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Separable visual attention functions are assumed to rely on distinct but interacting neural

mechanisms. Bundesen’s “theory of visual attention” (TVA) allows the mathematical

estimation of independent parameters that characterize individuals’ visual attentional

capacity (i.e., visual processing speed and visual short-term memory storage capacity)

and selectivity functions (i.e., top-down control and spatial laterality). However, it is

unclear whether these parameters distinctively map onto different brain networks

obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing

brain activity. In our study, 31 demographically homogeneous healthy young participants

performed whole- and partial-report tasks and underwent resting-state functional

magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to

estimate, individually, the four TVA parameters. Networks encompassing cortical areas

relevant for visual attention were derived from independent component analysis of

rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and

dorsal attention networks. Two TVA parameters were mapped on particular functional

networks. First, participants with higher (vs. lower) visual processing speed showed lower

functional connectivity within the ventral attention network. Second, participants with

more (vs. less) efficient top-down control showed higher functional connectivity within

the dorsal attention network and lower functional connectivity within the visual network.

Additionally, higher performance was associated with higher functional connectivity

between networks: specifically, between the ventral attention and right frontoparietal

networks for visual processing speed, and between the visual and executive control

networks for top-down control. The higher inter-network functional connectivity was

related to lower intra-network connectivity. These results demonstrate that separable

visual attention parameters that are assumed to constitute relatively stable traits

correspond distinctly to the functional connectivity both within and between particular

functional networks. This implies that individual differences in basic attention functions

are represented by differences in the coherence of slowly fluctuating brain activity.

Keywords: functional connectivity, intrinsic brain networks, resting-state fMRI, top-down control, visual attention,
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INTRODUCTION

Separable visual attention functions are assumed to rely
on distinct but interacting neural mechanisms (Posner and
Petersen, 1990; Desimone and Duncan, 1995; Bundesen et al.,
2005). The computational “theory of visual attention” (TVA,
Bundesen, 1990) permits a set of independent parameters to
be estimated that reflect individuals’ attentional capacity (i.e.,
visual processing speed and short-termmemory storage capacity)
and selectivity (i.e., top-down control and spatial laterality).
These TVA parameters have been suggested to constitute traits
that characterize individuals’ speed and efficiency of attentional
selection processes (Finke et al., 2005). The relationship between
these parameters and the basic organization of the brain
has mainly been examined in local lesion studies. Thus, for
example, reduced visual processing speed has been associated
with temporoparietal junction (Peers et al., 2005) and lateral
thalamic non-traumatic lesions (Kraft et al., 2015), as well
as with a parietal white-matter reduction in posterior cortical
atrophy (Neitzel et al., 2016). A lateral spatial bias has been
documented following medial thalamic lesions (Kraft et al.,
2015) as well as asymmetric parietal hypometabolism induced
by early Alzheimer’s disease (Sorg et al., 2012). Studies on the
neural organization of these parameters in the healthy brain are
comparatively rare. A structural connectivity analysis revealed
visual short-term memory (VSTM) capacity to be associated
with the organization of the superior longitudinal and inferior
fronto-occipital fasciculi (Chechlacz et al., 2015). Top-down
control was found to be associated with task-related functional
connectivity among parietal areas (Vossel et al., 2016). Taken
together, these findings imply that TVA parameters closely
reflect the integrity of attention-relevant brain areas and their
connections, including their functional interactions. It remains,
however, unknown whether and how these parameters map
onto functional networks overlapping those attention-relevant
areas.

Functional networks that include regions relevant for visual

attention have been identified based on their intrinsic functional

connectivity (FC) (Fox et al., 2006; Smith et al., 2009; Allen
et al., 2011; Yeo et al., 2011; Raichle, 2015). Intrinsic FC
represents the correlation, among different brain regions, of
infra-slowly (i.e., 0.01–0.1 Hz) ongoing blood oxygenation level
dependent (BOLD) signal intensity fluctuations obtained from
resting-state functional magnetic resonance imaging (fMRI) (Fox
and Raichle, 2007; Raichle, 2011). Such fluctuations reflect
the dynamics of slowly propagating activity including cortical
neuronal excitability (Wu et al., 2008; Matsui et al., 2016),
linked with faster oscillatory activity by cross-frequency phase-
amplitude coupling (Mantini et al., 2007; He et al., 2010; Brookes
et al., 2011; Hipp et al., 2012). Intrinsic FC provides relevant
information on both brain-evoked activity (Mennes et al., 2010)
and behavior (Markett et al., 2014; Rosenberg et al., 2016, 2017).
Crucially, the brain networks identified through intrinsic FC
are stable both within (Zuo et al., 2010) and across subjects
(Damoiseaux et al., 2006; De Luca et al., 2006), and largely
correspond to structural connectivity (Damoiseaux and Greicius,
2009; Honey et al., 2009). These characteristics collectively
suggest the possibility of a distinctive correspondence between

specific, separable visual attention functions and particular
intrinsic brain networks.

Here we examined whether and how independent visual
attention parameters obtained from modeling using TVA are
mapped onto distinct functional networks derived from intrinsic
FC. Crucially, to avoid potential confounding by structural
integrity or visual attention changes inherent in patient or
developing populations, we examined an age-homogeneous
group of healthy participants. Moreover, following the neural
interpretation of TVA (Bundesen et al., 2005), we focused on
networks that comprise brain regions relevant for visual attention
(for a review, see Parks and Madden, 2013). White matter
pathways might anatomically constrain functional network
connectivity (Parks and Madden, 2013), albeit not in a one-
to-one fashion (Damoiseaux and Greicius, 2009). Accordingly,
based on the results of previous TVA-based studies relating
individual variability in attention functions to variability in
structural connectivity (e.g., Chechlacz et al., 2015), we expected
to find a positive association between TVA parameter estimates
and intrinsic FC.

MATERIALS AND METHODS

Participants
Thirty-two healthy young subjects (25–27 years old) participated
in this study. The “Klinikum rechts der Isar’s” Ethics Committee
approved the study, which was conducted in agreement with
the Declaration of Helsinki, and all participants gave written
informed consent and were paid for their participation. All
participants underwent BOLD-fMRI during rest and TVA-based
assessment in separate sessions conducted on the same day
(though one participant did not perform the TVA partial-report
task and thus had to be excluded from the analyses). All had a
normal or corrected-to-normal visual acuity and normal color
vision. Before visual attention andMRI examination, participants
were assessed for global cognitive functioning by trained
psychologists using a short version of the German Wechsler
Adult Intelligence scale-III (WAIS-III) (Von Aster et al.,
2006), permitting computation of Full-Scale IQ. Demographic
information is listed in Table 1. Males and females did not differ
in any of the demographic variables.

