v(k), state-feedback controls
uK(k) = Kx(k − 1) ⊕ v(k) , or output feedback controls
uF (k) = Fy(k) ⊕ v(k). After introducing the max-plus
observer in the next section, the observer-based control

1Timed-event graphs (TEGs) are timed Petri nets where each place has
exactly one upstream transition and one downstream transition.

uM (k) =Mx̂(k − 1)⊕ v(k), where x̂ is an estimation of the
original state x, will be presented. Furthermore, performance
of different types of controls solving DDP and MDDP will
be compared and illustrated in the remainder of the paper.

IV. SOLVING DDP AND MDDP USING EVENT-DOMAIN
APPROACH

A. Event-Domain Representation
For a state equation in Eq. (3), each increasing sequence

{x(k)}, it is possible to define the transformation X(γ) =⊕
k∈Z

x(k)γk where γ is a backward shift operator in event

domain (i.e., Y (γ) = γX(γ) ⇐⇒ {y(k)} = {x(k − 1)},
(see [1], p. 228). This transformation is analogous to the z-
transform used in discrete-time classical control theory and
the formal series X(γ) is a synthetic representation of the
trajectory x(k). The set of the formal power series in γ is
denoted by Zmax[[γ]] and constitutes an idempotent semiring.
Therefore, the state equation in Eq. (3) becomes a polynomial
equation or an event-domain representation,

X(γ) = AX(γ)⊕BU(γ)⊕ SQ(γ), where A = γA,

Y (γ) = CX(γ), (4)

where the state X(γ) ∈
(
Zmax[[γ]]

)n
, the output Y (γ) ∈(

Zmax[[γ]]
)q

, the input U(γ) ∈
(
Zmax[[γ]]

)p
, and the disturbance

Q(γ) ∈
(
Zmax[[γ]]

)r
, and matrices A , γA ∈

(
Zmax[[γ]]

)n×n
,

B ∈
(
Zmax[[γ]]

)n×p
, C ∈

(
Zmax[[γ]]

)q×n
and S ∈

(
Zmax[[γ]]

)n×r
represent the link between transitions. According to the state
equation (4), the evolution of the system is

X(γ) = A
∗
BU(γ)⊕A∗SQ(γ)

Y (γ) = CA
∗
BU(γ)⊕ CA∗SQ(γ). (5)

The trajectories U(γ) and Y (γ) can be related ([1], p.
243) by the equation Y (γ) = H(γ)U(γ), where H(γ) =

CA
∗
B ∈

(
Zmax[[γ]]

)q×p is called the transfer matrix of
the TEG. Entries of matrix H are periodic series ([1], p.
260) in the idempotent semiring, usually represented by
p(γ)⊕ q(γ)(τγν)∗, where p(γ) is a polynomial representing
the transient behavior, q(γ) is a polynomial corresponding
to a pattern which is repeated periodically, the period being
given by the monomial (τγν). The disturbances are uncon-
trollable inputs acting on the system internal’s state, which
model events that block the system, e.g. machine breakdown,
uncontrollable component supply through matrix S, and
CA
∗
S ∈

(
Zmax[[γ]]

)q×r is the transfer function between the
disturbances and outputs.

B. Solving DDP and MDDP by an Open-Loop Control
The objective of the MDDP is to find the greatest open-

loop control U(γ) such that the output trajectories will not
be disturbed more than the disturbance signals have acted on
the system. Formally, according to Definition 4, this means
to find the greatest control, U(γ), such that the following
equation holds,

CA
∗
BU(γ)⊕ CA∗SQ(γ) = CA

∗
SQ(γ) (6)

⇐⇒ CA
∗
BU(γ) � CA∗SQ(γ).

According to Definition 3, solving the DDP in event-domain
means that the control U(γ) has to achieve

CA
∗
BU(γ)⊕ CA∗SQ(γ) = CA

∗
BU(γ) (7)

⇐⇒ CA
∗
SQ(γ) � CA∗BU(γ).

In this paper, all disturbances are assumed to be measurable,
so if U(γ) = V (γ) = PQ(γ), by considering the residuation
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theory(see [23]) and Eq. (6), the MDDP is solved if and only
if the inequality

CA
∗
BU(γ) = CA

∗
BPQ(γ) � CA∗SQ(γ)

holds and the greatest solution solving this inequality is

Popt =
(
CA
∗
B
)
◦\
(
CA
∗
S
)

(8)

=
⊕

P∈Zmax[[γ]]p×r

{CA∗BP � CA∗S},

i.e. such a Popt solves the MDDP for any disturbance Q(γ).
Theorem 1 ([23]): The optimal pre-filter V (γ) =

PoptQ(γ), which solves the MDDP, also solves the
DDP for the max-plus linear systems described in
Eq. (4) if and only if Im CA

∗
S ⊂ Im CA

∗
B, i.e.

