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Behavioural adjustments to predation risk may impose costs on prey species. While the vigilance
eforaging conflict has been extensively investigated, other important fitness-related behaviours exclu-
sive to scanning, such as grooming, have been overlooked. Yet, risk perception is expected to be more
accurately assessed in these contexts as food-related parameters should not interfere. We studied
individually recognizable impalas, Aepyceros melampus, and questioned the factors that shape maternal
decision making in two exclusive components of maternal care with high benefits and costs: scanning for
predators and grooming offspring to remove parasites. While studies generally infer prey alertness level,
used as a proxy of risk perception, from the observed investment in vigilance, the vigilance
eallogrooming context gave us the opportunity to directly assess alertness during the time spent head-
up, and then to investigate its sources of variation and its consequences for allogrooming probability. We
found a strong decrease in allogrooming probability when maternal alertness increased. Mothers were
more alert in open (grassland) than in closed (bushland) habitats at a large scale. Increasing group size
led both to lower maternal alertness and higher proportion of suckling time spent allogrooming, but only
when surrounded by low vegetation, the reverse being true in high vegetation. Finally, mothers suckling
female calves were more alert. Our results underline the determinant role of habitat, shaping both
offspring predation risk and the relative conspicuousness or protective value of group mates. We discuss
the potential fitness costs associated with the antipredatoreantiparasite trade-off faced during maternal
care. Our results suggest that prey behaviours other than foraging are essential to identify factors shaping
risk perception.
© 2017 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Several recent studies have pointed out that the costs of anti-
predator behaviours developed by prey species could be at least as
important as direct killing by predators in shaping their population
dynamics (e.g. Creel & Christianson, 2008). Behavioural adjust-
ments to predation risk encompass many aspects, from habitat
selection to vigilance behaviour. Habitat selection may impact prey
fitness when individuals trade food quality/quantity for safety (e.g.
Hamel & Côt�e, 2007). Antipredator vigilance behaviour is expected
to reduce the amount of time available for other time-consuming
activities, including important fitness-related behaviours. For
instance, vigilance and foraging are classically expected to conflict
tion et Diversit�e Biologique,
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because foraging requires visual attention and involves a head
posture that generally shortens visual field. The magnitude of the
costs to food intake rate associated with vigilance behaviour and
the factors shaping the decision to engage in vigilance while
foraging have been extensively investigated in the past few decades
(Beauchamp, 2015), as these decisive behaviours are relatively easy
to observe in many free-ranging animals.

Yet, vigilance behaviour conflicts with other fitness-related be-
haviours such as grooming. The removal of ectoparasites is one of
the main functions of grooming (e.g. Mooring, McKenzie, & Hart,
1996). Ticks may strongly impact host fitness (e.g. Norval,
Sutherst, Kurki, Gibson, & Kerr, 1988; Norval, Sutherst, Kurki,
Kerr, & Gibson, 1997) through blood removal and disease trans-
mission (Hart, 1990), suggesting that selection should favour in-
dividuals able to perform effective grooming. However, grooming
posture impairs visual scanning (Cords, 1995; Maestripieri, 1993;
Mooring & Hart, 1995). Few studies have investigated the way in
evier Ltd. All rights reserved.
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which animals circumvent the conflict between those two fitness-
related behaviours and most of them used a time budget approach
(e.g. Baker & Smith, 1997). While these studies provide important
insights into the ‘ecology of grooming’, the relative investment in
antipredator or antiparasite behaviours remains largely unexplored
at a finer temporal scale (but see studies on birds preening,
although this behaviour encompasses functions other than anti-
parasitic, e.g. references in Roberts, 2003; Randler, 2005;
Dominguez & Vidal, 2007). This contrasts with the numerous
studies examining the historical trade-off between vigilance and
foraging at the scale of the foraging bout (Beauchamp, 2015). This
study aimed at identifying the determinants of the decision to
engage or not in grooming for an individual experiencing strong
predation pressure. We studied individually recognizable free-
ranging impalas, Aepyceros melampus, a heavily predated species
(Fritz & Bourgarel, 2013) facing a significant threat from tick in-
festations, especially during the birth season (Horak, Gallivan,
Braack, Boomker, & De Vos, 2003). Impala self-grooming
(Mooring & Hart, 1997a), allogrooming (Hart & Hart, 1992) and
maternal allogrooming (Mooring & Rubin, 1991) patterns as well as
factors shaping vigilance behaviour while feeding (e.g. Pays et al.,
2012) are already well studied, offering a good theoretical and
practical background. We considered maternal allogrooming of
offspring, because we expected the selection pressures involved in
the vigilanceegrooming conflict to be acute in the context of
maternal care, as suggested below. We focused on maternal allog-
rooming occurring during suckling bouts as they constitute most of
the occasions for females to groom their young once the neonate
stage ends (Mooring & Rubin, 1991; Mooring & Hart, 1997b;
P. Blanchard, O. Pays & H. Fritz, personal observations). In addition,
this very standardized behaviour provides the opportunity to
compare females in similar body postures. Further, focusing on
immobile focal animals allows a more accurate investigation of the
relationship between risk perception and the local environmental
variables than in foraging individuals, which are typically moving.

Antagonist Selection Pressures at Play

Parental care refers to any form of behaviour by a parent that
increases offspring growth or survival (Clutton-Brock, 1991). Both
maternal allogrooming and maternal vigilance are expected to
closely match this definition. As maternal allogrooming is further
expected to increase current offspring fitness at the cost to the
mother's ability to invest in future offspring (as having her head
down increases her own probability of being preyed upon, e.g.
Mooring & Hart, 1995), allogrooming behaviour also conforms to
the definition of maternal investment (Trivers, 1972).