Parametric Assessment and Estimation of
Visual Attention Functions
General Procedure
The general TVA-based procedure for assessing visual attention
functioning has been described in detail elsewhere (e.g., Finke

TABLE 1 | Demographic variables.

Demographic

variable

Entire sample

(n = 31)

Females

(n = 14)

Males

(n = 17)

p-value

Age [years] 26.56 ± 0.55 26.61 ± 0.55 26.52 ± 0.56 0.680

Education [years] 11.55 ± 1.59 11.50 ± 1.56 11.59 ± 1.66 0.881

Intelligence [IQ] 99.94 ± 11.64 100.57 ± 8.55 99.41 ± 13.93 0.788

Mean ± standard deviations are shown.
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et al., 2015). Briefly, to assess visual attention functions,
participants performed, in a balanced order, whole- and partial-
report tasks that lasted ∼0.5 h each. Within a trial, a
central white cross (0.3◦ visual angle) appeared for 300ms,
followed by a 100-ms gap after which the task-relevant stimuli
were presented (Figure 1). Stimuli comprised of red or green
letters (0.5◦ high × 0.4◦ wide) randomly chosen from a
pre-specified set (“ABEFHJKLMNPRSTWXYZ”). Letters were
generally terminated by masks (each composed of a square with
a star inside), effectively overwriting iconic memory traces of
the stimulus array (see below). Note though that trials without
post-display masks were introduced in the whole-report task in
order to increase the variability of “effective” exposure times
(by allowing for an additional component of iconic memory
buffering; Sperling, 1960) and thus ensure reliable and valid
TVA parameter estimation. Stimuli were presented on a 17-inch
monitor (1,024 by 1,280 pixel screen resolution, 60-Hz refresh
rate), in a dimly lit room.

Visual Attention Capacity Parameters
Capacity parameters were derived from report accuracy in the
whole-report task (Figure 1, left), in which participants were
instructed to report all letters they were fairly sure they had seen.
First, in a pretest (24 trials), one individualized exposure duration
was determined as the presentation time required to report one
letter on average over several trials correctly. Shorter and longer
exposure durations were then determined based on that value.
Next, the three durations were used to present stimuli either
unmasked or immediately followed by masking stimuli, thus
resulting in six effective exposure durations (for more details,
see Finke et al., 2015). The average short, intermediate, and
long exposure durations were, respectively, 45.17 (SD = 7.0),
82.23 (SD = 17.26), and 164.90 (SD = 33.40)ms. The task
consisted of 192 trials presented in 4 blocks of 48 trials each.
Within each block, trials were randomized and presented equally
often under 12 conditions (2 masking conditions [no masks,
post-display masks] × 3 exposure durations × 2 hemifields).
Performance accuracy (i.e., the number of letters reported
correctly) was measured as a function of the effective exposure
duration. Based on TVA, an exponential growth function was
used to model the probability of selecting an object (Bundesen,
1990; Kyllingsbaek, 2006). The slope of the exponential curve
at the minimum effective exposure duration t0 (for masked
displays) reflects the processing rate C—or number of elements
processed per second—and the asymptote indicates the VSTM
storage capacity—or the maximum number of items that can be
simultaneously represented in VSTM. The effective additional
exposure duration in unmasked displays (or parameter mµ)
attributable to iconic memory buffering was also determined to
validly estimate parameters C and K. Even though mµ was of no
further interest in our study, it was necessary to estimate because,
in unmasked displays, retention of visual traces in iconic memory
allows for prolonged information processing (Finke et al., 2015).

Visual Attention Weighting Parameters
Attentional weighting parameters were derived from report
accuracy in the partial-report task (Figure 1, right), in which

participants had to report targets (red letters) and ignore
distractors (green letters). On each trial, (a) a single target, (b)
a target and a distractor, or (c) two targets were presented
horizontally or vertically at the corners of an imaginary square
(for more details, see Finke et al., 2015). As in the whole-
report task, the individual exposure duration was determined
in a pretest (32 trials) as the duration at which the participant
reported single targets with 80% accuracy. The average exposure
duration was 91.50 ms (SD = 23.42). The task consisted of 6
blocks of 48 trials each (i.e., 288 trials in total). In contrast to the
whole-report task, the stimuli were always followed by a mask
under 16 conditions (4 single target conditions, 8 target plus
distractor conditions, and 4 dual target conditions). From the
probabilities of target report, attentional weights were separately
derived for targets and distractors, and for each visual hemifield,
based on TVA. The selectivity of attentional weighting, or top-
down control α, was estimated as the ratio of the attentional
weights allocated to targets to the weights assigned to distractors.
Lower α values would then indicate high selectivity or preference
for targets (i.e., more efficient top-down control), whereas higher
values would indicate less selective processing. In turn, the
spatial distribution of attention across visual hemifields, or
spatial laterality wlat , was defined as wleft/ (wleft + wright), where
wleft indicates the attentional weight allocated to the left visual
hemifield and wright the attentional weight allocated to the right
visual hemifield. A value of 0.5 indicates balanced weighting,
whereas values above or below 0.5 would be indicative of,
respectively, left- or right-ward spatial laterality (Finke et al.,
2005).

Resting-State fMRI
Imaging Data Acquisition
Imaging data were acquired on a 3T MR scanner (Achieva TX,
Philips, Netherlands) with an 8-channel phase-array head coil.
Participants lay comfortably with their heads surrounded by soft
foams to reduce head motion. Before starting the functional data
acquisition, participants were instructed to close their eyes but
avoid falling asleep (i.e., resting state), and we checked with them
at the end of the sequence that they had actually stayed awake.
Functional data were collected across 10 min 52 s during resting
state, and comprised 250 T2∗-weighted volumes using a gradient-
echo echo-planar sequence: TR = 2,608 ms; TE = 35 ms; flip
angle = 90◦; FOV = 230 mm2; matrix size = 64 × 63, 41 slices
with 3.58mm thickness and no interslice gap; reconstructed voxel
size = 3.59 mm isotropic. Structural data were obtained from a
T1-weighted magnetization-prepared rapid-acquisition gradient
echo (MPRAGE) sequence: TR = 7.71 ms; TE = 3.93 ms; flip
angle = 15◦; field of view (FOV) = 256 mm2; matrix = 256 ×

256, 180 slices; voxel size= 1 mm3.