CA
∗
S = CA

∗
B((CA

∗
B) ◦\(CA∗S)).

C. Solving DDP and MDDP by a State-Feedback Control
If we want to find a state-feedback control uK(k) =

Kx(k − 1) ⊕ v(k) to solve DDP and MDDP, then we can
represent the control in γ-domain as UK(γ) = KX(γ)⊕V (γ),
where K = γK . Moreover, such a K can be generalized to entries
that are periodic series with γd, d ≥ 1.

Mathematically, the state and output signals in the event
γ-domain are represented as follows:

X(γ) = (A⊕BK)∗BV (γ)⊕ (A⊕BK)∗SQ(γ)

= (A⊕BK)∗ [B | S]
(
V (γ)
Q(γ)

)
= (A⊕BK)∗B̃

(
V (γ)
Q(γ)

)
, where B̃ = [B | S] ,

Y (γ) = CX(γ) = C(A⊕BK)∗B̃

(
V (γ)
Q(γ)

)
. (9)

Based on Definition 3, solving the DDP in event-domain
means that the state-feedback controller has to achieve the
following equality:

C(A⊕BK)∗B̃

(
V (γ)
Q(γ)

)
= C(A⊕BK)∗BV (γ). (10)

Based on Definition 4, solving the MDDP in event-domain
means that the state-feedback controller has to achieve an-
other equality:

C(A⊕BK)∗B̃

(
V (γ)
Q(γ)

)
= C(A⊕BK)∗SQ(γ). (11)

Equations (10) and (11) each have three variables, the state-
feedback structure K, the open-loop controller V (γ), as well
as the disturbance input Q(γ).

For an open-loop control V (γ), the goal is to find a state-
feedback controller K in equations (10) and (11) such that
the output signals generated by the state-feedback control
UK(γ) = KX(γ) ⊕ V (γ) are the same as the output signals
generated by the open-loop control V (γ). In summary, that
is, the following equality holds

C(A⊕B K)∗B̃

(
V (γ)
Q(γ)

)
= CA

∗
B̃

(
V (γ)
Q(γ)

)
. (12)

Proposition 1: ([14], [16]) The greatest controller Kopt is
given by

Kopt =
(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
A
∗
B̃
)
, (13)

such that the output trajectories generated by the state
feedback controller are the same as the output trajecto-
ries generated by the open-loop controller, i.e. the equality
C
(
A⊕B Kopt

)∗
B̃ = CA

∗
B̃ holds.

Proposition 2: ([24]) The state-feedback control
law UKopt

(γ) = KoptX(γ) ⊕ PoptQ(γ) solves
the MDDP of the max-plus linear system in
Eq. (4), where Popt =

(
CA
∗
B
)
◦\
(
CA
∗
S
)

and

Kopt =
(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
A
∗
B̃
)

.
Proposition 3: ([24]) The state-feedback control

law UKopt
(γ) = KoptX(γ) ⊕ PoptQ(γ) , where

Popt =
(
CA
∗
B
)
◦\
(
CA
∗
S
)

and Kopt =(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
A
∗
B̃
)

, solves the DDP of the
max-plus linear system in Eq. (4) if and only if
Im CA

∗
S ⊂ Im CA

∗
B.

D. Solving DDP and MDDP by an Output Feedback Control

If we want to find an output feedback control uF (k) =
Fy(k) ⊕ v(k), i.e. uF (k) = FCx(k) ⊕ v(k) to solve DDP
and MDDP, then we can represent the control in γ-domain
as UF (γ) = FY (γ)⊕ V (γ) = FCX(γ)⊕ V (γ) . Similar steps
as the previous subsection on state-feedback control can be
taken by simply replacing K by FC.

Proposition 4: ([24]) The greatest controller Fopt is given
by

Fopt =
(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
CA
∗
B̃
)
, (14)

such that the output trajectories generated by the output
feedback control are the same as the output trajectories
generated by the open-loop controller, i.e. the equality
C
(
A⊕B FoptC

)∗
B̃ = CA

∗
B̃ holds.

Proposition 5: ([24]) The output feedback control
law UFopt(γ) = FoptY (γ) ⊕ PoptQ(γ) solves the
MDDP of the max-plus linear system in Eq. (4),
where Popt =

(
CA
∗
B
)
◦\
(
CA
∗
S
)

and Fopt =(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
CA
∗
B̃
)

.
Proposition 6: ([24]) The output feedback

control law UFopt(γ) = FoptY (γ) ⊕ PoptQ(γ) ,
where Popt =

(
CA
∗
B
)
◦\
(
CA
∗
S
)

and Fopt =(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
CA
∗
B̃
)

, solves the DDP of
the max-plus linear system in Eq. (4) if and only if
Im CA

∗
S ⊂ Im CA

∗
B.