Natural selection pressures on maternal investment in offspring
grooming are expected to be strong. By removing ectoparasites
before they attach and begin to feed, maternal allogrooming may
prevent offspring from several associated costs (Musante, Pekins, &
Scarpitti, 2007). Although calves may be allogroomed by other in-
dividuals in the population (Mooring & Hart, 1997b), maternal
allogrooming has the specificity to be directed to any part of the
calf's body while allogrooming is always directed to the head and
neck regions (Mooring & Hart, 1997b), i.e. unreachable by self-
grooming (Hart & Hart, 1992). Moreover, both forms of allog-
roomingmay be complementary as allogrooming involves a form of
dental comb (Mckenzie, 1990) while maternal allogrooming typi-
cally involves a licking with the tongue (Mooring & Hart, 1997b),
also clearly effective at removing ectoparasites (Mooring & Samuel,
1998; Rich, 1973). Maternal allogrooming serves other important
hygienic functions. For instance, the concomitant removal of mud
or faeces is expected to decrease the risk of diseases (Fraser &
Broom, 1990) and the role of maternal saliva involved in licking
in removing potentially pathogenic bacteria from the calf's coat
and/or discouraging their growth has been shown experimentally
(Kohari, Sato, & Nakai, 2009). Moreover, allogrooming quality is
thought to be one of the maternal traits affecting offspring survival
in ungulates for reasons other than hygiene (Alexander, 1988),
especially for neonates (Dwyer & Lawrence, 1998, 2005). They
include heat loss reduction, stimulation of activity, removing of the
olfactory cues for predators, contribution to early bonding through
olfactory memory (Nowak, Porter, Levy, Orgeur, & Schaal, 2000)
and stimulation of urination and defecation (Metz & Metz, 1986).
Interestingly, manual grooming of hand-reared impala calves
increased motivation to bottle-nurse (Mooring & Rubin, 1991; see
also Lent, 1974). Finally, benefits associated with allogrooming but
not specific to maternal allogrooming such as a reduction in heart
rate (Feh & de Mazi�eres, 1993) may have special value in a context
of the mothereyoung bond. Altogether, these results suggest that
strong selection pressures should favour females investing in the
allogrooming of their young and thus displaying a head-down
posture during suckling bouts, i.e. when opportunity for maternal
grooming is expected to peak (Mooring & Hart, 1997b; Mooring &
Rubin, 1991).

Concomitantly, natural selection pressures on maternal care
decisions to improve offspring safety are also expected to be
strong. In line with the importance of (1) early offspring survival
for a female's lifetime reproductive success (Clutton-Brock, 1988),
(2) predation as a driver of preweaning mortality in ungulate
populations (Linnell, Aanes, & Andersen, 1995) and (3) maternal
vigilance for offspring survival in a predation context (Fitzgibbon,
1990), increased vigilance behaviour for lactating females
compared to other females is a common feature in ungulate
studies (Quenette, 1990), including impalas (Burger & Gochfeld,
1994; Hunter & Skinner, 1998). The higher predation on juve-
niles is probably the result of poorer skills in both escaping and
identifying a predatory stimulus as a threat (Dimond & Lazarus,
1974). During a suckling bout, the escape capacity of the young
(and probably of the mother) is expected to be even lower given
its posture and its impaired visual field so that the young is ex-
pected to rely probably entirely on its mother's vigilance (e.g.
Kom�arkov�a & Barto�sov�a, 2013). Furthermore, the vigilance costs
associated with adulteadult allogrooming has been firmly estab-
lished in impala (Mooring & Hart, 1995): when a person
approached a group of impalas, mimicking a stalking predator, the
allogroomer became alert about 8 s later than the non-
allogrooming individual nearest to the allogrooming pair. Because
maternal allogrooming occurs head down in impalas, scanning
capacities are probably even more impaired than for adults
engaged in head-up allogrooming. Altogether, these results sug-
gest that natural selection should favour females caring for their
offspring by scanning regularly, particularly during exposed be-
haviours, i.e. by frequently displaying a head-up posture during
suckling bouts.

Drivers of Individual Decision

We considered both intrinsic and extrinsic explanatory vari-
ables, including those known to shape vigilance in foragers. These
variables are presented in Table 1 together with the associated
prediction. We paid special attention to the proxy of the risk
perception experienced by the focal individual. Classically, intrinsic
and extrinsic factors are implicitly expected to shape the risk
perception of the animal and, in turn, risk perception is expected to
impact the decision to engage or not in scanning: in short, when a
forager often raises its head, it is inferred that it faces high risk
perception when its head is down. In a maternal allogroo-
mingevigilance context, the amount of time the female spends



Table 1
Description of the explanatory variables considered in the analyses on allogrooming probability, together with related prediction and references

Sources of variation
in maternal behaviour

Variable description Variable name/type Expected effect on allogrooming
probability

Related sources

Extrinsic variables
Number of adults First axis of a PCA explained

by the number of adults and
the number of calves in the
group. For 9 observations, we
could not accurately assess
the number of individuals in
the group because of visual
barriers so we discarded
them from analyses involving
group size

‘Group size’, continuous Allogrooming expected to increase
with group size through detection/
dilution/confusion effects. May
interact with vegetation
characteristics

Beauchamp (2009), Krause
and Ruxton (2002)

Number of calves Rieucau et al. (2012)

Spatial position in the group Second axis of a PCA
explained by the spatial
position in the group and the
distance to the nearest
neighbour (always an impala
adult female here). ‘Central’
individuals were those with
an angle of maximum 90�

without conspecifics and
‘peripheral’ individuals were
those with an angle of
minimum 180� without
conspecifics. 31 of 101
individuals could not be
assigned to either of these
two classes

‘Isolation’, continuous Allogrooming expected to decrease
with isolation as an individual at
the periphery of the group or far
from its conspecifics is more
exposed to a predator

Inglis and Lazarus (1981)
Distance to nearest neighbour P€oys€a (1994)

Number of other ungulates Number of other ungulates in
the group (typically groups of
5e15 zebras, Equus quagga,
and up to 10 kudus,
Tragelaphus strepsiceros with
a resident group of 10
wildebeest, Connochaetes
taurinus, on rare occasions)

‘Number of other
ungulates’, continuous

Allogrooming expected to increase
with the number of other ungulates
in the group as they are expected to
be involved in detection/dilution/
confusion effects

Scheel (1993)

Largescale cover Percentage of pixels
unrelated to sky on a
hemispherical picture taken
at the exact suckle place.
Relates to the largescale
habitat type: open habitats
(grasslands) get low values,
closed habitats (bushlands)
get high values

‘Largescale cover’,
continuous

Prediction too hazardous in this
system given the large range of
tactics used by impalas' predators
and the ambivalent functions of
vegetation

Pays et al. (2012), Krause
and Ruxton (2002), Lazarus
and Symonds (1992)

Medium scale cover The closest vegetation item is
recorded every 20� around
the focal individual and
classified as high (>1 m) or
low (>40 cm and <1 m) (see
text). The proportion of high
vegetation items over these
18 measurements is then
calculated. Relates to the
characteristics of the
vegetation surrounding the
focal animal