Imaging Data Preprocessing
The imaging data were preprocessed using the Data Processing
Assistant for Resting-State fMRI (DPARSF; Chao-Gan and
Yu-Feng, 2010), a toolbox in MATLAB (R2013a, version
8.1.0.604; The Mathworks Inc.; Natick, MA, USA). Briefly,
the preprocessing included realignment, reorientation to the
AC-PC axis of functional and structural images; segmentation
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FIGURE 1 | Whole- (left) and partial-report (right) tasks used to assess and estimate visual attention functions. In the partial-report task, targets (T) are presented in

red, and distracters (D) in green.

of the structural T1-weighted image and co-registration of
the segmented T1-weighted and the T2∗-weighted functional
images. No participant had to be excluded based on excessive
head motion, which was defined as cumulative translation or
rotation larger than 3 mm or 3◦, or mean point-to-point
translation or rotation greater than 0.15 mm or 0.1◦. Six
head motion parameters, as well as white matter, CSF, and
global signals were entered as nuisance covariates and regressed
out from the functional data. Next, functional images were
normalized into theMontreal Neurological Institute (MNI) space
using unified segmentation of T1 image (Ashburner and Friston,
2005), and resampled to 2-mm isotropic voxel size to keep the
highest resolution possible. The normalized images were then
smoothed using a 4-mm full-width-at-half-maximum (FWHM)
Gaussian kernel.

Independent Component and Dual Regression

Analyses
Preprocessed data were temporally concatenated and analyzed
by probabilistic independent component analysis (ICA) as
implemented in FSL (version 5.0.7) using MELODIC version
3.14 (Beckmann and Smith, 2004; Smith et al., 2004). A low
dimensionality (i.e., 20 independent components) was chosen to
decompose the data into more spatially extended components
reflecting intrinsic brain networks (Smith et al., 2009).

To obtain estimates of independent components for each
participant, we performed a dual regression analysis (Beckmann
et al., 2009; Filippini et al., 2009) using the group-independent
components generated in the group ICA as input. Dual-
regression analysis permits quantifying, for each subject, the FC
of each voxel with each group-independent component while
controlling for all other components (some of which represent
artifacts) (Smith et al., 2014). Crucially for our study, dual-
regression analysis is superior in detecting individual variability
in FC compared to traditional approaches, such as seed-
based analysis (Smith et al., 2014). Finally, FSL’s randomize

permutation-testing tool, based on 500 permutations and a
p-value of 0.05, was used to obtain group spatial maps.

The individual networks for each participant included voxel-
wise Z-scores or standardized parameter estimates (by the
residual within-subject noise) obtained from the second stage
of the dual regression (for details, e.g., Smith et al., 2014). In
other words, each map contained voxel-wise information on
the particular contribution to an independent component while
controlling for the influence of its contribution to all the other
components (Filippini et al., 2009; Smith et al., 2014). Thus,
for each participant, we obtained 20 individual maps (one for
each component), with the Z-score of every voxel, within each
map, indicating how closely that voxel’s time course resembled
that of the respective group component. These individual voxel-
wise Z-maps were further used for group statistics, in which
group differences could manifest in any brain region belonging
to the independent component, irrespective of whether or not
that region is typically included in the brain network that the
independent component represents (Smith et al., 2014).

Selection of Intrinsic Brain Networks for Further

Statistical Analysis
The particular choice of networks on which we focused our
analyses was based on both the neural interpretation of TVA
(Bundesen et al., 2005) and the standard templates for intrinsic
brain networks reported in the resting-state fMRI literature (e.g.,
Allen et al., 2011; Yeo et al., 2011). However, to establish a
correspondence between distinct visual attention parameters and
distinct intrinsic brain networks, we first needed to ensure that
the relative independence among the networks was comparable
to that amongst the different TVA parameters. For this reason,
we chose ICA over, for instance, a seed-based approach:
as a multivariate approach, ICA yields a set of statistically
independent sources or components (Beckmann and Smith,
2004); and as a data-driven approach, it can remove the noise
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(e.g., both physiological and scanner-related) from the data (Zuo
et al., 2010).

To select independent components representing intrinsic
brain networks assumed to play a role in visual attention,
we first identified relevant intrinsic networks by referring to
typical networks described previously. In detail, to automatically
select independent components reflecting intrinsic networks,
we conducted multiple spatial cross-correlations with templates
derived from FC based on resting-state fMRI of 1,000 healthy
subjects (Yeo et al., 2011), in which a 7-network parcellation of
the cortex was found robust, including visual, dorsal and ventral
attention, and frontoparietal networks. It should be noted that
the labeling of these networks—though fitting in the context of
attention research—is somewhat arbitrary, as these networks are
also involved in other cognitive functions (Smith et al., 2009), that
is, there is no one-to-one mapping between intrinsic networks
and function. After that, we chose the networks that best covered
regions proposed by neural TVA to contribute to visual attention
functions (i.e., frontal, parietal, limbic, and occipital; Bundesen
et al., 2005), in particular: the visual, executive control, lateralized
frontoparietal, and ventral and dorsal attention networks. To be
independent of the special parcellation approach used by Yeo and
colleagues for intrinsic networks (i.e., clustering), we considered
it reasonable to compare our spatial maps with network templates
obtained using ICA. Thus, we conducted further spatial cross-
correlations but with intrinsic brain network templates derived
from an ICA approach based on the resting-state fMRI data of
603 healthy subjects (Allen et al., 2011). We found the chosen
networks to exhibit the greatest overlap with frontoparietal and
occipital-visual networks (i.e., IC60, IC72, IC55, IC34, IC64, and
IC27 of Allen et al., 2011) that have been related to attention
functions previously (e.g., Corbetta and Shulman, 2002; Fox et al.,
2006; Dosenbach et al., 2007, 2008; Vincent et al., 2008; Smith
et al., 2009; Finke et al., 2015), thus confirming our selection of
attention-relevant brain networks. Note that ICA-derived spatial
maps can have a larger extension and include more regions than
those classically associated with a specific network (e.g., Smith
et al., 2014), without compromising the reliability of the method
(e.g., Zuo et al., 2010).

Statistical Analysis
Intra-Network Differences in Functional Connectivity

Between Performance Groups
To examine for intra-network differences in functional
connectivity, we took the individual versions of the previously
selected networks from the results of the second stage of the
dual-regression analysis (i.e., temporal regression; for details,
e.g., Smith et al., 2014). First, based on the individual TVA
parameter estimates, the group median was calculated separately
for each of the parameters and used to split the sample into
“high” and “low” performers (for parameters visual processing
speed C, visual short-term memory capacity K, and top-down
control α) and left- and right-preference (for parameter spatial
laterality wlat). Next, we tested for differences in intrinsic
FC in visual attention-relevant brain networks between the
groups based on the median splits using Statistical Parametric
Mapping, SPM8 (www.fil.ion.ucl.ac.uk/spm/software/spm8/).