In summary, the open-loop controller, state-feedback con-
troller, and the output feedback controller can be illustrated
in Fig. 1 in solid lines, dashed lines, and dotted lines,
respectively. If P = Popt, K = Kopt, and F = Fopt, then
the open-loop controller, state-feedback controller, and the
output feedback controller can solve the MDDP, respectively.
Moreover, based on Theorem 1, Proposition 3 and Proposi-
tion 6, if the image inclusion condition Im CA

∗
S ⊂ Im CA

∗
B

is satisfied, these three controllers can solve DDP as well.

B C

A

Y(γ)X(γ)U(γ)

P

Q(γ) S
System

F

V(γ)

K
_

Fig. 1: The controller structure for DDP and MDDP.
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System

Q(γ)

A

B C

L
Observer

Y(γ)=CX(γ){X(γ)=AX(γ) + BU(γ) + S Q(γ)            
      

   Y(γ)

Y(γ)

Y(γ)

X(γ)

U(γ)

Simulator

_

_

Fig. 2: The observer structure of max-plus linear systems.

V. MAX-PLUS OBSERVER

Fig. 2 depicts the observer structure directly inspired by
the Luenberger observer in classical linear system theory
([10],[11],[17]). The observer matrix L is used to provide
information from the system output into the simulator in
order to take the disturbances Q(γ) acting on the system into
account. The simulator is described by the model2(matrices
A, B, C) which is assumed to represent the fastest behavior
of the real system in a guaranteed way3, furthermore, the
simulator is initialized by the canonical initial conditions
(i.e., x̂i(k) = ε, ∀k ≤ 0).

By considering the configuration in Fig. 2 and these
assumptions, the computation of the optimal observer matrix
L will be proposed in order to achieve the constraint X̂(γ) �
X(γ). Optimality means that matrix L is the greatest one,
according to the residuation theory. Therefore, the estimated
state X̂(γ) is the greatest which achieves the objective, in
other words, it is as close as possible to X(γ). As in the
development proposed in conventional linear systems theory,
matrices A, B, C and R are assumed to be known, then the
system trajectories are given by Eq. (5). According to Fig. 2,
the observer equations, similarly as the Luenberger observer,
are given by:

X̂(γ) = AX̂(γ)⊕BU(γ)⊕ L(Ŷ (γ)⊕ Y (γ))

= AX̂(γ)⊕BU(γ)⊕ LCX̂(γ)⊕ LCX(γ)

= (A⊕ LC)X̂(γ)⊕BU(γ)⊕ LCX(γ),

= (A⊕ LC)∗BU(γ)⊕ (A⊕ LC)∗LCX(γ)

= (A⊕ LC)∗BU(γ)⊕
(A⊕ LC)∗LC(A

∗
BU(γ)⊕A∗SQ(γ)) (15)

By considering Eq. (f.1) in Appendix, the following equal-
ity is obtained:

(A⊕ LC)∗ = A
∗
(LCA

∗
)∗, (16)

by replacing in Eq. (15):

X̂(γ) = A
∗
(LCA

∗
)∗BU(γ)⊕

A
∗
(LCA

∗
)∗LCA

∗
BU(γ)⊕

A
∗
(LCA

∗
)∗LCA

∗
SQ(γ),

and by denoting (LCA
∗
)∗LCA

∗
= (LCA

∗
)+, this equation

may be written as follows:

X̂(γ) = A
∗
(LCA

∗
)∗BU(γ)⊕A∗(LCA∗)+BU(γ)

⊕A∗(LCA∗)+SQ(γ).

2Disturbances are uncontrollable and a priori unknown, then the simulator
does not take them into account.

3Unlike in the conventional linear system theory, this assumption means
that the fastest behavior of the system is assumed to be known and that the
disturbances can only delay its behavior.

Since (LCA
∗
)∗ � (LCA

∗
)+ = (LCA

∗
)∗LCA

∗, the observer
model may be written as follows:

X̂(γ) = A
∗
(LCA

∗
)∗BU(γ)⊕A∗(LCA∗)+SQ(γ)

= (A⊕ LC)∗BU(γ)⊕ (A⊕ LC)∗LCA
∗
SQ(γ),(17)

due to Eq.(16).

As said previously, the objective considered is to compute
the greatest observation matrix L, denoted as Lopt, such that
the estimated state vector X̂(γ) is as close as possible to
state x, under the constraint X̂(γ) � X(γ), formally it can
be written as, finding the greatest L satisfying the following
inequality, ∀U(γ), Q(γ):

X̂(γ) = (A⊕ LC)∗BU(γ)⊕ (A⊕ LC)∗LCA
∗
SQ(γ)

� X(γ) = A
∗
BU(γ)⊕A∗SQ(γ), (18)

or equivalently:

(A⊕ LC)∗B � A∗B,
(A⊕ LC)∗LCA

∗
S � A∗S.

Lemma 1 ([11]): The following equivalence holds:

(A⊕ LC)∗B = A
∗
B ⇔ L � L1 = (A

∗
B)◦/(CA

∗
B).

