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Abstract	

Pop-out search implies that the target is always the first item selected, no matter how many distractors 
are presented. Increasing evidence, however, indicates that search is not entirely independent of display 
density even for pop-out targets: search is slower with sparse (few distractors) than with dense displays 
(many distractors). Despite its significance, the cause of this anomaly remains unclear. We investigated 
several mechanisms that could slow down search for pop-out targets. Consistent with the assumption 
that pop-out targets frequently fail to pop out in sparse displays, we observed greater variability of 
search duration for sparse displays relative to dense. Computational modeling of the response time 
distributions also supported the view that pop-out targets fail to pop out in sparse displays. Our findings 
strongly question the classical assumption that early processing of pop-out targets is independent of the 
distractors. Rather, the density of distractors critically influences whether or not a stimulus pops out. 
These results call for new, more reliable measures of pop-out search and potentially a re-interpretation 
of studies that used relatively sparse displays. 
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Introduction	

To paraphrase William James’(1891) definition of attention: “Everyone knows what pop-out is”. A pop-
out stimulus is, by definition, always the first item to be selected, as if it captured attention 
automatically (White, Lunau, & Carrasco, 2014). Investigating which stimuli do and do not pop out 
reveals mechanisms of early, pre-attentive vision which, together with effortful, top-down mechanisms, 
form a cornerstone of most contemporary accounts of visual attention (e.g., Duncan & Humphreys, 
1989; Treisman & Gelade, 1980; Wolfe, 2007; for more specific studies of pop-out, see, e.g., (e.g., Eimer 
& Kiss, 2008; Folk & Remington, 2006; Vera Maljkovic & Nakayama, 1994; Müller, Heller, & Ziegler, 
1995; Treisman & Gelade, 1980; Wolfe & Horowitz, 2004). Yet, despite the fact that there is a large and 
growing body of work on ‘pop-out’, we will argue here that many paradigms that were designed to 
elucidate the pop-out mechanisms may actually not have investigated pop-out at all.  

Whether or not a target pops out is typically investigated by inspecting how reaction times (RTs) change 
with adding more distractors to the search display. Failure to pop out predicts RTs to become slower as 
more distractors are added, which is consistent with a positive slope of the RT/display density function. 
If the target, on the other hand, does pop out, then adding more distractors would matter little, 
predicting RTs to remain constant across varying numbers of items in the display (e.g., Wolfe, 2007). Put 
differently, ‘pop-out’ is consistent with flat RT/display density functions (though see Buetti, Cronin, 
Madison, Wang, & Lleras, 2016, who reported positive search slopes for, presumably, pop-out search). A 
stimulus property typically considered to generate pop-out is an item’s uniqueness. An item that differs 
from the other, homogeneous items in the display by one or multiple features – a ‘feature singleton’ – is 
thought to attract attention automatically (Theeuwes, 1992, 2010; Treisman & Gelade, 1980; Wolfe & 
Horowitz, 2004). A prominent notion, common to a host of visual search theories, is that early, pre-
attentive stimulus coding mechanisms compute and integrate local ‘feature contrasts’ between an item 
and its surround; the item achieving the highest total contrast would win the competition for selection 
(e.g., Itti & Koch, 2000, 2001). Since feature singletons typically produce strong contrasts, such targets 
are always selected first no matter how many distractors are present, yielding flat search slopes. 

A growing number of studies, however, show that RTs to singleton targets are not entirely independent 
of the number of distractors. Rather, many studies reported negative search slopes: an increase in 
display density actually decreases RTs (Bravo & Nakayama, 1992; Buetti et al., 2016; Geyer, Zehetleitner, 
& Müller, 2010; Kristjánsson, 2006; Lamy, Zivony, & Yashar, 2011; Meeter & Olivers, 2006; Rangelov, 
Müller, & Zehetleitner, 2013). Despite its significance for theories of early vision, the precise cause of 
this anomaly remains unclear. The aim of the present study was to evaluate several mechanisms that 
can, in principle, generate negative search slopes (Fig. 1). Two of these, henceforth referred to as ‘slow 
pop-out’ and ‘different pop-out’ models, maintain that finding a feature singleton target is simply slower 
in sparse than in dense displays, with the negative search slopes being attributable to quantitative 
differences in finding the target in displays of varying item density. An alternative, ‘no pop-out’ model 
maintains that finding a singleton target in sparse displays is qualitatively different from finding one in 
dense displays: the target frequently fails to pop out in sparse displays. 
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Models of negative search slopes 

Here, we present four models that can account for negative search slopes (Fig. 1). We assume that RT on 
any trial reflects the durations of two processes: (i) the search processes, or the time it takes to select an 
item from the display and determine whether or not it is the target, and (ii) the post-search processes, or 
the time it takes to process target features, choose a response, and execute it. All four models assume 
that the negative search slopes originate from the prolonged search duration in sparse relative to dense 
displays. Searching for the target is assumed to be an iterative process in which the visual system 
computes feature contrasts between each element in the display and its surround. The location with the 
strongest overall feature contrast signal is then selected for further inspection. If the item at the 
selected location is not the target, this location is discarded and a new location is selected (Koch & 
Ullman, 1985; Wolfe, 2007). In this framework, the pop-out stimuli would be items that are always 
selected in the first selection round. 

Figure 1 about here 

The simplest, ‘slow pop-out’ model of negative search slopes assumes that it takes longer to generate a 
feature contrast signal of sufficient strength in sparse displays than in dense. Critically, the output of the 
contrast computations yields reliably stronger signals for the target than the distractors, thus permitting 
pop-out search. Since contrast computation is simply slower for sparse displays relative to dense 
whereas the output remains unaltered, the slow pop-out model predicts a simple shift in mean search 
duration between dense and sparse displays.  

The ‘different pop-out’ model, by contrast, assumes that the contrast computation itself differs between 
sparse and dense displays. These differences would alter the relation between the target and distractor 
signals. Due to iso-feature suppression mechanisms, by which detectors coding similar stimuli inhibit 
each other (e.g., Li, 1999, 2002), the many, closely spaced distractors in dense displays would each yield 
weaker signals relative to the few and widely spaced distractors in sparse displays. Thus, in sparse 
displays, the singleton target would compete with strong distractor signals, whereas, in dense displays, 
the same target would compete with relatively weak distractor signals. The difference among the 
contrast signals generated by the target and distractors, respectively, can be conceived of as a signal-to-
noise ratio (SNR) – which would be higher for dense relative to sparse displays. The high SNR in dense 
displays would speed up search processes relative to sparse displays, yielding negative search slopes. 
Additionally, because of the low SNR, finding the target in sparse displays would be more influenced by 
random noise inherent in the contrast computation processes (Itti & Koch, 2000, 2001), predicting 
greater variability of search duration for sparse relative to dense displays. A variant of the “different 
pop-out” model has recently been proposed by Buetti et al. (2016). They assumed that, when the target 
and distractor colors are not known in advance, the early, pre-attentive processes are devoted to 
determining distractor colors. The distractor locations can be summarily rejected as soon as the 
distractor color has been determined (by finding two items of the same color), leaving only the target 
location for focal-attentional inspection. Simple statistical facilitation predicts that this target/distractor 
color assignment would operate faster for dense displays than for sparse, yielding negative search 
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slopes. Thus, while early processing differs between sparse and dense displays, the output of this stage 
would permit pop-out independently of display density. 

The ‘no pop-out’ model assumes that display items are selected one after the other at a constant rate 
(e.g., one item every 100 ms) until the target is found. If the target does pop out, then it will always be 
the first item to be selected. Critically, the differences between sparse and dense displays would 
influence the probability of finding the target in the first run. The ‘no pop-out’ model assumes that, 
similar to the ‘different pop-out’ model, the SNR would be lower for sparse than for dense displays. Due 
to the low SNR for sparse displays, finding the target in the first round of selection would frequently fail, 
making it necessary to search for the target several times until it is found. By contrast, the high SNR for 
dense displays would permit finding the target invariably in the first round of selection. Consequently, 
the probability of finding the target in the first run (p1) would be lower for sparse (p1 << 1) than for 
dense displays (p1 ≈ 1). This would prolong the mean search duration and increase its variability for 
sparse relative to dense displays, yielding negative search slopes1. Note that the ‘no pop-out’ model 
predicts a multi-modal distribution of search duration when the target frequently fails to pop out, and a 
unimodal distribution for targets that pop out reliably (Fig. 1). In contrast to the other two models that 
postulate quantitative differences in search duration between sparse and dense displays (e.g., location 
shifts, increase in variance), the ‘no pop-out’ model predicts the distributions of search duration to differ 
qualitatively between sparse and dense displays, respectively.  

Finally, since the assumptions of the ‘different pop-out’ and the ‘no pop-out’ model are not mutually 
exclusive, it is possible that both the contrast computation and the probability of selecting the target in 
the first selection round differ between sparse and dense displays. This hybrid model (not shown on 
Figure 1) is a generalization of the two more restricted models (the ‘different’ and ‘no pop-out’ models) 
and would be compatible with any data that either model can account for. Henceforth, this model will 
be referred to as the ‘hybrid model’ of negative search slopes. 

Of note, all discussed models can account for differences in the mean search duration between sparse 
and dense displays. The slow pop-out model, however, predicts no differences between sparse and 
dense displays in search duration variability. By contrast, the other models predict variability to be 
larger for sparse displays than for dense. Thus, comparing search variability between sparse and dense 
displays would help discriminate between the slow pop-out and the other models. Because the other 
three models all predict both a higher mean and greater variability of the search duration for sparse 
displays relative to dense, simple inspection of mean search duration and search variability would not 
suffice to distinguish among these models. Instead, the different pop-out, no-pop out, and hybrid 
models need to be compared in terms of their quantitative fits to the observed data to permit the 
models to be discriminated. 
                                                             
1 While the ‘no pop-out’ model predicts a multi-modal distribution of search duration (as illustrated in Figure 1, 
top-right panel), this does not necessarily predict a multimodal distribution of the total RTs (Figure 1, bottom-
right). The probability of finding the target on any single selection round decreases the longer the search takes, as 
a result of which multiple modi in the search time distribution would become progressively smaller (Figure 1). This 
might render the modi undetectable in the RT distribution. 
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As shown in Figure 1, total RTs are a combination of at least two distinct, search and post-search, 
processes. The fact that total RTs reflect a mixture of different (e.g., search vs. post-search) processes 
makes attributing RT effects to any single process equivocal. Larger RT means and variability for sparse 
displays than for dense may reflect differences in the search duration, the post-search duration, or both. 
To independently assess the contributions of search and post-search durations to RTs, we minimized the 
search duration by pre-cuing the target location with 100% cue validity. Since, on cued trials, there was 
no need to search for the target, the RTs would primarily reflect the post-search duration. Consequently, 
any RT effects present on uncued trials and absent on cued trials would most likely stem from 
differences in search duration. With this experimental design, it became possible to assess whether 
negative search slopes stem from search or post-search processes.  