Specifically, using a second-level (i.e., group) general linear
model, we predicted each voxel’s intra-network FC (within
each visual attention-relevant network) from TVA performance
(i.e., performance-based subgroups of the variable of interest),
controlling for the remaining three TVA parameters and for
education and gender (i.e., variables of no interest).

Because our goal was to systematically examine whether and
how distinct TVA parameters are independently mapped onto
distinct functional networks of the healthy brain, we performed
six (i.e., one for each brain network) two-sample t-tests for each
TVA parameter of interest. In the general linear model, intra-
network FC was predicted from 7 parameters (i.e., 24 degrees
of freedom). We contrasted the first two parameters, which
correspond to the two levels of the main variable “performance-
based subgroup” (i.e., “high” and “low” performers). Within
each group, the images included the individual network-specific
Z-maps derived from dual regression; each voxel within each
of these maps took on a value indicating how close its time
course reflected the group component’s time course. Results were
corrected for multiple comparisons (p < 0.05 FWE-corrected
at the cluster level, voxel-wise height threshold p < 0.001) and
only results surviving the additional Bonferroni corrections at
the network level (i.e., pcorr 0.05/6 networks = 0.0083) were
considered further.

We chose a median split over a linear regression approach, for
the following reasons. First, given the strong homogeneity of our
sample regarding demographics, brain integrity, and behavior,
we had no reasons to expect robust linear relationships between
the voxel-wise intrinsic FC and the TVA parameters. Second,
as previous TVA-based studies on small healthy samples had
revealed significant differences between high and low performers
in experimental manipulations (e.g., Finke et al., 2010) or
brain measures (e.g., Wiegand et al., 2014), we wanted to keep
our analyses and results comparable to these studies. Third,
TVA parameters have been proposed to reflect relatively stable
characteristics of a given individual (e.g., Finke et al., 2005;
Habekost, 2015). Given this, we can assume that our median
split-defined groups are random samples of “high” and “low”
performers from the population. Finally, the independence of
TVA parameters is given mathematically (Bundesen, 1990) and
empirically (Habekost et al., 2014), which reduces the probability
(Iacobucci et al., 2015) of Type I errors (Maxwell and Delaney,
1993). Note that, in our sample too, we did not find significant
relationships between the different parameters: p > 0.072.

Inter-Network Differences in Functional Connectivity

Between Performance Groups
To examine for inter-network differences in functional
connectivity, we took the results of the first stage of the
dual regression (i.e., spatial regression; for details, e.g., Smith
et al., 2014) and analyzed them using custom code written in
MATLAB. For each participant, we correlated the time courses
of the six independent components of interest and performed
Fisher r-to-z transformation. Next, we tested whether the
inter-network FC was significantly higher for “high” than for
“low” performers. Finally, we examined whether intra-network
FC correlated with inter-network FC.
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TABLE 2 | TVA parameter estimates.

TVA parameter Entire sample (n = 31) High performance (n = 16) Low performance (n = 15)

Processing speed C (Md = 24.30) 25.89 ± 7.34 30.76 ± 7.05 20.70 ± 2.45

VSTM capacity K (Md = 2.83) 3.03 ± 0.47 3.37 ± 0.41 2.66 ± 0.10

Top-down control α (Md = 0.49) 0.52 ± 0.21 0.34 ± 0.12 0.71 ± 0.10

Right preference (n = 16) Left preference (n = 15)

Spatial laterality wlat (Md = 0.49) 0.49 ± 0.06 0.45 ± 0.04 0.54 ± 0.03

Mean ± standard deviation are shown.

Md, Median value used to split the groups.

RESULTS

Visual Attention Parameters
Mean TVA parameter estimates for the entire sample, as
well as separately for each performance and spatial laterality
preference group are listed in Table 2. Note that for the spatial
laterality parameter wlat , the group mean did not differ from
the value of 0.5, which indicates optimally balanced attention
[t(30) = −0.569, p = 0.573]. Males and females did not differ
significantly in any of the TVA parameter estimates (data not
shown; all p > 0.179). The TVA parameters did not significantly
correlate with each other (all p > 0.072; see Table 3 for pairwise
correlations). Furthermore, except for a significant correlation
between processing speed C and IQ (r = 0.37, p = 0.039), they
also did not significantly correlate with any of the demographic
variables in the entire sample (all other p > 0.135). The group
medians for the four TVA parameters used to split the sample
are listed in Table 2. Importantly, the resulting groups differed
exclusively in the TVA parameter of interest and not in any of the
other TVA parameters, education, age, IQ, or gender [C: t(18.8)
= 5.382, p < 0.0001, all other covariates: p > 0.150; K: t(17) =
6.634, p < 0.00001, all other covariates: p > 0.108; α: t(29) =
−9.308, p < 0.00001, all other covariates: p > 0.184; wlat : t(29)
= −6.764, p< 0.00001, all other covariates: p> 0.191]. It is worth
noting that only six participants (five males and one female) were
always classified as “high” (three) or “low” (three) performers for
C, K, and α. These participants did not differ in any demographic
or TVA variable from the rest of the sample (p > 0.506).
Thus, our participants have a distinct profile in terms of the
different parameters, instead of exhibiting a more general, either
“good” or “poor,” visual attention performance. Importantly, this
corroborates the independence assumption maintained for the
TVA parameters (e.g., Habekost et al., 2014) and indicates that
the median split approach can be validly applied here.

Selection of Brain Networks Relevant for
Visual Attention
Six components that comprised occipital, lateral frontal and
parietal, and limbic regions were selected as relevant for visual
attention out of 12 functionally relevant components (Figure 2).
These components were cross-correlated with the templates of
Yeo et al. (2011) as well as with the ICA-based 28 network
templates of Allen et al. (2011), and those with the highest
coefficients were selected as networks (e.g., IC3: r = 0.57 with

TABLE 3 | Pairwise correlations among TVA parameters.

TVA parameters C K α

C

K 0.18 (p = 0.328)

α 0.18 (p = 0.343) 0.20 (p = 0.284)

wlat −0.09 (p = 0.636) −0.03 (p = 0.873) 0.33 (p = 0.073)

TVA parameters: C, visual processing speed; K, visual short-term memory storage

capacity; α, top-down control; wlat, spatial laterality.

IC60 of Allen et al.; IC4: r = 0.40 with IC72; IC6: r = 0.49 with
IC55; IC7: r= 0.34 with IC34; IC11: r= 0.43 with IC64; and IC18:
r = 0.45 with IC27).

