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Abstract

There are several types of uncertainty in a material characterization arisen from different
sources of measurement errors, such as methodological, instrumental, and personal. As a reason
of the uncertainty in material models, it is plausible to consider model parameters in an interval
instead of a singleton. The probability theory is widely known method used for the consideration
of uncertainties by means of a certain distribution function and confidence level concept. In this
study, fuzzy logic is considered within a material characterization model to deal with the
uncertainty coming from random measurement errors. Data points are treated using fuzzy
numbers instead of single values to cover random measurement errors. In this context, an
illustrative example, prepared with core strength-rebound hammer data obtained from a concrete
structure, is solved and evaluated in detail. Results revealed that there is a potential for fuzzy
logic to characterize the uncertainty in a material model arisen from measurement errors.

Introduction

Experimental analysis is the integral part of material characterization conducted for the
determination of engineering parameters of materials. Basically, depending on the methodology,
testing equipment, and the person performing the experiment, constant and random
measurement errors are occurred throughout the experimental analyses. Methodological errors
are originated from the lack of theoretical feedback and several assumptions made within the
testing technique. Instrumental errors are due to weaknesses and drawbacks of testing
equipments. As the name implies, personal errors are occurred as a reason of individual mistakes
made by the performer. On the other hand, cumulative measurement error is considered with
mathematical models that synthesize underlying elementary errors, which characterize the
smallest measurement errors. Elementary error is determined by the inaccuracies in respective
measurements and can be categorized into two groups, i.e. (a) constant (systematic) errors and
(b) random errors. Constant errors are independent from repetition of the experiment and vary
randomly within certain limits due to consistency of outcomes. They are characterized by
mathematical models as well as using uniform distribution. On the other hand, random errors are
caused by the inaccuracies of testing devices, and cannot be predicted easily. They are generally
considered by using normal distribution [1, 2].

In the literature, there are various studies dealing with measurement uncertainties utilizing
probability theory. Castrup [3] presented a methodology to calculate measurement uncertainty
with statistical approach. In another study, an algorithm was developed to estimate uncertainties
in situations where data samples are ambiguous [4]. Phillips et. al. [5] described an approach to
better calculate measurement uncertainty using Bayesian inference. Guidelines for the statistical
calculation of measurement uncertainty can be found in the written material [6]. On the other
hand, several researchers focused on the consideration of measurement uncertainty by means of
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fuzzy set theory. In this context, Mauris, et al. [7] used a fuzzy subset for the representation of
measurement uncertainty as an upper bound of a family of a probability distribution. In another
notable study, -cut concept in fuzzy set theory was utilized as the measure of measurement
inexactness instead of confidence interval in statistical approach [8]. It should be noted that there
are more studies on measurement uncertainty in the written material; however, a few of them is
listed here due to the lack of space.

In this study, random uncertainty in measurement errors is handled by means of a fuzzy
model. In this context, input data is treated using fuzzy numbers and approximate reasoning is
adopted for inference process. Furthermore, an illustrative example on a material
characterization problem is considered with the fuzzy model, and the results are evaluated in
detail.

Problem description

Measurement uncertainty is a keynote issue influencing the confidence of a testing system
or the outcomes of a modeling process. The basic way of characterizing measurement
uncertainty is the probabilistic approach by treating the first two moments, i.e. mean and
variance, of the probability distribution. Generally, measurement uncertainty can be grouped
into two categories in terms of estimation discrepancies, namely Type A and Type B. Type A
evaluation is essentially based on the statistical analysis of series of observations. Type A
uncertainty (uA) is commonly calculated by standard deviation (si) and the number of degrees of
freedom (vi). The most widely used techniques for the calculation of Type A uncertainties are:
(a) curve fitting, (b) analysis of variance, and (c) the standard deviation of the mean of
measurements as given below [6]:
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in which, n is number of observations, Xi input quantity, iX