The role of task requirements and stimulus features 

Whether or not negative search slopes for feature singleton targets are observed seems to depend 
heavily on the task participants perform. Studies using feature discrimination tasks, in which participants 
had to discriminate the precise target features, reliably reported substantial negative search slopes (e.g., 
Becker & Ansorge, 2013, Experiment 1; Bravo & Nakayama, 1992; Lamy et al., 2011; Meeter & Olivers, 
2006; Rangelov et al., 2013). By contrast, the few studies that used detection tasks, in which participants 
had to indicate whether or not the target was present, typically failed to observe negative search slopes 
(Bravo & Nakayama, 1992; Wan & Lleras, 2010). One notable difference between discrimination and 
detection tasks concerns the role of spatial attention. While attending to a narrow area occupied by 
target is necessary for discrimination tasks, the narrow focus of spatial attention may not be necessary 
to simply detect the target (Chan & Hayward, 2009; Müller & Krummenacher, 2006a, 2006b). 
Consequently, comparing performance between discrimination and detection tasks may reveal the role 
of focal spatial attention in generating negative search slopes.  

Furthermore, there is ample evidence that stimulus features, both those of the target and those of the 
distractors, influence how quickly the target is found. For example, repeating the exact target and 
distractor features across consecutive trials (e.g., a red target and green distractors both on trials n-1 
and n) reliably speeds up mean RTs on trial n relative to swapping the target and distractor features – an 
effect referred to as ‘priming of pop-out’ (PoP; Lamy, Antebi, Aviani, & Carmel, 2008; Lamy & Yashar, 
2011; Maljkovic & Martini, 2005; Maljkovic & Nakayama, 1994). Other studies showed that repeating 
distractor features yields similar intertrial effects: manual responses and eye movements to the target 
are faster and more accurate when the distractor feature is known relative to when it varies randomly, 
suggesting that memory for distractor features may influence visual search (Lamy et al., 2008; Lamy & 
Yashar, 2011; Lleras, Kawahara, Wan, & Ariga, 2008).  

Recent studies have shown that the effect of stimulus features co-varies with display density. In 
particular, the precise target features matter much more with sparse displays than with dense (Lamy et 
al., 2011; Olivers & Meeter, 2006; Rangelov et al., 2013). Importantly, this difference cannot be 
explained by simple shifts in overall response speed. Additionally, knowing distractor features in 
advance also seems to matter more for sparse displays than for dense. For sparse displays, fixed 
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distractor color produces weaker PoP relative to variable distractor colors, whereas, for dense displays, 
distractor variability matters little for the PoP magnitude (Rangelov et al., 2013). In the present study, 
we investigated whether differential effects of stimulus features between sparse and dense displays 
reflect overall shifts in RT distributions or changes in the shape of the distributions. Strong changes of 
the RT distributions would support the notion that finding the target differs qualitatively between sparse 
and dense displays. 

Aims of the study 

In summary, the present study was designed to investigate which cognitive mechanism yields the 
negative search slopes for feature singleton targets by examining the RT distributions for sparse and 
dense displays. To investigate the role of task requirements for negative search slopes, a target 
discrimination task was used in Experiment 1, and a target detection task in Experiment 2. Additionally, 
the role of stimulus features was assessed by varying whether or not these properties were known in 
advance. Experiments 3 and 4 went on to investigate the extent to which the findings of Experiments 1 
and 2 can be generalized to: (i) a greater variety of display densities (sparse, medium, and dense) and (ii) 
stimulus properties other than surface color, in particular: contour color and orientation. Data analyses 
focused on comparing the observed RTs with the predictions of the various models of negative search 
slopes (i.e., the ‘different pop-out’, ‘no pop-out’, and ‘hybrid’ models; Fig. 1).  

Method	

Participants. 16 observers (5 male, mean age 25 years) participated in Experiment 1, another 16 (6 male, 
mean age 25) in Experiment 2, 17 observers (8 males, mean age 26 years) in Experiment 3, and 16 
observers (8 male, mean age 29) in Experiment 4 for either monetary compensation or course credits. 
All had normal or corrected-to-normal visual acuity and normal color vision (confirmed using the 
Ishihara color plates). All were naïve as to the purpose of the study, yet all had extensive experience 
with psychophysical experiments. The study was approved by the LMU Psychology ethics committee. All 
participants provided informed consent in accordance with the WMA Declaration of Helsinki. 

Apparatus. The experiment was controlled by a Dell PC running under Windows XP. Stimuli were 
presented on a 19” CRT monitor (screen resolution: 1024x768 pixels; refresh rate: 85 Hz). The 
experimental software was custom-written in PsychoPy (Peirce, 2007, 2009). Head-to-monitor distance 
was 56 cm, controlled by means of a chin rest. Participants responded by pressing the left or right 
mouse button with their left- or right-hand index finger, respectively. 

Procedure. The experiments were run in a dim, sound-attenuated cabin. Figure 2A illustrates the 
experimental procedure. Each trial started with a fixation display for 1 s, followed by, in half the trials 
(randomly selected), a spatial cue (30 ms) marking the location of the upcoming target. In the other half, 
no cue was presented. During the cue-stimulus interval (150 ms), only the fixation marker was shown. 
Next, search arrays were presented until either response or for maximally 1500 ms. Both response 
speed and accuracy were stressed. In case of a response error, the word “Error!” was presented for 
1000 ms.  
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Experiments 1 and 2 

In Experiment 1 (discrimination task), the search arrays always comprised several distractors and one 
color singleton target. Individual items were diamond-shaped elements (Fig. 2A, lower-right) with a 
small part on either the left or the right side of every diamond missing. Participants had to find the 
target and report the missing side (left or right) by pressing the corresponding response key (left or 
right). Participants completed 1440 trials, in four sessions separated by short breaks, which took about 2 
h to complete. In Experiment 2 (detection task), search arrays comparable to those of Experiment 1 
were used on two-thirds of the trials. On the remaining trials, the search displays consisted of distractors 
only. Participants had to report whether or not a target was present. Participants completed 2160 trials 
(720 target-absent and 1440 target-present trials) which, by virtue of the target detection task being 
easier than the discrimination task, also took some two hours to complete. 

Stimuli. A white square contour (1-pixel line thickness, CIE xy .005, -.010, luminance 100 cd/m2), 
subtending 1.5° x 1.5° of visual angle, served as the cue stimulus. The target was always either a single 
red (CIE xy .255, .071) or a single green (.358, .021) item (Fig. 2). The target color was chosen randomly 
on each trial. In one experimental session, the distractors’ color could vary: if the target was red, 
distractors were green, and vice versa. In a different session, the distractor color was fixed across trials: 
it was always blue (.387, .133). Stimulus luminance was 51 cd/m2 for all three colors. Individual items 
subtended 1.3° x 1.3° of visual angle. Search arrays consisted of individual items arranged around three 
(imaginary) concentric circles with radii of 2.5°, 5.0°, and 7.5°, respectively (maximum number of items 
presented on the inner, middle, and outer circles: 6, 12, and 18, respectively). The target always 
appeared at one, randomly chosen position on the middle circle. Two different display densities were 
used, fixed per session: sparse (3 items) and dense (36). In sparse displays, the two distractors were also 
located on the middle circle, at positions equidistant from the target.  

Figure 2 about here 

Design. Factorial combination of two levels of display density (sparse vs. dense) and distractor variability 
(variable vs. fixed) yielded four experimental conditions, which were performed in separate sessions. 
Within each session, trials were either uncued or cued, yielding a 2x2x2 design (variability, density, and 
cue), with 180 trials per experimental condition in Experiment 1. In Experiment 2 there were 180 trials 
per experimental condition for target present trials and 90 trials for target absent trials.  

Experiments 3 and 4 

Experiments 3 and 4 were designed to test whether the findings of Experiments 1 would generalize to a 
greater variety of display densities and stimulus properties. Individual items were either circle contours 
(Exp. 3) or rectangle contours (Exp. 4) with a letter ‘E’ inside (Fig. 2B). Color singletons were used as 
targets in Experiment 3, and orientation singletons in Experiment 4. In both experiments, participants 
had to find the target singleton and report the orientation of the letter ‘E’ inside the target: E versus 
mirror E, by pressing the corresponding response key (discrimination task). Participants performed 1440 
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trials per experiment, in three sessions separated by short breaks; each experiment took about 2 h to 
complete. 

Stimuli. In Experiment 3, the target was always either a single red (CIE xy .255, .071) or a single green 
(.358, .021) circle contour (Fig. 2B). The target color was chosen randomly on each trial. In Experiment 4, 
the target was always either a single left- or a single right-tilted (20 degrees from vertical) blue rectangle 
(.387, .133), with target orientation varying randomly across trials. In both Experiments 3 and 4, only the 
variable-distractors condition was administered. Similar to Experiments 1 and 2, search arrays 
comprised items arranged around three (imaginary) concentric circles. Three different display densities 
were used, fixed per experimental session: sparse (6 items), medium (12), and dense (36). In sparse and 
medium density displays, the stimuli were arranged around the middle circle; for dense displays, all 
locations were used (Fig. 2B). All other details were the same as in Experiments 1 and 2. 

Design. Factorial combination of three levels of display density (sparse, medium, and dense) and cue 
(cued vs. uncued) yielded six experimental conditions, with 240 trials per condition.  

Results	

Experiment 1 

Inspection of response accuracy across experimental conditions in Experiment 1 (Table 1) indicated that 
responses were quite accurate overall (4% of errors). A log-linear model of the error rates with display 
density, distractor variability, and cue as fixed factors and participant as a random factor revealed that 
participants made significantly more errors on uncued trials with sparse displays and variable distractors 
(6.5%, b = .73, SEb = .28, z = 2.60, p < .01) relative to all other conditions.  

Table 1. Response accuracy (mean error percentages and 95% CI) for Experiments 1–4, across the different 
experimental conditions. 

  Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Distractors Density  
Target 

present 
Target 
absent   

Cued trials 

Variable Sparse 2.52(0.74) 2.22(0.93) 10.43(2.70) 1.71(0.74) 3.98(2.56) 
 Medium    1.63(0.70) 2.85(1.14) 
 Dense 3.43(1.22) 1.91(1.51) 8.62(3.88) 1.50(0.56) 2.95(1.04) 

Fixed Sparse 3.66(1.15) 2.06(0.89) 8.10(2.54)   
 Medium      
 Dense 3.85(1.25) 2.13(0.86) 7.87(2.16)   

Uncued trials 

Variable Sparse 6.48(1.50) 2.83(1.25) 6.70(2.84) 3.95(1.34) 11.88(2.01) 
 Medium    3.16(0.99) 9.55(2.32) 
 Dense 3.66(0.96) 3.64(1.72) 5.51(2.77) 2.96(0.95) 5.67(0.88) 

Fixed Sparse 3.91(1.06) 1.85(0.69) 4.54(1.50)   
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 Medium      
 Dense 3.53(0.83) 3.39(1.36) 5.02(2.24)   

Correct trials with RTs beyond 1.5*inter-quartile range per participant and condition (‘outliers’) were 
excluded from further analyses (≈ 5% of the correct trials). Next, RT distributions were assessed by 
computing participant-specific RTs across different cumulative probabilities (.1–.9 in steps of .1), 
separately for each experimental condition (cue, display density, distractor variability, and target 
sequence). Figure 3 shows the distribution of RTs for a representative participant as well as average RT 
distributions for the different conditions of Experiment 1 (target discrimination).  