‘Medium scale cover’,
continuous

The visibility cost associated with
allogrooming as compared to head-
up posture is expected to increase
when the proportion of high
vegetation items decreases, leading
to decreased allogrooming, all other
things being equal. Yet, because
individual/group conspicuousness
is also expected to depend on this
measure and on group size, a more
complex pattern is expected, as for
alertness level

Fine scale cover Distance to the nearest
vegetation item obstructing
the vision of the impala only if
engaged in allogrooming (i.e.
‘low item’ >40 cm and <1 m),
on the side of the sucking calf.
Relates to the scale of the
animal's head

‘Fine scale cover’,
continuous

Allogrooming is expected to
decrease with increasing distance
to the nearest visual obstruction
(and thus when its obstructive
effect is strengthened). Not
expected to be related to alertness
level

Intrinsic variables
Alertness level Alertness level is based on

body postures and behaviour.
Two classes when based on
always observable traits
(neck, ears), three when
chewing behaviour could be
assessed (see text)

‘Alertness’, factor (2 or
3 levels).

Allogrooming is expected to
decrease when mothers are more
alert given the increased exposure
to predation when allogrooming.

Alados (1985), Blanchard
and Fritz, (2007), Mooring
and Hart (1995)

(continued on next page)
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Table 1 (continued )

Sources of variation
in maternal behaviour

Variable description Variable name/type Expected effect on allogrooming
probability

Related sources

Calf sex Known if the calf was
captured (N¼21, leading to 75
observations)

‘Sex’, two levels Contradictory results in the
literature, no particular prediction
for impalas

Cassinello (1996), Poindron,
Terrazas, de la Luz Navarro
Montes de Oca, Serafin, and
Hern�andez (2007)

Femaleecalf pair identity Pairs are identified either by
the ear tag (N¼27) or by
distinctive natural marks
(N¼7) on the calf and/or the
female's body

‘Identity’, factor (34
levels)

Included in the analysis for
nonindependence issue and to
investigate whether the female's
identity (e.g. her experience,
personality, rank) and/or her calf's
(beside its sex, controlled for)
explained some of her behaviour

Dwyer (2008), Thouless
(1990)

Suckling duration Total duration of the suckle
(s)

‘Suckle duration’,
continuous

Allogrooming expected to increase
with suckling duration. Suckling
duration expected to decrease with
alertness level

Lent (1974)

Additional variables
Departure behaviour Whether mother (typically

followed by the young) fled at
the end of the suckling

‘Departure behaviour’,
two levels

Probability of fleeing expected to
increase with alertness level

Distance to observer's car Distance from focal animal to
observer's car (m)

‘Distance to car’,
continuous

Allogrooming expected to increase
with distance to car

Date of observation Julian date of observation ‘Date’, factor (22 levels) Included in the analysis for
nonindependence issue

Place of suckling Place where suckling
occurred

‘Place’, factor (79 levels) Included in the analysis for
nonindependence issue

We expected these variables to have the same effect on allogrooming duration and the reverse effect on alertness level, except when specified (namely, beside ‘alertness level’,
for fine scale cover, suckling duration and departure behaviour).
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head up during suckling bouts (i.e. without allogrooming) allows a
more direct assessment of its ‘alertness level’, i.e. a proxy of its
overall risk perception, based on its body postures and behaviour
(see Methods; Alados, 1985; Blanchard & Fritz, 2007). Hence, we
first investigated the role of intrinsic and extrinsic variables in
shaping alertness level and then focused on the role of alertness in
shaping the maternal decision to engage or not in allogrooming.
Furthermore, we concur with Arenz (2003) and others that
studying trade-offs between vigilance and activities other than
foraging is advantageous for characterizing individual predation
risk perception and its potential associated costs. Because vigilance
patterns of foraging prey are shaped by predation risk perception
but also by food-related parameters (e.g. Beauchamp, 2009), a
change in vigilance behaviour is not a reliable currency to assess a
change in risk perception. For instance, foragers are expected to
increase their proportion of feeding time spent scanning in patches
where food intake rate is limited by chewing and swallowing rates
rather than by food encounter rate, i.e. where they benefit from
‘spare time’ allowing cost-free vigilance (Blanchard & Fritz, 2007;
Fortin, Boyce, Merrill, & Fryxell, 2004). We thus expect alertness
level assessed during suckling to be a better proxy of predation risk
perception than individual investment in vigilance for foragers.
Although suckling could occur during resting, rumination and
foraging bouts, we did not expect food characteristics (e.g. Fortin
et al., 2004) or scramble competition for food (e.g. Clark &
Mangel, 1986) to interfere in the maternal decision to allogroom.
The monitoring of group mates to glean information on food
patches may also lead to head-up postures of foragers (Beauchamp,
2003). Although we cannot rule out such pressure during suckling,
it seems unlikely in our population (Pays et al., 2012).
METHODS

Study Site and Animals

The observations were conducted in December 2007 and
January 2008 in the main Camp area of the Hwange National Park
(HNP), located on the northwest border of Zimbabwe (19�000S,
26�300E). HNP covers an area of ca. 15 000 km2 with vegetation
typical of southern African dystrophic wooded savannahs with
scattered patches of grasslands. In our study site, impalas are
preyed upon by a large variety of predators, including spotted hy-
aenas, Crocuta crocuta, hunting dogs, Lycaon pictus, leopards, Pan-
thera pardus, cheetahs, Acinonyx jubatus, and lions, Panthera leo
(Fritz & Bourgarel, 2013). Calves were captured at night when they
stayed concealed in vegetation far from the adults, i.e. before the
age of 1 week (Fritz & Bourgarel, 2013), from 15 to 28 December
2007. They were weighed, measured and ear-tagged.
Ethical Note

Approval for the study was obtained from the Zimbabwe Parks
and Management Wildlife Authority (Permit 23(1) (C) (II) 12/2007
and Permit 23(1) (c) ii 31/2007). We parked the vehicle at least
100 m away to minimize disturbance (range of observation dis-
tance of 10e210 m as impalas sometimes walked towards the
vehicle) and waited for the group to leave the area before recording
the vegetation measurements.
Behavioural Observations

We looked for a group of females with young. When a mother
was observed suckling a calf (defined as a contact between a calf's
muzzle and a female's udder), we recorded the variables presented
in Table 1. We only focused on suckling involving individually
recognizable mothereyoung pairs. We never saw several instances
of suckling beginning simultaneously. The observation started at
the beginning of the suckling period and ended with it (duration:
mean ¼ 63.17 s, median ¼ 62.0 s, SD ¼ 14.8 s). Maternal allog-
rooming was defined as the licking (or rarely grooming involving
dental comb) of any part of the calf's body (typically: the hind leg,
perineal region, head, flanks and back). We did not consider the
brief (about 1 s) naso-anal contact between the female and her
young that occurred at the very beginning of most of the suckling
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bouts. A single observer recorded 101 observations in total,
involving 34 different pairs.