is the mean, and xi denotes the input
estimate. On the other hand, Type B calculation is performed by all of the relevant information,
such as expert knowledge, previous observations, calibration reports, and technical
specifications. In other words, Type B uncertainty (uB), which usually coming from
unsystematic sources of error, is commonly considered by experience and/or confidence interval
concept in probability distributions. The following formula can be used to calculate Type B
source of uncertainties [6, 9].
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where, Φ-1 is the inverse of the normal probability distribution function, A is the calculation
interval , and p is interval probability for the range between +ΔA and - ΔA. With a simple
approach, the following expression can be used on the basis of uniform probability distribution
[6]:
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Apart from these, Eq.2 can be rewritten using the student t distribution, the estimating variance
(2), and Type B degrees of freedom (vB) as given below [6, 9]:
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On the other hand, Eq.2 can be generalized for the interval probability (p) and the calculation
interval (A) as given below:
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and Eq.5 finally yields the following formulation for the calculation of uB [3, 4]:
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Apart from these, the uncertainty in overall measurement outcomes can be evaluated using the
estimated standard deviation of the result, namely combined standard uncertainty (uc). This
approach is generally referred to as the law of propagation of uncertainty. With the help of first
order Taylor series approximation, the following formulation can be used for the calculation of
uc [6]:
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where, the partial derivative  f /  xi is the sensivity coefficient, u(xi) is the standard uncertainty
relevant with xi , and u(xi , xj) is the estimated covariance with respect to xi and xj.

In this study, Type B (random) measurement uncertainty is handled by means of fuzzy set
theory. Apart from previous fuzzy-logic-based measurement uncertainty considerations,
inexactness is handled by representing the input data using triangular membership functions.
Moreover, the nonlinear mapping between input and output variables of the system is
established by a fuzzy inference system. Consequently, the represented methodology is
illustrated by a numerical example.

Fuzzy logic

Fuzzy logic is a multi-valued logic, which reduces the system’s complexity arising from the
uncertainty in the form of ambiguity, by allowing intermediate values to be defined between true
and false. From this point of view, fuzzy sets make possible to reason not only utilizing discrete
symbols and numbers but also using ambiguous information. Fuzzy logic is a formal
characterization of fuzzy set theory using logical constructs to manipulate fuzzy systems by
incorporating the heuristics. Consequently, fuzzy set theory is an outstanding tool for
representing the uncertainty with vagueness and data imprecision, and fuzzy logic is a way of
representing the knowledge embedded in fuzzy sets as well as making human-like inferences
[10, 11].

There are several inference (implication) techniques developed for use with fuzzy systems.
Lukasiewicz, Mamdani, Sugeno, and Tsukamoto inference techniques are some examples to be
listed. On the other hand, majority of real-life problems require a single solution instead of an
inference region to draw a conclusion. In order to accomplish this, defuzzification of the
solution area is a compulsory process to obtain the outcome of the problem. There are several
defuzzification techniques in the written material; however, centeroid method is the most
popular technique in all of them [10]. The formulation of centeroid technique is as follows:
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where, A is fuzzy set, A is membership function, x is input variable, and x* denotes defuzzified
output value.

Problem formulation

As mentioned before, the mapping of elements of a fuzzy set to the universe of
membership values is made by the membership function.  If the universe of discourse is
represented by X, the fuzzy set A can be denoted (Zadeh’s notation) as follows [10]:
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The most fundamental form of membership functions is the triangular function (Figure 1),
which can be characterized as given below:
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Hence, following implementation can be written for triangular fuzzy membership
functions:
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Figure 1 Triangular membership function