Figure 3 about here 

Analyses of median RTs. Median RTs were overall faster on cued (418 ms) than on uncued trials (524 
ms). On uncued trials, RTs were slower to sparse than to dense displays (552 ms vs. 496 ms), that is, 
negative search slopes were observed. On cued trials, by contrast, sparse displays were responded to 
faster than dense displays (405 ms vs. 431 ms). While RTs were overall longer in the variable-distractors 
relative to the fixed-distractors condition, this difference was more prominent on uncued trials (549 ms 
vs. 499 ms) than on cued trials (425 ms vs. 411 ms). Priming of pop-out (PoP) was substantial only for 
sparse displays with variable distractors (24 ms), relative to all other conditions (» 2 ms). 

To test these observations, two separate general linear model (GLM) analyses were ran with RTs and 
PoP as dependent variables, display density, distractor variability, and cue as categorical predictors, and 
participant as a random factor. Inspection of the model coefficients for RTs revealed significant effects 
of cueing (b = 63.71, SEb= 8.20, t = 7.76, p < .001) and display density (b = -31.38, SEb = 8.20, t = -3.82, p < 
.001). The difference between dense and sparse displays was substantial and negative on uncued trials 
(b = -50.94, SEb = 11.60, t = -4.39, p < .001); by contrast, a somewhat weaker and positive difference was 
observed on cued trials (b = 31.38, SEb = 8.20, t = 3.82, p < .001). Finally, distractor variability mattered 
only for uncued trials with sparse displays (b = 64.40, SEb = 16.41, t = 3.99, p < .001). Inspection of model 
coefficients for PoP showed significant priming effect only for uncued trials with sparse displays and 
variable distractors (b = 38, SEb = 12.80, t = 2.97, p < .01). Taken together, analyses of the median RTs in 
Experiment 1 showed substantial negative search slopes on uncued trials, which were stronger with 
variable than with fixed distractors. Furthermore, PoP in terms of median RTs was specific to sparse 
displays with variable distractors. 

Analyses of RT distributions. As is suggested by the broader RT distributions for sparse than for dense 
displays (Fig. 3), not just the median RTs differed between display densities but the whole RT 
distributions varied. To examine whether the negative search slopes for the median RTs were due to 
simple distribution shifts or changes in distribution shapes (or both), the whole RT distributions were 
analyzed using a GLM with display density, distractor variability, and cue as categorical predictors, 
cumulative probability as a continuous predictor, and participant as a random factor. Main effects of 
categorical predictors would reflect differences in the fastest RTs, indicative of shifts of the whole RT 
distribution. An effect of cumulative probability would correspond to changes in RT variability, whereas 
interactions of probability with categorical predictors would be indicative of different experimental 
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conditions yielding different RT variabilities. For cued trials, the fastest RTs were faster for sparse than 
for dense displays (b = -25.18, SEb = 8.69, t = -2.90, p < .01). RT variability did not change substantially 
across experimental conditions, as indicated by the absence of significant interactions between 
cumulative probability and categorical predictors (all t < 1.35, all p’s > .18). For uncued trials, there was 
no difference between sparse and dense displays in the fastest RTs for fixed distractors (t < 1, p = .64); 
for variable distractors, by contrast, sparse displays proved significantly slower than dense displays (b = 
28.49, SEb = 8.66, t = 3.29, p < .01). RT variability on uncued trials was larger for sparse than for dense 
displays, with both fixed distractors (b = 5.91, SEb = 1.09, t = 5.43, p < .01) and variable distractors (b = 
11.09, SEb = 1.54, t = 7.21, p < .01). Thus, the analyses of the whole RT distributions showed that 
differences between sparse and dense displays on cued trials originated primarily from distribution 
shifts, whereas the differences on uncued trials were primarily due to increased RT variability for sparse 
displays. 

To investigate how PoP magnitude varied with response speed, a GLM of the PoP effect was run with 
cue, display density, and distractor variability as categorical predictors and the cumulative probability as 
a continuous predictor. Similar to the PoP analyses for median RTs, this GLM revealed substantial PoP 
only for uncued trials with sparse displays and variable distractors: the PoP effect was significant for the 
fastest RTs (b = 42.95, SEb = 11.52, t = 3.72, p < .01) and stronger for slower RTs (b = 4.04, SEb = 1.45, t = 
2.79, p < .01).     

Modeling negative search slopes 

As discussed earlier, a general increase in search duration (Fig. 1) for sparse displays cannot explain the 
differences in search variability between sparse and dense displays. Experiment 1 showed that display 
density effects on RT variability were specific to uncued trials, indicating that search variability varied 
substantially between sparse and dense displays. Thus, the results of Experiment 1 falsify the ‘slow pop-
out’ account of negative search slopes. To investigate how well the other models – the ‘different pop-
out’, the ‘no pop-out’, and the ‘hybrid model’ – can account for the effects on RT variability observed in 
Experiment 1, a model of response speed was developed (Eq. 1–4).  

Model of RT distributions. The model presented here is an adaptation of the Competitive Guided Search 
model (Moran, Zehetleitner, Müller, & Usher, 2013) modified to account for RTs in discrimination tasks 
in which a target is present on every trial. Response time on any single trial (i.e., RTi for trial i) can be 
coarsely divided into two components: (i) the time it takes to select an item and verify that the selected 
item is indeed the target (STi), and (ii) processing of the response-relevant stimulus attribute and 
response selection (PTi). For brevity, the former component will be referred to as the search duration 
and the latter as the post-search duration. In contrast to Moran et al. (2013) who used the ex-Wald 
distribution to model search duration, in the present study, the search and post-search durations were 
modeled as gamma distributions (Γ) defined by two, shape (k) and scale (θ), parameters. Beyond being 
more tractable computationally, the gamma distribution was chosen because it describes the 
distribution of waiting times until an event occurs, that is, until a target or a response is selected. 
Convolving two gamma distributions (as in the present model where search and post-search durations 
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are combined to produce RTs) yields a gamma distribution, which is consistent with the typical shape of 
empirical RT distributions (Palmer, Horowitz, Torralba, & Wolfe, 2011; Ratcliff, 1979). 

	𝑅𝑇$ = 𝑆𝑇$ +	𝑃𝑇$																																																																																																																																																																										𝐸𝑞. 1  

𝛤(𝑘01, 𝜃01) = 56𝑝8𝛤(𝑘91, 𝜃91)
:

8;<

= ∗ 𝛤(𝑘?1, 𝜃?1)																																																																																																																	𝐸𝑞. 2 

	𝑝8 = (1 −	6 𝑝B)
𝜔1
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:F8
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																																																																																																																																							𝐸𝑞. 3 

𝜔E = 1	
I$JKLM
N⎯⎯P 𝑝8 = (1 −	6 𝑝B)

𝜔1

𝜔1 + 	𝑁 − 𝑗

8F<

B;<

																																																																																																																			𝐸𝑞. 4 

Search duration was modeled as a sample from the Γ(kST, θST) distribution (Eq. 2). Since the target may 
be found in the first, the second, or any subsequent sample, the total search time was expressed as the 
sum of all selection rounds prior to finding the target. Importantly, each summand j was weighted by the 
probability of finding the target in the j-th round (pj). Differences in pj can capture the difference 
between pop-out and no-pop-out searches. Assuming pop-out search implies that the target is found 
immediately, from which it follows that p1» 1, whereas pj > 1» 0. If the target does not pop out, it is found 
only after several selection rounds, from which it follows that p1<< 1, whereas pj > 1>> 0.  

The pj values were modeled (Eq. 3) as a function of target conspicuity (or target weight ωT) relative to 
distractor conspicuity (ωD), using a modified version of Luce’s choice rule (Luce, 1977). The probability of 
selecting the target was the ratio between the target weight and the sum of the target and distractor 
weights (i.e., the total weight of all items in display). We assumed perfect memory for previously 
selected locations, so that the probability of selecting the target in the j-th round was weighed by the 
probability that the target was not selected in the previous rounds. This assumption has no bearing on 
computations if the target is found immediately (i.e., p1 >> pj > 1), but it was useful in case the target does 
not pop out. We set out to assess whether or not, even when p1 < 1, the target would still be 
preferentially selected in the first couple of rounds, that is, p1,2,3 > p4,5,6, which was possible to compute 
on the assumption that a specific location was selected only once. Assuming no memory for past 
selections in case of pop-out failure would result in identical pj for all j’s, making it impossible to assess 
the probability of selecting the target in the first couple of rounds. To simplify computations, the 
distractor weight (ωD) was set to 1 for all distractors, which reduced Eq. 3 to Eq. 4. Thus, the probability 
of selecting the target in j-th selection round was the function of only one parameter: the target weight 
(ωT). Finally, because the search component of the model captured the time until the target was 
correctly selected and verified, the post-search times were modeled as a single sample of the Γ(kPT, θPT). 

For model fitting, the RT distribution was described as quantile RTs (p = {.1, .3, .5, .7, .9}), which were 
calculated for each participant and then averaged across participants (vincentizing, Ratcliff, 1979) . The 
fitting was performed in two steps. In the first step, the cued trials were used in order to assess the 
post-search distribution Γ(kPT,θPT). Using the kPT and θPT parameters computed in the first step, the uncued 
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trials were used to find the best-fitting parameters of the search duration (ωT, kST, θST) in the second step. 
The best fitting parameters were identified using the simplex algorithm (Nelder & Mead, 1965), which 
was iteratively run for 1000 times, with the resulting parameters of one iteration providing the starting 
parameters for the next iteration. The goodness-of-fit was expressed as Bayesian Information Criterion 
(BIC), which summarily expresses how closely the model predictions match the observed values while 
penalizing for model complexity. The exact algorithm of BIC computation was as described in an earlier 
study (Moran et al., 2013). When BICs across two consecutive iterations improved by less than .05, 
which was taken as evidence that a minimum was reached, the fitting was interrupted, and a new run 
with a different set of starting parameters was initiated. Overall, it took some 100-200 iterations per run 
to reach the minimum. To avoid local minima, runs were repeated for 1000 times with different, 
randomly selected, starting shape and scale parameters.  

Fitting post-search duration (cued trials). Experiment 1 varied display density (sparse vs. dense) and 
distractor variability (fixed vs. variable), yielding four experimental conditions. Depending on which 
conditions are assumed to differ from the rest, accounting for the RT distributions on cued trials of these 
four conditions could require different numbers of parameters. The full model, assuming that all four 
conditions yield different RT distributions, would require fitting eight parameters, that is, finding the 
best shape and scale (kPT and θPT) parameters for each of the four conditions. The full model may be 
restricted by assuming that some of the experimental conditions did not differ. Three such sub-models 
were fitted to the data: (i) Sub1 model was motivated by the observed RTs: it assumed differences 
between sparse and dense displays, whereas the variable and fixed distractor conditions would differ 
only for sparse displays; (ii) Sub2 model assumed that only sparse and dense distractors differed, and 
(iii) Sub3 model assumed that only variable and fixed distractors differed. Finally, the null model 
assumed no differences between conditions, that is, a single set of kPT and θPT parameters were used to 
fit all conditions. Note that, for tasks like the discrimination task used in Experiment 1, a consensus in 
the literature appears to be that the null model of post-search duration should hold true (Duncan, 1985; 
Theeuwes, 1992, 2010). Table 2 shows the goodness-of-fit for different models of post-search duration, 
and Figure 4 depicts the observed values and the predictions of the best-fitting Sub1 model. 