The overall state of alertness of the mother during suckling was
inferred from body postures and behaviour assessed during the
‘head-up part’ of the suckling, i.e. when the mother was not
allogrooming (e.g. Alados, 1985; Blanchard & Fritz, 2007). We
defined as ‘weakly alert’ females with nonerected ears and neck (i.e.
a ‘v’ could be drawn following the neck line from the shoulders to
the head), as ‘alert’ females with erected neck, erected ears typi-
cally pointed forwards, head in an immobile posture or jerky
changes of direction and displaying chewing behaviour (first
ingestion or rumination), and finally as ‘highly alert’ females dis-
playing the same attitude as ‘alert’ females but without chewing
although we were confident that they had food in their mouth, i.e.
when grass was seen coming out of the mouth or when the female
resumed chewing at the end of the suckle without regurgitation of
a bolus during suckling for ruminating females (Blanchard & Fritz,
2007, 2008). On 24 occasions, the female met the ‘alert’ criteria but
either it proved impossible to confidently assess whether she could
have chewed or not, or we knew that she could not have chewed
(typically, she was resting without ruminating when the suckling
occurred or she swallowed at the very beginning of the suckling
bout). As these individuals could have been ‘alert’ or ‘highly alert’,
they were not included in the analyses involving the three levels of
alertness. They were, however, included whenwe grouped ‘alert’ or
‘highly alert’ in one category to contrast with ‘weakly alert’, which
happened for some analyses. Observations were cancelled for six
females that regularly changed postures and thus could not reliably
be assigned to one of the three categories. Finally, we excluded two
observations as the alert female was responding to an identified
external stimulus, namely a male roaring while chasing another
female.

Once the group had left the area, the same observer made the
vegetation measurements at the suckling location (see below and
Table 1).

Vegetation Measurements

First, we took a numerical hemispherical picture using a ‘fisheye’
lens positioned at 1 m high and directed towards the ground, using
a spirit level to ensure horizontality. The body of the photographer,
an irrelevant part of the photograph, was always positioned where
the back of the mother was. We then used Photoshop software to
count the percentage of pixels unrelated to the sky (i.e. related to
vegetation) that were on the picture (Jennings, Brown, & Sheil,
1999). This first measurement of the vegetation gave a largescale
proxy of the ‘habitat type’, with low values indexing grassland and
high values indexing bushland.

Second, we focused on the obstructive/protective characteristics
of the vegetation immediately surrounding the focal pair. Every 20�

(from 0� to 360�, i.e. 18 measurements, see e.g. Blanchard, Lauzeral,
Chamaill�e-Jammes, Yoccoz, & Pontier, 2016 for a similar ‘360�

approach’), we identified the nearest vegetation item above 40 cm
(maximum considered distance of 100 m; average distance of
21.8 m) and calculated the proportion of ‘High’ cover items, clas-
sified using the criteria explained below. When the nearest ‘cover’
was the observer's car (25 of 1422 occasions) or was further than
100 m (45 of 1422 occasions), the proportion was calculated
without this measurement (for example, 17 measurements
considered instead of 18 if one of the nearest ‘vegetation’ items was
the car).

‘Low’ cover items were above 40 cm and below 1 m high. These
thresholds were chosen given the height of an adult impala and the
height of a calf assessed in the field, so that this first category of
items is expected to obstruct the view of the mother only when she
is engaged in grooming. Hence, while the influence of these low
vegetation items on the mother's decision to allogroom is expected
to be high, its impact on prey conspicuousness and on prey/pred-
ator moving abilities are expected to be small.

‘High’ cover items were above 1 m high. Whatever the mother's
head position (i.e. allogrooming or not), this second category of
vegetation items thus obstructed the vision of both the prey and the
predator. The difference in visual detection capabilities for the prey
between head-down and head-up postures is thus expected to be
lower than for low vegetation items. These high cover items may
further represent physical barriers for both the prey and the
predator.

For high values of the proportion of high cover around the focal
pair, both the probability of being detected by a predator and the
cost associated with a further decrease in visibility when allog-
rooming are expected to be low. This proxy of medium scale cover
and the previous proxy of largescale cover were not correlated
(P > 0.96).

Finally, we recorded the distance of the closest low cover item
on the side of the suckling: this item should obstruct the visual field
only when allogrooming, and do so more at short distances. This
third measurement gave us a proxy of the vegetation structure at a
fine scale, i.e. the scale of the animal's head.

Data Analyses

Given the number of explanatory variables relative to the
number of observations and the collinearity issues, we first ran a
standardized principal component analysis (PCA) on the number of
adults, the number of calves, the distance to the nearest neighbour
and the within-group spatial position to obtain synthetic variables.
The first axis was negatively correlated with the number of adults
and the number of calves and accounted for 49.2% of the total
variability. This axis is labelled ‘group size’ hereafter (see Table 1).
We multiplied the scores by �1 so that high values indicate large
group sizes. The second axis was positively correlated with the
distance to the nearest neighbour and the within-group spatial
position (0 ¼ centre, 1 ¼ periphery) and accounted for 35.0% of the
total variability. This axis is labelled ‘isolation’ hereafter (see
Table 1). High values indicate individuals far from their closest
neighbour/at the periphery of the group.

For all the dependent variables, the general procedure was the
following. We tested the biologically relevant two-way interactions
in succession and the main effects against the most general model
by using maximum likelihood ratio chi-square tests with backward
stepwise selection procedures. A variable was considered signifi-
cant when P < 0.05. We always kept the main effects in the model
when included in a significant interaction. As observations per-
formed the same day, at the same location or on the same in-
dividuals were not independent, we included these three variables
as random terms. As group size and largescale cover were corre-
lated (larger groups being overrepresented in more open areas), we
reran the model selection procedures using a subsample of our
observations discarding very open areas, so that both variables
were no longer significantly correlated. This did not affect our re-
sults. Including other ungulate species in the calculation of group
size did not affect our conclusions either.