The components shown in Figure 2 comprise the IC11 or
“visual” network, mainly encompassing occipital clusters on the
lingual gyri and calcarine sulci, as well as clusters on the right
middle frontal gyrus, and postcentral gyrus bilaterally. The IC18
or “executive control” network included temporal and frontal
clusters bilaterally on the superior and middle temporal gyrus,
and the inferior frontal and precentral gyri, as well as on the
precuneus and calcarine sulci. The IC3 or “right frontoparietal”
network comprised parietal clusters bilaterally on the inferior
parietal lobule, superior and middle temporal gyrus, and inferior
frontal gyrus, as well as on the left cerebellum and left calcarine
sulcus. For IC7 or “left frontoparietal” network, clusters were
observed mainly in left frontal and parietal areas, including
the inferior frontal gyrus, intraparietal sulcus, as well as in the
right cerebellum, and left and inferior temporal gyri. The IC6
or “ventral attention” network included bilateral frontoinsular
regions such as the insula, anterior and middle cingulate cortex,
middle frontal gyrus, as well as bilateral regions of the cerebellum,
the thalamus, and the caudate nucleus, and of parieto-occipital
areas. Finally, the IC4 or “dorsal attention” network was formed
by bilateral parietal clusters of the precuneus, superior and
inferior parietal lobules, supramarginal gyrus, as well as middle
and inferior temporal, superior frontal, precentral, and fusiform
gyri, and cerebellum.

Intra-Network Differences in Functional
Connectivity Between Performance
Groups
Based on our approach of median splits of a group of
healthy participants, we observed voxel-wise intrinsic FC group
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FIGURE 2 | Visual attention-relevant brain networks selected from 20 components obtained from independent component (IC) analysis and dual regression of

resting-state BOLD-fMRI data of 31 healthy young participants. The spatial maps represent voxels significantly belonging to each network (p < 0.05, FWE-corrected)

and are overlaid onto an anatomical high-resolution brain-extracted template in MNI space (Holmes et al., 1998; Rorden and Brett, 2000; MRIcron). The labels just

serve to identify them and follow conventional names given in the literature.

TABLE 4 | Group differences in intrinsic FC between subgroups defined according to TVA parameters.

TVA parameter Brain network Peak brain area Cluster size (voxels) MNI coordinates (x, y, z) in mm t value p value

C Ventral attention R middle frontal 60 36, 54, 20 4.79 0.008*

K – – – – – –

α Dorsal attention R precuneus 36 12, −62, 60 6.38 0.008*

Visual R calcarine sulcus 126 8, −76, 10 6.52 0.001*

wlat Right frontoparietal R Angular 55 34, −70, 50 5.08 0.038

L, Left; R, Right.

All p values are corrected for Family-Wise Error (FWE).

*Survive additional Bonferroni correction (p = 0.05/6 = 0.0083) at the network level.

differences in three particular attention-relevant brain networks
(Table 4). With respect to capacity parameters, we found
significant group differences for visual processing speed C in
the ventral attention network, but no significant differences
for VSTM capacity K. With regard to weighting parameters,
we found significant group differences for top-down control α

in the dorsal attention and visual networks. In addition, for
spatial laterality wlat , we found significant differences in the
right frontoparietal network—though this result did not survive
Bonferroni correction at the network level (Table 4). In more
detail, the group with relatively higher visual processing speed
showed lower intrinsic FC of the right middle frontal gyrus in the
ventral attention network (Figure 3). Moreover, the group with
more efficient top-down control showed higher FC of the right

precuneus in the dorsal attention network and lower FC of the
right calcarine sulcus in the visual network.

To account for possible differences in, for instance, noise
levels between groups, we calculated the temporal signal-to-
noise ratio of the realigned fMRI time series and repeated the
analyses including the individual temporal signal-to-noise ratio
as a covariate in the model. For the ventral attention and visual
networks, the differences between groups remained the same
[t(23) = 4.74, p = 0.008, k = 60 voxels for the ventral attention
network, and t(23) = 6.49, p= 0.001, k= 129 voxels for the visual
network; same cluster peaks for both as inTable 4]. For the dorsal
attention network, the difference was slightly reduced, but still
significant [t(23) = 6.26, p = 0.013, k = 33 voxels]. Thus, group
differences are unlikely attributable to systematic differences in
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FIGURE 3 | Group differences in intrinsic functional connectivity (FC). The group with higher visual processing speed C estimates showed lower FC of the right middle

frontal gyrus within a ventral attention network (left part). The group with better top-down control α estimates showed both higher FC of the right precuneus within a

dorsal attention (middle part) and lower connectivity of the right calcarine sulcus within a visual network (right part). Significant clusters (in red) are overlaid onto the

respective group spatial maps of Figure 2 (in yellow). Below these maps, respective group differences can be observed with respect to the Eigenvariate or average FC

of the networks. Error bars indicate standard error of the mean. Significant clusters have FWE-corrected p < 0.0083. Red bars show t-values (see also Table 4).

signal quality. Differences in motion might still drive differences
between groups. Given this, following (Smith et al., 2014), we
checked whether performance groups differed in mean volume-
to-volume headmotion (e.g., Power et al., 2012), but we observed
no significant differences: visual processing speed C: t(29) = 0.82,
p= 0.419; VSTM capacity K: t(22.69) = 1.62, p= 0.113; top-down
control: t(29) = 0.47, p= 0.639; spatial laterality: t(29) = 0.22, p=
0.826. As a further measure to ensure data quality (e.g., Smith
et al., 2014), we checked participants with relatively extreme
values in (a) the temporal signal-to-noise ratio, (b) the mean
volume-to-volume head motion in mm, and (c) the proportion
of outlier volumes. An extreme value was flagged if it was above
or below the upper or, respectively, lower 5th percentile of the
distribution of values in (a), (b), or (c). Two data points were
flagged as extreme [< 9.39 in (a); > 0.26 in (b), and > 0.08 in
(c)]. Excluding both participants slightly reduced the differences,
which however remained significant (seeTable 4 for comparison)
[visual processing speed C: t(22) = 5.45, p= 0.009, k= 59 voxels,
peak= 38, 52, 18; top-down control α: dorsal attention network:
t(22) = 6.10, p = 0.022, k = 29, same peak; and visual network:
t(22) = 6.68, p < 0.0001, k= 165, peak: 8,−74, 10].

Directionality of Functional Connectivity
Differences
Based on the results of previous research on structural
connectivity and individual variability in attention functions
(e.g., Chechlacz et al., 2015), we had expected high performers

to show high, rather than low, intra-network FC. Consequently,
we decided to also explore inter-network FC (i.e., among brain
networks) to better understand the finding of a relatively lower
intra-network FC (i.e., among brain regions within one network)
in “high” compared to “low” performers. More specifically, we
wanted to ascertain whether or not a higher inter-network FC
is observed for the visual and ventral attention networks (i.e.,
those with lower intra-network FC) in high performers. Inter-
network FC has been shown to vary among individuals, with
this variation associated with attention performance (Kelly et al.,
2008). Thus, we expected to find a difference also in inter-
network FC between high and low performers. Moreover, the
strength of the negative relationship between “task-positive”
networks (such as the attention-relevant networks) and “task-
negative” networks (such as the default-mode network, known to
deactivate during task conditions) has been associated with more
consistent behavioral performance (Kelly et al., 2008). Thus, we
hypothesized a positive relationship among our “task-positive”
networks for high performers. Finally, we determined whether
a high inter-network FC is related to the low intra-network FC of
the visual and ventral attention networks.