Table 2. The goodness-of-fit of different models to the data from Experiment 1, both without penalization for 
model complexity (logL – log-likelihood) and with penalization using different penalization methods (AIC - Akaike 
Information Criterion, and BIC – Bayesian Information Criterion), together with an index of model complexity (df - 
number of free parameters). Indices wAIC and wBIC, which were computed on the basis of AIC and BIC values 
(Wagenmakers & Farrell, 2004), denote the conditional probability that the respective model fits the data better 
than the other tested models. The best-fitting models are marked in bold script. The subscripts “Gamma”, “Gauss”, 
and “Wald” indicate which probability density function was used to model search durations. 

Exp. 1 – Color targets 

Model df logL AIC wAIC BICGamma wBIC BICGauss BICWald 

Cued trials, N = 10,408 

Full 8 36,903 36,919 .187 36,977 .000   
Sub1 6 36,904 36,916 .813 36,959 1.00   
Sub2 4 37,084 37,092 .000 37,121 .000   
Sub3 4 37,203 37,211 .000 37,240 .000   
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Null 2 37,336 37,340 .000 37,355 .000   

Uncued trials, N = 9,866 

Hybrid model 9 34,710 34,728 1.00 34,793 1.00 34,793 34,792 
Diff. pop-out 6 34,854 34,866 .000 34,909 .000 58,806 34,901 
No pop-out 5 35,088 35,098 .000 35,134 .000 35,180 35,117 

As Table 2 indicates, for cued trials, the Sub1 model fitted the observed data best, as evidenced by the 
lowest BIC values. Inspection of the best-fitting parameters (Table 3) revealed that the mean post-
search duration was shorter for sparse relative to dense displays. 

Figure 4 about here 

Table 3. Parameters of the best-fitting models in Experiments 1, 3, and 4. While model fitting used the shape and 
scale parameters (k and θ, respectively) of gamma distributions, the table shows the more conventional means, M 
= k*θ, and standard deviations, SD = θÖk, of the respective distributions. The M and SD parameters better 
illustrate changes in location and variability of gamma distributions across conditions. Further, the scale of target 
weights depended on the display density (Eq. 4). To ease comparisons across different display densities, the table 
shows the probability of the target being the first item selected, p1 (Eq. 3), which has the same scale (0-1) for all 
densities. 

  Exp. 1 Exp. 3 Exp. 4 

Distractors Density M SD p1 M SD p1 M SD p1 

Cued trials 

Variable Sparse 433 77  526 101  663 131  
 Medium    522 93  557 115  
 Dense 440 70  527 91  539 100  
Fixed Sparse 404 66        
 Medium          
 Dense 440 70        

Uncued trials 

Variable Sparse 123 23 .61 87 9 .76 271 10 .31 
 Medium    87 9 .80 198 28 .54 
 Dense 65 9 1.0 87 9 1.0 159 17 .95 
Fixed Sparse 96 16 .80       
 Medium          
 Dense 65 9 1.0       

Fitting search duration (uncued trials). In the second step, the parameters defining search duration (ωT, 
kST, θST) were fitted to the observed data. Because the observed RTs differed between sparse and dense 
displays and between variable and fixed distractors for sparse displays only, three sets of parameters 
were fitted: one for dense displays independently of distractor variability, one for sparse displays with 
variable distractors, and one for sparse displays with fixed distractors. Three different models were 
tested: (i) the hybrid model permitted both the target weight and the parameters of the ΓST distribution 
to vary between experimental conditions; (ii) the different pop-out model permitted the ΓST parameters 
to vary between conditions, while the probability of the target being selected as the first item was fixed 
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to 1; and (iii) the no pop-out model permitted target weights to vary across conditions, with fixed ΓST 
parameters for all experimental conditions.  

As Table 2 shows, the hybrid model fitted the observed data best, despite its relatively high complexity. 
Comparing the RTs predicted by the best-fitting hybrid model (Fig. 4) and the observed RTs shows a 
close fit between the two. Inspection of the best-fitting parameters for the hybrid model (Table 3) 
revealed that the mean search duration was approximately twice as long for sparse displays relative to 
dense displays. Furthermore, the search variability was approximately twice as large for sparse relative 
displays to dense. For dense displays, the probability of selecting the target in the first round (p1) was 1, 
indicative of pop-out search. By contrast, the respective parameters for sparse displays with fixed and 
variable displays were .80 and .61, respectively, indicating that the target was not the first item selected 
in 20-40% of the trials with sparse displays. 

Model robustness. Inspection of the RT distributions had revealed strong differences between sparse 
and dense displays. Computational modeling of the observed RTs demonstrated that simply changing 
distribution parameters of the search duration (as in the ‘different pop-out’ model) yielded relatively 
good fits to the data. Using the Gamma distribution was particularly convenient, since changes in 
parameters of the Gamma distribution simultaneously change both the mean and the variance. 
Critically, however, model fitting showed that the addition of another parameter – namely, target 
weight – was necessary to produce the best fits. In other words, the variability increases inherent in 
changing parameters of the Gamma distribution failed to account fully for the observed RTs. The 
‘hybrid’ model, by contrast, captured the RT variability differences very well. 

It is possible, though, that the Gamma distribution was suboptimal for the distribution of search 
durations. It is plausible that a different distribution might have yielded overall better fits to the 
observed data – and, critically, better fits of the simpler models (e.g., different pop-out) relative to the 
‘hybrid’ model. To test whether the results of the model fitting were specific to the choice of the 
distribution, two other, commonly used distributions were examined as well: (i) the normal (N), or 
Gaussian distribution, and (ii) the inverse-Gaussian (N-1), or Wald distribution. Similar to the Gamma 
distribution, both the Gaussian and the Wald distributions are defined by two parameters: (i) the mean 
(µ) and the standard deviation (s) for the Gaussian, and, respectively, (ii) the mean (µ) and the shape (l) 
parameters for the Wald. To assess the effects of the distribution shape independently of the model 
parameters, the first and the second moment (i.e., the mean and the variance) were matched between 
the best-fitting Gamma distributions on the one hand and the Gaussian and the Wald distributions on 
the other (Eq. 5–7). This made it possible to compute parameters of the Gaussian and the Wald 
distributions on the basis of the best-fitting parameters of the Gamma distributions, separately for 
different models of negative search slopes (the ‘no pop-out’, the ‘different pop-out’, and the ‘hybrid’ 
model). 

𝐸(Γ; 𝑘, 𝜃) = 	𝑘𝜃; 	𝑉(Γ; 𝑘, 𝜃) = 𝑘𝜃W																																																																																																																																										𝐸𝑞. 5 

𝐸(Ν; 𝜇, 𝜎) = 𝜇; 𝑉(Ν;𝜇, 𝜎) = 𝜎W
I$JKLM
N⎯⎯P𝜇 = 𝑘𝜃; 𝜎 = 𝜃√𝑘																																																																																																			𝐸𝑞. 6 
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𝐸(ΝF<; 𝜇, 𝜆) = 𝜇; 𝑉(ΝF<; 𝜇, 𝜆) =
𝜇_

𝜆
I$JKLM
N⎯⎯P𝜇 = 𝑘𝜃; 	𝜆 = 𝑘W𝜃																																																																																											𝐸𝑞. 7 

Table 2 shows the goodness-of-fit (BIC values) for the different models on the assumption that the 
search durations followed the Gaussian distribution (BICGauss) or, respectively, the Wald distribution 
(BICWald). The ‘hybrid’ model yielded the best fits to the observed RTs independently of the chosen 
distribution (Gamma, Gauss, or Wald), and the predicted RTs were virtually identical across different 
distributions (Fig. 4). These analyses demonstrate that the results of the initial model fitting were not a 
mere consequence of having chosen the Gamma distribution.  

Another concern is that the hybrid model yielded the best fits because it was able to capture a source of 
RT variability that the other two models failed to capture. Importantly, this source need not be a 
difference in target weights (as postulated in the ‘hybrid’ model). Recent advances in computational 
modeling of other cognitive functions such as working memory suggest that the parameters describing a 
cognitive function may vary randomly from trial to trial (Fougnie, Suchow, & Alvarez, 2012; van den 
Berg, Shin, Chou, George, & Ma, 2012). In the context of the present study, this finding implies that 
using a fixed set of parameters to describe the search and the post-search durations in all trials may 
underestimate the real variability and decrease the goodness-of-fit to the observed data.  

Since the post-search duration was modeled using the same set of parameters for all models, the 
difference in the goodness-of-fit among the various models would originate primarily from the inter-trial 
variability in the parameters of the search duration. To assess the role of inter-trial variability, we 
expanded the original model of search durations by adding an inter-trial variability parameter (e, Eq. 8). 
The distribution of the search durations with added inter-trial variability was parameterized by dividing 
the shape parameter (kST) and multiplying the scale parameter (qST) with the inter-trial variability (e). 
Accordingly, the mean search duration was the same with and without added inter-trial variability (Eq. 
9), whereas the search duration variability increased with higher e (Eq. 10). 

Γ(𝜀, 𝑘91, 𝜃91) = 	Γ b
𝑘91
𝜀 , 𝜀𝜃91c 																																																																																																																																																	𝐸𝑞. 8 

𝐸(𝑆𝑇) = 𝑘91𝜃91;𝐸(𝜀, 𝑆𝑇) =
𝑘91
𝜀 𝜀𝜃91 =

𝜀
𝜀 𝑘91𝜃91 = 𝑘91𝜃91																																																																																												𝐸𝑞. 9 

𝑉(𝑆𝑇) = 	𝑘91𝜃91W ;V(𝜀, 𝑆𝑇) = 	
𝑘91
𝜀 𝜀W𝜃91W =

𝜀W

𝜀 𝑘91𝜃91
W = 𝜀𝑘91𝜃91W 																																																																																		𝐸𝑞. 10 

𝑃𝐷𝐹(𝜀) = Ν(𝜇 = 1, 𝜎, 𝑎 = 0, 𝑏 = ∞); 	𝜎 = {1, 2, 4}																																																																																																								𝐸𝑞. 11 

The inter-trial variability (e) was considered a continuous random variable whose probability density 
function was modeled as a truncated normal distribution with a mean of 1 and a range from 0 to ¥ (Eq. 
11). Different degrees of inter-trial variability were modeled by setting the standard deviation (s) of e to 
1, 2, or 4, representing low, intermediate, and high degrees of inter-trial variability, respectively. Note 
that setting s to 0 (i.e., no inter-trial variability) reduces this extended model to the original model 
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presented earlier. As such, this extended model is a generalization of the original model taking into 
account inter-trial variability of search duration parameters. 

The extended model (Eq. 8–11) was used to simulate search durations on the basis of the ‘hybrid’, the 
‘different pop-out’, and the ‘no pop-out’ models, respectively. Random samples of e were drawn 
separately per different experimental condition for the same number of times as there were trials in 
that condition in Experiment 1 (total N = 9,866). Search durations were simulated separately for 
different degrees of inter-trial variability (s = 1, 2, or 4). Nine data sets were simulated in total (3 models 
x 3 degrees of inter-trial variability). Figure 5 shows the probability density distributions of the simulated 
search durations for different data sets. 