We expected that both intrinsic and extrinsic variables could
impact the mother's alertness level, and consequently her proba-
bility of engaging in allogrooming. Hence, to avoid collinearity is-
sues when investigating the sources of variation in allogrooming
odds (with all explanatory variables including also alertness level),
we first investigated the sources of variation in alertness level. In
this first analysis, we compared ‘weakly alert’ individuals with both
‘alert’ and ‘highly alert’ individuals. We used a logistic model with



Table 2
Variables influencing mother's ‘alertness level’

Explanatory variables Deviance df P (chi-square)

Largescale cover)group size 0.82 1 0.36
Distance to car 0.02 1 0.88
Isolation 0.63 1 0.43
Medium scale cover)group size 5.02 1 0.03
Sex 7.27 1 0.01
Largescale cover 5.29 1 0.02
Pair identity 0.00 1 1
Place 0.00 1 1
Date 0.03 1 0.87

Random terms are in italics. Fixed effects retained in the final model and associated
P values are in bold.
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Figure 1. Probability of a suckling female being ‘alert’ or ‘highly alert’ according to
group size (PCA first axis with high values referring to large group sizes) and to the
proportion of surrounding cover consisting of high items. Black points refer to ‘alert’ or
‘highly alert’ females and grey points to ‘weakly alert’ females. The chequered surface
represents the predictions according to the final model selected as shown in Table 2,
thereby including largescale cover (set at average value) and calf sex (set at average
predicted values of both sexes).
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alertness level as the binary dependent variable and the following
explanatory variables (see Table 1): largescale cover, medium scale
cover, group size (first PCA axis), isolation (second PCA axis), dis-
tance to the car, calf sex and the interaction between group size and
both cover's proxies. We did not include small scale cover here as
we did not expect it to impact on alertness level.

To investigate whether alertness was an accurate proxy of the
risk perception experienced by the mother, we tested whether the
level of alertness impacted suckling duration (normally distributed,
ShapiroeWilk W ¼ 0.9781, P ¼ 0.092) and the mother's odds of
fleeing, typically followed by the calf, at the end of the suckling. We
hypothesized that stressed mothers should suckle for a shorter
time and be more inclined to leave the patch hastily. We did not
include these variables in the previous general analysis as we ex-
pected alertness to shape them, i.e. we expected them to be
dependent variables instead of being explanatory variables of
alertness level.

In a second step, we investigated the sources of variation in
allogrooming odds. We followed the same procedure as described
above and performed two analyses with allogrooming behaviour as
the binary dependent variable (‘0’ when no allogrooming occurred
and ‘1’ when at least one allogrooming occurred). First, we
considered the same explanatory variables (fixed and random
terms) together with fine scale cover and suckling duration, two
variables that were not expected to shape alertness level but may
impact the probability of allogrooming, the former because of its
effect on visibility while head down, the second because the longer
the suckling bout themore likely the decision to allogroom. Second,
we focused on alertness level (using first the two then the three
categories) as a driver of allogrooming probability, with the same
three random terms.

Finally, we focused on females engaging in allogrooming. We
investigated the sources of variation in the proportion of suckling
time spent allogrooming (log transformed to fit normality). Given
the reduction in sample size and the results obtained in the pre-
vious analyses, we reduced the number of explanatory variables
and focused on: large, medium and fine scale cover, group size,
isolation and the interaction between medium scale cover and
group size with the date as a random term. Alertness level was not
included as too few ‘alert’ or ‘highly alert’ mothers engaged in
grooming (see Results).

We used the ‘glmer’ function in the ‘lme4’ package in R software
(R Core Team, 2013) for mixed models with a binary response
variable (link: logit) and ‘lmer’ for a normally distributed response
variable. Model coefficients are presented ± SE.

RESULTS

Maternal allogrooming occurred in 57 of 101 observations. Fe-
males were classified as ‘weakly alert’ on 43 occasions, ‘alert’ on 17
and ‘highly alert’ also on 17. The remaining 24 females were clas-
sified as ‘alert or highly alert’ given the lack of information relative
to their chewing behaviour.

Sources of Variation in Alertness Level

There was a significant interaction between medium scale cover
and group size in the final model (Table 2; intercept ¼ 15.79 ± 6.69;
coefficients: medium scale cover)group size: 5.18 ± 2.57; medium
scale cover: �1.25 ± 3.20; group size: �3.13 ± 1.41), indicating that
the odds of being ‘alert’ or ‘highly alert’ decreased with increasing
group sizewhen surrounded by low vegetation items and increased
with increasing group size when surrounded by high vegetation
items (Fig. 1). Largescale cover and calf sex were also retained in the
final model (Table 2), indicating that the odds of being ‘alert’ or
‘highly alert’ decreased with increasing largescale cover (i.e. from
open to closed habitats; coefficient: �0.15 ± 0.07) and for females
suckling male calves (coefficient for male calves: �2.65 ± 1.11).

The isolation, the distance to the car and the interaction be-
tween largescale cover and group size were not retained in the final
model (all P > 0.36; Table 2). The three random terms (pair identity,
place and date) were not significant (all P > 0.87; Table 2).
Alertness Level as a Proxy of Risk Perception

‘Alert’ or ‘highly alert’ mothers suckled their calf for a shorter
time (deviance ¼ 5.96, df ¼ 1, P ¼ 0.015; intercept¼ 67.83 ± 2.33,
coefficient for ‘alert’ or ‘highly alert’ mothers ¼ e7.74 ± 2.86) and
tended to leave the patch hastily (no test performed as no ‘weakly
alert’ mother left the patch while the eight females that left the
patch in 101 observations were all ‘alert’ or ‘highly alert’). Whenwe
ran our models for females with information about chewing
behaviour, thereby distinguishing between ‘weakly alert’, ‘alert’
and ‘highly alert’ mothers, alertness level was marginally signifi-
cant, indicating a decrease in the suckle durationwith the mother's
alertness level (deviance ¼ 5.18, df ¼ 2, P ¼ 0.075; inter-
cept ¼ 67.75 ± 2.40, coefficient for ‘alert’ mothers ¼ �3.23 ± 4.10,
coefficient for ‘highly alert’ mothers ¼ �10.05 ± 4.10).