It should be noted for fuzzy rule-based systems that each logical proposition in the
universe of discourse is characterized by a fuzzy set and the outcome of a rule is inferred using
an implication technique, such as Zadeh, Mamdani, Lukasiewicz, etc. The process of implication
is also referred to as the extension principle or approximate reasoning. Due to Mamdani’s
implication method, a fuzzy relation (R) is derived from two or more fuzzy propositions (A , B,
…) as given in Eq. 12 (R : A → B).
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Fuzzy rule-based systems consist of several rules, and the conclusion (inference) is drawn
by a decomposition method. In addition, IF part of the rules involve conjunctive (AND) and
disjunctive (OR) antecedents. A conjunctive fuzzy rule can be written as follows [10]:
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IF x is A1 AND A2 ... AND AL THEN  y is BS

(13)

then, decomposition can be made as:
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On the other hand, for disjunctive antecedents:

IF x is A1 OR A2 ... OR AL THEN  y is BS (15)

therefore, decomposition is made as follows:
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Consequently, graphical representation of a Mamdani fuzzy inference system is depicted
in Figure 2.a. As can be seen from the figure that the outcome is a region; therefore, it is
necessary to make a defuzzification in order to get single output value.

As emphasized before, the measurement uncertainty is considered by fuzzy set concept in
this investigation. In detail, input parameters are characterized by triangular membership
functions, and the uncertainty in the measurement process is overcome by this mean. In Figure
2.b. the fundamental difference is indicated graphically. Referring to the figure, the crossing
point of the membership function and the fuzzy input variable is assumed as the input value. The
following mathematical expression can be written to summarize the fundamental difference in
terms of the implication philosophies:
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where, junc is the operator representing the process of the calculation of crossing points.
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Figure 2 The fuzzy inference methodologies

Referring to Fig.3, which indicating a fuzzy partitioning (Aij) and a fuzzy input (xj), the
following piecewise expressions can be derived utilizing basic mathematics:

i. for a ≤ x ≤ b and  0 ≤ y ≤ 1
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ii. for b ≤ x ≤ c and  0 ≤ y ≤ 1
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Figure 3 Illustration of fuzzy partitioning and fuzzy input
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In case of one or more crossing point exists, the minimum value is considered for the
determination of x and y coordinates, which are essential for the implication process. The
following expression can be given to characterize the implication as well as the aggregation (for
disjunctive rules) processes:
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where, μB(i) is membership function of the output fuzzy variable, μA(i,j) is represents
membership functions of input fuzzy variables, xj is fuzzy input, yijk is the membership value
computed at each step, and IR denotes closed inference region of the fuzzy system.

The inexactness represented by a fuzzy input is fundamentally based on the edges of the
triangle, namely d, e, and f in Fig.3. Therefore, degree of the fuzziness can be adapted by
changing the points. Another point must be mentioned that presented methodology handles the
inexactness with fundamentally different approach from the techniques in the written material.
Previous techniques depend on confidence intervals in probability distributions and -cut
concept in fuzzy set theory. Nevertheless, presented approach considers the uncertainty with
using fuzzy input variables as well as changing the support (i.e. base points) of triangular fuzzy
input. Therefore, a solution area comprising uncertainty effects is produced in this methodology
instead of a single uncertainty value, and an additional procedure is considered for the
calculation of the uncertainty.

Application

In this part of the investigation, presented methodology is considered with a numerical example.
In this context, the database, which comprises rebound hammer (RH) and core strength (CS)
values, is utilized for the evaluation of the methodology. The scatting of treated data is
illustrated in Figure 4, and descriptive statistical parameters are given in Table 1.

Figure 4 The evaluation database

In the first part of the verification study, Type B measurement uncertainty (uB) is calculated
due to the conventional procedure [6, 9]. The results of RH and CS free parameters are given for
different confidence levels (X) and error limits (±X) in Tables 2 and 3, respectively.

Table 1 Descriptive statistics of the data
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Parameter RH CS
Average 29.72 20.98

Median 30.7 21.2
Min 12.6 5.14
Max 48.50 38.70
Std. dev. 6.74 5.91
Variance 45.42 34.87
Skewness -0.419 -0.230
Kurtosis -0.445 -0.127

It should be noted for this investigation that the fuzzy approach is utilized for the
computation of Type B measurement uncertainties, which come from unsystematic sources of
error. Therefore, only Type B uncertainties are included in the verification application.