Figure 5 about here 

The three different models of negative search slopes (the ‘hybrid’, the ‘different pop-out’, and the ‘no 
pop-out’ models) without inter-trial variability parameter (Eq. 1–4) were then fitted to the nine 
simulated data sets which contained inter-trial variability (Eq. 8–11). The details of these 27 model-
fitting routines (3 models x 9 simulated data sets) were the same as in the original model fitting. Table 4 
shows the goodness-of-fits (BICs) for the various search slope models separately for each simulated data 
set. The most striking result of these analyses is that the models used to simulate different data sets 
were also the models that fitted the simulated data best. In other words, the models without an inter-
trial variability parameter are able to explain data with added inter-trial variability. This finding held true 
even when very large inter-trial variability (s = 4) was added to the simulations. 

Since plotting the predictions for nine simulated data sets on the basis of three different search slope 
models is, arguably, impractical, the correspondence between the predicted and the simulated search 
durations is presented summarily as mean squared error (MSE) in Table 4. The MSE reflects the 
difference between the predicted and the simulated distributions for the 10th, 30th, 50th, 70th and 90th 
percentile across all experimental conditions. More precisely, every MSE is the mean of 20 data points (5 
percentiles x 4 conditions). Inspection of MSEs for the best-fitting models revealed deviations between 
the observed and the predicted values to be small overall (up to 40 ms), indicating excellent fits. 
Consistent with the BICs, the models used to simulate the data yielded the smallest MSE2. 

Table 4. Goodness-of-fit (BICs) and mean squared-errors (MSE) for different search slope models (the ‘hybrid’, 
‘different pop-out’, and ‘no pop-out’ models) separately for different simulated data set. The models used for 
fitting the data did not include inter-trial variability, whereas the simulated data sets did include inter-trial 
variability of different degrees (1, 2, and 4). The best fitting models per data set (i.e., smallest BICs) are marked in 
bold script. All other details (e.g., degrees of freedom per model) are the same as in Table 2. The MSEs represent 
the mean squared difference between the simulated and the predicted data for the percentiles 10–90 across all 
experimental conditions. Larger MSEs indicate worse fits. 
                                                             
2 There was one exception: for the ‘different pop-out’ simulation with large inter-trial variability, the smallest MSE 
was produced by the ‘hybrid’ model. Nevertheless, this exception was most likely due to increased complexity of 
the ‘hybrid’ model relative to the ‘different pop-out’ model: the goodness-of-fits after penalization for model 
complexity (BIC) still indicated that the best-fitting model was the ‘different pop-out’ model.  
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 Simulated data set 

 Hybrid Different pop-out No pop-out 

Fitted model s = 1 s = 2 s = 4 s = 1 s = 2 s = 4 s = 1 s = 2 s = 4 

BIC (a.u.) 

Hybrid 34,913 34,92 34,797  34,697 34,780 34,843 34,791 34,851 34,823 
Diff. pop-out 36,175 35,592 35,137 34,668 34,752 34,816 34,879 34,824 34,795 
No pop-out 41,390 39,663 37,836 42,082 40,900 41,851 34,647 34,655 34,701 

MSE (ms) 

Hybrid 37 27 10 5 17 15 15 48 50 
Diff. pop-out 122 84 47 4 15 25 54 51 47 
No pop-out 419 401 380 282 253 618 5 5 12 

Taken together, testing the model robustness showed that the negative search slope models described 
in Eq. 1–4 are not sensitive to the particular distribution shape used. Moreover, the superior fits of the 
‘hybrid’ model cannot be explained by the fact that, unlike the other two models, this model was 
potentially able to capture inter-trial variability. Thus, the results of Experiment 1 strongly suggest that 
the performance difference between sparse and dense displays in feature singleton search tasks 
originates from the differences in target conspicuity (i.e., target weights) between these displays. In fact, 
the target may be so inconspicuous in sparse displays that it fails to pop out in 40% of trials. 

Experiment 2 

The stimuli and experimental design in Experiment 2 were comparable to those of Experiment 1, with 
one exception: rather than having to discriminate the target singleton, participants simply detected 
whether or not the target was present. Inspection of response accuracy in Experiment 2 (Table 1) 
revealed only a few misses (2% of errors on target-present trials) and substantially more false alarms 
(7% of errors on target-absent trials), indicative of a liberal response criterion. Inspection of response 
accuracy across experimental conditions, however, revealed no signs that the liberal criterion selectively 
influenced performance across conditions. These observations were confirmed by a log-linear model of 
the error rates with target type (present vs. absent), cue, display density, and distractor variability as 
fixed factors and participant as a random factor. Inspection of the model coefficients revealed significant 
effects of target type (b = -.62, SEb = .16, z = -3.87, p < .001) and cueing (b = -.45, SEb = .15, z = -2.96, p < 
.01), as well as a significant interaction between target type and cueing (b = .93, SEb = .22, z = 4.13, p < 
.001), indicating that cueing influenced false alarms (8.75% false alarms on cued trials vs. 5.33% on 
uncued) more strongly than misses (2.08% on cued trials vs. 2.93% on uncued). No other main effect or 
interaction turned out significant (all z = 1.30, all p’s > .19), indicating that the response bias had little 
effect on the experimental manipulations of critical interest (display density and distractor variability). 

Analyses of median RTs. Outlier detection for correct trials was analogous to Experiment 1. RTs 
(averaged across participants) on correct trials across different cumulative probabilities for the various 
experimental conditions of Experiment 2 are shown in Figure 6. Regarding the median RTs, the 
difference between target-present (filled symbols) and target-absent trials (empty symbols) was 
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substantial in all experimental conditions (overall 378 ms vs. 424 ms). Cueing had little influence on the 
median response speed (overall 392 ms for cued vs. 410 for uncued trials). Also, there was virtually no 
difference in median RTs between sparse and dense displays (overall, 402 ms for sparse and 400 ms for 
dense displays). The PoP effect was overall very weak (8 ms) and did not vary substantially across 
conditions. These observations were confirmed by GLM analyses of the median RTs and PoP with target 
type (present vs. absent), cue, display density, and distractor variability as categorical predictors and 
participant as a random factor. Inspection of the model coefficients for median RTs revealed the effect 
of target type to be significant (b = -51.13, SEb = 7.01, t = -7.29, p < .001); no other main effect or 
interaction reached significance (all t’s <1.55, all p’s > .12). Inspection of the model coefficients for PoP 
showed only the intercept term to be significant (b = 9.28, SEb = 3.65, t = 2.54, p < .05), indicative of an 
overall weak but significant PoP effect. No other effects or interactions reached significance (all t’s < 
1.06, all p’s > .29), indicating that the PoP magnitude varied little across experimental conditions. 

Figure 6 about here 

Analyses of RT variability. As shown in Figure 6, the RT variability differed little across the experimental 
conditions. Inspection of the PoP magnitude showed stronger PoP for slower RTs, suggesting that 
changes in RT variability, rather than distribution shifts, were the source of the significant PoP effect on 
the median RTs. These observations were confirmed by two GLMs for RTs and PoP, respectively, with 
cumulative probability as a continuous predictor, target type (present vs. absent), cue, display density, 
and distractor variability as categorical predictors, and participant as a random factor. Inspection of the 
model coefficients for RTs revealed a significant main effect of target type (b = -58.30, SEb = 5.69, t = -
10.24 p < .001), as well as a marginally significant interaction with cumulative probability (b = 1.97, SEb = 
1.01, t = 1.95, p = .051). This pattern indicates that the target-present RTs were both ‘faster’ and 
somewhat less variable than the RTs on target-absent trials. Finally, the interaction between target type 
and cue also turned out significant (b = 24.01, SEb = 8.04, t = 2.98, p < .01), indicating that, on target-
present trials, the fastest RTs were significantly faster on cued trials than on uncued. No other effects or 
interactions proved significant (all t’s < 1.64, all p’s > .10). Inspection of the model coefficients for PoP 
revealed only a main effect of cumulative probability (b = 1.62, SEb = .59, t = 2.72, p < .01), indicating 
that PoP magnitude increased with slower RTs. This increase was particularly marked on uncued trials 
with variable distractors (Figure 6, upper-left), as evidenced by a significant interaction among 
cumulative probability, cue, and distractor variability (b = 3.26, SEb = 1.19, t = 2.74, p < .01). 

Taken together, the analyses of Experiment 2 (detection task) revealed no negative search slopes in 
either overall RT speed or RT variability. The cueing effects were rather weak (»20 ms), as compared to 
the substantial cueing effects observed in Experiment 1 (»100 ms). Also at variance with Experiment 1, 
overall RT speed and RT variability were little influenced by distractor variability. The PoP effect was very 
weak (8 ms) and primarily driven by the changes in RT variability. 
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Experiment 3 

In Experiment 3, similar to Experiment 1, participants performed a discrimination task. In contrast to 
Experiment 1, Experiment 3 (Fig. 2B) investigated negative search slopes for a greater variety of display 
densities: (i) sparse (6 items), (ii) medium (12 items), and (iii) dense displays (36 items). Inspection of the 
error rates (Table 1) showed that participants responded very accurately overall (2.5% of errors), with 
somewhat worse performance for uncued (3.5%) relative to cued trials (1.6%). The effect of display 
density was very small (2.8%, 2.4%, and 2.3% of errors for sparse, medium, and dense displays, 
respectively) and it did not co-vary with cue type. These observations were confirmed by a log-linear 
model, which revealed the effect of cueing to be significant (b = .83, SEb = .19, z = 6.18, p < .001); all 
other effects were non-significant (all z’s < .9, all p’s > .418). 

Analyses of median RTs. Median RTs were overall faster on cued (510 ms) than on uncued trials (615 
ms). On uncued trials, moderately negative search slopes were evidenced by RTs decreasing slightly with 
increasing display density (624 ms, 618 ms, and 601 ms for sparse, medium, and dense displays, 
respectively). On cued trials, median RTs were only little influenced by increasing display density (507 
ms, 508 ms, and 514 ms for sparse, medium, and dense displays). Priming of pop-out (PoP) decreased 
substantially with increasing display density (53 ms, 29 ms, and 7 ms for sparse, medium and dense 
displays, respectively) on uncued trials, and to a lesser degree on cued trials (20 ms, 15 ms, and 8 ms, 
respectively). 

Figure 7 about here 

These observations were confirmed by two separate GLM analyses with RTs and PoP as dependent 
variables, display density and cue as categorical predictors, and participant as a random factor. 
Inspection of the model coefficients for the median RTs revealed significant effects of cueing (b = 116.82 
SEb= 11.64, t = 10.04, p < .001). For cued trials, no effects of display density were observed (all t’s < .6, all 
p’s > .56). For uncued trials, only the contrast between sparse and dense displays turned out marginally 
significant (b = -29.92, t = -1.82, p = .073). Inspection of the model coefficients for PoP revealed a 
significant priming effect for cued trials (b = 20, SEb = 5, t = 4.05, p < .001), which was little influenced by 
display density (all t’s < -1.84, all p’s > .06). An even stronger PoP effect was observed for uncued trials 
(b = 33.22, SEb = 6.74, t = 4.93, p < .001), which decreased substantially with an increase in display 
density (sparse vs. medium, b = -19.72, SEb = 9.53, t = -2.07, p < .05; sparse vs. dense, b = -34.48, SEb = 
9.53, t = -3.62, p < .001). Taken together, analyses of the median RTs in Experiment 3 showed relatively 
weak effects of display density, which were, however, stronger for uncued than for cued trials. 
Furthermore, the PoP effect varied substantially across display densities for uncued trials. 