Table 4
Variables influencing the proportion of suckling time spent allogrooming for
mothers engaged in grooming

Explanatory variables Deviance df P (chi-square)

Fine scale cover 0.12 1 0.73
Isolation 2.53 1 0.11
Largescale cover 2.66 1 0.10
Medium scale cover)group size 4.59 1 0.03
Pair identity 0.00 1 1

Random term is in italics. The fixed effect retained in the final model and the
associated P value are in bold.
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Sources of Variation in Allogrooming Probability

In the first analysis considering all the biologically relevant in-
teractions and variables except alertness level for collinearity rea-
sons, suckle duration was the only explanatory variable retained in
the final model, with allogrooming odds increasing with the total
amount of time spent suckling (intercept¼e3.96 ± 1.59, coefficient
for suckle duration ¼ 0.07 ± 0.03). The interactions between
largescale cover and group size and between medium scale cover
and group size were not significant (both P > 0.58; Table 3). The
odds of allogrooming were not related to isolation, distance to the
car, large, medium or fine scale cover, group size or calf's sex (all
P > 0.13; Table 3).

In the second analysis, we focused on the effect of alertness level
on the odds of allogrooming. We first considered ‘weakly alert’
versus ‘alert’ together with ‘highly alert’mothers. There was a clear
negative effect of being ‘alert’ or ‘highly alert’ on the odds of
allogrooming (deviance ¼ 46.44, df ¼ 1, P < 0.0001; inter-
cept¼ 2.69 ± 0.63, coefficient for ‘alert’ or ‘highly alert’
mothers ¼e3.62 ± 0.69). When we distinguished between the
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Figure 2. Number of observations with maternal allogrooming (grey bars) and
without maternal allogrooming (black bars) according to the mother's alertness level.
Sample sizes are given above each bar. Observations for which the female could not be
confidently classified as ‘alert’ or ‘highly alert’, given the lack of accurate information
about chewing investment, were not included in this analysis (N ¼ 24).

Table 3
Variables influencing mother's allogrooming decision

Explanatory variables Deviance df P (chi-square)

Largescale cover)group size 0.003 1 0.96
Medium scale cover)group size 0.30 1 0.58
Isolation 0.13 1 0.72
Distance to car 0.23 1 0.63
Largescale cover 0.33 1 0.57
Group size 0.21 1 0.64
Medium scale cover 0.71 1 0.40
Fine scale cover 2.27 1 0.13
Sex 2.31 1 0.13
Suckle duration 8.07 1 0.005
Pair identity 0.01 1 0.93
Place 0.00 1 1
Date 0.00 1 1

Random terms are in italics. The fixed effect retained in the final model and the
associated P value are in bold.
three levels of our proxy, there was a clear negative effect of
alertness level on the odds of engaging in allogrooming (devi-
ance ¼ 55.67, df ¼ 2, P < 0.0001; Fig. 2).

Females Engaging in Allogrooming

There was a significant interaction betweenmedium scale cover
and group size in the final model (intercept ¼ 1.88 ± 0.43; co-
efficients: medium scale cover)group size: �1.17 ± 0.53; medium
scale cover: 0.02 ± 0.90; group size: 0.50 ± 0.24), indicating that
the proportion of suckling time spent allogrooming increased with
increasing group size when surrounded by low vegetation items
and decreasedwith increasing group sizewhen surrounded by high
vegetation items. Fine and largescale cover and isolation did not
affect the proportion of time spent allogrooming for those mothers
engaging in allogrooming (all P > 0.10; see Table 4).

DISCUSSION

Few studies have investigated the factors triggering the indi-
vidual decision over the vigilanceegrooming conflict at a fine scale
(references in Dominguez & Vidal, 2007; Randler, 2005; Roberts,
2003). Yet (1) ectoparasites are known to shape the fitness of
hosts, (2) grooming has been shown to be highly effective at
removing ectoparasites and (3) the trade-off between vigilance and
grooming has been firmly established. Moreover, besides doc-
umenting the overlooked ‘ecology of grooming’, focusing on this
system allows a better investigation of the factors shaping risk
perception in prey than the classic vigilanceeforaging trade-off for
which food-related parameters are decisive. Overall, our data sug-
gest a stronger role of habitat characteristics and group size than
individual intrinsic characteristics in shaping predation risk
perception in female impalas and their concomitant adjustment in
parental care.

Largescale Cover and Visual Contact in Foragers

In line with the ambivalent functions of cover (Lazarus &
Symonds, 1992), studies on vigilance displayed by foraging im-
palas in relation to largescale cover have had very different results
(Pays et al., 2012; Shorrocks & Cokayne, 2005). Still, a lower vigi-
lance in more open habitats is often reported (Underwood, 1982),
including in HNP (P�eriquet et al., 2012). Our data revealed that fe-
males suckling their calf in closed largescale habitats, i.e. bushland,
were less alert than in open grassland habitats. If we assume that
the scanning rate of foraging individuals and alertness level during
suckling are both ameasure of individual predation risk perception,
this discrepancy between our results and those previously pub-
lished for HNP may be explained by the focus and timing of our
study, i.e. mothers during the rearing period. Because calves' escape
skills might be limitedwhen facing a coursing predator (Fitzgibbon,
1990; P. Blanchard, O. Pays & H. Fritz, personal observations), open
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areas were probably at high risk for them. Conversely, their smaller
body sizemightmake themmore difficult to detect in the bush for a
predator. Together with their random displacements, especially
during frequent playing bouts, this may lead to decreased chances
of being targeted and stalked, and thus to a lower exposure to
predation risk (as compared to open areas and perhaps to more
visible and predictable adults) and, consequently, to decreased
anxiety for their mother. P�eriquet et al. (2012) conducted their
observation later in the season, when surviving calves were more
independent. In this context, both adults and juveniles might be
more at risk when exposed to an ambushed predator in bushland
(i.e. high values of our ‘largescale cover’ proxy) than to a chasing
predator in grassland (i.e. low values). Interestingly, Matson,
Goldizen, and Putland (2005) observed impalas during the rear-
ing period as in the present study and reported higher vigilance
further from cover.