Inter-Network Differences in Functional
Connectivity Between Performance
Groups
Here, we examined whether the inter-network FC would be
significantly higher for “high” than for “low” performers in
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the visual and ventral attention networks and whether a lower
intra-network FC would correlate significantly with higher inter-
network FC—as hypothesized.

To start with, the correlation matrix of the Z values (i.e.,
r-to-z transformation), averaged across the entire sample, is
presented in Figure 4 to illustrate the inter-network FC. Next,
Figure 5 depicts a group matrix for both visual processing
speed C (left) and top-down control α (right), summarizing
significant differences in inter-network FC between high and low
performers. We only tested differences in the ventral attention
network for visual processing speed, and in the visual network
for top-down control (vector framed by white)—because, in
both cases, the respective intra-network FC was lower for high
compared to low performers. We found only the inter-network
FC of the ventral attention network with the right frontoparietal
network to be significantly higher in the group with higher visual
processing speed C estimates (mean Z-values for high vs. low
performers, 0.269 vs. 0.116, t(29) = 1.685, p = 0.051, 1-tailed).
For top-down control, only the inter-network FC of the visual
network with the executive control network was significantly
higher in the group with better (i.e., lower) top-down control α

estimates (mean Z-values for better vs. poorer performers, 0.020
vs. −0.111, t(29) = 1.895, p = 0.030, 1-tailed). These results,
however, do not survive Bonferroni correction (i.e., p= 0.01).

The observed high inter-network FC in high performers could
explain the low intra-network FC. To test for this possibility,
we computed the correlation between intra-network FC in the
ventral attention and visual networks and inter-network FC of
these networks with the right frontoparietal and executive control
networks, respectively (while controlling for the intra-network
FC of the right frontoparietal and executive control networks,
respectively). We found a trend toward a negative correlation
for the ventral attention network (r = −0.28, p = 0.069), and
a significant negative correlation (r = −0.31, p = 0.045) for the
visual network. This pattern indicates that high inter-network FC
could indeed explain the observed low intra-network FC in high
performers.

DISCUSSION

We examined whether and how visual attention parameters
derived from TVA-based model fitting that are assumed to
represent latent traits underlying the individual efficiency of the
visual selection process are mapped onto distinct brain networks
obtained from intrinsic functional connectivity (FC). We divided
the sample into groups of high and low performers for each
relevant TVA parameter and compared the FC of networks that
encompass cortical regions relevant for visual attention.

First, we found significant intra-network FC group differences
for two TVA parameters. Participants with higher, vs. those
with lower, visual processing speed exhibited lower FC of the
right middle frontal gyrus within the ventral attention network.
Furthermore, participants with more efficient, versus those with
less efficient, top-down control exhibited higher FC of the right
precuneus within the dorsal attention network and lower FC of
the right calcarine sulcus within the visual network.

Second, we found that for those networks for which
participants with superior attentional performance showed lower
intra-network FC than those with inferior performance, the
same participants also showed higher inter-network FC. More
precisely, significantly higher inter-network FC was found for the
ventral attention network with the right frontoparietal network
in the group with higher compared to that with lower processing
speed. For top-down control, significantly higher inter-network
FC was found for the visual network with the executive control
network in the group with more efficient compared to that
with less efficient top-down control. Our results demonstrate for
the first time a distinctive correspondence between particular
visual attention parameters and FC of different brain networks.
These results thus contribute to the evidence that, in healthy
participants, relatively stable individual differences in attention
functions are reflected in similarly stable differences in intrinsic
FC.

Visual Attention Capacity Parameters
Visual Processing Speed C and the Ventral Attention

Network
Our finding of a linkage between visual processing speed and FC
within the ventral attention network, and particularly in the right
middle frontal gyrus, points to a role of this frontoparietal, limbic
network for the rate of visual information uptake. As the ventral
attention network has been previously documented to be relevant
for tonic alertness (e.g., Sadaghiani et al., 2010; Sestieri et al., 2014;
Coste and Kleinschmidt, 2016), the current result is in agreement
with theoretical proposals (Bundesen et al., 2015) and empirical
evidence (Matthias et al., 2009; Finke et al., 2010; Vangkilde et al.,
2012; Petersen et al., 2017; Wiegand et al., 2017) for a close link
between alertness and visual processing speed.

Further support for this link is provided by our additional
finding (although uncorrected for multiple comparisons) of
higher inter-network FC between the ventral attention and the
right frontoparietal network. Right-sided brain regions have
generally been implicated in the maintenance of an alert state
under conditions without external warning cues (i.e., tonic
alertness) and with increased time on task (i.e., vigilance)
(e.g., Pardo et al., 1991; Sturm and Willmes, 2001). In healthy
individuals, the right middle frontal gyrus has been shown to
exhibit higher activity during maintenance of an alert state
(Sturm et al., 1999), as well as higher spontaneous activity
during high degrees of tonic alertness, as measured by pupil
size changes (Schneider et al., 2016). Moreover, in patients with
tonic alertness deficits following right-sided ventral lesions, tonic
alertness training leads to an increase in the activity of the
right middle frontal gyrus (Thimm et al., 2006). Similarly, stroke
damage to areas in the right mid-frontal lobe, often involved
in the neglect syndrome, can also produce deficits in sustained
attention (Husain and Rorden, 2003). Finally, evidence from
structural connectivity has also shown that the degree of right-
side lateralization of the inferior fronto-occipital fasciculus is
positively associated with visual processing speed in healthy
young subjects (Chechlacz et al., 2015). In sum, in young healthy
adults who process visual information faster, these frontoinsular
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FIGURE 4 | Inter-network functional connectivity (FC) among visual-attention relevant networks. One-sample t-test results (q < 0.05 FDR corrected for multiple

comparisons) of the correlations among components on one side of a symmetrical matrix (below the diagonal line). Significant correlations are color-coded in warm

(positive) and cool (negative) colors, whereas non-significant correlations are coded in turquoise. Spatial maps of components are depicted in Figure 2. The color bar

shows mean Fisher r-to-z transformed values.