Lemma 2 ([11]): The following equivalence holds:

(A⊕ LC)∗LCA
∗
S � A∗S ⇔ L � L2 = (A

∗
S)◦/(CA

∗
S).

Proposition 7 ([11]): Lopt = L1 ∧ L2 is the greatest
observer matrix L such that: X̂(γ) � X(γ) ∀(U(γ), Q(γ)).

Remark 1: The canonical injection from the causal ele-
ments of Zmax[[γ]] (denoted Zmax[[γ]]

+) in Zmax[[γ]] is also
residuated (see [7] for details). Its residual is given by
Pr
(⊕

k∈Z s(k)γ
k
)
=
⊕

k∈Z s+(k)γ
k where

s+(k) =
{
s(k) if (k, s(k)) ≥ (0, 0),
ε otherwise.

Notice that the preceding lemmas and proposition could
be restricted to causal projections Lopt+ = Pr+(Lopt), which
is the greatest causal solution for (A ⊕ LC)∗B � A

∗
B and

(A⊕ LC)∗LCA
∗
R � A∗S, with X̂(γ) � X(γ).

Corollary 1 ([12]): Matrix Lopt+ = Pr+(Lopt) is the
greatest causal observer ensuring the equality between the
estimated output ˆY (γ) and the measured output Y (γ).

Remark 2: If the observer matrix L becomes Lopt+, then
the max-plus observer in Eq. (15) will become

X̂(γ) = AX̂(γ)⊕BU(γ)⊕ Lopt+Y (γ), (19)

because Y (γ) is the same as Ŷ (γ).

VI. OBSERVER-BASED CONTROLLER SOLVING DDP
AND MDDP

As in the classical theory, the state often is not measurable
or it is too expensive to measure all the states. Hence, in
this section, we propose to use the estimated state, obtained
thanks to the observer proposed in the previous section,
to compute the observer-based state-feedback control law.
Then, this control strategy is compared with the output
feedback control as given in Proposition 5. Formally, the
observer-based control uM (k) = Mx̂(k − 1) ⊕ v(k), or in γ-
domain as UM (γ) =MX̂(γ)⊕ V (γ), where M = γM and

X̂(γ) = AX̂(γ)⊕BUM (γ)⊕ Lopt(CX(γ)⊕ CX̂(γ))

= (A⊕ LoptC)∗BUM (γ)⊕ (A⊕ LoptC)∗LoptCA
∗
SQ(γ)

(See Eq.(17)).

The optimal observer matrix Lopt = L1 ∧ L2 is the same
as introduced in Proposition 7, where L1 = (A∗B)◦/(CA∗B)
and L2 = (A∗S)◦/(CA∗S). Moreover, this optimal observer
matrix is clearly independent of the control law uM .
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Fig. 3: The observer-based controller for max-plus linear
systems.

This observer-based control strategy in γ-domain is de-
picted in Fig. 3 and can be rewritten as

UM (γ) =MX̂(γ)⊕ V (γ)

=M(A⊕ LoptC)∗BUM (γ)

⊕M(A⊕ LoptC)∗LoptCA
∗
SQ(γ)⊕ V (γ)

= (M(A⊕ LoptC)∗B)∗V (γ)⊕ (20)

(M(A⊕ LoptC)∗B)∗M(A⊕ LoptC)∗LoptCA
∗
SQ(γ)

Therefore, plugging in U(γ) above to the system state, we
can obtain as

X(γ) = A
∗
BUM (γ)⊕A∗SQ(γ)

= A
∗
B(M(A⊕ LoptC)∗B)∗V (γ)⊕

A
∗
B(M((A⊕ LoptC)∗B)∗M(A⊕ LoptC)∗LoptCA

∗
SQ(γ)

⊕A∗SQ(γ),

and then the system output can be rewritten accordingly as

Y (γ) = CA∗BUM (γ)⊕ CA∗SQ(γ)

= CA
∗
B(M(A⊕ LoptC)∗B)∗V (γ)⊕

CA
∗
B(M((A⊕ LoptC)∗B)∗M(A⊕ LoptC)∗LoptCA

∗
SQ(γ)

⊕CA∗SQ(γ), (21)

Proposition 8: The greatest observer-based controller
Mopt is given by

Mopt =
(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
A
∗
B̃
)
= Kopt, (22)

where B̃ = [B | S], such that the output trajectories gener-
ated by the observer-based control UM (γ) =MX̂(γ)⊕V (γ),
where X̂(γ) = AX̂(γ)⊕BUM (γ)⊕Lopt(Ŷ (γ)⊕Y (γ)), are the
same as the output trajectories generated by the open-loop
control U(γ) = V (γ).