Herewe argue that the scanning rate of foraging individuals and
the alertness level assessed during suckling are qualitatively
different measures of individual predation risk perception. While
we expect alertness level to closely match risk perception by
suckling females, vigilance while foraging may be shaped by
additional factors (Beauchamp, 2009). We suggest that the easier
visual contact between group members in open areas plays a
central role for foragers both through amore accurate perception of
total group size (e.g. Elgar, Burren, & Posen, 1984) and through a
social facilitation process (Clayton, 1978; Pays, Beauchamp, Carter,
& Goldizen, 2013). Without visual barriers, foragers may have a
precise perception of group size and consequently of the associated
costs (i.e. scramble competition for food, Clark & Mangel, 1986; for
impalas, see Blanchard, Sabatier, & Fritz, 2008; Smith& Cain, 2009)
and benefits (Table 1), both shaped by the number of group mates
(together with interindividual distances, e.g. Fern�andez-Juricic,
Beauchamp, & Bastain, 2007). Besides facilitating the assessment
of actual group size, open habitats may also lead to actual higher
benefits for a given group size (see next section). Hence, we expect
pressures triggering head-down postures to be stronger in open
habitats, in order for the foragers ‘to obtain their share of the
available forage’ (Clark & Mangel, 1986, p. 63) and pressures for
head-up postures to be lower as ‘the herd substitutes for cover,
providing concealment for the individual’ (Estes, 1974, p. 166)
together with additional protection (Table 1). Further, a ‘social
buffering effect’ (e.g. Kikusui, Winslow, & Mori, 2006), again
through visual contact (da Costa, Leigh, Man, & Kendrick, 2004),
may also lead to a faster recovery after a stimulus that triggered
vigilance. This overall increased amount of time spent head down
in open habitats should be further amplified by an imitation pro-
cess among foraging group members (e.g. Gautrais, Michelena,
Sibbald, Bon, & Deneubourg, 2007), which is again expected more
when visual contact is allowed (Fichtel, Zucchini, & Hilgartner,
2011; Michelena, No€el, Gautrais, Gerard, Deneubourg, & Bon,
2006). The above reasoning holds for constant food density and
group distribution/density, yet we have no data about these pa-
rameters in relation to habitat type in our system.

We report no ‘isolation’ effect on mothers' alertness level or
grooming decision/duration, thus questioning the functional link
between vigilance and risk perception in the geometry of the
foraging herd. Although individuals at the edge of a group are
classically expected to be more exposed to predators (Krause &
Ruxton, 2002), competition may also explain lower vigilance in
the centre of foraging groups (see Blanchard et al., 2008 in the same
population), as commonly reported in this species (e.g. Matson
et al., 2005) and others (e.g. Underwood, 1982). The greater
vulnerability of mothers suckling calves might also override the
protection effect afforded by a more central position, or more
generally by close neighbours, when groupmates are not burdened
with offspring.

Medium Scale Cover, Group Size and Risk Perception

Females were less alert and more inclined to spend a greater
proportion of the suckling time allogrooming their calf with
increasing group size when surrounded by low vegetation items
(i.e. cover impairing their visual fields only when grooming their
calves but allowing easy overall detection of/by predators) while
group size had the reverse effect in high vegetation items (i.e. sit-
uations impairing themother's and predator's visual field whatever
the maternal behaviour). Individual safety is classically expected to
increase with group size as an approaching predator has more
chance of being detected, a given group member has less chance of
being targeted by the predator and the predator has more chance of
getting confused when the attack leads to a sudden explosive flight
(Krause & Ruxton, 2002). Numerous studies on various taxa have
confirmed these expectations, with lower individual investment in
vigilance with increasing group size (Beauchamp, 2015), including
in impalas (e.g. Pays et al., 2012; Matson et al., 2005; but see Smith
& Cain, 2009). Therefore, if alertness level and the subsequent in-
vestment in allogrooming are mostly shaped by predation risk
perception, as we hypothesize, female impalas are expected to be
less alert and allogroommore in larger groups. The results for pairs
surrounded by low vegetation confirmed these expectations,
underlining the importance of predation-related pressures in
explaining the group size effect (Beauchamp, 2003; Roberts, 2003).
Namely, given the high predation risk faced by the calf if the group
is chased by a coursing predator (Fitzgibbon, 1990), a female should
only decrease alertness and engage in allogrooming (which means,
in this situation, stopping efficient scanning above the vegetation)
when benefiting from valuable protection, i.e. when in large
enough groups. The opposite results for femaleecalf pairs in high
vegetation may appear surprising at first. However, the classic
benefits associated with group foraging (detection, dilution,
confusion) are gained only once the group has been detected by a
predator. Few empirical studies have considered the extent to
which group size may shape the probability of being detected/
attacked by a predator: studies investigating detection ability in a
predatoreprey context are biased towards prey species. Although
larger groups at constant population size mean fewer groups and
thus a decreased preyepredator encounter probability (e.g.
Ioannou, Bartumeus, Krause, & Ruxton, 2011), some studies have
suggested higher risk for larger groups. Creel and Creel (2002) re-
ported that wild dogs detected large impala groups earlier than
smaller groups and, once detected, attacked themmore often. Creel
and Winnie (2005) suggested that elk, Cervus elaphus, in the Gal-
latin Canyon, Montana, U.S.A. dissociated into smaller groups to
reduce the likelihood of being detected by wolves, Canis lupus.
When surrounded by low vegetation items, i.e. below its height, the
‘conspicuousness cost’ of grouping should be minor as an impala is
anyway easily detectable by a predator, even when isolated or in
small groups. At the same time, classic benefits associated with
grouping (Krause & Ruxton, 2002) should increase with group size,
particularly in such habitats (Elgar et al., 1984; Estes, 1974; Lima,
1995). Hence, predation risk perception (here defined as the ratio
between the costs and benefits of grouping associated with a pre-
dation threat) should decrease with group size, allowing in-
dividuals to progressively engage in important activities conflicting
with safety at the scale of the body posture. When prey are sur-
rounded by high vegetation items, the pressures they experience
should differ. Because more abundant high vegetation surrounding
a given focal individual means increased probability of being
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hidden, more group mates in its vicinity may increase its own
probability of being detected, and thus its alertness. This is because
a larger group means (1) increased smell/noise/movements, all
cues that a predator may exploit, and (2) increased chance for a
predator of having a prey in its line of sight (because more prey
occupy a larger part of its visual field, e.g. Ioannou & Krause, 2008,
which is not specific to high vegetation, but specifically here
because group members occupy different angles relative to high
vegetation items). Hence, over a given group size range, we expect
the probability of a predator detecting a group member to increase
more steeply with group size in high than in low vegetation. Once
the first groupmember is spotted by the predator, the probability of
the others being detected increases (i.e. unsuccessful ‘visual’ hunt
hypothesis sensu Valeix et al., 2011 or area-concentrated ‘visual’
searching sensu Benhamou, 1992). In other words, when sur-
rounded by high vegetation, the obstructive components of cover
may switch from benefiting the prey to benefiting the predator
with increasing group size. From the benefits side of increasing
group size, classic benefits may exist when prey are surrounded by
high vegetation, but we expect them to be lowered because (1)
dilution/confusion components may be minor under the threat of
an ambushed predator as compared to situations where prey
escape from a coursing predator and (2) the ‘collective detection’
assumption of the detection effect (i.e. all group members are
alerted when a member detects a threat, e.g. Lima, 1995) should be
relaxed because of visual barriers. Therefore, the costs of grouping
might exceed the benefits in such situations, except for very small
groups.