Analyses of RT distributions. Similar to Experiment 1, the RT variability increased with an increase in 
display density in Experiment 3 (Fig. 7): the variability was largest for sparse displays, intermediate for 
medium-density, and smallest for dense displays. This trend was more prominent for uncued than for 
cued trials, indicating that the increase in RT variability was due to variability in search duration. 
Inspection of PoP magnitude revealed stronger PoP for slower RTs; this trend was most prominent for 
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sparse displays, followed by medium-density and dense displays. The RT distributions were analyzed by 
a GLM with RTs as dependent variable, cue type and display density as categorical predictors, and 
cumulative probability as a continuous predictor. Inspection of the model coefficients revealed the main 
effect of cueing (b = 92.72, SEb = 9.01, t = 10.29, p < .001) and the interaction between cue and 
cumulative probability (b = 3.53, SEb = 1.60, t = 2.20, p < .05) to be significant. These findings indicate 
that cueing influenced both the fastest RTs and the RT variability. For cued trials, display density had 
little influence on the fastest RTs (all t’s < 1.8, all p’s > .08) and on RT variability (all t’s < 1.8, all p’s > .07). 
For uncued trials, the effect of display density on the fastest RTs was relatively weak (contrast sparse vs. 
medium, b = 12.98, SEb = 6.51, t = 1.99, p = .047; sparse vs. dense, b = 11.25, SEb = 6.51, t = 1.72, p = 
.085). By contrast, display density had a substantial influence on RT variability (sparse vs. medium, b = -
3.48, SEb = 1.16, t = -3.00, p < .01; sparse vs. dense, b = -7.23, SEb = 1.16, t = -6.25, p < .001). Overall, 
these analyses show that, on cued trials, the RT distributions differed little across display densities. On 
uncued trials, by contrast, the RT variability was much stronger for sparse relative to dense displays. 

Analysis of the PoP magnitude revealed a significant effect of cueing, with stronger PoP on uncued 
relative to cued trials (b = 16.95, SEb = 5.46, t = 3.10, p < .05). Further, the PoP effect was stronger for 
slower RTs (b = 4.53, SEb = .69, t = 6.59, p < .001). Finally, the increase in the PoP magnitude for slower 
RTs was the strongest for sparse relative to both medium-density displays (b = -2.86, SEb = .97, t = -2.95, 
p < .05) and dense displays (b = -5.27, SEb = .97, t = -5.43, p < .001). 

Modelling negative search slopes. Since analyses of the RT distributions revealed larger RT variability for 
sparse relative to dense displays, the RT distributions observed in Experiment 3 across the different 
display densities were fitted to the same theoretical models as in Experiment 1. Table 4 shows the 
goodness-of-fits for the different models with the best-fitting models marked in bold script.  

The post-search duration was assessed by fitting the various models to the RT distributions in the cued 
conditions. Table 5 shows that the Sub1 model yielded better fits to the observed data, as indicated by 
the lowest BIC and AIC values. Figure 8 shows that the values predicted by the Sub1 model were very 
close to the observed values in Experiment 3. Inspection of the best-fitting parameters (Table 3) 
revealed that, while the mean post-search times differed little across display densities, the main 
difference derived from smaller variability of the post-search durations with an increase in display 
density. 

Table 5. The goodness-of-fit to the data from Experiments 3–4 . Conventions as in Table 2. Best-fitting models are 
marked in bold script. 

  Exp. 3 – Color targets Exp. 4 – Orientation targets 

Model df logL AIC wAIC BIC wBIC logL AIC wAIC BIC wBIC 

Cued trials 

  N = 10,160 N = 9,437 

Sub1 6 39,964 36,976 1.00 40,020 .936 38,617 38,629 1.00 38,671 1.00 
Null 2 40,007 40,010 .000 40,025 .064 40,495 40,499 .000 40,514 .000 

Uncued trials 
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  N = 9,793 N = 8,056 

Hybrid model 9 38,248 38,266 .001 38,330 .000 31,491 31,509 1.00 31,572 1.00 
Diff. pop-out 6 38,273 38,285 .000 38,328 .000 37,134 37,146 .000 37,188 .000 
No pop-out 5 38,241 38,251 .999 38,287 1.00 31,937 31,902 .000 31,937 .000 

The RT distributions on uncued trials were used for fitting of the search duration parameters across 
display densities. As can be seen from Table 5, the ‘no pop-out’ model yielded the closest fits to the 
observed data. As Figure 8 shows, the values predicted by the ‘no pop-out’ model were very close to the 
observed values. This model assumes that only the target weight varied across display densities, while a 
single gamma distribution described the search duration across all densities. Inspection of the model 
parameters (Table 3) revealed that the probability of selecting the target in the first selection round 
decreased from 1.0 to .76 with a decrease in display density. In other words, in 20–25% of the trials with 
sparse and medium-density displays, the target was not the first item selected. 

Figure 8 about here 

Experiment 4 

Experiment 4 used the same design as Experiment 3, the only difference being that, instead of color 
singleton targets, participants had to find orientation singletons (Fig. 2B). Inspection of the error rates 
(Table 1) revealed that the orientation singletons used in Experiment 4 were rather difficult to find, as 
indicated by relatively high error rates with uncued targets (9%). For cued trials, the error rates were 
comparable to those in Experiments 1–3 (3%). Further, the error rates decreased with an increase in 
display density (8%, 6%, and 4% for sparse, medium, and dense displays, respectively). These 
observations were confirmed by a log-linear model of the error rates, which revealed a substantial effect 
of cueing (b = 1.10, SEb = .10, z = 11.51, p < .001), as well as significant effects of display density for both 
cued and uncued trials (all z’s > -2.39, all p’s < .05). 

Analyses of median RTs. Inspection of the median RTs revealed very strong cueing effects, with some 
400 ms faster RTs for cued (558 ms) relative to uncued trials (946 ms). Further, median RTs decreased 
with an increase in display density for cued trials (620, 533, and 522 ms for sparse, medium, and dense 
displays, respectively), and even more prominently for uncued trials (1291, 858, and 691 ms, 
respectively). A GLM of the median RTs revealed a significant effect of cueing (b = 670.77, SEb = 66.07, t 
= 10.15, p < .001). Despite numerical trends, the effect of display density on cued trials did not reach 
significance (all t’s < -1.5, all p’s > .14). The effect of display density on uncued trials, however, was 
significant and very marked (sparse vs. medium contrast, b = -345.86, SEb = 93.44, t = -3.70, p < .001; 
sparse vs. dense, b = -502.42, SEb = 93.44, t = -5.38, p < .001). Inspection of the PoP magnitude 
suggested a pattern of stronger PoP on uncued relative to cued trials (22 vs. 4 ms), and stronger PoP for 
sparse relative to dense displays (23, 14, and 1 ms for sparse, medium, and dense displays, respectively). 
These observations, however, were not substantiated by a GLM of the PoP magnitude, which failed to 
reveal any significant effects (all t’s < -1.5, all p’s > .15). As shown in Figure 7, the standard errors of the 
PoP effects were rather large, indicating strong individual differences in PoP magnitude. This was the 



 

23 

most likely reason why effects of display density on the PoP magnitude failed to reach significance 
despite the numerical differences. 

Analyses of RT distributions. Inspection of the RT distributions (Fig. 7) showed marked distributions 
shifts and even more prominent increases in the RT variability with a decrease in display density. The 
density effect was much stronger for uncued than for cued trials. A GLM of the RT distributions with cue 
and display density as categorical predictors and cumulative probability as continuous predictor 
revealed strong cueing effects for both the fastest RTs (b = 323.45, SEb = 46.28, t = 6.99, p < .001) and 
the RT variability (b = 59.26, SEb = 5.81, t = 10.19, p < .001). For cued trials, display density influenced 
primarily the RT variability (contrast sparse vs. medium, b = -23.10, SEb = 8.22, t = -2.81, p < .01; sparse 
vs. dense, b = -28.83, SEb = 8.22, t = -3.50, p < .001), while the effects of display density for the fastest 
RTs did not reach significance (all t’s < .45, all p’s > .67). For uncued trials, display density influenced 
both the RT variability and the fastest RTs (all t’s > -3.90, all p’s < .001).   

Inspection of the PoP magnitude (Fig. 7) across different RTs showed a pattern similar to that observed 
in Experiments 1 and 3: PoP was stronger on uncued than on cued trials; further, PoP increased for 
slower RTs, and this increase was most prominent with sparse displays. A notable exception from this 
pattern were the PoP effects on uncued trials with sparse displays, where PoP magnitude did not co-
vary systematically with an increase in RTs. This condition was also characterized by very strong 
individual differences (see Fig. 7, error bars for PoP on uncued trials with sparse displays). These 
observations were confirmed by a GLM, which revealed a strong increase of PoP magnitude with slower 
RTs on cued trials (b = 6.96, SEb = 1.44, t = 4.84, p < .001). As suggested by the inspection of the 
numerical trends (Fig. 7), PoP magnitude did not co-vary with response speed on uncued trials (t = .39, p 
= .69).  

Taken together, analyses of the RTs observed in Experiment 4 revealed a pattern similar to that of 
Experiments 1 and 3: the median RTs increased with a decrease in display density, that is, negative 
search slopes were observed. Analyses of the RT distributions revealed that the negative search slopes 
were due to both distributions shifts and an increase in RT variability. The increase in RT variability with 
a decrease in display density was much stronger on uncued than on cued trials, indicating that display 
density influenced the variability of search durations. Finally, PoP magnitude increased with slower RTs, 
at least on cued trials. The respective findings on uncued trials were equivocal, primarily due to large 
individual differences observed with sparse displays. 

Modeling negative search slopes.  Similar to Experiments 1 and 3, the RT distributions observed in 
Experiment 4 were fitted to the various models of the search and post-search durations. Fitting of the 
data for cued trials revealed the Sub1 model to yield the best fits to the data, as evidenced by the 
smallest BIC and AIC values for this model (Table 5). Figure 8 shows that, in Experiment 4, the predicted 
values closely matched the observed values on cued trials for medium-density and dense displays. The 
model captured less well the RT distribution for sparse displays, presumably due to strongly skewed RT 
distribution observed in this condition (Fig. 8). Inspection of the model parameters (Table 3) showed 
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that an increase in display density increased both the mean duration and the variability of the post-
search processes.  

Fitting of the data for uncued trials revealed the ‘hybrid’ model to yield the closest fits to the observed 
data (Table 5). Figure 8 shows a very close correspondence between the observed and the predicted 
values. Inspection of the model parameters indicated that finding the target took longest in sparse 
displays (271, 198, and 159 ms for sparse, medium, and dense displays, respectively). The probability of 
selecting the target in the first selection round was smallest for sparse displays (.31, .54, and .95 for 
sparse, medium and dense displays, respectively): the target was not the first item selected in 70% of 
trials with sparse displays, 50% with medium-density displays, and 5% with dense displays. 

Discussion	

The four experiments reported in this study characterized some of the boundary conditions for negative 
search slopes to manifest. First, negative search slopes were evident in discrimination tasks only 
(Experiments 1, 3, and 4), independently of the precise target-defining stimulus features (surface color, 
contour color, or contour orientation, respectively). Second, the median RTs scaled linearly with an 
increase in display density from very sparse (3 items, Experiment 1) through sparse and medium- 
density (6 and 12 items, Experiments 3 and 4, respectively) to very dense displays (36 items, 
Experiments 1, 3, and 4). Third, the negative search slopes primarily reflected changes in RT variability 
across display densities; distribution shifts, by contrast, contributed only sporadically to the negative 
slopes. Finally, the density effects were more pronounced for uncued relative to cued trials, indicating 
that changes in display density influenced primarily the search duration, rather than the post-search 
duration.  

