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ABSTRACT

The experimental investigations on fracture mechanics of cement-based materials until
1970s indicated that classical linear elastic fracture mechanics (LEFM) is invalid for quasi-
brittle materials such as concrete. This inapplicability of LEFM is due to existence of an
inelastic zone with large scale and full cracks in front of the main crack tip in concrete. This
so-caled fracture process zone (FPZ) is ignored by LEFM. Consequently, severd
investigators have developed non-linear fracture mechanics approaches to describe failure of
concrete/reinforced concrete structures. Deterministic size effect laws among these non-linear
approaches, for instance size effect law (SEL) by Bazant (1984), suggest that size effect on
strength is primarily related to a relatively large FPZ in concrete. One of the man
requirementsin this law is the need to test samples, which are geometrically similar and made
of the same material, and which must provide a minimum size range=1:4.

The split-tension test has been used to indirectly test the tensile strength of quasi-brittle
materials such as concrete and rock. Recently, concrete splitting specimens have been
commonly used in concrete fracture because they have certain advantages, such as
compactness and lightness, compared to beams. However, the number of theoretical and
experimental studies with diagonal split-tension specimens, to which compressive forces are
applied along two opposite edges, is limited.

In this study, two series of concrete diagonal cube specimens of different size (size
range 1:4) were tested by splitting loading. The concrete mixes with the maximum aggregate
size=8 mm were designed as the gap-graded aggregate and the continuously graded aggregate.
The ultimate loads obtained from the test results were analysed via Bazant’s SEL.
Conseguently, it was observed from the analysis based on SEL that the concrete with gap-
graded aggregate is the more ductile material than the concrete with continuously graded

aggregate.
INTRODUCTION

Recently, concrete splitting specimens have been commonly used in concrete fracture
because they have certain advantages, such as compactness and lightness, compared to beams.
Additionally, cubical and cylindrical test specimens have the following advantages [ 1-3].

a) These specimens are easy to handle, and there is no risk of breaking them during handling.
b) The same moulds can be used to cast specimens for both fracture and strength tests.

¢) In determining the fracture parameters of cement-based materials, the contribution of the
weight of the specimen can be ignored, unlike notched beams.

Tests in which cubical and cylindrical specimens are used to study concrete fracture can
be classified as wedge-splitting tests and split-tension tests. Wedge-splitting tests have been
performed on cubical and cylindrical specimens with an edge notch. The split-tension test has
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been used to indirectly test the tensile strength of quasi-brittle materials such as concrete and
rock [4] and to study concrete fracture over the last decade [1-3].

Severa design codes [5] have used the square-root formula, which does not account for
size effect, for determining tensile strength capacity of concrete. However, it is well known
that strength of concrete structures generally tends to decrease with increasing structure size.
Size effect in concrete/reinforced concrete structures can be well explained by fracture
mechanics. The effect of specimen size on strength of concrete has been investigated by
means of size effect law (SEL) by previous investigators[6, 7].

In this study, two series of concrete diagona cube specimens of different size (size
range 1:4) were tested by splitting loading. Cubes to which compressive forces are applied
along two opposite edges are called diagonal splitting cubes, and cubes to which compressive
forces are applied along parale midlines of the edges are called splitting cubes [4]. The
concrete mixes with the maximum aggregate diameter=8 mm were designed as the gap-
graded aggregate and the continuously graded aggregate. The peak loads obtained from the
test results were analysed by using Bazant’s SEL. Consequently, the results of this study
indicate that the concrete with gap-graded aggregate is the more ductile material than the
concrete with continuously graded aggregeate.

A HISTORICAL OVERVIEW ON THE SPLITTING TESTS

The cylindrical and cubical split-tension specimens have been commonly used to
determine the tensile strength of materials such as concrete and rock. The split-cylinder test is
also called the Brazilian split test and it was first proposed by Carneiro and Barcellos [8] in
1949. This test was also applied successfully on cubes by Nilsson [9] in 1961. As shown in
Fig. 2a, the split-tension specimen is placed between the platens of test machine and the load
is applied until failure, which is occurred by splitting along the vertical diameter due to the
lateral tensile stress distribution [4]. According to the elasticity theory [10], the nominal
tensile strength of the split tension specimensiis defined as
- = o @
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where P; is the ultimate load, b is the specimen width and d is the specimen depth. However,
Equations 13 isonly valid for the concentrated loading condition as shown in Figs. 2aand 2b.
In practice, the applied load is distributed to a finite width (2t) on the specimens by means of
soft materials such as plywood and hard cardboard, as indicated in Fig 2c. Tang et a. [11]
investigated the effect of the distributed load in both three point bending beams and split-
tension cylinder. It was concluded that the nominal strength decreases as increasing width of
the distributed load in split-tension cylinder, while this effect is no significant in the bending
specimens. According to Tang [12], the maximum tensile stress value of the unnotched
cylinder specimens at the plane of 1oading can be calculated from
_ 2P 2\%
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in which P is the total compressive load and b =2t/d is the ratio of the distributed-load width
to the specimen depth, as depicted in Fig. 1.