More generally, although nonadaptive reasons for group size
changes in relation to habitat characteristics may exist (Gerard,
Bideau, Maublanc, Loisel, & Marchal, 2002), the above specula-
tions (together with pressures specific to foraging, see e.g. Isvaran,
2007) could also explain larger group size in open than closed
habitats as commonly reported in foraging ungulates, and first
noticed by Estes (1974) and Jarman (1974).

Calf Sex, Maternal Alertness and Sex Allocation Theory

Allogrooming probability/duration and overall alertness level
may be shaped by many intrinsic characteristics of the ungulate
mother, including parity (Dwyer and Lawrence, 2000), hormone
levels (Dwyer, 2008), temperament (Murphy et al., 1994), parasite
load or age (Festa-Bianchet, 1988). Although we did not measure
these parameters, the absence of a pair identity effect on maternal
alertness level or behaviour (controlling calf sex) may suggest an
overall greater role of environmental (or temporal) variables than
of intrinsic pair characteristics in shaping risk perception and the
subsequent decision to allogroom. Nevertheless, mother impalas
suckling female calves were more alert during suckling. As
offspring sex does not seem to be a determinant of maternal vigi-
lance in a foraging context (e.g. Hamel & Côt�e, 2008), we had no
predictions for the effect of sex. Our data did not allow us to
investigate differences in calf behaviour and/or morphology asso-
ciated with sex that could lead to a difference in vulnerability to
predation and/or to harassment by conspecifics, and thus in the
need for vigilance by the mother. Alternatively, some characteris-
tics of the mother could be related to both the probability of pro-
ducing a calf of a particular sex and her overall anxiety level. To our
knowledge, relative reproductive costs of producing males and fe-
males or the respective fitness return of each sex in relation to
characteristics of the mother have not been studied for this species.
However, the sexual dimorphism present in all age groups together
with the competition among males for access to females (Fritz &
Bourgarel, 2013) suggest that pressures relating to the reproduc-
tive costs hypothesis (Myers, 1978) or Trivers and Willard model
(Trivers & Willard, 1973) may occur. Hence, good-quality females
could benefit from producing male offspring, with the reverse be-
ing expected for poor-quality females. Concomitantly, several pa-
rameters indexing maternal quality in a sex allocation context may
also impact anxiety. For instance, primiparous and thus potentially
young females with limited investment capabilities may be more
anxious given the novelty of the situation (e.g. Dwyer and
Lawrence, 2000; Mooring & Rubin, 1991), the higher predation
risk faced by their young (Warren, Mysterud, & Lynnebakken,
2001) or possibly their lack of skills in suckling behaviour such as
milk release (Cameron, 1998). Social rank may lead to similar re-
sults as it may also correlate with both anxiety and offspring sex
(e.g. in red deer, Thouless, 1990; Kruuk, Clutton-Brock, Albon,
Pemberton, & Guinness, 1999). We hope that specific individual
data will allow researchers to validate or invalidate these sugges-
tions in the future.

The Way Forward

Some studies have underlined the existence of non-nutritive
suckling, whose functions might be physiological or social
(Cameron,1998). The suckling events we recordedmay thus belong
to two distinct categories, long nutritive suckles, mostly initiated by
the mother following the physiological need to empty the mam-
mary gland and allowing her to select less risky habitats or times
(see also Hejcmanov�a et al., 2011), and short non-nutritive ‘alarm
suckles’ initiated by the calf in response to a fearful stimulus,
resulting in higher anxiety for the mother as she does not choose
the place (and thus the predation risk level) or the time (and thus
the predation risk level again but also possibly her ability to release
milk). Furthermore, the mother may be inclined to gather infor-
mation about the stimulus driving the alarmed state of her calf
(Adler, Linn, &Moore, 1958; Shackleton & Haywood, 1985; see also
Lent, 1974 in impalas). Future studies should pay attention to in-
dividual movements and postures of both the calf and the mother
just before suckling occurs in order to identify the initiator (Lent,
1974; R�eale & Bouss�es, 1995). Furthermore, recording movements
of the pair after a mother refuses to suckle, together with the
characteristics of both habitats and maternal alertness level, may
also be helpful.

Impalas are more intensively infested by ticks than other
medium-sized antelopes (e.g. Horak et al., 2003), ticks may strongly
affect host fitness (e.g. Hart, 1990) and grooming is clearly effective
at removing ticks (e.g. Mooring et al., 1996). Yet, the question of the
fitness consequences of behavioural adjustments of mothers to
predation risk in terms of reduced calf allogrooming during suck-
ling remains. We may hypothesize that reduced allogrooming
during a suckling bout due to high risk perception may be
compensated for by higher allogrooming investment later. How-
ever, we did not observe maternal allogrooming outside suckling
bouts (see also e.g. Mooring & Rubin, 1991), in line with the weak
mothereyoung association reported in this species (Mooring &
Rubin, 1991), and probably no more than three to four suckling
events per day occur at this stage (Mooring & Rubin, 1991; P.
Blanchard, O. Pays & H. Fritz, personal observations). Moreover, if
grooming mostly aims at removing ticks before they attach and
engorge, frequent grooming bouts are probably more efficient than
few more thorough ones (see above). Finally, although calves may
be groomed by other individuals in the population (Mooring &
Hart, 1997b), maternal allogrooming has important specificities
(see above). Hence, in years with high levels of tick infestation, high
predation risk around the rearing periodmay probably significantly
impact maternal fitness through calf parasitism costs. However,
designing a protocol addressing these questions accurately would
probably face ethical challenges.
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