Search dynamics across display densities 

Regarding the alternative models of negative search slopes (Fig. 1), the observed RT distributions clearly 
disqualify the ‘slow pop-out’ model, which predicted only distribution shifts across the different 
densities. The three remaining models (the ‘different pop-out’, the ‘no pop-out’, and the ‘hybrid’ model) 
were all consistent with the observed RT distributions. Fitting these models to the observed data 
revealed that a decrease in display density prolonged the mean search duration and increased the 
search variability. Critically, to achieve the best fits to the observed data, in all three experiments that 
used a discrimination task, it was necessary to assume strong differences in target conspicuity (i.e., the 
target weight) across the different display densities. Model fitting indicated that the target was so 
inconspicuous in sparse displays that it failed to be the first item selected in 20–70% of the trials. This 
outcome is consistent with the results of eye-tracking studies which typically found that, with sparse 
displays, participants first directed their gaze to a distractor in some 20% of the trials (Becker, 2008; 
Caddigan & Lleras, 2010)3. By contrast, the target was the first item selected on virtually all trials with 

                                                             
3 Furthermore, even when the target was immediately fixated, the saccadic latencies were relatively long (»350 
ms) compared to typical saccade latencies in selective-attention tasks (about 250 ms; Jonikaitis & Theeuwes, 
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dense displays. Going beyond previous studies, the present study strongly supports the idea that feature 
singleton targets, in fact, may fail to pop out in (as much as) two out of three trials with sparse displays, 
whereas the same targets reliably pop out in dense displays (see, e.g., Rangelov et al., 2013, and Tseng, 
Glaser, Caddigan, & Lleras, 2014, for similar ideas).  

Post-search dynamics across display densities 

Analyses of the RT distributions for cued trials helped characterize the post-search dynamics across 
different display densities. On cued trials, a cue stimulus was briefly presented prior to the onset of the 
search display. When presented, the location of the cue always coincided with that of the target. 
Consequently, attending to the cue eliminated the need to search for the target and left post-search 
processes as the only determinant of response speed. Analyses of the RTs on cued trials in Experiments 
1, 3, and 4 consistently revealed differences between display densities. Additionally, model fitting for 
Experiments 1, 3, and 4 consistently showed that, in order to accurately predict the observed RTs, it is 
necessary to assume that post-search processes differ across display densities. The precise pattern of 
results was less consistent across experiments. In Experiment 1, the mean post-search duration was 
shorter for sparse relative to dense displays. In Experiment 3, differences in display density primarily 
influenced the post-search time variability, which was larger for sparse than for dense displays. Finally, 
in Experiment 4, both the mean post-search duration and the post-search time variability were 
influenced by display density. The experiments reported here do not permit any conclusive 
interpretations as to the cause of the equivocal data patterns across the different experiments. As the 
experiments were not designed to address this issue in detail, further studies are necessary to 
comprehensively characterize the effects of display density on post-search duration. Importantly, 
though, the available findings do highlight the fact that distractors, and their density in particular, not 
only influence the search dynamics, but also the post-search processes. This aspect of our findings is in 
stark contrast with conventional opinion, which holds that, after the target item has been successfully 
selected for focal inspection, the rest of the visual display would matter little. Critically, the fact that 
both search and post-search dynamics can be sensitive to the same experimental manipulation (e.g., 
display density) emphasizes the importance of quantitative, computational models of RTs, which can 
separate different sources of RT variability, for theories of early visual processes.  

The role of task and stimulus features for negative search slopes 

The results of the present study replicated a strong dissociation between detection and discrimination 
tasks (Bravo & Nakayama, 1992; Song & Nakayama, 2006). In discrimination tasks (Experiments 1, 3, and 
4), selecting the precise location of the target is critical for successful performance because if, by 
chance, a distractor location is selected instead, this would severely affect response accuracy. In 
detection tasks (Experiment 2), by contrast, it suffices to simply detect a feature discontinuity anywhere 
in display to respond correctly (Chan & Hayward, 2009, 2014; Treisman, 1988; Treisman & Gelade, 1980; 

                                                                                                                                                                                                    
2013). Thus, it is possible that the portion of ‘failure-to-pop-out’ trials was even higher in the eye tracking studies, 
but that a (fast) erroneous saccade to a distractor was not actually triggered on some of these trials. 
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Treisman & Sato, 1990). Consistent with the idea that the negative search slopes reflect a failure to 
correctly select the precise target location, there was a strong effect of display density on uncued trials 
in Experiments 1, 3, and 4. The display density effect was primarily driven by increased RT variability for 
sparse relative to dense displays, rather than by overall shifts in RT distributions. By contrast, in 
Experiment 2, which used a detection task, no differences between sparse and dense displays were 
observed, for either cued or uncued trials. The absence of negative search slopes in detection tasks and 
their presence in discrimination tasks indicate that success in selecting the target location is the primary 
determinant of the negative search slopes. 

Analyses of the effects of stimulus features also suggested that search processes differ between sparse 
and dense displays. The effects of both the intertrial sequence of target features (PoP) and distractor 
variability were much stronger for sparse than for dense displays. Additionally, analyses of PoP 
magnitude across different, slow and fast RTs showed that, for comparable RTs, the PoP effect was still 
greater for sparse displays than for dense. This suggests that display density effects on PoP magnitude 
are not simply due to overall faster RTs to dense relative to sparse displays. Together with the 
computational modeling results, these findings suggest that stimulus features matter most when the 
target frequently fails to pop out. This result has important implications for many studies that 
investigated effects of stimulus features on early visual processing (e.g., Becker, 2008; Becker & 
Ansorge, 2013; Hickey, Olivers, Meeter, & Theeuwes, 2011; Maljkovic & Nakayama, 1994, 1996; Olivers 
& Hickey, 2010; Theeuwes, 1992). Such studies typically used search arrays comprising a singleton target 
and relatively few distractors (from 3 to 12 items). The present finding that singleton targets in this 
range are frequently not the first item selected (i.e., p1 << 1) raises a concern as to whether the target 
can actually be said to have popped out in those studies.  

Theoretical implications 

In the literature, there are several broad theoretical frameworks that may serve as general theories of 
visual attention. Here, we discuss the ability of the four most successful frameworks to account for the 
present findings. From the earliest to the latest, these frameworks are: (i) Feature Integration Theory 
(Treisman, 1988; Treisman & Gelade, 1980; Treisman & Sato, 1990), (ii) Guided Search (Wolfe, 1994, 
2007; Wolfe, Cave, & Franzel, 1989), (iii) Theory of Visual Attention (Bundesen, 1990, 1998), and (iv) 
Boolean Map theory (Huang, 2010; Huang & Pashler, 2007). While these frameworks differ in numerous 
respects, the present discussion will focus on the differences in how they conceptualize early vision. In 
our understanding, the processes constituting early vision would involve (i) segmenting the visual input 
into potentially relevant locations (e.g., the target location) and irrelevant locations (e.g., distractor 
locations) and (ii) selecting potentially relevant locations for focal-attentional inspection. 

According to Feature Integration Theory (FIT), early vision represents visual input in two distinct ways: (i) 
a map of locations representing which locations in the scene are occupied by an item, and (ii) feature 
maps representing which features (e.g., red, green, etc.) are present at these locations. Importantly, the 
signals from these maps indicate either the presence (i.e., 1) or absence (0) of a particular feature. 
Similar to the FIT, a key assumption of Boolean Map (BM) theory is that visual input is represented in a 
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categorical manner (1 or 0) at the various map locations. For example, a red singleton would be 
represented as 1 in the ‘red’ independently of display density, that is, a feature singleton would yield the 
same signal in all displays. At variance with this prediction, the negative search slopes observed in this 
and earlier studies imply that, for the same stimulus, the output of early processes differs between 
sparse and dense displays. Thus, the processes of early vision as conceived by FIT and BM theory fail to 
account for the findings of the present study. Of note, BM theory allows for the existence of a bottom-
up salience map which represents locations that are inherently salient on the basis of feature contrast 
computations (Huang & Pashler, 2007, p. 615). By virtue of inheriting salience computations from earlier 
work (e.g., Itti & Koch, 2001), the BM could, in principle, account for the density effects observed in the 
present study. Importantly, however, the BM assumes these processes to be fully automatic, that is, 
impenetrable to top-down influences of the task set. This aspect of the BM theory is difficult to reconcile 
with the evidence that negative search slopes are specific to discrimination tasks. 

While the Theory of Visual Attention (TVA) focuses on explaining relatively late attentional processes, 
that is, processes following visual segmentation, the CTVA (an extension of TVA) attempted to model 
segmentation processes (Logan, 1996; the 'C' in 'CTVA' stands for ‘CODE’ or ‘COntour DEtector’). 
According to the CTVA, the visual scene is represented as a map of basic stimulus features (e.g., 
different colors, orientations, etc.). An important difference to FIT and BM theory is that these 
representations are continuous, with higher values indicating stronger signals. Thus, in principle, CTVA 
could accommodate the fact that the same stimulus is less conspicuous in sparse than in dense displays 
and so explain the negative search slopes. However, CTVA, as originally conceived, does not postulate 
interactions between distractors, such as in terms of iso-feature suppression mechanisms. So, in order 
to explain the negative search slopes, CTVA would require substantial modifications and extensions.  

The Guided Search (GS) model postulates that the visual scene is represented as a map of feature 
difference (or feature contrast) signals that can vary continuously. The outputs of feature-specific maps 
are then pooled across all features at the level of the overall-saliency map – a ‘featureless’ 
representation that signals how different (or salient) a given location is relative to its surround. Unlike 
the previously discussed models, GS postulates the existence of iso-feature suppression mechanisms at 
the level of feature-maps that could account for the display density effects and negative search slopes. 
However, GS also postulates that performance in all tasks relies on the overall-saliency map, which 
signals candidate target locations for focal-attentional inspection – in fact, this was the earliest, and 
most critical point of distinction between GS and FIT. Given this, the GS framework cannot readily 
accommodate the finding that negative search slopes are present in discrimination tasks and absent in 
detection tasks. Thus, taken together, the results of the present study are difficult to accommodate by 
any of the dominant theories of early vision. – In what follows, we present our account of the present 
findings.  

Similar to the GS account of early vision, we believe that strong and reliably negative search slopes 
indicate that early vision represents visual input as a map of potentially interesting locations. 
Constructing this map is characterized by strong suppressive interactions between similar stimuli (see 
Itti & Koch, 2000, for computational modeling of distractor salience under conditions of varying display 
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density). In this framework, the relation between the target signal and distractor signals could be 
conceptualized in terms of a signal-to-noise ratio (SNR). The density of distractors would influence the 
strength of the distractor signals and, by implication, the noise component of the SNR: strong distractor 
signals in sparse displays would result in strong noise. In fact, as the present findings indicate, strong 
noise may effectively prevent singleton targets to pop out. In contrast to the classical notions of pop-
out, which define pop-out by its independence of (the number and density of) distractors, our findings 
suggest that pop-out does critically depend on distractors.  