Proof: In order to prove that the output trajectories gener-
ated by the observer based controller M as described in Eq.
(21) preserve the same output trajectories as the open-loop
control in Eq. (5), we need to prove

CA
∗
B(M(A⊕ LoptC)∗B)∗ = CA

∗
B, (23)

and

CA
∗
B(M((A⊕ LoptC)∗B))∗M(A⊕ LoptC)∗LoptCA

∗
S

= CA
∗
S, (24)

respectively. For Eq. (23), clearly CA
∗
B(M(A ⊕

LoptC)∗B)∗ � CA
∗
B due to the definition of the star

operation. The other direction can be proved as follows: the
left hand side of the equality can be written as

CA
∗
B(M(A⊕ LoptC)∗B)∗ = CA

∗
B(MA

∗
B)∗,

due to Lemma 1. Moreover, to ensure the inequality
CA
∗
B(M(A⊕ LoptC)∗B)∗ � CA∗B, we need to have

CA
∗
B(MA

∗
B)∗ � CA

∗
B

⇔ (MA
∗
B)∗ � (CA

∗
B) ◦\(CA∗B)

⇔ (MA
∗
B)∗ � ((CA

∗
B) ◦\(CA∗B))∗ due to Eq.(2)

⇔MA
∗
B � (CA

∗
B) ◦\(CA∗B)

⇔M � (CA
∗
B) ◦\(CA∗B)◦/(A

∗
B). (25)

Therefore, for any M � (CA
∗
B) ◦\(CA∗B)◦/(A

∗
B), Eq. (23)

is satisfied.
To prove that Eq. (24) also holds, assuming that M �

(CA
∗
B) ◦\(CA∗B)◦/(A

∗
B), i.e. Eq. (23) is already satisfied,

then the left hand side of the equality in Eq. (24) can be
written as

CA
∗
B(M((A⊕ LoptC)∗B)∗M(A⊕ LoptC)∗LoptCA

∗
S

= CA
∗
BM(A⊕ LoptC)∗LoptCA

∗
S, due to Eq.(23)

= CA
∗
BMA

∗
S, due to Lemma 2.

In order to have Eq. (24) holds, we have

CA
∗
BMA

∗
S � (CA

∗
B)

⇔ MA
∗
S � (CA

∗
B) ◦\(CA∗S)

⇔ M � (CA
∗
B) ◦\(CA∗S)◦/(A∗S). (26)

Hence, if M satisfies both inequalities Eq. (25) and Eq.
(26), equivalently, Eq. (23) and Eq. (24) are both satisfied.
Moreover, the following inequalities hold as well due to
residuation theory:

CA
∗
BMA

∗
B � CA∗B, and CA∗BMA

∗
S � CA∗S

⇔ CA
∗
BMA

∗
B̃ � CA∗B̃ ⇔

M �Mopt =
(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
A
∗
B̃
)
= Kopt,

where B̃ = [B | S], i.e. the observer-based controller
Mopt is the same as the state-feedback controller Kopt in
Proposition 1. �

Thanks to the Separation Principle, Proposition 8 shows
that the controller synthesis and the observer synthesis can be
obtained independently. In another words, first, we can find
the greatest observer matrix Lopt to ensure that the estimated
output is the same as the original output. Second, we can
find the greatest state-feedback matrix Mopt, i.e. Kopt to
ensure that MDDP is solved. After combining the greatest
observer matrix Lopt and the state-feedback matrix Kopt,
the observer-based controller is constructed and denoted as
UMopt

(γ) = MoptX̂(γ) ⊕ V (γ) , where X̂(γ) = AX̂(γ) ⊕
BUMopt

(γ)⊕ Lopt(Ŷ (γ)⊕ Y (γ)).
Proposition 9: The observer-based control law

UMopt
(γ) = MoptX̂(γ) ⊕ PoptQ(γ) solves the

MDDP of the max-plus linear system in Eq. (4),
where Popt =

(
CA
∗
B
)
◦\
(
CA
∗
S
)

and Mopt =(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
A
∗
B̃
)

.
Proof: If Mopt and the observer matrix Lopt are able to

preserve the output trajectories the same as the open-loop
trajectories CA∗BV (γ)⊕CA∗SQ(γ). The open-loop control
V (γ) = PoptQ(γ) produces the outputs CA

∗
BPoptQ(γ) �

CA
∗
SQ(γ), therefore, the MDDP is solved. �

Proposition 10: The observer-based control
law UMopt

(γ) = MoptX̂(γ) ⊕ PoptQ(γ) , where
Popt =

(
CA
∗
B
)
◦\
(
CA
∗
S
)

and Mopt =(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
A
∗
B̃
)

, solves the DDP of the
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max-plus linear system in Eq. (4) if and only if
Im CA

∗
S ⊂ Im CA

∗
B.

Proof: The observer-based control law UMopt
(γ) =

MoptX̂(γ)⊕ PoptQ(γ) solves MDDP. If the image inclusion
condition is satisfied, Im CA

∗
S ⊂ Im CA

∗
B, then, due to

Theorem 1, the DDP is solve as well. �
The observer-based controller solving the MDDP and DDP

is illustrated in Fig. 4.