Table 2: Results of the conventional analyses performed for RH variable

X uB

U/U

±10 ±5 ±4 ±3 ±2 ±1 ±0

90 18.05 0.22 0.16 0.15 0.14 0.14 0.13 0.13

95 15.15 - 0.18 0.17 0.15 0.14 0.13 0.13

96 14.46 - - 0.18 0.16 0.14 0.14 0.13

97 13.68 - - - 0.17 0.15 0.14 0.13

98 12.76 - - - - 0.16 0.14 0.13

99 11.53 - - - - - 0.15 0.13

Table 3 Results of the conventional analyses performed for CS variable

X uB

U/U

±10 ±5 ±4 ±3 ±2 ±1 ±0

90 12.75 0.24 0.18 0.18 0.17 0.17 0.16 0.16

95 10.70 - 0.21 0.19 0.18 0.17 0.11 0.16

96 10.21 - - 0.20 0.18 0.17 0.17 0.16

97 9.66 - - - 0.19 0.18 0.17 0.16

98 9.01 - - - - 0.19 0.17 0.16

99 8.14 - - - - - 0.18 0.16

In the second part of the application, a fuzzy model is employed to establish a correlation
between RH and CS free parameters. In this context, CS and RH parameters are considered with
fuzzy variables in the model. Furthermore, X, and ±X parameters are taken into account by
changing the support of triangular fuzzy inputs, namely d and f points in Figure 3.

As emphasized before, because presented approach handles the uncertainty with the help of a
region instead of a singleton, it is not possible to make one-to-one comparison between
conventional results and outcomes obtained here. However, three different ways are followed to
evaluate the outcomes: (1) Comparison of outcomes of the fuzzy model obtained using singleton
and fuzzy outputs, (2) Examination of the results of changing base points (d and f) of the
triangular fuzzy inputs, (3) Indirect comparison with conventional results.
In order to perform the third step of the evaluation study, namely the comparison with
conventional uncertainty values, the length of fuzzy confidence interval that is the half of -cut
width is computed through the following formulation:
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L are points describing fuzzy trapezoidal interval AAV, which are
computed as given below:
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in which, : L, R, q is the level of confidence, and N denotes data number. In Table 4, the
summary of all evaluation sessions are given.

Table 4 Overall results of the evaluation study

X
RH CS
uBC* uBS* uBF* uBC* uBS* uBF*

90 18.05 21.36 27.67 12.75 14.56 18.81
95 15.15 18.41 22.71 10.70 11.98 11.90
96 14.46 16.75 15.23 10.21 11.63 11.74
97 13.68 15.04 19.07 9.66 11.08 11.52
98 12.76 14.48 14.32 9.01 10.92 11.36
99 11.53 13.99 11.70 8.14 10.75 11.03

* C: Conventional, S: Single input, F: Fuzzy input

As can be derived from Table 4, fuzzy models that comprise single input and fuzzy input
produced higher uncertainty values with respect to conventional analysis. Nevertheless, it is
possible to conclude that the discrepancies are not excessive. On the other hand, the fuzziness in
the input variables caused considerable changes in the outcomes.

Conclusion

In this investigation, fuzzy logic is used for the consideration Type B measurement
uncertainty. Results revealed that there is a potential for fuzzy approach in terms of handling
measurement uncertainties.

Generally, fuzzy set theory is successful for the description of systematic errors; however
in this investigation, the fuzzy approach is just utilized for the calculation of random-sourced
measurement uncertainties. It can also be treated for the calculation of combined measurement
uncertainties with some modifications.

In this study, membership functions are selected as triangular; however, different types of
membership function, such as Gaussian and Sigmoidal, can also be considered.
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