FIGURE 5 | Visual processing speed (left) and top-down control (right) matrices showing t-values of high vs. low performance group differences. Higher

inter-network functional connectivity (FC) values of the ventral attention (left), and visual (right) networks with the other networks were tested for the high performance

group of speed and top-down control, respectively. The inter-network FC of the ventral attention network with the right frontoparietal network was significantly higher

for the group with higher visual processing speed C. The inter-network FC of the visual network with the executive control network was significantly higher for the

group with better top-down control α. The color bar shows t values (df = 29, high vs. low, p < 0.05).

and parietal networks that are important for tonic and phasic
alertness, respectively, appear to be functionally well coupled.

According to TVA, visual processing speed represents the
number of visual elements that can be categorized in a given
unit of time (e.g., 1 s; Bundesen, 1990). This rate of encoding
into VSTM depends on the strength of the sensory evidence, a

perceptual decision bias, and the relative attentional weight of
a specific object. In the neural interpretation of TVA, NTVA
(Bundesen et al., 2005), the encoding speed is suggested to
depend on both the number of cortical neurons representing
the categorization and the firing rates of those neurons. More
specifically, a perceptual decision bias determines how an
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object is categorized by changing the firing rate of the cortical
neurons that code a particular feature (i.e., “pigeonholing”). The
individual overall visual processing speed, parameter C, has been
related, both theoretically and empirically, to alertness functions.
For example, stimulant medication with methylphenidate
and modafinil (Finke et al., 2010) as well as experimental
manipulations enhancing phasic alertness (Matthias et al., 2009)
have been shown to lead to an increase in this attentional capacity
parameter. Recently, the effects of phasic alertness and temporal
expectancy of upcoming stimuli were more formally integrated
into the theory. More specifically, an enhancement of overall
visual processing speedCwas suggested, which would be given by
a multiplicative upscaling of the activation, i.e., of the firing rates
of all neurons coding the presented stimulus array by changes
in perceptual bias (Vangkilde et al., 2012; Wiegand et al., 2017).
Bias values have been proposed to derive from higher order areas
(e.g., in frontal cortex) and, directly or indirectly, from the limbic
system (Bundesen et al., 2005).

VSTM Storage Capacity K
One reason for our non-significant findings regarding this
parameter might be the low variability of the K estimates and,
thus, the lack of statistical power at the present sample size.
Another reason might be the reliance of VSTM capacity on
spatially organized sustained activity implemented via recurrent
thalamocortical feedback loops (Bundesen et al., 2005), as
supported by studies on the connectivity of thalamocortical fibers
(Menegaux et al., 2017). Thus, future studies could examine inter-
network thalamocortical FC in samples with greater variance in
this parameter (e.g., in aging).

Visual Attention Weighting Parameters
Top-Down Control α and Dorsal Attention and Visual

Networks
From a mechanistic perspective, the neural TVA suggests that
top-down control is a selection bias, whereby higher “attentional
weights” are assigned to objects that belong to a currently
relevant category (e.g., red letters) (Bundesen et al., 2005). In
the present study, we found that more efficient top-down control
was linked with higher FC within the dorsal attention network,
particularly in the precuneus. This result is in agreement with
task-based neuroimaging studies (e.g., Wojciulik and Kanwisher,
1999; Hopfinger et al., 2000; Weissman et al., 2002; Giesbrecht
et al., 2003; Vossel et al., 2016), which have also revealed a general
role of dorsal parietal regions in the control of selective attention.
Importantly, however, our results add to the existing evidence for
a role of the precuneus in attentional top-down controlled, task-
based selection that is independent of individual capabilities in
spatial attentional selection or processing speed.

We found that more, versus less, efficient top-down control
was associated with lower FC within the visual network,
particularly in the calcarine sulcus. Importantly, lower FC within
the visual network was significantly associated with higher inter-
network FC of the visual network with the executive control
network. Moreover, more efficient control was related to higher
FC between the visual and the executive control networks,
though this result did not survive Bonferroni correction. Thus,

it appears that it is the degree of functional coupling of
the visual network with the executive control network that
might be relevant for the individual degree of efficiency of
top-down control. This finding accords with the assumption
of a critical role of the executive control network in the
adaptive control of goal-directed selection (Dosenbach et al.,
2007, 2008). Collectively, ours and previous findings suggest, in
agreement with theoretical accounts of visual attention (Posner
and Petersen, 1990; Desimone and Duncan, 1995; Bundesen
et al., 2005), that the efficiency of top-down control is related to
the degree of interaction between the executive control network
generating attentional control signals and sensory structures that
process visual information.

Of note, although we failed to find significant inter-network
FC between the visual and the dorsal attention networks, our
results do not imply a lack of functional interaction between the
two. In fact, there are consistent reports of directed FC from the
dorsal attention network regions to the visual network regions
during tasks involving visuospatial attention (e.g., Corbetta and
Shulman, 2002; Bressler et al., 2008; Spadone et al., 2015). Rather,
they only suggest that higher intra-network FC in the dorsal
attention network is by itself important for more efficient top-
down control. In other words, the role of the intra-network FC
for top-down control would be additional to that of the inter-
network FC between the visual and executive control networks.
This interpretation is in line with proposals according to which
multiple cortical and non-cortical sources may be involved in
top-down control if they carry information about the behavioral
task goals (Gilbert and Li, 2013). On this view, our finding
of significant inter-network FC of the visual network with the
executive control network would not be surprising. In fact, the
prefrontal cortex—a central component of the executive control
network—has been shown to be a source of biasing signals
in object-based attention (Baldauf and Desimone, 2014). Thus,
rather than directly implying a lack of interaction between the
visual and dorsal attention networks—or, put differently, an
exclusivity of the executive control network for top-down control
over the visual network—our results point to the relevance of all
three networks.

Spatial Laterality wlat

The lack of significant (Bonferroni corrected) group differences
in any network for this parameter is not surprising in this sample
of healthy young participants, given that no significant deviation
from 0.5 in their wlat values was present. In neurologically
impaired samples, by contrast, parameter wlat does exhibit high
variance, such as in patients with mild cognitive impairment and
mild Alzheimer’s disease, in which significant spatial biases have
been revealed (Redel et al., 2012; Sorg et al., 2012). Accordingly,
studies on groups with more evident lateralized attentional
performance might well reveal a relationship of parameter wlat

with FC.

Visual Attention Functions in the “Resting
Brain”
In mice, infra-slowly spontaneous neuronal fluctuations (i.e.,
0.01–0.1 Hz) have been shown to underlie the intrinsic FC
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obtained from BOLD fMRI (Matsui et al., 2016). In humans,
spontaneous slow cortical potentials (<0.5 Hz) measured with
intracranial EEG have also been shown to be associated
with intrinsic FC, where both have been proposed to reflect
fluctuations of cortical excitability (He et al., 2008; Raichle,
2011). These fluctuations indicate spontaneous subthreshold
depolarizations of the cortical neuronal membranes, which
influences the level of activation of cortical neurons (Wu et al.,
2008). If spontaneous fluctuations of cortical excitability do
indeed influence attention continuously, their spatial patterns
of coherence among brain regions and networks could be
captured by intrinsic FC. In consequence, the differential spatial
patterns obtained by FC could, then, distinguish among separable
attention traits.