A

B C

M

Lopt Observer

Controller

U(γ)

V(γ)

Q(γ)

System
Y(γ)=CX(γ){

_
X(γ)=AX(γ) + BU(γ) + S Q(γ)            

      
   

X(γ)

X(γ)

Y(γ)

Y(γ)

Y(γ)

_

P

_

Fig. 4: The observer-based controller for max-plus linear
systems.

Proposition 11: The output feedback control law
UFopt(γ) = FoptY (γ) ⊕ V (γ), the observer-based control
law UMopt

(γ) = MoptX̂(γ) ⊕ V (γ), and the state-feedback
control law UKopt

(γ) = KoptX(γ) ⊕ V (γ) are ordered as
follows:

UFopt(γ) � UMopt
(γ) � UKopt

(γ).

Proof: According to Equality f.(19) in Appendix, the
following equality holds: Fopt = Mopt◦/C. Hence, FoptC �
Mopt ⇒ FoptCX̂(γ) � MoptX̂(γ). According to Corollary
1, CX̂(γ) = Ŷ (γ) = Y (γ), hence FoptY (γ) � MoptX̂(γ).
This means that the feedback control taking the output into
account is smaller than or equal to the observer-based control
using the estimated state. By recalling that the addition and
product laws are order preserving, it appears that:

UFopt(γ) = FoptY (γ)⊕V (γ) � UMopt
(γ) =MoptX̂(γ)⊕V (γ).

According to Proposition 7, X̂(γ) � X(γ), and, according
to Proposition 8, Mopt =Mopt. Hence, UMopt

(γ) � UKopt
(γ).

�
According to the just-in-time criterion, Proposition 11

shows that the observer-based control strategy is better
than the output feedback control strategy. For instance, in
a manufacturing setting, the observer-based control would
provide a better scheduling by starting the process later
than the output feedback control, while ensuring the same
output parts finishing time. This scheduling would allow
users to load the raw parts later rather than earlier to avoid
unnecessary congestions in the manufacturing lines.

VII. APPLICATION TO A HIGH THROUGHPUT SCREENING
SYSTEM IN DRUG DISCOVERY

High throughput screening (HTS) is a standard technology
in drug discovery. In HTS systems, optimal scheduling is
required to finish the screening in the shortest time, as well
as to preserve the consistent time spent on each activity.
This section is using a HTS system to illustrate the main
results in this paper. This HTS system, adapted from [4],
has three nested activities running on three different single-
capacity resources: pipettor (activity 1), reader (activity 2),
and incubator (activity 3). The Gantt chart for this HTS

system is shown in Fig. 5. One cycle of events is shown as
follows: first, the pipettor drops the DNA/RNA compounds
into the microplate, then the microplate is transferred to the
reader to be scanned, and then the microplate is transferred
to the incubator. After the first cycle of events, the second
cycle of event will start. Moreover, the three activities are
overlapping during the transition time, for instance, the
reader starts scanning 3 time units before the pipettor finishes
its task, and finishes scanning 7 units after incubator starts
the task, as shown in Fig. 5.

i=1

i=3

i=2

Incubator

Pipettor

Reader

9 12 16 23 780 time

Fig. 5: The Gantt chart of one cycle of activities.

x1 x2u

0

12

9

x3

0

14 x4

3 x5 62 x6

0

7

7

0

y

q 0

i=1
i=3

i=2

0

0

Fig. 6: The TEG model for the HTS system.

If we are interested in the start and release event time
of each activity, we can model the HTS system as a TEG
model, shown in Fig. 6, in which x1 and x2 denote the start
and release time of the activity 1 on the pipettor, x3 and
x4 denote the start and release time of the activity 2 on the
reader, and x5 and x6 denote the start and release time of
the activity 3 on the incubator. The input u is the starting
time of the pipettor which users can decide: when to load the
chemical compounds. The disturbance q is the starting time
of the incubator, such as transition time delay from the reader
to the incubator due to system malfunction. The output y is
the release time of the incubator. The cycles indicate places
and the bars represent the transitions xi. The tokens in the
places represent that the transitions are ready to be fired,
i.e. the activity is ready to start. For the TEG model of a
HTS system shown in Fig. 6, the system over the max-plus
algebra Zmax[[γ]] is described as the following:

X(γ) = AX(γ)⊕BU(γ)⊕ SQ(γ)