Rocco et al. [13] studied on both the cylinder and the cube specimens and proposed that
the maximum tensile stress can be calculated for the unnotched cube specimens at the plane of
loading as follows:
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By means of the cohesive crack model, Rocco et a. [13] simulated the Brazilian test by
considering the effect of the specimen size, the specimen shape (Cubical/Cylindrical), and
distributed-load width. They suggested closed-form analytical formulas including size-
depended response for estimating the split-tensile strength of the cube and cylinder
specimens. Besides, the investigators performed a series of experimental studies and it was
concluded that the developed formulas were in a good agreement with the experimental
results.

Similarly, using numerical techniques, the following formula was derived for the
maximum tensile strength of the un-notched diagonal cubes by Ince [3], according to
boundary element method analysis:

2P 1
S max = 2778 (4)
p bd\ 0.931+38.931b *

i Fe P=20t

/

Cube distribution

a) b)
Figure 1 Split-tension specimens a) Stress distribution b) distributed load
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SIZE EFFECT IN CONCRETE AND REINFORCED CONCRETE

In general, the change of a structural property when the size of a structure changes is
known as a size effect related to this property. In other words, if geometricaly similar
specimens do not behave similarly for different sizes, this is called a size effect. It is well
known that structures become more brittle as their size increases, but the classical procedure
uses working stresses which are the same in design. Size effects occur in concrete in any
loading conditions. Most significant cases occur in tensile or shear loading.

Kani [14] was one of the first to demonstrate the size effect in concrete structures. It has
been shown that the shear strength of similar concrete beams decreases with increasing beam
depth. Due to the fracture in a structural element being driven by stored elastic energy
released from the whole structure, this size effect can be well interpreted by fracture
mechanics. The fact that the strength of brittle materias is affected by the presence of
imperfections is first suggested by Griffith [15], who is the founder of linear elastic fracture
mechanics (LEFM). Due to his conclusion, it can be expected that the value of the ultimate
strength will depend upon the size of specimens. As specimen size increases the strength is
expected to be decreased since the probability of presence of weak links is increased.
Traditionally, the size effect in fracture of concrete structural elements has been explained as
Weibull’s theory [16]. He showed that if tensile tests are performed on two geometrically
similar specimens with different volumes, the corresponding ultimate strengths are different.
Weibull’s approach has been widely used for estimating safety factor of materials. In the early
1980s, it is realized that neither LEFM nor Weibull’s approach were adequate for predicting
size effect in cementitious materials [17]. For this reason, several investigators have
developed deterministic size effect theory based on non-linear fracture mechanics.
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Besides the statistical based size effect, the second size effect referred to as the
fracture-type size effect in concrete fracture has been described by Bazant [17]. This is
referred to as size effect law (SEL) which has been shown to agree well with test data.

Size effect in concrete/reinforced concrete behaviour has been extensively studied
both experimental and theoretically with notable success in researching this problem [6, 7].
Bazant derived SEL, by considering the energy balance at crack propagation and dimensional
anaysis of geometrically ssimilar specimens. The so-called SEL is expressed as

415

s, =Bs O{ljt—} 5)
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where sy presents the nominal strength at failure and expressed as s , =c,P,/bd , whered is

characteristic dimension of the specimen, chosen to coincide specimen cross-sectional depth,
b is specimen thickness, and ¢, is a constant of load type. sy is referred to as the strength
parameter and B and dy are empirical constants which can be determined by curve fitting to
the test results of geometrically similar specimens. Thisis the only approach which expresses
the size effect in concrete specimens based on fracture mechanics. SEL has been derived
based on the following assumptions, the potential energy released during the fracture is
proportional to the crack length (a), to the area of the cracking zone, width of the front of
cracking zone (| oOnex) 1S cOnstant, wherel ois an empirical constant and dnx IS the maximum
aggregate size.