When the SNR does not permit reliable selection of the target based on its overall-saliency signal, as 
with sparse displays, additional adaptive processes may come into play to help find the target. Since the 
present study demonstrated that feature singletons do not invariably (if at all) pop out in sparse 
displays, any selected item may be the target or a distractor. Consequently, participants have to adapt 
search processes so as to ensure that they respond to the target rather than to a distractor. These 
adaptive mechanisms may influence pre-selective processing of the visual scene. For example, the past 
target features may be selectively enhanced, and/or the past distractor features may be suppressed 
(Treisman & Sato, 1990). Further, participants may adopt an altogether different ‘search mode’ in which 
they selectively scan the visual scene for the past target feature (i.e., a ‘feature mode’), rather than 
looking for a singleton element (i.e., a ‘singleton mode’; Bacon & Egeth, 1994). Alternatively, or in 
addition, repeating precise stimulus features may speed up deciding whether or not an already selected 
item is the target (Huang, Holcombe, & Pashler, 2004). Finally, the response-selection processes may be 
influenced by the feature sequence across trials (Yashar & Lamy, 2011). In contrast to sparse displays, 
the SNR in dense displays would permit reliable target selection on the basis of ‘featureless’ saliency 
signals alone, that is, engaging feature-specific processes would not be necessary. The present study 
cannot discriminate between the various mechanisms proposed to account for feature-specific effects in 
singleton search tasks (Becker, 2008; Caddigan & Lleras, 2010; Eimer, Kiss, & Cheung, 2010; Hillstrom, 
2000; Shin, Wan, Fabiani, Gratton, & Lleras, 2008; Tseng et al., 2014). In fact, recent findings suggest 
that multiple, pre- and post-selective mechanisms can give rise to feature-specific effects 
(Krummenacher, Grubert, & Müller, 2010; Lamy et al., 2008; Lamy, Yashar, & Ruderman, 2010; 
Rangelov, Müller, & Zehetleitner, 2011, 2012). However, the present study highlights the fact that the 
feature-specific mechanisms are adaptive, exerting an influence only when search processes cannot rely 
on target saliency. Put differently: sensitivity to stimulus features is not a general governing principle of 
early vision, but rather specific for certain types of visual input. 

Concerning the differential density effects between detection and discrimination tasks, a possible 
explanation may be that responses in the two types of task rely on different properties of the overall-
saliency map. As argued earlier, accurate performance in discrimination tasks requires selecting a 
narrow region around the target. By contrast, the target’s presence can be detected on the basis of 
summary statistics of the overall-saliency map (Rosenholtz, Huang, & Ehinger, 2012, expressed a similar 
idea in a more elaborate way). One such statistic may be the variability of saliency signals across 
different locations. Since, in target-absent displays, all stimuli are identical, the signals from individual 
locations will be comparable – yielding relatively low variability across different locations. By contrast, in 
target-present trials, the signal from one location (the target) should be larger than the signals from the 
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other locations, thus increasing the variability. On trials with sparse displays, this variability in target-
present trials will still be fractionally stronger compared to target-absent trials, permitting relatively fast 
target detection even in sparse displays. When targets are frequently present (such as in Experiment 2), 
even weak variability differences between target-present and target-absent displays may permit 
accurate target detection. In more general terms, we propose that in detection tasks, participants rely 
on the summary statistic of the overall-saliency map. In discrimination tasks, by contrast, participants 
use the spatial layout of the master map to select a narrow region for focal-attentional inspection. 
Concerning the differential feature-specific effects in detection versus discrimination tasks, assuming 
that responses in detection tasks rely on the featureless summary statistic would be sufficient to 
account for the weak PoP and distractor variability effects in such tasks. 

Finally, the results of the modeling analyses consistently demonstrated that, even though the p1 
parameters for sparse displays were substantially lower than 1, the search for feature singletons in 
sparse displays was not fully random. Instead, our findings show that the saliency of feature singleton 
targets was still somewhat higher than that of distractors. This demonstrates that the search efficiency 
is a continuously distributed variable bound by two extremes: (i) fully efficient search (i.e., pop-out 
search, p1 » 1) and (ii) fully random search (i.e., p1 » number of items-1). The present finding, together 
with recent work (Buetti et al., 2016; Moran et al., 2013), highlight the need to account for the full 
spectrum of search efficiency – that is, including the range between fully random and fully efficient, 
pop-out search – rather than focusing on explaining the dichotomy between these extremes. 

Methodological implications 

The evidence that searching for feature singletons in sparse and dense displays is qualitatively different 
raises concerns about the reliability of flat search slopes as a criterion of pop-out. To illustrate, even if 
the target fails to pop out in sparse displays, finding the target will still be relatively fast given the small 
number of items to search trough. On the other hand, finding the same target in dense displays would 
also be relatively fast, however because the target does pop out. Thus, sparse and dense displays can 
yield comparably fast RTs (and flat search slopes), but for different reasons. The results of the present 
study suggest that a more reliable criterion of search efficiency might be the variability of search 
duration: computational modeling indicated that the variability of search duration was twice as large 
when the target failed to pop out relative to when it did pop out. The small variability of search duration 
when the target pops out implies that the total RT variability on uncued trials is primarily driven by the 
variability of the post-search duration. Consequently, there should be no differences in RT variability 
between cued and uncued trials because both these trial types would primarily reflect the same post-
search processes. With this in mind, we propose usage of the cueing procedure as a diagnostic measure 
of pop-out search, instead of the set size manipulation (e.g., Horowitz & Wolfe, 1998; Rauschenberger & 
Yantis, 2001; Wolfe & Horowitz, 2004). In contrast to the set size method, the cueing procedure relies 
on the same stimulus display, which avoids comparing RTs across different stimuli and potential risks 
that search processes differ qualitatively between different displays. From a practical perspective, since 
the search variability criterion compares RTs between only two conditions, its implementation might 
prove more cost-effective compared to implementing the search slope criterion. 
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The dissociation between the detection and discrimination tasks raises a concern about how sensitive 
the performance in detection task is to identify pop-out (which is defined as the target being the first 
item selected). We propose that using discrimination tasks, rather than detection tasks, would permit to 
reliably discern whether or not a stimulus pops out. 

Conclusions	

The present findings suggest that pop-out search is not an all-or-nothing phenomenon. Rather, the 
probability of selecting the target in the first round varies continuously and is influenced by at least two 
properties of the search display. On the one hand, if the target is a feature singleton, it is likely that it 
will be selected in the first several rounds, though not necessarily the very first round. On the other 
hand, for a target to pop out on all trials, a sufficiently high display density is necessary. Due to iso-
feature suppression mechanisms, by which detectors coding similar stimuli inhibit each other, the many, 
closely spaced distractors in dense displays would be less conspicuous relative to the few and widely 
spaced distractors in sparse displays. Thus, even though the target is the same, the relative difference 
between the target and distractors is much lower in sparse than in dense displays. In fact, the present 
study suggests that, for sparse displays, this difference is so small that the target very frequently does 
not pop out at all. 
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Figure	captions	

Figure 1. Probability density functions for search (top row) and post-search durations (middle row) as 
well as the total RTs (bottom row). Several mechanisms could yield negative search slopes: (1) slow pop-
out – finding the target in sparse displays is, on average, slower, while the variability of the search 
duration remains comparable to that for dense displays; (2) different pop-out – finding the target in 
sparse displays is more variable compared to dense displays; and (3) no pop-out – the probability of 
finding the target in the first round of selection is lower for sparse (i.e., p1< 1) than for dense displays 
(p1» 1). Total RTs are a combination of the time it takes to find the target (search duration) and post-
search processes, i.e., the observed RT distribution is a convolution of the distributions of the search and 
post-search durations. See the online article for the color version of this figure. 

Figure 2. (A) Illustration of the stimulus displays used in Experiments 1 and 2 along with the respective 
exposure durations. In the cued condition, the target appeared invariably at the pre-cued location. In 
the variable-distractors conditions, the target was always either red amongst green distractors or green 
amongst red distractors. In the fixed-distractors conditions, distractors were always blue. (B) Illustration 
of the stimulus displays used in Experiments 3 and 4.  In Experiment 3, the target was either a red 
singleton amongst green distractors or a green singleton amongst red distractors. In Experiment 4, the 
target was either a left-tilted singleton amongst right-tilted distractors or right-tilted singleton amongst 
left-titled distractors. Participants had to report the letter inside the target singleton (E vs. mirrored E). 
Unlike Experiments 1 and 2, only variable distractors were used. See the online article for the color 
version of this figure. 

Figure 3. Distribution of RTs on uncued trials for a representative participant (top panel) in Experiment 1 
(target discrimination). Mean correct RTs across different cumulative probabilities (.1–.9), with PoP 
magnitude (different target – same target), for sparse and dense displays, separately for variable and 
fixed distractors on uncued trials (central panel) and cued trials (lower panel). To better illustrate RT 
variability, probabilities above the median (.5) were plotted as the difference from 1 (e.g., p = .9 is 
plotted as 1 – .9 = .1). Whiskers denote 95% CI. See the online article for the color version of this figure. 

Figure 4. Comparison of the observed RTs in Experiment 1 (filled symbols) with the predictions of the 
best-fitting models (empty symbols). Individual symbols denote RT percentiles (10th, 30th, 50th, 70th, and 
90th) from the fastest (10th percentile) to the slowest RTs (90th percentile). For cued trials, predictions by 
the best-fitting Sub1 model are depicted. For uncued trials, predictions by the best-fitting ‘hybrid’ model 
are shown. Gray “+” and “x” denote predicted RTs for models that used the Gaussian and Wald 
distributions, respectively, to model search duration. The difference between the observed and 
predicted RT percentiles reflect goodness-of-fit, with smaller differences indicating better fits. See the 
online article for the color version of this figure. 

Figure 5. Probability density distributions of simulated search durations for three pop-out models 
(‘hybrid’, ‘different pop-out’. and ‘no pop-out’) and varying degrees of inter-trial variability (s). Since the 
empirical RT distributions showed no differences between fixed- and variable-distractor conditions for 
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dense displays, only one probability density distribution is depicted for such displays. See the online 
article for the color version of this figure. 

Figure 6. Distribution of RTs on uncued trials for a representative participant (top panel) in Experiment 2 
(detection task). Mean RTs across different cumulative probabilities (.1–.9), together with the PoP 
magnitude (different target – same target), for correct responses to sparse and to dense displays, 
separately for variable and fixed distractors on uncued trials (central panel) and cued trials (lower 
panel). Conventions as in Figure 3. See the online article for the color version of this figure. 

Figure 7. Distribution of RTs on uncued trials for a representative participant (top panel) in Experiments 
3 and 4 (left and right panels, respectively). Mean correct RTs and PoP magnitude across different 
cumulative probabilities (.1–.9), separately for uncued trials (central panel) and cued trials (lower). 
Conventions as in Figure 3. See the online article for the color version of this figure. 

Figure 8. Comparison of the observed RTs in Experiments 3–4 (filled symbols) with the predictions of the 
best-fitting models (empty symbols). For cued trials, predictions of the best-fitting Sub1 model are 
depicted. For uncued trials, predictions of the best-fitting ‘no pop-out’ model (Exp. 3) and, respectively, 
the best-fitting ‘hybrid’ model (Exp. 4) are shown. Other conventions as in Figure 4. See text for details. 
See the online article for the color version of this figure. 
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