Y (γ) = CX(γ), where

A =


ε γ ε ε ε γ
12 ε 3 ε ε ε
9 ε ε γ ε ε
ε ε 14 ε 7 ε
ε ε 7 ε ε γ
ε ε ε ε 62 ε

 ,
BT = [ e ε ε ε ε ε ] ,

ST = [ ε ε ε ε e ε ] , and

C = [ ε ε ε ε ε e ] .
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The example has been computed by using toolbox
MinMaxGD, a C++ library which allows the handling of
periodic series as introduced in ([6]), and it can be noted
that this library is also interfaced with Scilab and MATLAB.
We obtain The transfer function between the output Y (γ)
and disturbance U(γ) and the input Q(γ), respectively, as

CA
∗
B = 78(78γ)∗ = 78⊕ 156γ ⊕ 234γ2 · · · ,

CA
∗
S = 62(78γ)∗ = 62⊕ 140γ ⊕ 218γ2 · · · ,

in which each component of these matrices is a periodic
series. Essentially, the γ-periodic series represent the output
sequence when an infinite number of supplies are put in
the system at time 0 (impulse input). For instance, CA

∗
B

represents the impulse response of the incubator as y(0) =
78, y(1) = 156, y(2) = 234, etc.

The non-causal filter Popt is
(
CA
∗
B
)
◦\
(
CA
∗
S
)

=

−16(78γ)∗. In this example, we have the image inclusion
condition Im CA

∗
S ⊂ Im CA

∗
B satisfied, hence, this non-

causal prefilter solves the MDDP and the DDP at the same
time due to CA

∗
BPopt = CA

∗
S. This prefilter Popt is not

causal because there are negative coefficients in the matrix.
If we take the canonical injection from the causal elements
of Zmax[[γ]], then the greatest causal prefilter is

Popt+ = Pr(Popt) = 62γ(78γ)∗.

The causal filter Popt+ for the MDDP does not solve DDP
because

CA
∗
BPopt+ = 140γ(78γ)∗ ≺ CA∗S.

Next, we construct the observer-based control UMopt
(γ) =

MoptX̂(γ) ⊕ PoptQ(γ) with X̂ = AX̂(γ) ⊕ BUMopt
(γ) ⊕

Lopt(Y (γ)⊕Ŷ (γ)). According to Lemma 1, Lemma 2, the observer
matrix Lopt is given as follows:

Lopt = L1 ∧ L2 = (A∗B)◦/(CA∗B) ∧ (A∗R)◦/(CA∗R)

=


γ(78γ)∗

12γ(78γ)∗

9γ(78γ)∗

−55(78γ)∗
−62(78γ)∗
(78γ)∗

 ,

Then, the causal observer matrix Lopt+ is

Lopt+ =


γ(78γ)∗

12γ(78γ)∗

9γ(78γ)∗

23γ(78γ)∗

16γ(78γ)∗

(78γ)∗

 .

According to Proposition 8 and Eq. (22), the greatest observer-
based controller preserving the open-loop behaviors Mopt is ob-
tained as follows:

Mopt =
(
CA
∗
B
)
◦\
(
CA
∗
B̃
)
◦/
(
A
∗
B̃
)

= [(78γ)∗,−12(78γ)∗,−9(78γ)∗,
−23(78γ)∗,−16(78γ)∗,−78(78γ)∗].

The greatest causal feedback is

Mopt+ = Pr(Mopt) = [(78γ)∗, 66γ(78γ)∗, 69γ(78γ)∗,

55γ(78γ)∗, 62γ(78γ)∗, γ(78γ)∗].

The observer-based control UMopt+
(γ) = Mopt+X̂(γ) ⊕

Popt+Q(γ) with estimated states X̂(γ) = AX̂(γ) ⊕

BUMopt+
(γ)⊕Lopt+(Y (γ)⊕ Ŷ (γ)) = AX̂(γ)⊕BUMopt+

(γ)⊕
Lopt+Y (γ) can be realized using a TEG model shown in
Fig. 7. The pre-filter Popt+, the observer mapping Lopt+,
and the state-feedback control Mopt+ are marked in gray
areas. For instance, Lopt+(1, 1) = γ(78γ)∗ implies that, in
the TEG model shown in Fig. 7, there is a cyclic component
with one token and 78 time delays for a new transition ξ3
and the output y has one token and 0 time delay before
going through the observer transition x̂1. The other entries
of matrix Lopt+, the observer-based state-feedback matrix
Mopt+ and the prefilter Popt+ can be constructed in a similar
manner.

The estimated states x̂ = Ax̂⊕BuMopt+⊕Lopt+y in event
domain k can be written in the event domain by considering
the (max-plus)-algebra as follows:

Lopt+y :ξ3(k) = 78ξ3(k − 1)⊕ y(k)

x̂ :



x̂1(k) = x̂1(k − 1)⊕ x̂6(k − 1)⊕ 1u(k)⊕ ξ3(k − 1),
x̂2(k) = 12x̂1(k)⊕ 3x̂3(k)⊕ 12ξ3(k − 1),
x̂3(k) = 9x̂1(k)⊕ x̂4(k − 1)9ξ3(k − 1),
x̂4(k) = 14x̂3(k)⊕ 7x̂5(k)⊕ 23ξ3(k − 1),
x̂5(k) = 7x̂3(k)⊕ x̂6(k − 1)⊕ 16ξ3(k − 1),
x̂6(k) = 62x̂5(k)⊕ ξ3(k).