SEL of Bazant is illustrated in Fig 4. For small test specimens there is no size effect
due to the strength at failure being proportional to the material strength. This case corresponds
to strength criterion and is presented by the horizontal line in Fig 4. In the large test
specimens, this presents the maximum possible size effect. The material strength at failure is
proportional to a characteristic dimension and corresponds to classical linear elastic fracture
mechanics which is presented by the inclined line with slope -1/2 in Fig 4. The intersection of
the two asymptotes corresponds to d=dy and is called the transitional size. The results of most
concrete test specimens in existing experimental studies lie in the transition zone between
these extreme cases. Contrary to LEFM, size effect in Weibull-type statistical approach is
characterized a straight line with slope -1/6, as shown in Fig. 4 [16].
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Figure 2 Bazant’s Size Effect Law (SEL).
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EXPERIMENTAL PROGRAM

The test specimen was a cube. To determine size effect, specimens with cube sides d=
50, 100 and 200 mm were tested. All specimensin each series were cast from the same batch
of concrete. Three identical cube specimens with 150 mm edge length were also cast from
each batch of concrete to determine compressive strength of concrete. The maximum sand
grain size was 4 mm maximum aggregate size=8 mm for each batch. Mineralogically, the
aggregate consisted of river sand. The aggregate and sand were air-dried prior to mixing.
CEM | 425 N cement was used in al mixes. Its specific gravity and 28-day compressive
strength were 3.06 and 50.3 MPa, respectively. All specimens and identical cubes were
removed from the mold after 1 day and were subsequently cured at approximately 20 °C in
water until testing at 28 days.

The compression tests and the splitting-tension tests were performed using a digita
compression machine with a capacity of 2000 kKN. The plywood loading strips, with
thicknesses of 3 mm and lengths 10 mm greater than the specimen width, were used in the
splitting tests. They were attached on the specimens in the correct positions. The specimens
were loaded monotonically until final failure and care was taken to apply a constant loading
rate. A smooth bearing head of stainless steel with a chevron notch was used in the diagonal
splitting tests, as detailed in Fig. 3a. The steel plates did not indicate any flexural or other type
of deformation after testing. Typically, approximately 2 min (x 30 sec) elapsed before the
maximum load capacity for each specimen was reached. Identical cubes were tested at an age
similar to the other specimens.

TEST RESULTSAND ANALYSIS

The compressive strengths of the mixes f.. are 43.1 MPa and 49.0 MPafor continuously
graded and the gap-graded concrete, respectively. Table 1 summarizes the cube size h, the
characteristic dimension d, the observed failure load Py and the nominal strength according to
Eqg. (1) sn for each of the 18 specimens tested. Typically, it observed that as the load is
gradually increased, the first crack occurred along the center linein the vertical direction (Fig.
1). When the maximum load is reached, two diamond-shaped wedges under the bearing plates
were formed in the diagonal cube test (Fig. 3b). Similarly, in the cube test, wedges under the
bearing plates were formed. Split-cube specimens, the similar rupture modes were aso found
in the study of Rocco et al. [13] and in during the tests by Ince[3].

— wedge

steel bearing

apparatus o5

concrete
specimen

a) b)
Figure 3 @) Test detail in the cube tests for d=100 mm b) crack pattern
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h d Continuously Gap-Graded

(mm) (mm) P« ON P« ON
(KN) (MPa) (kKN) (MPa)
50 70.7 22.3 4,015 29.0 5.222
50 70.7 25.1 4,520 23.7 4.267
50 70.7 26.5 4772 38.2 6.878
100 141.4 75.3 3.390 79.3 3.570
100 141.4 70.7 3.183 87.1 3.921
100 141.4 82.8 3.727 82.8 3.727
200 2828 | 2205 | 2481 | 286.7 | 3.227
200 2828 | 260.0 | 2926 | 3140 | 3534
200 2828 | 201.8 | 2271 | 2726 | 3.068

For diagona split-tension cube specimens, empirical constants in Eg. (5) can be
calculated as B=1/\/C and d, =C/A from the linear regression made on y=Ax+C with

y=]/s i , X=d. Fig. 4a and Fig. 4b show results of the linear regression analysis, and the

size effect law anaysis in the bilogarithmic plane, respectively. The determination
coefficients R? are also given in Fig. 4afor each batch.

CONCLUSIONS

Recently, split-tension specimens such as cylinders and cubes have been commonly
used to determine the tensile strength of cement-based materials. Diagonal split-tension cubes
have been used to determine the split-tension strength of concrete for continuously-graded
and gap-graded mixesin this article.

The maximum loads obtained from the test results were anaysed by SEL.
Conseguently, it was emphasized that the concrete with gap-graded aggregate is the more
ductile materia than the concrete with continuously graded aggregate.

The experimental studies have shown that fracture behavior of concrete is particularly
influenced by the four material parameters. compressive strength, maximum aggregate size,
water-cement ratio, and aggregate type [18-21]. It is noted that fracture resistance of concrete
can aso be affected by other material parameters such as type of cement and curing
conditions, etc. However, this study revealed that aggregate gradation of mix is the one of the
important parameters for concrete fracture.

When splitting specimens are produced with molds of the same size, the uncracked
ligament length of the diagonal splitting cube specimens is V2 times greater than the lengths
of other splitting specimens with the same size. Thisis another advantage of diagonal splitting
cubes, and it is especially useful when studying the size effect.
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Figure 4 Application of Bazant’s SEL to diagonal split-tension samples
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