In support of such links, previous findings have suggested
that particular functional interactions within (Markett et al.,
2014; Rosenberg et al., 2016) and between (Kelly et al., 2008)
spontaneously active functional networks relate to variability of
performance in attention tasks. Here, we document that the
differences among healthy individuals in attentional parameters
that are assumed to reflect relatively stable capabilities or latent
traits (e.g., Finke et al., 2005) correspond to the intra- and
inter-network FC of particular functional networks.

Functional Implications and Further Issues
Healthy individuals differ in their ability to attend efficiently,
and the TVA-based measurement provides for a systematic
assessment of parameters expressing this variability (Habekost
et al., 2014). While it is assumed that the different parameters
reflect relatively stable capabilities of a given participant
under stable environmental conditions (e.g., Finke et al.,
2005), these capabilities might also change under particular
circumstances. For example, the TVA parameters (Finke
et al., 2010; Vangkilde et al., 2012) are influenced by certain
pharmacological substances. Also, visual processing speed
is enhanced by appropriate computerized training regimens
(Schubert et al., 2015), whereas special populations such as
patients with dyslexia (Stenneken et al., 2011), depression (Gögler
et al., 2016), and schizophrenia (Gögler et al., 2017), exhibit
reductions in visual processing speed. Furthermore, changes in
attentional variability also occur during normal and pathological
aging: healthy aging involves a slowing of visual processing
(McAvinue et al., 2012; Habekost et al., 2013; Espeseth et al.,
2014), and patients with mild cognitive impairment and the
beginning of Alzheimer’s disease reveal a staged decline of both
visual processing speed (Bublak et al., 2011; Ruiz-Rizzo et al.,
2017) and top-down control (Redel et al., 2012).

Of theoretical importance, documenting specific relationships
between changes in attentional functioning and intrinsic FC can
stimulate hypothesis-driven analyses as to the brain mechanisms
that underlie the changes. For instance, in studies employing
neurocognitive enhancement procedures, it could be tested
whether FC in specific networks might serve as a treatment
target or a predictor of treatment success. Further, as regards
disorders characterized by attentional dysfunction, focusing on
changes in the FC of specific networks might help to better
understand the cause of different attentional syndromes and

improve diagnosis and treatment. As for patient populations, the
advantage of our approach derives from its ready applicability:
as information on multiple visual attention traits and functional
networks can be obtained with two simple psychophysical tasks
and one short, easy fMRI session, it can be used in both cross-
sectional and longitudinal studies. This renders the approach
particularly attractive for studies of aging populations to examine
more directly whether the increasing severity of attentional
dysfunctions is related to FC changes within and between
particular networks.

Our results highlight the relevance of particular functional
networks for both visual attention capacity and weighting
parameters. As a voxel-wise approach was used to identify the
functional networks, differences were observed in specific regions
within those networks. Note though that we do not consider
those regions as being “responsible for” visual processing speed
or top-down control, as the values associated with the voxels
comprising those regions reflect their connectivity with a
particular network (Beckmann et al., 2009; Smith et al., 2014),
rather than their activity. Accordingly, we see them simply
as clusters whose voxels reached statistical significance in this
particular sample; at best, they allowed us to identify the relevant
networks for visual attention functions. Furthermore, given that
we relied on the group median to divide our sample of healthy
young adults, we cannot make strong claims about “increased”
or, respectively, “decreased” FC in our sample. We propose it
would bemore useful to examine whether the directionality of FC
holds practical significance in terms of, for example, predicting
the level of BOLD activity or connectivity during the actual
performance of the whole- and partial-report tasks. Previous
task-related fMRI studies have shown that individual differences
in visual attention functions might not be reflected that much
in differences in BOLD-evoked amplitudes (e.g., Gillebert et al.,
2012), but rather in differential connectivity between regions
(e.g., Vossel et al., 2016). Given the previous evidence, it might
be interesting to examine, in future studies, the associations
between “offline” (i.e., during rest) and “online” (i.e., during
task) measures of FC with separate visual attention functions in
order to establish the practical relevance of the directionality of
FC.

Limitations
In interpreting our results, several limitations must be taken into
account. First, although oculomotor activity was not monitored
during the tasks, systematic eye movements are unlikely because
of the brief exposure durations in both the whole- and partial-
report tasks. Second, previous work has shown that frame-to-
frame motion can impact resting-state FC (e.g., Power et al.,
2012). Although we relied on the power of ICA to remove
the noise from the signal corresponding to functional networks
(Beckmann and Smith, 2004; Zuo et al., 2010), a low-scale noise
influence on FC measures remains possible. Thus, future studies
ought to consider applying more stringent methods of head
motion control such as scrubbing regressors even in samples of
healthy young adults.

Finally, although we checked that our participants had not
fallen asleep during the resting-state fMRI sequence, we cannot
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entirely exclude that some of them had, without being aware of it.
However, possible micro-sleep is unlikely to have compromised
our intrinsic FC measures for two reasons. First, previous
research has shown that FC of both higher-order and primary
sensory networks can be maintained during the transition from
wakefulness to sleep (e.g., Larson-Prior et al., 2009). And second,
while spatial changes within functional networks (i.e., decoupling
of the default mode network) have been reported during deep
sleep (e.g., Horovitz et al., 2009), it is improbable that our
participants had reached deep sleep within the∼11 min duration
of the resting-state fMRI sequence, as they were not sleep-
deprived and reaching deep sleep in an unknown and noisy
environment is difficult.

Summary and Conclusion
In sum, our study shows that visual attention functions
correspond distinctively to the functional connectivity both
within and between particular functional networks. Within
networks, (i) higher visual processing speed was associated
with lower functional connectivity within the ventral attention
network; and (ii) more efficient top-down control was associated
with higher functional connectivity within the dorsal attention
network and lower functional connectivity within the visual
network. Between networks, higher functional connectivity was
observed between (i) the visual attention and right frontoparietal
networks for higher visual processing speed; and (ii) the visual

and executive control networks for more efficient top-down

control. Finally, lower functional connectivity within a network
might be explained by the higher functional connectivity between
networks. To conclude, our results point to a distinctive network-
based functional representation of separable visual attention
functions, laying the basis for testing specific hypotheses about
the neural mechanisms underlying these functions in aging or
pathology.
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