Then the event domain representation for the observer-based
control law uMopt+ =Mopt+x̂⊕ Popt+q is obtained as follows:

Mopt+x̂ : ξ2(k) = 78ξ2(k − 1)⊕ x̂1(k)⊕ 66x̂2(k − 1)

⊕69x̂3(k − 1)⊕ 55x̂4(k − 1)⊕ 62x̂5(k − 1)

⊕x̂6(k − 1),

Popt+q : ξ1(k) = 78ξ1(k − 1)⊕ 62q(k − 1)

v(k) = ξ(k − 1)

u(k) = ξ2(k)⊕ v(k),

where ξi, i = 1, 2, 3, are the intermediate transitions in the
TEG shown in Fig. 7. Similarly, the estimated state x̂ and
the observer-based control law uMopt+ could be written in
time-domain equations by considering the min-plus algebra.

The TEG model of the HTS system with open-loop and
state feedback controllers are shown in Fig. 7.

x1 x2u  

0

12

9

x3

0

14 x4

3 x5

62

x6

 
0

7

7

0
q 0

i=1
i=3

i=2

v

0
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62

0

Mopt+

66

62

78

Popt+ 0

y

0

0

12

9

0

14

3 62

0

7

7

0

78
0

9

23

16

Lopt+

12

x̂1 x̂2

x̂3 x̂4

x̂5 x̂6

0

Observer

0

0

ξ1

ξ2

ξ3

Fig. 7: The TEG model of the HTS system with controllers.

In Fig. 7, the causal pre-filter Popt+ = 62γ(78γ)∗ is
represented by a cyclic transition due to (78γ)∗, where γ
indicates one token inside of the place and 78 units are the
holding time of the token, and 62γ is represented by an
additional transition with one token and 62 units holding
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time. Same analogy works for the feedback Mopt+ : X →
U .

When we apply the observer-based control law
UMopt+

(γ) = Mopt+X̂(γ) ⊕ PoptQ(γ) to the system,
we can solve the MDDP and the DDP because the
observer-based control law preserved the same output as
the open-loop controlled system, which solved the DDP
because the image inclusion condition Im CA

∗
S ⊂ Im CA

∗
B

since CA
∗
BPopt = CA

∗
S. Moreover, based on Proposition

11, the output feedback controller solving the MDDP and
DDP generates a smaller controller than the observer based
controller because Fopt+C is less than Mopt+, where the
ouput feedback controller Fopt = −78(78γ)∗ and its causal
projection Fopt+ = γ(78γ)∗, which

Fopt+C = [ ε ε ε ε ε γ(78γ)∗ ] �Mopt+.

VIII. CONCLUSIONS

The main contribution of this paper is the design of an
observer-based controller solving for the DDP ad MDDP for
max-plus linear systems, where only a subset of the states
obtained from measurement is available for the controller.
This observer-based controller leads to a greater control input
than the one obtained with the output feedback strategy based
on just-in-time criterion. The main results are illustrated by a
better scheduling obtained from the observer-based controller
in a high throughput screening system in drug discovery. In
conclusion, the estimated state could also be useful in fault
detection and diagnosis for max-plus linear systems in future
research.
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IX. APPENDIX

A. Formulas of Star Operations

a∗(ba∗)∗ = (a⊕ b)∗ = (a∗b)∗a∗ (f.1)
(a∗)∗ = a∗ (f.2)

(ab)∗a = a(ba)∗ (f.3)
a∗a∗ = a∗ (f.4)
aa∗ = a∗a (f.5)

B. Formulas of Left Residuations

a(a ◦\x) � x (f.6)
a ◦\(ax) � x (f.7)

a(a ◦\(ax)) = ax (f.8)
a ◦\(x ∧ y) = a ◦\x ∧ a ◦\y (f.9)
(a⊕ b) ◦\x = a ◦\x ∧ b ◦\x (f.10)

(ab) ◦\x = b ◦\(a ◦\x) (f.11)
b(a ◦\x) � (a◦/b) ◦\x (f.12)
(a ◦\x)b � a ◦\(xb) (f.13)

C. Formulas of Right Residuations

(x◦/a)a � x (f.14)
(xa)◦/a � x (f.15)

((xa)◦/a)a = xa (f.16)
(x ∧ y)◦/a = x◦/a ∧ y◦/a (f.17)
x◦/(a⊕ b) = x◦/a ∧ x◦/b (f.18)

x◦/(ba) = (x◦/a)◦/b (f.19)
(x◦/a)b � x ◦\(b◦/a) (f.20)
b(x◦/a) � (bx)◦/a (f.21)
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